Merge tag 'hwmon-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/groeck...
[platform/adaptation/renesas_rcar/renesas_kernel.git] / fs / fs-writeback.c
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002    Andrew Morton
12  *              Split out of fs/inode.c
13  *              Additions for address_space-based writeback
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include "internal.h"
30
31 /*
32  * 4MB minimal write chunk size
33  */
34 #define MIN_WRITEBACK_PAGES     (4096UL >> (PAGE_CACHE_SHIFT - 10))
35
36 /*
37  * Passed into wb_writeback(), essentially a subset of writeback_control
38  */
39 struct wb_writeback_work {
40         long nr_pages;
41         struct super_block *sb;
42         unsigned long *older_than_this;
43         enum writeback_sync_modes sync_mode;
44         unsigned int tagged_writepages:1;
45         unsigned int for_kupdate:1;
46         unsigned int range_cyclic:1;
47         unsigned int for_background:1;
48         unsigned int for_sync:1;        /* sync(2) WB_SYNC_ALL writeback */
49         enum wb_reason reason;          /* why was writeback initiated? */
50
51         struct list_head list;          /* pending work list */
52         struct completion *done;        /* set if the caller waits */
53 };
54
55 /**
56  * writeback_in_progress - determine whether there is writeback in progress
57  * @bdi: the device's backing_dev_info structure.
58  *
59  * Determine whether there is writeback waiting to be handled against a
60  * backing device.
61  */
62 int writeback_in_progress(struct backing_dev_info *bdi)
63 {
64         return test_bit(BDI_writeback_running, &bdi->state);
65 }
66 EXPORT_SYMBOL(writeback_in_progress);
67
68 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
69 {
70         struct super_block *sb = inode->i_sb;
71
72         if (strcmp(sb->s_type->name, "bdev") == 0)
73                 return inode->i_mapping->backing_dev_info;
74
75         return sb->s_bdi;
76 }
77
78 static inline struct inode *wb_inode(struct list_head *head)
79 {
80         return list_entry(head, struct inode, i_wb_list);
81 }
82
83 /*
84  * Include the creation of the trace points after defining the
85  * wb_writeback_work structure and inline functions so that the definition
86  * remains local to this file.
87  */
88 #define CREATE_TRACE_POINTS
89 #include <trace/events/writeback.h>
90
91 static void bdi_queue_work(struct backing_dev_info *bdi,
92                            struct wb_writeback_work *work)
93 {
94         trace_writeback_queue(bdi, work);
95
96         spin_lock_bh(&bdi->wb_lock);
97         list_add_tail(&work->list, &bdi->work_list);
98         spin_unlock_bh(&bdi->wb_lock);
99
100         mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
101 }
102
103 static void
104 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
105                       bool range_cyclic, enum wb_reason reason)
106 {
107         struct wb_writeback_work *work;
108
109         /*
110          * This is WB_SYNC_NONE writeback, so if allocation fails just
111          * wakeup the thread for old dirty data writeback
112          */
113         work = kzalloc(sizeof(*work), GFP_ATOMIC);
114         if (!work) {
115                 trace_writeback_nowork(bdi);
116                 mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
117                 return;
118         }
119
120         work->sync_mode = WB_SYNC_NONE;
121         work->nr_pages  = nr_pages;
122         work->range_cyclic = range_cyclic;
123         work->reason    = reason;
124
125         bdi_queue_work(bdi, work);
126 }
127
128 /**
129  * bdi_start_writeback - start writeback
130  * @bdi: the backing device to write from
131  * @nr_pages: the number of pages to write
132  * @reason: reason why some writeback work was initiated
133  *
134  * Description:
135  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
136  *   started when this function returns, we make no guarantees on
137  *   completion. Caller need not hold sb s_umount semaphore.
138  *
139  */
140 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
141                         enum wb_reason reason)
142 {
143         __bdi_start_writeback(bdi, nr_pages, true, reason);
144 }
145
146 /**
147  * bdi_start_background_writeback - start background writeback
148  * @bdi: the backing device to write from
149  *
150  * Description:
151  *   This makes sure WB_SYNC_NONE background writeback happens. When
152  *   this function returns, it is only guaranteed that for given BDI
153  *   some IO is happening if we are over background dirty threshold.
154  *   Caller need not hold sb s_umount semaphore.
155  */
156 void bdi_start_background_writeback(struct backing_dev_info *bdi)
157 {
158         /*
159          * We just wake up the flusher thread. It will perform background
160          * writeback as soon as there is no other work to do.
161          */
162         trace_writeback_wake_background(bdi);
163         mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
164 }
165
166 /*
167  * Remove the inode from the writeback list it is on.
168  */
169 void inode_wb_list_del(struct inode *inode)
170 {
171         struct backing_dev_info *bdi = inode_to_bdi(inode);
172
173         spin_lock(&bdi->wb.list_lock);
174         list_del_init(&inode->i_wb_list);
175         spin_unlock(&bdi->wb.list_lock);
176 }
177
178 /*
179  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
180  * furthest end of its superblock's dirty-inode list.
181  *
182  * Before stamping the inode's ->dirtied_when, we check to see whether it is
183  * already the most-recently-dirtied inode on the b_dirty list.  If that is
184  * the case then the inode must have been redirtied while it was being written
185  * out and we don't reset its dirtied_when.
186  */
187 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
188 {
189         assert_spin_locked(&wb->list_lock);
190         if (!list_empty(&wb->b_dirty)) {
191                 struct inode *tail;
192
193                 tail = wb_inode(wb->b_dirty.next);
194                 if (time_before(inode->dirtied_when, tail->dirtied_when))
195                         inode->dirtied_when = jiffies;
196         }
197         list_move(&inode->i_wb_list, &wb->b_dirty);
198 }
199
200 /*
201  * requeue inode for re-scanning after bdi->b_io list is exhausted.
