Linux 4.19.76
[platform/kernel/linux-rpi.git] / fs / fs-writeback.c
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002    Andrew Morton
12  *              Split out of fs/inode.c
13  *              Additions for address_space-based writeback
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include <linux/memcontrol.h>
31 #include "internal.h"
32
33 /*
34  * 4MB minimal write chunk size
35  */
36 #define MIN_WRITEBACK_PAGES     (4096UL >> (PAGE_SHIFT - 10))
37
38 struct wb_completion {
39         atomic_t                cnt;
40 };
41
42 /*
43  * Passed into wb_writeback(), essentially a subset of writeback_control
44  */
45 struct wb_writeback_work {
46         long nr_pages;
47         struct super_block *sb;
48         unsigned long *older_than_this;
49         enum writeback_sync_modes sync_mode;
50         unsigned int tagged_writepages:1;
51         unsigned int for_kupdate:1;
52         unsigned int range_cyclic:1;
53         unsigned int for_background:1;
54         unsigned int for_sync:1;        /* sync(2) WB_SYNC_ALL writeback */
55         unsigned int auto_free:1;       /* free on completion */
56         enum wb_reason reason;          /* why was writeback initiated? */
57
58         struct list_head list;          /* pending work list */
59         struct wb_completion *done;     /* set if the caller waits */
60 };
61
62 /*
63  * If one wants to wait for one or more wb_writeback_works, each work's
64  * ->done should be set to a wb_completion defined using the following
65  * macro.  Once all work items are issued with wb_queue_work(), the caller
66  * can wait for the completion of all using wb_wait_for_completion().  Work
67  * items which are waited upon aren't freed automatically on completion.
68  */
69 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl)                              \
70         struct wb_completion cmpl = {                                   \
71                 .cnt            = ATOMIC_INIT(1),                       \
72         }
73
74
75 /*
76  * If an inode is constantly having its pages dirtied, but then the
77  * updates stop dirtytime_expire_interval seconds in the past, it's
78  * possible for the worst case time between when an inode has its
79  * timestamps updated and when they finally get written out to be two
80  * dirtytime_expire_intervals.  We set the default to 12 hours (in
81  * seconds), which means most of the time inodes will have their
82  * timestamps written to disk after 12 hours, but in the worst case a
83  * few inodes might not their timestamps updated for 24 hours.
84  */
85 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
86
87 static inline struct inode *wb_inode(struct list_head *head)
88 {
89         return list_entry(head, struct inode, i_io_list);
90 }
91
92 /*
93  * Include the creation of the trace points after defining the
94  * wb_writeback_work structure and inline functions so that the definition
95  * remains local to this file.
96  */
97 #define CREATE_TRACE_POINTS
98 #include <trace/events/writeback.h>
99
100 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
101
102 static bool wb_io_lists_populated(struct bdi_writeback *wb)
103 {
104         if (wb_has_dirty_io(wb)) {
105                 return false;
106         } else {
107                 set_bit(WB_has_dirty_io, &wb->state);
108                 WARN_ON_ONCE(!wb->avg_write_bandwidth);
109                 atomic_long_add(wb->avg_write_bandwidth,
110                                 &wb->bdi->tot_write_bandwidth);
111                 return true;
112         }
113 }
114
115 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
116 {
117         if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
118             list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
119                 clear_bit(WB_has_dirty_io, &wb->state);
120                 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
121                                         &wb->bdi->tot_write_bandwidth) < 0);
122         }
123 }
124
125 /**
126  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
127  * @inode: inode to be moved
128  * @wb: target bdi_writeback
129  * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
130  *
131  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
132  * Returns %true if @inode is the first occupant of the !dirty_time IO
133  * lists; otherwise, %false.
134  */
135 static bool inode_io_list_move_locked(struct inode *inode,
136                                       struct bdi_writeback *wb,
137                                       struct list_head *head)
138 {
139         assert_spin_locked(&wb->list_lock);
140
141         list_move(&inode->i_io_list, head);
142
143         /* dirty_time doesn't count as dirty_io until expiration */
144         if (head != &wb->b_dirty_time)
145                 return wb_io_lists_populated(wb);
146
147         wb_io_lists_depopulated(wb);
148         return false;
149 }
150
151 /**
152  * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
153  * @inode: inode to be removed
154  * @wb: bdi_writeback @inode is being removed from
155  *
156  * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
157  * clear %WB_has_dirty_io if all are empty afterwards.
158  */
159 static void inode_io_list_del_locked(struct inode *inode,
160                                      struct bdi_writeback *wb)
161 {
162         assert_spin_locked(&wb->list_lock);
163
164         list_del_init(&inode->i_io_list);
165         wb_io_lists_depopulated(wb);
166 }
167
168 static void wb_wakeup(struct bdi_writeback *wb)
169 {
170         spin_lock_bh(&wb->work_lock);
171         if (test_bit(WB_registered, &wb->state))
172                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
173         spin_unlock_bh(&wb->work_lock);
174 }
175
176 static void finish_writeback_work(struct bdi_writeback *wb,
177                                   struct wb_writeback_work *work)
178 {
179         struct wb_completion *done = work->done;
180
181         if (work->auto_free)
182                 kfree(work);
183         if (done && atomic_dec_and_test(&done->cnt))
184                 wake_up_all(&wb->bdi->wb_waitq);
185 }
186
187 static void wb_queue_work(struct bdi_writeback *wb,
188                           struct wb_writeback_work *work)
189 {
190         trace_writeback_queue(wb, work);
191
192         if (work->done)
193                 atomic_inc(&work->done->cnt);
194
195         spin_lock_bh(&wb->work_lock);
196
197         if (test_bit(WB_registered, &wb->state)) {
198                 list_add_tail(&work->list, &wb->work_list);
199                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
200         } else
201                 finish_writeback_work(wb, work);
202
203         spin_unlock_bh(&wb->work_lock);
204 }
205
206 /**
207  * wb_wait_for_completion - wait for completion of bdi_writeback_works
208  * @bdi: bdi work items were issued to
209  * @done: target wb_completion
210  *
211  * Wait for one or more work items issued to @bdi with their ->done field
212  * set to @done, which should have been defined with
213  * DEFINE_WB_COMPLETION_ONSTACK().  This function returns after all such
214  * work items are completed.  Work items which are waited upon aren't freed
215  * automatically on completion.
216  */
217 static void wb_wait_for_completion(struct backing_dev_info *bdi,
218                                    struct wb_completion *done)
219 {
220         atomic_dec(&done->cnt);         /* put down the initial count */
221         wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
222 }
223
224 #ifdef CONFIG_CGROUP_WRITEBACK
225
226 /* parameters for foreign inode detection, see wb_detach_inode() */
227 #define WB_FRN_TIME_SHIFT       13      /* 1s = 2^13, upto 8 secs w/ 16bit */
228 #define WB_FRN_TIME_AVG_SHIFT   3       /* avg = avg * 7/8 + new * 1/8 */
229 #define WB_FRN_TIME_CUT_DIV     2       /* ignore rounds < avg / 2 */
230 #define WB_FRN_TIME_PERIOD      (2 * (1 << WB_FRN_TIME_SHIFT))  /* 2s */
231
232 #define WB_FRN_HIST_SLOTS       16      /* inode->i_wb_frn_history is 16bit */
233 #define WB_FRN_HIST_UNIT        (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
234                                         /* each slot's duration is 2s / 16 */
235 #define WB_FRN_HIST_THR_SLOTS   (WB_FRN_HIST_SLOTS / 2)
236                                         /* if foreign slots >= 8, switch */
237 #define WB_FRN_HIST_MAX_SLOTS   (WB_FRN_HIST_THR_SLOTS / 2 + 1)
238                                         /* one round can affect upto 5 slots */
239
240 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
241 static struct workqueue_struct *isw_wq;
242
243 void __inode_attach_wb(struct inode *inode, struct page *page)
244 {
245         struct backing_dev_info *bdi = inode_to_bdi(inode);
246         struct bdi_writeback *wb = NULL;
247
248         if (inode_cgwb_enabled(inode)) {
249                 struct cgroup_subsys_state *memcg_css;
250
251                 if (page) {
252                         memcg_css = mem_cgroup_css_from_page(page);
253                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
254                 } else {
255                         /* must pin memcg_css, see wb_get_create() */
256                         memcg_css = task_get_css(current, memory_cgrp_id);
257                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
258                         css_put(memcg_css);
259                 }
260         }
261
262         if (!wb)
263                 wb = &bdi->wb;
264
265         /*
266          * There may be multiple instances of this function racing to
267          * update the same inode.  Use cmpxchg() to tell the winner.
268          */
269         if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
270                 wb_put(wb);
271 }
272
273 /**
274  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
275  * @inode: inode of interest with i_lock held
276  *
277  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
278  * held on entry and is released on return.  The returned wb is guaranteed
279  * to stay @inode's associated wb until its list_lock is released.
280  */
281 static struct bdi_writeback *
282 locked_inode_to_wb_and_lock_list(struct inode *inode)
283         __releases(&inode->i_lock)
284         __acquires(&wb->list_lock)
285 {
286         while (true) {
287                 struct bdi_writeback *wb = inode_to_wb(inode);
288
289                 /*
290                  * inode_to_wb() association is protected by both
291                  * @inode->i_lock and @wb->list_lock but list_lock nests
292                  * outside i_lock.  Drop i_lock and verify that the
293                  * association hasn't changed after acquiring list_lock.
294                  */
295                 wb_get(wb);
296                 spin_unlock(&inode->i_lock);
297                 spin_lock(&wb->list_lock);
298
299                 /* i_wb may have changed inbetween, can't use inode_to_wb() */
300                 if (likely(wb == inode->i_wb)) {
301                         wb_put(wb);     /* @inode already has ref */
302                         return wb;
303                 }
304
305                 spin_unlock(&wb->list_lock);
306                 wb_put(wb);
307                 cpu_relax();
308                 spin_lock(&inode->i_lock);
309         }
310 }
311
312 /**
313  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
314  * @inode: inode of interest
315  *
316  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
317  * on entry.
