1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 2002, Linus Torvalds.
7 * Contains all the functions related to writing back and waiting
8 * upon dirty inodes against superblocks, and writing back dirty
9 * pages against inodes. ie: data writeback. Writeout of the
10 * inode itself is not handled here.
12 * 10Apr2002 Andrew Morton
13 * Split out of fs/inode.c
14 * Additions for address_space-based writeback
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
24 #include <linux/pagemap.h>
25 #include <linux/kthread.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include <linux/device.h>
31 #include <linux/memcontrol.h>
35 * 4MB minimal write chunk size
37 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10))
40 * Passed into wb_writeback(), essentially a subset of writeback_control
42 struct wb_writeback_work {
44 struct super_block *sb;
45 enum writeback_sync_modes sync_mode;
46 unsigned int tagged_writepages:1;
47 unsigned int for_kupdate:1;
48 unsigned int range_cyclic:1;
49 unsigned int for_background:1;
50 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
51 unsigned int auto_free:1; /* free on completion */
52 enum wb_reason reason; /* why was writeback initiated? */
54 struct list_head list; /* pending work list */
55 struct wb_completion *done; /* set if the caller waits */
59 * If an inode is constantly having its pages dirtied, but then the
60 * updates stop dirtytime_expire_interval seconds in the past, it's
61 * possible for the worst case time between when an inode has its
62 * timestamps updated and when they finally get written out to be two
63 * dirtytime_expire_intervals. We set the default to 12 hours (in
64 * seconds), which means most of the time inodes will have their
65 * timestamps written to disk after 12 hours, but in the worst case a
66 * few inodes might not their timestamps updated for 24 hours.
68 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
70 static inline struct inode *wb_inode(struct list_head *head)
72 return list_entry(head, struct inode, i_io_list);
76 * Include the creation of the trace points after defining the
77 * wb_writeback_work structure and inline functions so that the definition
78 * remains local to this file.
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/writeback.h>
83 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
85 static bool wb_io_lists_populated(struct bdi_writeback *wb)
87 if (wb_has_dirty_io(wb)) {
90 set_bit(WB_has_dirty_io, &wb->state);
91 WARN_ON_ONCE(!wb->avg_write_bandwidth);
92 atomic_long_add(wb->avg_write_bandwidth,
93 &wb->bdi->tot_write_bandwidth);
98 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
100 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
101 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
102 clear_bit(WB_has_dirty_io, &wb->state);
103 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
104 &wb->bdi->tot_write_bandwidth) < 0);
109 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
110 * @inode: inode to be moved
111 * @wb: target bdi_writeback
112 * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
114 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
115 * Returns %true if @inode is the first occupant of the !dirty_time IO
116 * lists; otherwise, %false.
118 static bool inode_io_list_move_locked(struct inode *inode,
119 struct bdi_writeback *wb,
120 struct list_head *head)
122 assert_spin_locked(&wb->list_lock);
123 assert_spin_locked(&inode->i_lock);
124 WARN_ON_ONCE(inode->i_state & I_FREEING);
126 list_move(&inode->i_io_list, head);
128 /* dirty_time doesn't count as dirty_io until expiration */
129 if (head != &wb->b_dirty_time)
130 return wb_io_lists_populated(wb);
132 wb_io_lists_depopulated(wb);
136 static void wb_wakeup(struct bdi_writeback *wb)
138 spin_lock_irq(&wb->work_lock);
139 if (test_bit(WB_registered, &wb->state))
140 mod_delayed_work(bdi_wq, &wb->dwork, 0);
141 spin_unlock_irq(&wb->work_lock);
144 static void finish_writeback_work(struct bdi_writeback *wb,
145 struct wb_writeback_work *work)
147 struct wb_completion *done = work->done;
152 wait_queue_head_t *waitq = done->waitq;
154 /* @done can't be accessed after the following dec */
155 if (atomic_dec_and_test(&done->cnt))
160 static void wb_queue_work(struct bdi_writeback *wb,
161 struct wb_writeback_work *work)
163 trace_writeback_queue(wb, work);
166 atomic_inc(&work->done->cnt);
168 spin_lock_irq(&wb->work_lock);
170 if (test_bit(WB_registered, &wb->state)) {
171 list_add_tail(&work->list, &wb->work_list);
172 mod_delayed_work(bdi_wq, &wb->dwork, 0);
174 finish_writeback_work(wb, work);
176 spin_unlock_irq(&wb->work_lock);
180 * wb_wait_for_completion - wait for completion of bdi_writeback_works
181 * @done: target wb_completion
183 * Wait for one or more work items issued to @bdi with their ->done field
184 * set to @done, which should have been initialized with
185 * DEFINE_WB_COMPLETION(). This function returns after all such work items
186 * are completed. Work items which are waited upon aren't freed
187 * automatically on completion.
189 void wb_wait_for_completion(struct wb_completion *done)
191 atomic_dec(&done->cnt); /* put down the initial count */
192 wait_event(*done->waitq, !atomic_read(&done->cnt));
195 #ifdef CONFIG_CGROUP_WRITEBACK
198 * Parameters for foreign inode detection, see wbc_detach_inode() to see
201 * These paramters are inherently heuristical as the detection target
202 * itself is fuzzy. All we want to do is detaching an inode from the
203 * current owner if it's being written to by some other cgroups too much.
205 * The current cgroup writeback is built on the assumption that multiple
206 * cgroups writing to the same inode concurrently is very rare and a mode
207 * of operation which isn't well supported. As such, the goal is not
208 * taking too long when a different cgroup takes over an inode while
209 * avoiding too aggressive flip-flops from occasional foreign writes.
211 * We record, very roughly, 2s worth of IO time history and if more than
212 * half of that is foreign, trigger the switch. The recording is quantized
213 * to 16 slots. To avoid tiny writes from swinging the decision too much,
214 * writes smaller than 1/8 of avg size are ignored.
216 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
217 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
218 #define WB_FRN_TIME_CUT_DIV 8 /* ignore rounds < avg / 8 */
219 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
221 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
222 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
223 /* each slot's duration is 2s / 16 */
224 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
225 /* if foreign slots >= 8, switch */
226 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
227 /* one round can affect upto 5 slots */
228 #define WB_FRN_MAX_IN_FLIGHT 1024 /* don't queue too many concurrently */
231 * Maximum inodes per isw. A specific value has been chosen to make
232 * struct inode_switch_wbs_context fit into 1024 bytes kmalloc.
234 #define WB_MAX_INODES_PER_ISW ((1024UL - sizeof(struct inode_switch_wbs_context)) \
235 / sizeof(struct inode *))
237 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
238 static struct workqueue_struct *isw_wq;
240 void __inode_attach_wb(struct inode *inode, struct folio *folio)
242 struct backing_dev_info *bdi = inode_to_bdi(inode);
243 struct bdi_writeback *wb = NULL;
245 if (inode_cgwb_enabled(inode)) {
246 struct cgroup_subsys_state *memcg_css;
249 memcg_css = mem_cgroup_css_from_folio(folio);
250 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
252 /* must pin memcg_css, see wb_get_create() */
253 memcg_css = task_get_css(current, memory_cgrp_id);
254 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
263 * There may be multiple instances of this function racing to
264 * update the same inode. Use cmpxchg() to tell the winner.
266 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
269 EXPORT_SYMBOL_GPL(__inode_attach_wb);
272 * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list
273 * @inode: inode of interest with i_lock held
274 * @wb: target bdi_writeback
276 * Remove the inode from wb's io lists and if necessarily put onto b_attached
277 * list. Only inodes attached to cgwb's are kept on this list.
279 static void inode_cgwb_move_to_attached(struct inode *inode,
280 struct bdi_writeback *wb)
282 assert_spin_locked(&wb->list_lock);
283 assert_spin_locked(&inode->i_lock);
284 WARN_ON_ONCE(inode->i_state & I_FREEING);
286 inode->i_state &= ~I_SYNC_QUEUED;
287 if (wb != &wb->bdi->wb)
288 list_move(&inode->i_io_list, &wb->b_attached);
290 list_del_init(&inode->i_io_list);
291 wb_io_lists_depopulated(wb);
295 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
296 * @inode: inode of interest with i_lock held
298 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
299 * held on entry and is released on return. The returned wb is guaranteed
300 * to stay @inode's associated wb until its list_lock is released.
302 static struct bdi_writeback *
303 locked_inode_to_wb_and_lock_list(struct inode *inode)
304 __releases(&inode->i_lock)
305 __acquires(&wb->list_lock)
308 struct bdi_writeback *wb = inode_to_wb(inode);
311 * inode_to_wb() association is protected by both
312 * @inode->i_lock and @wb->list_lock but list_lock nests
313 * outside i_lock. Drop i_lock and verify that the
314 * association hasn't changed after acquiring list_lock.
317 spin_unlock(&inode->i_lock);
318 spin_lock(&wb->list_lock);
320 /* i_wb may have changed inbetween, can't use inode_to_wb() */
321 if (likely(wb == inode->i_wb)) {
322 wb_put(wb); /* @inode already has ref */
326 spin_unlock(&wb->list_lock);
329 spin_lock(&inode->i_lock);
334 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
335 * @inode: inode of interest
337 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
340 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
341 __acquires(&wb->list_lock)
343 spin_lock(&inode->i_lock);
344 return locked_inode_to_wb_and_lock_list(inode);
347 struct inode_switch_wbs_context {
348 struct rcu_work work;
351 * Multiple inodes can be switched at once. The switching procedure
352 * consists of two parts, separated by a RCU grace period. To make
353 * sure that the second part is executed for each inode gone through
354 * the first part, all inode pointers are placed into a NULL-terminated
355 * array embedded into struct inode_switch_wbs_context. Otherwise
356 * an inode could be left in a non-consistent state.
