Merge tag 'cfi-v5.14-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
[platform/kernel/linux-rpi.git] / fs / fs-writeback.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/fs-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * Contains all the functions related to writing back and waiting
8  * upon dirty inodes against superblocks, and writing back dirty
9  * pages against inodes.  ie: data writeback.  Writeout of the
10  * inode itself is not handled here.
11  *
12  * 10Apr2002    Andrew Morton
13  *              Split out of fs/inode.c
14  *              Additions for address_space-based writeback
15  */
16
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kthread.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include <linux/device.h>
31 #include <linux/memcontrol.h>
32 #include "internal.h"
33
34 /*
35  * 4MB minimal write chunk size
36  */
37 #define MIN_WRITEBACK_PAGES     (4096UL >> (PAGE_SHIFT - 10))
38
39 /*
40  * Passed into wb_writeback(), essentially a subset of writeback_control
41  */
42 struct wb_writeback_work {
43         long nr_pages;
44         struct super_block *sb;
45         enum writeback_sync_modes sync_mode;
46         unsigned int tagged_writepages:1;
47         unsigned int for_kupdate:1;
48         unsigned int range_cyclic:1;
49         unsigned int for_background:1;
50         unsigned int for_sync:1;        /* sync(2) WB_SYNC_ALL writeback */
51         unsigned int auto_free:1;       /* free on completion */
52         enum wb_reason reason;          /* why was writeback initiated? */
53
54         struct list_head list;          /* pending work list */
55         struct wb_completion *done;     /* set if the caller waits */
56 };
57
58 /*
59  * If an inode is constantly having its pages dirtied, but then the
60  * updates stop dirtytime_expire_interval seconds in the past, it's
61  * possible for the worst case time between when an inode has its
62  * timestamps updated and when they finally get written out to be two
63  * dirtytime_expire_intervals.  We set the default to 12 hours (in
64  * seconds), which means most of the time inodes will have their
65  * timestamps written to disk after 12 hours, but in the worst case a
66  * few inodes might not their timestamps updated for 24 hours.
67  */
68 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
69
70 static inline struct inode *wb_inode(struct list_head *head)
71 {
72         return list_entry(head, struct inode, i_io_list);
73 }
74
75 /*
76  * Include the creation of the trace points after defining the
77  * wb_writeback_work structure and inline functions so that the definition
78  * remains local to this file.
79  */
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/writeback.h>
82
83 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
84
85 static bool wb_io_lists_populated(struct bdi_writeback *wb)
86 {
87         if (wb_has_dirty_io(wb)) {
88                 return false;
89         } else {
90                 set_bit(WB_has_dirty_io, &wb->state);
91                 WARN_ON_ONCE(!wb->avg_write_bandwidth);
92                 atomic_long_add(wb->avg_write_bandwidth,
93                                 &wb->bdi->tot_write_bandwidth);
94                 return true;
95         }
96 }
97
98 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
99 {
100         if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
101             list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
102                 clear_bit(WB_has_dirty_io, &wb->state);
103                 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
104                                         &wb->bdi->tot_write_bandwidth) < 0);
105         }
106 }
107
108 /**
109  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
110  * @inode: inode to be moved
111  * @wb: target bdi_writeback
112  * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
113  *
114  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
115  * Returns %true if @inode is the first occupant of the !dirty_time IO
116  * lists; otherwise, %false.
117  */
118 static bool inode_io_list_move_locked(struct inode *inode,
119                                       struct bdi_writeback *wb,
120                                       struct list_head *head)
121 {
122         assert_spin_locked(&wb->list_lock);
123
124         list_move(&inode->i_io_list, head);
125
126         /* dirty_time doesn't count as dirty_io until expiration */
127         if (head != &wb->b_dirty_time)
128                 return wb_io_lists_populated(wb);
129
130         wb_io_lists_depopulated(wb);
131         return false;
132 }
133
134 static void wb_wakeup(struct bdi_writeback *wb)
135 {
136         spin_lock_bh(&wb->work_lock);
137         if (test_bit(WB_registered, &wb->state))
138                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
139         spin_unlock_bh(&wb->work_lock);
140 }
141
142 static void finish_writeback_work(struct bdi_writeback *wb,
143                                   struct wb_writeback_work *work)
144 {
145         struct wb_completion *done = work->done;
146
147         if (work->auto_free)
148                 kfree(work);
149         if (done) {
150                 wait_queue_head_t *waitq = done->waitq;
151
152                 /* @done can't be accessed after the following dec */
153                 if (atomic_dec_and_test(&done->cnt))
154                         wake_up_all(waitq);
155         }
156 }
157
158 static void wb_queue_work(struct bdi_writeback *wb,
159                           struct wb_writeback_work *work)
160 {
161         trace_writeback_queue(wb, work);
162
163         if (work->done)
164                 atomic_inc(&work->done->cnt);
165
166         spin_lock_bh(&wb->work_lock);
167
168         if (test_bit(WB_registered, &wb->state)) {
169                 list_add_tail(&work->list, &wb->work_list);
170                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
171         } else
172                 finish_writeback_work(wb, work);
173
174         spin_unlock_bh(&wb->work_lock);
175 }
176
177 /**
178  * wb_wait_for_completion - wait for completion of bdi_writeback_works
179  * @done: target wb_completion
180  *
181  * Wait for one or more work items issued to @bdi with their ->done field
182  * set to @done, which should have been initialized with
183  * DEFINE_WB_COMPLETION().  This function returns after all such work items
184  * are completed.  Work items which are waited upon aren't freed
185  * automatically on completion.
186  */
187 void wb_wait_for_completion(struct wb_completion *done)
188 {
189         atomic_dec(&done->cnt);         /* put down the initial count */
190         wait_event(*done->waitq, !atomic_read(&done->cnt));
191 }
192
193 #ifdef CONFIG_CGROUP_WRITEBACK
194
195 /*
196  * Parameters for foreign inode detection, see wbc_detach_inode() to see
197  * how they're used.
198  *
199  * These paramters are inherently heuristical as the detection target
200  * itself is fuzzy.  All we want to do is detaching an inode from the
201  * current owner if it's being written to by some other cgroups too much.
202  *
203  * The current cgroup writeback is built on the assumption that multiple
204  * cgroups writing to the same inode concurrently is very rare and a mode
205  * of operation which isn't well supported.  As such, the goal is not
206  * taking too long when a different cgroup takes over an inode while
207  * avoiding too aggressive flip-flops from occasional foreign writes.
208  *
209  * We record, very roughly, 2s worth of IO time history and if more than
210  * half of that is foreign, trigger the switch.  The recording is quantized
211  * to 16 slots.  To avoid tiny writes from swinging the decision too much,
212  * writes smaller than 1/8 of avg size are ignored.
213  */
214 #define WB_FRN_TIME_SHIFT       13      /* 1s = 2^13, upto 8 secs w/ 16bit */
215 #define WB_FRN_TIME_AVG_SHIFT   3       /* avg = avg * 7/8 + new * 1/8 */
216 #define WB_FRN_TIME_CUT_DIV     8       /* ignore rounds < avg / 8 */
217 #define WB_FRN_TIME_PERIOD      (2 * (1 << WB_FRN_TIME_SHIFT))  /* 2s */
218
219 #define WB_FRN_HIST_SLOTS       16      /* inode->i_wb_frn_history is 16bit */
220 #define WB_FRN_HIST_UNIT        (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
221                                         /* each slot's duration is 2s / 16 */
222 #define WB_FRN_HIST_THR_SLOTS   (WB_FRN_HIST_SLOTS / 2)
223                                         /* if foreign slots >= 8, switch */
224 #define WB_FRN_HIST_MAX_SLOTS   (WB_FRN_HIST_THR_SLOTS / 2 + 1)
225                                         /* one round can affect upto 5 slots */
226 #define WB_FRN_MAX_IN_FLIGHT    1024    /* don't queue too many concurrently */
227
228 /*
229  * Maximum inodes per isw.  A specific value has been chosen to make
230  * struct inode_switch_wbs_context fit into 1024 bytes kmalloc.
231  */
232 #define WB_MAX_INODES_PER_ISW  ((1024UL - sizeof(struct inode_switch_wbs_context)) \
233                                 / sizeof(struct inode *))
234
235 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
236 static struct workqueue_struct *isw_wq;
237
238 void __inode_attach_wb(struct inode *inode, struct page *page)
239 {
240         struct backing_dev_info *bdi = inode_to_bdi(inode);
241         struct bdi_writeback *wb = NULL;
242
243         if (inode_cgwb_enabled(inode)) {
244                 struct cgroup_subsys_state *memcg_css;
245
246                 if (page) {
247                         memcg_css = mem_cgroup_css_from_page(page);
248                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
249                 } else {
250                         /* must pin memcg_css, see wb_get_create() */
251                         memcg_css = task_get_css(current, memory_cgrp_id);
252                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
253                         css_put(memcg_css);
254                 }
255         }
256
257         if (!wb)
258                 wb = &bdi->wb;
259
260         /*
261          * There may be multiple instances of this function racing to
262          * update the same inode.  Use cmpxchg() to tell the winner.
263          */
264         if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
265                 wb_put(wb);
266 }
267 EXPORT_SYMBOL_GPL(__inode_attach_wb);
268
269 /**
270  * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list
271  * @inode: inode of interest with i_lock held
272  * @wb: target bdi_writeback
273  *
274  * Remove the inode from wb's io lists and if necessarily put onto b_attached
275  * list.  Only inodes attached to cgwb's are kept on this list.
276  */
277 static void inode_cgwb_move_to_attached(struct inode *inode,
278                                         struct bdi_writeback *wb)
279 {
280         assert_spin_locked(&wb->list_lock);
281         assert_spin_locked(&inode->i_lock);
282
283         inode->i_state &= ~I_SYNC_QUEUED;
284         if (wb != &wb->bdi->wb)
285                 list_move(&inode->i_io_list, &wb->b_attached);
286         else
287                 list_del_init(&inode->i_io_list);
288         wb_io_lists_depopulated(wb);
289 }
290
291 /**
292  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
293  * @inode: inode of interest with i_lock held
294  *
295  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
296  * held on entry and is released on return.  The returned wb is guaranteed
297  * to stay @inode's associated wb until its list_lock is released.
298  */
299 static struct bdi_writeback *
300 locked_inode_to_wb_and_lock_list(struct inode *inode)
301         __releases(&inode->i_lock)
302         __acquires(&wb->list_lock)
303 {
304         while (true) {
305                 struct bdi_writeback *wb = inode_to_wb(inode);
306
307                 /*
308                  * inode_to_wb() association is protected by both
309                  * @inode->i_lock and @wb->list_lock but list_lock nests
310                  * outside i_lock.  Drop i_lock and verify that the
311                  * association hasn't changed after acquiring list_lock.
312                  */
313                 wb_get(wb);
314                 spin_unlock(&inode->i_lock);
315                 spin_lock(&wb->list_lock);
316
317                 /* i_wb may have changed inbetween, can't use inode_to_wb() */
318                 if (likely(wb == inode->i_wb)) {
319                         wb_put(wb);     /* @inode already has ref */
320                         return wb;
321                 }
322
323                 spin_unlock(&wb->list_lock);
324                 wb_put(wb);
325                 cpu_relax();
326                 spin_lock(&inode->i_lock);
327         }
328 }
329
330 /**
331  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
332  * @inode: inode of interest
333  *
334  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
335  * on entry.
336  */
337 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
338         __acquires(&wb->list_lock)
339 {
340         spin_lock(&inode->i_lock);
341         return locked_inode_to_wb_and_lock_list(inode);
342 }
343
344 struct inode_switch_wbs_context {
345         struct rcu_work         work;
346
347         /*
348          * Multiple inodes can be switched at once.  The switching procedure
349          * consists of two parts, separated by a RCU grace period.  To make
350          * sure that the second part is executed for each inode gone through
351          * the first part, all inode pointers are placed into a NULL-terminated
352          * array embedded into struct inode_switch_wbs_context.  Otherwise
353          * an inode could be left in a non-consistent state.
