RDMA/cma: Fix false error message
[platform/kernel/linux-rpi.git] / fs / fs-writeback.c
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002    Andrew Morton
12  *              Split out of fs/inode.c
13  *              Additions for address_space-based writeback
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include <linux/memcontrol.h>
31 #include "internal.h"
32
33 /*
34  * 4MB minimal write chunk size
35  */
36 #define MIN_WRITEBACK_PAGES     (4096UL >> (PAGE_SHIFT - 10))
37
38 struct wb_completion {
39         atomic_t                cnt;
40 };
41
42 /*
43  * Passed into wb_writeback(), essentially a subset of writeback_control
44  */
45 struct wb_writeback_work {
46         long nr_pages;
47         struct super_block *sb;
48         unsigned long *older_than_this;
49         enum writeback_sync_modes sync_mode;
50         unsigned int tagged_writepages:1;
51         unsigned int for_kupdate:1;
52         unsigned int range_cyclic:1;
53         unsigned int for_background:1;
54         unsigned int for_sync:1;        /* sync(2) WB_SYNC_ALL writeback */
55         unsigned int auto_free:1;       /* free on completion */
56         enum wb_reason reason;          /* why was writeback initiated? */
57
58         struct list_head list;          /* pending work list */
59         struct wb_completion *done;     /* set if the caller waits */
60 };
61
62 /*
63  * If one wants to wait for one or more wb_writeback_works, each work's
64  * ->done should be set to a wb_completion defined using the following
65  * macro.  Once all work items are issued with wb_queue_work(), the caller
66  * can wait for the completion of all using wb_wait_for_completion().  Work
67  * items which are waited upon aren't freed automatically on completion.
68  */
69 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl)                              \
70         struct wb_completion cmpl = {                                   \
71                 .cnt            = ATOMIC_INIT(1),                       \
72         }
73
74
75 /*
76  * If an inode is constantly having its pages dirtied, but then the
77  * updates stop dirtytime_expire_interval seconds in the past, it's
78  * possible for the worst case time between when an inode has its
79  * timestamps updated and when they finally get written out to be two
80  * dirtytime_expire_intervals.  We set the default to 12 hours (in
81  * seconds), which means most of the time inodes will have their
82  * timestamps written to disk after 12 hours, but in the worst case a
83  * few inodes might not their timestamps updated for 24 hours.
84  */
85 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
86
87 static inline struct inode *wb_inode(struct list_head *head)
88 {
89         return list_entry(head, struct inode, i_io_list);
90 }
91
92 /*
93  * Include the creation of the trace points after defining the
94  * wb_writeback_work structure and inline functions so that the definition
95  * remains local to this file.
96  */
97 #define CREATE_TRACE_POINTS
98 #include <trace/events/writeback.h>
99
100 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
101
102 static bool wb_io_lists_populated(struct bdi_writeback *wb)
103 {
104         if (wb_has_dirty_io(wb)) {
105                 return false;
106         } else {
107                 set_bit(WB_has_dirty_io, &wb->state);
108                 WARN_ON_ONCE(!wb->avg_write_bandwidth);
109                 atomic_long_add(wb->avg_write_bandwidth,
110                                 &wb->bdi->tot_write_bandwidth);
111                 return true;
112         }
113 }
114
115 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
116 {
117         if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
118             list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
119                 clear_bit(WB_has_dirty_io, &wb->state);
120                 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
121                                         &wb->bdi->tot_write_bandwidth) < 0);
122         }
123 }
124
125 /**
126  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
127  * @inode: inode to be moved
128  * @wb: target bdi_writeback
129  * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
130  *
131  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
132  * Returns %true if @inode is the first occupant of the !dirty_time IO
133  * lists; otherwise, %false.
134  */
135 static bool inode_io_list_move_locked(struct inode *inode,
136                                       struct bdi_writeback *wb,
137                                       struct list_head *head)
138 {
139         assert_spin_locked(&wb->list_lock);
140
141         list_move(&inode->i_io_list, head);
142
143         /* dirty_time doesn't count as dirty_io until expiration */
144         if (head != &wb->b_dirty_time)
145                 return wb_io_lists_populated(wb);
146
147         wb_io_lists_depopulated(wb);
148         return false;
149 }
150
151 /**
152  * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
153  * @inode: inode to be removed
154  * @wb: bdi_writeback @inode is being removed from
155  *
156  * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
157  * clear %WB_has_dirty_io if all are empty afterwards.
158  */
159 static void inode_io_list_del_locked(struct inode *inode,
160                                      struct bdi_writeback *wb)
161 {
162         assert_spin_locked(&wb->list_lock);
163
164         list_del_init(&inode->i_io_list);
165         wb_io_lists_depopulated(wb);
166 }
167
168 static void wb_wakeup(struct bdi_writeback *wb)
169 {
170         spin_lock_bh(&wb->work_lock);
171         if (test_bit(WB_registered, &wb->state))
172                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
173         spin_unlock_bh(&wb->work_lock);
174 }
175
176 static void finish_writeback_work(struct bdi_writeback *wb,
177                                   struct wb_writeback_work *work)
178 {
179         struct wb_completion *done = work->done;
180
181         if (work->auto_free)
182                 kfree(work);
183         if (done && atomic_dec_and_test(&done->cnt))
184                 wake_up_all(&wb->bdi->wb_waitq);
185 }
186
187 static void wb_queue_work(struct bdi_writeback *wb,
188                           struct wb_writeback_work *work)
189 {
190         trace_writeback_queue(wb, work);
191
192         if (work->done)
193                 atomic_inc(&work->done->cnt);
194
195         spin_lock_bh(&wb->work_lock);
196
197         if (test_bit(WB_registered, &wb->state)) {
198                 list_add_tail(&work->list, &wb->work_list);
199                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
200         } else
201                 finish_writeback_work(wb, work);
202
203         spin_unlock_bh(&wb->work_lock);
204 }
205
206 /**
207  * wb_wait_for_completion - wait for completion of bdi_writeback_works
208  * @bdi: bdi work items were issued to
209  * @done: target wb_completion
210  *
211  * Wait for one or more work items issued to @bdi with their ->done field
212  * set to @done, which should have been defined with
213  * DEFINE_WB_COMPLETION_ONSTACK().  This function returns after all such
214  * work items are completed.  Work items which are waited upon aren't freed
215  * automatically on completion.
216  */
217 static void wb_wait_for_completion(struct backing_dev_info *bdi,
218                                    struct wb_completion *done)
219 {
220         atomic_dec(&done->cnt);         /* put down the initial count */
221         wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
222 }
223
224 #ifdef CONFIG_CGROUP_WRITEBACK
225
226 /* parameters for foreign inode detection, see wb_detach_inode() */
227 #define WB_FRN_TIME_SHIFT       13      /* 1s = 2^13, upto 8 secs w/ 16bit */
228 #define WB_FRN_TIME_AVG_SHIFT   3       /* avg = avg * 7/8 + new * 1/8 */
229 #define WB_FRN_TIME_CUT_DIV     2       /* ignore rounds < avg / 2 */
230 #define WB_FRN_TIME_PERIOD      (2 * (1 << WB_FRN_TIME_SHIFT))  /* 2s */
231
232 #define WB_FRN_HIST_SLOTS       16      /* inode->i_wb_frn_history is 16bit */
233 #define WB_FRN_HIST_UNIT        (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
234                                         /* each slot's duration is 2s / 16 */
235 #define WB_FRN_HIST_THR_SLOTS   (WB_FRN_HIST_SLOTS / 2)
236                                         /* if foreign slots >= 8, switch */
237 #define WB_FRN_HIST_MAX_SLOTS   (WB_FRN_HIST_THR_SLOTS / 2 + 1)
238                                         /* one round can affect upto 5 slots */
239
240 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
241 static struct workqueue_struct *isw_wq;
242
243 void __inode_attach_wb(struct inode *inode, struct page *page)
244 {
245         struct backing_dev_info *bdi = inode_to_bdi(inode);
246         struct bdi_writeback *wb = NULL;
247
248         if (inode_cgwb_enabled(inode)) {
249                 struct cgroup_subsys_state *memcg_css;
250
251                 if (page) {
252                         memcg_css = mem_cgroup_css_from_page(page);
253                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
254                 } else {
255                         /* must pin memcg_css, see wb_get_create() */
256                         memcg_css = task_get_css(current, memory_cgrp_id);
257                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
258                         css_put(memcg_css);
259                 }
260         }
261
262         if (!wb)
263                 wb = &bdi->wb;
264
265         /*
266          * There may be multiple instances of this function racing to
267          * update the same inode.  Use cmpxchg() to tell the winner.
268          */
269         if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
270                 wb_put(wb);
271 }
272
273 /**
274  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
275  * @inode: inode of interest with i_lock held
276  *
277  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
278  * held on entry and is released on return.  The returned wb is guaranteed
279  * to stay @inode's associated wb until its list_lock is released.
280  */
281 static struct bdi_writeback *
282 locked_inode_to_wb_and_lock_list(struct inode *inode)
283         __releases(&inode->i_lock)
284         __acquires(&wb->list_lock)
285 {
286         while (true) {
287                 struct bdi_writeback *wb = inode_to_wb(inode);
288
289                 /*
290                  * inode_to_wb() association is protected by both
291                  * @inode->i_lock and @wb->list_lock but list_lock nests
292                  * outside i_lock.  Drop i_lock and verify that the
293                  * association hasn't changed after acquiring list_lock.
294                  */
295                 wb_get(wb);
296                 spin_unlock(&inode->i_lock);
297                 spin_lock(&wb->list_lock);
298
299                 /* i_wb may have changed inbetween, can't use inode_to_wb() */
300                 if (likely(wb == inode->i_wb)) {
301                         wb_put(wb);     /* @inode already has ref */
302                         return wb;
303                 }
304
305                 spin_unlock(&wb->list_lock);
306                 wb_put(wb);
307                 cpu_relax();
308                 spin_lock(&inode->i_lock);
309         }
310 }
311
312 /**
313  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
314  * @inode: inode of interest
315  *
316  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
317  * on entry.