318  */
319 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
320         __acquires(&wb->list_lock)
321 {
322         spin_lock(&inode->i_lock);
323         return locked_inode_to_wb_and_lock_list(inode);
324 }
325
326 struct inode_switch_wbs_context {
327         struct inode            *inode;
328         struct bdi_writeback    *new_wb;
329
330         struct rcu_head         rcu_head;
331         struct work_struct      work;
332 };
333
334 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
335 {
336         down_write(&bdi->wb_switch_rwsem);
337 }
338
339 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
340 {
341         up_write(&bdi->wb_switch_rwsem);
342 }
343
344 static void inode_switch_wbs_work_fn(struct work_struct *work)
345 {
346         struct inode_switch_wbs_context *isw =
347                 container_of(work, struct inode_switch_wbs_context, work);
348         struct inode *inode = isw->inode;
349         struct backing_dev_info *bdi = inode_to_bdi(inode);
350         struct address_space *mapping = inode->i_mapping;
351         struct bdi_writeback *old_wb = inode->i_wb;
352         struct bdi_writeback *new_wb = isw->new_wb;
353         struct radix_tree_iter iter;
354         bool switched = false;
355         void **slot;
356
357         /*
358          * If @inode switches cgwb membership while sync_inodes_sb() is
359          * being issued, sync_inodes_sb() might miss it.  Synchronize.
360          */
361         down_read(&bdi->wb_switch_rwsem);
362
363         /*
364          * By the time control reaches here, RCU grace period has passed
365          * since I_WB_SWITCH assertion and all wb stat update transactions
366          * between unlocked_inode_to_wb_begin/end() are guaranteed to be
367          * synchronizing against the i_pages lock.
368          *
369          * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
370          * gives us exclusion against all wb related operations on @inode
371          * including IO list manipulations and stat updates.
372          */
373         if (old_wb < new_wb) {
374                 spin_lock(&old_wb->list_lock);
375                 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
376         } else {
377                 spin_lock(&new_wb->list_lock);
378                 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
379         }
380         spin_lock(&inode->i_lock);
381         xa_lock_irq(&mapping->i_pages);
382
383         /*
384          * Once I_FREEING is visible under i_lock, the eviction path owns
385          * the inode and we shouldn't modify ->i_io_list.
386          */
387         if (unlikely(inode->i_state & I_FREEING))
388                 goto skip_switch;
389
390         /*
391          * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
392          * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
393          * pages actually under writeback.
394          */
395         radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, 0,
396                                    PAGECACHE_TAG_DIRTY) {
397                 struct page *page = radix_tree_deref_slot_protected(slot,
398                                                 &mapping->i_pages.xa_lock);
399                 if (likely(page) && PageDirty(page)) {
400                         dec_wb_stat(old_wb, WB_RECLAIMABLE);
401                         inc_wb_stat(new_wb, WB_RECLAIMABLE);
402                 }
403         }
404
405         radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, 0,
406                                    PAGECACHE_TAG_WRITEBACK) {
407                 struct page *page = radix_tree_deref_slot_protected(slot,
408                                                 &mapping->i_pages.xa_lock);
409                 if (likely(page)) {
410                         WARN_ON_ONCE(!PageWriteback(page));
411                         dec_wb_stat(old_wb, WB_WRITEBACK);
412                         inc_wb_stat(new_wb, WB_WRITEBACK);
413                 }
414         }
415
416         wb_get(new_wb);
417
418         /*
419          * Transfer to @new_wb's IO list if necessary.  The specific list
420          * @inode was on is ignored and the inode is put on ->b_dirty which
421          * is always correct including from ->b_dirty_time.  The transfer
422          * preserves @inode->dirtied_when ordering.
423          */
424         if (!list_empty(&inode->i_io_list)) {
425                 struct inode *pos;
426
427                 inode_io_list_del_locked(inode, old_wb);
428                 inode->i_wb = new_wb;
429                 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
430                         if (time_after_eq(inode->dirtied_when,
431                                           pos->dirtied_when))
432                                 break;
433                 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
434         } else {
435                 inode->i_wb = new_wb;
436         }
437
438         /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
439         inode->i_wb_frn_winner = 0;
440         inode->i_wb_frn_avg_time = 0;
441         inode->i_wb_frn_history = 0;
442         switched = true;
443 skip_switch:
444         /*
445          * Paired with load_acquire in unlocked_inode_to_wb_begin() and
446          * ensures that the new wb is visible if they see !I_WB_SWITCH.
447          */
448         smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
449
450         xa_unlock_irq(&mapping->i_pages);
451         spin_unlock(&inode->i_lock);
452         spin_unlock(&new_wb->list_lock);
453         spin_unlock(&old_wb->list_lock);
454
455         up_read(&bdi->wb_switch_rwsem);
456
457         if (switched) {
458                 wb_wakeup(new_wb);
459                 wb_put(old_wb);
460         }
461         wb_put(new_wb);
462
463         iput(inode);
464         kfree(isw);
465
466         atomic_dec(&isw_nr_in_flight);
467 }
468
469 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
470 {
471         struct inode_switch_wbs_context *isw = container_of(rcu_head,
472                                 struct inode_switch_wbs_context, rcu_head);
473
474         /* needs to grab bh-unsafe locks, bounce to work item */
475         INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
476         queue_work(isw_wq, &isw->work);
477 }
478
479 /**
480  * inode_switch_wbs - change the wb association of an inode
481  * @inode: target inode
482  * @new_wb_id: ID of the new wb
483  *
484  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
485  * switching is performed asynchronously and may fail silently.
486  */
487 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
488 {
489         struct backing_dev_info *bdi = inode_to_bdi(inode);
490         struct cgroup_subsys_state *memcg_css;
491         struct inode_switch_wbs_context *isw;
492
493         /* noop if seems to be already in progress */
494         if (inode->i_state & I_WB_SWITCH)
495                 return;
496
497         /*
498          * Avoid starting new switches while sync_inodes_sb() is in
499          * progress.  Otherwise, if the down_write protected issue path
500          * blocks heavily, we might end up starting a large number of
501          * switches which will block on the rwsem.
502          */
503         if (!down_read_trylock(&bdi->wb_switch_rwsem))
504                 return;
505
506         isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
507         if (!isw)
508                 goto out_unlock;
509
510         /* find and pin the new wb */
511         rcu_read_lock();
512         memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
513         if (memcg_css)
514                 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
515         rcu_read_unlock();
516         if (!isw->new_wb)
517                 goto out_free;
518
519         /* while holding I_WB_SWITCH, no one else can update the association */
520         spin_lock(&inode->i_lock);
521         if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
522             inode->i_state & (I_WB_SWITCH | I_FREEING) ||
523             inode_to_wb(inode) == isw->new_wb) {
524                 spin_unlock(&inode->i_lock);
525                 goto out_free;
526         }
527         inode->i_state |= I_WB_SWITCH;
528         __iget(inode);
529         spin_unlock(&inode->i_lock);
530
531         isw->inode = inode;
532
533         /*
534          * In addition to synchronizing among switchers, I_WB_SWITCH tells
535          * the RCU protected stat update paths to grab the i_page
536          * lock so that stat transfer can synchronize against them.
537          * Let's continue after I_WB_SWITCH is guaranteed to be visible.
538          */
539         call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
540
541         atomic_inc(&isw_nr_in_flight);
542
543         goto out_unlock;
544
545 out_free:
546         if (isw->new_wb)
547                 wb_put(isw->new_wb);
548         kfree(isw);
549 out_unlock:
550         up_read(&bdi->wb_switch_rwsem);
551 }
552
553 /**
554  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
555  * @wbc: writeback_control of interest
556  * @inode: target inode
557  *
558  * @inode is locked and about to be written back under the control of @wbc.
559  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
560  * writeback completion, wbc_detach_inode() should be called.  This is used
561  * to track the cgroup writeback context.
562  */
563 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
564                                  struct inode *inode)
565 {
566         if (!inode_cgwb_enabled(inode)) {
567                 spin_unlock(&inode->i_lock);
568                 return;
569         }
570
571         wbc->wb = inode_to_wb(inode);
572         wbc->inode = inode;
573
574         wbc->wb_id = wbc->wb->memcg_css->id;
575         wbc->wb_lcand_id = inode->i_wb_frn_winner;
576         wbc->wb_tcand_id = 0;
577         wbc->wb_bytes = 0;
578         wbc->wb_lcand_bytes = 0;
579         wbc->wb_tcand_bytes = 0;
580
581         wb_get(wbc->wb);
582         spin_unlock(&inode->i_lock);
583
584         /*
585          * A dying wb indicates that the memcg-blkcg mapping has changed
586          * and a new wb is already serving the memcg.  Switch immediately.
587          */
588         if (unlikely(wb_dying(wbc->wb)))
589                 inode_switch_wbs(inode, wbc->wb_id);
590 }
591
592 /**
593  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
594  * @wbc: writeback_control of the just finished writeback
595  *
596  * To be called after a writeback attempt of an inode finishes and undoes
597  * wbc_attach_and_unlock_inode().  Can be called under any context.
598  *
599  * As concurrent write sharing of an inode is expected to be very rare and
600  * memcg only tracks page ownership on first-use basis severely confining
601  * the usefulness of such sharing, cgroup writeback tracks ownership
602  * per-inode.  While the support for concurrent write sharing of an inode
603  * is deemed unnecessary, an inode being written to by different cgroups at
604  * different points in time is a lot more common, and, more importantly,
605  * charging only by first-use can too readily lead to grossly incorrect
606  * behaviors (single foreign page can lead to gigabytes of writeback to be
607  * incorrectly attributed).
608  *
609  * To resolve this issue, cgroup writeback detects the majority dirtier of
610  * an inode and transfers the ownership to it.  To avoid unnnecessary
611  * oscillation, the detection mechanism keeps track of history and gives
612  * out the switch verdict only if the foreign usage pattern is stable over
613  * a certain amount of time and/or writeback attempts.
614  *
615  * On each writeback attempt, @wbc tries to detect the majority writer
616  * using Boyer-Moore majority vote algorithm.  In addition to the byte
617  * count from the majority voting, it also counts the bytes written for the
618  * current wb and the last round's winner wb (max of last round's current
619  * wb, the winner from two rounds ago, and the last round's majority
620  * candidate).  Keeping track of the historical winner helps the algorithm
621  * to semi-reliably detect the most active writer even when it's not the
622  * absolute majority.
623  *
624  * Once the winner of the round is determined, whether the winner is
625  * foreign or not and how much IO time the round consumed is recorded in
626  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
627  * over a certain threshold, the switch verdict is given.