202  */
203 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
204 {
205         assert_spin_locked(&wb->list_lock);
206         list_move(&inode->i_wb_list, &wb->b_more_io);
207 }
208
209 static void inode_sync_complete(struct inode *inode)
210 {
211         inode->i_state &= ~I_SYNC;
212         /* If inode is clean an unused, put it into LRU now... */
213         inode_add_lru(inode);
214         /* Waiters must see I_SYNC cleared before being woken up */
215         smp_mb();
216         wake_up_bit(&inode->i_state, __I_SYNC);
217 }
218
219 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
220 {
221         bool ret = time_after(inode->dirtied_when, t);
222 #ifndef CONFIG_64BIT
223         /*
224          * For inodes being constantly redirtied, dirtied_when can get stuck.
225          * It _appears_ to be in the future, but is actually in distant past.
226          * This test is necessary to prevent such wrapped-around relative times
227          * from permanently stopping the whole bdi writeback.
228          */
229         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
230 #endif
231         return ret;
232 }
233
234 /*
235  * Move expired (dirtied before work->older_than_this) dirty inodes from
236  * @delaying_queue to @dispatch_queue.
237  */
238 static int move_expired_inodes(struct list_head *delaying_queue,
239                                struct list_head *dispatch_queue,
240                                struct wb_writeback_work *work)
241 {
242         LIST_HEAD(tmp);
243         struct list_head *pos, *node;
244         struct super_block *sb = NULL;
245         struct inode *inode;
246         int do_sb_sort = 0;
247         int moved = 0;
248
249         while (!list_empty(delaying_queue)) {
250                 inode = wb_inode(delaying_queue->prev);
251                 if (work->older_than_this &&
252                     inode_dirtied_after(inode, *work->older_than_this))
253                         break;
254                 if (sb && sb != inode->i_sb)
255                         do_sb_sort = 1;
256                 sb = inode->i_sb;
257                 list_move(&inode->i_wb_list, &tmp);
258                 moved++;
259         }
260
261         /* just one sb in list, splice to dispatch_queue and we're done */
262         if (!do_sb_sort) {
263                 list_splice(&tmp, dispatch_queue);
264                 goto out;
265         }
266
267         /* Move inodes from one superblock together */
268         while (!list_empty(&tmp)) {
269                 sb = wb_inode(tmp.prev)->i_sb;
270                 list_for_each_prev_safe(pos, node, &tmp) {
271                         inode = wb_inode(pos);
272                         if (inode->i_sb == sb)
273                                 list_move(&inode->i_wb_list, dispatch_queue);
274                 }
275         }
276 out:
277         return moved;
278 }
279
280 /*
281  * Queue all expired dirty inodes for io, eldest first.
282  * Before
283  *         newly dirtied     b_dirty    b_io    b_more_io
284  *         =============>    gf         edc     BA
285  * After
286  *         newly dirtied     b_dirty    b_io    b_more_io
287  *         =============>    g          fBAedc
288  *                                           |
289  *                                           +--> dequeue for IO
290  */
291 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
292 {
293         int moved;
294         assert_spin_locked(&wb->list_lock);
295         list_splice_init(&wb->b_more_io, &wb->b_io);
296         moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work);
297         trace_writeback_queue_io(wb, work, moved);
298 }
299
300 static int write_inode(struct inode *inode, struct writeback_control *wbc)
301 {
302         int ret;
303
304         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
305                 trace_writeback_write_inode_start(inode, wbc);
306                 ret = inode->i_sb->s_op->write_inode(inode, wbc);
307                 trace_writeback_write_inode(inode, wbc);
308                 return ret;
309         }
310         return 0;
311 }
312
313 /*
314  * Wait for writeback on an inode to complete. Called with i_lock held.
315  * Caller must make sure inode cannot go away when we drop i_lock.
316  */
317 static void __inode_wait_for_writeback(struct inode *inode)
318         __releases(inode->i_lock)
319         __acquires(inode->i_lock)
320 {
321         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
322         wait_queue_head_t *wqh;
323
324         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
325         while (inode->i_state & I_SYNC) {
326                 spin_unlock(&inode->i_lock);
327                 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
328                 spin_lock(&inode->i_lock);
329         }
330 }
331
332 /*
333  * Wait for writeback on an inode to complete. Caller must have inode pinned.
334  */
335 void inode_wait_for_writeback(struct inode *inode)
336 {
337         spin_lock(&inode->i_lock);
338         __inode_wait_for_writeback(inode);
339         spin_unlock(&inode->i_lock);
340 }
341
342 /*
343  * Sleep until I_SYNC is cleared. This function must be called with i_lock
344  * held and drops it. It is aimed for callers not holding any inode reference
345  * so once i_lock is dropped, inode can go away.
346  */
347 static void inode_sleep_on_writeback(struct inode *inode)
348         __releases(inode->i_lock)
349 {
350         DEFINE_WAIT(wait);
351         wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
352         int sleep;
353
354         prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
355         sleep = inode->i_state & I_SYNC;
356         spin_unlock(&inode->i_lock);
357         if (sleep)
358                 schedule();
359         finish_wait(wqh, &wait);
360 }
361
362 /*
363  * Find proper writeback list for the inode depending on its current state and
364  * possibly also change of its state while we were doing writeback.  Here we
365  * handle things such as livelock prevention or fairness of writeback among
366  * inodes. This function can be called only by flusher thread - noone else
367  * processes all inodes in writeback lists and requeueing inodes behind flusher
368  * thread's back can have unexpected consequences.
369  */
370 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
371                           struct writeback_control *wbc)
372 {
373         if (inode->i_state & I_FREEING)
374                 return;
375
376         /*
377          * Sync livelock prevention. Each inode is tagged and synced in one
378          * shot. If still dirty, it will be redirty_tail()'ed below.  Update
379          * the dirty time to prevent enqueue and sync it again.
380          */
381         if ((inode->i_state & I_DIRTY) &&
382             (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
383                 inode->dirtied_when = jiffies;
384
385         if (wbc->pages_skipped) {
386                 /*
387                  * writeback is not making progress due to locked
388                  * buffers. Skip this inode for now.