318  */
319 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
320         __acquires(&wb->list_lock)
321 {
322         spin_lock(&inode->i_lock);
323         return locked_inode_to_wb_and_lock_list(inode);
324 }
325
326 struct inode_switch_wbs_context {
327         struct inode            *inode;
328         struct bdi_writeback    *new_wb;
329
330         struct rcu_head         rcu_head;
331         struct work_struct      work;
332 };
333
334 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
335 {
336         down_write(&bdi->wb_switch_rwsem);
337 }
338
339 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
340 {
341         up_write(&bdi->wb_switch_rwsem);
342 }
343
344 static void inode_switch_wbs_work_fn(struct work_struct *work)
345 {
346         struct inode_switch_wbs_context *isw =
347                 container_of(work, struct inode_switch_wbs_context, work);
348         struct inode *inode = isw->inode;
349         struct backing_dev_info *bdi = inode_to_bdi(inode);
350         struct address_space *mapping = inode->i_mapping;
351         struct bdi_writeback *old_wb = inode->i_wb;
352         struct bdi_writeback *new_wb = isw->new_wb;
353         struct radix_tree_iter iter;
354         bool switched = false;
355         void **slot;
356
357         /*
358          * If @inode switches cgwb membership while sync_inodes_sb() is
359          * being issued, sync_inodes_sb() might miss it.  Synchronize.
360          */
361         down_read(&bdi->wb_switch_rwsem);
362
363         /*
364          * By the time control reaches here, RCU grace period has passed
365          * since I_WB_SWITCH assertion and all wb stat update transactions
366          * between unlocked_inode_to_wb_begin/end() are guaranteed to be
367          * synchronizing against the i_pages lock.
368          *
369          * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
370          * gives us exclusion against all wb related operations on @inode
371          * including IO list manipulations and stat updates.
372          */
373         if (old_wb < new_wb) {
374                 spin_lock(&old_wb->list_lock);
375                 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
376         } else {
377                 spin_lock(&new_wb->list_lock);
378                 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
379         }
380         spin_lock(&inode->i_lock);
381         xa_lock_irq(&mapping->i_pages);
382
383         /*
384          * Once I_FREEING is visible under i_lock, the eviction path owns
385          * the inode and we shouldn't modify ->i_io_list.
386          */
387         if (unlikely(inode->i_state & I_FREEING))
388                 goto skip_switch;
389
390         /*
391          * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
392          * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
393          * pages actually under writeback.
394          */
395         radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, 0,
396                                    PAGECACHE_TAG_DIRTY) {
397                 struct page *page = radix_tree_deref_slot_protected(slot,
398                                                 &mapping->i_pages.xa_lock);
399                 if (likely(page) && PageDirty(page)) {
400                         dec_wb_stat(old_wb, WB_RECLAIMABLE);
401                         inc_wb_stat(new_wb, WB_RECLAIMABLE);
402                 }
403         }
404
405         radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, 0,
406                                    PAGECACHE_TAG_WRITEBACK) {
407                 struct page *page = radix_tree_deref_slot_protected(slot,
408                                                 &mapping->i_pages.xa_lock);
409                 if (likely(page)) {
410                         WARN_ON_ONCE(!PageWriteback(page));
411                         dec_wb_stat(old_wb, WB_WRITEBACK);
412                         inc_wb_stat(new_wb, WB_WRITEBACK);
413                 }
414         }
415
416         wb_get(new_wb);
417
418         /*
419          * Transfer to @new_wb's IO list if necessary.  The specific list
420          * @inode was on is ignored and the inode is put on ->b_dirty which
421          * is always correct including from ->b_dirty_time.  The transfer
422          * preserves @inode->dirtied_when ordering.
423          */
424         if (!list_empty(&inode->i_io_list)) {
425                 struct inode *pos;
426
427                 inode_io_list_del_locked(inode, old_wb);
428                 inode->i_wb = new_wb;
429                 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
430                         if (time_after_eq(inode->dirtied_when,
431                                           pos->dirtied_when))
432                                 break;
433                 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
434         } else {
435                 inode->i_wb = new_wb;
436         }
437
438         /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
439         inode->i_wb_frn_winner = 0;
440         inode->i_wb_frn_avg_time = 0;
441         inode->i_wb_frn_history = 0;
442         switched = true;
443 skip_switch:
444         /*
445          * Paired with load_acquire in unlocked_inode_to_wb_begin() and
446          * ensures that the new wb is visible if they see !I_WB_SWITCH.
447          */
448         smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
449
450         xa_unlock_irq(&mapping->i_pages);
451         spin_unlock(&inode->i_lock);
452         spin_unlock(&new_wb->list_lock);
453         spin_unlock(&old_wb->list_lock);
454
455         up_read(&bdi->wb_switch_rwsem);
456
457         if (switched) {
458                 wb_wakeup(new_wb);
459                 wb_put(old_wb);
460         }
461         wb_put(new_wb);
462
463         iput(inode);
464         kfree(isw);
465
466         atomic_dec(&isw_nr_in_flight);
467 }
468
469 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
470 {
471         struct inode_switch_wbs_context *isw = container_of(rcu_head,
472                                 struct inode_switch_wbs_context, rcu_head);
473
474         /* needs to grab bh-unsafe locks, bounce to work item */
475         INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
476         queue_work(isw_wq, &isw->work);
477 }
478
479 /**
480  * inode_switch_wbs - change the wb association of an inode
481  * @inode: target inode
482  * @new_wb_id: ID of the new wb
483  *
484  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
485  * switching is performed asynchronously and may fail silently.
486  */
487 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
488 {
489         struct backing_dev_info *bdi = inode_to_bdi(inode);
490         struct cgroup_subsys_state *memcg_css;
491         struct inode_switch_wbs_context *isw;
492
493         /* noop if seems to be already in progress */
494         if (inode->i_state & I_WB_SWITCH)
495                 return;
496
497         /*
498          * Avoid starting new switches while sync_inodes_sb() is in
499          * progress.  Otherwise, if the down_write protected issue path
500          * blocks heavily, we might end up starting a large number of
501          * switches which will block on the rwsem.
502          */
503         if (!down_read_trylock(&bdi->wb_switch_rwsem))
504                 return;
505
506         isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
507         if (!isw)
508                 goto out_unlock;
509
510         /* find and pin the new wb */
511         rcu_read_lock();
512         memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
513         if (memcg_css)
514                 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
515         rcu_read_unlock();
516         if (!isw->new_wb)
517                 goto out_free;
518
519         /* while holding I_WB_SWITCH, no one else can update the association */
520         spin_lock(&inode->i_lock);
521         if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
522             inode->i_state & (I_WB_SWITCH | I_FREEING) ||
523             inode_to_wb(inode) == isw->new_wb) {
524                 spin_unlock(&inode->i_lock);
525                 goto out_free;
526         }
527         inode->i_state |= I_WB_SWITCH;
528         __iget(inode);
529         spin_unlock(&inode->i_lock);
530
531         isw->inode = inode;
532
533         /*
534          * In addition to synchronizing among switchers, I_WB_SWITCH tells
535          * the RCU protected stat update paths to grab the i_page
536          * lock so that stat transfer can synchronize against them.
537          * Let's continue after I_WB_SWITCH is guaranteed to be visible.
538          */
539         call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
540
541         atomic_inc(&isw_nr_in_flight);
542
543         goto out_unlock;
544
545 out_free:
546         if (isw->new_wb)
547                 wb_put(isw->new_wb);
548         kfree(isw);
549 out_unlock:
550         up_read(&bdi->wb_switch_rwsem);
551 }
552
553 /**
554  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
555  * @wbc: writeback_control of interest
556  * @inode: target inode
557  *
558  * @inode is locked and about to be written back under the control of @wbc.
559  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
560  * writeback completion, wbc_detach_inode() should be called.  This is used
561  * to track the cgroup writeback context.
562  */
563 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
564                                  struct inode *inode)
565 {
566         if (!inode_cgwb_enabled(inode)) {
567                 spin_unlock(&inode->i_lock);
568                 return;
569         }
570
571         wbc->wb = inode_to_wb(inode);
572         wbc->inode = inode;
573
574         wbc->wb_id = wbc->wb->memcg_css->id;
575         wbc->wb_lcand_id = inode->i_wb_frn_winner;
576         wbc->wb_tcand_id = 0;
577         wbc->wb_bytes = 0;
578         wbc->wb_lcand_bytes = 0;
579         wbc->wb_tcand_bytes = 0;
580
581         wb_get(wbc->wb);
582         spin_unlock(&inode->i_lock);
583
584         /*
585          * A dying wb indicates that either the blkcg associated with the
586          * memcg changed or the associated memcg is dying.  In the first
587          * case, a replacement wb should already be available and we should
588          * refresh the wb immediately.  In the second case, trying to
589          * refresh will keep failing.
590          */
591         if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
592                 inode_switch_wbs(inode, wbc->wb_id);
593 }
594
595 /**
596  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
597  * @wbc: writeback_control of the just finished writeback
598  *
599  * To be called after a writeback attempt of an inode finishes and undoes
600  * wbc_attach_and_unlock_inode().  Can be called under any context.
601  *
602  * As concurrent write sharing of an inode is expected to be very rare and
603  * memcg only tracks page ownership on first-use basis severely confining
604  * the usefulness of such sharing, cgroup writeback tracks ownership
605  * per-inode.  While the support for concurrent write sharing of an inode
606  * is deemed unnecessary, an inode being written to by different cgroups at
607  * different points in time is a lot more common, and, more importantly,
608  * charging only by first-use can too readily lead to grossly incorrect
609  * behaviors (single foreign page can lead to gigabytes of writeback to be
610  * incorrectly attributed).
611  *
612  * To resolve this issue, cgroup writeback detects the majority dirtier of
613  * an inode and transfers the ownership to it.  To avoid unnnecessary
614  * oscillation, the detection mechanism keeps track of history and gives
615  * out the switch verdict only if the foreign usage pattern is stable over
616  * a certain amount of time and/or writeback attempts.
617  *
618  * On each writeback attempt, @wbc tries to detect the majority writer
619  * using Boyer-Moore majority vote algorithm.  In addition to the byte
620  * count from the majority voting, it also counts the bytes written for the
621  * current wb and the last round's winner wb (max of last round's current
622  * wb, the winner from two rounds ago, and the last round's majority
623  * candidate).  Keeping track of the historical winner helps the algorithm
624  * to semi-reliably detect the most active writer even when it's not the
625  * absolute majority.
626  *
627  * Once the winner of the round is determined, whether the winner is
628  * foreign or not and how much IO time the round consumed is recorded in
629  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
630  * over a certain threshold, the switch verdict is given.
