fix races between __d_instantiate() and checks of dentry flags
[platform/adaptation/renesas_rcar/renesas_kernel.git] / fs / fs-writeback.c
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002    Andrew Morton
12  *              Split out of fs/inode.c
13  *              Additions for address_space-based writeback
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include "internal.h"
31
32 /*
33  * 4MB minimal write chunk size
34  */
35 #define MIN_WRITEBACK_PAGES     (4096UL >> (PAGE_CACHE_SHIFT - 10))
36
37 /*
38  * Passed into wb_writeback(), essentially a subset of writeback_control
39  */
40 struct wb_writeback_work {
41         long nr_pages;
42         struct super_block *sb;
43         unsigned long *older_than_this;
44         enum writeback_sync_modes sync_mode;
45         unsigned int tagged_writepages:1;
46         unsigned int for_kupdate:1;
47         unsigned int range_cyclic:1;
48         unsigned int for_background:1;
49         unsigned int for_sync:1;        /* sync(2) WB_SYNC_ALL writeback */
50         enum wb_reason reason;          /* why was writeback initiated? */
51
52         struct list_head list;          /* pending work list */
53         struct completion *done;        /* set if the caller waits */
54 };
55
56 /**
57  * writeback_in_progress - determine whether there is writeback in progress
58  * @bdi: the device's backing_dev_info structure.
59  *
60  * Determine whether there is writeback waiting to be handled against a
61  * backing device.
62  */
63 int writeback_in_progress(struct backing_dev_info *bdi)
64 {
65         return test_bit(BDI_writeback_running, &bdi->state);
66 }
67 EXPORT_SYMBOL(writeback_in_progress);
68
69 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
70 {
71         struct super_block *sb = inode->i_sb;
72
73         if (sb_is_blkdev_sb(sb))
74                 return inode->i_mapping->backing_dev_info;
75
76         return sb->s_bdi;
77 }
78
79 static inline struct inode *wb_inode(struct list_head *head)
80 {
81         return list_entry(head, struct inode, i_wb_list);
82 }
83
84 /*
85  * Include the creation of the trace points after defining the
86  * wb_writeback_work structure and inline functions so that the definition
87  * remains local to this file.
88  */
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/writeback.h>
91
92 static void bdi_wakeup_thread(struct backing_dev_info *bdi)
93 {
94         spin_lock_bh(&bdi->wb_lock);
95         if (test_bit(BDI_registered, &bdi->state))
96                 mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
97         spin_unlock_bh(&bdi->wb_lock);
98 }
99
100 static void bdi_queue_work(struct backing_dev_info *bdi,
101                            struct wb_writeback_work *work)
102 {
103         trace_writeback_queue(bdi, work);
104
105         spin_lock_bh(&bdi->wb_lock);
106         if (!test_bit(BDI_registered, &bdi->state)) {
107                 if (work->done)
108                         complete(work->done);
109                 goto out_unlock;
110         }
111         list_add_tail(&work->list, &bdi->work_list);
112         mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
113 out_unlock:
114         spin_unlock_bh(&bdi->wb_lock);
115 }
116
117 static void
118 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
119                       bool range_cyclic, enum wb_reason reason)
120 {
121         struct wb_writeback_work *work;
122
123         /*
124          * This is WB_SYNC_NONE writeback, so if allocation fails just
125          * wakeup the thread for old dirty data writeback
126          */
127         work = kzalloc(sizeof(*work), GFP_ATOMIC);
128         if (!work) {
129                 trace_writeback_nowork(bdi);
130                 bdi_wakeup_thread(bdi);
131                 return;
132         }
133
134         work->sync_mode = WB_SYNC_NONE;
135         work->nr_pages  = nr_pages;
136         work->range_cyclic = range_cyclic;
137         work->reason    = reason;
138
139         bdi_queue_work(bdi, work);
140 }
141
142 /**
143  * bdi_start_writeback - start writeback
144  * @bdi: the backing device to write from
145  * @nr_pages: the number of pages to write
146  * @reason: reason why some writeback work was initiated
147  *
148  * Description:
149  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
150  *   started when this function returns, we make no guarantees on
151  *   completion. Caller need not hold sb s_umount semaphore.
152  *
153  */
154 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
155                         enum wb_reason reason)
156 {
157         __bdi_start_writeback(bdi, nr_pages, true, reason);
158 }
159
160 /**
161  * bdi_start_background_writeback - start background writeback
162  * @bdi: the backing device to write from
163  *
164  * Description:
165  *   This makes sure WB_SYNC_NONE background writeback happens. When
166  *   this function returns, it is only guaranteed that for given BDI
167  *   some IO is happening if we are over background dirty threshold.
168  *   Caller need not hold sb s_umount semaphore.
169  */
170 void bdi_start_background_writeback(struct backing_dev_info *bdi)
171 {
172         /*
173          * We just wake up the flusher thread. It will perform background
174          * writeback as soon as there is no other work to do.
175          */
176         trace_writeback_wake_background(bdi);
177         bdi_wakeup_thread(bdi);
178 }
179
180 /*
181  * Remove the inode from the writeback list it is on.
182  */
183 void inode_wb_list_del(struct inode *inode)
184 {
185         struct backing_dev_info *bdi = inode_to_bdi(inode);
186
187         spin_lock(&bdi->wb.list_lock);
188         list_del_init(&inode->i_wb_list);
189         spin_unlock(&bdi->wb.list_lock);
190 }
191
192 /*
193  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
194  * furthest end of its superblock's dirty-inode list.
195  *
196  * Before stamping the inode's ->dirtied_when, we check to see whether it is
197  * already the most-recently-dirtied inode on the b_dirty list.  If that is
198  * the case then the inode must have been redirtied while it was being written
199  * out and we don't reset its dirtied_when.