389                  */
390                 redirty_tail(inode, wb);
391                 return;
392         }
393
394         if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
395                 /*
396                  * We didn't write back all the pages.  nfs_writepages()
397                  * sometimes bales out without doing anything.
398                  */
399                 if (wbc->nr_to_write <= 0) {
400                         /* Slice used up. Queue for next turn. */
401                         requeue_io(inode, wb);
402                 } else {
403                         /*
404                          * Writeback blocked by something other than
405                          * congestion. Delay the inode for some time to
406                          * avoid spinning on the CPU (100% iowait)
407                          * retrying writeback of the dirty page/inode
408                          * that cannot be performed immediately.
409                          */
410                         redirty_tail(inode, wb);
411                 }
412         } else if (inode->i_state & I_DIRTY) {
413                 /*
414                  * Filesystems can dirty the inode during writeback operations,
415                  * such as delayed allocation during submission or metadata
416                  * updates after data IO completion.
417                  */
418                 redirty_tail(inode, wb);
419         } else {
420                 /* The inode is clean. Remove from writeback lists. */
421                 list_del_init(&inode->i_wb_list);
422         }
423 }
424
425 /*
426  * Write out an inode and its dirty pages. Do not update the writeback list
427  * linkage. That is left to the caller. The caller is also responsible for
428  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
429  */
430 static int
431 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
432 {
433         struct address_space *mapping = inode->i_mapping;
434         long nr_to_write = wbc->nr_to_write;
435         unsigned dirty;
436         int ret;
437
438         WARN_ON(!(inode->i_state & I_SYNC));
439
440         trace_writeback_single_inode_start(inode, wbc, nr_to_write);
441
442         ret = do_writepages(mapping, wbc);
443
444         /*
445          * Make sure to wait on the data before writing out the metadata.
446          * This is important for filesystems that modify metadata on data
447          * I/O completion. We don't do it for sync(2) writeback because it has a
448          * separate, external IO completion path and ->sync_fs for guaranteeing
449          * inode metadata is written back correctly.
450          */
451         if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
452                 int err = filemap_fdatawait(mapping);
453                 if (ret == 0)
454                         ret = err;
455         }
456
457         /*
458          * Some filesystems may redirty the inode during the writeback
459          * due to delalloc, clear dirty metadata flags right before
460          * write_inode()
461          */
462         spin_lock(&inode->i_lock);
463         /* Clear I_DIRTY_PAGES if we've written out all dirty pages */
464         if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
465                 inode->i_state &= ~I_DIRTY_PAGES;
466         dirty = inode->i_state & I_DIRTY;
467         inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
468         spin_unlock(&inode->i_lock);
469         /* Don't write the inode if only I_DIRTY_PAGES was set */
470         if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
471                 int err = write_inode(inode, wbc);
472                 if (ret == 0)
473                         ret = err;
474         }
475         trace_writeback_single_inode(inode, wbc, nr_to_write);
476         return ret;
477 }
478
479 /*
480  * Write out an inode's dirty pages. Either the caller has an active reference
481  * on the inode or the inode has I_WILL_FREE set.
482  *
483  * This function is designed to be called for writing back one inode which
484  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
485  * and does more profound writeback list handling in writeback_sb_inodes().
486  */
487 static int
488 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
489                        struct writeback_control *wbc)
490 {
491         int ret = 0;
492
493         spin_lock(&inode->i_lock);
494         if (!atomic_read(&inode->i_count))
495                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
496         else
497                 WARN_ON(inode->i_state & I_WILL_FREE);
498
499         if (inode->i_state & I_SYNC) {
500                 if (wbc->sync_mode != WB_SYNC_ALL)
501                         goto out;
502                 /*
503                  * It's a data-integrity sync. We must wait. Since callers hold
504                  * inode reference or inode has I_WILL_FREE set, it cannot go
505                  * away under us.
506                  */
507                 __inode_wait_for_writeback(inode);
508         }
509         WARN_ON(inode->i_state & I_SYNC);
510         /*
511          * Skip inode if it is clean. We don't want to mess with writeback
512          * lists in this function since flusher thread may be doing for example
513          * sync in parallel and if we move the inode, it could get skipped. So
514          * here we make sure inode is on some writeback list and leave it there
515          * unless we have completely cleaned the inode.
516          */
517         if (!(inode->i_state & I_DIRTY))
518                 goto out;
519         inode->i_state |= I_SYNC;
520         spin_unlock(&inode->i_lock);
521
522         ret = __writeback_single_inode(inode, wbc);
523
524         spin_lock(&wb->list_lock);
525         spin_lock(&inode->i_lock);
526         /*
527          * If inode is clean, remove it from writeback lists. Otherwise don't
528          * touch it. See comment above for explanation.
529          */
530         if (!(inode->i_state & I_DIRTY))
531                 list_del_init(&inode->i_wb_list);
532         spin_unlock(&wb->list_lock);
533         inode_sync_complete(inode);
534 out:
535         spin_unlock(&inode->i_lock);
536         return ret;
537 }
538
539 static long writeback_chunk_size(struct backing_dev_info *bdi,
540                                  struct wb_writeback_work *work)
541 {
542         long pages;
543
544         /*
545          * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
546          * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
547          * here avoids calling into writeback_inodes_wb() more than once.
548          *
549          * The intended call sequence for WB_SYNC_ALL writeback is:
550          *
551          *      wb_writeback()
552          *          writeback_sb_inodes()       <== called only once
553          *              write_cache_pages()     <== called once for each inode
554          *                   (quickly) tag currently dirty pages
555          *                   (maybe slowly) sync all tagged pages
556          */
557         if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
558                 pages = LONG_MAX;
559         else {
560                 pages = min(bdi->avg_write_bandwidth / 2,
561                             global_dirty_limit / DIRTY_SCOPE);
562                 pages = min(pages, work->nr_pages);
563                 pages = round_down(pages + MIN_WRITEBACK_PAGES,
564                                    MIN_WRITEBACK_PAGES);
565         }
566
567         return pages;
568 }
569
570 /*
571  * Write a portion of b_io inodes which belong to @sb.