354          */
355         struct bdi_writeback    *new_wb;
356         struct inode            *inodes[];
357 };
358
359 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
360 {
361         down_write(&bdi->wb_switch_rwsem);
362 }
363
364 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
365 {
366         up_write(&bdi->wb_switch_rwsem);
367 }
368
369 static bool inode_do_switch_wbs(struct inode *inode,
370                                 struct bdi_writeback *old_wb,
371                                 struct bdi_writeback *new_wb)
372 {
373         struct address_space *mapping = inode->i_mapping;
374         XA_STATE(xas, &mapping->i_pages, 0);
375         struct page *page;
376         bool switched = false;
377
378         spin_lock(&inode->i_lock);
379         xa_lock_irq(&mapping->i_pages);
380
381         /*
382          * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction
383          * path owns the inode and we shouldn't modify ->i_io_list.
384          */
385         if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE)))
386                 goto skip_switch;
387
388         trace_inode_switch_wbs(inode, old_wb, new_wb);
389
390         /*
391          * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
392          * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
393          * pages actually under writeback.
394          */
395         xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
396                 if (PageDirty(page)) {
397                         dec_wb_stat(old_wb, WB_RECLAIMABLE);
398                         inc_wb_stat(new_wb, WB_RECLAIMABLE);
399                 }
400         }
401
402         xas_set(&xas, 0);
403         xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
404                 WARN_ON_ONCE(!PageWriteback(page));
405                 dec_wb_stat(old_wb, WB_WRITEBACK);
406                 inc_wb_stat(new_wb, WB_WRITEBACK);
407         }
408
409         wb_get(new_wb);
410
411         /*
412          * Transfer to @new_wb's IO list if necessary.  If the @inode is dirty,
413          * the specific list @inode was on is ignored and the @inode is put on
414          * ->b_dirty which is always correct including from ->b_dirty_time.
415          * The transfer preserves @inode->dirtied_when ordering.  If the @inode
416          * was clean, it means it was on the b_attached list, so move it onto
417          * the b_attached list of @new_wb.
418          */
419         if (!list_empty(&inode->i_io_list)) {
420                 inode->i_wb = new_wb;
421
422                 if (inode->i_state & I_DIRTY_ALL) {
423                         struct inode *pos;
424
425                         list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
426                                 if (time_after_eq(inode->dirtied_when,
427                                                   pos->dirtied_when))
428                                         break;
429                         inode_io_list_move_locked(inode, new_wb,
430                                                   pos->i_io_list.prev);
431                 } else {
432                         inode_cgwb_move_to_attached(inode, new_wb);
433                 }
434         } else {
435                 inode->i_wb = new_wb;
436         }
437
438         /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
439         inode->i_wb_frn_winner = 0;
440         inode->i_wb_frn_avg_time = 0;
441         inode->i_wb_frn_history = 0;
442         switched = true;
443 skip_switch:
444         /*
445          * Paired with load_acquire in unlocked_inode_to_wb_begin() and
446          * ensures that the new wb is visible if they see !I_WB_SWITCH.
447          */
448         smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
449
450         xa_unlock_irq(&mapping->i_pages);
451         spin_unlock(&inode->i_lock);
452
453         return switched;
454 }
455
456 static void inode_switch_wbs_work_fn(struct work_struct *work)
457 {
458         struct inode_switch_wbs_context *isw =
459                 container_of(to_rcu_work(work), struct inode_switch_wbs_context, work);
460         struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]);
461         struct bdi_writeback *old_wb = isw->inodes[0]->i_wb;
462         struct bdi_writeback *new_wb = isw->new_wb;
463         unsigned long nr_switched = 0;
464         struct inode **inodep;
465
466         /*
467          * If @inode switches cgwb membership while sync_inodes_sb() is
468          * being issued, sync_inodes_sb() might miss it.  Synchronize.
469          */
470         down_read(&bdi->wb_switch_rwsem);
471
472         /*
473          * By the time control reaches here, RCU grace period has passed
474          * since I_WB_SWITCH assertion and all wb stat update transactions
475          * between unlocked_inode_to_wb_begin/end() are guaranteed to be
476          * synchronizing against the i_pages lock.
477          *
478          * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
479          * gives us exclusion against all wb related operations on @inode
480          * including IO list manipulations and stat updates.
481          */
482         if (old_wb < new_wb) {
483                 spin_lock(&old_wb->list_lock);
484                 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
485         } else {
486                 spin_lock(&new_wb->list_lock);
487                 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
488         }
489
490         for (inodep = isw->inodes; *inodep; inodep++) {
491                 WARN_ON_ONCE((*inodep)->i_wb != old_wb);
492                 if (inode_do_switch_wbs(*inodep, old_wb, new_wb))
493                         nr_switched++;
494         }
495
496         spin_unlock(&new_wb->list_lock);
497         spin_unlock(&old_wb->list_lock);
498
499         up_read(&bdi->wb_switch_rwsem);
500
501         if (nr_switched) {
502                 wb_wakeup(new_wb);
503                 wb_put_many(old_wb, nr_switched);
504         }
505
506         for (inodep = isw->inodes; *inodep; inodep++)
507                 iput(*inodep);
508         wb_put(new_wb);
509         kfree(isw);
510         atomic_dec(&isw_nr_in_flight);
511 }
512
513 static bool inode_prepare_wbs_switch(struct inode *inode,
514                                      struct bdi_writeback *new_wb)
515 {
516         /*
517          * Paired with smp_mb() in cgroup_writeback_umount().
518          * isw_nr_in_flight must be increased before checking SB_ACTIVE and
519          * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0
520          * in cgroup_writeback_umount() and the isw_wq will be not flushed.
521          */
522         smp_mb();
523
524         if (IS_DAX(inode))
525                 return false;
526
527         /* while holding I_WB_SWITCH, no one else can update the association */
528         spin_lock(&inode->i_lock);
529         if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
530             inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) ||
531             inode_to_wb(inode) == new_wb) {
532                 spin_unlock(&inode->i_lock);
533                 return false;
534         }
535         inode->i_state |= I_WB_SWITCH;
536         __iget(inode);
537         spin_unlock(&inode->i_lock);
538
539         return true;
540 }
541
542 /**
543  * inode_switch_wbs - change the wb association of an inode
544  * @inode: target inode
545  * @new_wb_id: ID of the new wb
546  *
547  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
548  * switching is performed asynchronously and may fail silently.
549  */
550 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
551 {
552         struct backing_dev_info *bdi = inode_to_bdi(inode);
553         struct cgroup_subsys_state *memcg_css;
554         struct inode_switch_wbs_context *isw;
555
556         /* noop if seems to be already in progress */
557         if (inode->i_state & I_WB_SWITCH)
558                 return;
559
560         /* avoid queueing a new switch if too many are already in flight */
561         if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
562                 return;
563
564         isw = kzalloc(sizeof(*isw) + 2 * sizeof(struct inode *), GFP_ATOMIC);
565         if (!isw)
566                 return;
567
568         atomic_inc(&isw_nr_in_flight);
569
570         /* find and pin the new wb */
571         rcu_read_lock();
572         memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
573         if (memcg_css && !css_tryget(memcg_css))
574                 memcg_css = NULL;
575         rcu_read_unlock();
576         if (!memcg_css)
577                 goto out_free;
578
579         isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
580         css_put(memcg_css);
581         if (!isw->new_wb)
582                 goto out_free;
583
584         if (!inode_prepare_wbs_switch(inode, isw->new_wb))
585                 goto out_free;
586
587         isw->inodes[0] = inode;
588
589         /*
590          * In addition to synchronizing among switchers, I_WB_SWITCH tells
591          * the RCU protected stat update paths to grab the i_page
592          * lock so that stat transfer can synchronize against them.
593          * Let's continue after I_WB_SWITCH is guaranteed to be visible.
594          */
595         INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
596         queue_rcu_work(isw_wq, &isw->work);
597         return;
598
599 out_free:
600         atomic_dec(&isw_nr_in_flight);
601         if (isw->new_wb)
602                 wb_put(isw->new_wb);
603         kfree(isw);
604 }
605
606 /**
607  * cleanup_offline_cgwb - detach associated inodes
608  * @wb: target wb
609  *
610  * Switch all inodes attached to @wb to a nearest living ancestor's wb in order
611  * to eventually release the dying @wb.  Returns %true if not all inodes were
612  * switched and the function has to be restarted.
613  */
614 bool cleanup_offline_cgwb(struct bdi_writeback *wb)
615 {
616         struct cgroup_subsys_state *memcg_css;
617         struct inode_switch_wbs_context *isw;
618         struct inode *inode;
619         int nr;
620         bool restart = false;
621
622         isw = kzalloc(sizeof(*isw) + WB_MAX_INODES_PER_ISW *
623                       sizeof(struct inode *), GFP_KERNEL);
624         if (!isw)
625                 return restart;
626
627         atomic_inc(&isw_nr_in_flight);
628
629         for (memcg_css = wb->memcg_css->parent; memcg_css;
630              memcg_css = memcg_css->parent) {
631                 isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL);
632                 if (isw->new_wb)
633                         break;
634         }
635         if (unlikely(!isw->new_wb))
636                 isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */
637
638         nr = 0;
639         spin_lock(&wb->list_lock);
640         list_for_each_entry(inode, &wb->b_attached, i_io_list) {
641                 if (!inode_prepare_wbs_switch(inode, isw->new_wb))
642                         continue;
643
644                 isw->inodes[nr++] = inode;
645
646                 if (nr >= WB_MAX_INODES_PER_ISW - 1) {
647                         restart = true;
648                         break;
649                 }
650         }
651         spin_unlock(&wb->list_lock);
652
653         /* no attached inodes? bail out */
654         if (nr == 0) {
655                 atomic_dec(&isw_nr_in_flight);
656                 wb_put(isw->new_wb);
657                 kfree(isw);
658                 return restart;
659         }
660
661         /*
662          * In addition to synchronizing among switchers, I_WB_SWITCH tells
663          * the RCU protected stat update paths to grab the i_page
664          * lock so that stat transfer can synchronize against them.
665          * Let's continue after I_WB_SWITCH is guaranteed to be visible.
666          */
667         INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
668         queue_rcu_work(isw_wq, &isw->work);
669
670         return restart;
671 }
672
673 /**
674  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
675  * @wbc: writeback_control of interest
676  * @inode: target inode
677  *
678  * @inode is locked and about to be written back under the control of @wbc.
679  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
680  * writeback completion, wbc_detach_inode() should be called.  This is used
681  * to track the cgroup writeback context.
682  */
683 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
684                                  struct inode *inode)
685 {
686         if (!inode_cgwb_enabled(inode)) {
687                 spin_unlock(&inode->i_lock);
688                 return;
689         }
690
691         wbc->wb = inode_to_wb(inode);
692         wbc->inode = inode;
693
694         wbc->wb_id = wbc->wb->memcg_css->id;
695         wbc->wb_lcand_id = inode->i_wb_frn_winner;
696         wbc->wb_tcand_id = 0;
697         wbc->wb_bytes = 0;
698         wbc->wb_lcand_bytes = 0;
699         wbc->wb_tcand_bytes = 0;
700
701         wb_get(wbc->wb);
702         spin_unlock(&inode->i_lock);
703
704         /*
705          * A dying wb indicates that either the blkcg associated with the
706          * memcg changed or the associated memcg is dying.  In the first
707          * case, a replacement wb should already be available and we should
708          * refresh the wb immediately.  In the second case, trying to
709          * refresh will keep failing.