200  */
201 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
202 {
203         assert_spin_locked(&wb->list_lock);
204         if (!list_empty(&wb->b_dirty)) {
205                 struct inode *tail;
206
207                 tail = wb_inode(wb->b_dirty.next);
208                 if (time_before(inode->dirtied_when, tail->dirtied_when))
209                         inode->dirtied_when = jiffies;
210         }
211         list_move(&inode->i_wb_list, &wb->b_dirty);
212 }
213
214 /*
215  * requeue inode for re-scanning after bdi->b_io list is exhausted.
216  */
217 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
218 {
219         assert_spin_locked(&wb->list_lock);
220         list_move(&inode->i_wb_list, &wb->b_more_io);
221 }
222
223 static void inode_sync_complete(struct inode *inode)
224 {
225         inode->i_state &= ~I_SYNC;
226         /* If inode is clean an unused, put it into LRU now... */
227         inode_add_lru(inode);
228         /* Waiters must see I_SYNC cleared before being woken up */
229         smp_mb();
230         wake_up_bit(&inode->i_state, __I_SYNC);
231 }
232
233 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
234 {
235         bool ret = time_after(inode->dirtied_when, t);
236 #ifndef CONFIG_64BIT
237         /*
238          * For inodes being constantly redirtied, dirtied_when can get stuck.
239          * It _appears_ to be in the future, but is actually in distant past.
240          * This test is necessary to prevent such wrapped-around relative times
241          * from permanently stopping the whole bdi writeback.
242          */
243         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
244 #endif
245         return ret;
246 }
247
248 /*
249  * Move expired (dirtied before work->older_than_this) dirty inodes from
250  * @delaying_queue to @dispatch_queue.
251  */
252 static int move_expired_inodes(struct list_head *delaying_queue,
253                                struct list_head *dispatch_queue,
254                                struct wb_writeback_work *work)
255 {
256         LIST_HEAD(tmp);
257         struct list_head *pos, *node;
258         struct super_block *sb = NULL;
259         struct inode *inode;
260         int do_sb_sort = 0;
261         int moved = 0;
262
263         while (!list_empty(delaying_queue)) {
264                 inode = wb_inode(delaying_queue->prev);
265                 if (work->older_than_this &&
266                     inode_dirtied_after(inode, *work->older_than_this))
267                         break;
268                 list_move(&inode->i_wb_list, &tmp);
269                 moved++;
270                 if (sb_is_blkdev_sb(inode->i_sb))
271                         continue;
272                 if (sb && sb != inode->i_sb)
273                         do_sb_sort = 1;
274                 sb = inode->i_sb;
275         }
276
277         /* just one sb in list, splice to dispatch_queue and we're done */
278         if (!do_sb_sort) {
279                 list_splice(&tmp, dispatch_queue);
280                 goto out;
281         }
282
283         /* Move inodes from one superblock together */
284         while (!list_empty(&tmp)) {
285                 sb = wb_inode(tmp.prev)->i_sb;
286                 list_for_each_prev_safe(pos, node, &tmp) {
287                         inode = wb_inode(pos);
288                         if (inode->i_sb == sb)
289                                 list_move(&inode->i_wb_list, dispatch_queue);
290                 }
291         }
292 out:
293         return moved;
294 }
295
296 /*
297  * Queue all expired dirty inodes for io, eldest first.
298  * Before
299  *         newly dirtied     b_dirty    b_io    b_more_io
300  *         =============>    gf         edc     BA
301  * After
302  *         newly dirtied     b_dirty    b_io    b_more_io
303  *         =============>    g          fBAedc
304  *                                           |
305  *                                           +--> dequeue for IO
306  */
307 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
308 {
309         int moved;
310         assert_spin_locked(&wb->list_lock);
311         list_splice_init(&wb->b_more_io, &wb->b_io);
312         moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work);
313         trace_writeback_queue_io(wb, work, moved);
314 }
315
316 static int write_inode(struct inode *inode, struct writeback_control *wbc)
317 {
318         int ret;
319
320         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
321                 trace_writeback_write_inode_start(inode, wbc);
322                 ret = inode->i_sb->s_op->write_inode(inode, wbc);
323                 trace_writeback_write_inode(inode, wbc);
324                 return ret;
325         }
326         return 0;
327 }
328
329 /*
330  * Wait for writeback on an inode to complete. Called with i_lock held.
331  * Caller must make sure inode cannot go away when we drop i_lock.
332  */
333 static void __inode_wait_for_writeback(struct inode *inode)
334         __releases(inode->i_lock)
335         __acquires(inode->i_lock)
336 {
337         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
338         wait_queue_head_t *wqh;
339
340         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
341         while (inode->i_state & I_SYNC) {
342                 spin_unlock(&inode->i_lock);
343                 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
344                 spin_lock(&inode->i_lock);
345         }
346 }
347
348 /*
349  * Wait for writeback on an inode to complete. Caller must have inode pinned.
350  */
351 void inode_wait_for_writeback(struct inode *inode)
352 {
353         spin_lock(&inode->i_lock);
354         __inode_wait_for_writeback(inode);
355         spin_unlock(&inode->i_lock);
356 }
357
358 /*
359  * Sleep until I_SYNC is cleared. This function must be called with i_lock
360  * held and drops it. It is aimed for callers not holding any inode reference
361  * so once i_lock is dropped, inode can go away.
362  */
363 static void inode_sleep_on_writeback(struct inode *inode)
364         __releases(inode->i_lock)
365 {
366         DEFINE_WAIT(wait);
367         wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
368         int sleep;
369
370         prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
371         sleep = inode->i_state & I_SYNC;
372         spin_unlock(&inode->i_lock);
373         if (sleep)
374                 schedule();
375         finish_wait(wqh, &wait);
376 }
377
378 /*
379  * Find proper writeback list for the inode depending on its current state and
380  * possibly also change of its state while we were doing writeback.  Here we
381  * handle things such as livelock prevention or fairness of writeback among
382  * inodes. This function can be called only by flusher thread - noone else
383  * processes all inodes in writeback lists and requeueing inodes behind flusher
384  * thread's back can have unexpected consequences.