572  *
573  * Return the number of pages and/or inodes written.
574  */
575 static long writeback_sb_inodes(struct super_block *sb,
576                                 struct bdi_writeback *wb,
577                                 struct wb_writeback_work *work)
578 {
579         struct writeback_control wbc = {
580                 .sync_mode              = work->sync_mode,
581                 .tagged_writepages      = work->tagged_writepages,
582                 .for_kupdate            = work->for_kupdate,
583                 .for_background         = work->for_background,
584                 .for_sync               = work->for_sync,
585                 .range_cyclic           = work->range_cyclic,
586                 .range_start            = 0,
587                 .range_end              = LLONG_MAX,
588         };
589         unsigned long start_time = jiffies;
590         long write_chunk;
591         long wrote = 0;  /* count both pages and inodes */
592
593         while (!list_empty(&wb->b_io)) {
594                 struct inode *inode = wb_inode(wb->b_io.prev);
595
596                 if (inode->i_sb != sb) {
597                         if (work->sb) {
598                                 /*
599                                  * We only want to write back data for this
600                                  * superblock, move all inodes not belonging
601                                  * to it back onto the dirty list.
602                                  */
603                                 redirty_tail(inode, wb);
604                                 continue;
605                         }
606
607                         /*
608                          * The inode belongs to a different superblock.
609                          * Bounce back to the caller to unpin this and
610                          * pin the next superblock.
611                          */
612                         break;
613                 }
614
615                 /*
616                  * Don't bother with new inodes or inodes being freed, first
617                  * kind does not need periodic writeout yet, and for the latter
618                  * kind writeout is handled by the freer.
619                  */
620                 spin_lock(&inode->i_lock);
621                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
622                         spin_unlock(&inode->i_lock);
623                         redirty_tail(inode, wb);
624                         continue;
625                 }
626                 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
627                         /*
628                          * If this inode is locked for writeback and we are not
629                          * doing writeback-for-data-integrity, move it to
630                          * b_more_io so that writeback can proceed with the
631                          * other inodes on s_io.
632                          *
633                          * We'll have another go at writing back this inode
634                          * when we completed a full scan of b_io.
635                          */
636                         spin_unlock(&inode->i_lock);
637                         requeue_io(inode, wb);
638                         trace_writeback_sb_inodes_requeue(inode);
639                         continue;
640                 }
641                 spin_unlock(&wb->list_lock);
642
643                 /*
644                  * We already requeued the inode if it had I_SYNC set and we
645                  * are doing WB_SYNC_NONE writeback. So this catches only the
646                  * WB_SYNC_ALL case.
647                  */
648                 if (inode->i_state & I_SYNC) {
649                         /* Wait for I_SYNC. This function drops i_lock... */
650                         inode_sleep_on_writeback(inode);
651                         /* Inode may be gone, start again */
652                         spin_lock(&wb->list_lock);
653                         continue;
654                 }
655                 inode->i_state |= I_SYNC;
656                 spin_unlock(&inode->i_lock);
657
658                 write_chunk = writeback_chunk_size(wb->bdi, work);
659                 wbc.nr_to_write = write_chunk;
660                 wbc.pages_skipped = 0;
661
662                 /*
663                  * We use I_SYNC to pin the inode in memory. While it is set
664                  * evict_inode() will wait so the inode cannot be freed.
665                  */
666                 __writeback_single_inode(inode, &wbc);
667
668                 work->nr_pages -= write_chunk - wbc.nr_to_write;
669                 wrote += write_chunk - wbc.nr_to_write;
670                 spin_lock(&wb->list_lock);
671                 spin_lock(&inode->i_lock);
672                 if (!(inode->i_state & I_DIRTY))
673                         wrote++;
674                 requeue_inode(inode, wb, &wbc);
675                 inode_sync_complete(inode);
676                 spin_unlock(&inode->i_lock);
677                 cond_resched_lock(&wb->list_lock);
678                 /*
679                  * bail out to wb_writeback() often enough to check
680                  * background threshold and other termination conditions.
681                  */
682                 if (wrote) {
683                         if (time_is_before_jiffies(start_time + HZ / 10UL))
684                                 break;
685                         if (work->nr_pages <= 0)
686                                 break;
687                 }
688         }
689         return wrote;
690 }
691
692 static long __writeback_inodes_wb(struct bdi_writeback *wb,
693                                   struct wb_writeback_work *work)
694 {
695         unsigned long start_time = jiffies;
696         long wrote = 0;
697
698         while (!list_empty(&wb->b_io)) {
699                 struct inode *inode = wb_inode(wb->b_io.prev);
700                 struct super_block *sb = inode->i_sb;
701
702                 if (!grab_super_passive(sb)) {
703                         /*
704                          * grab_super_passive() may fail consistently due to
705                          * s_umount being grabbed by someone else. Don't use
706                          * requeue_io() to avoid busy retrying the inode/sb.