710          */
711         if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
712                 inode_switch_wbs(inode, wbc->wb_id);
713 }
714 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
715
716 /**
717  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
718  * @wbc: writeback_control of the just finished writeback
719  *
720  * To be called after a writeback attempt of an inode finishes and undoes
721  * wbc_attach_and_unlock_inode().  Can be called under any context.
722  *
723  * As concurrent write sharing of an inode is expected to be very rare and
724  * memcg only tracks page ownership on first-use basis severely confining
725  * the usefulness of such sharing, cgroup writeback tracks ownership
726  * per-inode.  While the support for concurrent write sharing of an inode
727  * is deemed unnecessary, an inode being written to by different cgroups at
728  * different points in time is a lot more common, and, more importantly,
729  * charging only by first-use can too readily lead to grossly incorrect
730  * behaviors (single foreign page can lead to gigabytes of writeback to be
731  * incorrectly attributed).
732  *
733  * To resolve this issue, cgroup writeback detects the majority dirtier of
734  * an inode and transfers the ownership to it.  To avoid unnnecessary
735  * oscillation, the detection mechanism keeps track of history and gives
736  * out the switch verdict only if the foreign usage pattern is stable over
737  * a certain amount of time and/or writeback attempts.
738  *
739  * On each writeback attempt, @wbc tries to detect the majority writer
740  * using Boyer-Moore majority vote algorithm.  In addition to the byte
741  * count from the majority voting, it also counts the bytes written for the
742  * current wb and the last round's winner wb (max of last round's current
743  * wb, the winner from two rounds ago, and the last round's majority
744  * candidate).  Keeping track of the historical winner helps the algorithm
745  * to semi-reliably detect the most active writer even when it's not the
746  * absolute majority.
747  *
748  * Once the winner of the round is determined, whether the winner is
749  * foreign or not and how much IO time the round consumed is recorded in
750  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
751  * over a certain threshold, the switch verdict is given.
752  */
753 void wbc_detach_inode(struct writeback_control *wbc)
754 {
755         struct bdi_writeback *wb = wbc->wb;
756         struct inode *inode = wbc->inode;
757         unsigned long avg_time, max_bytes, max_time;
758         u16 history;
759         int max_id;
760
761         if (!wb)
762                 return;
763
764         history = inode->i_wb_frn_history;
765         avg_time = inode->i_wb_frn_avg_time;
766
767         /* pick the winner of this round */
768         if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
769             wbc->wb_bytes >= wbc->wb_tcand_bytes) {
770                 max_id = wbc->wb_id;
771                 max_bytes = wbc->wb_bytes;
772         } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
773                 max_id = wbc->wb_lcand_id;
774                 max_bytes = wbc->wb_lcand_bytes;
775         } else {
776                 max_id = wbc->wb_tcand_id;
777                 max_bytes = wbc->wb_tcand_bytes;
778         }
779
780         /*
781          * Calculate the amount of IO time the winner consumed and fold it
782          * into the running average kept per inode.  If the consumed IO
783          * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
784          * deciding whether to switch or not.  This is to prevent one-off
785          * small dirtiers from skewing the verdict.
786          */
787         max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
788                                 wb->avg_write_bandwidth);
789         if (avg_time)
790                 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
791                             (avg_time >> WB_FRN_TIME_AVG_SHIFT);
792         else
793                 avg_time = max_time;    /* immediate catch up on first run */
794
795         if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
796                 int slots;
797
798                 /*
799                  * The switch verdict is reached if foreign wb's consume
800                  * more than a certain proportion of IO time in a
801                  * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
802                  * history mask where each bit represents one sixteenth of
803                  * the period.  Determine the number of slots to shift into
804                  * history from @max_time.
805                  */
806                 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
807                             (unsigned long)WB_FRN_HIST_MAX_SLOTS);
808                 history <<= slots;
809                 if (wbc->wb_id != max_id)
810                         history |= (1U << slots) - 1;
811
812                 if (history)
813                         trace_inode_foreign_history(inode, wbc, history);
814
815                 /*
816                  * Switch if the current wb isn't the consistent winner.
817                  * If there are multiple closely competing dirtiers, the
818                  * inode may switch across them repeatedly over time, which
819                  * is okay.  The main goal is avoiding keeping an inode on
820                  * the wrong wb for an extended period of time.
821                  */
822                 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
823                         inode_switch_wbs(inode, max_id);
824         }
825
826         /*
827          * Multiple instances of this function may race to update the
828          * following fields but we don't mind occassional inaccuracies.
829          */
830         inode->i_wb_frn_winner = max_id;
831         inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
832         inode->i_wb_frn_history = history;
833
834         wb_put(wbc->wb);
835         wbc->wb = NULL;
836 }
837 EXPORT_SYMBOL_GPL(wbc_detach_inode);
838
839 /**
840  * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
841  * @wbc: writeback_control of the writeback in progress
842  * @page: page being written out
843  * @bytes: number of bytes being written out
844  *
845  * @bytes from @page are about to written out during the writeback
846  * controlled by @wbc.  Keep the book for foreign inode detection.  See
847  * wbc_detach_inode().
848  */
849 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
850                               size_t bytes)
851 {
852         struct cgroup_subsys_state *css;
853         int id;
854
855         /*
856          * pageout() path doesn't attach @wbc to the inode being written
857          * out.  This is intentional as we don't want the function to block
858          * behind a slow cgroup.  Ultimately, we want pageout() to kick off
859          * regular writeback instead of writing things out itself.
860          */
861         if (!wbc->wb || wbc->no_cgroup_owner)
862                 return;
863
864         css = mem_cgroup_css_from_page(page);
865         /* dead cgroups shouldn't contribute to inode ownership arbitration */
866         if (!(css->flags & CSS_ONLINE))
867                 return;
868
869         id = css->id;
870
871         if (id == wbc->wb_id) {
872                 wbc->wb_bytes += bytes;
873                 return;
874         }
875
876         if (id == wbc->wb_lcand_id)
877                 wbc->wb_lcand_bytes += bytes;
878
879         /* Boyer-Moore majority vote algorithm */
880         if (!wbc->wb_tcand_bytes)
881                 wbc->wb_tcand_id = id;
882         if (id == wbc->wb_tcand_id)
883                 wbc->wb_tcand_bytes += bytes;
884         else
885                 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
886 }
887 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
888
889 /**
890  * inode_congested - test whether an inode is congested
891  * @inode: inode to test for congestion (may be NULL)
892  * @cong_bits: mask of WB_[a]sync_congested bits to test
893  *
894  * Tests whether @inode is congested.  @cong_bits is the mask of congestion
895  * bits to test and the return value is the mask of set bits.
896  *
897  * If cgroup writeback is enabled for @inode, the congestion state is
898  * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
899  * associated with @inode is congested; otherwise, the root wb's congestion
900  * state is used.
901  *
902  * @inode is allowed to be NULL as this function is often called on
903  * mapping->host which is NULL for the swapper space.
904  */
905 int inode_congested(struct inode *inode, int cong_bits)
906 {
907         /*
908          * Once set, ->i_wb never becomes NULL while the inode is alive.
909          * Start transaction iff ->i_wb is visible.
910          */
911         if (inode && inode_to_wb_is_valid(inode)) {
912                 struct bdi_writeback *wb;
913                 struct wb_lock_cookie lock_cookie = {};
914                 bool congested;
915
916                 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
917                 congested = wb_congested(wb, cong_bits);
918                 unlocked_inode_to_wb_end(inode, &lock_cookie);
919                 return congested;
920         }
921
922         return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
923 }
924 EXPORT_SYMBOL_GPL(inode_congested);
925
926 /**
927  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
928  * @wb: target bdi_writeback to split @nr_pages to
929  * @nr_pages: number of pages to write for the whole bdi
930  *
931  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
932  * relation to the total write bandwidth of all wb's w/ dirty inodes on
933  * @wb->bdi.
934  */
935 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
936 {
937         unsigned long this_bw = wb->avg_write_bandwidth;
938         unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
939
940         if (nr_pages == LONG_MAX)
941                 return LONG_MAX;
942
943         /*
944          * This may be called on clean wb's and proportional distribution
945          * may not make sense, just use the original @nr_pages in those
946          * cases.  In general, we wanna err on the side of writing more.
947          */
948         if (!tot_bw || this_bw >= tot_bw)
949                 return nr_pages;
950         else
951                 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
952 }
953
954 /**
955  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
956  * @bdi: target backing_dev_info
957  * @base_work: wb_writeback_work to issue
958  * @skip_if_busy: skip wb's which already have writeback in progress
959  *
960  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
961  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
962  * distributed to the busy wbs according to each wb's proportion in the
963  * total active write bandwidth of @bdi.
964  */
965 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
966                                   struct wb_writeback_work *base_work,
967                                   bool skip_if_busy)
968 {
969         struct bdi_writeback *last_wb = NULL;
970         struct bdi_writeback *wb = list_entry(&bdi->wb_list,
971                                               struct bdi_writeback, bdi_node);
972
973         might_sleep();
974 restart:
975         rcu_read_lock();
976         list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
977                 DEFINE_WB_COMPLETION(fallback_work_done, bdi);
978                 struct wb_writeback_work fallback_work;
979                 struct wb_writeback_work *work;
980                 long nr_pages;
981
982                 if (last_wb) {
983                         wb_put(last_wb);
984                         last_wb = NULL;
985                 }
986
987                 /* SYNC_ALL writes out I_DIRTY_TIME too */
988                 if (!wb_has_dirty_io(wb) &&
989                     (base_work->sync_mode == WB_SYNC_NONE ||
990                      list_empty(&wb->b_dirty_time)))
991                         continue;
992                 if (skip_if_busy && writeback_in_progress(wb))
993                         continue;
994
995                 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
996
997                 work = kmalloc(sizeof(*work), GFP_ATOMIC);
998                 if (work) {
999                         *work = *base_work;
1000                         work->nr_pages = nr_pages;
1001                         work->auto_free = 1;
1002                         wb_queue_work(wb, work);
1003                         continue;
1004                 }
1005
1006                 /* alloc failed, execute synchronously using on-stack fallback */
1007                 work = &fallback_work;
1008                 *work = *base_work;
1009                 work->nr_pages = nr_pages;
1010                 work->auto_free = 0;
1011                 work->done = &fallback_work_done;
1012
1013                 wb_queue_work(wb, work);
1014
1015                 /*
1016                  * Pin @wb so that it stays on @bdi->wb_list.  This allows
1017                  * continuing iteration from @wb after dropping and
1018                  * regrabbing rcu read lock.
1019                  */
1020                 wb_get(wb);
1021                 last_wb = wb;
1022
1023                 rcu_read_unlock();
1024                 wb_wait_for_completion(&fallback_work_done);
1025                 goto restart;
1026         }
1027         rcu_read_unlock();
1028
1029         if (last_wb)
1030                 wb_put(last_wb);
1031 }
1032
1033 /**
1034  * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
1035  * @bdi_id: target bdi id
1036  * @memcg_id: target memcg css id
1037  * @nr: number of pages to write, 0 for best-effort dirty flushing
1038  * @reason: reason why some writeback work initiated
1039  * @done: target wb_completion
1040  *
1041  * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
1042  * with the specified parameters.
1043  */
1044 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id, unsigned long nr,
1045                            enum wb_reason reason, struct wb_completion *done)
1046 {
1047         struct backing_dev_info *bdi;
1048         struct cgroup_subsys_state *memcg_css;
1049         struct bdi_writeback *wb;
1050         struct wb_writeback_work *work;
1051         int ret;
1052
1053         /* lookup bdi and memcg */
1054         bdi = bdi_get_by_id(bdi_id);
1055         if (!bdi)
1056                 return -ENOENT;
1057
1058         rcu_read_lock();
1059         memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
1060         if (memcg_css && !css_tryget(memcg_css))
1061                 memcg_css = NULL;
1062         rcu_read_unlock();
1063         if (!memcg_css) {
1064                 ret = -ENOENT;
1065                 goto out_bdi_put;
1066         }
1067
1068         /*
1069          * And find the associated wb.  If the wb isn't there already
1070          * there's nothing to flush, don't create one.