358 struct bdi_writeback *new_wb;
359 struct inode *inodes[];
362 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
364 down_write(&bdi->wb_switch_rwsem);
367 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
369 up_write(&bdi->wb_switch_rwsem);
372 static bool inode_do_switch_wbs(struct inode *inode,
373 struct bdi_writeback *old_wb,
374 struct bdi_writeback *new_wb)
376 struct address_space *mapping = inode->i_mapping;
377 XA_STATE(xas, &mapping->i_pages, 0);
379 bool switched = false;
381 spin_lock(&inode->i_lock);
382 xa_lock_irq(&mapping->i_pages);
385 * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction
386 * path owns the inode and we shouldn't modify ->i_io_list.
388 if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE)))
391 trace_inode_switch_wbs(inode, old_wb, new_wb);
394 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
395 * to possibly dirty folios while PAGECACHE_TAG_WRITEBACK points to
396 * folios actually under writeback.
398 xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
399 if (folio_test_dirty(folio)) {
400 long nr = folio_nr_pages(folio);
401 wb_stat_mod(old_wb, WB_RECLAIMABLE, -nr);
402 wb_stat_mod(new_wb, WB_RECLAIMABLE, nr);
407 xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
408 long nr = folio_nr_pages(folio);
409 WARN_ON_ONCE(!folio_test_writeback(folio));
410 wb_stat_mod(old_wb, WB_WRITEBACK, -nr);
411 wb_stat_mod(new_wb, WB_WRITEBACK, nr);
414 if (mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) {
415 atomic_dec(&old_wb->writeback_inodes);
416 atomic_inc(&new_wb->writeback_inodes);
422 * Transfer to @new_wb's IO list if necessary. If the @inode is dirty,
423 * the specific list @inode was on is ignored and the @inode is put on
424 * ->b_dirty which is always correct including from ->b_dirty_time.
425 * The transfer preserves @inode->dirtied_when ordering. If the @inode
426 * was clean, it means it was on the b_attached list, so move it onto
427 * the b_attached list of @new_wb.
429 if (!list_empty(&inode->i_io_list)) {
430 inode->i_wb = new_wb;
432 if (inode->i_state & I_DIRTY_ALL) {
435 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
436 if (time_after_eq(inode->dirtied_when,
439 inode_io_list_move_locked(inode, new_wb,
440 pos->i_io_list.prev);
442 inode_cgwb_move_to_attached(inode, new_wb);
445 inode->i_wb = new_wb;
448 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
449 inode->i_wb_frn_winner = 0;
450 inode->i_wb_frn_avg_time = 0;
451 inode->i_wb_frn_history = 0;
455 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
456 * ensures that the new wb is visible if they see !I_WB_SWITCH.
458 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
460 xa_unlock_irq(&mapping->i_pages);
461 spin_unlock(&inode->i_lock);
466 static void inode_switch_wbs_work_fn(struct work_struct *work)
468 struct inode_switch_wbs_context *isw =
469 container_of(to_rcu_work(work), struct inode_switch_wbs_context, work);
470 struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]);
471 struct bdi_writeback *old_wb = isw->inodes[0]->i_wb;
472 struct bdi_writeback *new_wb = isw->new_wb;
473 unsigned long nr_switched = 0;
474 struct inode **inodep;
477 * If @inode switches cgwb membership while sync_inodes_sb() is
478 * being issued, sync_inodes_sb() might miss it. Synchronize.
480 down_read(&bdi->wb_switch_rwsem);
483 * By the time control reaches here, RCU grace period has passed
484 * since I_WB_SWITCH assertion and all wb stat update transactions
485 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
486 * synchronizing against the i_pages lock.
488 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
489 * gives us exclusion against all wb related operations on @inode
490 * including IO list manipulations and stat updates.
492 if (old_wb < new_wb) {
493 spin_lock(&old_wb->list_lock);
494 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
496 spin_lock(&new_wb->list_lock);
497 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
500 for (inodep = isw->inodes; *inodep; inodep++) {
501 WARN_ON_ONCE((*inodep)->i_wb != old_wb);
502 if (inode_do_switch_wbs(*inodep, old_wb, new_wb))
506 spin_unlock(&new_wb->list_lock);
507 spin_unlock(&old_wb->list_lock);
509 up_read(&bdi->wb_switch_rwsem);
513 wb_put_many(old_wb, nr_switched);
516 for (inodep = isw->inodes; *inodep; inodep++)
520 atomic_dec(&isw_nr_in_flight);
523 static bool inode_prepare_wbs_switch(struct inode *inode,
524 struct bdi_writeback *new_wb)
527 * Paired with smp_mb() in cgroup_writeback_umount().
528 * isw_nr_in_flight must be increased before checking SB_ACTIVE and
529 * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0
530 * in cgroup_writeback_umount() and the isw_wq will be not flushed.
537 /* while holding I_WB_SWITCH, no one else can update the association */
538 spin_lock(&inode->i_lock);
539 if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
540 inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) ||
541 inode_to_wb(inode) == new_wb) {
542 spin_unlock(&inode->i_lock);
545 inode->i_state |= I_WB_SWITCH;
547 spin_unlock(&inode->i_lock);
553 * inode_switch_wbs - change the wb association of an inode
554 * @inode: target inode
555 * @new_wb_id: ID of the new wb
557 * Switch @inode's wb association to the wb identified by @new_wb_id. The
558 * switching is performed asynchronously and may fail silently.
560 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
562 struct backing_dev_info *bdi = inode_to_bdi(inode);
563 struct cgroup_subsys_state *memcg_css;
564 struct inode_switch_wbs_context *isw;
566 /* noop if seems to be already in progress */
567 if (inode->i_state & I_WB_SWITCH)
570 /* avoid queueing a new switch if too many are already in flight */
571 if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
574 isw = kzalloc(struct_size(isw, inodes, 2), GFP_ATOMIC);
578 atomic_inc(&isw_nr_in_flight);
580 /* find and pin the new wb */
582 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
583 if (memcg_css && !css_tryget(memcg_css))
589 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
594 if (!inode_prepare_wbs_switch(inode, isw->new_wb))
597 isw->inodes[0] = inode;
600 * In addition to synchronizing among switchers, I_WB_SWITCH tells
601 * the RCU protected stat update paths to grab the i_page
602 * lock so that stat transfer can synchronize against them.
603 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
605 INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
606 queue_rcu_work(isw_wq, &isw->work);
610 atomic_dec(&isw_nr_in_flight);
617 * cleanup_offline_cgwb - detach associated inodes
620 * Switch all inodes attached to @wb to a nearest living ancestor's wb in order
621 * to eventually release the dying @wb. Returns %true if not all inodes were
622 * switched and the function has to be restarted.
624 bool cleanup_offline_cgwb(struct bdi_writeback *wb)
626 struct cgroup_subsys_state *memcg_css;
627 struct inode_switch_wbs_context *isw;
630 bool restart = false;
632 isw = kzalloc(struct_size(isw, inodes, WB_MAX_INODES_PER_ISW),
637 atomic_inc(&isw_nr_in_flight);
639 for (memcg_css = wb->memcg_css->parent; memcg_css;
640 memcg_css = memcg_css->parent) {
641 isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL);
645 if (unlikely(!isw->new_wb))
646 isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */
649 spin_lock(&wb->list_lock);
650 list_for_each_entry(inode, &wb->b_attached, i_io_list) {
651 if (!inode_prepare_wbs_switch(inode, isw->new_wb))
654 isw->inodes[nr++] = inode;
656 if (nr >= WB_MAX_INODES_PER_ISW - 1) {
661 spin_unlock(&wb->list_lock);
663 /* no attached inodes? bail out */
665 atomic_dec(&isw_nr_in_flight);
672 * In addition to synchronizing among switchers, I_WB_SWITCH tells
673 * the RCU protected stat update paths to grab the i_page
674 * lock so that stat transfer can synchronize against them.
675 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
677 INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
678 queue_rcu_work(isw_wq, &isw->work);
684 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
685 * @wbc: writeback_control of interest
686 * @inode: target inode
688 * @inode is locked and about to be written back under the control of @wbc.
689 * Record @inode's writeback context into @wbc and unlock the i_lock. On
690 * writeback completion, wbc_detach_inode() should be called. This is used
691 * to track the cgroup writeback context.
693 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
696 if (!inode_cgwb_enabled(inode)) {
697 spin_unlock(&inode->i_lock);
701 wbc->wb = inode_to_wb(inode);
704 wbc->wb_id = wbc->wb->memcg_css->id;
705 wbc->wb_lcand_id = inode->i_wb_frn_winner;
706 wbc->wb_tcand_id = 0;
708 wbc->wb_lcand_bytes = 0;
709 wbc->wb_tcand_bytes = 0;
712 spin_unlock(&inode->i_lock);
715 * A dying wb indicates that either the blkcg associated with the
716 * memcg changed or the associated memcg is dying. In the first
717 * case, a replacement wb should already be available and we should
718 * refresh the wb immediately. In the second case, trying to
719 * refresh will keep failing.