631  */
632 void wbc_detach_inode(struct writeback_control *wbc)
633 {
634         struct bdi_writeback *wb = wbc->wb;
635         struct inode *inode = wbc->inode;
636         unsigned long avg_time, max_bytes, max_time;
637         u16 history;
638         int max_id;
639
640         if (!wb)
641                 return;
642
643         history = inode->i_wb_frn_history;
644         avg_time = inode->i_wb_frn_avg_time;
645
646         /* pick the winner of this round */
647         if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
648             wbc->wb_bytes >= wbc->wb_tcand_bytes) {
649                 max_id = wbc->wb_id;
650                 max_bytes = wbc->wb_bytes;
651         } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
652                 max_id = wbc->wb_lcand_id;
653                 max_bytes = wbc->wb_lcand_bytes;
654         } else {
655                 max_id = wbc->wb_tcand_id;
656                 max_bytes = wbc->wb_tcand_bytes;
657         }
658
659         /*
660          * Calculate the amount of IO time the winner consumed and fold it
661          * into the running average kept per inode.  If the consumed IO
662          * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
663          * deciding whether to switch or not.  This is to prevent one-off
664          * small dirtiers from skewing the verdict.
665          */
666         max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
667                                 wb->avg_write_bandwidth);
668         if (avg_time)
669                 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
670                             (avg_time >> WB_FRN_TIME_AVG_SHIFT);
671         else
672                 avg_time = max_time;    /* immediate catch up on first run */
673
674         if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
675                 int slots;
676
677                 /*
678                  * The switch verdict is reached if foreign wb's consume
679                  * more than a certain proportion of IO time in a
680                  * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
681                  * history mask where each bit represents one sixteenth of
682                  * the period.  Determine the number of slots to shift into
683                  * history from @max_time.
684                  */
685                 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
686                             (unsigned long)WB_FRN_HIST_MAX_SLOTS);
687                 history <<= slots;
688                 if (wbc->wb_id != max_id)
689                         history |= (1U << slots) - 1;
690
691                 /*
692                  * Switch if the current wb isn't the consistent winner.
693                  * If there are multiple closely competing dirtiers, the
694                  * inode may switch across them repeatedly over time, which
695                  * is okay.  The main goal is avoiding keeping an inode on
696                  * the wrong wb for an extended period of time.
697                  */
698                 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
699                         inode_switch_wbs(inode, max_id);
700         }
701
702         /*
703          * Multiple instances of this function may race to update the
704          * following fields but we don't mind occassional inaccuracies.
705          */
706         inode->i_wb_frn_winner = max_id;
707         inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
708         inode->i_wb_frn_history = history;
709
710         wb_put(wbc->wb);
711         wbc->wb = NULL;
712 }
713
714 /**
715  * wbc_account_io - account IO issued during writeback
716  * @wbc: writeback_control of the writeback in progress
717  * @page: page being written out
718  * @bytes: number of bytes being written out
719  *
720  * @bytes from @page are about to written out during the writeback
721  * controlled by @wbc.  Keep the book for foreign inode detection.  See
722  * wbc_detach_inode().
723  */
724 void wbc_account_io(struct writeback_control *wbc, struct page *page,
725                     size_t bytes)
726 {
727         struct cgroup_subsys_state *css;
728         int id;
729
730         /*
731          * pageout() path doesn't attach @wbc to the inode being written
732          * out.  This is intentional as we don't want the function to block
733          * behind a slow cgroup.  Ultimately, we want pageout() to kick off
734          * regular writeback instead of writing things out itself.
735          */
736         if (!wbc->wb)
737                 return;
738
739         css = mem_cgroup_css_from_page(page);
740         /* dead cgroups shouldn't contribute to inode ownership arbitration */
741         if (!(css->flags & CSS_ONLINE))
742                 return;
743
744         id = css->id;
745
746         if (id == wbc->wb_id) {
747                 wbc->wb_bytes += bytes;
748                 return;
749         }
750
751         if (id == wbc->wb_lcand_id)
752                 wbc->wb_lcand_bytes += bytes;
753
754         /* Boyer-Moore majority vote algorithm */
755         if (!wbc->wb_tcand_bytes)
756                 wbc->wb_tcand_id = id;
757         if (id == wbc->wb_tcand_id)
758                 wbc->wb_tcand_bytes += bytes;
759         else
760                 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
761 }
762 EXPORT_SYMBOL_GPL(wbc_account_io);
763
764 /**
765  * inode_congested - test whether an inode is congested
766  * @inode: inode to test for congestion (may be NULL)
767  * @cong_bits: mask of WB_[a]sync_congested bits to test
768  *
769  * Tests whether @inode is congested.  @cong_bits is the mask of congestion
770  * bits to test and the return value is the mask of set bits.
771  *
772  * If cgroup writeback is enabled for @inode, the congestion state is
773  * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
774  * associated with @inode is congested; otherwise, the root wb's congestion
775  * state is used.
776  *
777  * @inode is allowed to be NULL as this function is often called on
778  * mapping->host which is NULL for the swapper space.
779  */
780 int inode_congested(struct inode *inode, int cong_bits)
781 {
782         /*
783          * Once set, ->i_wb never becomes NULL while the inode is alive.
784          * Start transaction iff ->i_wb is visible.
785          */
786         if (inode && inode_to_wb_is_valid(inode)) {
787                 struct bdi_writeback *wb;
788                 struct wb_lock_cookie lock_cookie = {};
789                 bool congested;
790
791                 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
792                 congested = wb_congested(wb, cong_bits);
793                 unlocked_inode_to_wb_end(inode, &lock_cookie);
794                 return congested;
795         }
796
797         return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
798 }
799 EXPORT_SYMBOL_GPL(inode_congested);
800
801 /**
802  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
803  * @wb: target bdi_writeback to split @nr_pages to
804  * @nr_pages: number of pages to write for the whole bdi
805  *
806  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
807  * relation to the total write bandwidth of all wb's w/ dirty inodes on
808  * @wb->bdi.
809  */
810 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
811 {
812         unsigned long this_bw = wb->avg_write_bandwidth;
813         unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
814
815         if (nr_pages == LONG_MAX)
816                 return LONG_MAX;
817
818         /*
819          * This may be called on clean wb's and proportional distribution
820          * may not make sense, just use the original @nr_pages in those
821          * cases.  In general, we wanna err on the side of writing more.
822          */
823         if (!tot_bw || this_bw >= tot_bw)
824                 return nr_pages;
825         else
826                 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
827 }
828
829 /**
830  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
831  * @bdi: target backing_dev_info
832  * @base_work: wb_writeback_work to issue
833  * @skip_if_busy: skip wb's which already have writeback in progress
834  *
835  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
836  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
837  * distributed to the busy wbs according to each wb's proportion in the
838  * total active write bandwidth of @bdi.
839  */
840 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
841                                   struct wb_writeback_work *base_work,
842                                   bool skip_if_busy)
843 {
844         struct bdi_writeback *last_wb = NULL;
845         struct bdi_writeback *wb = list_entry(&bdi->wb_list,
846                                               struct bdi_writeback, bdi_node);
847
848         might_sleep();
849 restart:
850         rcu_read_lock();
851         list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
852                 DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
853                 struct wb_writeback_work fallback_work;
854                 struct wb_writeback_work *work;
855                 long nr_pages;
856
857                 if (last_wb) {
858                         wb_put(last_wb);
859                         last_wb = NULL;
860                 }
861
862                 /* SYNC_ALL writes out I_DIRTY_TIME too */
863                 if (!wb_has_dirty_io(wb) &&
864                     (base_work->sync_mode == WB_SYNC_NONE ||
865                      list_empty(&wb->b_dirty_time)))
866                         continue;
867                 if (skip_if_busy && writeback_in_progress(wb))
868                         continue;
869
870                 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
871
872                 work = kmalloc(sizeof(*work), GFP_ATOMIC);
873                 if (work) {
874                         *work = *base_work;
875                         work->nr_pages = nr_pages;
876                         work->auto_free = 1;
877                         wb_queue_work(wb, work);
878                         continue;
879                 }
880
881                 /* alloc failed, execute synchronously using on-stack fallback */
882                 work = &fallback_work;
883                 *work = *base_work;
884                 work->nr_pages = nr_pages;
885                 work->auto_free = 0;
886                 work->done = &fallback_work_done;
887
888                 wb_queue_work(wb, work);
889
890                 /*
891                  * Pin @wb so that it stays on @bdi->wb_list.  This allows
892                  * continuing iteration from @wb after dropping and
893                  * regrabbing rcu read lock.
894                  */
895                 wb_get(wb);
896                 last_wb = wb;
897
898                 rcu_read_unlock();
899                 wb_wait_for_completion(bdi, &fallback_work_done);
900                 goto restart;
901         }
902         rcu_read_unlock();
903
904         if (last_wb)
905                 wb_put(last_wb);
906 }
907
908 /**
909  * cgroup_writeback_umount - flush inode wb switches for umount
910  *
911  * This function is called when a super_block is about to be destroyed and
912  * flushes in-flight inode wb switches.  An inode wb switch goes through
913  * RCU and then workqueue, so the two need to be flushed in order to ensure
914  * that all previously scheduled switches are finished.  As wb switches are
915  * rare occurrences and synchronize_rcu() can take a while, perform
916  * flushing iff wb switches are in flight.
917  */
918 void cgroup_writeback_umount(void)
919 {
920         if (atomic_read(&isw_nr_in_flight)) {
921                 /*
922                  * Use rcu_barrier() to wait for all pending callbacks to
923                  * ensure that all in-flight wb switches are in the workqueue.
924                  */
925                 rcu_barrier();
926                 flush_workqueue(isw_wq);
927         }
928 }
929
930 static int __init cgroup_writeback_init(void)
931 {
932         isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
933         if (!isw_wq)
934                 return -ENOMEM;
935         return 0;
936 }
937 fs_initcall(cgroup_writeback_init);
938
939 #else   /* CONFIG_CGROUP_WRITEBACK */
940
941 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
942 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
943
944 static struct bdi_writeback *
945 locked_inode_to_wb_and_lock_list(struct inode *inode)
946         __releases(&inode->i_lock)
947         __acquires(&wb->list_lock)
948 {
949         struct bdi_writeback *wb = inode_to_wb(inode);
950
951         spin_unlock(&inode->i_lock);
952         spin_lock(&wb->list_lock);
953         return wb;
954 }
955
956 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
957         __acquires(&wb->list_lock)
958 {
959         struct bdi_writeback *wb = inode_to_wb(inode);
960
961         spin_lock(&wb->list_lock);
962         return wb;
963 }
964
965 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
966 {
967         return nr_pages;
968 }
969
970 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
971                                   struct wb_writeback_work *base_work,
972                                   bool skip_if_busy)
973 {
974         might_sleep();
975
976         if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
977                 base_work->auto_free = 0;
978                 wb_queue_work(&bdi->wb, base_work);
979         }
980 }
981
982 #endif  /* CONFIG_CGROUP_WRITEBACK */
983
984 /*
985  * Add in the number of potentially dirty inodes, because each inode
986  * write can dirty pagecache in the underlying blockdev.