1071          */
1072         wb = wb_get_lookup(bdi, memcg_css);
1073         if (!wb) {
1074                 ret = -ENOENT;
1075                 goto out_css_put;
1076         }
1077
1078         /*
1079          * If @nr is zero, the caller is attempting to write out most of
1080          * the currently dirty pages.  Let's take the current dirty page
1081          * count and inflate it by 25% which should be large enough to
1082          * flush out most dirty pages while avoiding getting livelocked by
1083          * concurrent dirtiers.
1084          */
1085         if (!nr) {
1086                 unsigned long filepages, headroom, dirty, writeback;
1087
1088                 mem_cgroup_wb_stats(wb, &filepages, &headroom, &dirty,
1089                                       &writeback);
1090                 nr = dirty * 10 / 8;
1091         }
1092
1093         /* issue the writeback work */
1094         work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
1095         if (work) {
1096                 work->nr_pages = nr;
1097                 work->sync_mode = WB_SYNC_NONE;
1098                 work->range_cyclic = 1;
1099                 work->reason = reason;
1100                 work->done = done;
1101                 work->auto_free = 1;
1102                 wb_queue_work(wb, work);
1103                 ret = 0;
1104         } else {
1105                 ret = -ENOMEM;
1106         }
1107
1108         wb_put(wb);
1109 out_css_put:
1110         css_put(memcg_css);
1111 out_bdi_put:
1112         bdi_put(bdi);
1113         return ret;
1114 }
1115
1116 /**
1117  * cgroup_writeback_umount - flush inode wb switches for umount
1118  *
1119  * This function is called when a super_block is about to be destroyed and
1120  * flushes in-flight inode wb switches.  An inode wb switch goes through
1121  * RCU and then workqueue, so the two need to be flushed in order to ensure
1122  * that all previously scheduled switches are finished.  As wb switches are
1123  * rare occurrences and synchronize_rcu() can take a while, perform
1124  * flushing iff wb switches are in flight.
1125  */
1126 void cgroup_writeback_umount(void)
1127 {
1128         /*
1129          * SB_ACTIVE should be reliably cleared before checking
1130          * isw_nr_in_flight, see generic_shutdown_super().
1131          */
1132         smp_mb();
1133
1134         if (atomic_read(&isw_nr_in_flight)) {
1135                 /*
1136                  * Use rcu_barrier() to wait for all pending callbacks to
1137                  * ensure that all in-flight wb switches are in the workqueue.
1138                  */
1139                 rcu_barrier();
1140                 flush_workqueue(isw_wq);
1141         }
1142 }
1143
1144 static int __init cgroup_writeback_init(void)
1145 {
1146         isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1147         if (!isw_wq)
1148                 return -ENOMEM;
1149         return 0;
1150 }
1151 fs_initcall(cgroup_writeback_init);
1152
1153 #else   /* CONFIG_CGROUP_WRITEBACK */
1154
1155 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1156 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1157
1158 static void inode_cgwb_move_to_attached(struct inode *inode,
1159                                         struct bdi_writeback *wb)
1160 {
1161         assert_spin_locked(&wb->list_lock);
1162         assert_spin_locked(&inode->i_lock);
1163
1164         inode->i_state &= ~I_SYNC_QUEUED;
1165         list_del_init(&inode->i_io_list);
1166         wb_io_lists_depopulated(wb);
1167 }
1168
1169 static struct bdi_writeback *
1170 locked_inode_to_wb_and_lock_list(struct inode *inode)
1171         __releases(&inode->i_lock)
1172         __acquires(&wb->list_lock)
1173 {
1174         struct bdi_writeback *wb = inode_to_wb(inode);
1175
1176         spin_unlock(&inode->i_lock);
1177         spin_lock(&wb->list_lock);
1178         return wb;
1179 }
1180
1181 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1182         __acquires(&wb->list_lock)
1183 {
1184         struct bdi_writeback *wb = inode_to_wb(inode);
1185
1186         spin_lock(&wb->list_lock);
1187         return wb;
1188 }
1189
1190 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1191 {
1192         return nr_pages;
1193 }
1194
1195 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1196                                   struct wb_writeback_work *base_work,
1197                                   bool skip_if_busy)
1198 {
1199         might_sleep();
1200
1201         if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1202                 base_work->auto_free = 0;
1203                 wb_queue_work(&bdi->wb, base_work);
1204         }
1205 }
1206
1207 #endif  /* CONFIG_CGROUP_WRITEBACK */
1208
1209 /*
1210  * Add in the number of potentially dirty inodes, because each inode
1211  * write can dirty pagecache in the underlying blockdev.
1212  */
1213 static unsigned long get_nr_dirty_pages(void)
1214 {
1215         return global_node_page_state(NR_FILE_DIRTY) +
1216                 get_nr_dirty_inodes();
1217 }
1218
1219 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1220 {
1221         if (!wb_has_dirty_io(wb))
1222                 return;
1223
1224         /*
1225          * All callers of this function want to start writeback of all
1226          * dirty pages. Places like vmscan can call this at a very
1227          * high frequency, causing pointless allocations of tons of
1228          * work items and keeping the flusher threads busy retrieving
1229          * that work. Ensure that we only allow one of them pending and
1230          * inflight at the time.
1231          */
1232         if (test_bit(WB_start_all, &wb->state) ||
1233             test_and_set_bit(WB_start_all, &wb->state))
1234                 return;
1235
1236         wb->start_all_reason = reason;
1237         wb_wakeup(wb);
1238 }
1239
1240 /**
1241  * wb_start_background_writeback - start background writeback
1242  * @wb: bdi_writback to write from
1243  *
1244  * Description:
1245  *   This makes sure WB_SYNC_NONE background writeback happens. When
1246  *   this function returns, it is only guaranteed that for given wb
1247  *   some IO is happening if we are over background dirty threshold.
1248  *   Caller need not hold sb s_umount semaphore.
1249  */
1250 void wb_start_background_writeback(struct bdi_writeback *wb)
1251 {
1252         /*
1253          * We just wake up the flusher thread. It will perform background
1254          * writeback as soon as there is no other work to do.
1255          */
1256         trace_writeback_wake_background(wb);
1257         wb_wakeup(wb);
1258 }
1259
1260 /*
1261  * Remove the inode from the writeback list it is on.
1262  */
1263 void inode_io_list_del(struct inode *inode)
1264 {
1265         struct bdi_writeback *wb;
1266
1267         wb = inode_to_wb_and_lock_list(inode);
1268         spin_lock(&inode->i_lock);
1269
1270         inode->i_state &= ~I_SYNC_QUEUED;
1271         list_del_init(&inode->i_io_list);
1272         wb_io_lists_depopulated(wb);
1273
1274         spin_unlock(&inode->i_lock);
1275         spin_unlock(&wb->list_lock);
1276 }
1277 EXPORT_SYMBOL(inode_io_list_del);
1278
1279 /*
1280  * mark an inode as under writeback on the sb
1281  */
1282 void sb_mark_inode_writeback(struct inode *inode)
1283 {
1284         struct super_block *sb = inode->i_sb;
1285         unsigned long flags;
1286
1287         if (list_empty(&inode->i_wb_list)) {
1288                 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1289                 if (list_empty(&inode->i_wb_list)) {
1290                         list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1291                         trace_sb_mark_inode_writeback(inode);
1292                 }
1293                 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1294         }
1295 }
1296
1297 /*
1298  * clear an inode as under writeback on the sb
1299  */
1300 void sb_clear_inode_writeback(struct inode *inode)
1301 {
1302         struct super_block *sb = inode->i_sb;
1303         unsigned long flags;
1304
1305         if (!list_empty(&inode->i_wb_list)) {
1306                 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1307                 if (!list_empty(&inode->i_wb_list)) {
1308                         list_del_init(&inode->i_wb_list);
1309                         trace_sb_clear_inode_writeback(inode);
1310                 }
1311                 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1312         }
1313 }
1314
1315 /*
1316  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1317  * furthest end of its superblock's dirty-inode list.
1318  *
1319  * Before stamping the inode's ->dirtied_when, we check to see whether it is
1320  * already the most-recently-dirtied inode on the b_dirty list.  If that is
1321  * the case then the inode must have been redirtied while it was being written
1322  * out and we don't reset its dirtied_when.
1323  */
1324 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
1325 {
1326         assert_spin_locked(&inode->i_lock);
1327
1328         if (!list_empty(&wb->b_dirty)) {
1329                 struct inode *tail;
1330
1331                 tail = wb_inode(wb->b_dirty.next);
1332                 if (time_before(inode->dirtied_when, tail->dirtied_when))
1333                         inode->dirtied_when = jiffies;
1334         }
1335         inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1336         inode->i_state &= ~I_SYNC_QUEUED;
1337 }
1338
1339 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1340 {
1341         spin_lock(&inode->i_lock);
1342         redirty_tail_locked(inode, wb);
1343         spin_unlock(&inode->i_lock);
1344 }
1345
1346 /*
1347  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1348  */
1349 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1350 {
1351         inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1352 }
1353
1354 static void inode_sync_complete(struct inode *inode)
1355 {
1356         inode->i_state &= ~I_SYNC;
1357         /* If inode is clean an unused, put it into LRU now... */
1358         inode_add_lru(inode);
1359         /* Waiters must see I_SYNC cleared before being woken up */
1360         smp_mb();
1361         wake_up_bit(&inode->i_state, __I_SYNC);
1362 }
1363
1364 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1365 {
1366         bool ret = time_after(inode->dirtied_when, t);
1367 #ifndef CONFIG_64BIT
1368         /*
1369          * For inodes being constantly redirtied, dirtied_when can get stuck.
1370          * It _appears_ to be in the future, but is actually in distant past.
1371          * This test is necessary to prevent such wrapped-around relative times
1372          * from permanently stopping the whole bdi writeback.
1373          */
1374         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1375 #endif
1376         return ret;
1377 }
1378
1379 #define EXPIRE_DIRTY_ATIME 0x0001
1380
1381 /*
1382  * Move expired (dirtied before dirtied_before) dirty inodes from
1383  * @delaying_queue to @dispatch_queue.
1384  */
1385 static int move_expired_inodes(struct list_head *delaying_queue,
1386                                struct list_head *dispatch_queue,
1387                                unsigned long dirtied_before)
1388 {
1389         LIST_HEAD(tmp);
1390         struct list_head *pos, *node;
1391         struct super_block *sb = NULL;
1392         struct inode *inode;
1393         int do_sb_sort = 0;
1394         int moved = 0;
1395
1396         while (!list_empty(delaying_queue)) {
1397                 inode = wb_inode(delaying_queue->prev);
1398                 if (inode_dirtied_after(inode, dirtied_before))
1399                         break;
1400                 list_move(&inode->i_io_list, &tmp);
1401                 moved++;
1402                 spin_lock(&inode->i_lock);
1403                 inode->i_state |= I_SYNC_QUEUED;
1404                 spin_unlock(&inode->i_lock);
1405                 if (sb_is_blkdev_sb(inode->i_sb))
1406                         continue;
1407                 if (sb && sb != inode->i_sb)
1408                         do_sb_sort = 1;
1409                 sb = inode->i_sb;
1410         }
1411
1412         /* just one sb in list, splice to dispatch_queue and we're done */
1413         if (!do_sb_sort) {
1414                 list_splice(&tmp, dispatch_queue);
1415                 goto out;
1416         }
1417
1418         /* Move inodes from one superblock together */
1419         while (!list_empty(&tmp)) {
1420                 sb = wb_inode(tmp.prev)->i_sb;
1421                 list_for_each_prev_safe(pos, node, &tmp) {
1422                         inode = wb_inode(pos);
1423                         if (inode->i_sb == sb)
1424                                 list_move(&inode->i_io_list, dispatch_queue);
1425                 }
1426         }
1427 out:
1428         return moved;
1429 }
1430
1431 /*
1432  * Queue all expired dirty inodes for io, eldest first.
