RISCV: configs: tizen_visionfive2: Enable FTRACE_SYSCALLS switch
[platform/kernel/linux-starfive.git] / fs / fs-writeback.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/fs-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * Contains all the functions related to writing back and waiting
8  * upon dirty inodes against superblocks, and writing back dirty
9  * pages against inodes.  ie: data writeback.  Writeout of the
10  * inode itself is not handled here.
11  *
12  * 10Apr2002    Andrew Morton
13  *              Split out of fs/inode.c
14  *              Additions for address_space-based writeback
15  */
16
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kthread.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include <linux/device.h>
31 #include <linux/memcontrol.h>
32 #include "internal.h"
33
34 /*
35  * 4MB minimal write chunk size
36  */
37 #define MIN_WRITEBACK_PAGES     (4096UL >> (PAGE_SHIFT - 10))
38
39 /*
40  * Passed into wb_writeback(), essentially a subset of writeback_control
41  */
42 struct wb_writeback_work {
43         long nr_pages;
44         struct super_block *sb;
45         enum writeback_sync_modes sync_mode;
46         unsigned int tagged_writepages:1;
47         unsigned int for_kupdate:1;
48         unsigned int range_cyclic:1;
49         unsigned int for_background:1;
50         unsigned int for_sync:1;        /* sync(2) WB_SYNC_ALL writeback */
51         unsigned int auto_free:1;       /* free on completion */
52         enum wb_reason reason;          /* why was writeback initiated? */
53
54         struct list_head list;          /* pending work list */
55         struct wb_completion *done;     /* set if the caller waits */
56 };
57
58 /*
59  * If an inode is constantly having its pages dirtied, but then the
60  * updates stop dirtytime_expire_interval seconds in the past, it's
61  * possible for the worst case time between when an inode has its
62  * timestamps updated and when they finally get written out to be two
63  * dirtytime_expire_intervals.  We set the default to 12 hours (in
64  * seconds), which means most of the time inodes will have their
65  * timestamps written to disk after 12 hours, but in the worst case a
66  * few inodes might not their timestamps updated for 24 hours.
67  */
68 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
69
70 static inline struct inode *wb_inode(struct list_head *head)
71 {
72         return list_entry(head, struct inode, i_io_list);
73 }
74
75 /*
76  * Include the creation of the trace points after defining the
77  * wb_writeback_work structure and inline functions so that the definition
78  * remains local to this file.
79  */
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/writeback.h>
82
83 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
84
85 static bool wb_io_lists_populated(struct bdi_writeback *wb)
86 {
87         if (wb_has_dirty_io(wb)) {
88                 return false;
89         } else {
90                 set_bit(WB_has_dirty_io, &wb->state);
91                 WARN_ON_ONCE(!wb->avg_write_bandwidth);
92                 atomic_long_add(wb->avg_write_bandwidth,
93                                 &wb->bdi->tot_write_bandwidth);
94                 return true;
95         }
96 }
97
98 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
99 {
100         if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
101             list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
102                 clear_bit(WB_has_dirty_io, &wb->state);
103                 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
104                                         &wb->bdi->tot_write_bandwidth) < 0);
105         }
106 }
107
108 /**
109  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
110  * @inode: inode to be moved
111  * @wb: target bdi_writeback
112  * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
113  *
114  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
115  * Returns %true if @inode is the first occupant of the !dirty_time IO
116  * lists; otherwise, %false.
117  */
118 static bool inode_io_list_move_locked(struct inode *inode,
119                                       struct bdi_writeback *wb,
120                                       struct list_head *head)
121 {
122         assert_spin_locked(&wb->list_lock);
123         assert_spin_locked(&inode->i_lock);
124         WARN_ON_ONCE(inode->i_state & I_FREEING);
125
126         list_move(&inode->i_io_list, head);
127
128         /* dirty_time doesn't count as dirty_io until expiration */
129         if (head != &wb->b_dirty_time)
130                 return wb_io_lists_populated(wb);
131
132         wb_io_lists_depopulated(wb);
133         return false;
134 }
135
136 static void wb_wakeup(struct bdi_writeback *wb)
137 {
138         spin_lock_irq(&wb->work_lock);
139         if (test_bit(WB_registered, &wb->state))
140                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
141         spin_unlock_irq(&wb->work_lock);
142 }
143
144 static void finish_writeback_work(struct bdi_writeback *wb,
145                                   struct wb_writeback_work *work)
146 {
147         struct wb_completion *done = work->done;
148
149         if (work->auto_free)
150                 kfree(work);
151         if (done) {
152                 wait_queue_head_t *waitq = done->waitq;
153
154                 /* @done can't be accessed after the following dec */
155                 if (atomic_dec_and_test(&done->cnt))
156                         wake_up_all(waitq);
157         }
158 }
159
160 static void wb_queue_work(struct bdi_writeback *wb,
161                           struct wb_writeback_work *work)
162 {
163         trace_writeback_queue(wb, work);
164
165         if (work->done)
166                 atomic_inc(&work->done->cnt);
167
168         spin_lock_irq(&wb->work_lock);
169
170         if (test_bit(WB_registered, &wb->state)) {
171                 list_add_tail(&work->list, &wb->work_list);
172                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
173         } else
174                 finish_writeback_work(wb, work);
175
176         spin_unlock_irq(&wb->work_lock);
177 }
178
179 /**
180  * wb_wait_for_completion - wait for completion of bdi_writeback_works
181  * @done: target wb_completion
182  *
183  * Wait for one or more work items issued to @bdi with their ->done field
184  * set to @done, which should have been initialized with
185  * DEFINE_WB_COMPLETION().  This function returns after all such work items
186  * are completed.  Work items which are waited upon aren't freed
187  * automatically on completion.
188  */
189 void wb_wait_for_completion(struct wb_completion *done)
190 {
191         atomic_dec(&done->cnt);         /* put down the initial count */
192         wait_event(*done->waitq, !atomic_read(&done->cnt));
193 }
194
195 #ifdef CONFIG_CGROUP_WRITEBACK
196
197 /*
198  * Parameters for foreign inode detection, see wbc_detach_inode() to see
199  * how they're used.
200  *
201  * These paramters are inherently heuristical as the detection target
202  * itself is fuzzy.  All we want to do is detaching an inode from the
203  * current owner if it's being written to by some other cgroups too much.
204  *
205  * The current cgroup writeback is built on the assumption that multiple
206  * cgroups writing to the same inode concurrently is very rare and a mode
207  * of operation which isn't well supported.  As such, the goal is not
208  * taking too long when a different cgroup takes over an inode while
209  * avoiding too aggressive flip-flops from occasional foreign writes.
210  *
211  * We record, very roughly, 2s worth of IO time history and if more than
212  * half of that is foreign, trigger the switch.  The recording is quantized
213  * to 16 slots.  To avoid tiny writes from swinging the decision too much,
214  * writes smaller than 1/8 of avg size are ignored.
215  */
216 #define WB_FRN_TIME_SHIFT       13      /* 1s = 2^13, upto 8 secs w/ 16bit */
217 #define WB_FRN_TIME_AVG_SHIFT   3       /* avg = avg * 7/8 + new * 1/8 */
218 #define WB_FRN_TIME_CUT_DIV     8       /* ignore rounds < avg / 8 */
219 #define WB_FRN_TIME_PERIOD      (2 * (1 << WB_FRN_TIME_SHIFT))  /* 2s */
220
221 #define WB_FRN_HIST_SLOTS       16      /* inode->i_wb_frn_history is 16bit */
222 #define WB_FRN_HIST_UNIT        (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
223                                         /* each slot's duration is 2s / 16 */
224 #define WB_FRN_HIST_THR_SLOTS   (WB_FRN_HIST_SLOTS / 2)
225                                         /* if foreign slots >= 8, switch */
226 #define WB_FRN_HIST_MAX_SLOTS   (WB_FRN_HIST_THR_SLOTS / 2 + 1)
227                                         /* one round can affect upto 5 slots */
228 #define WB_FRN_MAX_IN_FLIGHT    1024    /* don't queue too many concurrently */
229
230 /*
231  * Maximum inodes per isw.  A specific value has been chosen to make
232  * struct inode_switch_wbs_context fit into 1024 bytes kmalloc.
233  */
234 #define WB_MAX_INODES_PER_ISW  ((1024UL - sizeof(struct inode_switch_wbs_context)) \
235                                 / sizeof(struct inode *))
236
237 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
238 static struct workqueue_struct *isw_wq;
239
240 void __inode_attach_wb(struct inode *inode, struct folio *folio)
241 {
242         struct backing_dev_info *bdi = inode_to_bdi(inode);
243         struct bdi_writeback *wb = NULL;
244
245         if (inode_cgwb_enabled(inode)) {
246                 struct cgroup_subsys_state *memcg_css;
247
248                 if (folio) {
249                         memcg_css = mem_cgroup_css_from_folio(folio);
250                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
251                 } else {
252                         /* must pin memcg_css, see wb_get_create() */
253                         memcg_css = task_get_css(current, memory_cgrp_id);
254                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
255                         css_put(memcg_css);
256                 }
257         }
258
259         if (!wb)
260                 wb = &bdi->wb;
261
262         /*
263          * There may be multiple instances of this function racing to
264          * update the same inode.  Use cmpxchg() to tell the winner.