385  */
386 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
387                           struct writeback_control *wbc)
388 {
389         if (inode->i_state & I_FREEING)
390                 return;
391
392         /*
393          * Sync livelock prevention. Each inode is tagged and synced in one
394          * shot. If still dirty, it will be redirty_tail()'ed below.  Update
395          * the dirty time to prevent enqueue and sync it again.
396          */
397         if ((inode->i_state & I_DIRTY) &&
398             (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
399                 inode->dirtied_when = jiffies;
400
401         if (wbc->pages_skipped) {
402                 /*
403                  * writeback is not making progress due to locked
404                  * buffers. Skip this inode for now.
405                  */
406                 redirty_tail(inode, wb);
407                 return;
408         }
409
410         if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
411                 /*
412                  * We didn't write back all the pages.  nfs_writepages()
413                  * sometimes bales out without doing anything.
414                  */
415                 if (wbc->nr_to_write <= 0) {
416                         /* Slice used up. Queue for next turn. */
417                         requeue_io(inode, wb);
418                 } else {
419                         /*
420                          * Writeback blocked by something other than
421                          * congestion. Delay the inode for some time to
422                          * avoid spinning on the CPU (100% iowait)
423                          * retrying writeback of the dirty page/inode
424                          * that cannot be performed immediately.
425                          */
426                         redirty_tail(inode, wb);
427                 }
428         } else if (inode->i_state & I_DIRTY) {
429                 /*
430                  * Filesystems can dirty the inode during writeback operations,
431                  * such as delayed allocation during submission or metadata
432                  * updates after data IO completion.
433                  */
434                 redirty_tail(inode, wb);
435         } else {
436                 /* The inode is clean. Remove from writeback lists. */
437                 list_del_init(&inode->i_wb_list);
438         }
439 }
440
441 /*
442  * Write out an inode and its dirty pages. Do not update the writeback list
443  * linkage. That is left to the caller. The caller is also responsible for
444  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
445  */
446 static int
447 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
448 {
449         struct address_space *mapping = inode->i_mapping;
450         long nr_to_write = wbc->nr_to_write;
451         unsigned dirty;
452         int ret;
453
454         WARN_ON(!(inode->i_state & I_SYNC));
455
456         trace_writeback_single_inode_start(inode, wbc, nr_to_write);
457
458         ret = do_writepages(mapping, wbc);
459
460         /*
461          * Make sure to wait on the data before writing out the metadata.
462          * This is important for filesystems that modify metadata on data
463          * I/O completion. We don't do it for sync(2) writeback because it has a
464          * separate, external IO completion path and ->sync_fs for guaranteeing
465          * inode metadata is written back correctly.
466          */
467         if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
468                 int err = filemap_fdatawait(mapping);
469                 if (ret == 0)
470                         ret = err;
471         }
472
473         /*
474          * Some filesystems may redirty the inode during the writeback
475          * due to delalloc, clear dirty metadata flags right before
476          * write_inode()
477          */
478         spin_lock(&inode->i_lock);
479         /* Clear I_DIRTY_PAGES if we've written out all dirty pages */
480         if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
481                 inode->i_state &= ~I_DIRTY_PAGES;
482         dirty = inode->i_state & I_DIRTY;
483         inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
484         spin_unlock(&inode->i_lock);
485         /* Don't write the inode if only I_DIRTY_PAGES was set */
486         if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
487                 int err = write_inode(inode, wbc);
488                 if (ret == 0)
489                         ret = err;
490         }
491         trace_writeback_single_inode(inode, wbc, nr_to_write);
492         return ret;
493 }
494
495 /*
496  * Write out an inode's dirty pages. Either the caller has an active reference
497  * on the inode or the inode has I_WILL_FREE set.
498  *
499  * This function is designed to be called for writing back one inode which
500  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
501  * and does more profound writeback list handling in writeback_sb_inodes().
502  */
503 static int
504 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
505                        struct writeback_control *wbc)
506 {
507         int ret = 0;
508
509         spin_lock(&inode->i_lock);
510         if (!atomic_read(&inode->i_count))
511                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
512         else
513                 WARN_ON(inode->i_state & I_WILL_FREE);
514
515         if (inode->i_state & I_SYNC) {
516                 if (wbc->sync_mode != WB_SYNC_ALL)
517                         goto out;
518                 /*
519                  * It's a data-integrity sync. We must wait. Since callers hold
520                  * inode reference or inode has I_WILL_FREE set, it cannot go
521                  * away under us.
522                  */
523                 __inode_wait_for_writeback(inode);
524         }
525         WARN_ON(inode->i_state & I_SYNC);
526         /*
527          * Skip inode if it is clean and we have no outstanding writeback in
528          * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
529          * function since flusher thread may be doing for example sync in
530          * parallel and if we move the inode, it could get skipped. So here we
531          * make sure inode is on some writeback list and leave it there unless
532          * we have completely cleaned the inode.
533          */
534         if (!(inode->i_state & I_DIRTY) &&
535             (wbc->sync_mode != WB_SYNC_ALL ||
536              !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
537                 goto out;
538         inode->i_state |= I_SYNC;
539         spin_unlock(&inode->i_lock);
540
541         ret = __writeback_single_inode(inode, wbc);
542
543         spin_lock(&wb->list_lock);
544         spin_lock(&inode->i_lock);
545         /*
546          * If inode is clean, remove it from writeback lists. Otherwise don't
547          * touch it. See comment above for explanation.
548          */
549         if (!(inode->i_state & I_DIRTY))
550                 list_del_init(&inode->i_wb_list);
551         spin_unlock(&wb->list_lock);
552         inode_sync_complete(inode);
553 out:
554         spin_unlock(&inode->i_lock);
555         return ret;
556 }
557
558 static long writeback_chunk_size(struct backing_dev_info *bdi,
559                                  struct wb_writeback_work *work)
560 {
561         long pages;
562
563         /*
564          * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
565          * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
566          * here avoids calling into writeback_inodes_wb() more than once.