628  */
629 void wbc_detach_inode(struct writeback_control *wbc)
630 {
631         struct bdi_writeback *wb = wbc->wb;
632         struct inode *inode = wbc->inode;
633         unsigned long avg_time, max_bytes, max_time;
634         u16 history;
635         int max_id;
636
637         if (!wb)
638                 return;
639
640         history = inode->i_wb_frn_history;
641         avg_time = inode->i_wb_frn_avg_time;
642
643         /* pick the winner of this round */
644         if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
645             wbc->wb_bytes >= wbc->wb_tcand_bytes) {
646                 max_id = wbc->wb_id;
647                 max_bytes = wbc->wb_bytes;
648         } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
649                 max_id = wbc->wb_lcand_id;
650                 max_bytes = wbc->wb_lcand_bytes;
651         } else {
652                 max_id = wbc->wb_tcand_id;
653                 max_bytes = wbc->wb_tcand_bytes;
654         }
655
656         /*
657          * Calculate the amount of IO time the winner consumed and fold it
658          * into the running average kept per inode.  If the consumed IO
659          * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
660          * deciding whether to switch or not.  This is to prevent one-off
661          * small dirtiers from skewing the verdict.
662          */
663         max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
664                                 wb->avg_write_bandwidth);
665         if (avg_time)
666                 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
667                             (avg_time >> WB_FRN_TIME_AVG_SHIFT);
668         else
669                 avg_time = max_time;    /* immediate catch up on first run */
670
671         if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
672                 int slots;
673
674                 /*
675                  * The switch verdict is reached if foreign wb's consume
676                  * more than a certain proportion of IO time in a
677                  * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
678                  * history mask where each bit represents one sixteenth of
679                  * the period.  Determine the number of slots to shift into
680                  * history from @max_time.
681                  */
682                 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
683                             (unsigned long)WB_FRN_HIST_MAX_SLOTS);
684                 history <<= slots;
685                 if (wbc->wb_id != max_id)
686                         history |= (1U << slots) - 1;
687
688                 /*
689                  * Switch if the current wb isn't the consistent winner.
690                  * If there are multiple closely competing dirtiers, the
691                  * inode may switch across them repeatedly over time, which
692                  * is okay.  The main goal is avoiding keeping an inode on
693                  * the wrong wb for an extended period of time.
694                  */
695                 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
696                         inode_switch_wbs(inode, max_id);
697         }
698
699         /*
700          * Multiple instances of this function may race to update the
701          * following fields but we don't mind occassional inaccuracies.
702          */
703         inode->i_wb_frn_winner = max_id;
704         inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
705         inode->i_wb_frn_history = history;
706
707         wb_put(wbc->wb);
708         wbc->wb = NULL;
709 }
710
711 /**
712  * wbc_account_io - account IO issued during writeback
713  * @wbc: writeback_control of the writeback in progress
714  * @page: page being written out
715  * @bytes: number of bytes being written out
716  *
717  * @bytes from @page are about to written out during the writeback
718  * controlled by @wbc.  Keep the book for foreign inode detection.  See
719  * wbc_detach_inode().
720  */
721 void wbc_account_io(struct writeback_control *wbc, struct page *page,
722                     size_t bytes)
723 {
724         struct cgroup_subsys_state *css;
725         int id;
726
727         /*
728          * pageout() path doesn't attach @wbc to the inode being written
729          * out.  This is intentional as we don't want the function to block
730          * behind a slow cgroup.  Ultimately, we want pageout() to kick off
731          * regular writeback instead of writing things out itself.
732          */
733         if (!wbc->wb)
734                 return;
735
736         css = mem_cgroup_css_from_page(page);
737         /* dead cgroups shouldn't contribute to inode ownership arbitration */
738         if (!(css->flags & CSS_ONLINE))
739                 return;
740
741         id = css->id;
742
743         if (id == wbc->wb_id) {
744                 wbc->wb_bytes += bytes;
745                 return;
746         }
747
748         if (id == wbc->wb_lcand_id)
749                 wbc->wb_lcand_bytes += bytes;
750
751         /* Boyer-Moore majority vote algorithm */
752         if (!wbc->wb_tcand_bytes)
753                 wbc->wb_tcand_id = id;
754         if (id == wbc->wb_tcand_id)
755                 wbc->wb_tcand_bytes += bytes;
756         else
757                 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
758 }
759 EXPORT_SYMBOL_GPL(wbc_account_io);
760
761 /**
762  * inode_congested - test whether an inode is congested
763  * @inode: inode to test for congestion (may be NULL)
764  * @cong_bits: mask of WB_[a]sync_congested bits to test
765  *
766  * Tests whether @inode is congested.  @cong_bits is the mask of congestion
767  * bits to test and the return value is the mask of set bits.
768  *
769  * If cgroup writeback is enabled for @inode, the congestion state is
770  * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
771  * associated with @inode is congested; otherwise, the root wb's congestion
772  * state is used.
773  *
774  * @inode is allowed to be NULL as this function is often called on
775  * mapping->host which is NULL for the swapper space.
776  */
777 int inode_congested(struct inode *inode, int cong_bits)
778 {
779         /*
780          * Once set, ->i_wb never becomes NULL while the inode is alive.
781          * Start transaction iff ->i_wb is visible.
782          */
783         if (inode && inode_to_wb_is_valid(inode)) {
784                 struct bdi_writeback *wb;
785                 struct wb_lock_cookie lock_cookie = {};
786                 bool congested;
787
788                 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
789                 congested = wb_congested(wb, cong_bits);
790                 unlocked_inode_to_wb_end(inode, &lock_cookie);
791                 return congested;
792         }
793
794         return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
795 }
796 EXPORT_SYMBOL_GPL(inode_congested);
797
798 /**
799  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
800  * @wb: target bdi_writeback to split @nr_pages to
801  * @nr_pages: number of pages to write for the whole bdi
802  *
803  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
804  * relation to the total write bandwidth of all wb's w/ dirty inodes on
805  * @wb->bdi.
806  */
807 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
808 {
809         unsigned long this_bw = wb->avg_write_bandwidth;
810         unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
811
812         if (nr_pages == LONG_MAX)
813                 return LONG_MAX;
814
815         /*
816          * This may be called on clean wb's and proportional distribution
817          * may not make sense, just use the original @nr_pages in those
818          * cases.  In general, we wanna err on the side of writing more.
819          */
820         if (!tot_bw || this_bw >= tot_bw)
821                 return nr_pages;
822         else
823                 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
824 }
825
826 /**
827  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
828  * @bdi: target backing_dev_info
829  * @base_work: wb_writeback_work to issue
830  * @skip_if_busy: skip wb's which already have writeback in progress
831  *
832  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
833  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
834  * distributed to the busy wbs according to each wb's proportion in the
835  * total active write bandwidth of @bdi.
836  */
837 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
838                                   struct wb_writeback_work *base_work,
839                                   bool skip_if_busy)
840 {
841         struct bdi_writeback *last_wb = NULL;
842         struct bdi_writeback *wb = list_entry(&bdi->wb_list,
843                                               struct bdi_writeback, bdi_node);
844
845         might_sleep();
846 restart:
847         rcu_read_lock();
848         list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
849                 DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
850                 struct wb_writeback_work fallback_work;
851                 struct wb_writeback_work *work;
852                 long nr_pages;
853
854                 if (last_wb) {
855                         wb_put(last_wb);
856                         last_wb = NULL;
857                 }
858
859                 /* SYNC_ALL writes out I_DIRTY_TIME too */
860                 if (!wb_has_dirty_io(wb) &&
861                     (base_work->sync_mode == WB_SYNC_NONE ||
862                      list_empty(&wb->b_dirty_time)))
863                         continue;
864                 if (skip_if_busy && writeback_in_progress(wb))
865                         continue;
866
867                 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
868
869                 work = kmalloc(sizeof(*work), GFP_ATOMIC);
870                 if (work) {
871                         *work = *base_work;
872                         work->nr_pages = nr_pages;
873                         work->auto_free = 1;
874                         wb_queue_work(wb, work);
875                         continue;
876                 }
877
878                 /* alloc failed, execute synchronously using on-stack fallback */
879                 work = &fallback_work;
880                 *work = *base_work;
881                 work->nr_pages = nr_pages;
882                 work->auto_free = 0;
883                 work->done = &fallback_work_done;
884
885                 wb_queue_work(wb, work);
886
887                 /*
888                  * Pin @wb so that it stays on @bdi->wb_list.  This allows
889                  * continuing iteration from @wb after dropping and
890                  * regrabbing rcu read lock.
891                  */
892                 wb_get(wb);
893                 last_wb = wb;
894
895                 rcu_read_unlock();
896                 wb_wait_for_completion(bdi, &fallback_work_done);
897                 goto restart;
898         }
899         rcu_read_unlock();
900
901         if (last_wb)
902                 wb_put(last_wb);
903 }
904
905 /**
906  * cgroup_writeback_umount - flush inode wb switches for umount
907  *
908  * This function is called when a super_block is about to be destroyed and
909  * flushes in-flight inode wb switches.  An inode wb switch goes through
910  * RCU and then workqueue, so the two need to be flushed in order to ensure
911  * that all previously scheduled switches are finished.  As wb switches are
912  * rare occurrences and synchronize_rcu() can take a while, perform
913  * flushing iff wb switches are in flight.
914  */
915 void cgroup_writeback_umount(void)
916 {
917         if (atomic_read(&isw_nr_in_flight)) {
918                 /*
919                  * Use rcu_barrier() to wait for all pending callbacks to
920                  * ensure that all in-flight wb switches are in the workqueue.
921                  */
922                 rcu_barrier();
923                 flush_workqueue(isw_wq);
924         }
925 }
926
927 static int __init cgroup_writeback_init(void)
928 {
929         isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
930         if (!isw_wq)
931                 return -ENOMEM;
932         return 0;
933 }
934 fs_initcall(cgroup_writeback_init);
935
936 #else   /* CONFIG_CGROUP_WRITEBACK */
937
938 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
939 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
940
941 static struct bdi_writeback *
942 locked_inode_to_wb_and_lock_list(struct inode *inode)
943         __releases(&inode->i_lock)
944         __acquires(&wb->list_lock)
945 {
946         struct bdi_writeback *wb = inode_to_wb(inode);
947
948         spin_unlock(&inode->i_lock);
949         spin_lock(&wb->list_lock);
950         return wb;
951 }
952
953 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
954         __acquires(&wb->list_lock)
955 {
956         struct bdi_writeback *wb = inode_to_wb(inode);
957
958         spin_lock(&wb->list_lock);
959         return wb;
960 }
961
962 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
963 {
964         return nr_pages;
965 }
966
967 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
968                                   struct wb_writeback_work *base_work,
969                                   bool skip_if_busy)
970 {
971         might_sleep();
972
973         if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
974                 base_work->auto_free = 0;
975                 wb_queue_work(&bdi->wb, base_work);
976         }
977 }
978
979 #endif  /* CONFIG_CGROUP_WRITEBACK */
980
981 /*
982  * Add in the number of potentially dirty inodes, because each inode
983  * write can dirty pagecache in the underlying blockdev.