721 if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
722 inode_switch_wbs(inode, wbc->wb_id);
724 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
727 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
728 * @wbc: writeback_control of the just finished writeback
730 * To be called after a writeback attempt of an inode finishes and undoes
731 * wbc_attach_and_unlock_inode(). Can be called under any context.
733 * As concurrent write sharing of an inode is expected to be very rare and
734 * memcg only tracks page ownership on first-use basis severely confining
735 * the usefulness of such sharing, cgroup writeback tracks ownership
736 * per-inode. While the support for concurrent write sharing of an inode
737 * is deemed unnecessary, an inode being written to by different cgroups at
738 * different points in time is a lot more common, and, more importantly,
739 * charging only by first-use can too readily lead to grossly incorrect
740 * behaviors (single foreign page can lead to gigabytes of writeback to be
741 * incorrectly attributed).
743 * To resolve this issue, cgroup writeback detects the majority dirtier of
744 * an inode and transfers the ownership to it. To avoid unnecessary
745 * oscillation, the detection mechanism keeps track of history and gives
746 * out the switch verdict only if the foreign usage pattern is stable over
747 * a certain amount of time and/or writeback attempts.
749 * On each writeback attempt, @wbc tries to detect the majority writer
750 * using Boyer-Moore majority vote algorithm. In addition to the byte
751 * count from the majority voting, it also counts the bytes written for the
752 * current wb and the last round's winner wb (max of last round's current
753 * wb, the winner from two rounds ago, and the last round's majority
754 * candidate). Keeping track of the historical winner helps the algorithm
755 * to semi-reliably detect the most active writer even when it's not the
758 * Once the winner of the round is determined, whether the winner is
759 * foreign or not and how much IO time the round consumed is recorded in
760 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
761 * over a certain threshold, the switch verdict is given.
763 void wbc_detach_inode(struct writeback_control *wbc)
765 struct bdi_writeback *wb = wbc->wb;
766 struct inode *inode = wbc->inode;
767 unsigned long avg_time, max_bytes, max_time;
774 history = inode->i_wb_frn_history;
775 avg_time = inode->i_wb_frn_avg_time;
777 /* pick the winner of this round */
778 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
779 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
781 max_bytes = wbc->wb_bytes;
782 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
783 max_id = wbc->wb_lcand_id;
784 max_bytes = wbc->wb_lcand_bytes;
786 max_id = wbc->wb_tcand_id;
787 max_bytes = wbc->wb_tcand_bytes;
791 * Calculate the amount of IO time the winner consumed and fold it
792 * into the running average kept per inode. If the consumed IO
793 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
794 * deciding whether to switch or not. This is to prevent one-off
795 * small dirtiers from skewing the verdict.
797 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
798 wb->avg_write_bandwidth);
800 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
801 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
803 avg_time = max_time; /* immediate catch up on first run */
805 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
809 * The switch verdict is reached if foreign wb's consume
810 * more than a certain proportion of IO time in a
811 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
812 * history mask where each bit represents one sixteenth of
813 * the period. Determine the number of slots to shift into
814 * history from @max_time.
816 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
817 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
819 if (wbc->wb_id != max_id)
820 history |= (1U << slots) - 1;
823 trace_inode_foreign_history(inode, wbc, history);
826 * Switch if the current wb isn't the consistent winner.
827 * If there are multiple closely competing dirtiers, the
828 * inode may switch across them repeatedly over time, which
829 * is okay. The main goal is avoiding keeping an inode on
830 * the wrong wb for an extended period of time.
832 if (hweight16(history) > WB_FRN_HIST_THR_SLOTS)
833 inode_switch_wbs(inode, max_id);
837 * Multiple instances of this function may race to update the
838 * following fields but we don't mind occassional inaccuracies.
840 inode->i_wb_frn_winner = max_id;
841 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
842 inode->i_wb_frn_history = history;
847 EXPORT_SYMBOL_GPL(wbc_detach_inode);
850 * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
851 * @wbc: writeback_control of the writeback in progress
852 * @page: page being written out
853 * @bytes: number of bytes being written out
855 * @bytes from @page are about to written out during the writeback
856 * controlled by @wbc. Keep the book for foreign inode detection. See
857 * wbc_detach_inode().
859 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
863 struct cgroup_subsys_state *css;
867 * pageout() path doesn't attach @wbc to the inode being written
868 * out. This is intentional as we don't want the function to block
869 * behind a slow cgroup. Ultimately, we want pageout() to kick off
870 * regular writeback instead of writing things out itself.
872 if (!wbc->wb || wbc->no_cgroup_owner)
875 folio = page_folio(page);
876 css = mem_cgroup_css_from_folio(folio);
877 /* dead cgroups shouldn't contribute to inode ownership arbitration */
878 if (!(css->flags & CSS_ONLINE))
883 if (id == wbc->wb_id) {
884 wbc->wb_bytes += bytes;
888 if (id == wbc->wb_lcand_id)
889 wbc->wb_lcand_bytes += bytes;
891 /* Boyer-Moore majority vote algorithm */
892 if (!wbc->wb_tcand_bytes)
893 wbc->wb_tcand_id = id;
894 if (id == wbc->wb_tcand_id)
895 wbc->wb_tcand_bytes += bytes;
897 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
899 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
902 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
903 * @wb: target bdi_writeback to split @nr_pages to
904 * @nr_pages: number of pages to write for the whole bdi
906 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
907 * relation to the total write bandwidth of all wb's w/ dirty inodes on
910 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
912 unsigned long this_bw = wb->avg_write_bandwidth;
913 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
915 if (nr_pages == LONG_MAX)
919 * This may be called on clean wb's and proportional distribution
920 * may not make sense, just use the original @nr_pages in those
921 * cases. In general, we wanna err on the side of writing more.
923 if (!tot_bw || this_bw >= tot_bw)
926 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
930 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
931 * @bdi: target backing_dev_info
932 * @base_work: wb_writeback_work to issue
933 * @skip_if_busy: skip wb's which already have writeback in progress
935 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
936 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
937 * distributed to the busy wbs according to each wb's proportion in the
938 * total active write bandwidth of @bdi.
940 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
941 struct wb_writeback_work *base_work,
944 struct bdi_writeback *last_wb = NULL;
945 struct bdi_writeback *wb = list_entry(&bdi->wb_list,
946 struct bdi_writeback, bdi_node);
951 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
952 DEFINE_WB_COMPLETION(fallback_work_done, bdi);
953 struct wb_writeback_work fallback_work;
954 struct wb_writeback_work *work;
962 /* SYNC_ALL writes out I_DIRTY_TIME too */
963 if (!wb_has_dirty_io(wb) &&
964 (base_work->sync_mode == WB_SYNC_NONE ||
965 list_empty(&wb->b_dirty_time)))
967 if (skip_if_busy && writeback_in_progress(wb))
970 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
972 work = kmalloc(sizeof(*work), GFP_ATOMIC);
975 work->nr_pages = nr_pages;
977 wb_queue_work(wb, work);
982 * If wb_tryget fails, the wb has been shutdown, skip it.
984 * Pin @wb so that it stays on @bdi->wb_list. This allows
985 * continuing iteration from @wb after dropping and
986 * regrabbing rcu read lock.
991 /* alloc failed, execute synchronously using on-stack fallback */
992 work = &fallback_work;
994 work->nr_pages = nr_pages;
996 work->done = &fallback_work_done;
998 wb_queue_work(wb, work);
1002 wb_wait_for_completion(&fallback_work_done);
1012 * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
1013 * @bdi_id: target bdi id
1014 * @memcg_id: target memcg css id
1015 * @reason: reason why some writeback work initiated
1016 * @done: target wb_completion
1018 * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
1019 * with the specified parameters.
1021 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id,
1022 enum wb_reason reason, struct wb_completion *done)
1024 struct backing_dev_info *bdi;
1025 struct cgroup_subsys_state *memcg_css;
1026 struct bdi_writeback *wb;
1027 struct wb_writeback_work *work;
1028 unsigned long dirty;
1031 /* lookup bdi and memcg */
1032 bdi = bdi_get_by_id(bdi_id);
1037 memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
1038 if (memcg_css && !css_tryget(memcg_css))
1047 * And find the associated wb. If the wb isn't there already
1048 * there's nothing to flush, don't create one.
1050 wb = wb_get_lookup(bdi, memcg_css);
1057 * The caller is attempting to write out most of
1058 * the currently dirty pages. Let's take the current dirty page
1059 * count and inflate it by 25% which should be large enough to
1060 * flush out most dirty pages while avoiding getting livelocked by
1061 * concurrent dirtiers.
1063 * BTW the memcg stats are flushed periodically and this is best-effort
1064 * estimation, so some potential error is ok.