265          */
266         if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
267                 wb_put(wb);
268 }
269 EXPORT_SYMBOL_GPL(__inode_attach_wb);
270
271 /**
272  * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list
273  * @inode: inode of interest with i_lock held
274  * @wb: target bdi_writeback
275  *
276  * Remove the inode from wb's io lists and if necessarily put onto b_attached
277  * list.  Only inodes attached to cgwb's are kept on this list.
278  */
279 static void inode_cgwb_move_to_attached(struct inode *inode,
280                                         struct bdi_writeback *wb)
281 {
282         assert_spin_locked(&wb->list_lock);
283         assert_spin_locked(&inode->i_lock);
284         WARN_ON_ONCE(inode->i_state & I_FREEING);
285
286         inode->i_state &= ~I_SYNC_QUEUED;
287         if (wb != &wb->bdi->wb)
288                 list_move(&inode->i_io_list, &wb->b_attached);
289         else
290                 list_del_init(&inode->i_io_list);
291         wb_io_lists_depopulated(wb);
292 }
293
294 /**
295  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
296  * @inode: inode of interest with i_lock held
297  *
298  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
299  * held on entry and is released on return.  The returned wb is guaranteed
300  * to stay @inode's associated wb until its list_lock is released.
301  */
302 static struct bdi_writeback *
303 locked_inode_to_wb_and_lock_list(struct inode *inode)
304         __releases(&inode->i_lock)
305         __acquires(&wb->list_lock)
306 {
307         while (true) {
308                 struct bdi_writeback *wb = inode_to_wb(inode);
309
310                 /*
311                  * inode_to_wb() association is protected by both
312                  * @inode->i_lock and @wb->list_lock but list_lock nests
313                  * outside i_lock.  Drop i_lock and verify that the
314                  * association hasn't changed after acquiring list_lock.
315                  */
316                 wb_get(wb);
317                 spin_unlock(&inode->i_lock);
318                 spin_lock(&wb->list_lock);
319
320                 /* i_wb may have changed inbetween, can't use inode_to_wb() */
321                 if (likely(wb == inode->i_wb)) {
322                         wb_put(wb);     /* @inode already has ref */
323                         return wb;
324                 }
325
326                 spin_unlock(&wb->list_lock);
327                 wb_put(wb);
328                 cpu_relax();
329                 spin_lock(&inode->i_lock);
330         }
331 }
332
333 /**
334  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
335  * @inode: inode of interest
336  *
337  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
338  * on entry.
339  */
340 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
341         __acquires(&wb->list_lock)
342 {
343         spin_lock(&inode->i_lock);
344         return locked_inode_to_wb_and_lock_list(inode);
345 }
346
347 struct inode_switch_wbs_context {
348         struct rcu_work         work;
349
350         /*
351          * Multiple inodes can be switched at once.  The switching procedure
352          * consists of two parts, separated by a RCU grace period.  To make
353          * sure that the second part is executed for each inode gone through
354          * the first part, all inode pointers are placed into a NULL-terminated
355          * array embedded into struct inode_switch_wbs_context.  Otherwise
356          * an inode could be left in a non-consistent state.
357          */
358         struct bdi_writeback    *new_wb;
359         struct inode            *inodes[];
360 };
361
362 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
363 {
364         down_write(&bdi->wb_switch_rwsem);
365 }
366
367 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
368 {
369         up_write(&bdi->wb_switch_rwsem);
370 }
371
372 static bool inode_do_switch_wbs(struct inode *inode,
373                                 struct bdi_writeback *old_wb,
374                                 struct bdi_writeback *new_wb)
375 {
376         struct address_space *mapping = inode->i_mapping;
377         XA_STATE(xas, &mapping->i_pages, 0);
378         struct folio *folio;
379         bool switched = false;
380
381         spin_lock(&inode->i_lock);
382         xa_lock_irq(&mapping->i_pages);
383
384         /*
385          * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction
386          * path owns the inode and we shouldn't modify ->i_io_list.
387          */
388         if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE)))
389                 goto skip_switch;
390
391         trace_inode_switch_wbs(inode, old_wb, new_wb);
392
393         /*
394          * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
395          * to possibly dirty folios while PAGECACHE_TAG_WRITEBACK points to
396          * folios actually under writeback.
397          */
398         xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
399                 if (folio_test_dirty(folio)) {
400                         long nr = folio_nr_pages(folio);
401                         wb_stat_mod(old_wb, WB_RECLAIMABLE, -nr);
402                         wb_stat_mod(new_wb, WB_RECLAIMABLE, nr);
403                 }
404         }
405
406         xas_set(&xas, 0);
407         xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
408                 long nr = folio_nr_pages(folio);
409                 WARN_ON_ONCE(!folio_test_writeback(folio));
410                 wb_stat_mod(old_wb, WB_WRITEBACK, -nr);
411                 wb_stat_mod(new_wb, WB_WRITEBACK, nr);
412         }
413
414         if (mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) {
415                 atomic_dec(&old_wb->writeback_inodes);
416                 atomic_inc(&new_wb->writeback_inodes);
417         }
418
419         wb_get(new_wb);
420
421         /*
422          * Transfer to @new_wb's IO list if necessary.  If the @inode is dirty,
423          * the specific list @inode was on is ignored and the @inode is put on
424          * ->b_dirty which is always correct including from ->b_dirty_time.
425          * The transfer preserves @inode->dirtied_when ordering.  If the @inode
426          * was clean, it means it was on the b_attached list, so move it onto
427          * the b_attached list of @new_wb.
428          */
429         if (!list_empty(&inode->i_io_list)) {
430                 inode->i_wb = new_wb;
431
432                 if (inode->i_state & I_DIRTY_ALL) {
433                         struct inode *pos;
434
435                         list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
436                                 if (time_after_eq(inode->dirtied_when,
437                                                   pos->dirtied_when))
438                                         break;
439                         inode_io_list_move_locked(inode, new_wb,
440                                                   pos->i_io_list.prev);
441                 } else {
442                         inode_cgwb_move_to_attached(inode, new_wb);
443                 }
444         } else {
445                 inode->i_wb = new_wb;
446         }
447
448         /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
449         inode->i_wb_frn_winner = 0;
450         inode->i_wb_frn_avg_time = 0;
451         inode->i_wb_frn_history = 0;
452         switched = true;
453 skip_switch:
454         /*
455          * Paired with load_acquire in unlocked_inode_to_wb_begin() and
456          * ensures that the new wb is visible if they see !I_WB_SWITCH.
457          */
458         smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
459
460         xa_unlock_irq(&mapping->i_pages);
461         spin_unlock(&inode->i_lock);
462
463         return switched;
464 }
465
466 static void inode_switch_wbs_work_fn(struct work_struct *work)
467 {
468         struct inode_switch_wbs_context *isw =
469                 container_of(to_rcu_work(work), struct inode_switch_wbs_context, work);
470         struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]);
471         struct bdi_writeback *old_wb = isw->inodes[0]->i_wb;
472         struct bdi_writeback *new_wb = isw->new_wb;
473         unsigned long nr_switched = 0;
474         struct inode **inodep;
475
476         /*
477          * If @inode switches cgwb membership while sync_inodes_sb() is
478          * being issued, sync_inodes_sb() might miss it.  Synchronize.
479          */
480         down_read(&bdi->wb_switch_rwsem);
481
482         /*
483          * By the time control reaches here, RCU grace period has passed
484          * since I_WB_SWITCH assertion and all wb stat update transactions
485          * between unlocked_inode_to_wb_begin/end() are guaranteed to be
486          * synchronizing against the i_pages lock.
487          *
488          * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
489          * gives us exclusion against all wb related operations on @inode
490          * including IO list manipulations and stat updates.
491          */
492         if (old_wb < new_wb) {
493                 spin_lock(&old_wb->list_lock);
494                 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
495         } else {
496                 spin_lock(&new_wb->list_lock);
497                 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
498         }
499
500         for (inodep = isw->inodes; *inodep; inodep++) {
501                 WARN_ON_ONCE((*inodep)->i_wb != old_wb);
502                 if (inode_do_switch_wbs(*inodep, old_wb, new_wb))
503                         nr_switched++;
504         }
505
506         spin_unlock(&new_wb->list_lock);
507         spin_unlock(&old_wb->list_lock);
508
509         up_read(&bdi->wb_switch_rwsem);
510
511         if (nr_switched) {
512                 wb_wakeup(new_wb);
513                 wb_put_many(old_wb, nr_switched);
514         }
515
516         for (inodep = isw->inodes; *inodep; inodep++)
517                 iput(*inodep);
518         wb_put(new_wb);
519         kfree(isw);
520         atomic_dec(&isw_nr_in_flight);
521 }
522
523 static bool inode_prepare_wbs_switch(struct inode *inode,
524                                      struct bdi_writeback *new_wb)
525 {
526         /*
527          * Paired with smp_mb() in cgroup_writeback_umount().
528          * isw_nr_in_flight must be increased before checking SB_ACTIVE and
529          * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0
530          * in cgroup_writeback_umount() and the isw_wq will be not flushed.