987  */
988 static unsigned long get_nr_dirty_pages(void)
989 {
990         return global_node_page_state(NR_FILE_DIRTY) +
991                 global_node_page_state(NR_UNSTABLE_NFS) +
992                 get_nr_dirty_inodes();
993 }
994
995 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
996 {
997         if (!wb_has_dirty_io(wb))
998                 return;
999
1000         /*
1001          * All callers of this function want to start writeback of all
1002          * dirty pages. Places like vmscan can call this at a very
1003          * high frequency, causing pointless allocations of tons of
1004          * work items and keeping the flusher threads busy retrieving
1005          * that work. Ensure that we only allow one of them pending and
1006          * inflight at the time.
1007          */
1008         if (test_bit(WB_start_all, &wb->state) ||
1009             test_and_set_bit(WB_start_all, &wb->state))
1010                 return;
1011
1012         wb->start_all_reason = reason;
1013         wb_wakeup(wb);
1014 }
1015
1016 /**
1017  * wb_start_background_writeback - start background writeback
1018  * @wb: bdi_writback to write from
1019  *
1020  * Description:
1021  *   This makes sure WB_SYNC_NONE background writeback happens. When
1022  *   this function returns, it is only guaranteed that for given wb
1023  *   some IO is happening if we are over background dirty threshold.
1024  *   Caller need not hold sb s_umount semaphore.
1025  */
1026 void wb_start_background_writeback(struct bdi_writeback *wb)
1027 {
1028         /*
1029          * We just wake up the flusher thread. It will perform background
1030          * writeback as soon as there is no other work to do.
1031          */
1032         trace_writeback_wake_background(wb);
1033         wb_wakeup(wb);
1034 }
1035
1036 /*
1037  * Remove the inode from the writeback list it is on.
1038  */
1039 void inode_io_list_del(struct inode *inode)
1040 {
1041         struct bdi_writeback *wb;
1042
1043         wb = inode_to_wb_and_lock_list(inode);
1044         inode_io_list_del_locked(inode, wb);
1045         spin_unlock(&wb->list_lock);
1046 }
1047
1048 /*
1049  * mark an inode as under writeback on the sb
1050  */
1051 void sb_mark_inode_writeback(struct inode *inode)
1052 {
1053         struct super_block *sb = inode->i_sb;
1054         unsigned long flags;
1055
1056         if (list_empty(&inode->i_wb_list)) {
1057                 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1058                 if (list_empty(&inode->i_wb_list)) {
1059                         list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1060                         trace_sb_mark_inode_writeback(inode);
1061                 }
1062                 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1063         }
1064 }
1065
1066 /*
1067  * clear an inode as under writeback on the sb
1068  */
1069 void sb_clear_inode_writeback(struct inode *inode)
1070 {
1071         struct super_block *sb = inode->i_sb;
1072         unsigned long flags;
1073
1074         if (!list_empty(&inode->i_wb_list)) {
1075                 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1076                 if (!list_empty(&inode->i_wb_list)) {
1077                         list_del_init(&inode->i_wb_list);
1078                         trace_sb_clear_inode_writeback(inode);
1079                 }
1080                 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1081         }
1082 }
1083
1084 /*
1085  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1086  * furthest end of its superblock's dirty-inode list.
1087  *
1088  * Before stamping the inode's ->dirtied_when, we check to see whether it is
1089  * already the most-recently-dirtied inode on the b_dirty list.  If that is
1090  * the case then the inode must have been redirtied while it was being written
1091  * out and we don't reset its dirtied_when.
1092  */
1093 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1094 {
1095         if (!list_empty(&wb->b_dirty)) {
1096                 struct inode *tail;
1097
1098                 tail = wb_inode(wb->b_dirty.next);
1099                 if (time_before(inode->dirtied_when, tail->dirtied_when))
1100                         inode->dirtied_when = jiffies;
1101         }
1102         inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1103 }
1104
1105 /*
1106  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1107  */
1108 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1109 {
1110         inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1111 }
1112
1113 static void inode_sync_complete(struct inode *inode)
1114 {
1115         inode->i_state &= ~I_SYNC;
1116         /* If inode is clean an unused, put it into LRU now... */
1117         inode_add_lru(inode);
1118         /* Waiters must see I_SYNC cleared before being woken up */
1119         smp_mb();
1120         wake_up_bit(&inode->i_state, __I_SYNC);
1121 }
1122
1123 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1124 {
1125         bool ret = time_after(inode->dirtied_when, t);
1126 #ifndef CONFIG_64BIT
1127         /*
1128          * For inodes being constantly redirtied, dirtied_when can get stuck.
1129          * It _appears_ to be in the future, but is actually in distant past.
1130          * This test is necessary to prevent such wrapped-around relative times
1131          * from permanently stopping the whole bdi writeback.
1132          */
1133         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1134 #endif
1135         return ret;
1136 }
1137
1138 #define EXPIRE_DIRTY_ATIME 0x0001
1139
1140 /*
1141  * Move expired (dirtied before work->older_than_this) dirty inodes from
1142  * @delaying_queue to @dispatch_queue.
1143  */
1144 static int move_expired_inodes(struct list_head *delaying_queue,
1145                                struct list_head *dispatch_queue,
1146                                int flags,
1147                                struct wb_writeback_work *work)
1148 {
1149         unsigned long *older_than_this = NULL;
1150         unsigned long expire_time;
1151         LIST_HEAD(tmp);
1152         struct list_head *pos, *node;
1153         struct super_block *sb = NULL;
1154         struct inode *inode;
1155         int do_sb_sort = 0;
1156         int moved = 0;
1157
1158         if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1159                 older_than_this = work->older_than_this;
1160         else if (!work->for_sync) {
1161                 expire_time = jiffies - (dirtytime_expire_interval * HZ);
1162                 older_than_this = &expire_time;
1163         }
1164         while (!list_empty(delaying_queue)) {
1165                 inode = wb_inode(delaying_queue->prev);
1166                 if (older_than_this &&
1167                     inode_dirtied_after(inode, *older_than_this))
1168                         break;
1169                 list_move(&inode->i_io_list, &tmp);
1170                 moved++;
1171                 if (flags & EXPIRE_DIRTY_ATIME)
1172                         set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1173                 if (sb_is_blkdev_sb(inode->i_sb))
1174                         continue;
1175                 if (sb && sb != inode->i_sb)
1176                         do_sb_sort = 1;
1177                 sb = inode->i_sb;
1178         }
1179
1180         /* just one sb in list, splice to dispatch_queue and we're done */
1181         if (!do_sb_sort) {
1182                 list_splice(&tmp, dispatch_queue);
1183                 goto out;
1184         }
1185
1186         /* Move inodes from one superblock together */
1187         while (!list_empty(&tmp)) {
1188                 sb = wb_inode(tmp.prev)->i_sb;
1189                 list_for_each_prev_safe(pos, node, &tmp) {
1190                         inode = wb_inode(pos);
1191                         if (inode->i_sb == sb)
1192                                 list_move(&inode->i_io_list, dispatch_queue);
1193                 }
1194         }
1195 out:
1196         return moved;
1197 }
1198
1199 /*
1200  * Queue all expired dirty inodes for io, eldest first.
1201  * Before
1202  *         newly dirtied     b_dirty    b_io    b_more_io
1203  *         =============>    gf         edc     BA
1204  * After
1205  *         newly dirtied     b_dirty    b_io    b_more_io
1206  *         =============>    g          fBAedc
1207  *                                           |
1208  *                                           +--> dequeue for IO
1209  */
1210 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1211 {
1212         int moved;
1213
1214         assert_spin_locked(&wb->list_lock);
1215         list_splice_init(&wb->b_more_io, &wb->b_io);
1216         moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1217         moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1218                                      EXPIRE_DIRTY_ATIME, work);
1219         if (moved)
1220                 wb_io_lists_populated(wb);
1221         trace_writeback_queue_io(wb, work, moved);
1222 }
1223
1224 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1225 {
1226         int ret;
1227
1228         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1229                 trace_writeback_write_inode_start(inode, wbc);
1230                 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1231                 trace_writeback_write_inode(inode, wbc);
1232                 return ret;
1233         }
1234         return 0;
1235 }
1236
1237 /*
1238  * Wait for writeback on an inode to complete. Called with i_lock held.
1239  * Caller must make sure inode cannot go away when we drop i_lock.
1240  */
1241 static void __inode_wait_for_writeback(struct inode *inode)
1242         __releases(inode->i_lock)
1243         __acquires(inode->i_lock)
1244 {
1245         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1246         wait_queue_head_t *wqh;
1247
1248         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1249         while (inode->i_state & I_SYNC) {
1250                 spin_unlock(&inode->i_lock);
1251                 __wait_on_bit(wqh, &wq, bit_wait,
1252                               TASK_UNINTERRUPTIBLE);
1253                 spin_lock(&inode->i_lock);
1254         }
1255 }
1256
1257 /*
1258  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1259  */
1260 void inode_wait_for_writeback(struct inode *inode)
1261 {
1262         spin_lock(&inode->i_lock);
1263         __inode_wait_for_writeback(inode);
1264         spin_unlock(&inode->i_lock);
1265 }
1266
1267 /*
1268  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1269  * held and drops it. It is aimed for callers not holding any inode reference
1270  * so once i_lock is dropped, inode can go away.
1271  */
1272 static void inode_sleep_on_writeback(struct inode *inode)
1273         __releases(inode->i_lock)
1274 {
1275         DEFINE_WAIT(wait);
1276         wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1277         int sleep;
1278
1279         prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1280         sleep = inode->i_state & I_SYNC;
1281         spin_unlock(&inode->i_lock);
1282         if (sleep)
1283                 schedule();
1284         finish_wait(wqh, &wait);
1285 }
1286
1287 /*
1288  * Find proper writeback list for the inode depending on its current state and
1289  * possibly also change of its state while we were doing writeback.  Here we
1290  * handle things such as livelock prevention or fairness of writeback among
1291  * inodes. This function can be called only by flusher thread - noone else
1292  * processes all inodes in writeback lists and requeueing inodes behind flusher
1293  * thread's back can have unexpected consequences.
1294  */
1295 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1296                           struct writeback_control *wbc)
1297 {
1298         if (inode->i_state & I_FREEING)
1299                 return;
1300
1301         /*
1302          * Sync livelock prevention. Each inode is tagged and synced in one
1303          * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1304          * the dirty time to prevent enqueue and sync it again.
1305          */
1306         if ((inode->i_state & I_DIRTY) &&
1307             (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1308                 inode->dirtied_when = jiffies;
1309
1310         if (wbc->pages_skipped) {
1311                 /*
1312                  * writeback is not making progress due to locked
1313                  * buffers. Skip this inode for now.