707                          */
708                         redirty_tail(inode, wb);
709                         continue;
710                 }
711                 wrote += writeback_sb_inodes(sb, wb, work);
712                 drop_super(sb);
713
714                 /* refer to the same tests at the end of writeback_sb_inodes */
715                 if (wrote) {
716                         if (time_is_before_jiffies(start_time + HZ / 10UL))
717                                 break;
718                         if (work->nr_pages <= 0)
719                                 break;
720                 }
721         }
722         /* Leave any unwritten inodes on b_io */
723         return wrote;
724 }
725
726 long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
727                                 enum wb_reason reason)
728 {
729         struct wb_writeback_work work = {
730                 .nr_pages       = nr_pages,
731                 .sync_mode      = WB_SYNC_NONE,
732                 .range_cyclic   = 1,
733                 .reason         = reason,
734         };
735
736         spin_lock(&wb->list_lock);
737         if (list_empty(&wb->b_io))
738                 queue_io(wb, &work);
739         __writeback_inodes_wb(wb, &work);
740         spin_unlock(&wb->list_lock);
741
742         return nr_pages - work.nr_pages;
743 }
744
745 static bool over_bground_thresh(struct backing_dev_info *bdi)
746 {
747         unsigned long background_thresh, dirty_thresh;
748
749         global_dirty_limits(&background_thresh, &dirty_thresh);
750
751         if (global_page_state(NR_FILE_DIRTY) +
752             global_page_state(NR_UNSTABLE_NFS) > background_thresh)
753                 return true;
754
755         if (bdi_stat(bdi, BDI_RECLAIMABLE) >
756                                 bdi_dirty_limit(bdi, background_thresh))
757                 return true;
758
759         return false;
760 }
761
762 /*
763  * Called under wb->list_lock. If there are multiple wb per bdi,
764  * only the flusher working on the first wb should do it.
765  */
766 static void wb_update_bandwidth(struct bdi_writeback *wb,
767                                 unsigned long start_time)
768 {
769         __bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
770 }
771
772 /*
773  * Explicit flushing or periodic writeback of "old" data.
774  *
775  * Define "old": the first time one of an inode's pages is dirtied, we mark the
776  * dirtying-time in the inode's address_space.  So this periodic writeback code
777  * just walks the superblock inode list, writing back any inodes which are
778  * older than a specific point in time.
779  *
780  * Try to run once per dirty_writeback_interval.  But if a writeback event
781  * takes longer than a dirty_writeback_interval interval, then leave a
782  * one-second gap.
783  *
784  * older_than_this takes precedence over nr_to_write.  So we'll only write back
785  * all dirty pages if they are all attached to "old" mappings.
786  */
787 static long wb_writeback(struct bdi_writeback *wb,
788                          struct wb_writeback_work *work)
789 {
790         unsigned long wb_start = jiffies;
791         long nr_pages = work->nr_pages;
792         unsigned long oldest_jif;
793         struct inode *inode;
794         long progress;
795
796         oldest_jif = jiffies;
797         work->older_than_this = &oldest_jif;
798
799         spin_lock(&wb->list_lock);
800         for (;;) {
801                 /*
802                  * Stop writeback when nr_pages has been consumed
803                  */
804                 if (work->nr_pages <= 0)
805                         break;
806
807                 /*
808                  * Background writeout and kupdate-style writeback may
809                  * run forever. Stop them if there is other work to do
810                  * so that e.g. sync can proceed. They'll be restarted
811                  * after the other works are all done.
812                  */
813                 if ((work->for_background || work->for_kupdate) &&
814                     !list_empty(&wb->bdi->work_list))
815                         break;
816
817                 /*
818                  * For background writeout, stop when we are below the
819                  * background dirty threshold
820                  */
821                 if (work->for_background && !over_bground_thresh(wb->bdi))
822                         break;
823
824                 /*
825                  * Kupdate and background works are special and we want to
826                  * include all inodes that need writing. Livelock avoidance is
827                  * handled by these works yielding to any other work so we are
828                  * safe.
829                  */
830                 if (work->for_kupdate) {
831                         oldest_jif = jiffies -
832                                 msecs_to_jiffies(dirty_expire_interval * 10);
833                 } else if (work->for_background)
834                         oldest_jif = jiffies;
835
836                 trace_writeback_start(wb->bdi, work);
837                 if (list_empty(&wb->b_io))
838                         queue_io(wb, work);
839                 if (work->sb)
840                         progress = writeback_sb_inodes(work->sb, wb, work);
841                 else
842                         progress = __writeback_inodes_wb(wb, work);
843                 trace_writeback_written(wb->bdi, work);
844
845                 wb_update_bandwidth(wb, wb_start);
846
847                 /*
848                  * Did we write something? Try for more
849                  *
850                  * Dirty inodes are moved to b_io for writeback in batches.
851                  * The completion of the current batch does not necessarily
852                  * mean the overall work is done. So we keep looping as long
853                  * as made some progress on cleaning pages or inodes.
854                  */
855                 if (progress)
856                         continue;
857                 /*
858                  * No more inodes for IO, bail
859                  */
860                 if (list_empty(&wb->b_more_io))
861                         break;
862                 /*
863                  * Nothing written. Wait for some inode to
864                  * become available for writeback. Otherwise
865                  * we'll just busyloop.
866                  */
867                 if (!list_empty(&wb->b_more_io))  {
868                         trace_writeback_wait(wb->bdi, work);
869                         inode = wb_inode(wb->b_more_io.prev);
870                         spin_lock(&inode->i_lock);
871                         spin_unlock(&wb->list_lock);
872                         /* This function drops i_lock... */
873                         inode_sleep_on_writeback(inode);
874                         spin_lock(&wb->list_lock);
875                 }
876         }
877         spin_unlock(&wb->list_lock);
878
879         return nr_pages - work->nr_pages;
880 }
881
882 /*
883  * Return the next wb_writeback_work struct that hasn't been processed yet.
884  */
885 static struct wb_writeback_work *
886 get_next_work_item(struct backing_dev_info *bdi)
887 {
888         struct wb_writeback_work *work = NULL;
889
890         spin_lock_bh(&bdi->wb_lock);
891         if (!list_empty(&bdi->work_list)) {
892                 work = list_entry(bdi->work_list.next,
893                                   struct wb_writeback_work, list);
894                 list_del_init(&work->list);
895         }
896         spin_unlock_bh(&bdi->wb_lock);
897         return work;
898 }
899
900 /*
901  * Add in the number of potentially dirty inodes, because each inode
902  * write can dirty pagecache in the underlying blockdev.