1066 dirty = memcg_page_state(mem_cgroup_from_css(memcg_css), NR_FILE_DIRTY);
1067 dirty = dirty * 10 / 8;
1069 /* issue the writeback work */
1070 work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
1072 work->nr_pages = dirty;
1073 work->sync_mode = WB_SYNC_NONE;
1074 work->range_cyclic = 1;
1075 work->reason = reason;
1077 work->auto_free = 1;
1078 wb_queue_work(wb, work);
1093 * cgroup_writeback_umount - flush inode wb switches for umount
1095 * This function is called when a super_block is about to be destroyed and
1096 * flushes in-flight inode wb switches. An inode wb switch goes through
1097 * RCU and then workqueue, so the two need to be flushed in order to ensure
1098 * that all previously scheduled switches are finished. As wb switches are
1099 * rare occurrences and synchronize_rcu() can take a while, perform
1100 * flushing iff wb switches are in flight.
1102 void cgroup_writeback_umount(void)
1105 * SB_ACTIVE should be reliably cleared before checking
1106 * isw_nr_in_flight, see generic_shutdown_super().
1110 if (atomic_read(&isw_nr_in_flight)) {
1112 * Use rcu_barrier() to wait for all pending callbacks to
1113 * ensure that all in-flight wb switches are in the workqueue.
1116 flush_workqueue(isw_wq);
1120 static int __init cgroup_writeback_init(void)
1122 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1127 fs_initcall(cgroup_writeback_init);
1129 #else /* CONFIG_CGROUP_WRITEBACK */
1131 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1132 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1134 static void inode_cgwb_move_to_attached(struct inode *inode,
1135 struct bdi_writeback *wb)
1137 assert_spin_locked(&wb->list_lock);
1138 assert_spin_locked(&inode->i_lock);
1139 WARN_ON_ONCE(inode->i_state & I_FREEING);
1141 inode->i_state &= ~I_SYNC_QUEUED;
1142 list_del_init(&inode->i_io_list);
1143 wb_io_lists_depopulated(wb);
1146 static struct bdi_writeback *
1147 locked_inode_to_wb_and_lock_list(struct inode *inode)
1148 __releases(&inode->i_lock)
1149 __acquires(&wb->list_lock)
1151 struct bdi_writeback *wb = inode_to_wb(inode);
1153 spin_unlock(&inode->i_lock);
1154 spin_lock(&wb->list_lock);
1158 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1159 __acquires(&wb->list_lock)
1161 struct bdi_writeback *wb = inode_to_wb(inode);
1163 spin_lock(&wb->list_lock);
1167 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1172 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1173 struct wb_writeback_work *base_work,
1178 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1179 base_work->auto_free = 0;
1180 wb_queue_work(&bdi->wb, base_work);
1184 #endif /* CONFIG_CGROUP_WRITEBACK */
1187 * Add in the number of potentially dirty inodes, because each inode
1188 * write can dirty pagecache in the underlying blockdev.
1190 static unsigned long get_nr_dirty_pages(void)
1192 return global_node_page_state(NR_FILE_DIRTY) +
1193 get_nr_dirty_inodes();
1196 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1198 if (!wb_has_dirty_io(wb))
1202 * All callers of this function want to start writeback of all
1203 * dirty pages. Places like vmscan can call this at a very
1204 * high frequency, causing pointless allocations of tons of
1205 * work items and keeping the flusher threads busy retrieving
1206 * that work. Ensure that we only allow one of them pending and
1207 * inflight at the time.
1209 if (test_bit(WB_start_all, &wb->state) ||
1210 test_and_set_bit(WB_start_all, &wb->state))
1213 wb->start_all_reason = reason;
1218 * wb_start_background_writeback - start background writeback
1219 * @wb: bdi_writback to write from
1222 * This makes sure WB_SYNC_NONE background writeback happens. When
1223 * this function returns, it is only guaranteed that for given wb
1224 * some IO is happening if we are over background dirty threshold.
1225 * Caller need not hold sb s_umount semaphore.
1227 void wb_start_background_writeback(struct bdi_writeback *wb)
1230 * We just wake up the flusher thread. It will perform background
1231 * writeback as soon as there is no other work to do.
1233 trace_writeback_wake_background(wb);
1238 * Remove the inode from the writeback list it is on.
1240 void inode_io_list_del(struct inode *inode)
1242 struct bdi_writeback *wb;
1244 wb = inode_to_wb_and_lock_list(inode);
1245 spin_lock(&inode->i_lock);
1247 inode->i_state &= ~I_SYNC_QUEUED;
1248 list_del_init(&inode->i_io_list);
1249 wb_io_lists_depopulated(wb);
1251 spin_unlock(&inode->i_lock);
1252 spin_unlock(&wb->list_lock);
1254 EXPORT_SYMBOL(inode_io_list_del);
1257 * mark an inode as under writeback on the sb
1259 void sb_mark_inode_writeback(struct inode *inode)
1261 struct super_block *sb = inode->i_sb;
1262 unsigned long flags;
1264 if (list_empty(&inode->i_wb_list)) {
1265 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1266 if (list_empty(&inode->i_wb_list)) {
1267 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1268 trace_sb_mark_inode_writeback(inode);
1270 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1275 * clear an inode as under writeback on the sb
1277 void sb_clear_inode_writeback(struct inode *inode)
1279 struct super_block *sb = inode->i_sb;
1280 unsigned long flags;
1282 if (!list_empty(&inode->i_wb_list)) {
1283 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1284 if (!list_empty(&inode->i_wb_list)) {
1285 list_del_init(&inode->i_wb_list);
1286 trace_sb_clear_inode_writeback(inode);
1288 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1293 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1294 * furthest end of its superblock's dirty-inode list.
1296 * Before stamping the inode's ->dirtied_when, we check to see whether it is
1297 * already the most-recently-dirtied inode on the b_dirty list. If that is
1298 * the case then the inode must have been redirtied while it was being written
1299 * out and we don't reset its dirtied_when.
1301 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
1303 assert_spin_locked(&inode->i_lock);
1305 inode->i_state &= ~I_SYNC_QUEUED;
1307 * When the inode is being freed just don't bother with dirty list
1308 * tracking. Flush worker will ignore this inode anyway and it will
1309 * trigger assertions in inode_io_list_move_locked().
1311 if (inode->i_state & I_FREEING) {
1312 list_del_init(&inode->i_io_list);
1313 wb_io_lists_depopulated(wb);
1316 if (!list_empty(&wb->b_dirty)) {
1319 tail = wb_inode(wb->b_dirty.next);
1320 if (time_before(inode->dirtied_when, tail->dirtied_when))
1321 inode->dirtied_when = jiffies;
1323 inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1326 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1328 spin_lock(&inode->i_lock);
1329 redirty_tail_locked(inode, wb);
1330 spin_unlock(&inode->i_lock);
1334 * requeue inode for re-scanning after bdi->b_io list is exhausted.
1336 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1338 inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1341 static void inode_sync_complete(struct inode *inode)
1343 inode->i_state &= ~I_SYNC;
1344 /* If inode is clean an unused, put it into LRU now... */
1345 inode_add_lru(inode);
1346 /* Waiters must see I_SYNC cleared before being woken up */
1348 wake_up_bit(&inode->i_state, __I_SYNC);
1351 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1353 bool ret = time_after(inode->dirtied_when, t);
1354 #ifndef CONFIG_64BIT
1356 * For inodes being constantly redirtied, dirtied_when can get stuck.
1357 * It _appears_ to be in the future, but is actually in distant past.
1358 * This test is necessary to prevent such wrapped-around relative times
1359 * from permanently stopping the whole bdi writeback.
1361 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1367 * Move expired (dirtied before dirtied_before) dirty inodes from
1368 * @delaying_queue to @dispatch_queue.
1370 static int move_expired_inodes(struct list_head *delaying_queue,
1371 struct list_head *dispatch_queue,
1372 unsigned long dirtied_before)
1375 struct list_head *pos, *node;
1376 struct super_block *sb = NULL;
1377 struct inode *inode;
1381 while (!list_empty(delaying_queue)) {
1382 inode = wb_inode(delaying_queue->prev);
1383 if (inode_dirtied_after(inode, dirtied_before))
1385 spin_lock(&inode->i_lock);
1386 list_move(&inode->i_io_list, &tmp);
1388 inode->i_state |= I_SYNC_QUEUED;
1389 spin_unlock(&inode->i_lock);
1390 if (sb_is_blkdev_sb(inode->i_sb))
1392 if (sb && sb != inode->i_sb)
1397 /* just one sb in list, splice to dispatch_queue and we're done */
1399 list_splice(&tmp, dispatch_queue);
1404 * Although inode's i_io_list is moved from 'tmp' to 'dispatch_queue',
1405 * we don't take inode->i_lock here because it is just a pointless overhead.
1406 * Inode is already marked as I_SYNC_QUEUED so writeback list handling is
1407 * fully under our control.
1409 while (!list_empty(&tmp)) {
1410 sb = wb_inode(tmp.prev)->i_sb;
1411 list_for_each_prev_safe(pos, node, &tmp) {
1412 inode = wb_inode(pos);
1413 if (inode->i_sb == sb)
1414 list_move(&inode->i_io_list, dispatch_queue);
1422 * Queue all expired dirty inodes for io, eldest first.