1314                  */
1315                 redirty_tail(inode, wb);
1316                 return;
1317         }
1318
1319         if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1320                 /*
1321                  * We didn't write back all the pages.  nfs_writepages()
1322                  * sometimes bales out without doing anything.
1323                  */
1324                 if (wbc->nr_to_write <= 0) {
1325                         /* Slice used up. Queue for next turn. */
1326                         requeue_io(inode, wb);
1327                 } else {
1328                         /*
1329                          * Writeback blocked by something other than
1330                          * congestion. Delay the inode for some time to
1331                          * avoid spinning on the CPU (100% iowait)
1332                          * retrying writeback of the dirty page/inode
1333                          * that cannot be performed immediately.
1334                          */
1335                         redirty_tail(inode, wb);
1336                 }
1337         } else if (inode->i_state & I_DIRTY) {
1338                 /*
1339                  * Filesystems can dirty the inode during writeback operations,
1340                  * such as delayed allocation during submission or metadata
1341                  * updates after data IO completion.
1342                  */
1343                 redirty_tail(inode, wb);
1344         } else if (inode->i_state & I_DIRTY_TIME) {
1345                 inode->dirtied_when = jiffies;
1346                 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1347         } else {
1348                 /* The inode is clean. Remove from writeback lists. */
1349                 inode_io_list_del_locked(inode, wb);
1350         }
1351 }
1352
1353 /*
1354  * Write out an inode and its dirty pages. Do not update the writeback list
1355  * linkage. That is left to the caller. The caller is also responsible for
1356  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1357  */
1358 static int
1359 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1360 {
1361         struct address_space *mapping = inode->i_mapping;
1362         long nr_to_write = wbc->nr_to_write;
1363         unsigned dirty;
1364         int ret;
1365
1366         WARN_ON(!(inode->i_state & I_SYNC));
1367
1368         trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1369
1370         ret = do_writepages(mapping, wbc);
1371
1372         /*
1373          * Make sure to wait on the data before writing out the metadata.
1374          * This is important for filesystems that modify metadata on data
1375          * I/O completion. We don't do it for sync(2) writeback because it has a
1376          * separate, external IO completion path and ->sync_fs for guaranteeing
1377          * inode metadata is written back correctly.
1378          */
1379         if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1380                 int err = filemap_fdatawait(mapping);
1381                 if (ret == 0)
1382                         ret = err;
1383         }
1384
1385         /*
1386          * Some filesystems may redirty the inode during the writeback
1387          * due to delalloc, clear dirty metadata flags right before
1388          * write_inode()
1389          */
1390         spin_lock(&inode->i_lock);
1391
1392         dirty = inode->i_state & I_DIRTY;
1393         if (inode->i_state & I_DIRTY_TIME) {
1394                 if ((dirty & I_DIRTY_INODE) ||
1395                     wbc->sync_mode == WB_SYNC_ALL ||
1396                     unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1397                     unlikely(time_after(jiffies,
1398                                         (inode->dirtied_time_when +
1399                                          dirtytime_expire_interval * HZ)))) {
1400                         dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1401                         trace_writeback_lazytime(inode);
1402                 }
1403         } else
1404                 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1405         inode->i_state &= ~dirty;
1406
1407         /*
1408          * Paired with smp_mb() in __mark_inode_dirty().  This allows
1409          * __mark_inode_dirty() to test i_state without grabbing i_lock -
1410          * either they see the I_DIRTY bits cleared or we see the dirtied
1411          * inode.
1412          *
1413          * I_DIRTY_PAGES is always cleared together above even if @mapping
1414          * still has dirty pages.  The flag is reinstated after smp_mb() if
1415          * necessary.  This guarantees that either __mark_inode_dirty()
1416          * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1417          */
1418         smp_mb();
1419
1420         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1421                 inode->i_state |= I_DIRTY_PAGES;
1422
1423         spin_unlock(&inode->i_lock);
1424
1425         if (dirty & I_DIRTY_TIME)
1426                 mark_inode_dirty_sync(inode);
1427         /* Don't write the inode if only I_DIRTY_PAGES was set */
1428         if (dirty & ~I_DIRTY_PAGES) {
1429                 int err = write_inode(inode, wbc);
1430                 if (ret == 0)
1431                         ret = err;
1432         }
1433         trace_writeback_single_inode(inode, wbc, nr_to_write);
1434         return ret;
1435 }
1436
1437 /*
1438  * Write out an inode's dirty pages. Either the caller has an active reference
1439  * on the inode or the inode has I_WILL_FREE set.
1440  *
1441  * This function is designed to be called for writing back one inode which
1442  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1443  * and does more profound writeback list handling in writeback_sb_inodes().
1444  */
1445 static int writeback_single_inode(struct inode *inode,
1446                                   struct writeback_control *wbc)
1447 {
1448         struct bdi_writeback *wb;
1449         int ret = 0;
1450
1451         spin_lock(&inode->i_lock);
1452         if (!atomic_read(&inode->i_count))
1453                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1454         else
1455                 WARN_ON(inode->i_state & I_WILL_FREE);
1456
1457         if (inode->i_state & I_SYNC) {
1458                 if (wbc->sync_mode != WB_SYNC_ALL)
1459                         goto out;
1460                 /*
1461                  * It's a data-integrity sync. We must wait. Since callers hold
1462                  * inode reference or inode has I_WILL_FREE set, it cannot go
1463                  * away under us.
1464                  */
1465                 __inode_wait_for_writeback(inode);
1466         }
1467         WARN_ON(inode->i_state & I_SYNC);
1468         /*
1469          * Skip inode if it is clean and we have no outstanding writeback in
1470          * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1471          * function since flusher thread may be doing for example sync in
1472          * parallel and if we move the inode, it could get skipped. So here we
1473          * make sure inode is on some writeback list and leave it there unless
1474          * we have completely cleaned the inode.
1475          */
1476         if (!(inode->i_state & I_DIRTY_ALL) &&
1477             (wbc->sync_mode != WB_SYNC_ALL ||
1478              !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1479                 goto out;
1480         inode->i_state |= I_SYNC;
1481         wbc_attach_and_unlock_inode(wbc, inode);
1482
1483         ret = __writeback_single_inode(inode, wbc);
1484
1485         wbc_detach_inode(wbc);
1486
1487         wb = inode_to_wb_and_lock_list(inode);
1488         spin_lock(&inode->i_lock);
1489         /*
1490          * If inode is clean, remove it from writeback lists. Otherwise don't
1491          * touch it. See comment above for explanation.
1492          */
1493         if (!(inode->i_state & I_DIRTY_ALL))
1494                 inode_io_list_del_locked(inode, wb);
1495         spin_unlock(&wb->list_lock);
1496         inode_sync_complete(inode);
1497 out:
1498         spin_unlock(&inode->i_lock);
1499         return ret;
1500 }
1501
1502 static long writeback_chunk_size(struct bdi_writeback *wb,
1503                                  struct wb_writeback_work *work)
1504 {
1505         long pages;
1506
1507         /*
1508          * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1509          * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1510          * here avoids calling into writeback_inodes_wb() more than once.
1511          *
1512          * The intended call sequence for WB_SYNC_ALL writeback is:
1513          *
1514          *      wb_writeback()
1515          *          writeback_sb_inodes()       <== called only once
1516          *              write_cache_pages()     <== called once for each inode
1517          *                   (quickly) tag currently dirty pages
1518          *                   (maybe slowly) sync all tagged pages
1519          */
1520         if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1521                 pages = LONG_MAX;
1522         else {
1523                 pages = min(wb->avg_write_bandwidth / 2,
1524                             global_wb_domain.dirty_limit / DIRTY_SCOPE);
1525                 pages = min(pages, work->nr_pages);
1526                 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1527                                    MIN_WRITEBACK_PAGES);
1528         }
1529
1530         return pages;
1531 }
1532
1533 /*
1534  * Write a portion of b_io inodes which belong to @sb.
1535  *
1536  * Return the number of pages and/or inodes written.
1537  *
1538  * NOTE! This is called with wb->list_lock held, and will
1539  * unlock and relock that for each inode it ends up doing
1540  * IO for.
1541  */
1542 static long writeback_sb_inodes(struct super_block *sb,
1543                                 struct bdi_writeback *wb,
1544                                 struct wb_writeback_work *work)
1545 {
1546         struct writeback_control wbc = {
1547                 .sync_mode              = work->sync_mode,
1548                 .tagged_writepages      = work->tagged_writepages,
1549                 .for_kupdate            = work->for_kupdate,
1550                 .for_background         = work->for_background,
1551                 .for_sync               = work->for_sync,
1552                 .range_cyclic           = work->range_cyclic,
1553                 .range_start            = 0,
1554                 .range_end              = LLONG_MAX,
1555         };
1556         unsigned long start_time = jiffies;
1557         long write_chunk;
1558         long wrote = 0;  /* count both pages and inodes */
1559
1560         while (!list_empty(&wb->b_io)) {
1561                 struct inode *inode = wb_inode(wb->b_io.prev);
1562                 struct bdi_writeback *tmp_wb;
1563
1564                 if (inode->i_sb != sb) {
1565                         if (work->sb) {
1566                                 /*
1567                                  * We only want to write back data for this
1568                                  * superblock, move all inodes not belonging
1569                                  * to it back onto the dirty list.
1570                                  */
1571                                 redirty_tail(inode, wb);
1572                                 continue;
1573                         }
1574
1575                         /*
1576                          * The inode belongs to a different superblock.
1577                          * Bounce back to the caller to unpin this and
1578                          * pin the next superblock.
1579                          */
1580                         break;
1581                 }
1582
1583                 /*
1584                  * Don't bother with new inodes or inodes being freed, first
1585                  * kind does not need periodic writeout yet, and for the latter
1586                  * kind writeout is handled by the freer.
1587                  */
1588                 spin_lock(&inode->i_lock);
1589                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1590                         spin_unlock(&inode->i_lock);
1591                         redirty_tail(inode, wb);
1592                         continue;
1593                 }
1594                 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1595                         /*
1596                          * If this inode is locked for writeback and we are not
1597                          * doing writeback-for-data-integrity, move it to
1598                          * b_more_io so that writeback can proceed with the
1599                          * other inodes on s_io.
1600                          *
1601                          * We'll have another go at writing back this inode
1602                          * when we completed a full scan of b_io.