1433  * Before
1434  *         newly dirtied     b_dirty    b_io    b_more_io
1435  *         =============>    gf         edc     BA
1436  * After
1437  *         newly dirtied     b_dirty    b_io    b_more_io
1438  *         =============>    g          fBAedc
1439  *                                           |
1440  *                                           +--> dequeue for IO
1441  */
1442 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1443                      unsigned long dirtied_before)
1444 {
1445         int moved;
1446         unsigned long time_expire_jif = dirtied_before;
1447
1448         assert_spin_locked(&wb->list_lock);
1449         list_splice_init(&wb->b_more_io, &wb->b_io);
1450         moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
1451         if (!work->for_sync)
1452                 time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
1453         moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1454                                      time_expire_jif);
1455         if (moved)
1456                 wb_io_lists_populated(wb);
1457         trace_writeback_queue_io(wb, work, dirtied_before, moved);
1458 }
1459
1460 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1461 {
1462         int ret;
1463
1464         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1465                 trace_writeback_write_inode_start(inode, wbc);
1466                 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1467                 trace_writeback_write_inode(inode, wbc);
1468                 return ret;
1469         }
1470         return 0;
1471 }
1472
1473 /*
1474  * Wait for writeback on an inode to complete. Called with i_lock held.
1475  * Caller must make sure inode cannot go away when we drop i_lock.
1476  */
1477 static void __inode_wait_for_writeback(struct inode *inode)
1478         __releases(inode->i_lock)
1479         __acquires(inode->i_lock)
1480 {
1481         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1482         wait_queue_head_t *wqh;
1483
1484         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1485         while (inode->i_state & I_SYNC) {
1486                 spin_unlock(&inode->i_lock);
1487                 __wait_on_bit(wqh, &wq, bit_wait,
1488                               TASK_UNINTERRUPTIBLE);
1489                 spin_lock(&inode->i_lock);
1490         }
1491 }
1492
1493 /*
1494  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1495  */
1496 void inode_wait_for_writeback(struct inode *inode)
1497 {
1498         spin_lock(&inode->i_lock);
1499         __inode_wait_for_writeback(inode);
1500         spin_unlock(&inode->i_lock);
1501 }
1502
1503 /*
1504  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1505  * held and drops it. It is aimed for callers not holding any inode reference
1506  * so once i_lock is dropped, inode can go away.
1507  */
1508 static void inode_sleep_on_writeback(struct inode *inode)
1509         __releases(inode->i_lock)
1510 {
1511         DEFINE_WAIT(wait);
1512         wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1513         int sleep;
1514
1515         prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1516         sleep = inode->i_state & I_SYNC;
1517         spin_unlock(&inode->i_lock);
1518         if (sleep)
1519                 schedule();
1520         finish_wait(wqh, &wait);
1521 }
1522
1523 /*
1524  * Find proper writeback list for the inode depending on its current state and
1525  * possibly also change of its state while we were doing writeback.  Here we
1526  * handle things such as livelock prevention or fairness of writeback among
1527  * inodes. This function can be called only by flusher thread - noone else
1528  * processes all inodes in writeback lists and requeueing inodes behind flusher
1529  * thread's back can have unexpected consequences.
1530  */
1531 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1532                           struct writeback_control *wbc)
1533 {
1534         if (inode->i_state & I_FREEING)
1535                 return;
1536
1537         /*
1538          * Sync livelock prevention. Each inode is tagged and synced in one
1539          * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1540          * the dirty time to prevent enqueue and sync it again.
1541          */
1542         if ((inode->i_state & I_DIRTY) &&
1543             (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1544                 inode->dirtied_when = jiffies;
1545
1546         if (wbc->pages_skipped) {
1547                 /*
1548                  * writeback is not making progress due to locked
1549                  * buffers. Skip this inode for now.
1550                  */
1551                 redirty_tail_locked(inode, wb);
1552                 return;
1553         }
1554
1555         if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1556                 /*
1557                  * We didn't write back all the pages.  nfs_writepages()
1558                  * sometimes bales out without doing anything.
1559                  */
1560                 if (wbc->nr_to_write <= 0) {
1561                         /* Slice used up. Queue for next turn. */
1562                         requeue_io(inode, wb);
1563                 } else {
1564                         /*
1565                          * Writeback blocked by something other than
1566                          * congestion. Delay the inode for some time to
1567                          * avoid spinning on the CPU (100% iowait)
1568                          * retrying writeback of the dirty page/inode
1569                          * that cannot be performed immediately.
1570                          */
1571                         redirty_tail_locked(inode, wb);
1572                 }
1573         } else if (inode->i_state & I_DIRTY) {
1574                 /*
1575                  * Filesystems can dirty the inode during writeback operations,
1576                  * such as delayed allocation during submission or metadata
1577                  * updates after data IO completion.
1578                  */
1579                 redirty_tail_locked(inode, wb);
1580         } else if (inode->i_state & I_DIRTY_TIME) {
1581                 inode->dirtied_when = jiffies;
1582                 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1583                 inode->i_state &= ~I_SYNC_QUEUED;
1584         } else {
1585                 /* The inode is clean. Remove from writeback lists. */
1586                 inode_cgwb_move_to_attached(inode, wb);
1587         }
1588 }
1589
1590 /*
1591  * Write out an inode and its dirty pages (or some of its dirty pages, depending
1592  * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state.
1593  *
1594  * This doesn't remove the inode from the writeback list it is on, except
1595  * potentially to move it from b_dirty_time to b_dirty due to timestamp
1596  * expiration.  The caller is otherwise responsible for writeback list handling.
1597  *
1598  * The caller is also responsible for setting the I_SYNC flag beforehand and
1599  * calling inode_sync_complete() to clear it afterwards.
1600  */
1601 static int
1602 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1603 {
1604         struct address_space *mapping = inode->i_mapping;
1605         long nr_to_write = wbc->nr_to_write;
1606         unsigned dirty;
1607         int ret;
1608
1609         WARN_ON(!(inode->i_state & I_SYNC));
1610
1611         trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1612
1613         ret = do_writepages(mapping, wbc);
1614
1615         /*
1616          * Make sure to wait on the data before writing out the metadata.
1617          * This is important for filesystems that modify metadata on data
1618          * I/O completion. We don't do it for sync(2) writeback because it has a
1619          * separate, external IO completion path and ->sync_fs for guaranteeing
1620          * inode metadata is written back correctly.
1621          */
1622         if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1623                 int err = filemap_fdatawait(mapping);
1624                 if (ret == 0)
1625                         ret = err;
1626         }
1627
1628         /*
1629          * If the inode has dirty timestamps and we need to write them, call
1630          * mark_inode_dirty_sync() to notify the filesystem about it and to
1631          * change I_DIRTY_TIME into I_DIRTY_SYNC.
1632          */
1633         if ((inode->i_state & I_DIRTY_TIME) &&
1634             (wbc->sync_mode == WB_SYNC_ALL ||
1635              time_after(jiffies, inode->dirtied_time_when +
1636                         dirtytime_expire_interval * HZ))) {
1637                 trace_writeback_lazytime(inode);
1638                 mark_inode_dirty_sync(inode);
1639         }
1640
1641         /*
1642          * Get and clear the dirty flags from i_state.  This needs to be done
1643          * after calling writepages because some filesystems may redirty the
1644          * inode during writepages due to delalloc.  It also needs to be done
1645          * after handling timestamp expiration, as that may dirty the inode too.
1646          */
1647         spin_lock(&inode->i_lock);
1648         dirty = inode->i_state & I_DIRTY;
1649         inode->i_state &= ~dirty;
1650
1651         /*
1652          * Paired with smp_mb() in __mark_inode_dirty().  This allows
1653          * __mark_inode_dirty() to test i_state without grabbing i_lock -
1654          * either they see the I_DIRTY bits cleared or we see the dirtied
1655          * inode.
1656          *
1657          * I_DIRTY_PAGES is always cleared together above even if @mapping
1658          * still has dirty pages.  The flag is reinstated after smp_mb() if
1659          * necessary.  This guarantees that either __mark_inode_dirty()
1660          * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1661          */
1662         smp_mb();
1663
1664         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1665                 inode->i_state |= I_DIRTY_PAGES;
1666
1667         spin_unlock(&inode->i_lock);
1668
1669         /* Don't write the inode if only I_DIRTY_PAGES was set */
1670         if (dirty & ~I_DIRTY_PAGES) {
1671                 int err = write_inode(inode, wbc);
1672                 if (ret == 0)
1673                         ret = err;
1674         }
1675         trace_writeback_single_inode(inode, wbc, nr_to_write);
1676         return ret;
1677 }
1678
1679 /*
1680  * Write out an inode's dirty data and metadata on-demand, i.e. separately from
1681  * the regular batched writeback done by the flusher threads in
1682  * writeback_sb_inodes().  @wbc controls various aspects of the write, such as
1683  * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE).
1684  *
1685  * To prevent the inode from going away, either the caller must have a reference
1686  * to the inode, or the inode must have I_WILL_FREE or I_FREEING set.
1687  */
1688 static int writeback_single_inode(struct inode *inode,
1689                                   struct writeback_control *wbc)
1690 {
1691         struct bdi_writeback *wb;
1692         int ret = 0;
1693
1694         spin_lock(&inode->i_lock);
1695         if (!atomic_read(&inode->i_count))
1696                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1697         else
1698                 WARN_ON(inode->i_state & I_WILL_FREE);
1699
1700         if (inode->i_state & I_SYNC) {
1701                 /*
1702                  * Writeback is already running on the inode.  For WB_SYNC_NONE,
1703                  * that's enough and we can just return.  For WB_SYNC_ALL, we
1704                  * must wait for the existing writeback to complete, then do
1705                  * writeback again if there's anything left.
1706                  */
1707                 if (wbc->sync_mode != WB_SYNC_ALL)
1708                         goto out;
1709                 __inode_wait_for_writeback(inode);
1710         }
1711         WARN_ON(inode->i_state & I_SYNC);
1712         /*
1713          * If the inode is already fully clean, then there's nothing to do.
1714          *
1715          * For data-integrity syncs we also need to check whether any pages are
1716          * still under writeback, e.g. due to prior WB_SYNC_NONE writeback.  If
1717          * there are any such pages, we'll need to wait for them.
1718          */
1719         if (!(inode->i_state & I_DIRTY_ALL) &&
1720             (wbc->sync_mode != WB_SYNC_ALL ||
1721              !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1722                 goto out;
1723         inode->i_state |= I_SYNC;
1724         wbc_attach_and_unlock_inode(wbc, inode);
1725
1726         ret = __writeback_single_inode(inode, wbc);
1727
1728         wbc_detach_inode(wbc);
1729
1730         wb = inode_to_wb_and_lock_list(inode);
1731         spin_lock(&inode->i_lock);
1732         /*
1733          * If the inode is now fully clean, then it can be safely removed from
1734          * its writeback list (if any).  Otherwise the flusher threads are
1735          * responsible for the writeback lists.