984  */
985 static unsigned long get_nr_dirty_pages(void)
986 {
987         return global_node_page_state(NR_FILE_DIRTY) +
988                 global_node_page_state(NR_UNSTABLE_NFS) +
989                 get_nr_dirty_inodes();
990 }
991
992 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
993 {
994         if (!wb_has_dirty_io(wb))
995                 return;
996
997         /*
998          * All callers of this function want to start writeback of all
999          * dirty pages. Places like vmscan can call this at a very
1000          * high frequency, causing pointless allocations of tons of
1001          * work items and keeping the flusher threads busy retrieving
1002          * that work. Ensure that we only allow one of them pending and
1003          * inflight at the time.
1004          */
1005         if (test_bit(WB_start_all, &wb->state) ||
1006             test_and_set_bit(WB_start_all, &wb->state))
1007                 return;
1008
1009         wb->start_all_reason = reason;
1010         wb_wakeup(wb);
1011 }
1012
1013 /**
1014  * wb_start_background_writeback - start background writeback
1015  * @wb: bdi_writback to write from
1016  *
1017  * Description:
1018  *   This makes sure WB_SYNC_NONE background writeback happens. When
1019  *   this function returns, it is only guaranteed that for given wb
1020  *   some IO is happening if we are over background dirty threshold.
1021  *   Caller need not hold sb s_umount semaphore.
1022  */
1023 void wb_start_background_writeback(struct bdi_writeback *wb)
1024 {
1025         /*
1026          * We just wake up the flusher thread. It will perform background
1027          * writeback as soon as there is no other work to do.
1028          */
1029         trace_writeback_wake_background(wb);
1030         wb_wakeup(wb);
1031 }
1032
1033 /*
1034  * Remove the inode from the writeback list it is on.
1035  */
1036 void inode_io_list_del(struct inode *inode)
1037 {
1038         struct bdi_writeback *wb;
1039
1040         wb = inode_to_wb_and_lock_list(inode);
1041         inode_io_list_del_locked(inode, wb);
1042         spin_unlock(&wb->list_lock);
1043 }
1044
1045 /*
1046  * mark an inode as under writeback on the sb
1047  */
1048 void sb_mark_inode_writeback(struct inode *inode)
1049 {
1050         struct super_block *sb = inode->i_sb;
1051         unsigned long flags;
1052
1053         if (list_empty(&inode->i_wb_list)) {
1054                 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1055                 if (list_empty(&inode->i_wb_list)) {
1056                         list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1057                         trace_sb_mark_inode_writeback(inode);
1058                 }
1059                 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1060         }
1061 }
1062
1063 /*
1064  * clear an inode as under writeback on the sb
1065  */
1066 void sb_clear_inode_writeback(struct inode *inode)
1067 {
1068         struct super_block *sb = inode->i_sb;
1069         unsigned long flags;
1070
1071         if (!list_empty(&inode->i_wb_list)) {
1072                 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1073                 if (!list_empty(&inode->i_wb_list)) {
1074                         list_del_init(&inode->i_wb_list);
1075                         trace_sb_clear_inode_writeback(inode);
1076                 }
1077                 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1078         }
1079 }
1080
1081 /*
1082  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1083  * furthest end of its superblock's dirty-inode list.
1084  *
1085  * Before stamping the inode's ->dirtied_when, we check to see whether it is
1086  * already the most-recently-dirtied inode on the b_dirty list.  If that is
1087  * the case then the inode must have been redirtied while it was being written
1088  * out and we don't reset its dirtied_when.
1089  */
1090 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1091 {
1092         if (!list_empty(&wb->b_dirty)) {
1093                 struct inode *tail;
1094
1095                 tail = wb_inode(wb->b_dirty.next);
1096                 if (time_before(inode->dirtied_when, tail->dirtied_when))
1097                         inode->dirtied_when = jiffies;
1098         }
1099         inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1100 }
1101
1102 /*
1103  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1104  */
1105 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1106 {
1107         inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1108 }
1109
1110 static void inode_sync_complete(struct inode *inode)
1111 {
1112         inode->i_state &= ~I_SYNC;
1113         /* If inode is clean an unused, put it into LRU now... */
1114         inode_add_lru(inode);
1115         /* Waiters must see I_SYNC cleared before being woken up */
1116         smp_mb();
1117         wake_up_bit(&inode->i_state, __I_SYNC);
1118 }
1119
1120 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1121 {
1122         bool ret = time_after(inode->dirtied_when, t);
1123 #ifndef CONFIG_64BIT
1124         /*
1125          * For inodes being constantly redirtied, dirtied_when can get stuck.
1126          * It _appears_ to be in the future, but is actually in distant past.
1127          * This test is necessary to prevent such wrapped-around relative times
1128          * from permanently stopping the whole bdi writeback.
1129          */
1130         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1131 #endif
1132         return ret;
1133 }
1134
1135 #define EXPIRE_DIRTY_ATIME 0x0001
1136
1137 /*
1138  * Move expired (dirtied before work->older_than_this) dirty inodes from
1139  * @delaying_queue to @dispatch_queue.
1140  */
1141 static int move_expired_inodes(struct list_head *delaying_queue,
1142                                struct list_head *dispatch_queue,
1143                                int flags,
1144                                struct wb_writeback_work *work)
1145 {
1146         unsigned long *older_than_this = NULL;
1147         unsigned long expire_time;
1148         LIST_HEAD(tmp);
1149         struct list_head *pos, *node;
1150         struct super_block *sb = NULL;
1151         struct inode *inode;
1152         int do_sb_sort = 0;
1153         int moved = 0;
1154
1155         if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1156                 older_than_this = work->older_than_this;
1157         else if (!work->for_sync) {
1158                 expire_time = jiffies - (dirtytime_expire_interval * HZ);
1159                 older_than_this = &expire_time;
1160         }
1161         while (!list_empty(delaying_queue)) {
1162                 inode = wb_inode(delaying_queue->prev);
1163                 if (older_than_this &&
1164                     inode_dirtied_after(inode, *older_than_this))
1165                         break;
1166                 list_move(&inode->i_io_list, &tmp);
1167                 moved++;
1168                 if (flags & EXPIRE_DIRTY_ATIME)
1169                         set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1170                 if (sb_is_blkdev_sb(inode->i_sb))
1171                         continue;
1172                 if (sb && sb != inode->i_sb)
1173                         do_sb_sort = 1;
1174                 sb = inode->i_sb;
1175         }
1176
1177         /* just one sb in list, splice to dispatch_queue and we're done */
1178         if (!do_sb_sort) {
1179                 list_splice(&tmp, dispatch_queue);
1180                 goto out;
1181         }
1182
1183         /* Move inodes from one superblock together */
1184         while (!list_empty(&tmp)) {
1185                 sb = wb_inode(tmp.prev)->i_sb;
1186                 list_for_each_prev_safe(pos, node, &tmp) {
1187                         inode = wb_inode(pos);
1188                         if (inode->i_sb == sb)
1189                                 list_move(&inode->i_io_list, dispatch_queue);
1190                 }
1191         }
1192 out:
1193         return moved;
1194 }
1195
1196 /*
1197  * Queue all expired dirty inodes for io, eldest first.
1198  * Before
1199  *         newly dirtied     b_dirty    b_io    b_more_io
1200  *         =============>    gf         edc     BA
1201  * After
1202  *         newly dirtied     b_dirty    b_io    b_more_io
1203  *         =============>    g          fBAedc
1204  *                                           |
1205  *                                           +--> dequeue for IO
1206  */
1207 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1208 {
1209         int moved;
1210
1211         assert_spin_locked(&wb->list_lock);
1212         list_splice_init(&wb->b_more_io, &wb->b_io);
1213         moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1214         moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1215                                      EXPIRE_DIRTY_ATIME, work);
1216         if (moved)
1217                 wb_io_lists_populated(wb);
1218         trace_writeback_queue_io(wb, work, moved);
1219 }
1220
1221 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1222 {
1223         int ret;
1224
1225         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1226                 trace_writeback_write_inode_start(inode, wbc);
1227                 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1228                 trace_writeback_write_inode(inode, wbc);
1229                 return ret;
1230         }
1231         return 0;
1232 }
1233
1234 /*
1235  * Wait for writeback on an inode to complete. Called with i_lock held.
1236  * Caller must make sure inode cannot go away when we drop i_lock.
1237  */
1238 static void __inode_wait_for_writeback(struct inode *inode)
1239         __releases(inode->i_lock)
1240         __acquires(inode->i_lock)
1241 {
1242         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1243         wait_queue_head_t *wqh;
1244
1245         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1246         while (inode->i_state & I_SYNC) {
1247                 spin_unlock(&inode->i_lock);
1248                 __wait_on_bit(wqh, &wq, bit_wait,
1249                               TASK_UNINTERRUPTIBLE);
1250                 spin_lock(&inode->i_lock);
1251         }
1252 }
1253
1254 /*
1255  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1256  */
1257 void inode_wait_for_writeback(struct inode *inode)
1258 {
1259         spin_lock(&inode->i_lock);
1260         __inode_wait_for_writeback(inode);
1261         spin_unlock(&inode->i_lock);
1262 }
1263
1264 /*
1265  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1266  * held and drops it. It is aimed for callers not holding any inode reference
1267  * so once i_lock is dropped, inode can go away.
1268  */
1269 static void inode_sleep_on_writeback(struct inode *inode)
1270         __releases(inode->i_lock)
1271 {
1272         DEFINE_WAIT(wait);
1273         wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1274         int sleep;
1275
1276         prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1277         sleep = inode->i_state & I_SYNC;
1278         spin_unlock(&inode->i_lock);
1279         if (sleep)
1280                 schedule();
1281         finish_wait(wqh, &wait);
1282 }
1283
1284 /*
1285  * Find proper writeback list for the inode depending on its current state and
1286  * possibly also change of its state while we were doing writeback.  Here we
1287  * handle things such as livelock prevention or fairness of writeback among
1288  * inodes. This function can be called only by flusher thread - noone else
1289  * processes all inodes in writeback lists and requeueing inodes behind flusher
1290  * thread's back can have unexpected consequences.
1291  */
1292 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1293                           struct writeback_control *wbc)
1294 {
1295         if (inode->i_state & I_FREEING)
1296                 return;
1297
1298         /*
1299          * Sync livelock prevention. Each inode is tagged and synced in one
1300          * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1301          * the dirty time to prevent enqueue and sync it again.
1302          */
1303         if ((inode->i_state & I_DIRTY) &&
1304             (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1305                 inode->dirtied_when = jiffies;
1306
1307         if (wbc->pages_skipped) {
1308                 /*
1309                  * writeback is not making progress due to locked
1310                  * buffers. Skip this inode for now.