531          */
532         smp_mb();
533
534         if (IS_DAX(inode))
535                 return false;
536
537         /* while holding I_WB_SWITCH, no one else can update the association */
538         spin_lock(&inode->i_lock);
539         if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
540             inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) ||
541             inode_to_wb(inode) == new_wb) {
542                 spin_unlock(&inode->i_lock);
543                 return false;
544         }
545         inode->i_state |= I_WB_SWITCH;
546         __iget(inode);
547         spin_unlock(&inode->i_lock);
548
549         return true;
550 }
551
552 /**
553  * inode_switch_wbs - change the wb association of an inode
554  * @inode: target inode
555  * @new_wb_id: ID of the new wb
556  *
557  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
558  * switching is performed asynchronously and may fail silently.
559  */
560 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
561 {
562         struct backing_dev_info *bdi = inode_to_bdi(inode);
563         struct cgroup_subsys_state *memcg_css;
564         struct inode_switch_wbs_context *isw;
565
566         /* noop if seems to be already in progress */
567         if (inode->i_state & I_WB_SWITCH)
568                 return;
569
570         /* avoid queueing a new switch if too many are already in flight */
571         if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
572                 return;
573
574         isw = kzalloc(struct_size(isw, inodes, 2), GFP_ATOMIC);
575         if (!isw)
576                 return;
577
578         atomic_inc(&isw_nr_in_flight);
579
580         /* find and pin the new wb */
581         rcu_read_lock();
582         memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
583         if (memcg_css && !css_tryget(memcg_css))
584                 memcg_css = NULL;
585         rcu_read_unlock();
586         if (!memcg_css)
587                 goto out_free;
588
589         isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
590         css_put(memcg_css);
591         if (!isw->new_wb)
592                 goto out_free;
593
594         if (!inode_prepare_wbs_switch(inode, isw->new_wb))
595                 goto out_free;
596
597         isw->inodes[0] = inode;
598
599         /*
600          * In addition to synchronizing among switchers, I_WB_SWITCH tells
601          * the RCU protected stat update paths to grab the i_page
602          * lock so that stat transfer can synchronize against them.
603          * Let's continue after I_WB_SWITCH is guaranteed to be visible.
604          */
605         INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
606         queue_rcu_work(isw_wq, &isw->work);
607         return;
608
609 out_free:
610         atomic_dec(&isw_nr_in_flight);
611         if (isw->new_wb)
612                 wb_put(isw->new_wb);
613         kfree(isw);
614 }
615
616 static bool isw_prepare_wbs_switch(struct inode_switch_wbs_context *isw,
617                                    struct list_head *list, int *nr)
618 {
619         struct inode *inode;
620
621         list_for_each_entry(inode, list, i_io_list) {
622                 if (!inode_prepare_wbs_switch(inode, isw->new_wb))
623                         continue;
624
625                 isw->inodes[*nr] = inode;
626                 (*nr)++;
627
628                 if (*nr >= WB_MAX_INODES_PER_ISW - 1)
629                         return true;
630         }
631         return false;
632 }
633
634 /**
635  * cleanup_offline_cgwb - detach associated inodes
636  * @wb: target wb
637  *
638  * Switch all inodes attached to @wb to a nearest living ancestor's wb in order
639  * to eventually release the dying @wb.  Returns %true if not all inodes were
640  * switched and the function has to be restarted.
641  */
642 bool cleanup_offline_cgwb(struct bdi_writeback *wb)
643 {
644         struct cgroup_subsys_state *memcg_css;
645         struct inode_switch_wbs_context *isw;
646         int nr;
647         bool restart = false;
648
649         isw = kzalloc(struct_size(isw, inodes, WB_MAX_INODES_PER_ISW),
650                       GFP_KERNEL);
651         if (!isw)
652                 return restart;
653
654         atomic_inc(&isw_nr_in_flight);
655
656         for (memcg_css = wb->memcg_css->parent; memcg_css;
657              memcg_css = memcg_css->parent) {
658                 isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL);
659                 if (isw->new_wb)
660                         break;
661         }
662         if (unlikely(!isw->new_wb))
663                 isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */
664
665         nr = 0;
666         spin_lock(&wb->list_lock);
667         /*
668          * In addition to the inodes that have completed writeback, also switch
669          * cgwbs for those inodes only with dirty timestamps. Otherwise, those
670          * inodes won't be written back for a long time when lazytime is
671          * enabled, and thus pinning the dying cgwbs. It won't break the
672          * bandwidth restrictions, as writeback of inode metadata is not
673          * accounted for.
674          */
675         restart = isw_prepare_wbs_switch(isw, &wb->b_attached, &nr);
676         if (!restart)
677                 restart = isw_prepare_wbs_switch(isw, &wb->b_dirty_time, &nr);
678         spin_unlock(&wb->list_lock);
679
680         /* no attached inodes? bail out */
681         if (nr == 0) {
682                 atomic_dec(&isw_nr_in_flight);
683                 wb_put(isw->new_wb);
684                 kfree(isw);
685                 return restart;
686         }
687
688         /*
689          * In addition to synchronizing among switchers, I_WB_SWITCH tells
690          * the RCU protected stat update paths to grab the i_page
691          * lock so that stat transfer can synchronize against them.
692          * Let's continue after I_WB_SWITCH is guaranteed to be visible.
693          */
694         INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
695         queue_rcu_work(isw_wq, &isw->work);
696
697         return restart;
698 }
699
700 /**
701  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
702  * @wbc: writeback_control of interest
703  * @inode: target inode
704  *
705  * @inode is locked and about to be written back under the control of @wbc.
706  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
707  * writeback completion, wbc_detach_inode() should be called.  This is used
708  * to track the cgroup writeback context.
709  */
710 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
711                                  struct inode *inode)
712 {
713         if (!inode_cgwb_enabled(inode)) {
714                 spin_unlock(&inode->i_lock);
715                 return;
716         }
717
718         wbc->wb = inode_to_wb(inode);
719         wbc->inode = inode;
720
721         wbc->wb_id = wbc->wb->memcg_css->id;
722         wbc->wb_lcand_id = inode->i_wb_frn_winner;
723         wbc->wb_tcand_id = 0;
724         wbc->wb_bytes = 0;
725         wbc->wb_lcand_bytes = 0;
726         wbc->wb_tcand_bytes = 0;
727
728         wb_get(wbc->wb);
729         spin_unlock(&inode->i_lock);
730
731         /*
732          * A dying wb indicates that either the blkcg associated with the
733          * memcg changed or the associated memcg is dying.  In the first
734          * case, a replacement wb should already be available and we should
735          * refresh the wb immediately.  In the second case, trying to
736          * refresh will keep failing.
737          */
738         if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
739                 inode_switch_wbs(inode, wbc->wb_id);
740 }
741 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
742
743 /**
744  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
745  * @wbc: writeback_control of the just finished writeback
746  *
747  * To be called after a writeback attempt of an inode finishes and undoes
748  * wbc_attach_and_unlock_inode().  Can be called under any context.
749  *
750  * As concurrent write sharing of an inode is expected to be very rare and
751  * memcg only tracks page ownership on first-use basis severely confining
752  * the usefulness of such sharing, cgroup writeback tracks ownership
753  * per-inode.  While the support for concurrent write sharing of an inode
754  * is deemed unnecessary, an inode being written to by different cgroups at
755  * different points in time is a lot more common, and, more importantly,
756  * charging only by first-use can too readily lead to grossly incorrect
757  * behaviors (single foreign page can lead to gigabytes of writeback to be
758  * incorrectly attributed).
759  *
760  * To resolve this issue, cgroup writeback detects the majority dirtier of
761  * an inode and transfers the ownership to it.  To avoid unnecessary
762  * oscillation, the detection mechanism keeps track of history and gives
763  * out the switch verdict only if the foreign usage pattern is stable over
764  * a certain amount of time and/or writeback attempts.
765  *
766  * On each writeback attempt, @wbc tries to detect the majority writer
767  * using Boyer-Moore majority vote algorithm.  In addition to the byte
768  * count from the majority voting, it also counts the bytes written for the
769  * current wb and the last round's winner wb (max of last round's current
770  * wb, the winner from two rounds ago, and the last round's majority
771  * candidate).  Keeping track of the historical winner helps the algorithm
772  * to semi-reliably detect the most active writer even when it's not the
773  * absolute majority.
774  *
775  * Once the winner of the round is determined, whether the winner is
776  * foreign or not and how much IO time the round consumed is recorded in
777  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
778  * over a certain threshold, the switch verdict is given.
779  */
780 void wbc_detach_inode(struct writeback_control *wbc)
781 {
782         struct bdi_writeback *wb = wbc->wb;
783         struct inode *inode = wbc->inode;
784         unsigned long avg_time, max_bytes, max_time;
785         u16 history;
786         int max_id;
787
788         if (!wb)
789                 return;
790
791         history = inode->i_wb_frn_history;
792         avg_time = inode->i_wb_frn_avg_time;
793
794         /* pick the winner of this round */
795         if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
796             wbc->wb_bytes >= wbc->wb_tcand_bytes) {
797                 max_id = wbc->wb_id;
798                 max_bytes = wbc->wb_bytes;
799         } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
800                 max_id = wbc->wb_lcand_id;
801                 max_bytes = wbc->wb_lcand_bytes;
802         } else {
803                 max_id = wbc->wb_tcand_id;
804                 max_bytes = wbc->wb_tcand_bytes;
805         }
806
807         /*
808          * Calculate the amount of IO time the winner consumed and fold it
809          * into the running average kept per inode.  If the consumed IO
810          * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
811          * deciding whether to switch or not.  This is to prevent one-off
812          * small dirtiers from skewing the verdict.