903  */
904 static unsigned long get_nr_dirty_pages(void)
905 {
906         return global_page_state(NR_FILE_DIRTY) +
907                 global_page_state(NR_UNSTABLE_NFS) +
908                 get_nr_dirty_inodes();
909 }
910
911 static long wb_check_background_flush(struct bdi_writeback *wb)
912 {
913         if (over_bground_thresh(wb->bdi)) {
914
915                 struct wb_writeback_work work = {
916                         .nr_pages       = LONG_MAX,
917                         .sync_mode      = WB_SYNC_NONE,
918                         .for_background = 1,
919                         .range_cyclic   = 1,
920                         .reason         = WB_REASON_BACKGROUND,
921                 };
922
923                 return wb_writeback(wb, &work);
924         }
925
926         return 0;
927 }
928
929 static long wb_check_old_data_flush(struct bdi_writeback *wb)
930 {
931         unsigned long expired;
932         long nr_pages;
933
934         /*
935          * When set to zero, disable periodic writeback
936          */
937         if (!dirty_writeback_interval)
938                 return 0;
939
940         expired = wb->last_old_flush +
941                         msecs_to_jiffies(dirty_writeback_interval * 10);
942         if (time_before(jiffies, expired))
943                 return 0;
944
945         wb->last_old_flush = jiffies;
946         nr_pages = get_nr_dirty_pages();
947
948         if (nr_pages) {
949                 struct wb_writeback_work work = {
950                         .nr_pages       = nr_pages,
951                         .sync_mode      = WB_SYNC_NONE,
952                         .for_kupdate    = 1,
953                         .range_cyclic   = 1,
954                         .reason         = WB_REASON_PERIODIC,
955                 };
956
957                 return wb_writeback(wb, &work);
958         }
959
960         return 0;
961 }
962
963 /*
964  * Retrieve work items and do the writeback they describe
965  */
966 static long wb_do_writeback(struct bdi_writeback *wb)
967 {
968         struct backing_dev_info *bdi = wb->bdi;
969         struct wb_writeback_work *work;
970         long wrote = 0;
971
972         set_bit(BDI_writeback_running, &wb->bdi->state);
973         while ((work = get_next_work_item(bdi)) != NULL) {
974
975                 trace_writeback_exec(bdi, work);
976
977                 wrote += wb_writeback(wb, work);
978
979                 /*
980                  * Notify the caller of completion if this is a synchronous
981                  * work item, otherwise just free it.
982                  */
983                 if (work->done)
984                         complete(work->done);
985                 else
986                         kfree(work);
987         }
988
989         /*
990          * Check for periodic writeback, kupdated() style
991          */
992         wrote += wb_check_old_data_flush(wb);
993         wrote += wb_check_background_flush(wb);
994         clear_bit(BDI_writeback_running, &wb->bdi->state);
995
996         return wrote;
997 }
998
999 /*
1000  * Handle writeback of dirty data for the device backed by this bdi. Also
1001  * reschedules periodically and does kupdated style flushing.
1002  */
1003 void bdi_writeback_workfn(struct work_struct *work)
1004 {
1005         struct bdi_writeback *wb = container_of(to_delayed_work(work),
1006                                                 struct bdi_writeback, dwork);
1007         struct backing_dev_info *bdi = wb->bdi;
1008         long pages_written;
1009
1010         set_worker_desc("flush-%s", dev_name(bdi->dev));
1011         current->flags |= PF_SWAPWRITE;
1012
1013         if (likely(!current_is_workqueue_rescuer() ||
1014                    list_empty(&bdi->bdi_list))) {
1015                 /*
1016                  * The normal path.  Keep writing back @bdi until its
1017                  * work_list is empty.  Note that this path is also taken
1018                  * if @bdi is shutting down even when we're running off the
1019                  * rescuer as work_list needs to be drained.
1020                  */
1021                 do {
1022                         pages_written = wb_do_writeback(wb);
1023                         trace_writeback_pages_written(pages_written);
1024                 } while (!list_empty(&bdi->work_list));
1025         } else {
1026                 /*
1027                  * bdi_wq can't get enough workers and we're running off
1028                  * the emergency worker.  Don't hog it.  Hopefully, 1024 is
1029                  * enough for efficient IO.
1030                  */
1031                 pages_written = writeback_inodes_wb(&bdi->wb, 1024,
1032                                                     WB_REASON_FORKER_THREAD);
1033                 trace_writeback_pages_written(pages_written);
1034         }
1035
1036         if (!list_empty(&bdi->work_list) ||
1037             (wb_has_dirty_io(wb) && dirty_writeback_interval))
1038                 queue_delayed_work(bdi_wq, &wb->dwork,
1039                         msecs_to_jiffies(dirty_writeback_interval * 10));
1040
1041         current->flags &= ~PF_SWAPWRITE;
1042 }
1043
1044 /*
1045  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
1046  * the whole world.
1047  */
1048 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1049 {
1050         struct backing_dev_info *bdi;
1051
1052         if (!nr_pages) {
1053                 nr_pages = global_page_state(NR_FILE_DIRTY) +
1054                                 global_page_state(NR_UNSTABLE_NFS);
1055         }
1056
1057         rcu_read_lock();
1058         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1059                 if (!bdi_has_dirty_io(bdi))
1060                         continue;
1061                 __bdi_start_writeback(bdi, nr_pages, false, reason);
1062         }
1063         rcu_read_unlock();
1064 }
1065
1066 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1067 {
1068         if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1069                 struct dentry *dentry;
1070                 const char *name = "?";
1071
1072                 dentry = d_find_alias(inode);
1073                 if (dentry) {
1074                         spin_lock(&dentry->d_lock);
1075                         name = (const char *) dentry->d_name.name;
1076                 }
1077                 printk(KERN_DEBUG
1078                        "%s(%d): dirtied inode %lu (%s) on %s\n",
1079                        current->comm, task_pid_nr(current), inode->i_ino,
1080                        name, inode->i_sb->s_id);
1081                 if (dentry) {
1082                         spin_unlock(&dentry->d_lock);
1083                         dput(dentry);
1084                 }
1085         }
1086 }
1087
1088 /**
1089  *      __mark_inode_dirty -    internal function
1090  *      @inode: inode to mark
1091  *      @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1092  *      Mark an inode as dirty. Callers should use mark_inode_dirty or
1093  *      mark_inode_dirty_sync.