567          *
568          * The intended call sequence for WB_SYNC_ALL writeback is:
569          *
570          *      wb_writeback()
571          *          writeback_sb_inodes()       <== called only once
572          *              write_cache_pages()     <== called once for each inode
573          *                   (quickly) tag currently dirty pages
574          *                   (maybe slowly) sync all tagged pages
575          */
576         if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
577                 pages = LONG_MAX;
578         else {
579                 pages = min(bdi->avg_write_bandwidth / 2,
580                             global_dirty_limit / DIRTY_SCOPE);
581                 pages = min(pages, work->nr_pages);
582                 pages = round_down(pages + MIN_WRITEBACK_PAGES,
583                                    MIN_WRITEBACK_PAGES);
584         }
585
586         return pages;
587 }
588
589 /*
590  * Write a portion of b_io inodes which belong to @sb.
591  *
592  * Return the number of pages and/or inodes written.
593  */
594 static long writeback_sb_inodes(struct super_block *sb,
595                                 struct bdi_writeback *wb,
596                                 struct wb_writeback_work *work)
597 {
598         struct writeback_control wbc = {
599                 .sync_mode              = work->sync_mode,
600                 .tagged_writepages      = work->tagged_writepages,
601                 .for_kupdate            = work->for_kupdate,
602                 .for_background         = work->for_background,
603                 .for_sync               = work->for_sync,
604                 .range_cyclic           = work->range_cyclic,
605                 .range_start            = 0,
606                 .range_end              = LLONG_MAX,
607         };
608         unsigned long start_time = jiffies;
609         long write_chunk;
610         long wrote = 0;  /* count both pages and inodes */
611
612         while (!list_empty(&wb->b_io)) {
613                 struct inode *inode = wb_inode(wb->b_io.prev);
614
615                 if (inode->i_sb != sb) {
616                         if (work->sb) {
617                                 /*
618                                  * We only want to write back data for this
619                                  * superblock, move all inodes not belonging
620                                  * to it back onto the dirty list.
621                                  */
622                                 redirty_tail(inode, wb);
623                                 continue;
624                         }
625
626                         /*
627                          * The inode belongs to a different superblock.
628                          * Bounce back to the caller to unpin this and
629                          * pin the next superblock.
630                          */
631                         break;
632                 }
633
634                 /*
635                  * Don't bother with new inodes or inodes being freed, first
636                  * kind does not need periodic writeout yet, and for the latter
637                  * kind writeout is handled by the freer.
638                  */
639                 spin_lock(&inode->i_lock);
640                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
641                         spin_unlock(&inode->i_lock);
642                         redirty_tail(inode, wb);
643                         continue;
644                 }
645                 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
646                         /*
647                          * If this inode is locked for writeback and we are not
648                          * doing writeback-for-data-integrity, move it to
649                          * b_more_io so that writeback can proceed with the
650                          * other inodes on s_io.
651                          *
652                          * We'll have another go at writing back this inode
653                          * when we completed a full scan of b_io.
654                          */
655                         spin_unlock(&inode->i_lock);
656                         requeue_io(inode, wb);
657                         trace_writeback_sb_inodes_requeue(inode);
658                         continue;
659                 }
660                 spin_unlock(&wb->list_lock);
661
662                 /*
663                  * We already requeued the inode if it had I_SYNC set and we
664                  * are doing WB_SYNC_NONE writeback. So this catches only the
665                  * WB_SYNC_ALL case.
666                  */
667                 if (inode->i_state & I_SYNC) {
668                         /* Wait for I_SYNC. This function drops i_lock... */
669                         inode_sleep_on_writeback(inode);
670                         /* Inode may be gone, start again */
671                         spin_lock(&wb->list_lock);
672                         continue;
673                 }
674                 inode->i_state |= I_SYNC;
675                 spin_unlock(&inode->i_lock);
676
677                 write_chunk = writeback_chunk_size(wb->bdi, work);
678                 wbc.nr_to_write = write_chunk;
679                 wbc.pages_skipped = 0;
680
681                 /*
682                  * We use I_SYNC to pin the inode in memory. While it is set
683                  * evict_inode() will wait so the inode cannot be freed.
684                  */
685                 __writeback_single_inode(inode, &wbc);
686
687                 work->nr_pages -= write_chunk - wbc.nr_to_write;
688                 wrote += write_chunk - wbc.nr_to_write;
689                 spin_lock(&wb->list_lock);
690                 spin_lock(&inode->i_lock);
691                 if (!(inode->i_state & I_DIRTY))
692                         wrote++;
693                 requeue_inode(inode, wb, &wbc);
694                 inode_sync_complete(inode);
695                 spin_unlock(&inode->i_lock);
696                 cond_resched_lock(&wb->list_lock);
697                 /*
698                  * bail out to wb_writeback() often enough to check
699                  * background threshold and other termination conditions.
700                  */
701                 if (wrote) {
702                         if (time_is_before_jiffies(start_time + HZ / 10UL))
703                                 break;
704                         if (work->nr_pages <= 0)
705                                 break;
706                 }
707         }
708         return wrote;
709 }
710
711 static long __writeback_inodes_wb(struct bdi_writeback *wb,
712                                   struct wb_writeback_work *work)
713 {
714         unsigned long start_time = jiffies;
715         long wrote = 0;
716
717         while (!list_empty(&wb->b_io)) {
718                 struct inode *inode = wb_inode(wb->b_io.prev);
719                 struct super_block *sb = inode->i_sb;
720
721                 if (!grab_super_passive(sb)) {
722                         /*
723                          * grab_super_passive() may fail consistently due to
724                          * s_umount being grabbed by someone else. Don't use
725                          * requeue_io() to avoid busy retrying the inode/sb.