1311                  */
1312                 redirty_tail(inode, wb);
1313                 return;
1314         }
1315
1316         if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1317                 /*
1318                  * We didn't write back all the pages.  nfs_writepages()
1319                  * sometimes bales out without doing anything.
1320                  */
1321                 if (wbc->nr_to_write <= 0) {
1322                         /* Slice used up. Queue for next turn. */
1323                         requeue_io(inode, wb);
1324                 } else {
1325                         /*
1326                          * Writeback blocked by something other than
1327                          * congestion. Delay the inode for some time to
1328                          * avoid spinning on the CPU (100% iowait)
1329                          * retrying writeback of the dirty page/inode
1330                          * that cannot be performed immediately.
1331                          */
1332                         redirty_tail(inode, wb);
1333                 }
1334         } else if (inode->i_state & I_DIRTY) {
1335                 /*
1336                  * Filesystems can dirty the inode during writeback operations,
1337                  * such as delayed allocation during submission or metadata
1338                  * updates after data IO completion.
1339                  */
1340                 redirty_tail(inode, wb);
1341         } else if (inode->i_state & I_DIRTY_TIME) {
1342                 inode->dirtied_when = jiffies;
1343                 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1344         } else {
1345                 /* The inode is clean. Remove from writeback lists. */
1346                 inode_io_list_del_locked(inode, wb);
1347         }
1348 }
1349
1350 /*
1351  * Write out an inode and its dirty pages. Do not update the writeback list
1352  * linkage. That is left to the caller. The caller is also responsible for
1353  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1354  */
1355 static int
1356 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1357 {
1358         struct address_space *mapping = inode->i_mapping;
1359         long nr_to_write = wbc->nr_to_write;
1360         unsigned dirty;
1361         int ret;
1362
1363         WARN_ON(!(inode->i_state & I_SYNC));
1364
1365         trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1366
1367         ret = do_writepages(mapping, wbc);
1368
1369         /*
1370          * Make sure to wait on the data before writing out the metadata.
1371          * This is important for filesystems that modify metadata on data
1372          * I/O completion. We don't do it for sync(2) writeback because it has a
1373          * separate, external IO completion path and ->sync_fs for guaranteeing
1374          * inode metadata is written back correctly.
1375          */
1376         if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1377                 int err = filemap_fdatawait(mapping);
1378                 if (ret == 0)
1379                         ret = err;
1380         }
1381
1382         /*
1383          * Some filesystems may redirty the inode during the writeback
1384          * due to delalloc, clear dirty metadata flags right before
1385          * write_inode()
1386          */
1387         spin_lock(&inode->i_lock);
1388
1389         dirty = inode->i_state & I_DIRTY;
1390         if (inode->i_state & I_DIRTY_TIME) {
1391                 if ((dirty & I_DIRTY_INODE) ||
1392                     wbc->sync_mode == WB_SYNC_ALL ||
1393                     unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1394                     unlikely(time_after(jiffies,
1395                                         (inode->dirtied_time_when +
1396                                          dirtytime_expire_interval * HZ)))) {
1397                         dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1398                         trace_writeback_lazytime(inode);
1399                 }
1400         } else
1401                 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1402         inode->i_state &= ~dirty;
1403
1404         /*
1405          * Paired with smp_mb() in __mark_inode_dirty().  This allows
1406          * __mark_inode_dirty() to test i_state without grabbing i_lock -
1407          * either they see the I_DIRTY bits cleared or we see the dirtied
1408          * inode.
1409          *
1410          * I_DIRTY_PAGES is always cleared together above even if @mapping
1411          * still has dirty pages.  The flag is reinstated after smp_mb() if
1412          * necessary.  This guarantees that either __mark_inode_dirty()
1413          * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1414          */
1415         smp_mb();
1416
1417         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1418                 inode->i_state |= I_DIRTY_PAGES;
1419
1420         spin_unlock(&inode->i_lock);
1421
1422         if (dirty & I_DIRTY_TIME)
1423                 mark_inode_dirty_sync(inode);
1424         /* Don't write the inode if only I_DIRTY_PAGES was set */
1425         if (dirty & ~I_DIRTY_PAGES) {
1426                 int err = write_inode(inode, wbc);
1427                 if (ret == 0)
1428                         ret = err;
1429         }
1430         trace_writeback_single_inode(inode, wbc, nr_to_write);
1431         return ret;
1432 }
1433
1434 /*
1435  * Write out an inode's dirty pages. Either the caller has an active reference
1436  * on the inode or the inode has I_WILL_FREE set.
1437  *
1438  * This function is designed to be called for writing back one inode which
1439  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1440  * and does more profound writeback list handling in writeback_sb_inodes().
1441  */
1442 static int writeback_single_inode(struct inode *inode,
1443                                   struct writeback_control *wbc)
1444 {
1445         struct bdi_writeback *wb;
1446         int ret = 0;
1447
1448         spin_lock(&inode->i_lock);
1449         if (!atomic_read(&inode->i_count))
1450                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1451         else
1452                 WARN_ON(inode->i_state & I_WILL_FREE);
1453
1454         if (inode->i_state & I_SYNC) {
1455                 if (wbc->sync_mode != WB_SYNC_ALL)
1456                         goto out;
1457                 /*
1458                  * It's a data-integrity sync. We must wait. Since callers hold
1459                  * inode reference or inode has I_WILL_FREE set, it cannot go
1460                  * away under us.
1461                  */
1462                 __inode_wait_for_writeback(inode);
1463         }
1464         WARN_ON(inode->i_state & I_SYNC);
1465         /*
1466          * Skip inode if it is clean and we have no outstanding writeback in
1467          * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1468          * function since flusher thread may be doing for example sync in
1469          * parallel and if we move the inode, it could get skipped. So here we
1470          * make sure inode is on some writeback list and leave it there unless
1471          * we have completely cleaned the inode.
1472          */
1473         if (!(inode->i_state & I_DIRTY_ALL) &&
1474             (wbc->sync_mode != WB_SYNC_ALL ||
1475              !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1476                 goto out;
1477         inode->i_state |= I_SYNC;
1478         wbc_attach_and_unlock_inode(wbc, inode);
1479
1480         ret = __writeback_single_inode(inode, wbc);
1481
1482         wbc_detach_inode(wbc);
1483
1484         wb = inode_to_wb_and_lock_list(inode);
1485         spin_lock(&inode->i_lock);
1486         /*
1487          * If inode is clean, remove it from writeback lists. Otherwise don't
1488          * touch it. See comment above for explanation.
1489          */
1490         if (!(inode->i_state & I_DIRTY_ALL))
1491                 inode_io_list_del_locked(inode, wb);
1492         spin_unlock(&wb->list_lock);
1493         inode_sync_complete(inode);
1494 out:
1495         spin_unlock(&inode->i_lock);
1496         return ret;
1497 }
1498
1499 static long writeback_chunk_size(struct bdi_writeback *wb,
1500                                  struct wb_writeback_work *work)
1501 {
1502         long pages;
1503
1504         /*
1505          * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1506          * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1507          * here avoids calling into writeback_inodes_wb() more than once.
1508          *
1509          * The intended call sequence for WB_SYNC_ALL writeback is:
1510          *
1511          *      wb_writeback()
1512          *          writeback_sb_inodes()       <== called only once
1513          *              write_cache_pages()     <== called once for each inode
1514          *                   (quickly) tag currently dirty pages
1515          *                   (maybe slowly) sync all tagged pages
1516          */
1517         if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1518                 pages = LONG_MAX;
1519         else {
1520                 pages = min(wb->avg_write_bandwidth / 2,
1521                             global_wb_domain.dirty_limit / DIRTY_SCOPE);
1522                 pages = min(pages, work->nr_pages);
1523                 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1524                                    MIN_WRITEBACK_PAGES);
1525         }
1526
1527         return pages;
1528 }
1529
1530 /*
1531  * Write a portion of b_io inodes which belong to @sb.
1532  *
1533  * Return the number of pages and/or inodes written.
1534  *
1535  * NOTE! This is called with wb->list_lock held, and will
1536  * unlock and relock that for each inode it ends up doing
1537  * IO for.
1538  */
1539 static long writeback_sb_inodes(struct super_block *sb,
1540                                 struct bdi_writeback *wb,
1541                                 struct wb_writeback_work *work)
1542 {
1543         struct writeback_control wbc = {
1544                 .sync_mode              = work->sync_mode,
1545                 .tagged_writepages      = work->tagged_writepages,
1546                 .for_kupdate            = work->for_kupdate,
1547                 .for_background         = work->for_background,
1548                 .for_sync               = work->for_sync,
1549                 .range_cyclic           = work->range_cyclic,
1550                 .range_start            = 0,
1551                 .range_end              = LLONG_MAX,
1552         };
1553         unsigned long start_time = jiffies;
1554         long write_chunk;
1555         long wrote = 0;  /* count both pages and inodes */
1556
1557         while (!list_empty(&wb->b_io)) {
1558                 struct inode *inode = wb_inode(wb->b_io.prev);
1559                 struct bdi_writeback *tmp_wb;
1560
1561                 if (inode->i_sb != sb) {
1562                         if (work->sb) {
1563                                 /*
1564                                  * We only want to write back data for this
1565                                  * superblock, move all inodes not belonging
1566                                  * to it back onto the dirty list.
1567                                  */
1568                                 redirty_tail(inode, wb);
1569                                 continue;
1570                         }
1571
1572                         /*
1573                          * The inode belongs to a different superblock.
1574                          * Bounce back to the caller to unpin this and
1575                          * pin the next superblock.
1576                          */
1577                         break;
1578                 }
1579
1580                 /*
1581                  * Don't bother with new inodes or inodes being freed, first
1582                  * kind does not need periodic writeout yet, and for the latter
1583                  * kind writeout is handled by the freer.
1584                  */
1585                 spin_lock(&inode->i_lock);
1586                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1587                         spin_unlock(&inode->i_lock);
1588                         redirty_tail(inode, wb);
1589                         continue;
1590                 }
1591                 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1592                         /*
1593                          * If this inode is locked for writeback and we are not
1594                          * doing writeback-for-data-integrity, move it to
1595                          * b_more_io so that writeback can proceed with the
1596                          * other inodes on s_io.
1597                          *
1598                          * We'll have another go at writing back this inode
1599                          * when we completed a full scan of b_io.