1424 * newly dirtied b_dirty b_io b_more_io
1425 * =============> gf edc BA
1427 * newly dirtied b_dirty b_io b_more_io
1428 * =============> g fBAedc
1430 * +--> dequeue for IO
1432 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1433 unsigned long dirtied_before)
1436 unsigned long time_expire_jif = dirtied_before;
1438 assert_spin_locked(&wb->list_lock);
1439 list_splice_init(&wb->b_more_io, &wb->b_io);
1440 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
1441 if (!work->for_sync)
1442 time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
1443 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1446 wb_io_lists_populated(wb);
1447 trace_writeback_queue_io(wb, work, dirtied_before, moved);
1450 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1454 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1455 trace_writeback_write_inode_start(inode, wbc);
1456 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1457 trace_writeback_write_inode(inode, wbc);
1464 * Wait for writeback on an inode to complete. Called with i_lock held.
1465 * Caller must make sure inode cannot go away when we drop i_lock.
1467 static void __inode_wait_for_writeback(struct inode *inode)
1468 __releases(inode->i_lock)
1469 __acquires(inode->i_lock)
1471 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1472 wait_queue_head_t *wqh;
1474 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1475 while (inode->i_state & I_SYNC) {
1476 spin_unlock(&inode->i_lock);
1477 __wait_on_bit(wqh, &wq, bit_wait,
1478 TASK_UNINTERRUPTIBLE);
1479 spin_lock(&inode->i_lock);
1484 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1486 void inode_wait_for_writeback(struct inode *inode)
1488 spin_lock(&inode->i_lock);
1489 __inode_wait_for_writeback(inode);
1490 spin_unlock(&inode->i_lock);
1494 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1495 * held and drops it. It is aimed for callers not holding any inode reference
1496 * so once i_lock is dropped, inode can go away.
1498 static void inode_sleep_on_writeback(struct inode *inode)
1499 __releases(inode->i_lock)
1502 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1505 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1506 sleep = inode->i_state & I_SYNC;
1507 spin_unlock(&inode->i_lock);
1510 finish_wait(wqh, &wait);
1514 * Find proper writeback list for the inode depending on its current state and
1515 * possibly also change of its state while we were doing writeback. Here we
1516 * handle things such as livelock prevention or fairness of writeback among
1517 * inodes. This function can be called only by flusher thread - noone else
1518 * processes all inodes in writeback lists and requeueing inodes behind flusher
1519 * thread's back can have unexpected consequences.
1521 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1522 struct writeback_control *wbc)
1524 if (inode->i_state & I_FREEING)
1528 * Sync livelock prevention. Each inode is tagged and synced in one
1529 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1530 * the dirty time to prevent enqueue and sync it again.
1532 if ((inode->i_state & I_DIRTY) &&
1533 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1534 inode->dirtied_when = jiffies;
1536 if (wbc->pages_skipped) {
1538 * writeback is not making progress due to locked
1539 * buffers. Skip this inode for now.
1541 redirty_tail_locked(inode, wb);
1545 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1547 * We didn't write back all the pages. nfs_writepages()
1548 * sometimes bales out without doing anything.
1550 if (wbc->nr_to_write <= 0) {
1551 /* Slice used up. Queue for next turn. */
1552 requeue_io(inode, wb);
1555 * Writeback blocked by something other than
1556 * congestion. Delay the inode for some time to
1557 * avoid spinning on the CPU (100% iowait)
1558 * retrying writeback of the dirty page/inode
1559 * that cannot be performed immediately.
1561 redirty_tail_locked(inode, wb);
1563 } else if (inode->i_state & I_DIRTY) {
1565 * Filesystems can dirty the inode during writeback operations,
1566 * such as delayed allocation during submission or metadata
1567 * updates after data IO completion.
1569 redirty_tail_locked(inode, wb);
1570 } else if (inode->i_state & I_DIRTY_TIME) {
1571 inode->dirtied_when = jiffies;
1572 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1573 inode->i_state &= ~I_SYNC_QUEUED;
1575 /* The inode is clean. Remove from writeback lists. */
1576 inode_cgwb_move_to_attached(inode, wb);
1581 * Write out an inode and its dirty pages (or some of its dirty pages, depending
1582 * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state.
1584 * This doesn't remove the inode from the writeback list it is on, except
1585 * potentially to move it from b_dirty_time to b_dirty due to timestamp
1586 * expiration. The caller is otherwise responsible for writeback list handling.
1588 * The caller is also responsible for setting the I_SYNC flag beforehand and
1589 * calling inode_sync_complete() to clear it afterwards.
1592 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1594 struct address_space *mapping = inode->i_mapping;
1595 long nr_to_write = wbc->nr_to_write;
1599 WARN_ON(!(inode->i_state & I_SYNC));
1601 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1603 ret = do_writepages(mapping, wbc);
1606 * Make sure to wait on the data before writing out the metadata.
1607 * This is important for filesystems that modify metadata on data
1608 * I/O completion. We don't do it for sync(2) writeback because it has a
1609 * separate, external IO completion path and ->sync_fs for guaranteeing
1610 * inode metadata is written back correctly.
1612 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1613 int err = filemap_fdatawait(mapping);
1619 * If the inode has dirty timestamps and we need to write them, call
1620 * mark_inode_dirty_sync() to notify the filesystem about it and to
1621 * change I_DIRTY_TIME into I_DIRTY_SYNC.
1623 if ((inode->i_state & I_DIRTY_TIME) &&
1624 (wbc->sync_mode == WB_SYNC_ALL ||
1625 time_after(jiffies, inode->dirtied_time_when +
1626 dirtytime_expire_interval * HZ))) {
1627 trace_writeback_lazytime(inode);
1628 mark_inode_dirty_sync(inode);
1632 * Get and clear the dirty flags from i_state. This needs to be done
1633 * after calling writepages because some filesystems may redirty the
1634 * inode during writepages due to delalloc. It also needs to be done
1635 * after handling timestamp expiration, as that may dirty the inode too.
1637 spin_lock(&inode->i_lock);
1638 dirty = inode->i_state & I_DIRTY;
1639 inode->i_state &= ~dirty;
1642 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1643 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1644 * either they see the I_DIRTY bits cleared or we see the dirtied
1647 * I_DIRTY_PAGES is always cleared together above even if @mapping
1648 * still has dirty pages. The flag is reinstated after smp_mb() if
1649 * necessary. This guarantees that either __mark_inode_dirty()
1650 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1654 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1655 inode->i_state |= I_DIRTY_PAGES;
1656 else if (unlikely(inode->i_state & I_PINNING_FSCACHE_WB)) {
1657 if (!(inode->i_state & I_DIRTY_PAGES)) {
1658 inode->i_state &= ~I_PINNING_FSCACHE_WB;
1659 wbc->unpinned_fscache_wb = true;
1660 dirty |= I_PINNING_FSCACHE_WB; /* Cause write_inode */
1664 spin_unlock(&inode->i_lock);
1666 /* Don't write the inode if only I_DIRTY_PAGES was set */
1667 if (dirty & ~I_DIRTY_PAGES) {
1668 int err = write_inode(inode, wbc);
1672 wbc->unpinned_fscache_wb = false;
1673 trace_writeback_single_inode(inode, wbc, nr_to_write);
1678 * Write out an inode's dirty data and metadata on-demand, i.e. separately from
1679 * the regular batched writeback done by the flusher threads in
1680 * writeback_sb_inodes(). @wbc controls various aspects of the write, such as
1681 * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE).
1683 * To prevent the inode from going away, either the caller must have a reference
1684 * to the inode, or the inode must have I_WILL_FREE or I_FREEING set.
1686 static int writeback_single_inode(struct inode *inode,
1687 struct writeback_control *wbc)
1689 struct bdi_writeback *wb;
1692 spin_lock(&inode->i_lock);
1693 if (!atomic_read(&inode->i_count))
1694 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1696 WARN_ON(inode->i_state & I_WILL_FREE);
1698 if (inode->i_state & I_SYNC) {
1700 * Writeback is already running on the inode. For WB_SYNC_NONE,
1701 * that's enough and we can just return. For WB_SYNC_ALL, we
1702 * must wait for the existing writeback to complete, then do
1703 * writeback again if there's anything left.
1705 if (wbc->sync_mode != WB_SYNC_ALL)
1707 __inode_wait_for_writeback(inode);
1709 WARN_ON(inode->i_state & I_SYNC);
1711 * If the inode is already fully clean, then there's nothing to do.
1713 * For data-integrity syncs we also need to check whether any pages are
1714 * still under writeback, e.g. due to prior WB_SYNC_NONE writeback. If
1715 * there are any such pages, we'll need to wait for them.
1717 if (!(inode->i_state & I_DIRTY_ALL) &&
1718 (wbc->sync_mode != WB_SYNC_ALL ||
1719 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1721 inode->i_state |= I_SYNC;
1722 wbc_attach_and_unlock_inode(wbc, inode);
1724 ret = __writeback_single_inode(inode, wbc);
1726 wbc_detach_inode(wbc);
1728 wb = inode_to_wb_and_lock_list(inode);
1729 spin_lock(&inode->i_lock);
1731 * If the inode is freeing, its i_io_list shoudn't be updated
1732 * as it can be finally deleted at this moment.
1734 if (!(inode->i_state & I_FREEING)) {
1736 * If the inode is now fully clean, then it can be safely
1737 * removed from its writeback list (if any). Otherwise the
1738 * flusher threads are responsible for the writeback lists.