726                          */
727                         redirty_tail(inode, wb);
728                         continue;
729                 }
730                 wrote += writeback_sb_inodes(sb, wb, work);
731                 drop_super(sb);
732
733                 /* refer to the same tests at the end of writeback_sb_inodes */
734                 if (wrote) {
735                         if (time_is_before_jiffies(start_time + HZ / 10UL))
736                                 break;
737                         if (work->nr_pages <= 0)
738                                 break;
739                 }
740         }
741         /* Leave any unwritten inodes on b_io */
742         return wrote;
743 }
744
745 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
746                                 enum wb_reason reason)
747 {
748         struct wb_writeback_work work = {
749                 .nr_pages       = nr_pages,
750                 .sync_mode      = WB_SYNC_NONE,
751                 .range_cyclic   = 1,
752                 .reason         = reason,
753         };
754
755         spin_lock(&wb->list_lock);
756         if (list_empty(&wb->b_io))
757                 queue_io(wb, &work);
758         __writeback_inodes_wb(wb, &work);
759         spin_unlock(&wb->list_lock);
760
761         return nr_pages - work.nr_pages;
762 }
763
764 static bool over_bground_thresh(struct backing_dev_info *bdi)
765 {
766         unsigned long background_thresh, dirty_thresh;
767
768         global_dirty_limits(&background_thresh, &dirty_thresh);
769
770         if (global_page_state(NR_FILE_DIRTY) +
771             global_page_state(NR_UNSTABLE_NFS) > background_thresh)
772                 return true;
773
774         if (bdi_stat(bdi, BDI_RECLAIMABLE) >
775                                 bdi_dirty_limit(bdi, background_thresh))
776                 return true;
777
778         return false;
779 }
780
781 /*
782  * Called under wb->list_lock. If there are multiple wb per bdi,
783  * only the flusher working on the first wb should do it.
784  */
785 static void wb_update_bandwidth(struct bdi_writeback *wb,
786                                 unsigned long start_time)
787 {
788         __bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
789 }
790
791 /*
792  * Explicit flushing or periodic writeback of "old" data.
793  *
794  * Define "old": the first time one of an inode's pages is dirtied, we mark the
795  * dirtying-time in the inode's address_space.  So this periodic writeback code
796  * just walks the superblock inode list, writing back any inodes which are
797  * older than a specific point in time.
798  *
799  * Try to run once per dirty_writeback_interval.  But if a writeback event
800  * takes longer than a dirty_writeback_interval interval, then leave a
801  * one-second gap.
802  *
803  * older_than_this takes precedence over nr_to_write.  So we'll only write back
804  * all dirty pages if they are all attached to "old" mappings.
805  */
806 static long wb_writeback(struct bdi_writeback *wb,
807                          struct wb_writeback_work *work)
808 {
809         unsigned long wb_start = jiffies;
810         long nr_pages = work->nr_pages;
811         unsigned long oldest_jif;
812         struct inode *inode;
813         long progress;
814
815         oldest_jif = jiffies;
816         work->older_than_this = &oldest_jif;
817
818         spin_lock(&wb->list_lock);
819         for (;;) {
820                 /*
821                  * Stop writeback when nr_pages has been consumed
822                  */
823                 if (work->nr_pages <= 0)
824                         break;
825
826                 /*
827                  * Background writeout and kupdate-style writeback may
828                  * run forever. Stop them if there is other work to do
829                  * so that e.g. sync can proceed. They'll be restarted
830                  * after the other works are all done.
831                  */
832                 if ((work->for_background || work->for_kupdate) &&
833                     !list_empty(&wb->bdi->work_list))
834                         break;
835
836                 /*
837                  * For background writeout, stop when we are below the
838                  * background dirty threshold
839                  */
840                 if (work->for_background && !over_bground_thresh(wb->bdi))
841                         break;
842
843                 /*
844                  * Kupdate and background works are special and we want to
845                  * include all inodes that need writing. Livelock avoidance is
846                  * handled by these works yielding to any other work so we are
847                  * safe.
848                  */
849                 if (work->for_kupdate) {
850                         oldest_jif = jiffies -
851                                 msecs_to_jiffies(dirty_expire_interval * 10);
852                 } else if (work->for_background)
853                         oldest_jif = jiffies;
854
855                 trace_writeback_start(wb->bdi, work);
856                 if (list_empty(&wb->b_io))
857                         queue_io(wb, work);
858                 if (work->sb)
859                         progress = writeback_sb_inodes(work->sb, wb, work);
860                 else
861                         progress = __writeback_inodes_wb(wb, work);
862                 trace_writeback_written(wb->bdi, work);
863
864                 wb_update_bandwidth(wb, wb_start);
865
866                 /*
867                  * Did we write something? Try for more
868                  *
869                  * Dirty inodes are moved to b_io for writeback in batches.
870                  * The completion of the current batch does not necessarily
871                  * mean the overall work is done. So we keep looping as long
872                  * as made some progress on cleaning pages or inodes.
873                  */
874                 if (progress)
875                         continue;
876                 /*
877                  * No more inodes for IO, bail
878                  */
879                 if (list_empty(&wb->b_more_io))
880                         break;
881                 /*
882                  * Nothing written. Wait for some inode to
883                  * become available for writeback. Otherwise
884                  * we'll just busyloop.
885                  */
886                 if (!list_empty(&wb->b_more_io))  {
887                         trace_writeback_wait(wb->bdi, work);
888                         inode = wb_inode(wb->b_more_io.prev);
889                         spin_lock(&inode->i_lock);
890                         spin_unlock(&wb->list_lock);
891                         /* This function drops i_lock... */
892                         inode_sleep_on_writeback(inode);
893                         spin_lock(&wb->list_lock);
894                 }
895         }
896         spin_unlock(&wb->list_lock);
897
898         return nr_pages - work->nr_pages;
899 }
900
901 /*
902  * Return the next wb_writeback_work struct that hasn't been processed yet.
903  */
904 static struct wb_writeback_work *
905 get_next_work_item(struct backing_dev_info *bdi)
906 {
907         struct wb_writeback_work *work = NULL;
908
909         spin_lock_bh(&bdi->wb_lock);
910         if (!list_empty(&bdi->work_list)) {
911                 work = list_entry(bdi->work_list.next,
912                                   struct wb_writeback_work, list);
913                 list_del_init(&work->list);
914         }
915         spin_unlock_bh(&bdi->wb_lock);
916         return work;
917 }
918
919 /*
920  * Add in the number of potentially dirty inodes, because each inode
921  * write can dirty pagecache in the underlying blockdev.