1603                          */
1604                         spin_unlock(&inode->i_lock);
1605                         requeue_io(inode, wb);
1606                         trace_writeback_sb_inodes_requeue(inode);
1607                         continue;
1608                 }
1609                 spin_unlock(&wb->list_lock);
1610
1611                 /*
1612                  * We already requeued the inode if it had I_SYNC set and we
1613                  * are doing WB_SYNC_NONE writeback. So this catches only the
1614                  * WB_SYNC_ALL case.
1615                  */
1616                 if (inode->i_state & I_SYNC) {
1617                         /* Wait for I_SYNC. This function drops i_lock... */
1618                         inode_sleep_on_writeback(inode);
1619                         /* Inode may be gone, start again */
1620                         spin_lock(&wb->list_lock);
1621                         continue;
1622                 }
1623                 inode->i_state |= I_SYNC;
1624                 wbc_attach_and_unlock_inode(&wbc, inode);
1625
1626                 write_chunk = writeback_chunk_size(wb, work);
1627                 wbc.nr_to_write = write_chunk;
1628                 wbc.pages_skipped = 0;
1629
1630                 /*
1631                  * We use I_SYNC to pin the inode in memory. While it is set
1632                  * evict_inode() will wait so the inode cannot be freed.
1633                  */
1634                 __writeback_single_inode(inode, &wbc);
1635
1636                 wbc_detach_inode(&wbc);
1637                 work->nr_pages -= write_chunk - wbc.nr_to_write;
1638                 wrote += write_chunk - wbc.nr_to_write;
1639
1640                 if (need_resched()) {
1641                         /*
1642                          * We're trying to balance between building up a nice
1643                          * long list of IOs to improve our merge rate, and
1644                          * getting those IOs out quickly for anyone throttling
1645                          * in balance_dirty_pages().  cond_resched() doesn't
1646                          * unplug, so get our IOs out the door before we
1647                          * give up the CPU.
1648                          */
1649                         blk_flush_plug(current);
1650                         cond_resched();
1651                 }
1652
1653                 /*
1654                  * Requeue @inode if still dirty.  Be careful as @inode may
1655                  * have been switched to another wb in the meantime.
1656                  */
1657                 tmp_wb = inode_to_wb_and_lock_list(inode);
1658                 spin_lock(&inode->i_lock);
1659                 if (!(inode->i_state & I_DIRTY_ALL))
1660                         wrote++;
1661                 requeue_inode(inode, tmp_wb, &wbc);
1662                 inode_sync_complete(inode);
1663                 spin_unlock(&inode->i_lock);
1664
1665                 if (unlikely(tmp_wb != wb)) {
1666                         spin_unlock(&tmp_wb->list_lock);
1667                         spin_lock(&wb->list_lock);
1668                 }
1669
1670                 /*
1671                  * bail out to wb_writeback() often enough to check
1672                  * background threshold and other termination conditions.
1673                  */
1674                 if (wrote) {
1675                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1676                                 break;
1677                         if (work->nr_pages <= 0)
1678                                 break;
1679                 }
1680         }
1681         return wrote;
1682 }
1683
1684 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1685                                   struct wb_writeback_work *work)
1686 {
1687         unsigned long start_time = jiffies;
1688         long wrote = 0;
1689
1690         while (!list_empty(&wb->b_io)) {
1691                 struct inode *inode = wb_inode(wb->b_io.prev);
1692                 struct super_block *sb = inode->i_sb;
1693
1694                 if (!trylock_super(sb)) {
1695                         /*
1696                          * trylock_super() may fail consistently due to
1697                          * s_umount being grabbed by someone else. Don't use
1698                          * requeue_io() to avoid busy retrying the inode/sb.
1699                          */
1700                         redirty_tail(inode, wb);
1701                         continue;
1702                 }
1703                 wrote += writeback_sb_inodes(sb, wb, work);
1704                 up_read(&sb->s_umount);
1705
1706                 /* refer to the same tests at the end of writeback_sb_inodes */
1707                 if (wrote) {
1708                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1709                                 break;
1710                         if (work->nr_pages <= 0)
1711                                 break;
1712                 }
1713         }
1714         /* Leave any unwritten inodes on b_io */
1715         return wrote;
1716 }
1717
1718 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1719                                 enum wb_reason reason)
1720 {
1721         struct wb_writeback_work work = {
1722                 .nr_pages       = nr_pages,
1723                 .sync_mode      = WB_SYNC_NONE,
1724                 .range_cyclic   = 1,
1725                 .reason         = reason,
1726         };
1727         struct blk_plug plug;
1728
1729         blk_start_plug(&plug);
1730         spin_lock(&wb->list_lock);
1731         if (list_empty(&wb->b_io))
1732                 queue_io(wb, &work);
1733         __writeback_inodes_wb(wb, &work);
1734         spin_unlock(&wb->list_lock);
1735         blk_finish_plug(&plug);
1736
1737         return nr_pages - work.nr_pages;
1738 }
1739
1740 /*
1741  * Explicit flushing or periodic writeback of "old" data.
1742  *
1743  * Define "old": the first time one of an inode's pages is dirtied, we mark the
1744  * dirtying-time in the inode's address_space.  So this periodic writeback code
1745  * just walks the superblock inode list, writing back any inodes which are
1746  * older than a specific point in time.
1747  *
1748  * Try to run once per dirty_writeback_interval.  But if a writeback event
1749  * takes longer than a dirty_writeback_interval interval, then leave a
1750  * one-second gap.
1751  *
1752  * older_than_this takes precedence over nr_to_write.  So we'll only write back
1753  * all dirty pages if they are all attached to "old" mappings.
1754  */
1755 static long wb_writeback(struct bdi_writeback *wb,
1756                          struct wb_writeback_work *work)
1757 {
1758         unsigned long wb_start = jiffies;
1759         long nr_pages = work->nr_pages;
1760         unsigned long oldest_jif;
1761         struct inode *inode;
1762         long progress;
1763         struct blk_plug plug;
1764
1765         oldest_jif = jiffies;
1766         work->older_than_this = &oldest_jif;
1767
1768         blk_start_plug(&plug);
1769         spin_lock(&wb->list_lock);
1770         for (;;) {
1771                 /*
1772                  * Stop writeback when nr_pages has been consumed
1773                  */
1774                 if (work->nr_pages <= 0)
1775                         break;
1776
1777                 /*
1778                  * Background writeout and kupdate-style writeback may
1779                  * run forever. Stop them if there is other work to do
1780                  * so that e.g. sync can proceed. They'll be restarted
1781                  * after the other works are all done.
1782                  */
1783                 if ((work->for_background || work->for_kupdate) &&
1784                     !list_empty(&wb->work_list))
1785                         break;
1786
1787                 /*
1788                  * For background writeout, stop when we are below the
1789                  * background dirty threshold
1790                  */
1791                 if (work->for_background && !wb_over_bg_thresh(wb))
1792                         break;
1793
1794                 /*
1795                  * Kupdate and background works are special and we want to
1796                  * include all inodes that need writing. Livelock avoidance is
1797                  * handled by these works yielding to any other work so we are
1798                  * safe.
1799                  */
1800                 if (work->for_kupdate) {
1801                         oldest_jif = jiffies -
1802                                 msecs_to_jiffies(dirty_expire_interval * 10);
1803                 } else if (work->for_background)
1804                         oldest_jif = jiffies;
1805
1806                 trace_writeback_start(wb, work);
1807                 if (list_empty(&wb->b_io))
1808                         queue_io(wb, work);
1809                 if (work->sb)
1810                         progress = writeback_sb_inodes(work->sb, wb, work);
1811                 else
1812                         progress = __writeback_inodes_wb(wb, work);
1813                 trace_writeback_written(wb, work);
1814
1815                 wb_update_bandwidth(wb, wb_start);
1816
1817                 /*
1818                  * Did we write something? Try for more
1819                  *
1820                  * Dirty inodes are moved to b_io for writeback in batches.
1821                  * The completion of the current batch does not necessarily
1822                  * mean the overall work is done. So we keep looping as long
1823                  * as made some progress on cleaning pages or inodes.
1824                  */
1825                 if (progress)
1826                         continue;
1827                 /*
1828                  * No more inodes for IO, bail
1829                  */
1830                 if (list_empty(&wb->b_more_io))
1831                         break;
1832                 /*
1833                  * Nothing written. Wait for some inode to
1834                  * become available for writeback. Otherwise
1835                  * we'll just busyloop.
1836                  */
1837                 trace_writeback_wait(wb, work);
1838                 inode = wb_inode(wb->b_more_io.prev);
1839                 spin_lock(&inode->i_lock);
1840                 spin_unlock(&wb->list_lock);
1841                 /* This function drops i_lock... */
1842                 inode_sleep_on_writeback(inode);
1843                 spin_lock(&wb->list_lock);
1844         }
1845         spin_unlock(&wb->list_lock);
1846         blk_finish_plug(&plug);
1847
1848         return nr_pages - work->nr_pages;
1849 }
1850
1851 /*
1852  * Return the next wb_writeback_work struct that hasn't been processed yet.