1740 if (!(inode->i_state & I_DIRTY_ALL))
1741 inode_cgwb_move_to_attached(inode, wb);
1742 else if (!(inode->i_state & I_SYNC_QUEUED)) {
1743 if ((inode->i_state & I_DIRTY))
1744 redirty_tail_locked(inode, wb);
1745 else if (inode->i_state & I_DIRTY_TIME) {
1746 inode->dirtied_when = jiffies;
1747 inode_io_list_move_locked(inode,
1754 spin_unlock(&wb->list_lock);
1755 inode_sync_complete(inode);
1757 spin_unlock(&inode->i_lock);
1761 static long writeback_chunk_size(struct bdi_writeback *wb,
1762 struct wb_writeback_work *work)
1767 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1768 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1769 * here avoids calling into writeback_inodes_wb() more than once.
1771 * The intended call sequence for WB_SYNC_ALL writeback is:
1774 * writeback_sb_inodes() <== called only once
1775 * write_cache_pages() <== called once for each inode
1776 * (quickly) tag currently dirty pages
1777 * (maybe slowly) sync all tagged pages
1779 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1782 pages = min(wb->avg_write_bandwidth / 2,
1783 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1784 pages = min(pages, work->nr_pages);
1785 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1786 MIN_WRITEBACK_PAGES);
1793 * Write a portion of b_io inodes which belong to @sb.
1795 * Return the number of pages and/or inodes written.
1797 * NOTE! This is called with wb->list_lock held, and will
1798 * unlock and relock that for each inode it ends up doing
1801 static long writeback_sb_inodes(struct super_block *sb,
1802 struct bdi_writeback *wb,
1803 struct wb_writeback_work *work)
1805 struct writeback_control wbc = {
1806 .sync_mode = work->sync_mode,
1807 .tagged_writepages = work->tagged_writepages,
1808 .for_kupdate = work->for_kupdate,
1809 .for_background = work->for_background,
1810 .for_sync = work->for_sync,
1811 .range_cyclic = work->range_cyclic,
1813 .range_end = LLONG_MAX,
1815 unsigned long start_time = jiffies;
1817 long total_wrote = 0; /* count both pages and inodes */
1819 while (!list_empty(&wb->b_io)) {
1820 struct inode *inode = wb_inode(wb->b_io.prev);
1821 struct bdi_writeback *tmp_wb;
1824 if (inode->i_sb != sb) {
1827 * We only want to write back data for this
1828 * superblock, move all inodes not belonging
1829 * to it back onto the dirty list.
1831 redirty_tail(inode, wb);
1836 * The inode belongs to a different superblock.
1837 * Bounce back to the caller to unpin this and
1838 * pin the next superblock.
1844 * Don't bother with new inodes or inodes being freed, first
1845 * kind does not need periodic writeout yet, and for the latter
1846 * kind writeout is handled by the freer.
1848 spin_lock(&inode->i_lock);
1849 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1850 redirty_tail_locked(inode, wb);
1851 spin_unlock(&inode->i_lock);
1854 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1856 * If this inode is locked for writeback and we are not
1857 * doing writeback-for-data-integrity, move it to
1858 * b_more_io so that writeback can proceed with the
1859 * other inodes on s_io.
1861 * We'll have another go at writing back this inode
1862 * when we completed a full scan of b_io.
1864 requeue_io(inode, wb);
1865 spin_unlock(&inode->i_lock);
1866 trace_writeback_sb_inodes_requeue(inode);
1869 spin_unlock(&wb->list_lock);
1872 * We already requeued the inode if it had I_SYNC set and we
1873 * are doing WB_SYNC_NONE writeback. So this catches only the
1876 if (inode->i_state & I_SYNC) {
1877 /* Wait for I_SYNC. This function drops i_lock... */
1878 inode_sleep_on_writeback(inode);
1879 /* Inode may be gone, start again */
1880 spin_lock(&wb->list_lock);
1883 inode->i_state |= I_SYNC;
1884 wbc_attach_and_unlock_inode(&wbc, inode);
1886 write_chunk = writeback_chunk_size(wb, work);
1887 wbc.nr_to_write = write_chunk;
1888 wbc.pages_skipped = 0;
1891 * We use I_SYNC to pin the inode in memory. While it is set
1892 * evict_inode() will wait so the inode cannot be freed.
1894 __writeback_single_inode(inode, &wbc);
1896 wbc_detach_inode(&wbc);
1897 work->nr_pages -= write_chunk - wbc.nr_to_write;
1898 wrote = write_chunk - wbc.nr_to_write - wbc.pages_skipped;
1899 wrote = wrote < 0 ? 0 : wrote;
1900 total_wrote += wrote;
1902 if (need_resched()) {
1904 * We're trying to balance between building up a nice
1905 * long list of IOs to improve our merge rate, and
1906 * getting those IOs out quickly for anyone throttling
1907 * in balance_dirty_pages(). cond_resched() doesn't
1908 * unplug, so get our IOs out the door before we
1911 blk_flush_plug(current->plug, false);
1916 * Requeue @inode if still dirty. Be careful as @inode may
1917 * have been switched to another wb in the meantime.
1919 tmp_wb = inode_to_wb_and_lock_list(inode);
1920 spin_lock(&inode->i_lock);
1921 if (!(inode->i_state & I_DIRTY_ALL))
1923 requeue_inode(inode, tmp_wb, &wbc);
1924 inode_sync_complete(inode);
1925 spin_unlock(&inode->i_lock);
1927 if (unlikely(tmp_wb != wb)) {
1928 spin_unlock(&tmp_wb->list_lock);
1929 spin_lock(&wb->list_lock);
1933 * bail out to wb_writeback() often enough to check
1934 * background threshold and other termination conditions.
1937 if (time_is_before_jiffies(start_time + HZ / 10UL))
1939 if (work->nr_pages <= 0)
1946 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1947 struct wb_writeback_work *work)
1949 unsigned long start_time = jiffies;
1952 while (!list_empty(&wb->b_io)) {
1953 struct inode *inode = wb_inode(wb->b_io.prev);
1954 struct super_block *sb = inode->i_sb;
1956 if (!trylock_super(sb)) {
1958 * trylock_super() may fail consistently due to
1959 * s_umount being grabbed by someone else. Don't use
1960 * requeue_io() to avoid busy retrying the inode/sb.
1962 redirty_tail(inode, wb);
1965 wrote += writeback_sb_inodes(sb, wb, work);
1966 up_read(&sb->s_umount);
1968 /* refer to the same tests at the end of writeback_sb_inodes */
1970 if (time_is_before_jiffies(start_time + HZ / 10UL))
1972 if (work->nr_pages <= 0)
1976 /* Leave any unwritten inodes on b_io */
1980 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1981 enum wb_reason reason)
1983 struct wb_writeback_work work = {
1984 .nr_pages = nr_pages,
1985 .sync_mode = WB_SYNC_NONE,
1989 struct blk_plug plug;
1991 blk_start_plug(&plug);
1992 spin_lock(&wb->list_lock);
1993 if (list_empty(&wb->b_io))
1994 queue_io(wb, &work, jiffies);
1995 __writeback_inodes_wb(wb, &work);
1996 spin_unlock(&wb->list_lock);
1997 blk_finish_plug(&plug);
1999 return nr_pages - work.nr_pages;
2003 * Explicit flushing or periodic writeback of "old" data.
2005 * Define "old": the first time one of an inode's pages is dirtied, we mark the
2006 * dirtying-time in the inode's address_space. So this periodic writeback code
2007 * just walks the superblock inode list, writing back any inodes which are
2008 * older than a specific point in time.
2010 * Try to run once per dirty_writeback_interval. But if a writeback event
2011 * takes longer than a dirty_writeback_interval interval, then leave a
2014 * dirtied_before takes precedence over nr_to_write. So we'll only write back
2015 * all dirty pages if they are all attached to "old" mappings.
2017 static long wb_writeback(struct bdi_writeback *wb,
2018 struct wb_writeback_work *work)
2020 long nr_pages = work->nr_pages;
2021 unsigned long dirtied_before = jiffies;
2022 struct inode *inode;
2024 struct blk_plug plug;
2026 blk_start_plug(&plug);
2029 * Stop writeback when nr_pages has been consumed
2031 if (work->nr_pages <= 0)
2035 * Background writeout and kupdate-style writeback may
2036 * run forever. Stop them if there is other work to do
2037 * so that e.g. sync can proceed. They'll be restarted
2038 * after the other works are all done.
2040 if ((work->for_background || work->for_kupdate) &&
2041 !list_empty(&wb->work_list))
2045 * For background writeout, stop when we are below the
2046 * background dirty threshold
2048 if (work->for_background && !wb_over_bg_thresh(wb))
2052 spin_lock(&wb->list_lock);
2055 * Kupdate and background works are special and we want to
2056 * include all inodes that need writing. Livelock avoidance is
2057 * handled by these works yielding to any other work so we are
2060 if (work->for_kupdate) {
2061 dirtied_before = jiffies -
2062 msecs_to_jiffies(dirty_expire_interval * 10);
2063 } else if (work->for_background)
2064 dirtied_before = jiffies;
2066 trace_writeback_start(wb, work);
2067 if (list_empty(&wb->b_io))
2068 queue_io(wb, work, dirtied_before);
2070 progress = writeback_sb_inodes(work->sb, wb, work);
2072 progress = __writeback_inodes_wb(wb, work);
2073 trace_writeback_written(wb, work);
2076 * Did we write something? Try for more
2078 * Dirty inodes are moved to b_io for writeback in batches.