922  */
923 static unsigned long get_nr_dirty_pages(void)
924 {
925         return global_page_state(NR_FILE_DIRTY) +
926                 global_page_state(NR_UNSTABLE_NFS) +
927                 get_nr_dirty_inodes();
928 }
929
930 static long wb_check_background_flush(struct bdi_writeback *wb)
931 {
932         if (over_bground_thresh(wb->bdi)) {
933
934                 struct wb_writeback_work work = {
935                         .nr_pages       = LONG_MAX,
936                         .sync_mode      = WB_SYNC_NONE,
937                         .for_background = 1,
938                         .range_cyclic   = 1,
939                         .reason         = WB_REASON_BACKGROUND,
940                 };
941
942                 return wb_writeback(wb, &work);
943         }
944
945         return 0;
946 }
947
948 static long wb_check_old_data_flush(struct bdi_writeback *wb)
949 {
950         unsigned long expired;
951         long nr_pages;
952
953         /*
954          * When set to zero, disable periodic writeback
955          */
956         if (!dirty_writeback_interval)
957                 return 0;
958
959         expired = wb->last_old_flush +
960                         msecs_to_jiffies(dirty_writeback_interval * 10);
961         if (time_before(jiffies, expired))
962                 return 0;
963
964         wb->last_old_flush = jiffies;
965         nr_pages = get_nr_dirty_pages();
966
967         if (nr_pages) {
968                 struct wb_writeback_work work = {
969                         .nr_pages       = nr_pages,
970                         .sync_mode      = WB_SYNC_NONE,
971                         .for_kupdate    = 1,
972                         .range_cyclic   = 1,
973                         .reason         = WB_REASON_PERIODIC,
974                 };
975
976                 return wb_writeback(wb, &work);
977         }
978
979         return 0;
980 }
981
982 /*
983  * Retrieve work items and do the writeback they describe
984  */
985 static long wb_do_writeback(struct bdi_writeback *wb)
986 {
987         struct backing_dev_info *bdi = wb->bdi;
988         struct wb_writeback_work *work;
989         long wrote = 0;
990
991         set_bit(BDI_writeback_running, &wb->bdi->state);
992         while ((work = get_next_work_item(bdi)) != NULL) {
993
994                 trace_writeback_exec(bdi, work);
995
996                 wrote += wb_writeback(wb, work);
997
998                 /*
999                  * Notify the caller of completion if this is a synchronous
1000                  * work item, otherwise just free it.
1001                  */
1002                 if (work->done)
1003                         complete(work->done);
1004                 else
1005                         kfree(work);
1006         }
1007
1008         /*
1009          * Check for periodic writeback, kupdated() style
1010          */
1011         wrote += wb_check_old_data_flush(wb);
1012         wrote += wb_check_background_flush(wb);
1013         clear_bit(BDI_writeback_running, &wb->bdi->state);
1014
1015         return wrote;
1016 }
1017
1018 /*
1019  * Handle writeback of dirty data for the device backed by this bdi. Also
1020  * reschedules periodically and does kupdated style flushing.
1021  */
1022 void bdi_writeback_workfn(struct work_struct *work)
1023 {
1024         struct bdi_writeback *wb = container_of(to_delayed_work(work),
1025                                                 struct bdi_writeback, dwork);
1026         struct backing_dev_info *bdi = wb->bdi;
1027         long pages_written;
1028
1029         set_worker_desc("flush-%s", dev_name(bdi->dev));
1030         current->flags |= PF_SWAPWRITE;
1031
1032         if (likely(!current_is_workqueue_rescuer() ||
1033                    !test_bit(BDI_registered, &bdi->state))) {
1034                 /*
1035                  * The normal path.  Keep writing back @bdi until its
1036                  * work_list is empty.  Note that this path is also taken
1037                  * if @bdi is shutting down even when we're running off the
1038                  * rescuer as work_list needs to be drained.
1039                  */
1040                 do {
1041                         pages_written = wb_do_writeback(wb);
1042                         trace_writeback_pages_written(pages_written);
1043                 } while (!list_empty(&bdi->work_list));
1044         } else {
1045                 /*
1046                  * bdi_wq can't get enough workers and we're running off
1047                  * the emergency worker.  Don't hog it.  Hopefully, 1024 is
1048                  * enough for efficient IO.
1049                  */
1050                 pages_written = writeback_inodes_wb(&bdi->wb, 1024,
1051                                                     WB_REASON_FORKER_THREAD);
1052                 trace_writeback_pages_written(pages_written);
1053         }
1054
1055         if (!list_empty(&bdi->work_list))
1056                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
1057         else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1058                 bdi_wakeup_thread_delayed(bdi);
1059
1060         current->flags &= ~PF_SWAPWRITE;
1061 }
1062
1063 /*
1064  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
1065  * the whole world.
1066  */
1067 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1068 {
1069         struct backing_dev_info *bdi;
1070
1071         if (!nr_pages)
1072                 nr_pages = get_nr_dirty_pages();
1073
1074         rcu_read_lock();
1075         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1076                 if (!bdi_has_dirty_io(bdi))
1077                         continue;
1078                 __bdi_start_writeback(bdi, nr_pages, false, reason);
1079         }
1080         rcu_read_unlock();
1081 }
1082
1083 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1084 {
1085         if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1086                 struct dentry *dentry;
1087                 const char *name = "?";
1088
1089                 dentry = d_find_alias(inode);
1090                 if (dentry) {
1091                         spin_lock(&dentry->d_lock);
1092                         name = (const char *) dentry->d_name.name;
1093                 }
1094                 printk(KERN_DEBUG
1095                        "%s(%d): dirtied inode %lu (%s) on %s\n",
1096                        current->comm, task_pid_nr(current), inode->i_ino,
1097                        name, inode->i_sb->s_id);
1098                 if (dentry) {
1099                         spin_unlock(&dentry->d_lock);
1100                         dput(dentry);
1101                 }
1102         }
1103 }
1104
1105 /**
1106  *      __mark_inode_dirty -    internal function
1107  *      @inode: inode to mark
1108  *      @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1109  *      Mark an inode as dirty. Callers should use mark_inode_dirty or
1110  *      mark_inode_dirty_sync.