1853  */
1854 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1855 {
1856         struct wb_writeback_work *work = NULL;
1857
1858         spin_lock_bh(&wb->work_lock);
1859         if (!list_empty(&wb->work_list)) {
1860                 work = list_entry(wb->work_list.next,
1861                                   struct wb_writeback_work, list);
1862                 list_del_init(&work->list);
1863         }
1864         spin_unlock_bh(&wb->work_lock);
1865         return work;
1866 }
1867
1868 static long wb_check_background_flush(struct bdi_writeback *wb)
1869 {
1870         if (wb_over_bg_thresh(wb)) {
1871
1872                 struct wb_writeback_work work = {
1873                         .nr_pages       = LONG_MAX,
1874                         .sync_mode      = WB_SYNC_NONE,
1875                         .for_background = 1,
1876                         .range_cyclic   = 1,
1877                         .reason         = WB_REASON_BACKGROUND,
1878                 };
1879
1880                 return wb_writeback(wb, &work);
1881         }
1882
1883         return 0;
1884 }
1885
1886 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1887 {
1888         unsigned long expired;
1889         long nr_pages;
1890
1891         /*
1892          * When set to zero, disable periodic writeback
1893          */
1894         if (!dirty_writeback_interval)
1895                 return 0;
1896
1897         expired = wb->last_old_flush +
1898                         msecs_to_jiffies(dirty_writeback_interval * 10);
1899         if (time_before(jiffies, expired))
1900                 return 0;
1901
1902         wb->last_old_flush = jiffies;
1903         nr_pages = get_nr_dirty_pages();
1904
1905         if (nr_pages) {
1906                 struct wb_writeback_work work = {
1907                         .nr_pages       = nr_pages,
1908                         .sync_mode      = WB_SYNC_NONE,
1909                         .for_kupdate    = 1,
1910                         .range_cyclic   = 1,
1911                         .reason         = WB_REASON_PERIODIC,
1912                 };
1913
1914                 return wb_writeback(wb, &work);
1915         }
1916
1917         return 0;
1918 }
1919
1920 static long wb_check_start_all(struct bdi_writeback *wb)
1921 {
1922         long nr_pages;
1923
1924         if (!test_bit(WB_start_all, &wb->state))
1925                 return 0;
1926
1927         nr_pages = get_nr_dirty_pages();
1928         if (nr_pages) {
1929                 struct wb_writeback_work work = {
1930                         .nr_pages       = wb_split_bdi_pages(wb, nr_pages),
1931                         .sync_mode      = WB_SYNC_NONE,
1932                         .range_cyclic   = 1,
1933                         .reason         = wb->start_all_reason,
1934                 };
1935
1936                 nr_pages = wb_writeback(wb, &work);
1937         }
1938
1939         clear_bit(WB_start_all, &wb->state);
1940         return nr_pages;
1941 }
1942
1943
1944 /*
1945  * Retrieve work items and do the writeback they describe
1946  */
1947 static long wb_do_writeback(struct bdi_writeback *wb)
1948 {
1949         struct wb_writeback_work *work;
1950         long wrote = 0;
1951
1952         set_bit(WB_writeback_running, &wb->state);
1953         while ((work = get_next_work_item(wb)) != NULL) {
1954                 trace_writeback_exec(wb, work);
1955                 wrote += wb_writeback(wb, work);
1956                 finish_writeback_work(wb, work);
1957         }
1958
1959         /*
1960          * Check for a flush-everything request
1961          */
1962         wrote += wb_check_start_all(wb);
1963
1964         /*
1965          * Check for periodic writeback, kupdated() style
1966          */
1967         wrote += wb_check_old_data_flush(wb);
1968         wrote += wb_check_background_flush(wb);
1969         clear_bit(WB_writeback_running, &wb->state);
1970
1971         return wrote;
1972 }
1973
1974 /*
1975  * Handle writeback of dirty data for the device backed by this bdi. Also
1976  * reschedules periodically and does kupdated style flushing.
1977  */
1978 void wb_workfn(struct work_struct *work)
1979 {
1980         struct bdi_writeback *wb = container_of(to_delayed_work(work),
1981                                                 struct bdi_writeback, dwork);
1982         long pages_written;
1983
1984         set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1985         current->flags |= PF_SWAPWRITE;
1986
1987         if (likely(!current_is_workqueue_rescuer() ||
1988                    !test_bit(WB_registered, &wb->state))) {
1989                 /*
1990                  * The normal path.  Keep writing back @wb until its
1991                  * work_list is empty.  Note that this path is also taken
1992                  * if @wb is shutting down even when we're running off the
1993                  * rescuer as work_list needs to be drained.
1994                  */
1995                 do {
1996                         pages_written = wb_do_writeback(wb);
1997                         trace_writeback_pages_written(pages_written);
1998                 } while (!list_empty(&wb->work_list));
1999         } else {
2000                 /*
2001                  * bdi_wq can't get enough workers and we're running off
2002                  * the emergency worker.  Don't hog it.  Hopefully, 1024 is
2003                  * enough for efficient IO.
2004                  */
2005                 pages_written = writeback_inodes_wb(wb, 1024,
2006                                                     WB_REASON_FORKER_THREAD);
2007                 trace_writeback_pages_written(pages_written);
2008         }
2009
2010         if (!list_empty(&wb->work_list))
2011                 wb_wakeup(wb);
2012         else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2013                 wb_wakeup_delayed(wb);
2014
2015         current->flags &= ~PF_SWAPWRITE;
2016 }
2017
2018 /*
2019  * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2020  * write back the whole world.
2021  */
2022 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2023                                          enum wb_reason reason)
2024 {
2025         struct bdi_writeback *wb;
2026
2027         if (!bdi_has_dirty_io(bdi))
2028                 return;
2029
2030         list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2031                 wb_start_writeback(wb, reason);
2032 }
2033
2034 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2035                                 enum wb_reason reason)
2036 {
2037         rcu_read_lock();
2038         __wakeup_flusher_threads_bdi(bdi, reason);
2039         rcu_read_unlock();
2040 }
2041
2042 /*
2043  * Wakeup the flusher threads to start writeback of all currently dirty pages
2044  */
2045 void wakeup_flusher_threads(enum wb_reason reason)
2046 {
2047         struct backing_dev_info *bdi;
2048
2049         /*
2050          * If we are expecting writeback progress we must submit plugged IO.
2051          */
2052         if (blk_needs_flush_plug(current))
2053                 blk_schedule_flush_plug(current);
2054
2055         rcu_read_lock();
2056         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2057                 __wakeup_flusher_threads_bdi(bdi, reason);
2058         rcu_read_unlock();
2059 }
2060
2061 /*
2062  * Wake up bdi's periodically to make sure dirtytime inodes gets
2063  * written back periodically.  We deliberately do *not* check the
2064  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2065  * kernel to be constantly waking up once there are any dirtytime
2066  * inodes on the system.  So instead we define a separate delayed work
2067  * function which gets called much more rarely.  (By default, only
2068  * once every 12 hours.)
2069  *
2070  * If there is any other write activity going on in the file system,
2071  * this function won't be necessary.  But if the only thing that has
2072  * happened on the file system is a dirtytime inode caused by an atime
2073  * update, we need this infrastructure below to make sure that inode
2074  * eventually gets pushed out to disk.
2075  */
2076 static void wakeup_dirtytime_writeback(struct work_struct *w);
2077 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2078
2079 static void wakeup_dirtytime_writeback(struct work_struct *w)
2080 {
2081         struct backing_dev_info *bdi;
2082
2083         rcu_read_lock();
2084         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2085                 struct bdi_writeback *wb;
2086
2087                 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2088                         if (!list_empty(&wb->b_dirty_time))
2089                                 wb_wakeup(wb);
2090         }
2091         rcu_read_unlock();
2092         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2093 }
2094
2095 static int __init start_dirtytime_writeback(void)
2096 {
2097         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2098         return 0;
2099 }
2100 __initcall(start_dirtytime_writeback);
2101
2102 int dirtytime_interval_handler(struct ctl_table *table, int write,
2103                                void __user *buffer, size_t *lenp, loff_t *ppos)
2104 {
2105         int ret;
2106
2107         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2108         if (ret == 0 && write)
2109                 mod_delayed_work(system_wq, &dirtytime_work, 0);
2110         return ret;
2111 }
2112
2113 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2114 {
2115         if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2116                 struct dentry *dentry;
2117                 const char *name = "?";
2118
2119                 dentry = d_find_alias(inode);
2120                 if (dentry) {
2121                         spin_lock(&dentry->d_lock);
2122                         name = (const char *) dentry->d_name.name;
2123                 }
2124                 printk(KERN_DEBUG
2125                        "%s(%d): dirtied inode %lu (%s) on %s\n",
2126                        current->comm, task_pid_nr(current), inode->i_ino,
2127                        name, inode->i_sb->s_id);
2128                 if (dentry) {
2129                         spin_unlock(&dentry->d_lock);
2130                         dput(dentry);
2131                 }
2132         }
2133 }
2134
2135 /**
2136  * __mark_inode_dirty - internal function
2137  *
2138  * @inode: inode to mark
2139  * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2140  *
2141  * Mark an inode as dirty. Callers should use mark_inode_dirty or
2142  * mark_inode_dirty_sync.
2143  *
2144  * Put the inode on the super block's dirty list.
2145  *
2146  * CAREFUL! We mark it dirty unconditionally, but move it onto the
2147  * dirty list only if it is hashed or if it refers to a blockdev.
2148  * If it was not hashed, it will never be added to the dirty list
2149  * even if it is later hashed, as it will have been marked dirty already.
2150  *
2151  * In short, make sure you hash any inodes _before_ you start marking
2152  * them dirty.
2153  *
2154  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2155  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2156  * the kernel-internal blockdev inode represents the dirtying time of the
2157  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2158  * page->mapping->host, so the page-dirtying time is recorded in the internal
2159  * blockdev inode.
2160  */
2161 void __mark_inode_dirty(struct inode *inode, int flags)
2162 {
2163         struct super_block *sb = inode->i_sb;
2164         int dirtytime;
2165
2166         trace_writeback_mark_inode_dirty(inode, flags);
2167
2168         /*
2169          * Don't do this for I_DIRTY_PAGES - that doesn't actually
2170          * dirty the inode itself
2171          */
2172         if (flags & (I_DIRTY_INODE | I_DIRTY_TIME)) {
2173                 trace_writeback_dirty_inode_start(inode, flags);
2174
2175                 if (sb->s_op->dirty_inode)
2176                         sb->s_op->dirty_inode(inode, flags);
2177
2178                 trace_writeback_dirty_inode(inode, flags);
2179         }
2180         if (flags & I_DIRTY_INODE)
2181                 flags &= ~I_DIRTY_TIME;
2182         dirtytime = flags & I_DIRTY_TIME;
2183
2184         /*
2185          * Paired with smp_mb() in __writeback_single_inode() for the
2186          * following lockless i_state test.  See there for details.
2187          */
2188         smp_mb();
2189
2190         if (((inode->i_state & flags) == flags) ||
2191             (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2192                 return;
2193
2194         if (unlikely(block_dump))
2195                 block_dump___mark_inode_dirty(inode);
2196
2197         spin_lock(&inode->i_lock);
2198         if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2199                 goto out_unlock_inode;
2200         if ((inode->i_state & flags) != flags) {
2201                 const int was_dirty = inode->i_state & I_DIRTY;
2202
2203                 inode_attach_wb(inode, NULL);
2204
2205                 if (flags & I_DIRTY_INODE)
2206                         inode->i_state &= ~I_DIRTY_TIME;
2207                 inode->i_state |= flags;
2208
2209                 /*
2210                  * If the inode is being synced, just update its dirty state.
2211                  * The unlocker will place the inode on the appropriate
2212                  * superblock list, based upon its state.
2213                  */
2214                 if (inode->i_state & I_SYNC)
2215                         goto out_unlock_inode;
2216
2217                 /*
2218                  * Only add valid (hashed) inodes to the superblock's
2219                  * dirty list.  Add blockdev inodes as well.
2220                  */
2221                 if (!S_ISBLK(inode->i_mode)) {
2222                         if (inode_unhashed(inode))
2223                                 goto out_unlock_inode;
2224                 }
2225                 if (inode->i_state & I_FREEING)
2226                         goto out_unlock_inode;
2227
2228                 /*
2229                  * If the inode was already on b_dirty/b_io/b_more_io, don't
2230                  * reposition it (that would break b_dirty time-ordering).