2079 * The completion of the current batch does not necessarily
2080 * mean the overall work is done. So we keep looping as long
2081 * as made some progress on cleaning pages or inodes.
2084 spin_unlock(&wb->list_lock);
2089 * No more inodes for IO, bail
2091 if (list_empty(&wb->b_more_io)) {
2092 spin_unlock(&wb->list_lock);
2097 * Nothing written. Wait for some inode to
2098 * become available for writeback. Otherwise
2099 * we'll just busyloop.
2101 trace_writeback_wait(wb, work);
2102 inode = wb_inode(wb->b_more_io.prev);
2103 spin_lock(&inode->i_lock);
2104 spin_unlock(&wb->list_lock);
2105 /* This function drops i_lock... */
2106 inode_sleep_on_writeback(inode);
2108 blk_finish_plug(&plug);
2110 return nr_pages - work->nr_pages;
2114 * Return the next wb_writeback_work struct that hasn't been processed yet.
2116 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
2118 struct wb_writeback_work *work = NULL;
2120 spin_lock_irq(&wb->work_lock);
2121 if (!list_empty(&wb->work_list)) {
2122 work = list_entry(wb->work_list.next,
2123 struct wb_writeback_work, list);
2124 list_del_init(&work->list);
2126 spin_unlock_irq(&wb->work_lock);
2130 static long wb_check_background_flush(struct bdi_writeback *wb)
2132 if (wb_over_bg_thresh(wb)) {
2134 struct wb_writeback_work work = {
2135 .nr_pages = LONG_MAX,
2136 .sync_mode = WB_SYNC_NONE,
2137 .for_background = 1,
2139 .reason = WB_REASON_BACKGROUND,
2142 return wb_writeback(wb, &work);
2148 static long wb_check_old_data_flush(struct bdi_writeback *wb)
2150 unsigned long expired;
2154 * When set to zero, disable periodic writeback
2156 if (!dirty_writeback_interval)
2159 expired = wb->last_old_flush +
2160 msecs_to_jiffies(dirty_writeback_interval * 10);
2161 if (time_before(jiffies, expired))
2164 wb->last_old_flush = jiffies;
2165 nr_pages = get_nr_dirty_pages();
2168 struct wb_writeback_work work = {
2169 .nr_pages = nr_pages,
2170 .sync_mode = WB_SYNC_NONE,
2173 .reason = WB_REASON_PERIODIC,
2176 return wb_writeback(wb, &work);
2182 static long wb_check_start_all(struct bdi_writeback *wb)
2186 if (!test_bit(WB_start_all, &wb->state))
2189 nr_pages = get_nr_dirty_pages();
2191 struct wb_writeback_work work = {
2192 .nr_pages = wb_split_bdi_pages(wb, nr_pages),
2193 .sync_mode = WB_SYNC_NONE,
2195 .reason = wb->start_all_reason,
2198 nr_pages = wb_writeback(wb, &work);
2201 clear_bit(WB_start_all, &wb->state);
2207 * Retrieve work items and do the writeback they describe
2209 static long wb_do_writeback(struct bdi_writeback *wb)
2211 struct wb_writeback_work *work;
2214 set_bit(WB_writeback_running, &wb->state);
2215 while ((work = get_next_work_item(wb)) != NULL) {
2216 trace_writeback_exec(wb, work);
2217 wrote += wb_writeback(wb, work);
2218 finish_writeback_work(wb, work);
2222 * Check for a flush-everything request
2224 wrote += wb_check_start_all(wb);
2227 * Check for periodic writeback, kupdated() style
2229 wrote += wb_check_old_data_flush(wb);
2230 wrote += wb_check_background_flush(wb);
2231 clear_bit(WB_writeback_running, &wb->state);
2237 * Handle writeback of dirty data for the device backed by this bdi. Also
2238 * reschedules periodically and does kupdated style flushing.
2240 void wb_workfn(struct work_struct *work)
2242 struct bdi_writeback *wb = container_of(to_delayed_work(work),
2243 struct bdi_writeback, dwork);
2246 set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
2248 if (likely(!current_is_workqueue_rescuer() ||
2249 !test_bit(WB_registered, &wb->state))) {
2251 * The normal path. Keep writing back @wb until its
2252 * work_list is empty. Note that this path is also taken
2253 * if @wb is shutting down even when we're running off the
2254 * rescuer as work_list needs to be drained.
2257 pages_written = wb_do_writeback(wb);
2258 trace_writeback_pages_written(pages_written);
2259 } while (!list_empty(&wb->work_list));
2262 * bdi_wq can't get enough workers and we're running off
2263 * the emergency worker. Don't hog it. Hopefully, 1024 is
2264 * enough for efficient IO.
2266 pages_written = writeback_inodes_wb(wb, 1024,
2267 WB_REASON_FORKER_THREAD);
2268 trace_writeback_pages_written(pages_written);
2271 if (!list_empty(&wb->work_list))
2273 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2274 wb_wakeup_delayed(wb);
2278 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2279 * write back the whole world.
2281 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2282 enum wb_reason reason)
2284 struct bdi_writeback *wb;
2286 if (!bdi_has_dirty_io(bdi))
2289 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2290 wb_start_writeback(wb, reason);
2293 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2294 enum wb_reason reason)
2297 __wakeup_flusher_threads_bdi(bdi, reason);
2302 * Wakeup the flusher threads to start writeback of all currently dirty pages
2304 void wakeup_flusher_threads(enum wb_reason reason)
2306 struct backing_dev_info *bdi;
2309 * If we are expecting writeback progress we must submit plugged IO.
2311 blk_flush_plug(current->plug, true);
2314 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2315 __wakeup_flusher_threads_bdi(bdi, reason);
2320 * Wake up bdi's periodically to make sure dirtytime inodes gets
2321 * written back periodically. We deliberately do *not* check the
2322 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2323 * kernel to be constantly waking up once there are any dirtytime
2324 * inodes on the system. So instead we define a separate delayed work
2325 * function which gets called much more rarely. (By default, only
2326 * once every 12 hours.)
2328 * If there is any other write activity going on in the file system,
2329 * this function won't be necessary. But if the only thing that has
2330 * happened on the file system is a dirtytime inode caused by an atime
2331 * update, we need this infrastructure below to make sure that inode
2332 * eventually gets pushed out to disk.
2334 static void wakeup_dirtytime_writeback(struct work_struct *w);
2335 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2337 static void wakeup_dirtytime_writeback(struct work_struct *w)
2339 struct backing_dev_info *bdi;
2342 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2343 struct bdi_writeback *wb;
2345 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2346 if (!list_empty(&wb->b_dirty_time))
2350 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2353 static int __init start_dirtytime_writeback(void)
2355 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2358 __initcall(start_dirtytime_writeback);
2360 int dirtytime_interval_handler(struct ctl_table *table, int write,
2361 void *buffer, size_t *lenp, loff_t *ppos)
2365 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2366 if (ret == 0 && write)
2367 mod_delayed_work(system_wq, &dirtytime_work, 0);
2372 * __mark_inode_dirty - internal function to mark an inode dirty
2374 * @inode: inode to mark
2375 * @flags: what kind of dirty, e.g. I_DIRTY_SYNC. This can be a combination of
2376 * multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined
2377 * with I_DIRTY_PAGES.
2379 * Mark an inode as dirty. We notify the filesystem, then update the inode's
2380 * dirty flags. Then, if needed we add the inode to the appropriate dirty list.
2382 * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync()
2383 * instead of calling this directly.
2385 * CAREFUL! We only add the inode to the dirty list if it is hashed or if it
2386 * refers to a blockdev. Unhashed inodes will never be added to the dirty list
2387 * even if they are later hashed, as they will have been marked dirty already.
2389 * In short, ensure you hash any inodes _before_ you start marking them dirty.
2391 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2392 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
2393 * the kernel-internal blockdev inode represents the dirtying time of the
2394 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
2395 * page->mapping->host, so the page-dirtying time is recorded in the internal
2398 void __mark_inode_dirty(struct inode *inode, int flags)
2400 struct super_block *sb = inode->i_sb;
2402 struct bdi_writeback *wb = NULL;
2404 trace_writeback_mark_inode_dirty(inode, flags);
2406 if (flags & I_DIRTY_INODE) {
2408 * Inode timestamp update will piggback on this dirtying.
2409 * We tell ->dirty_inode callback that timestamps need to
2410 * be updated by setting I_DIRTY_TIME in flags.
2412 if (inode->i_state & I_DIRTY_TIME) {
2413 spin_lock(&inode->i_lock);
2414 if (inode->i_state & I_DIRTY_TIME) {
2415 inode->i_state &= ~I_DIRTY_TIME;
2416 flags |= I_DIRTY_TIME;
2418 spin_unlock(&inode->i_lock);
2422 * Notify the filesystem about the inode being dirtied, so that
2423 * (if needed) it can update on-disk fields and journal the
2424 * inode. This is only needed when the inode itself is being
2425 * dirtied now. I.e. it's only needed for I_DIRTY_INODE, not
2426 * for just I_DIRTY_PAGES or I_DIRTY_TIME.