1736          */
1737         if (!(inode->i_state & I_DIRTY_ALL))
1738                 inode_cgwb_move_to_attached(inode, wb);
1739         spin_unlock(&wb->list_lock);
1740         inode_sync_complete(inode);
1741 out:
1742         spin_unlock(&inode->i_lock);
1743         return ret;
1744 }
1745
1746 static long writeback_chunk_size(struct bdi_writeback *wb,
1747                                  struct wb_writeback_work *work)
1748 {
1749         long pages;
1750
1751         /*
1752          * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1753          * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1754          * here avoids calling into writeback_inodes_wb() more than once.
1755          *
1756          * The intended call sequence for WB_SYNC_ALL writeback is:
1757          *
1758          *      wb_writeback()
1759          *          writeback_sb_inodes()       <== called only once
1760          *              write_cache_pages()     <== called once for each inode
1761          *                   (quickly) tag currently dirty pages
1762          *                   (maybe slowly) sync all tagged pages
1763          */
1764         if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1765                 pages = LONG_MAX;
1766         else {
1767                 pages = min(wb->avg_write_bandwidth / 2,
1768                             global_wb_domain.dirty_limit / DIRTY_SCOPE);
1769                 pages = min(pages, work->nr_pages);
1770                 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1771                                    MIN_WRITEBACK_PAGES);
1772         }
1773
1774         return pages;
1775 }
1776
1777 /*
1778  * Write a portion of b_io inodes which belong to @sb.
1779  *
1780  * Return the number of pages and/or inodes written.
1781  *
1782  * NOTE! This is called with wb->list_lock held, and will
1783  * unlock and relock that for each inode it ends up doing
1784  * IO for.
1785  */
1786 static long writeback_sb_inodes(struct super_block *sb,
1787                                 struct bdi_writeback *wb,
1788                                 struct wb_writeback_work *work)
1789 {
1790         struct writeback_control wbc = {
1791                 .sync_mode              = work->sync_mode,
1792                 .tagged_writepages      = work->tagged_writepages,
1793                 .for_kupdate            = work->for_kupdate,
1794                 .for_background         = work->for_background,
1795                 .for_sync               = work->for_sync,
1796                 .range_cyclic           = work->range_cyclic,
1797                 .range_start            = 0,
1798                 .range_end              = LLONG_MAX,
1799         };
1800         unsigned long start_time = jiffies;
1801         long write_chunk;
1802         long wrote = 0;  /* count both pages and inodes */
1803
1804         while (!list_empty(&wb->b_io)) {
1805                 struct inode *inode = wb_inode(wb->b_io.prev);
1806                 struct bdi_writeback *tmp_wb;
1807
1808                 if (inode->i_sb != sb) {
1809                         if (work->sb) {
1810                                 /*
1811                                  * We only want to write back data for this
1812                                  * superblock, move all inodes not belonging
1813                                  * to it back onto the dirty list.
1814                                  */
1815                                 redirty_tail(inode, wb);
1816                                 continue;
1817                         }
1818
1819                         /*
1820                          * The inode belongs to a different superblock.
1821                          * Bounce back to the caller to unpin this and
1822                          * pin the next superblock.
1823                          */
1824                         break;
1825                 }
1826
1827                 /*
1828                  * Don't bother with new inodes or inodes being freed, first
1829                  * kind does not need periodic writeout yet, and for the latter
1830                  * kind writeout is handled by the freer.
1831                  */
1832                 spin_lock(&inode->i_lock);
1833                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1834                         redirty_tail_locked(inode, wb);
1835                         spin_unlock(&inode->i_lock);
1836                         continue;
1837                 }
1838                 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1839                         /*
1840                          * If this inode is locked for writeback and we are not
1841                          * doing writeback-for-data-integrity, move it to
1842                          * b_more_io so that writeback can proceed with the
1843                          * other inodes on s_io.
1844                          *
1845                          * We'll have another go at writing back this inode
1846                          * when we completed a full scan of b_io.
1847                          */
1848                         spin_unlock(&inode->i_lock);
1849                         requeue_io(inode, wb);
1850                         trace_writeback_sb_inodes_requeue(inode);
1851                         continue;
1852                 }
1853                 spin_unlock(&wb->list_lock);
1854
1855                 /*
1856                  * We already requeued the inode if it had I_SYNC set and we
1857                  * are doing WB_SYNC_NONE writeback. So this catches only the
1858                  * WB_SYNC_ALL case.
1859                  */
1860                 if (inode->i_state & I_SYNC) {
1861                         /* Wait for I_SYNC. This function drops i_lock... */
1862                         inode_sleep_on_writeback(inode);
1863                         /* Inode may be gone, start again */
1864                         spin_lock(&wb->list_lock);
1865                         continue;
1866                 }
1867                 inode->i_state |= I_SYNC;
1868                 wbc_attach_and_unlock_inode(&wbc, inode);
1869
1870                 write_chunk = writeback_chunk_size(wb, work);
1871                 wbc.nr_to_write = write_chunk;
1872                 wbc.pages_skipped = 0;
1873
1874                 /*
1875                  * We use I_SYNC to pin the inode in memory. While it is set
1876                  * evict_inode() will wait so the inode cannot be freed.
1877                  */
1878                 __writeback_single_inode(inode, &wbc);
1879
1880                 wbc_detach_inode(&wbc);
1881                 work->nr_pages -= write_chunk - wbc.nr_to_write;
1882                 wrote += write_chunk - wbc.nr_to_write;
1883
1884                 if (need_resched()) {
1885                         /*
1886                          * We're trying to balance between building up a nice
1887                          * long list of IOs to improve our merge rate, and
1888                          * getting those IOs out quickly for anyone throttling
1889                          * in balance_dirty_pages().  cond_resched() doesn't
1890                          * unplug, so get our IOs out the door before we
1891                          * give up the CPU.
1892                          */
1893                         blk_flush_plug(current);
1894                         cond_resched();
1895                 }
1896
1897                 /*
1898                  * Requeue @inode if still dirty.  Be careful as @inode may
1899                  * have been switched to another wb in the meantime.
1900                  */
1901                 tmp_wb = inode_to_wb_and_lock_list(inode);
1902                 spin_lock(&inode->i_lock);
1903                 if (!(inode->i_state & I_DIRTY_ALL))
1904                         wrote++;
1905                 requeue_inode(inode, tmp_wb, &wbc);
1906                 inode_sync_complete(inode);
1907                 spin_unlock(&inode->i_lock);
1908
1909                 if (unlikely(tmp_wb != wb)) {
1910                         spin_unlock(&tmp_wb->list_lock);
1911                         spin_lock(&wb->list_lock);
1912                 }
1913
1914                 /*
1915                  * bail out to wb_writeback() often enough to check
1916                  * background threshold and other termination conditions.
1917                  */
1918                 if (wrote) {
1919                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1920                                 break;
1921                         if (work->nr_pages <= 0)
1922                                 break;
1923                 }
1924         }
1925         return wrote;
1926 }
1927
1928 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1929                                   struct wb_writeback_work *work)
1930 {
1931         unsigned long start_time = jiffies;
1932         long wrote = 0;
1933
1934         while (!list_empty(&wb->b_io)) {
1935                 struct inode *inode = wb_inode(wb->b_io.prev);
1936                 struct super_block *sb = inode->i_sb;
1937
1938                 if (!trylock_super(sb)) {
1939                         /*
1940                          * trylock_super() may fail consistently due to
1941                          * s_umount being grabbed by someone else. Don't use
1942                          * requeue_io() to avoid busy retrying the inode/sb.
1943                          */
1944                         redirty_tail(inode, wb);
1945                         continue;
1946                 }
1947                 wrote += writeback_sb_inodes(sb, wb, work);
1948                 up_read(&sb->s_umount);
1949
1950                 /* refer to the same tests at the end of writeback_sb_inodes */
1951                 if (wrote) {
1952                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1953                                 break;
1954                         if (work->nr_pages <= 0)
1955                                 break;
1956                 }
1957         }
1958         /* Leave any unwritten inodes on b_io */
1959         return wrote;
1960 }
1961
1962 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1963                                 enum wb_reason reason)
1964 {
1965         struct wb_writeback_work work = {
1966                 .nr_pages       = nr_pages,
1967                 .sync_mode      = WB_SYNC_NONE,
1968                 .range_cyclic   = 1,
1969                 .reason         = reason,
1970         };
1971         struct blk_plug plug;
1972
1973         blk_start_plug(&plug);
1974         spin_lock(&wb->list_lock);
1975         if (list_empty(&wb->b_io))
1976                 queue_io(wb, &work, jiffies);
1977         __writeback_inodes_wb(wb, &work);
1978         spin_unlock(&wb->list_lock);
1979         blk_finish_plug(&plug);
1980
1981         return nr_pages - work.nr_pages;
1982 }
1983
1984 /*
1985  * Explicit flushing or periodic writeback of "old" data.
1986  *
1987  * Define "old": the first time one of an inode's pages is dirtied, we mark the
1988  * dirtying-time in the inode's address_space.  So this periodic writeback code
1989  * just walks the superblock inode list, writing back any inodes which are
1990  * older than a specific point in time.
1991  *
1992  * Try to run once per dirty_writeback_interval.  But if a writeback event
1993  * takes longer than a dirty_writeback_interval interval, then leave a
1994  * one-second gap.
1995  *
1996  * dirtied_before takes precedence over nr_to_write.  So we'll only write back
1997  * all dirty pages if they are all attached to "old" mappings.
1998  */
1999 static long wb_writeback(struct bdi_writeback *wb,
2000                          struct wb_writeback_work *work)
2001 {
2002         unsigned long wb_start = jiffies;
2003         long nr_pages = work->nr_pages;
2004         unsigned long dirtied_before = jiffies;
2005         struct inode *inode;
2006         long progress;
2007         struct blk_plug plug;
2008
2009         blk_start_plug(&plug);
2010         spin_lock(&wb->list_lock);
2011         for (;;) {
2012                 /*
2013                  * Stop writeback when nr_pages has been consumed
2014                  */
2015                 if (work->nr_pages <= 0)
2016                         break;
2017
2018                 /*
2019                  * Background writeout and kupdate-style writeback may
2020                  * run forever. Stop them if there is other work to do
2021                  * so that e.g. sync can proceed. They'll be restarted
2022                  * after the other works are all done.
2023                  */
2024                 if ((work->for_background || work->for_kupdate) &&
2025                     !list_empty(&wb->work_list))
2026                         break;
2027
2028                 /*
2029                  * For background writeout, stop when we are below the
2030                  * background dirty threshold
2031                  */
2032                 if (work->for_background && !wb_over_bg_thresh(wb))
2033                         break;
2034
2035                 /*
2036                  * Kupdate and background works are special and we want to
2037                  * include all inodes that need writing. Livelock avoidance is
2038                  * handled by these works yielding to any other work so we are
2039                  * safe.
2040                  */
2041                 if (work->for_kupdate) {
2042                         dirtied_before = jiffies -
2043                                 msecs_to_jiffies(dirty_expire_interval * 10);
2044                 } else if (work->for_background)
2045                         dirtied_before = jiffies;
2046
2047                 trace_writeback_start(wb, work);
2048                 if (list_empty(&wb->b_io))
2049                         queue_io(wb, work, dirtied_before);
2050                 if (work->sb)
2051                         progress = writeback_sb_inodes(work->sb, wb, work);
2052                 else
2053                         progress = __writeback_inodes_wb(wb, work);
2054                 trace_writeback_written(wb, work);
2055
2056                 wb_update_bandwidth(wb, wb_start);
2057
2058                 /*
2059                  * Did we write something? Try for more
2060                  *
2061                  * Dirty inodes are moved to b_io for writeback in batches.
2062                  * The completion of the current batch does not necessarily
2063                  * mean the overall work is done. So we keep looping as long
2064                  * as made some progress on cleaning pages or inodes.