2231                  */
2232                 if (!was_dirty) {
2233                         struct bdi_writeback *wb;
2234                         struct list_head *dirty_list;
2235                         bool wakeup_bdi = false;
2236
2237                         wb = locked_inode_to_wb_and_lock_list(inode);
2238
2239                         WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2240                              !test_bit(WB_registered, &wb->state),
2241                              "bdi-%s not registered\n", wb->bdi->name);
2242
2243                         inode->dirtied_when = jiffies;
2244                         if (dirtytime)
2245                                 inode->dirtied_time_when = jiffies;
2246
2247                         if (inode->i_state & I_DIRTY)
2248                                 dirty_list = &wb->b_dirty;
2249                         else
2250                                 dirty_list = &wb->b_dirty_time;
2251
2252                         wakeup_bdi = inode_io_list_move_locked(inode, wb,
2253                                                                dirty_list);
2254
2255                         spin_unlock(&wb->list_lock);
2256                         trace_writeback_dirty_inode_enqueue(inode);
2257
2258                         /*
2259                          * If this is the first dirty inode for this bdi,
2260                          * we have to wake-up the corresponding bdi thread
2261                          * to make sure background write-back happens
2262                          * later.
2263                          */
2264                         if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2265                                 wb_wakeup_delayed(wb);
2266                         return;
2267                 }
2268         }
2269 out_unlock_inode:
2270         spin_unlock(&inode->i_lock);
2271 }
2272 EXPORT_SYMBOL(__mark_inode_dirty);
2273
2274 /*
2275  * The @s_sync_lock is used to serialise concurrent sync operations
2276  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2277  * Concurrent callers will block on the s_sync_lock rather than doing contending
2278  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2279  * has been issued up to the time this function is enter is guaranteed to be
2280  * completed by the time we have gained the lock and waited for all IO that is
2281  * in progress regardless of the order callers are granted the lock.
2282  */
2283 static void wait_sb_inodes(struct super_block *sb)
2284 {
2285         LIST_HEAD(sync_list);
2286
2287         /*
2288          * We need to be protected against the filesystem going from
2289          * r/o to r/w or vice versa.
2290          */
2291         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2292
2293         mutex_lock(&sb->s_sync_lock);
2294
2295         /*
2296          * Splice the writeback list onto a temporary list to avoid waiting on
2297          * inodes that have started writeback after this point.
2298          *
2299          * Use rcu_read_lock() to keep the inodes around until we have a
2300          * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2301          * the local list because inodes can be dropped from either by writeback
2302          * completion.
2303          */
2304         rcu_read_lock();
2305         spin_lock_irq(&sb->s_inode_wblist_lock);
2306         list_splice_init(&sb->s_inodes_wb, &sync_list);
2307
2308         /*
2309          * Data integrity sync. Must wait for all pages under writeback, because
2310          * there may have been pages dirtied before our sync call, but which had
2311          * writeout started before we write it out.  In which case, the inode
2312          * may not be on the dirty list, but we still have to wait for that
2313          * writeout.
2314          */
2315         while (!list_empty(&sync_list)) {
2316                 struct inode *inode = list_first_entry(&sync_list, struct inode,
2317                                                        i_wb_list);
2318                 struct address_space *mapping = inode->i_mapping;
2319
2320                 /*
2321                  * Move each inode back to the wb list before we drop the lock
2322                  * to preserve consistency between i_wb_list and the mapping
2323                  * writeback tag. Writeback completion is responsible to remove
2324                  * the inode from either list once the writeback tag is cleared.
2325                  */
2326                 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2327
2328                 /*
2329                  * The mapping can appear untagged while still on-list since we
2330                  * do not have the mapping lock. Skip it here, wb completion
2331                  * will remove it.
2332                  */
2333                 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2334                         continue;
2335
2336                 spin_unlock_irq(&sb->s_inode_wblist_lock);
2337
2338                 spin_lock(&inode->i_lock);
2339                 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2340                         spin_unlock(&inode->i_lock);
2341
2342                         spin_lock_irq(&sb->s_inode_wblist_lock);
2343                         continue;
2344                 }
2345                 __iget(inode);
2346                 spin_unlock(&inode->i_lock);
2347                 rcu_read_unlock();
2348
2349                 /*
2350                  * We keep the error status of individual mapping so that
2351                  * applications can catch the writeback error using fsync(2).
2352                  * See filemap_fdatawait_keep_errors() for details.
2353                  */
2354                 filemap_fdatawait_keep_errors(mapping);
2355
2356                 cond_resched();
2357
2358                 iput(inode);
2359
2360                 rcu_read_lock();
2361                 spin_lock_irq(&sb->s_inode_wblist_lock);
2362         }
2363         spin_unlock_irq(&sb->s_inode_wblist_lock);
2364         rcu_read_unlock();
2365         mutex_unlock(&sb->s_sync_lock);
2366 }
2367
2368 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2369                                      enum wb_reason reason, bool skip_if_busy)
2370 {
2371         DEFINE_WB_COMPLETION_ONSTACK(done);
2372         struct wb_writeback_work work = {
2373                 .sb                     = sb,
2374                 .sync_mode              = WB_SYNC_NONE,
2375                 .tagged_writepages      = 1,
2376                 .done                   = &done,
2377                 .nr_pages               = nr,
2378                 .reason                 = reason,
2379         };
2380         struct backing_dev_info *bdi = sb->s_bdi;
2381
2382         if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2383                 return;
2384         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2385
2386         bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2387         wb_wait_for_completion(bdi, &done);
2388 }
2389
2390 /**
2391  * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
2392  * @sb: the superblock
2393  * @nr: the number of pages to write
2394  * @reason: reason why some writeback work initiated
2395  *
2396  * Start writeback on some inodes on this super_block. No guarantees are made
2397  * on how many (if any) will be written, and this function does not wait
2398  * for IO completion of submitted IO.
2399  */
2400 void writeback_inodes_sb_nr(struct super_block *sb,
2401                             unsigned long nr,
2402                             enum wb_reason reason)
2403 {
2404         __writeback_inodes_sb_nr(sb, nr, reason, false);
2405 }
2406 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2407
2408 /**
2409  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
2410  * @sb: the superblock
2411  * @reason: reason why some writeback work was initiated
2412  *
2413  * Start writeback on some inodes on this super_block. No guarantees are made
2414  * on how many (if any) will be written, and this function does not wait
2415  * for IO completion of submitted IO.
2416  */
2417 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2418 {
2419         return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2420 }
2421 EXPORT_SYMBOL(writeback_inodes_sb);
2422
2423 /**
2424  * try_to_writeback_inodes_sb - try to start writeback if none underway
2425  * @sb: the superblock
2426  * @reason: reason why some writeback work was initiated
2427  *
2428  * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2429  */
2430 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2431 {
2432         if (!down_read_trylock(&sb->s_umount))
2433                 return;
2434
2435         __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2436         up_read(&sb->s_umount);
2437 }
2438 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2439
2440 /**
2441  * sync_inodes_sb       -       sync sb inode pages
2442  * @sb: the superblock
2443  *
2444  * This function writes and waits on any dirty inode belonging to this
2445  * super_block.
2446  */
2447 void sync_inodes_sb(struct super_block *sb)
2448 {
2449         DEFINE_WB_COMPLETION_ONSTACK(done);
2450         struct wb_writeback_work work = {
2451                 .sb             = sb,
2452                 .sync_mode      = WB_SYNC_ALL,
2453                 .nr_pages       = LONG_MAX,
2454                 .range_cyclic   = 0,
2455                 .done           = &done,
2456                 .reason         = WB_REASON_SYNC,
2457                 .for_sync       = 1,
2458         };
2459         struct backing_dev_info *bdi = sb->s_bdi;
2460
2461         /*
2462          * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2463          * inodes under writeback and I_DIRTY_TIME inodes ignored by
2464          * bdi_has_dirty() need to be written out too.
2465          */
2466         if (bdi == &noop_backing_dev_info)
2467                 return;
2468         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2469
2470         /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2471         bdi_down_write_wb_switch_rwsem(bdi);
2472         bdi_split_work_to_wbs(bdi, &work, false);
2473         wb_wait_for_completion(bdi, &done);
2474         bdi_up_write_wb_switch_rwsem(bdi);
2475
2476         wait_sb_inodes(sb);
2477 }
2478 EXPORT_SYMBOL(sync_inodes_sb);
2479
2480 /**
2481  * write_inode_now      -       write an inode to disk
2482  * @inode: inode to write to disk
2483  * @sync: whether the write should be synchronous or not
2484  *
2485  * This function commits an inode to disk immediately if it is dirty. This is
2486  * primarily needed by knfsd.
2487  *
2488  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2489  */
2490 int write_inode_now(struct inode *inode, int sync)
2491 {
2492         struct writeback_control wbc = {
2493                 .nr_to_write = LONG_MAX,
2494                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2495                 .range_start = 0,
2496                 .range_end = LLONG_MAX,
2497         };
2498
2499         if (!mapping_cap_writeback_dirty(inode->i_mapping))
2500                 wbc.nr_to_write = 0;
2501
2502         might_sleep();
2503         return writeback_single_inode(inode, &wbc);
2504 }
2505 EXPORT_SYMBOL(write_inode_now);
2506
2507 /**
2508  * sync_inode - write an inode and its pages to disk.
2509  * @inode: the inode to sync
2510  * @wbc: controls the writeback mode
2511  *
2512  * sync_inode() will write an inode and its pages to disk.  It will also
2513  * correctly update the inode on its superblock's dirty inode lists and will
2514  * update inode->i_state.
2515  *
2516  * The caller must have a ref on the inode.
2517  */
2518 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2519 {
2520         return writeback_single_inode(inode, wbc);
2521 }
2522 EXPORT_SYMBOL(sync_inode);
2523
2524 /**
2525  * sync_inode_metadata - write an inode to disk
2526  * @inode: the inode to sync
2527  * @wait: wait for I/O to complete.
2528  *
2529  * Write an inode to disk and adjust its dirty state after completion.
2530  *
2531  * Note: only writes the actual inode, no associated data or other metadata.
2532  */
2533 int sync_inode_metadata(struct inode *inode, int wait)
2534 {
2535         struct writeback_control wbc = {
2536                 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2537                 .nr_to_write = 0, /* metadata-only */
2538         };
2539
2540         return sync_inode(inode, &wbc);
2541 }
2542 EXPORT_SYMBOL(sync_inode_metadata);