1094  *
1095  * Put the inode on the super block's dirty list.
1096  *
1097  * CAREFUL! We mark it dirty unconditionally, but move it onto the
1098  * dirty list only if it is hashed or if it refers to a blockdev.
1099  * If it was not hashed, it will never be added to the dirty list
1100  * even if it is later hashed, as it will have been marked dirty already.
1101  *
1102  * In short, make sure you hash any inodes _before_ you start marking
1103  * them dirty.
1104  *
1105  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1106  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
1107  * the kernel-internal blockdev inode represents the dirtying time of the
1108  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
1109  * page->mapping->host, so the page-dirtying time is recorded in the internal
1110  * blockdev inode.
1111  */
1112 void __mark_inode_dirty(struct inode *inode, int flags)
1113 {
1114         struct super_block *sb = inode->i_sb;
1115         struct backing_dev_info *bdi = NULL;
1116
1117         /*
1118          * Don't do this for I_DIRTY_PAGES - that doesn't actually
1119          * dirty the inode itself
1120          */
1121         if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1122                 trace_writeback_dirty_inode_start(inode, flags);
1123
1124                 if (sb->s_op->dirty_inode)
1125                         sb->s_op->dirty_inode(inode, flags);
1126
1127                 trace_writeback_dirty_inode(inode, flags);
1128         }
1129
1130         /*
1131          * make sure that changes are seen by all cpus before we test i_state
1132          * -- mikulas
1133          */
1134         smp_mb();
1135
1136         /* avoid the locking if we can */
1137         if ((inode->i_state & flags) == flags)
1138                 return;
1139
1140         if (unlikely(block_dump))
1141                 block_dump___mark_inode_dirty(inode);
1142
1143         spin_lock(&inode->i_lock);
1144         if ((inode->i_state & flags) != flags) {
1145                 const int was_dirty = inode->i_state & I_DIRTY;
1146
1147                 inode->i_state |= flags;
1148
1149                 /*
1150                  * If the inode is being synced, just update its dirty state.
1151                  * The unlocker will place the inode on the appropriate
1152                  * superblock list, based upon its state.
1153                  */
1154                 if (inode->i_state & I_SYNC)
1155                         goto out_unlock_inode;
1156
1157                 /*
1158                  * Only add valid (hashed) inodes to the superblock's
1159                  * dirty list.  Add blockdev inodes as well.
1160                  */
1161                 if (!S_ISBLK(inode->i_mode)) {
1162                         if (inode_unhashed(inode))
1163                                 goto out_unlock_inode;
1164                 }
1165                 if (inode->i_state & I_FREEING)
1166                         goto out_unlock_inode;
1167
1168                 /*
1169                  * If the inode was already on b_dirty/b_io/b_more_io, don't
1170                  * reposition it (that would break b_dirty time-ordering).
1171                  */
1172                 if (!was_dirty) {
1173                         bool wakeup_bdi = false;
1174                         bdi = inode_to_bdi(inode);
1175
1176                         if (bdi_cap_writeback_dirty(bdi)) {
1177                                 WARN(!test_bit(BDI_registered, &bdi->state),
1178                                      "bdi-%s not registered\n", bdi->name);
1179
1180                                 /*
1181                                  * If this is the first dirty inode for this
1182                                  * bdi, we have to wake-up the corresponding
1183                                  * bdi thread to make sure background
1184                                  * write-back happens later.
1185                                  */
1186                                 if (!wb_has_dirty_io(&bdi->wb))
1187                                         wakeup_bdi = true;
1188                         }
1189
1190                         spin_unlock(&inode->i_lock);
1191                         spin_lock(&bdi->wb.list_lock);
1192                         inode->dirtied_when = jiffies;
1193                         list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1194                         spin_unlock(&bdi->wb.list_lock);
1195
1196                         if (wakeup_bdi)
1197                                 bdi_wakeup_thread_delayed(bdi);
1198                         return;
1199                 }
1200         }
1201 out_unlock_inode:
1202         spin_unlock(&inode->i_lock);
1203
1204 }
1205 EXPORT_SYMBOL(__mark_inode_dirty);
1206
1207 static void wait_sb_inodes(struct super_block *sb)
1208 {
1209         struct inode *inode, *old_inode = NULL;
1210
1211         /*
1212          * We need to be protected against the filesystem going from
1213          * r/o to r/w or vice versa.
1214          */
1215         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1216
1217         spin_lock(&inode_sb_list_lock);
1218
1219         /*
1220          * Data integrity sync. Must wait for all pages under writeback,
1221          * because there may have been pages dirtied before our sync
1222          * call, but which had writeout started before we write it out.
1223          * In which case, the inode may not be on the dirty list, but
1224          * we still have to wait for that writeout.
1225          */
1226         list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1227                 struct address_space *mapping = inode->i_mapping;
1228
1229                 spin_lock(&inode->i_lock);
1230                 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1231                     (mapping->nrpages == 0)) {
1232                         spin_unlock(&inode->i_lock);
1233                         continue;
1234                 }
1235                 __iget(inode);
1236                 spin_unlock(&inode->i_lock);
1237                 spin_unlock(&inode_sb_list_lock);
1238
1239                 /*
1240                  * We hold a reference to 'inode' so it couldn't have been
1241                  * removed from s_inodes list while we dropped the
1242                  * inode_sb_list_lock.  We cannot iput the inode now as we can
1243                  * be holding the last reference and we cannot iput it under
1244                  * inode_sb_list_lock. So we keep the reference and iput it
1245                  * later.