813          */
814         max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
815                                 wb->avg_write_bandwidth);
816         if (avg_time)
817                 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
818                             (avg_time >> WB_FRN_TIME_AVG_SHIFT);
819         else
820                 avg_time = max_time;    /* immediate catch up on first run */
821
822         if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
823                 int slots;
824
825                 /*
826                  * The switch verdict is reached if foreign wb's consume
827                  * more than a certain proportion of IO time in a
828                  * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
829                  * history mask where each bit represents one sixteenth of
830                  * the period.  Determine the number of slots to shift into
831                  * history from @max_time.
832                  */
833                 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
834                             (unsigned long)WB_FRN_HIST_MAX_SLOTS);
835                 history <<= slots;
836                 if (wbc->wb_id != max_id)
837                         history |= (1U << slots) - 1;
838
839                 if (history)
840                         trace_inode_foreign_history(inode, wbc, history);
841
842                 /*
843                  * Switch if the current wb isn't the consistent winner.
844                  * If there are multiple closely competing dirtiers, the
845                  * inode may switch across them repeatedly over time, which
846                  * is okay.  The main goal is avoiding keeping an inode on
847                  * the wrong wb for an extended period of time.
848                  */
849                 if (hweight16(history) > WB_FRN_HIST_THR_SLOTS)
850                         inode_switch_wbs(inode, max_id);
851         }
852
853         /*
854          * Multiple instances of this function may race to update the
855          * following fields but we don't mind occassional inaccuracies.
856          */
857         inode->i_wb_frn_winner = max_id;
858         inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
859         inode->i_wb_frn_history = history;
860
861         wb_put(wbc->wb);
862         wbc->wb = NULL;
863 }
864 EXPORT_SYMBOL_GPL(wbc_detach_inode);
865
866 /**
867  * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
868  * @wbc: writeback_control of the writeback in progress
869  * @page: page being written out
870  * @bytes: number of bytes being written out
871  *
872  * @bytes from @page are about to written out during the writeback
873  * controlled by @wbc.  Keep the book for foreign inode detection.  See
874  * wbc_detach_inode().
875  */
876 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
877                               size_t bytes)
878 {
879         struct folio *folio;
880         struct cgroup_subsys_state *css;
881         int id;
882
883         /*
884          * pageout() path doesn't attach @wbc to the inode being written
885          * out.  This is intentional as we don't want the function to block
886          * behind a slow cgroup.  Ultimately, we want pageout() to kick off
887          * regular writeback instead of writing things out itself.
888          */
889         if (!wbc->wb || wbc->no_cgroup_owner)
890                 return;
891
892         folio = page_folio(page);
893         css = mem_cgroup_css_from_folio(folio);
894         /* dead cgroups shouldn't contribute to inode ownership arbitration */
895         if (!(css->flags & CSS_ONLINE))
896                 return;
897
898         id = css->id;
899
900         if (id == wbc->wb_id) {
901                 wbc->wb_bytes += bytes;
902                 return;
903         }
904
905         if (id == wbc->wb_lcand_id)
906                 wbc->wb_lcand_bytes += bytes;
907
908         /* Boyer-Moore majority vote algorithm */
909         if (!wbc->wb_tcand_bytes)
910                 wbc->wb_tcand_id = id;
911         if (id == wbc->wb_tcand_id)
912                 wbc->wb_tcand_bytes += bytes;
913         else
914                 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
915 }
916 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
917
918 /**
919  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
920  * @wb: target bdi_writeback to split @nr_pages to
921  * @nr_pages: number of pages to write for the whole bdi
922  *
923  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
924  * relation to the total write bandwidth of all wb's w/ dirty inodes on
925  * @wb->bdi.
926  */
927 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
928 {
929         unsigned long this_bw = wb->avg_write_bandwidth;
930         unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
931
932         if (nr_pages == LONG_MAX)
933                 return LONG_MAX;
934
935         /*
936          * This may be called on clean wb's and proportional distribution
937          * may not make sense, just use the original @nr_pages in those
938          * cases.  In general, we wanna err on the side of writing more.
939          */
940         if (!tot_bw || this_bw >= tot_bw)
941                 return nr_pages;
942         else
943                 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
944 }
945
946 /**
947  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
948  * @bdi: target backing_dev_info
949  * @base_work: wb_writeback_work to issue
950  * @skip_if_busy: skip wb's which already have writeback in progress
951  *
952  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
953  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
954  * distributed to the busy wbs according to each wb's proportion in the
955  * total active write bandwidth of @bdi.
956  */
957 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
958                                   struct wb_writeback_work *base_work,
959                                   bool skip_if_busy)
960 {
961         struct bdi_writeback *last_wb = NULL;
962         struct bdi_writeback *wb = list_entry(&bdi->wb_list,
963                                               struct bdi_writeback, bdi_node);
964
965         might_sleep();
966 restart:
967         rcu_read_lock();
968         list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
969                 DEFINE_WB_COMPLETION(fallback_work_done, bdi);
970                 struct wb_writeback_work fallback_work;
971                 struct wb_writeback_work *work;
972                 long nr_pages;
973
974                 if (last_wb) {
975                         wb_put(last_wb);
976                         last_wb = NULL;
977                 }
978
979                 /* SYNC_ALL writes out I_DIRTY_TIME too */
980                 if (!wb_has_dirty_io(wb) &&
981                     (base_work->sync_mode == WB_SYNC_NONE ||
982                      list_empty(&wb->b_dirty_time)))
983                         continue;
984                 if (skip_if_busy && writeback_in_progress(wb))
985                         continue;
986
987                 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
988
989                 work = kmalloc(sizeof(*work), GFP_ATOMIC);
990                 if (work) {
991                         *work = *base_work;
992                         work->nr_pages = nr_pages;
993                         work->auto_free = 1;
994                         wb_queue_work(wb, work);
995                         continue;
996                 }
997
998                 /*
999                  * If wb_tryget fails, the wb has been shutdown, skip it.
1000                  *
1001                  * Pin @wb so that it stays on @bdi->wb_list.  This allows
1002                  * continuing iteration from @wb after dropping and
1003                  * regrabbing rcu read lock.
1004                  */
1005                 if (!wb_tryget(wb))
1006                         continue;
1007
1008                 /* alloc failed, execute synchronously using on-stack fallback */
1009                 work = &fallback_work;
1010                 *work = *base_work;
1011                 work->nr_pages = nr_pages;
1012                 work->auto_free = 0;
1013                 work->done = &fallback_work_done;
1014
1015                 wb_queue_work(wb, work);
1016                 last_wb = wb;
1017
1018                 rcu_read_unlock();
1019                 wb_wait_for_completion(&fallback_work_done);
1020                 goto restart;
1021         }
1022         rcu_read_unlock();
1023
1024         if (last_wb)
1025                 wb_put(last_wb);
1026 }
1027
1028 /**
1029  * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
1030  * @bdi_id: target bdi id
1031  * @memcg_id: target memcg css id
1032  * @reason: reason why some writeback work initiated
1033  * @done: target wb_completion
1034  *
1035  * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
1036  * with the specified parameters.
1037  */
1038 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id,
1039                            enum wb_reason reason, struct wb_completion *done)
1040 {
1041         struct backing_dev_info *bdi;
1042         struct cgroup_subsys_state *memcg_css;
1043         struct bdi_writeback *wb;
1044         struct wb_writeback_work *work;
1045         unsigned long dirty;
1046         int ret;
1047
1048         /* lookup bdi and memcg */
1049         bdi = bdi_get_by_id(bdi_id);
1050         if (!bdi)
1051                 return -ENOENT;
1052
1053         rcu_read_lock();
1054         memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
1055         if (memcg_css && !css_tryget(memcg_css))
1056                 memcg_css = NULL;
1057         rcu_read_unlock();
1058         if (!memcg_css) {
1059                 ret = -ENOENT;
1060                 goto out_bdi_put;
1061         }
1062
1063         /*
1064          * And find the associated wb.  If the wb isn't there already
1065          * there's nothing to flush, don't create one.
1066          */
1067         wb = wb_get_lookup(bdi, memcg_css);
1068         if (!wb) {
1069                 ret = -ENOENT;
1070                 goto out_css_put;
1071         }
1072
1073         /*
1074          * The caller is attempting to write out most of
1075          * the currently dirty pages.  Let's take the current dirty page
1076          * count and inflate it by 25% which should be large enough to
1077          * flush out most dirty pages while avoiding getting livelocked by
1078          * concurrent dirtiers.
1079          *
1080          * BTW the memcg stats are flushed periodically and this is best-effort
1081          * estimation, so some potential error is ok.