2065                  */
2066                 if (progress)
2067                         continue;
2068                 /*
2069                  * No more inodes for IO, bail
2070                  */
2071                 if (list_empty(&wb->b_more_io))
2072                         break;
2073                 /*
2074                  * Nothing written. Wait for some inode to
2075                  * become available for writeback. Otherwise
2076                  * we'll just busyloop.
2077                  */
2078                 trace_writeback_wait(wb, work);
2079                 inode = wb_inode(wb->b_more_io.prev);
2080                 spin_lock(&inode->i_lock);
2081                 spin_unlock(&wb->list_lock);
2082                 /* This function drops i_lock... */
2083                 inode_sleep_on_writeback(inode);
2084                 spin_lock(&wb->list_lock);
2085         }
2086         spin_unlock(&wb->list_lock);
2087         blk_finish_plug(&plug);
2088
2089         return nr_pages - work->nr_pages;
2090 }
2091
2092 /*
2093  * Return the next wb_writeback_work struct that hasn't been processed yet.
2094  */
2095 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
2096 {
2097         struct wb_writeback_work *work = NULL;
2098
2099         spin_lock_bh(&wb->work_lock);
2100         if (!list_empty(&wb->work_list)) {
2101                 work = list_entry(wb->work_list.next,
2102                                   struct wb_writeback_work, list);
2103                 list_del_init(&work->list);
2104         }
2105         spin_unlock_bh(&wb->work_lock);
2106         return work;
2107 }
2108
2109 static long wb_check_background_flush(struct bdi_writeback *wb)
2110 {
2111         if (wb_over_bg_thresh(wb)) {
2112
2113                 struct wb_writeback_work work = {
2114                         .nr_pages       = LONG_MAX,
2115                         .sync_mode      = WB_SYNC_NONE,
2116                         .for_background = 1,
2117                         .range_cyclic   = 1,
2118                         .reason         = WB_REASON_BACKGROUND,
2119                 };
2120
2121                 return wb_writeback(wb, &work);
2122         }
2123
2124         return 0;
2125 }
2126
2127 static long wb_check_old_data_flush(struct bdi_writeback *wb)
2128 {
2129         unsigned long expired;
2130         long nr_pages;
2131
2132         /*
2133          * When set to zero, disable periodic writeback
2134          */
2135         if (!dirty_writeback_interval)
2136                 return 0;
2137
2138         expired = wb->last_old_flush +
2139                         msecs_to_jiffies(dirty_writeback_interval * 10);
2140         if (time_before(jiffies, expired))
2141                 return 0;
2142
2143         wb->last_old_flush = jiffies;
2144         nr_pages = get_nr_dirty_pages();
2145
2146         if (nr_pages) {
2147                 struct wb_writeback_work work = {
2148                         .nr_pages       = nr_pages,
2149                         .sync_mode      = WB_SYNC_NONE,
2150                         .for_kupdate    = 1,
2151                         .range_cyclic   = 1,
2152                         .reason         = WB_REASON_PERIODIC,
2153                 };
2154
2155                 return wb_writeback(wb, &work);
2156         }
2157
2158         return 0;
2159 }
2160
2161 static long wb_check_start_all(struct bdi_writeback *wb)
2162 {
2163         long nr_pages;
2164
2165         if (!test_bit(WB_start_all, &wb->state))
2166                 return 0;
2167
2168         nr_pages = get_nr_dirty_pages();
2169         if (nr_pages) {
2170                 struct wb_writeback_work work = {
2171                         .nr_pages       = wb_split_bdi_pages(wb, nr_pages),
2172                         .sync_mode      = WB_SYNC_NONE,
2173                         .range_cyclic   = 1,
2174                         .reason         = wb->start_all_reason,
2175                 };
2176
2177                 nr_pages = wb_writeback(wb, &work);
2178         }
2179
2180         clear_bit(WB_start_all, &wb->state);
2181         return nr_pages;
2182 }
2183
2184
2185 /*
2186  * Retrieve work items and do the writeback they describe
2187  */
2188 static long wb_do_writeback(struct bdi_writeback *wb)
2189 {
2190         struct wb_writeback_work *work;
2191         long wrote = 0;
2192
2193         set_bit(WB_writeback_running, &wb->state);
2194         while ((work = get_next_work_item(wb)) != NULL) {
2195                 trace_writeback_exec(wb, work);
2196                 wrote += wb_writeback(wb, work);
2197                 finish_writeback_work(wb, work);
2198         }
2199
2200         /*
2201          * Check for a flush-everything request
2202          */
2203         wrote += wb_check_start_all(wb);
2204
2205         /*
2206          * Check for periodic writeback, kupdated() style
2207          */
2208         wrote += wb_check_old_data_flush(wb);
2209         wrote += wb_check_background_flush(wb);
2210         clear_bit(WB_writeback_running, &wb->state);
2211
2212         return wrote;
2213 }
2214
2215 /*
2216  * Handle writeback of dirty data for the device backed by this bdi. Also
2217  * reschedules periodically and does kupdated style flushing.
2218  */
2219 void wb_workfn(struct work_struct *work)
2220 {
2221         struct bdi_writeback *wb = container_of(to_delayed_work(work),
2222                                                 struct bdi_writeback, dwork);
2223         long pages_written;
2224
2225         set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
2226         current->flags |= PF_SWAPWRITE;
2227
2228         if (likely(!current_is_workqueue_rescuer() ||
2229                    !test_bit(WB_registered, &wb->state))) {
2230                 /*
2231                  * The normal path.  Keep writing back @wb until its
2232                  * work_list is empty.  Note that this path is also taken
2233                  * if @wb is shutting down even when we're running off the
2234                  * rescuer as work_list needs to be drained.
2235                  */
2236                 do {
2237                         pages_written = wb_do_writeback(wb);
2238                         trace_writeback_pages_written(pages_written);
2239                 } while (!list_empty(&wb->work_list));
2240         } else {
2241                 /*
2242                  * bdi_wq can't get enough workers and we're running off
2243                  * the emergency worker.  Don't hog it.  Hopefully, 1024 is
2244                  * enough for efficient IO.
2245                  */
2246                 pages_written = writeback_inodes_wb(wb, 1024,
2247                                                     WB_REASON_FORKER_THREAD);
2248                 trace_writeback_pages_written(pages_written);
2249         }
2250
2251         if (!list_empty(&wb->work_list))
2252                 wb_wakeup(wb);
2253         else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2254                 wb_wakeup_delayed(wb);
2255
2256         current->flags &= ~PF_SWAPWRITE;
2257 }
2258
2259 /*
2260  * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2261  * write back the whole world.
2262  */
2263 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2264                                          enum wb_reason reason)
2265 {
2266         struct bdi_writeback *wb;
2267
2268         if (!bdi_has_dirty_io(bdi))
2269                 return;
2270
2271         list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2272                 wb_start_writeback(wb, reason);
2273 }
2274
2275 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2276                                 enum wb_reason reason)
2277 {
2278         rcu_read_lock();
2279         __wakeup_flusher_threads_bdi(bdi, reason);
2280         rcu_read_unlock();
2281 }
2282
2283 /*
2284  * Wakeup the flusher threads to start writeback of all currently dirty pages
2285  */
2286 void wakeup_flusher_threads(enum wb_reason reason)
2287 {
2288         struct backing_dev_info *bdi;
2289
2290         /*
2291          * If we are expecting writeback progress we must submit plugged IO.
2292          */
2293         if (blk_needs_flush_plug(current))
2294                 blk_schedule_flush_plug(current);
2295
2296         rcu_read_lock();
2297         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2298                 __wakeup_flusher_threads_bdi(bdi, reason);
2299         rcu_read_unlock();
2300 }
2301
2302 /*
2303  * Wake up bdi's periodically to make sure dirtytime inodes gets
2304  * written back periodically.  We deliberately do *not* check the
2305  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2306  * kernel to be constantly waking up once there are any dirtytime
2307  * inodes on the system.  So instead we define a separate delayed work
2308  * function which gets called much more rarely.  (By default, only
2309  * once every 12 hours.)
2310  *
2311  * If there is any other write activity going on in the file system,
2312  * this function won't be necessary.  But if the only thing that has
2313  * happened on the file system is a dirtytime inode caused by an atime
2314  * update, we need this infrastructure below to make sure that inode
2315  * eventually gets pushed out to disk.
2316  */
2317 static void wakeup_dirtytime_writeback(struct work_struct *w);
2318 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2319
2320 static void wakeup_dirtytime_writeback(struct work_struct *w)
2321 {
2322         struct backing_dev_info *bdi;
2323
2324         rcu_read_lock();
2325         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2326                 struct bdi_writeback *wb;
2327
2328                 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2329                         if (!list_empty(&wb->b_dirty_time))
2330                                 wb_wakeup(wb);
2331         }
2332         rcu_read_unlock();
2333         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2334 }
2335
2336 static int __init start_dirtytime_writeback(void)
2337 {
2338         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2339         return 0;
2340 }
2341 __initcall(start_dirtytime_writeback);
2342
2343 int dirtytime_interval_handler(struct ctl_table *table, int write,
2344                                void *buffer, size_t *lenp, loff_t *ppos)
2345 {
2346         int ret;
2347
2348         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2349         if (ret == 0 && write)
2350                 mod_delayed_work(system_wq, &dirtytime_work, 0);
2351         return ret;
2352 }
2353
2354 /**
2355  * __mark_inode_dirty - internal function to mark an inode dirty
2356  *
2357  * @inode: inode to mark
2358  * @flags: what kind of dirty, e.g. I_DIRTY_SYNC.  This can be a combination of
2359  *         multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined
2360  *         with I_DIRTY_PAGES.
2361  *
2362  * Mark an inode as dirty.  We notify the filesystem, then update the inode's
2363  * dirty flags.  Then, if needed we add the inode to the appropriate dirty list.
2364  *
2365  * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync()
2366  * instead of calling this directly.
2367  *
2368  * CAREFUL!  We only add the inode to the dirty list if it is hashed or if it
2369  * refers to a blockdev.  Unhashed inodes will never be added to the dirty list
2370  * even if they are later hashed, as they will have been marked dirty already.
2371  *
2372  * In short, ensure you hash any inodes _before_ you start marking them dirty.
2373  *
2374  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2375  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2376  * the kernel-internal blockdev inode represents the dirtying time of the
2377  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2378  * page->mapping->host, so the page-dirtying time is recorded in the internal
2379  * blockdev inode.
2380  */
2381 void __mark_inode_dirty(struct inode *inode, int flags)
2382 {
2383         struct super_block *sb = inode->i_sb;
2384         int dirtytime = 0;
2385
2386         trace_writeback_mark_inode_dirty(inode, flags);
2387
2388         if (flags & I_DIRTY_INODE) {
2389                 /*
2390                  * Notify the filesystem about the inode being dirtied, so that
2391                  * (if needed) it can update on-disk fields and journal the
2392                  * inode.  This is only needed when the inode itself is being
2393                  * dirtied now.  I.e. it's only needed for I_DIRTY_INODE, not
2394                  * for just I_DIRTY_PAGES or I_DIRTY_TIME.
2395                  */
2396                 trace_writeback_dirty_inode_start(inode, flags);
2397                 if (sb->s_op->dirty_inode)
2398                         sb->s_op->dirty_inode(inode, flags & I_DIRTY_INODE);
2399                 trace_writeback_dirty_inode(inode, flags);
2400
2401                 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2402                 flags &= ~I_DIRTY_TIME;
2403         } else {
2404                 /*
2405                  * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing.
2406                  * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME
2407                  * in one call to __mark_inode_dirty().)
2408                  */
2409                 dirtytime = flags & I_DIRTY_TIME;
2410                 WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME);
2411         }
2412
2413         /*
2414          * Paired with smp_mb() in __writeback_single_inode() for the
2415          * following lockless i_state test.  See there for details.