1246                  */
1247                 iput(old_inode);
1248                 old_inode = inode;
1249
1250                 filemap_fdatawait(mapping);
1251
1252                 cond_resched();
1253
1254                 spin_lock(&inode_sb_list_lock);
1255         }
1256         spin_unlock(&inode_sb_list_lock);
1257         iput(old_inode);
1258 }
1259
1260 /**
1261  * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
1262  * @sb: the superblock
1263  * @nr: the number of pages to write
1264  * @reason: reason why some writeback work initiated
1265  *
1266  * Start writeback on some inodes on this super_block. No guarantees are made
1267  * on how many (if any) will be written, and this function does not wait
1268  * for IO completion of submitted IO.
1269  */
1270 void writeback_inodes_sb_nr(struct super_block *sb,
1271                             unsigned long nr,
1272                             enum wb_reason reason)
1273 {
1274         DECLARE_COMPLETION_ONSTACK(done);
1275         struct wb_writeback_work work = {
1276                 .sb                     = sb,
1277                 .sync_mode              = WB_SYNC_NONE,
1278                 .tagged_writepages      = 1,
1279                 .done                   = &done,
1280                 .nr_pages               = nr,
1281                 .reason                 = reason,
1282         };
1283
1284         if (sb->s_bdi == &noop_backing_dev_info)
1285                 return;
1286         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1287         bdi_queue_work(sb->s_bdi, &work);
1288         wait_for_completion(&done);
1289 }
1290 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1291
1292 /**
1293  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
1294  * @sb: the superblock
1295  * @reason: reason why some writeback work was initiated
1296  *
1297  * Start writeback on some inodes on this super_block. No guarantees are made
1298  * on how many (if any) will be written, and this function does not wait
1299  * for IO completion of submitted IO.
1300  */
1301 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1302 {
1303         return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1304 }
1305 EXPORT_SYMBOL(writeback_inodes_sb);
1306
1307 /**
1308  * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
1309  * @sb: the superblock
1310  * @nr: the number of pages to write
1311  * @reason: the reason of writeback
1312  *
1313  * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
1314  * Returns 1 if writeback was started, 0 if not.
1315  */
1316 int try_to_writeback_inodes_sb_nr(struct super_block *sb,
1317                                   unsigned long nr,
1318                                   enum wb_reason reason)
1319 {
1320         if (writeback_in_progress(sb->s_bdi))
1321                 return 1;
1322
1323         if (!down_read_trylock(&sb->s_umount))
1324                 return 0;
1325
1326         writeback_inodes_sb_nr(sb, nr, reason);
1327         up_read(&sb->s_umount);
1328         return 1;
1329 }
1330 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
1331
1332 /**
1333  * try_to_writeback_inodes_sb - try to start writeback if none underway
1334  * @sb: the superblock
1335  * @reason: reason why some writeback work was initiated
1336  *
1337  * Implement by try_to_writeback_inodes_sb_nr()
1338  * Returns 1 if writeback was started, 0 if not.
1339  */
1340 int try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1341 {
1342         return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1343 }
1344 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
1345
1346 /**
1347  * sync_inodes_sb       -       sync sb inode pages
1348  * @sb: the superblock
1349  *
1350  * This function writes and waits on any dirty inode belonging to this
1351  * super_block.
1352  */
1353 void sync_inodes_sb(struct super_block *sb)
1354 {
1355         DECLARE_COMPLETION_ONSTACK(done);
1356         struct wb_writeback_work work = {
1357                 .sb             = sb,
1358                 .sync_mode      = WB_SYNC_ALL,
1359                 .nr_pages       = LONG_MAX,
1360                 .range_cyclic   = 0,
1361                 .done           = &done,
1362                 .reason         = WB_REASON_SYNC,
1363                 .for_sync       = 1,
1364         };
1365
1366         /* Nothing to do? */
1367         if (sb->s_bdi == &noop_backing_dev_info)
1368                 return;
1369         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1370
1371         bdi_queue_work(sb->s_bdi, &work);
1372         wait_for_completion(&done);
1373
1374         wait_sb_inodes(sb);
1375 }
1376 EXPORT_SYMBOL(sync_inodes_sb);
1377
1378 /**
1379  * write_inode_now      -       write an inode to disk
1380  * @inode: inode to write to disk
1381  * @sync: whether the write should be synchronous or not
1382  *
1383  * This function commits an inode to disk immediately if it is dirty. This is
1384  * primarily needed by knfsd.
1385  *
1386  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1387  */
1388 int write_inode_now(struct inode *inode, int sync)
1389 {
1390         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1391         struct writeback_control wbc = {
1392                 .nr_to_write = LONG_MAX,
1393                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1394                 .range_start = 0,
1395                 .range_end = LLONG_MAX,
1396         };
1397
1398         if (!mapping_cap_writeback_dirty(inode->i_mapping))
1399                 wbc.nr_to_write = 0;
1400
1401         might_sleep();
1402         return writeback_single_inode(inode, wb, &wbc);
1403 }
1404 EXPORT_SYMBOL(write_inode_now);
1405
1406 /**
1407  * sync_inode - write an inode and its pages to disk.
1408  * @inode: the inode to sync
1409  * @wbc: controls the writeback mode
1410  *
1411  * sync_inode() will write an inode and its pages to disk.  It will also
1412  * correctly update the inode on its superblock's dirty inode lists and will
1413  * update inode->i_state.
1414  *
1415  * The caller must have a ref on the inode.
1416  */
1417 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1418 {
1419         return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1420 }
1421 EXPORT_SYMBOL(sync_inode);
1422
1423 /**
1424  * sync_inode_metadata - write an inode to disk
1425  * @inode: the inode to sync
1426  * @wait: wait for I/O to complete.
1427  *
1428  * Write an inode to disk and adjust its dirty state after completion.
1429  *
1430  * Note: only writes the actual inode, no associated data or other metadata.
1431  */
1432 int sync_inode_metadata(struct inode *inode, int wait)
1433 {
1434         struct writeback_control wbc = {
1435                 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1436                 .nr_to_write = 0, /* metadata-only */
1437         };
1438
1439         return sync_inode(inode, &wbc);
1440 }
1441 EXPORT_SYMBOL(sync_inode_metadata);