1082          */
1083         dirty = memcg_page_state(mem_cgroup_from_css(memcg_css), NR_FILE_DIRTY);
1084         dirty = dirty * 10 / 8;
1085
1086         /* issue the writeback work */
1087         work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
1088         if (work) {
1089                 work->nr_pages = dirty;
1090                 work->sync_mode = WB_SYNC_NONE;
1091                 work->range_cyclic = 1;
1092                 work->reason = reason;
1093                 work->done = done;
1094                 work->auto_free = 1;
1095                 wb_queue_work(wb, work);
1096                 ret = 0;
1097         } else {
1098                 ret = -ENOMEM;
1099         }
1100
1101         wb_put(wb);
1102 out_css_put:
1103         css_put(memcg_css);
1104 out_bdi_put:
1105         bdi_put(bdi);
1106         return ret;
1107 }
1108
1109 /**
1110  * cgroup_writeback_umount - flush inode wb switches for umount
1111  *
1112  * This function is called when a super_block is about to be destroyed and
1113  * flushes in-flight inode wb switches.  An inode wb switch goes through
1114  * RCU and then workqueue, so the two need to be flushed in order to ensure
1115  * that all previously scheduled switches are finished.  As wb switches are
1116  * rare occurrences and synchronize_rcu() can take a while, perform
1117  * flushing iff wb switches are in flight.
1118  */
1119 void cgroup_writeback_umount(void)
1120 {
1121         /*
1122          * SB_ACTIVE should be reliably cleared before checking
1123          * isw_nr_in_flight, see generic_shutdown_super().
1124          */
1125         smp_mb();
1126
1127         if (atomic_read(&isw_nr_in_flight)) {
1128                 /*
1129                  * Use rcu_barrier() to wait for all pending callbacks to
1130                  * ensure that all in-flight wb switches are in the workqueue.
1131                  */
1132                 rcu_barrier();
1133                 flush_workqueue(isw_wq);
1134         }
1135 }
1136
1137 static int __init cgroup_writeback_init(void)
1138 {
1139         isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1140         if (!isw_wq)
1141                 return -ENOMEM;
1142         return 0;
1143 }
1144 fs_initcall(cgroup_writeback_init);
1145
1146 #else   /* CONFIG_CGROUP_WRITEBACK */
1147
1148 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1149 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1150
1151 static void inode_cgwb_move_to_attached(struct inode *inode,
1152                                         struct bdi_writeback *wb)
1153 {
1154         assert_spin_locked(&wb->list_lock);
1155         assert_spin_locked(&inode->i_lock);
1156         WARN_ON_ONCE(inode->i_state & I_FREEING);
1157
1158         inode->i_state &= ~I_SYNC_QUEUED;
1159         list_del_init(&inode->i_io_list);
1160         wb_io_lists_depopulated(wb);
1161 }
1162
1163 static struct bdi_writeback *
1164 locked_inode_to_wb_and_lock_list(struct inode *inode)
1165         __releases(&inode->i_lock)
1166         __acquires(&wb->list_lock)
1167 {
1168         struct bdi_writeback *wb = inode_to_wb(inode);
1169
1170         spin_unlock(&inode->i_lock);
1171         spin_lock(&wb->list_lock);
1172         return wb;
1173 }
1174
1175 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1176         __acquires(&wb->list_lock)
1177 {
1178         struct bdi_writeback *wb = inode_to_wb(inode);
1179
1180         spin_lock(&wb->list_lock);
1181         return wb;
1182 }
1183
1184 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1185 {
1186         return nr_pages;
1187 }
1188
1189 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1190                                   struct wb_writeback_work *base_work,
1191                                   bool skip_if_busy)
1192 {
1193         might_sleep();
1194
1195         if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1196                 base_work->auto_free = 0;
1197                 wb_queue_work(&bdi->wb, base_work);
1198         }
1199 }
1200
1201 #endif  /* CONFIG_CGROUP_WRITEBACK */
1202
1203 /*
1204  * Add in the number of potentially dirty inodes, because each inode
1205  * write can dirty pagecache in the underlying blockdev.
1206  */
1207 static unsigned long get_nr_dirty_pages(void)
1208 {
1209         return global_node_page_state(NR_FILE_DIRTY) +
1210                 get_nr_dirty_inodes();
1211 }
1212
1213 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1214 {
1215         if (!wb_has_dirty_io(wb))
1216                 return;
1217
1218         /*
1219          * All callers of this function want to start writeback of all
1220          * dirty pages. Places like vmscan can call this at a very
1221          * high frequency, causing pointless allocations of tons of
1222          * work items and keeping the flusher threads busy retrieving
1223          * that work. Ensure that we only allow one of them pending and
1224          * inflight at the time.
1225          */
1226         if (test_bit(WB_start_all, &wb->state) ||
1227             test_and_set_bit(WB_start_all, &wb->state))
1228                 return;
1229
1230         wb->start_all_reason = reason;
1231         wb_wakeup(wb);
1232 }
1233
1234 /**
1235  * wb_start_background_writeback - start background writeback
1236  * @wb: bdi_writback to write from
1237  *
1238  * Description:
1239  *   This makes sure WB_SYNC_NONE background writeback happens. When
1240  *   this function returns, it is only guaranteed that for given wb
1241  *   some IO is happening if we are over background dirty threshold.
1242  *   Caller need not hold sb s_umount semaphore.
1243  */
1244 void wb_start_background_writeback(struct bdi_writeback *wb)
1245 {
1246         /*
1247          * We just wake up the flusher thread. It will perform background
1248          * writeback as soon as there is no other work to do.
1249          */
1250         trace_writeback_wake_background(wb);
1251         wb_wakeup(wb);
1252 }
1253
1254 /*
1255  * Remove the inode from the writeback list it is on.
1256  */
1257 void inode_io_list_del(struct inode *inode)
1258 {
1259         struct bdi_writeback *wb;
1260
1261         wb = inode_to_wb_and_lock_list(inode);
1262         spin_lock(&inode->i_lock);
1263
1264         inode->i_state &= ~I_SYNC_QUEUED;
1265         list_del_init(&inode->i_io_list);
1266         wb_io_lists_depopulated(wb);
1267
1268         spin_unlock(&inode->i_lock);
1269         spin_unlock(&wb->list_lock);
1270 }
1271 EXPORT_SYMBOL(inode_io_list_del);
1272
1273 /*
1274  * mark an inode as under writeback on the sb
1275  */
1276 void sb_mark_inode_writeback(struct inode *inode)
1277 {
1278         struct super_block *sb = inode->i_sb;
1279         unsigned long flags;
1280
1281         if (list_empty(&inode->i_wb_list)) {
1282                 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1283                 if (list_empty(&inode->i_wb_list)) {
1284                         list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1285                         trace_sb_mark_inode_writeback(inode);
1286                 }
1287                 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1288         }
1289 }
1290
1291 /*
1292  * clear an inode as under writeback on the sb
1293  */
1294 void sb_clear_inode_writeback(struct inode *inode)
1295 {
1296         struct super_block *sb = inode->i_sb;
1297         unsigned long flags;
1298
1299         if (!list_empty(&inode->i_wb_list)) {
1300                 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1301                 if (!list_empty(&inode->i_wb_list)) {
1302                         list_del_init(&inode->i_wb_list);
1303                         trace_sb_clear_inode_writeback(inode);
1304                 }
1305                 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1306         }
1307 }
1308
1309 /*
1310  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1311  * furthest end of its superblock's dirty-inode list.
1312  *
1313  * Before stamping the inode's ->dirtied_when, we check to see whether it is
1314  * already the most-recently-dirtied inode on the b_dirty list.  If that is
1315  * the case then the inode must have been redirtied while it was being written
1316  * out and we don't reset its dirtied_when.
1317  */
1318 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
1319 {
1320         assert_spin_locked(&inode->i_lock);
1321
1322         inode->i_state &= ~I_SYNC_QUEUED;
1323         /*
1324          * When the inode is being freed just don't bother with dirty list
1325          * tracking. Flush worker will ignore this inode anyway and it will
1326          * trigger assertions in inode_io_list_move_locked().
1327          */
1328         if (inode->i_state & I_FREEING) {
1329                 list_del_init(&inode->i_io_list);
1330                 wb_io_lists_depopulated(wb);
1331                 return;
1332         }
1333         if (!list_empty(&wb->b_dirty)) {
1334                 struct inode *tail;
1335
1336                 tail = wb_inode(wb->b_dirty.next);
1337                 if (time_before(inode->dirtied_when, tail->dirtied_when))
1338                         inode->dirtied_when = jiffies;
1339         }
1340         inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1341 }
1342
1343 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1344 {
1345         spin_lock(&inode->i_lock);
1346         redirty_tail_locked(inode, wb);
1347         spin_unlock(&inode->i_lock);
1348 }
1349
1350 /*
1351  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1352  */
1353 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1354 {
1355         inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1356 }
1357
1358 static void inode_sync_complete(struct inode *inode)
1359 {
1360         inode->i_state &= ~I_SYNC;
1361         /* If inode is clean an unused, put it into LRU now... */
1362         inode_add_lru(inode);
1363         /* Waiters must see I_SYNC cleared before being woken up */
1364         smp_mb();
1365         wake_up_bit(&inode->i_state, __I_SYNC);
1366 }
1367
1368 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1369 {
1370         bool ret = time_after(inode->dirtied_when, t);
1371 #ifndef CONFIG_64BIT
1372         /*
1373          * For inodes being constantly redirtied, dirtied_when can get stuck.