1111  *
1112  * Put the inode on the super block's dirty list.
1113  *
1114  * CAREFUL! We mark it dirty unconditionally, but move it onto the
1115  * dirty list only if it is hashed or if it refers to a blockdev.
1116  * If it was not hashed, it will never be added to the dirty list
1117  * even if it is later hashed, as it will have been marked dirty already.
1118  *
1119  * In short, make sure you hash any inodes _before_ you start marking
1120  * them dirty.
1121  *
1122  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1123  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
1124  * the kernel-internal blockdev inode represents the dirtying time of the
1125  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
1126  * page->mapping->host, so the page-dirtying time is recorded in the internal
1127  * blockdev inode.
1128  */
1129 void __mark_inode_dirty(struct inode *inode, int flags)
1130 {
1131         struct super_block *sb = inode->i_sb;
1132         struct backing_dev_info *bdi = NULL;
1133
1134         /*
1135          * Don't do this for I_DIRTY_PAGES - that doesn't actually
1136          * dirty the inode itself
1137          */
1138         if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1139                 trace_writeback_dirty_inode_start(inode, flags);
1140
1141                 if (sb->s_op->dirty_inode)
1142                         sb->s_op->dirty_inode(inode, flags);
1143
1144                 trace_writeback_dirty_inode(inode, flags);
1145         }
1146
1147         /*
1148          * make sure that changes are seen by all cpus before we test i_state
1149          * -- mikulas
1150          */
1151         smp_mb();
1152
1153         /* avoid the locking if we can */
1154         if ((inode->i_state & flags) == flags)
1155                 return;
1156
1157         if (unlikely(block_dump))
1158                 block_dump___mark_inode_dirty(inode);
1159
1160         spin_lock(&inode->i_lock);
1161         if ((inode->i_state & flags) != flags) {
1162                 const int was_dirty = inode->i_state & I_DIRTY;
1163
1164                 inode->i_state |= flags;
1165
1166                 /*
1167                  * If the inode is being synced, just update its dirty state.
1168                  * The unlocker will place the inode on the appropriate
1169                  * superblock list, based upon its state.
1170                  */
1171                 if (inode->i_state & I_SYNC)
1172                         goto out_unlock_inode;
1173
1174                 /*
1175                  * Only add valid (hashed) inodes to the superblock's
1176                  * dirty list.  Add blockdev inodes as well.
1177                  */
1178                 if (!S_ISBLK(inode->i_mode)) {
1179                         if (inode_unhashed(inode))
1180                                 goto out_unlock_inode;
1181                 }
1182                 if (inode->i_state & I_FREEING)
1183                         goto out_unlock_inode;
1184
1185                 /*
1186                  * If the inode was already on b_dirty/b_io/b_more_io, don't
1187                  * reposition it (that would break b_dirty time-ordering).
1188                  */
1189                 if (!was_dirty) {
1190                         bool wakeup_bdi = false;
1191                         bdi = inode_to_bdi(inode);
1192
1193                         spin_unlock(&inode->i_lock);
1194                         spin_lock(&bdi->wb.list_lock);
1195                         if (bdi_cap_writeback_dirty(bdi)) {
1196                                 WARN(!test_bit(BDI_registered, &bdi->state),
1197                                      "bdi-%s not registered\n", bdi->name);
1198
1199                                 /*
1200                                  * If this is the first dirty inode for this
1201                                  * bdi, we have to wake-up the corresponding
1202                                  * bdi thread to make sure background
1203                                  * write-back happens later.
1204                                  */
1205                                 if (!wb_has_dirty_io(&bdi->wb))
1206                                         wakeup_bdi = true;
1207                         }
1208
1209                         inode->dirtied_when = jiffies;
1210                         list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1211                         spin_unlock(&bdi->wb.list_lock);
1212
1213                         if (wakeup_bdi)
1214                                 bdi_wakeup_thread_delayed(bdi);
1215                         return;
1216                 }
1217         }
1218 out_unlock_inode:
1219         spin_unlock(&inode->i_lock);
1220
1221 }
1222 EXPORT_SYMBOL(__mark_inode_dirty);
1223
1224 static void wait_sb_inodes(struct super_block *sb)
1225 {
1226         struct inode *inode, *old_inode = NULL;
1227
1228         /*
1229          * We need to be protected against the filesystem going from
1230          * r/o to r/w or vice versa.
1231          */
1232         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1233
1234         spin_lock(&inode_sb_list_lock);
1235
1236         /*
1237          * Data integrity sync. Must wait for all pages under writeback,
1238          * because there may have been pages dirtied before our sync
1239          * call, but which had writeout started before we write it out.
1240          * In which case, the inode may not be on the dirty list, but
1241          * we still have to wait for that writeout.
1242          */
1243         list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1244                 struct address_space *mapping = inode->i_mapping;
1245
1246                 spin_lock(&inode->i_lock);
1247                 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1248                     (mapping->nrpages == 0)) {
1249                         spin_unlock(&inode->i_lock);
1250                         continue;
1251                 }
1252                 __iget(inode);
1253                 spin_unlock(&inode->i_lock);
1254                 spin_unlock(&inode_sb_list_lock);
1255
1256                 /*
1257                  * We hold a reference to 'inode' so it couldn't have been
1258                  * removed from s_inodes list while we dropped the
1259                  * inode_sb_list_lock.  We cannot iput the inode now as we can
1260                  * be holding the last reference and we cannot iput it under
1261                  * inode_sb_list_lock. So we keep the reference and iput it
1262                  * later.