1600                          */
1601                         spin_unlock(&inode->i_lock);
1602                         requeue_io(inode, wb);
1603                         trace_writeback_sb_inodes_requeue(inode);
1604                         continue;
1605                 }
1606                 spin_unlock(&wb->list_lock);
1607
1608                 /*
1609                  * We already requeued the inode if it had I_SYNC set and we
1610                  * are doing WB_SYNC_NONE writeback. So this catches only the
1611                  * WB_SYNC_ALL case.
1612                  */
1613                 if (inode->i_state & I_SYNC) {
1614                         /* Wait for I_SYNC. This function drops i_lock... */
1615                         inode_sleep_on_writeback(inode);
1616                         /* Inode may be gone, start again */
1617                         spin_lock(&wb->list_lock);
1618                         continue;
1619                 }
1620                 inode->i_state |= I_SYNC;
1621                 wbc_attach_and_unlock_inode(&wbc, inode);
1622
1623                 write_chunk = writeback_chunk_size(wb, work);
1624                 wbc.nr_to_write = write_chunk;
1625                 wbc.pages_skipped = 0;
1626
1627                 /*
1628                  * We use I_SYNC to pin the inode in memory. While it is set
1629                  * evict_inode() will wait so the inode cannot be freed.
1630                  */
1631                 __writeback_single_inode(inode, &wbc);
1632
1633                 wbc_detach_inode(&wbc);
1634                 work->nr_pages -= write_chunk - wbc.nr_to_write;
1635                 wrote += write_chunk - wbc.nr_to_write;
1636
1637                 if (need_resched()) {
1638                         /*
1639                          * We're trying to balance between building up a nice
1640                          * long list of IOs to improve our merge rate, and
1641                          * getting those IOs out quickly for anyone throttling
1642                          * in balance_dirty_pages().  cond_resched() doesn't
1643                          * unplug, so get our IOs out the door before we
1644                          * give up the CPU.
1645                          */
1646                         blk_flush_plug(current);
1647                         cond_resched();
1648                 }
1649
1650                 /*
1651                  * Requeue @inode if still dirty.  Be careful as @inode may
1652                  * have been switched to another wb in the meantime.
1653                  */
1654                 tmp_wb = inode_to_wb_and_lock_list(inode);
1655                 spin_lock(&inode->i_lock);
1656                 if (!(inode->i_state & I_DIRTY_ALL))
1657                         wrote++;
1658                 requeue_inode(inode, tmp_wb, &wbc);
1659                 inode_sync_complete(inode);
1660                 spin_unlock(&inode->i_lock);
1661
1662                 if (unlikely(tmp_wb != wb)) {
1663                         spin_unlock(&tmp_wb->list_lock);
1664                         spin_lock(&wb->list_lock);
1665                 }
1666
1667                 /*
1668                  * bail out to wb_writeback() often enough to check
1669                  * background threshold and other termination conditions.
1670                  */
1671                 if (wrote) {
1672                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1673                                 break;
1674                         if (work->nr_pages <= 0)
1675                                 break;
1676                 }
1677         }
1678         return wrote;
1679 }
1680
1681 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1682                                   struct wb_writeback_work *work)
1683 {
1684         unsigned long start_time = jiffies;
1685         long wrote = 0;
1686
1687         while (!list_empty(&wb->b_io)) {
1688                 struct inode *inode = wb_inode(wb->b_io.prev);
1689                 struct super_block *sb = inode->i_sb;
1690
1691                 if (!trylock_super(sb)) {
1692                         /*
1693                          * trylock_super() may fail consistently due to
1694                          * s_umount being grabbed by someone else. Don't use
1695                          * requeue_io() to avoid busy retrying the inode/sb.
1696                          */
1697                         redirty_tail(inode, wb);
1698                         continue;
1699                 }
1700                 wrote += writeback_sb_inodes(sb, wb, work);
1701                 up_read(&sb->s_umount);
1702
1703                 /* refer to the same tests at the end of writeback_sb_inodes */
1704                 if (wrote) {
1705                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1706                                 break;
1707                         if (work->nr_pages <= 0)
1708                                 break;
1709                 }
1710         }
1711         /* Leave any unwritten inodes on b_io */
1712         return wrote;
1713 }
1714
1715 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1716                                 enum wb_reason reason)
1717 {
1718         struct wb_writeback_work work = {
1719                 .nr_pages       = nr_pages,
1720                 .sync_mode      = WB_SYNC_NONE,
1721                 .range_cyclic   = 1,
1722                 .reason         = reason,
1723         };
1724         struct blk_plug plug;
1725
1726         blk_start_plug(&plug);
1727         spin_lock(&wb->list_lock);
1728         if (list_empty(&wb->b_io))
1729                 queue_io(wb, &work);
1730         __writeback_inodes_wb(wb, &work);
1731         spin_unlock(&wb->list_lock);
1732         blk_finish_plug(&plug);
1733
1734         return nr_pages - work.nr_pages;
1735 }
1736
1737 /*
1738  * Explicit flushing or periodic writeback of "old" data.
1739  *
1740  * Define "old": the first time one of an inode's pages is dirtied, we mark the
1741  * dirtying-time in the inode's address_space.  So this periodic writeback code
1742  * just walks the superblock inode list, writing back any inodes which are
1743  * older than a specific point in time.
1744  *
1745  * Try to run once per dirty_writeback_interval.  But if a writeback event
1746  * takes longer than a dirty_writeback_interval interval, then leave a
1747  * one-second gap.
1748  *
1749  * older_than_this takes precedence over nr_to_write.  So we'll only write back
1750  * all dirty pages if they are all attached to "old" mappings.
1751  */
1752 static long wb_writeback(struct bdi_writeback *wb,
1753                          struct wb_writeback_work *work)
1754 {
1755         unsigned long wb_start = jiffies;
1756         long nr_pages = work->nr_pages;
1757         unsigned long oldest_jif;
1758         struct inode *inode;
1759         long progress;
1760         struct blk_plug plug;
1761
1762         oldest_jif = jiffies;
1763         work->older_than_this = &oldest_jif;
1764
1765         blk_start_plug(&plug);
1766         spin_lock(&wb->list_lock);
1767         for (;;) {
1768                 /*
1769                  * Stop writeback when nr_pages has been consumed
1770                  */
1771                 if (work->nr_pages <= 0)
1772                         break;
1773
1774                 /*
1775                  * Background writeout and kupdate-style writeback may
1776                  * run forever. Stop them if there is other work to do
1777                  * so that e.g. sync can proceed. They'll be restarted
1778                  * after the other works are all done.
1779                  */
1780                 if ((work->for_background || work->for_kupdate) &&
1781                     !list_empty(&wb->work_list))
1782                         break;
1783
1784                 /*
1785                  * For background writeout, stop when we are below the
1786                  * background dirty threshold
1787                  */
1788                 if (work->for_background && !wb_over_bg_thresh(wb))
1789                         break;
1790
1791                 /*
1792                  * Kupdate and background works are special and we want to
1793                  * include all inodes that need writing. Livelock avoidance is
1794                  * handled by these works yielding to any other work so we are
1795                  * safe.
1796                  */
1797                 if (work->for_kupdate) {
1798                         oldest_jif = jiffies -
1799                                 msecs_to_jiffies(dirty_expire_interval * 10);
1800                 } else if (work->for_background)
1801                         oldest_jif = jiffies;
1802
1803                 trace_writeback_start(wb, work);
1804                 if (list_empty(&wb->b_io))
1805                         queue_io(wb, work);
1806                 if (work->sb)
1807                         progress = writeback_sb_inodes(work->sb, wb, work);
1808                 else
1809                         progress = __writeback_inodes_wb(wb, work);
1810                 trace_writeback_written(wb, work);
1811
1812                 wb_update_bandwidth(wb, wb_start);
1813
1814                 /*
1815                  * Did we write something? Try for more
1816                  *
1817                  * Dirty inodes are moved to b_io for writeback in batches.
1818                  * The completion of the current batch does not necessarily
1819                  * mean the overall work is done. So we keep looping as long
1820                  * as made some progress on cleaning pages or inodes.
1821                  */
1822                 if (progress)
1823                         continue;
1824                 /*
1825                  * No more inodes for IO, bail
1826                  */
1827                 if (list_empty(&wb->b_more_io))
1828                         break;
1829                 /*
1830                  * Nothing written. Wait for some inode to
1831                  * become available for writeback. Otherwise
1832                  * we'll just busyloop.
1833                  */
1834                 trace_writeback_wait(wb, work);
1835                 inode = wb_inode(wb->b_more_io.prev);
1836                 spin_lock(&inode->i_lock);
1837                 spin_unlock(&wb->list_lock);
1838                 /* This function drops i_lock... */
1839                 inode_sleep_on_writeback(inode);
1840                 spin_lock(&wb->list_lock);
1841         }
1842         spin_unlock(&wb->list_lock);
1843         blk_finish_plug(&plug);
1844
1845         return nr_pages - work->nr_pages;
1846 }
1847
1848 /*
1849  * Return the next wb_writeback_work struct that hasn't been processed yet.