2416          */
2417         smp_mb();
2418
2419         if (((inode->i_state & flags) == flags) ||
2420             (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2421                 return;
2422
2423         spin_lock(&inode->i_lock);
2424         if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2425                 goto out_unlock_inode;
2426         if ((inode->i_state & flags) != flags) {
2427                 const int was_dirty = inode->i_state & I_DIRTY;
2428
2429                 inode_attach_wb(inode, NULL);
2430
2431                 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2432                 if (flags & I_DIRTY_INODE)
2433                         inode->i_state &= ~I_DIRTY_TIME;
2434                 inode->i_state |= flags;
2435
2436                 /*
2437                  * If the inode is queued for writeback by flush worker, just
2438                  * update its dirty state. Once the flush worker is done with
2439                  * the inode it will place it on the appropriate superblock
2440                  * list, based upon its state.
2441                  */
2442                 if (inode->i_state & I_SYNC_QUEUED)
2443                         goto out_unlock_inode;
2444
2445                 /*
2446                  * Only add valid (hashed) inodes to the superblock's
2447                  * dirty list.  Add blockdev inodes as well.
2448                  */
2449                 if (!S_ISBLK(inode->i_mode)) {
2450                         if (inode_unhashed(inode))
2451                                 goto out_unlock_inode;
2452                 }
2453                 if (inode->i_state & I_FREEING)
2454                         goto out_unlock_inode;
2455
2456                 /*
2457                  * If the inode was already on b_dirty/b_io/b_more_io, don't
2458                  * reposition it (that would break b_dirty time-ordering).
2459                  */
2460                 if (!was_dirty) {
2461                         struct bdi_writeback *wb;
2462                         struct list_head *dirty_list;
2463                         bool wakeup_bdi = false;
2464
2465                         wb = locked_inode_to_wb_and_lock_list(inode);
2466
2467                         inode->dirtied_when = jiffies;
2468                         if (dirtytime)
2469                                 inode->dirtied_time_when = jiffies;
2470
2471                         if (inode->i_state & I_DIRTY)
2472                                 dirty_list = &wb->b_dirty;
2473                         else
2474                                 dirty_list = &wb->b_dirty_time;
2475
2476                         wakeup_bdi = inode_io_list_move_locked(inode, wb,
2477                                                                dirty_list);
2478
2479                         spin_unlock(&wb->list_lock);
2480                         trace_writeback_dirty_inode_enqueue(inode);
2481
2482                         /*
2483                          * If this is the first dirty inode for this bdi,
2484                          * we have to wake-up the corresponding bdi thread
2485                          * to make sure background write-back happens
2486                          * later.
2487                          */
2488                         if (wakeup_bdi &&
2489                             (wb->bdi->capabilities & BDI_CAP_WRITEBACK))
2490                                 wb_wakeup_delayed(wb);
2491                         return;
2492                 }
2493         }
2494 out_unlock_inode:
2495         spin_unlock(&inode->i_lock);
2496 }
2497 EXPORT_SYMBOL(__mark_inode_dirty);
2498
2499 /*
2500  * The @s_sync_lock is used to serialise concurrent sync operations
2501  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2502  * Concurrent callers will block on the s_sync_lock rather than doing contending
2503  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2504  * has been issued up to the time this function is enter is guaranteed to be
2505  * completed by the time we have gained the lock and waited for all IO that is
2506  * in progress regardless of the order callers are granted the lock.
2507  */
2508 static void wait_sb_inodes(struct super_block *sb)
2509 {
2510         LIST_HEAD(sync_list);
2511
2512         /*
2513          * We need to be protected against the filesystem going from
2514          * r/o to r/w or vice versa.
2515          */
2516         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2517
2518         mutex_lock(&sb->s_sync_lock);
2519
2520         /*
2521          * Splice the writeback list onto a temporary list to avoid waiting on
2522          * inodes that have started writeback after this point.
2523          *
2524          * Use rcu_read_lock() to keep the inodes around until we have a
2525          * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2526          * the local list because inodes can be dropped from either by writeback
2527          * completion.
2528          */
2529         rcu_read_lock();
2530         spin_lock_irq(&sb->s_inode_wblist_lock);
2531         list_splice_init(&sb->s_inodes_wb, &sync_list);
2532
2533         /*
2534          * Data integrity sync. Must wait for all pages under writeback, because
2535          * there may have been pages dirtied before our sync call, but which had
2536          * writeout started before we write it out.  In which case, the inode
2537          * may not be on the dirty list, but we still have to wait for that
2538          * writeout.
2539          */
2540         while (!list_empty(&sync_list)) {
2541                 struct inode *inode = list_first_entry(&sync_list, struct inode,
2542                                                        i_wb_list);
2543                 struct address_space *mapping = inode->i_mapping;
2544
2545                 /*
2546                  * Move each inode back to the wb list before we drop the lock
2547                  * to preserve consistency between i_wb_list and the mapping
2548                  * writeback tag. Writeback completion is responsible to remove
2549                  * the inode from either list once the writeback tag is cleared.
2550                  */
2551                 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2552
2553                 /*
2554                  * The mapping can appear untagged while still on-list since we
2555                  * do not have the mapping lock. Skip it here, wb completion
2556                  * will remove it.
2557                  */
2558                 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2559                         continue;
2560
2561                 spin_unlock_irq(&sb->s_inode_wblist_lock);
2562
2563                 spin_lock(&inode->i_lock);
2564                 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2565                         spin_unlock(&inode->i_lock);
2566
2567                         spin_lock_irq(&sb->s_inode_wblist_lock);
2568                         continue;
2569                 }
2570                 __iget(inode);
2571                 spin_unlock(&inode->i_lock);
2572                 rcu_read_unlock();
2573
2574                 /*
2575                  * We keep the error status of individual mapping so that
2576                  * applications can catch the writeback error using fsync(2).
2577                  * See filemap_fdatawait_keep_errors() for details.
2578                  */
2579                 filemap_fdatawait_keep_errors(mapping);
2580
2581                 cond_resched();
2582
2583                 iput(inode);
2584
2585                 rcu_read_lock();
2586                 spin_lock_irq(&sb->s_inode_wblist_lock);
2587         }
2588         spin_unlock_irq(&sb->s_inode_wblist_lock);
2589         rcu_read_unlock();
2590         mutex_unlock(&sb->s_sync_lock);
2591 }
2592
2593 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2594                                      enum wb_reason reason, bool skip_if_busy)
2595 {
2596         struct backing_dev_info *bdi = sb->s_bdi;
2597         DEFINE_WB_COMPLETION(done, bdi);
2598         struct wb_writeback_work work = {
2599                 .sb                     = sb,
2600                 .sync_mode              = WB_SYNC_NONE,
2601                 .tagged_writepages      = 1,
2602                 .done                   = &done,
2603                 .nr_pages               = nr,
2604                 .reason                 = reason,
2605         };
2606
2607         if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2608                 return;
2609         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2610
2611         bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2612         wb_wait_for_completion(&done);
2613 }
2614
2615 /**
2616  * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
2617  * @sb: the superblock
2618  * @nr: the number of pages to write
2619  * @reason: reason why some writeback work initiated
2620  *
2621  * Start writeback on some inodes on this super_block. No guarantees are made
2622  * on how many (if any) will be written, and this function does not wait
2623  * for IO completion of submitted IO.
2624  */
2625 void writeback_inodes_sb_nr(struct super_block *sb,
2626                             unsigned long nr,
2627                             enum wb_reason reason)
2628 {
2629         __writeback_inodes_sb_nr(sb, nr, reason, false);
2630 }
2631 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2632
2633 /**
2634  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
2635  * @sb: the superblock
2636  * @reason: reason why some writeback work was initiated
2637  *
2638  * Start writeback on some inodes on this super_block. No guarantees are made
2639  * on how many (if any) will be written, and this function does not wait
2640  * for IO completion of submitted IO.
2641  */
2642 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2643 {
2644         return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2645 }
2646 EXPORT_SYMBOL(writeback_inodes_sb);
2647
2648 /**
2649  * try_to_writeback_inodes_sb - try to start writeback if none underway
2650  * @sb: the superblock
2651  * @reason: reason why some writeback work was initiated
2652  *
2653  * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2654  */
2655 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2656 {
2657         if (!down_read_trylock(&sb->s_umount))
2658                 return;
2659
2660         __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2661         up_read(&sb->s_umount);
2662 }
2663 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2664
2665 /**
2666  * sync_inodes_sb       -       sync sb inode pages
2667  * @sb: the superblock
2668  *
2669  * This function writes and waits on any dirty inode belonging to this
2670  * super_block.
2671  */
2672 void sync_inodes_sb(struct super_block *sb)
2673 {
2674         struct backing_dev_info *bdi = sb->s_bdi;
2675         DEFINE_WB_COMPLETION(done, bdi);
2676         struct wb_writeback_work work = {
2677                 .sb             = sb,
2678                 .sync_mode      = WB_SYNC_ALL,
2679                 .nr_pages       = LONG_MAX,
2680                 .range_cyclic   = 0,
2681                 .done           = &done,
2682                 .reason         = WB_REASON_SYNC,
2683                 .for_sync       = 1,
2684         };
2685
2686         /*
2687          * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2688          * inodes under writeback and I_DIRTY_TIME inodes ignored by
2689          * bdi_has_dirty() need to be written out too.
2690          */
2691         if (bdi == &noop_backing_dev_info)
2692                 return;
2693         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2694
2695         /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2696         bdi_down_write_wb_switch_rwsem(bdi);
2697         bdi_split_work_to_wbs(bdi, &work, false);
2698         wb_wait_for_completion(&done);
2699         bdi_up_write_wb_switch_rwsem(bdi);
2700
2701         wait_sb_inodes(sb);
2702 }
2703 EXPORT_SYMBOL(sync_inodes_sb);
2704
2705 /**
2706  * write_inode_now      -       write an inode to disk
2707  * @inode: inode to write to disk
2708  * @sync: whether the write should be synchronous or not
2709  *
2710  * This function commits an inode to disk immediately if it is dirty. This is
2711  * primarily needed by knfsd.
2712  *
2713  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2714  */
2715 int write_inode_now(struct inode *inode, int sync)
2716 {
2717         struct writeback_control wbc = {
2718                 .nr_to_write = LONG_MAX,
2719                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2720                 .range_start = 0,
2721                 .range_end = LLONG_MAX,
2722         };
2723
2724         if (!mapping_can_writeback(inode->i_mapping))
2725                 wbc.nr_to_write = 0;
2726
2727         might_sleep();
2728         return writeback_single_inode(inode, &wbc);
2729 }
2730 EXPORT_SYMBOL(write_inode_now);
2731
2732 /**
2733  * sync_inode - write an inode and its pages to disk.
2734  * @inode: the inode to sync
2735  * @wbc: controls the writeback mode
2736  *
2737  * sync_inode() will write an inode and its pages to disk.  It will also
2738  * correctly update the inode on its superblock's dirty inode lists and will
2739  * update inode->i_state.
2740  *
2741  * The caller must have a ref on the inode.
2742  */
2743 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2744 {
2745         return writeback_single_inode(inode, wbc);
2746 }
2747 EXPORT_SYMBOL(sync_inode);
2748
2749 /**
2750  * sync_inode_metadata - write an inode to disk
2751  * @inode: the inode to sync
2752  * @wait: wait for I/O to complete.
2753  *
2754  * Write an inode to disk and adjust its dirty state after completion.
2755  *
2756  * Note: only writes the actual inode, no associated data or other metadata.
2757  */
2758 int sync_inode_metadata(struct inode *inode, int wait)
2759 {
2760         struct writeback_control wbc = {
2761                 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2762                 .nr_to_write = 0, /* metadata-only */
2763         };
2764
2765         return sync_inode(inode, &wbc);
2766 }
2767 EXPORT_SYMBOL(sync_inode_metadata);