1263                  */
1264                 iput(old_inode);
1265                 old_inode = inode;
1266
1267                 filemap_fdatawait(mapping);
1268
1269                 cond_resched();
1270
1271                 spin_lock(&inode_sb_list_lock);
1272         }
1273         spin_unlock(&inode_sb_list_lock);
1274         iput(old_inode);
1275 }
1276
1277 /**
1278  * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
1279  * @sb: the superblock
1280  * @nr: the number of pages to write
1281  * @reason: reason why some writeback work initiated
1282  *
1283  * Start writeback on some inodes on this super_block. No guarantees are made
1284  * on how many (if any) will be written, and this function does not wait
1285  * for IO completion of submitted IO.
1286  */
1287 void writeback_inodes_sb_nr(struct super_block *sb,
1288                             unsigned long nr,
1289                             enum wb_reason reason)
1290 {
1291         DECLARE_COMPLETION_ONSTACK(done);
1292         struct wb_writeback_work work = {
1293                 .sb                     = sb,
1294                 .sync_mode              = WB_SYNC_NONE,
1295                 .tagged_writepages      = 1,
1296                 .done                   = &done,
1297                 .nr_pages               = nr,
1298                 .reason                 = reason,
1299         };
1300
1301         if (sb->s_bdi == &noop_backing_dev_info)
1302                 return;
1303         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1304         bdi_queue_work(sb->s_bdi, &work);
1305         wait_for_completion(&done);
1306 }
1307 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1308
1309 /**
1310  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
1311  * @sb: the superblock
1312  * @reason: reason why some writeback work was initiated
1313  *
1314  * Start writeback on some inodes on this super_block. No guarantees are made
1315  * on how many (if any) will be written, and this function does not wait
1316  * for IO completion of submitted IO.
1317  */
1318 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1319 {
1320         return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1321 }
1322 EXPORT_SYMBOL(writeback_inodes_sb);
1323
1324 /**
1325  * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
1326  * @sb: the superblock
1327  * @nr: the number of pages to write
1328  * @reason: the reason of writeback
1329  *
1330  * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
1331  * Returns 1 if writeback was started, 0 if not.
1332  */
1333 int try_to_writeback_inodes_sb_nr(struct super_block *sb,
1334                                   unsigned long nr,
1335                                   enum wb_reason reason)
1336 {
1337         if (writeback_in_progress(sb->s_bdi))
1338                 return 1;
1339
1340         if (!down_read_trylock(&sb->s_umount))
1341                 return 0;
1342
1343         writeback_inodes_sb_nr(sb, nr, reason);
1344         up_read(&sb->s_umount);
1345         return 1;
1346 }
1347 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
1348
1349 /**
1350  * try_to_writeback_inodes_sb - try to start writeback if none underway
1351  * @sb: the superblock
1352  * @reason: reason why some writeback work was initiated
1353  *
1354  * Implement by try_to_writeback_inodes_sb_nr()
1355  * Returns 1 if writeback was started, 0 if not.
1356  */
1357 int try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1358 {
1359         return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1360 }
1361 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
1362
1363 /**
1364  * sync_inodes_sb       -       sync sb inode pages
1365  * @sb: the superblock
1366  *
1367  * This function writes and waits on any dirty inode belonging to this
1368  * super_block.
1369  */
1370 void sync_inodes_sb(struct super_block *sb)
1371 {
1372         DECLARE_COMPLETION_ONSTACK(done);
1373         struct wb_writeback_work work = {
1374                 .sb             = sb,
1375                 .sync_mode      = WB_SYNC_ALL,
1376                 .nr_pages       = LONG_MAX,
1377                 .range_cyclic   = 0,
1378                 .done           = &done,
1379                 .reason         = WB_REASON_SYNC,
1380                 .for_sync       = 1,
1381         };
1382
1383         /* Nothing to do? */
1384         if (sb->s_bdi == &noop_backing_dev_info)
1385                 return;
1386         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1387
1388         bdi_queue_work(sb->s_bdi, &work);
1389         wait_for_completion(&done);
1390
1391         wait_sb_inodes(sb);
1392 }
1393 EXPORT_SYMBOL(sync_inodes_sb);
1394
1395 /**
1396  * write_inode_now      -       write an inode to disk
1397  * @inode: inode to write to disk
1398  * @sync: whether the write should be synchronous or not
1399  *
1400  * This function commits an inode to disk immediately if it is dirty. This is
1401  * primarily needed by knfsd.
1402  *
1403  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1404  */
1405 int write_inode_now(struct inode *inode, int sync)
1406 {
1407         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1408         struct writeback_control wbc = {
1409                 .nr_to_write = LONG_MAX,
1410                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1411                 .range_start = 0,
1412                 .range_end = LLONG_MAX,
1413         };
1414
1415         if (!mapping_cap_writeback_dirty(inode->i_mapping))
1416                 wbc.nr_to_write = 0;
1417
1418         might_sleep();
1419         return writeback_single_inode(inode, wb, &wbc);
1420 }
1421 EXPORT_SYMBOL(write_inode_now);
1422
1423 /**
1424  * sync_inode - write an inode and its pages to disk.
1425  * @inode: the inode to sync
1426  * @wbc: controls the writeback mode
1427  *
1428  * sync_inode() will write an inode and its pages to disk.  It will also
1429  * correctly update the inode on its superblock's dirty inode lists and will
1430  * update inode->i_state.
1431  *
1432  * The caller must have a ref on the inode.
1433  */
1434 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1435 {
1436         return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1437 }
1438 EXPORT_SYMBOL(sync_inode);
1439
1440 /**
1441  * sync_inode_metadata - write an inode to disk
1442  * @inode: the inode to sync
1443  * @wait: wait for I/O to complete.
1444  *
1445  * Write an inode to disk and adjust its dirty state after completion.
1446  *
1447  * Note: only writes the actual inode, no associated data or other metadata.
1448  */
1449 int sync_inode_metadata(struct inode *inode, int wait)
1450 {
1451         struct writeback_control wbc = {
1452                 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1453                 .nr_to_write = 0, /* metadata-only */
1454         };
1455
1456         return sync_inode(inode, &wbc);
1457 }
1458 EXPORT_SYMBOL(sync_inode_metadata);