1850  */
1851 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1852 {
1853         struct wb_writeback_work *work = NULL;
1854
1855         spin_lock_bh(&wb->work_lock);
1856         if (!list_empty(&wb->work_list)) {
1857                 work = list_entry(wb->work_list.next,
1858                                   struct wb_writeback_work, list);
1859                 list_del_init(&work->list);
1860         }
1861         spin_unlock_bh(&wb->work_lock);
1862         return work;
1863 }
1864
1865 static long wb_check_background_flush(struct bdi_writeback *wb)
1866 {
1867         if (wb_over_bg_thresh(wb)) {
1868
1869                 struct wb_writeback_work work = {
1870                         .nr_pages       = LONG_MAX,
1871                         .sync_mode      = WB_SYNC_NONE,
1872                         .for_background = 1,
1873                         .range_cyclic   = 1,
1874                         .reason         = WB_REASON_BACKGROUND,
1875                 };
1876
1877                 return wb_writeback(wb, &work);
1878         }
1879
1880         return 0;
1881 }
1882
1883 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1884 {
1885         unsigned long expired;
1886         long nr_pages;
1887
1888         /*
1889          * When set to zero, disable periodic writeback
1890          */
1891         if (!dirty_writeback_interval)
1892                 return 0;
1893
1894         expired = wb->last_old_flush +
1895                         msecs_to_jiffies(dirty_writeback_interval * 10);
1896         if (time_before(jiffies, expired))
1897                 return 0;
1898
1899         wb->last_old_flush = jiffies;
1900         nr_pages = get_nr_dirty_pages();
1901
1902         if (nr_pages) {
1903                 struct wb_writeback_work work = {
1904                         .nr_pages       = nr_pages,
1905                         .sync_mode      = WB_SYNC_NONE,
1906                         .for_kupdate    = 1,
1907                         .range_cyclic   = 1,
1908                         .reason         = WB_REASON_PERIODIC,
1909                 };
1910
1911                 return wb_writeback(wb, &work);
1912         }
1913
1914         return 0;
1915 }
1916
1917 static long wb_check_start_all(struct bdi_writeback *wb)
1918 {
1919         long nr_pages;
1920
1921         if (!test_bit(WB_start_all, &wb->state))
1922                 return 0;
1923
1924         nr_pages = get_nr_dirty_pages();
1925         if (nr_pages) {
1926                 struct wb_writeback_work work = {
1927                         .nr_pages       = wb_split_bdi_pages(wb, nr_pages),
1928                         .sync_mode      = WB_SYNC_NONE,
1929                         .range_cyclic   = 1,
1930                         .reason         = wb->start_all_reason,
1931                 };
1932
1933                 nr_pages = wb_writeback(wb, &work);
1934         }
1935
1936         clear_bit(WB_start_all, &wb->state);
1937         return nr_pages;
1938 }
1939
1940
1941 /*
1942  * Retrieve work items and do the writeback they describe
1943  */
1944 static long wb_do_writeback(struct bdi_writeback *wb)
1945 {
1946         struct wb_writeback_work *work;
1947         long wrote = 0;
1948
1949         set_bit(WB_writeback_running, &wb->state);
1950         while ((work = get_next_work_item(wb)) != NULL) {
1951                 trace_writeback_exec(wb, work);
1952                 wrote += wb_writeback(wb, work);
1953                 finish_writeback_work(wb, work);
1954         }
1955
1956         /*
1957          * Check for a flush-everything request
1958          */
1959         wrote += wb_check_start_all(wb);
1960
1961         /*
1962          * Check for periodic writeback, kupdated() style
1963          */
1964         wrote += wb_check_old_data_flush(wb);
1965         wrote += wb_check_background_flush(wb);
1966         clear_bit(WB_writeback_running, &wb->state);
1967
1968         return wrote;
1969 }
1970
1971 /*
1972  * Handle writeback of dirty data for the device backed by this bdi. Also
1973  * reschedules periodically and does kupdated style flushing.
1974  */
1975 void wb_workfn(struct work_struct *work)
1976 {
1977         struct bdi_writeback *wb = container_of(to_delayed_work(work),
1978                                                 struct bdi_writeback, dwork);
1979         long pages_written;
1980
1981         set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1982         current->flags |= PF_SWAPWRITE;
1983
1984         if (likely(!current_is_workqueue_rescuer() ||
1985                    !test_bit(WB_registered, &wb->state))) {
1986                 /*
1987                  * The normal path.  Keep writing back @wb until its
1988                  * work_list is empty.  Note that this path is also taken
1989                  * if @wb is shutting down even when we're running off the
1990                  * rescuer as work_list needs to be drained.
1991                  */
1992                 do {
1993                         pages_written = wb_do_writeback(wb);
1994                         trace_writeback_pages_written(pages_written);
1995                 } while (!list_empty(&wb->work_list));
1996         } else {
1997                 /*
1998                  * bdi_wq can't get enough workers and we're running off
1999                  * the emergency worker.  Don't hog it.  Hopefully, 1024 is
2000                  * enough for efficient IO.
2001                  */
2002                 pages_written = writeback_inodes_wb(wb, 1024,
2003                                                     WB_REASON_FORKER_THREAD);
2004                 trace_writeback_pages_written(pages_written);
2005         }
2006
2007         if (!list_empty(&wb->work_list))
2008                 wb_wakeup(wb);
2009         else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2010                 wb_wakeup_delayed(wb);
2011
2012         current->flags &= ~PF_SWAPWRITE;
2013 }
2014
2015 /*
2016  * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2017  * write back the whole world.
2018  */
2019 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2020                                          enum wb_reason reason)
2021 {
2022         struct bdi_writeback *wb;
2023
2024         if (!bdi_has_dirty_io(bdi))
2025                 return;
2026
2027         list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2028                 wb_start_writeback(wb, reason);
2029 }
2030
2031 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2032                                 enum wb_reason reason)
2033 {
2034         rcu_read_lock();
2035         __wakeup_flusher_threads_bdi(bdi, reason);
2036         rcu_read_unlock();
2037 }
2038
2039 /*
2040  * Wakeup the flusher threads to start writeback of all currently dirty pages
2041  */
2042 void wakeup_flusher_threads(enum wb_reason reason)
2043 {
2044         struct backing_dev_info *bdi;
2045
2046         /*
2047          * If we are expecting writeback progress we must submit plugged IO.
2048          */
2049         if (blk_needs_flush_plug(current))
2050                 blk_schedule_flush_plug(current);
2051
2052         rcu_read_lock();
2053         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2054                 __wakeup_flusher_threads_bdi(bdi, reason);
2055         rcu_read_unlock();
2056 }
2057
2058 /*
2059  * Wake up bdi's periodically to make sure dirtytime inodes gets
2060  * written back periodically.  We deliberately do *not* check the
2061  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2062  * kernel to be constantly waking up once there are any dirtytime
2063  * inodes on the system.  So instead we define a separate delayed work
2064  * function which gets called much more rarely.  (By default, only
2065  * once every 12 hours.)
2066  *
2067  * If there is any other write activity going on in the file system,
2068  * this function won't be necessary.  But if the only thing that has
2069  * happened on the file system is a dirtytime inode caused by an atime
2070  * update, we need this infrastructure below to make sure that inode
2071  * eventually gets pushed out to disk.
2072  */
2073 static void wakeup_dirtytime_writeback(struct work_struct *w);
2074 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2075
2076 static void wakeup_dirtytime_writeback(struct work_struct *w)
2077 {
2078         struct backing_dev_info *bdi;
2079
2080         rcu_read_lock();
2081         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2082                 struct bdi_writeback *wb;
2083
2084                 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2085                         if (!list_empty(&wb->b_dirty_time))
2086                                 wb_wakeup(wb);
2087         }
2088         rcu_read_unlock();
2089         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2090 }
2091
2092 static int __init start_dirtytime_writeback(void)
2093 {
2094         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2095         return 0;
2096 }
2097 __initcall(start_dirtytime_writeback);
2098
2099 int dirtytime_interval_handler(struct ctl_table *table, int write,
2100                                void __user *buffer, size_t *lenp, loff_t *ppos)
2101 {
2102         int ret;
2103
2104         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2105         if (ret == 0 && write)
2106                 mod_delayed_work(system_wq, &dirtytime_work, 0);
2107         return ret;
2108 }
2109
2110 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2111 {
2112         if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2113                 struct dentry *dentry;
2114                 const char *name = "?";
2115
2116                 dentry = d_find_alias(inode);
2117                 if (dentry) {
2118                         spin_lock(&dentry->d_lock);
2119                         name = (const char *) dentry->d_name.name;
2120                 }
2121                 printk(KERN_DEBUG
2122                        "%s(%d): dirtied inode %lu (%s) on %s\n",
2123                        current->comm, task_pid_nr(current), inode->i_ino,
2124                        name, inode->i_sb->s_id);
2125                 if (dentry) {
2126                         spin_unlock(&dentry->d_lock);
2127                         dput(dentry);
2128                 }
2129         }
2130 }
2131
2132 /**
2133  * __mark_inode_dirty - internal function
2134  *
2135  * @inode: inode to mark
2136  * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2137  *
2138  * Mark an inode as dirty. Callers should use mark_inode_dirty or
2139  * mark_inode_dirty_sync.
2140  *
2141  * Put the inode on the super block's dirty list.
2142  *
2143  * CAREFUL! We mark it dirty unconditionally, but move it onto the
2144  * dirty list only if it is hashed or if it refers to a blockdev.
2145  * If it was not hashed, it will never be added to the dirty list
2146  * even if it is later hashed, as it will have been marked dirty already.
2147  *
2148  * In short, make sure you hash any inodes _before_ you start marking
2149  * them dirty.
2150  *
2151  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2152  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2153  * the kernel-internal blockdev inode represents the dirtying time of the
2154  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2155  * page->mapping->host, so the page-dirtying time is recorded in the internal
2156  * blockdev inode.
2157  */
2158 void __mark_inode_dirty(struct inode *inode, int flags)
2159 {
2160         struct super_block *sb = inode->i_sb;
2161         int dirtytime;
2162
2163         trace_writeback_mark_inode_dirty(inode, flags);
2164
2165         /*
2166          * Don't do this for I_DIRTY_PAGES - that doesn't actually
2167          * dirty the inode itself
2168          */
2169         if (flags & (I_DIRTY_INODE | I_DIRTY_TIME)) {
2170                 trace_writeback_dirty_inode_start(inode, flags);
2171
2172                 if (sb->s_op->dirty_inode)
2173                         sb->s_op->dirty_inode(inode, flags);
2174
2175                 trace_writeback_dirty_inode(inode, flags);
2176         }
2177         if (flags & I_DIRTY_INODE)
2178                 flags &= ~I_DIRTY_TIME;
2179         dirtytime = flags & I_DIRTY_TIME;
2180
2181         /*
2182          * Paired with smp_mb() in __writeback_single_inode() for the
2183          * following lockless i_state test.  See there for details.
2184          */
2185         smp_mb();
2186
2187         if (((inode->i_state & flags) == flags) ||
2188             (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2189                 return;
2190
2191         if (unlikely(block_dump))
2192                 block_dump___mark_inode_dirty(inode);
2193
2194         spin_lock(&inode->i_lock);
2195         if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2196                 goto out_unlock_inode;
2197         if ((inode->i_state & flags) != flags) {
2198                 const int was_dirty = inode->i_state & I_DIRTY;
2199
2200                 inode_attach_wb(inode, NULL);
2201
2202                 if (flags & I_DIRTY_INODE)
2203                         inode->i_state &= ~I_DIRTY_TIME;
2204                 inode->i_state |= flags;
2205
2206                 /*
2207                  * If the inode is being synced, just update its dirty state.
2208                  * The unlocker will place the inode on the appropriate
2209                  * superblock list, based upon its state.
2210                  */
2211                 if (inode->i_state & I_SYNC)
2212                         goto out_unlock_inode;
2213
2214                 /*
2215                  * Only add valid (hashed) inodes to the superblock's
2216                  * dirty list.  Add blockdev inodes as well.
2217                  */
2218                 if (!S_ISBLK(inode->i_mode)) {
2219                         if (inode_unhashed(inode))
2220                                 goto out_unlock_inode;
2221                 }
2222                 if (inode->i_state & I_FREEING)
2223                         goto out_unlock_inode;
2224
2225                 /*
2226                  * If the inode was already on b_dirty/b_io/b_more_io, don't
2227                  * reposition it (that would break b_dirty time-ordering).