1374          * It _appears_ to be in the future, but is actually in distant past.
1375          * This test is necessary to prevent such wrapped-around relative times
1376          * from permanently stopping the whole bdi writeback.
1377          */
1378         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1379 #endif
1380         return ret;
1381 }
1382
1383 /*
1384  * Move expired (dirtied before dirtied_before) dirty inodes from
1385  * @delaying_queue to @dispatch_queue.
1386  */
1387 static int move_expired_inodes(struct list_head *delaying_queue,
1388                                struct list_head *dispatch_queue,
1389                                unsigned long dirtied_before)
1390 {
1391         LIST_HEAD(tmp);
1392         struct list_head *pos, *node;
1393         struct super_block *sb = NULL;
1394         struct inode *inode;
1395         int do_sb_sort = 0;
1396         int moved = 0;
1397
1398         while (!list_empty(delaying_queue)) {
1399                 inode = wb_inode(delaying_queue->prev);
1400                 if (inode_dirtied_after(inode, dirtied_before))
1401                         break;
1402                 spin_lock(&inode->i_lock);
1403                 list_move(&inode->i_io_list, &tmp);
1404                 moved++;
1405                 inode->i_state |= I_SYNC_QUEUED;
1406                 spin_unlock(&inode->i_lock);
1407                 if (sb_is_blkdev_sb(inode->i_sb))
1408                         continue;
1409                 if (sb && sb != inode->i_sb)
1410                         do_sb_sort = 1;
1411                 sb = inode->i_sb;
1412         }
1413
1414         /* just one sb in list, splice to dispatch_queue and we're done */
1415         if (!do_sb_sort) {
1416                 list_splice(&tmp, dispatch_queue);
1417                 goto out;
1418         }
1419
1420         /*
1421          * Although inode's i_io_list is moved from 'tmp' to 'dispatch_queue',
1422          * we don't take inode->i_lock here because it is just a pointless overhead.
1423          * Inode is already marked as I_SYNC_QUEUED so writeback list handling is
1424          * fully under our control.
1425          */
1426         while (!list_empty(&tmp)) {
1427                 sb = wb_inode(tmp.prev)->i_sb;
1428                 list_for_each_prev_safe(pos, node, &tmp) {
1429                         inode = wb_inode(pos);
1430                         if (inode->i_sb == sb)
1431                                 list_move(&inode->i_io_list, dispatch_queue);
1432                 }
1433         }
1434 out:
1435         return moved;
1436 }
1437
1438 /*
1439  * Queue all expired dirty inodes for io, eldest first.
1440  * Before
1441  *         newly dirtied     b_dirty    b_io    b_more_io
1442  *         =============>    gf         edc     BA
1443  * After
1444  *         newly dirtied     b_dirty    b_io    b_more_io
1445  *         =============>    g          fBAedc
1446  *                                           |
1447  *                                           +--> dequeue for IO
1448  */
1449 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1450                      unsigned long dirtied_before)
1451 {
1452         int moved;
1453         unsigned long time_expire_jif = dirtied_before;
1454
1455         assert_spin_locked(&wb->list_lock);
1456         list_splice_init(&wb->b_more_io, &wb->b_io);
1457         moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
1458         if (!work->for_sync)
1459                 time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
1460         moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1461                                      time_expire_jif);
1462         if (moved)
1463                 wb_io_lists_populated(wb);
1464         trace_writeback_queue_io(wb, work, dirtied_before, moved);
1465 }
1466
1467 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1468 {
1469         int ret;
1470
1471         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1472                 trace_writeback_write_inode_start(inode, wbc);
1473                 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1474                 trace_writeback_write_inode(inode, wbc);
1475                 return ret;
1476         }
1477         return 0;
1478 }
1479
1480 /*
1481  * Wait for writeback on an inode to complete. Called with i_lock held.
1482  * Caller must make sure inode cannot go away when we drop i_lock.
1483  */
1484 static void __inode_wait_for_writeback(struct inode *inode)
1485         __releases(inode->i_lock)
1486         __acquires(inode->i_lock)
1487 {
1488         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1489         wait_queue_head_t *wqh;
1490
1491         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1492         while (inode->i_state & I_SYNC) {
1493                 spin_unlock(&inode->i_lock);
1494                 __wait_on_bit(wqh, &wq, bit_wait,
1495                               TASK_UNINTERRUPTIBLE);
1496                 spin_lock(&inode->i_lock);
1497         }
1498 }
1499
1500 /*
1501  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1502  */
1503 void inode_wait_for_writeback(struct inode *inode)
1504 {
1505         spin_lock(&inode->i_lock);
1506         __inode_wait_for_writeback(inode);
1507         spin_unlock(&inode->i_lock);
1508 }
1509
1510 /*
1511  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1512  * held and drops it. It is aimed for callers not holding any inode reference
1513  * so once i_lock is dropped, inode can go away.
1514  */
1515 static void inode_sleep_on_writeback(struct inode *inode)
1516         __releases(inode->i_lock)
1517 {
1518         DEFINE_WAIT(wait);
1519         wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1520         int sleep;
1521
1522         prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1523         sleep = inode->i_state & I_SYNC;
1524         spin_unlock(&inode->i_lock);
1525         if (sleep)
1526                 schedule();
1527         finish_wait(wqh, &wait);
1528 }
1529
1530 /*
1531  * Find proper writeback list for the inode depending on its current state and
1532  * possibly also change of its state while we were doing writeback.  Here we
1533  * handle things such as livelock prevention or fairness of writeback among
1534  * inodes. This function can be called only by flusher thread - noone else
1535  * processes all inodes in writeback lists and requeueing inodes behind flusher
1536  * thread's back can have unexpected consequences.
1537  */
1538 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1539                           struct writeback_control *wbc)
1540 {
1541         if (inode->i_state & I_FREEING)
1542                 return;
1543
1544         /*
1545          * Sync livelock prevention. Each inode is tagged and synced in one
1546          * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1547          * the dirty time to prevent enqueue and sync it again.
1548          */
1549         if ((inode->i_state & I_DIRTY) &&
1550             (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1551                 inode->dirtied_when = jiffies;
1552
1553         if (wbc->pages_skipped) {
1554                 /*
1555                  * Writeback is not making progress due to locked buffers.
1556                  * Skip this inode for now. Although having skipped pages
1557                  * is odd for clean inodes, it can happen for some
1558                  * filesystems so handle that gracefully.
1559                  */
1560                 if (inode->i_state & I_DIRTY_ALL)
1561                         redirty_tail_locked(inode, wb);
1562                 else
1563                         inode_cgwb_move_to_attached(inode, wb);
1564                 return;
1565         }
1566
1567         if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1568                 /*
1569                  * We didn't write back all the pages.  nfs_writepages()
1570                  * sometimes bales out without doing anything.
1571                  */
1572                 if (wbc->nr_to_write <= 0) {
1573                         /* Slice used up. Queue for next turn. */
1574                         requeue_io(inode, wb);
1575                 } else {
1576                         /*
1577                          * Writeback blocked by something other than
1578                          * congestion. Delay the inode for some time to
1579                          * avoid spinning on the CPU (100% iowait)
1580                          * retrying writeback of the dirty page/inode
1581                          * that cannot be performed immediately.
1582                          */
1583                         redirty_tail_locked(inode, wb);
1584                 }
1585         } else if (inode->i_state & I_DIRTY) {
1586                 /*
1587                  * Filesystems can dirty the inode during writeback operations,
1588                  * such as delayed allocation during submission or metadata
1589                  * updates after data IO completion.
1590                  */
1591                 redirty_tail_locked(inode, wb);
1592         } else if (inode->i_state & I_DIRTY_TIME) {
1593                 inode->dirtied_when = jiffies;
1594                 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1595                 inode->i_state &= ~I_SYNC_QUEUED;
1596         } else {
1597                 /* The inode is clean. Remove from writeback lists. */
1598                 inode_cgwb_move_to_attached(inode, wb);
1599         }
1600 }
1601
1602 /*
1603  * Write out an inode and its dirty pages (or some of its dirty pages, depending
1604  * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state.
1605  *
1606  * This doesn't remove the inode from the writeback list it is on, except
1607  * potentially to move it from b_dirty_time to b_dirty due to timestamp
1608  * expiration.  The caller is otherwise responsible for writeback list handling.
1609  *
1610  * The caller is also responsible for setting the I_SYNC flag beforehand and
1611  * calling inode_sync_complete() to clear it afterwards.
1612  */
1613 static int
1614 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1615 {
1616         struct address_space *mapping = inode->i_mapping;
1617         long nr_to_write = wbc->nr_to_write;
1618         unsigned dirty;
1619         int ret;
1620
1621         WARN_ON(!(inode->i_state & I_SYNC));
1622
1623         trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1624
1625         ret = do_writepages(mapping, wbc);
1626
1627         /*
1628          * Make sure to wait on the data before writing out the metadata.
1629          * This is important for filesystems that modify metadata on data
1630          * I/O completion. We don't do it for sync(2) writeback because it has a
1631          * separate, external IO completion path and ->sync_fs for guaranteeing
1632          * inode metadata is written back correctly.