2428 trace_writeback_dirty_inode_start(inode, flags);
2429 if (sb->s_op->dirty_inode)
2430 sb->s_op->dirty_inode(inode,
2431 flags & (I_DIRTY_INODE | I_DIRTY_TIME));
2432 trace_writeback_dirty_inode(inode, flags);
2434 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2435 flags &= ~I_DIRTY_TIME;
2438 * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing.
2439 * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME
2440 * in one call to __mark_inode_dirty().)
2442 dirtytime = flags & I_DIRTY_TIME;
2443 WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME);
2447 * Paired with smp_mb() in __writeback_single_inode() for the
2448 * following lockless i_state test. See there for details.
2452 if ((inode->i_state & flags) == flags)
2455 spin_lock(&inode->i_lock);
2456 if ((inode->i_state & flags) != flags) {
2457 const int was_dirty = inode->i_state & I_DIRTY;
2459 inode_attach_wb(inode, NULL);
2461 inode->i_state |= flags;
2464 * Grab inode's wb early because it requires dropping i_lock and we
2465 * need to make sure following checks happen atomically with dirty
2466 * list handling so that we don't move inodes under flush worker's
2470 wb = locked_inode_to_wb_and_lock_list(inode);
2471 spin_lock(&inode->i_lock);
2475 * If the inode is queued for writeback by flush worker, just
2476 * update its dirty state. Once the flush worker is done with
2477 * the inode it will place it on the appropriate superblock
2478 * list, based upon its state.
2480 if (inode->i_state & I_SYNC_QUEUED)
2484 * Only add valid (hashed) inodes to the superblock's
2485 * dirty list. Add blockdev inodes as well.
2487 if (!S_ISBLK(inode->i_mode)) {
2488 if (inode_unhashed(inode))
2491 if (inode->i_state & I_FREEING)
2495 * If the inode was already on b_dirty/b_io/b_more_io, don't
2496 * reposition it (that would break b_dirty time-ordering).
2499 struct list_head *dirty_list;
2500 bool wakeup_bdi = false;
2502 inode->dirtied_when = jiffies;
2504 inode->dirtied_time_when = jiffies;
2506 if (inode->i_state & I_DIRTY)
2507 dirty_list = &wb->b_dirty;
2509 dirty_list = &wb->b_dirty_time;
2511 wakeup_bdi = inode_io_list_move_locked(inode, wb,
2514 spin_unlock(&wb->list_lock);
2515 spin_unlock(&inode->i_lock);
2516 trace_writeback_dirty_inode_enqueue(inode);
2519 * If this is the first dirty inode for this bdi,
2520 * we have to wake-up the corresponding bdi thread
2521 * to make sure background write-back happens
2525 (wb->bdi->capabilities & BDI_CAP_WRITEBACK))
2526 wb_wakeup_delayed(wb);
2532 spin_unlock(&wb->list_lock);
2533 spin_unlock(&inode->i_lock);
2535 EXPORT_SYMBOL(__mark_inode_dirty);
2538 * The @s_sync_lock is used to serialise concurrent sync operations
2539 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2540 * Concurrent callers will block on the s_sync_lock rather than doing contending
2541 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2542 * has been issued up to the time this function is enter is guaranteed to be
2543 * completed by the time we have gained the lock and waited for all IO that is
2544 * in progress regardless of the order callers are granted the lock.
2546 static void wait_sb_inodes(struct super_block *sb)
2548 LIST_HEAD(sync_list);
2551 * We need to be protected against the filesystem going from
2552 * r/o to r/w or vice versa.
2554 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2556 mutex_lock(&sb->s_sync_lock);
2559 * Splice the writeback list onto a temporary list to avoid waiting on
2560 * inodes that have started writeback after this point.
2562 * Use rcu_read_lock() to keep the inodes around until we have a
2563 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2564 * the local list because inodes can be dropped from either by writeback
2568 spin_lock_irq(&sb->s_inode_wblist_lock);
2569 list_splice_init(&sb->s_inodes_wb, &sync_list);
2572 * Data integrity sync. Must wait for all pages under writeback, because
2573 * there may have been pages dirtied before our sync call, but which had
2574 * writeout started before we write it out. In which case, the inode
2575 * may not be on the dirty list, but we still have to wait for that
2578 while (!list_empty(&sync_list)) {
2579 struct inode *inode = list_first_entry(&sync_list, struct inode,
2581 struct address_space *mapping = inode->i_mapping;
2584 * Move each inode back to the wb list before we drop the lock
2585 * to preserve consistency between i_wb_list and the mapping
2586 * writeback tag. Writeback completion is responsible to remove
2587 * the inode from either list once the writeback tag is cleared.
2589 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2592 * The mapping can appear untagged while still on-list since we
2593 * do not have the mapping lock. Skip it here, wb completion
2596 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2599 spin_unlock_irq(&sb->s_inode_wblist_lock);
2601 spin_lock(&inode->i_lock);
2602 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2603 spin_unlock(&inode->i_lock);
2605 spin_lock_irq(&sb->s_inode_wblist_lock);
2609 spin_unlock(&inode->i_lock);
2613 * We keep the error status of individual mapping so that
2614 * applications can catch the writeback error using fsync(2).
2615 * See filemap_fdatawait_keep_errors() for details.
2617 filemap_fdatawait_keep_errors(mapping);
2624 spin_lock_irq(&sb->s_inode_wblist_lock);
2626 spin_unlock_irq(&sb->s_inode_wblist_lock);
2628 mutex_unlock(&sb->s_sync_lock);
2631 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2632 enum wb_reason reason, bool skip_if_busy)
2634 struct backing_dev_info *bdi = sb->s_bdi;
2635 DEFINE_WB_COMPLETION(done, bdi);
2636 struct wb_writeback_work work = {
2638 .sync_mode = WB_SYNC_NONE,
2639 .tagged_writepages = 1,
2645 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2647 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2649 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2650 wb_wait_for_completion(&done);
2654 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2655 * @sb: the superblock
2656 * @nr: the number of pages to write
2657 * @reason: reason why some writeback work initiated
2659 * Start writeback on some inodes on this super_block. No guarantees are made
2660 * on how many (if any) will be written, and this function does not wait
2661 * for IO completion of submitted IO.
2663 void writeback_inodes_sb_nr(struct super_block *sb,
2665 enum wb_reason reason)
2667 __writeback_inodes_sb_nr(sb, nr, reason, false);
2669 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2672 * writeback_inodes_sb - writeback dirty inodes from given super_block
2673 * @sb: the superblock
2674 * @reason: reason why some writeback work was initiated
2676 * Start writeback on some inodes on this super_block. No guarantees are made
2677 * on how many (if any) will be written, and this function does not wait
2678 * for IO completion of submitted IO.
2680 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2682 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2684 EXPORT_SYMBOL(writeback_inodes_sb);
2687 * try_to_writeback_inodes_sb - try to start writeback if none underway
2688 * @sb: the superblock
2689 * @reason: reason why some writeback work was initiated
2691 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2693 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2695 if (!down_read_trylock(&sb->s_umount))
2698 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2699 up_read(&sb->s_umount);
2701 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2704 * sync_inodes_sb - sync sb inode pages
2705 * @sb: the superblock
2707 * This function writes and waits on any dirty inode belonging to this
2710 void sync_inodes_sb(struct super_block *sb)
2712 struct backing_dev_info *bdi = sb->s_bdi;
2713 DEFINE_WB_COMPLETION(done, bdi);
2714 struct wb_writeback_work work = {
2716 .sync_mode = WB_SYNC_ALL,
2717 .nr_pages = LONG_MAX,
2720 .reason = WB_REASON_SYNC,
2725 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2726 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2727 * bdi_has_dirty() need to be written out too.
2729 if (bdi == &noop_backing_dev_info)
2731 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2733 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2734 bdi_down_write_wb_switch_rwsem(bdi);
2735 bdi_split_work_to_wbs(bdi, &work, false);
2736 wb_wait_for_completion(&done);
2737 bdi_up_write_wb_switch_rwsem(bdi);
2741 EXPORT_SYMBOL(sync_inodes_sb);
2744 * write_inode_now - write an inode to disk
2745 * @inode: inode to write to disk
2746 * @sync: whether the write should be synchronous or not
2748 * This function commits an inode to disk immediately if it is dirty. This is
2749 * primarily needed by knfsd.
2751 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2753 int write_inode_now(struct inode *inode, int sync)
2755 struct writeback_control wbc = {
2756 .nr_to_write = LONG_MAX,
2757 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2759 .range_end = LLONG_MAX,
2762 if (!mapping_can_writeback(inode->i_mapping))
2763 wbc.nr_to_write = 0;
2766 return writeback_single_inode(inode, &wbc);
2768 EXPORT_SYMBOL(write_inode_now);
2771 * sync_inode_metadata - write an inode to disk
2772 * @inode: the inode to sync
2773 * @wait: wait for I/O to complete.
2775 * Write an inode to disk and adjust its dirty state after completion.
2777 * Note: only writes the actual inode, no associated data or other metadata.
2779 int sync_inode_metadata(struct inode *inode, int wait)
2781 struct writeback_control wbc = {
2782 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2783 .nr_to_write = 0, /* metadata-only */
2786 return writeback_single_inode(inode, &wbc);
2788 EXPORT_SYMBOL(sync_inode_metadata);