2228                  */
2229                 if (!was_dirty) {
2230                         struct bdi_writeback *wb;
2231                         struct list_head *dirty_list;
2232                         bool wakeup_bdi = false;
2233
2234                         wb = locked_inode_to_wb_and_lock_list(inode);
2235
2236                         WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2237                              !test_bit(WB_registered, &wb->state),
2238                              "bdi-%s not registered\n", wb->bdi->name);
2239
2240                         inode->dirtied_when = jiffies;
2241                         if (dirtytime)
2242                                 inode->dirtied_time_when = jiffies;
2243
2244                         if (inode->i_state & I_DIRTY)
2245                                 dirty_list = &wb->b_dirty;
2246                         else
2247                                 dirty_list = &wb->b_dirty_time;
2248
2249                         wakeup_bdi = inode_io_list_move_locked(inode, wb,
2250                                                                dirty_list);
2251
2252                         spin_unlock(&wb->list_lock);
2253                         trace_writeback_dirty_inode_enqueue(inode);
2254
2255                         /*
2256                          * If this is the first dirty inode for this bdi,
2257                          * we have to wake-up the corresponding bdi thread
2258                          * to make sure background write-back happens
2259                          * later.
2260                          */
2261                         if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2262                                 wb_wakeup_delayed(wb);
2263                         return;
2264                 }
2265         }
2266 out_unlock_inode:
2267         spin_unlock(&inode->i_lock);
2268 }
2269 EXPORT_SYMBOL(__mark_inode_dirty);
2270
2271 /*
2272  * The @s_sync_lock is used to serialise concurrent sync operations
2273  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2274  * Concurrent callers will block on the s_sync_lock rather than doing contending
2275  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2276  * has been issued up to the time this function is enter is guaranteed to be
2277  * completed by the time we have gained the lock and waited for all IO that is
2278  * in progress regardless of the order callers are granted the lock.
2279  */
2280 static void wait_sb_inodes(struct super_block *sb)
2281 {
2282         LIST_HEAD(sync_list);
2283
2284         /*
2285          * We need to be protected against the filesystem going from
2286          * r/o to r/w or vice versa.
2287          */
2288         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2289
2290         mutex_lock(&sb->s_sync_lock);
2291
2292         /*
2293          * Splice the writeback list onto a temporary list to avoid waiting on
2294          * inodes that have started writeback after this point.
2295          *
2296          * Use rcu_read_lock() to keep the inodes around until we have a
2297          * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2298          * the local list because inodes can be dropped from either by writeback
2299          * completion.
2300          */
2301         rcu_read_lock();
2302         spin_lock_irq(&sb->s_inode_wblist_lock);
2303         list_splice_init(&sb->s_inodes_wb, &sync_list);
2304
2305         /*
2306          * Data integrity sync. Must wait for all pages under writeback, because
2307          * there may have been pages dirtied before our sync call, but which had
2308          * writeout started before we write it out.  In which case, the inode
2309          * may not be on the dirty list, but we still have to wait for that
2310          * writeout.
2311          */
2312         while (!list_empty(&sync_list)) {
2313                 struct inode *inode = list_first_entry(&sync_list, struct inode,
2314                                                        i_wb_list);
2315                 struct address_space *mapping = inode->i_mapping;
2316
2317                 /*
2318                  * Move each inode back to the wb list before we drop the lock
2319                  * to preserve consistency between i_wb_list and the mapping
2320                  * writeback tag. Writeback completion is responsible to remove
2321                  * the inode from either list once the writeback tag is cleared.
2322                  */
2323                 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2324
2325                 /*
2326                  * The mapping can appear untagged while still on-list since we
2327                  * do not have the mapping lock. Skip it here, wb completion
2328                  * will remove it.
2329                  */
2330                 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2331                         continue;
2332
2333                 spin_unlock_irq(&sb->s_inode_wblist_lock);
2334
2335                 spin_lock(&inode->i_lock);
2336                 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2337                         spin_unlock(&inode->i_lock);
2338
2339                         spin_lock_irq(&sb->s_inode_wblist_lock);
2340                         continue;
2341                 }
2342                 __iget(inode);
2343                 spin_unlock(&inode->i_lock);
2344                 rcu_read_unlock();
2345
2346                 /*
2347                  * We keep the error status of individual mapping so that
2348                  * applications can catch the writeback error using fsync(2).
2349                  * See filemap_fdatawait_keep_errors() for details.
2350                  */
2351                 filemap_fdatawait_keep_errors(mapping);
2352
2353                 cond_resched();
2354
2355                 iput(inode);
2356
2357                 rcu_read_lock();
2358                 spin_lock_irq(&sb->s_inode_wblist_lock);
2359         }
2360         spin_unlock_irq(&sb->s_inode_wblist_lock);
2361         rcu_read_unlock();
2362         mutex_unlock(&sb->s_sync_lock);
2363 }
2364
2365 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2366                                      enum wb_reason reason, bool skip_if_busy)
2367 {
2368         DEFINE_WB_COMPLETION_ONSTACK(done);
2369         struct wb_writeback_work work = {
2370                 .sb                     = sb,
2371                 .sync_mode              = WB_SYNC_NONE,
2372                 .tagged_writepages      = 1,
2373                 .done                   = &done,
2374                 .nr_pages               = nr,
2375                 .reason                 = reason,
2376         };
2377         struct backing_dev_info *bdi = sb->s_bdi;
2378
2379         if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2380                 return;
2381         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2382
2383         bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2384         wb_wait_for_completion(bdi, &done);
2385 }
2386
2387 /**
2388  * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
2389  * @sb: the superblock
2390  * @nr: the number of pages to write
2391  * @reason: reason why some writeback work initiated
2392  *
2393  * Start writeback on some inodes on this super_block. No guarantees are made
2394  * on how many (if any) will be written, and this function does not wait
2395  * for IO completion of submitted IO.
2396  */
2397 void writeback_inodes_sb_nr(struct super_block *sb,
2398                             unsigned long nr,
2399                             enum wb_reason reason)
2400 {
2401         __writeback_inodes_sb_nr(sb, nr, reason, false);
2402 }
2403 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2404
2405 /**
2406  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
2407  * @sb: the superblock
2408  * @reason: reason why some writeback work was initiated
2409  *
2410  * Start writeback on some inodes on this super_block. No guarantees are made
2411  * on how many (if any) will be written, and this function does not wait
2412  * for IO completion of submitted IO.
2413  */
2414 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2415 {
2416         return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2417 }
2418 EXPORT_SYMBOL(writeback_inodes_sb);
2419
2420 /**
2421  * try_to_writeback_inodes_sb - try to start writeback if none underway
2422  * @sb: the superblock
2423  * @reason: reason why some writeback work was initiated
2424  *
2425  * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2426  */
2427 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2428 {
2429         if (!down_read_trylock(&sb->s_umount))
2430                 return;
2431
2432         __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2433         up_read(&sb->s_umount);
2434 }
2435 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2436
2437 /**
2438  * sync_inodes_sb       -       sync sb inode pages
2439  * @sb: the superblock
2440  *
2441  * This function writes and waits on any dirty inode belonging to this
2442  * super_block.
2443  */
2444 void sync_inodes_sb(struct super_block *sb)
2445 {
2446         DEFINE_WB_COMPLETION_ONSTACK(done);
2447         struct wb_writeback_work work = {
2448                 .sb             = sb,
2449                 .sync_mode      = WB_SYNC_ALL,
2450                 .nr_pages       = LONG_MAX,
2451                 .range_cyclic   = 0,
2452                 .done           = &done,
2453                 .reason         = WB_REASON_SYNC,
2454                 .for_sync       = 1,
2455         };
2456         struct backing_dev_info *bdi = sb->s_bdi;
2457
2458         /*
2459          * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2460          * inodes under writeback and I_DIRTY_TIME inodes ignored by
2461          * bdi_has_dirty() need to be written out too.
2462          */
2463         if (bdi == &noop_backing_dev_info)
2464                 return;
2465         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2466
2467         /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2468         bdi_down_write_wb_switch_rwsem(bdi);
2469         bdi_split_work_to_wbs(bdi, &work, false);
2470         wb_wait_for_completion(bdi, &done);
2471         bdi_up_write_wb_switch_rwsem(bdi);
2472
2473         wait_sb_inodes(sb);
2474 }
2475 EXPORT_SYMBOL(sync_inodes_sb);
2476
2477 /**
2478  * write_inode_now      -       write an inode to disk
2479  * @inode: inode to write to disk
2480  * @sync: whether the write should be synchronous or not
2481  *
2482  * This function commits an inode to disk immediately if it is dirty. This is
2483  * primarily needed by knfsd.
2484  *
2485  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2486  */
2487 int write_inode_now(struct inode *inode, int sync)
2488 {
2489         struct writeback_control wbc = {
2490                 .nr_to_write = LONG_MAX,
2491                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2492                 .range_start = 0,
2493                 .range_end = LLONG_MAX,
2494         };
2495
2496         if (!mapping_cap_writeback_dirty(inode->i_mapping))
2497                 wbc.nr_to_write = 0;
2498
2499         might_sleep();
2500         return writeback_single_inode(inode, &wbc);
2501 }
2502 EXPORT_SYMBOL(write_inode_now);
2503
2504 /**
2505  * sync_inode - write an inode and its pages to disk.
2506  * @inode: the inode to sync
2507  * @wbc: controls the writeback mode
2508  *
2509  * sync_inode() will write an inode and its pages to disk.  It will also
2510  * correctly update the inode on its superblock's dirty inode lists and will
2511  * update inode->i_state.
2512  *
2513  * The caller must have a ref on the inode.
2514  */
2515 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2516 {
2517         return writeback_single_inode(inode, wbc);
2518 }
2519 EXPORT_SYMBOL(sync_inode);
2520
2521 /**
2522  * sync_inode_metadata - write an inode to disk
2523  * @inode: the inode to sync
2524  * @wait: wait for I/O to complete.
2525  *
2526  * Write an inode to disk and adjust its dirty state after completion.
2527  *
2528  * Note: only writes the actual inode, no associated data or other metadata.
2529  */
2530 int sync_inode_metadata(struct inode *inode, int wait)
2531 {
2532         struct writeback_control wbc = {
2533                 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2534                 .nr_to_write = 0, /* metadata-only */
2535         };
2536
2537         return sync_inode(inode, &wbc);
2538 }
2539 EXPORT_SYMBOL(sync_inode_metadata);