1633          */
1634         if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1635                 int err = filemap_fdatawait(mapping);
1636                 if (ret == 0)
1637                         ret = err;
1638         }
1639
1640         /*
1641          * If the inode has dirty timestamps and we need to write them, call
1642          * mark_inode_dirty_sync() to notify the filesystem about it and to
1643          * change I_DIRTY_TIME into I_DIRTY_SYNC.
1644          */
1645         if ((inode->i_state & I_DIRTY_TIME) &&
1646             (wbc->sync_mode == WB_SYNC_ALL ||
1647              time_after(jiffies, inode->dirtied_time_when +
1648                         dirtytime_expire_interval * HZ))) {
1649                 trace_writeback_lazytime(inode);
1650                 mark_inode_dirty_sync(inode);
1651         }
1652
1653         /*
1654          * Get and clear the dirty flags from i_state.  This needs to be done
1655          * after calling writepages because some filesystems may redirty the
1656          * inode during writepages due to delalloc.  It also needs to be done
1657          * after handling timestamp expiration, as that may dirty the inode too.
1658          */
1659         spin_lock(&inode->i_lock);
1660         dirty = inode->i_state & I_DIRTY;
1661         inode->i_state &= ~dirty;
1662
1663         /*
1664          * Paired with smp_mb() in __mark_inode_dirty().  This allows
1665          * __mark_inode_dirty() to test i_state without grabbing i_lock -
1666          * either they see the I_DIRTY bits cleared or we see the dirtied
1667          * inode.
1668          *
1669          * I_DIRTY_PAGES is always cleared together above even if @mapping
1670          * still has dirty pages.  The flag is reinstated after smp_mb() if
1671          * necessary.  This guarantees that either __mark_inode_dirty()
1672          * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1673          */
1674         smp_mb();
1675
1676         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1677                 inode->i_state |= I_DIRTY_PAGES;
1678         else if (unlikely(inode->i_state & I_PINNING_FSCACHE_WB)) {
1679                 if (!(inode->i_state & I_DIRTY_PAGES)) {
1680                         inode->i_state &= ~I_PINNING_FSCACHE_WB;
1681                         wbc->unpinned_fscache_wb = true;
1682                         dirty |= I_PINNING_FSCACHE_WB; /* Cause write_inode */
1683                 }
1684         }
1685
1686         spin_unlock(&inode->i_lock);
1687
1688         /* Don't write the inode if only I_DIRTY_PAGES was set */
1689         if (dirty & ~I_DIRTY_PAGES) {
1690                 int err = write_inode(inode, wbc);
1691                 if (ret == 0)
1692                         ret = err;
1693         }
1694         wbc->unpinned_fscache_wb = false;
1695         trace_writeback_single_inode(inode, wbc, nr_to_write);
1696         return ret;
1697 }
1698
1699 /*
1700  * Write out an inode's dirty data and metadata on-demand, i.e. separately from
1701  * the regular batched writeback done by the flusher threads in
1702  * writeback_sb_inodes().  @wbc controls various aspects of the write, such as
1703  * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE).
1704  *
1705  * To prevent the inode from going away, either the caller must have a reference
1706  * to the inode, or the inode must have I_WILL_FREE or I_FREEING set.
1707  */
1708 static int writeback_single_inode(struct inode *inode,
1709                                   struct writeback_control *wbc)
1710 {
1711         struct bdi_writeback *wb;
1712         int ret = 0;
1713
1714         spin_lock(&inode->i_lock);
1715         if (!atomic_read(&inode->i_count))
1716                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1717         else
1718                 WARN_ON(inode->i_state & I_WILL_FREE);
1719
1720         if (inode->i_state & I_SYNC) {
1721                 /*
1722                  * Writeback is already running on the inode.  For WB_SYNC_NONE,
1723                  * that's enough and we can just return.  For WB_SYNC_ALL, we
1724                  * must wait for the existing writeback to complete, then do
1725                  * writeback again if there's anything left.
1726                  */
1727                 if (wbc->sync_mode != WB_SYNC_ALL)
1728                         goto out;
1729                 __inode_wait_for_writeback(inode);
1730         }
1731         WARN_ON(inode->i_state & I_SYNC);
1732         /*
1733          * If the inode is already fully clean, then there's nothing to do.
1734          *
1735          * For data-integrity syncs we also need to check whether any pages are
1736          * still under writeback, e.g. due to prior WB_SYNC_NONE writeback.  If
1737          * there are any such pages, we'll need to wait for them.
1738          */
1739         if (!(inode->i_state & I_DIRTY_ALL) &&
1740             (wbc->sync_mode != WB_SYNC_ALL ||
1741              !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1742                 goto out;
1743         inode->i_state |= I_SYNC;
1744         wbc_attach_and_unlock_inode(wbc, inode);
1745
1746         ret = __writeback_single_inode(inode, wbc);
1747
1748         wbc_detach_inode(wbc);
1749
1750         wb = inode_to_wb_and_lock_list(inode);
1751         spin_lock(&inode->i_lock);
1752         /*
1753          * If the inode is freeing, its i_io_list shoudn't be updated
1754          * as it can be finally deleted at this moment.
1755          */
1756         if (!(inode->i_state & I_FREEING)) {
1757                 /*
1758                  * If the inode is now fully clean, then it can be safely
1759                  * removed from its writeback list (if any). Otherwise the
1760                  * flusher threads are responsible for the writeback lists.
1761                  */
1762                 if (!(inode->i_state & I_DIRTY_ALL))
1763                         inode_cgwb_move_to_attached(inode, wb);
1764                 else if (!(inode->i_state & I_SYNC_QUEUED)) {
1765                         if ((inode->i_state & I_DIRTY))
1766                                 redirty_tail_locked(inode, wb);
1767                         else if (inode->i_state & I_DIRTY_TIME) {
1768                                 inode->dirtied_when = jiffies;
1769                                 inode_io_list_move_locked(inode,
1770                                                           wb,
1771                                                           &wb->b_dirty_time);
1772                         }
1773                 }
1774         }
1775
1776         spin_unlock(&wb->list_lock);
1777         inode_sync_complete(inode);
1778 out:
1779         spin_unlock(&inode->i_lock);
1780         return ret;
1781 }
1782
1783 static long writeback_chunk_size(struct bdi_writeback *wb,
1784                                  struct wb_writeback_work *work)
1785 {
1786         long pages;
1787
1788         /*
1789          * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1790          * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1791          * here avoids calling into writeback_inodes_wb() more than once.
1792          *
1793          * The intended call sequence for WB_SYNC_ALL writeback is:
1794          *
1795          *      wb_writeback()
1796          *          writeback_sb_inodes()       <== called only once
1797          *              write_cache_pages()     <== called once for each inode
1798          *                   (quickly) tag currently dirty pages
1799          *                   (maybe slowly) sync all tagged pages
1800          */
1801         if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1802                 pages = LONG_MAX;
1803         else {
1804                 pages = min(wb->avg_write_bandwidth / 2,
1805                             global_wb_domain.dirty_limit / DIRTY_SCOPE);
1806                 pages = min(pages, work->nr_pages);
1807                 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1808                                    MIN_WRITEBACK_PAGES);
1809         }
1810
1811         return pages;
1812 }
1813
1814 /*
1815  * Write a portion of b_io inodes which belong to @sb.
1816  *
1817  * Return the number of pages and/or inodes written.
1818  *
1819  * NOTE! This is called with wb->list_lock held, and will
1820  * unlock and relock that for each inode it ends up doing
1821  * IO for.
1822  */
1823 static long writeback_sb_inodes(struct super_block *sb,
1824                                 struct bdi_writeback *wb,
1825                                 struct wb_writeback_work *work)
1826 {
1827         struct writeback_control wbc = {
1828                 .sync_mode              = work->sync_mode,
1829                 .tagged_writepages      = work->tagged_writepages,
1830                 .for_kupdate            = work->for_kupdate,
1831                 .for_background         = work->for_background,
1832                 .for_sync               = work->for_sync,
1833                 .range_cyclic           = work->range_cyclic,
1834                 .range_start            = 0,
1835                 .range_end              = LLONG_MAX,
1836         };
1837         unsigned long start_time = jiffies;
1838         long write_chunk;
1839         long total_wrote = 0;  /* count both pages and inodes */
1840
1841         while (!list_empty(&wb->b_io)) {
1842                 struct inode *inode = wb_inode(wb->b_io.prev);
1843                 struct bdi_writeback *tmp_wb;
1844                 long wrote;
1845
1846                 if (inode->i_sb != sb) {
1847                         if (work->sb) {
1848                                 /*
1849                                  * We only want to write back data for this
1850                                  * superblock, move all inodes not belonging
1851                                  * to it back onto the dirty list.
1852                                  */
1853                                 redirty_tail(inode, wb);
1854                                 continue;
1855                         }
1856
1857                         /*
1858                          * The inode belongs to a different superblock.
1859                          * Bounce back to the caller to unpin this and
1860                          * pin the next superblock.
1861                          */
1862                         break;
1863                 }
1864
1865                 /*
1866                  * Don't bother with new inodes or inodes being freed, first
1867                  * kind does not need periodic writeout yet, and for the latter
1868                  * kind writeout is handled by the freer.
1869                  */
1870                 spin_lock(&inode->i_lock);
1871                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1872                         redirty_tail_locked(inode, wb);
1873                         spin_unlock(&inode->i_lock);
1874                         continue;
1875                 }
1876                 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1877                         /*
1878                          * If this inode is locked for writeback and we are not
1879                          * doing writeback-for-data-integrity, move it to
1880                          * b_more_io so that writeback can proceed with the
1881                          * other inodes on s_io.
1882                          *
1883                          * We'll have another go at writing back this inode
1884                          * when we completed a full scan of b_io.
1885                          */
1886                         requeue_io(inode, wb);
1887                         spin_unlock(&inode->i_lock);
1888                         trace_writeback_sb_inodes_requeue(inode);
1889                         continue;
1890                 }
1891                 spin_unlock(&wb->list_lock);
1892
1893                 /*
1894                  * We already requeued the inode if it had I_SYNC set and we
1895                  * are doing WB_SYNC_NONE writeback. So this catches only the
1896                  * WB_SYNC_ALL case.
1897                  */
1898                 if (inode->i_state & I_SYNC) {
1899                         /* Wait for I_SYNC. This function drops i_lock... */
1900                         inode_sleep_on_writeback(inode);
1901                         /* Inode may be gone, start again */
1902                         spin_lock(&wb->list_lock);
1903                         continue;
1904                 }
1905                 inode->i_state |= I_SYNC;
1906                 wbc_attach_and_unlock_inode(&wbc, inode);
1907
1908                 write_chunk = writeback_chunk_size(wb, work);
1909                 wbc.nr_to_write = write_chunk;
1910                 wbc.pages_skipped = 0;
1911
1912                 /*
1913                  * We use I_SYNC to pin the inode in memory. While it is set
1914                  * evict_inode() will wait so the inode cannot be freed.
1915                  */
1916                 __writeback_single_inode(inode, &wbc);
1917
1918                 wbc_detach_inode(&wbc);
1919                 work->nr_pages -= write_chunk - wbc.nr_to_write;
1920                 wrote = write_chunk - wbc.nr_to_write - wbc.pages_skipped;
1921                 wrote = wrote < 0 ? 0 : wrote;
1922                 total_wrote += wrote;
1923
1924                 if (need_resched()) {
1925                         /*
1926                          * We're trying to balance between building up a nice
1927                          * long list of IOs to improve our merge rate, and
1928                          * getting those IOs out quickly for anyone throttling
1929                          * in balance_dirty_pages().  cond_resched() doesn't
1930                          * unplug, so get our IOs out the door before we
1931                          * give up the CPU.
1932                          */
1933                         blk_flush_plug(current->plug, false);
1934                         cond_resched();
1935                 }
1936
1937                 /*
1938                  * Requeue @inode if still dirty.  Be careful as @inode may
1939                  * have been switched to another wb in the meantime.
1940                  */
1941                 tmp_wb = inode_to_wb_and_lock_list(inode);
1942                 spin_lock(&inode->i_lock);
1943                 if (!(inode->i_state & I_DIRTY_ALL))
1944                         total_wrote++;
1945                 requeue_inode(inode, tmp_wb, &wbc);
1946                 inode_sync_complete(inode);
1947                 spin_unlock(&inode->i_lock);
1948
1949                 if (unlikely(tmp_wb != wb)) {
1950                         spin_unlock(&tmp_wb->list_lock);
1951                         spin_lock(&wb->list_lock);
1952                 }
1953
1954                 /*
1955                  * bail out to wb_writeback() often enough to check
1956                  * background threshold and other termination conditions.
1957                  */
1958                 if (total_wrote) {
1959                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1960                                 break;
1961                         if (work->nr_pages <= 0)
1962                                 break;
1963                 }
1964         }
1965         return total_wrote;
1966 }
1967
1968 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1969                                   struct wb_writeback_work *work)
1970 {
1971         unsigned long start_time = jiffies;
1972         long wrote = 0;
1973
1974         while (!list_empty(&wb->b_io)) {
1975                 struct inode *inode = wb_inode(wb->b_io.prev);
1976                 struct super_block *sb = inode->i_sb;
1977
1978                 if (!super_trylock_shared(sb)) {
1979                         /*
1980                          * super_trylock_shared() may fail consistently due to
1981                          * s_umount being grabbed by someone else. Don't use
1982                          * requeue_io() to avoid busy retrying the inode/sb.
1983                          */
1984                         redirty_tail(inode, wb);
1985                         continue;
1986                 }
1987                 wrote += writeback_sb_inodes(sb, wb, work);
1988                 up_read(&sb->s_umount);
1989
1990                 /* refer to the same tests at the end of writeback_sb_inodes */
1991                 if (wrote) {
1992                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1993                                 break;
1994                         if (work->nr_pages <= 0)
1995                                 break;
1996                 }
1997         }
1998         /* Leave any unwritten inodes on b_io */
1999         return wrote;
2000 }
2001
2002 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
2003                                 enum wb_reason reason)
2004 {
2005         struct wb_writeback_work work = {
2006                 .nr_pages       = nr_pages,
2007                 .sync_mode      = WB_SYNC_NONE,
2008                 .range_cyclic   = 1,
2009                 .reason         = reason,
2010         };
2011         struct blk_plug plug;
2012
2013         blk_start_plug(&plug);
2014         spin_lock(&wb->list_lock);
2015         if (list_empty(&wb->b_io))
2016                 queue_io(wb, &work, jiffies);
2017         __writeback_inodes_wb(wb, &work);
2018         spin_unlock(&wb->list_lock);
2019         blk_finish_plug(&plug);
2020
2021         return nr_pages - work.nr_pages;
2022 }
2023
2024 /*
2025  * Explicit flushing or periodic writeback of "old" data.
2026  *
2027  * Define "old": the first time one of an inode's pages is dirtied, we mark the
2028  * dirtying-time in the inode's address_space.  So this periodic writeback code
2029  * just walks the superblock inode list, writing back any inodes which are
2030  * older than a specific point in time.
2031  *
2032  * Try to run once per dirty_writeback_interval.  But if a writeback event
2033  * takes longer than a dirty_writeback_interval interval, then leave a
2034  * one-second gap.
2035  *
2036  * dirtied_before takes precedence over nr_to_write.  So we'll only write back
2037  * all dirty pages if they are all attached to "old" mappings.
2038  */
2039 static long wb_writeback(struct bdi_writeback *wb,
2040                          struct wb_writeback_work *work)
2041 {
2042         long nr_pages = work->nr_pages;
2043         unsigned long dirtied_before = jiffies;
2044         struct inode *inode;
2045         long progress;
2046         struct blk_plug plug;
2047
2048         blk_start_plug(&plug);
2049         for (;;) {
2050                 /*
2051                  * Stop writeback when nr_pages has been consumed
2052                  */
2053                 if (work->nr_pages <= 0)
2054                         break;
2055
2056                 /*
2057                  * Background writeout and kupdate-style writeback may
2058                  * run forever. Stop them if there is other work to do
2059                  * so that e.g. sync can proceed. They'll be restarted
2060                  * after the other works are all done.
2061                  */
2062                 if ((work->for_background || work->for_kupdate) &&
2063                     !list_empty(&wb->work_list))
2064                         break;
2065
2066                 /*
2067                  * For background writeout, stop when we are below the
2068                  * background dirty threshold
2069                  */
2070                 if (work->for_background && !wb_over_bg_thresh(wb))
2071                         break;
2072
2073
2074                 spin_lock(&wb->list_lock);
2075
2076                 /*
2077                  * Kupdate and background works are special and we want to
2078                  * include all inodes that need writing. Livelock avoidance is
2079                  * handled by these works yielding to any other work so we are
2080                  * safe.
2081                  */
2082                 if (work->for_kupdate) {
2083                         dirtied_before = jiffies -
2084                                 msecs_to_jiffies(dirty_expire_interval * 10);
2085                 } else if (work->for_background)
2086                         dirtied_before = jiffies;
2087
2088                 trace_writeback_start(wb, work);
2089                 if (list_empty(&wb->b_io))
2090                         queue_io(wb, work, dirtied_before);
2091                 if (work->sb)
2092                         progress = writeback_sb_inodes(work->sb, wb, work);
2093                 else
2094                         progress = __writeback_inodes_wb(wb, work);
2095                 trace_writeback_written(wb, work);
2096
2097                 /*
2098                  * Did we write something? Try for more
2099                  *
2100                  * Dirty inodes are moved to b_io for writeback in batches.
2101                  * The completion of the current batch does not necessarily
2102                  * mean the overall work is done. So we keep looping as long
2103                  * as made some progress on cleaning pages or inodes.
2104                  */
2105                 if (progress) {
2106                         spin_unlock(&wb->list_lock);
2107                         continue;
2108                 }
2109
2110                 /*
2111                  * No more inodes for IO, bail
2112                  */
2113                 if (list_empty(&wb->b_more_io)) {
2114                         spin_unlock(&wb->list_lock);
2115                         break;
2116                 }
2117
2118                 /*
2119                  * Nothing written. Wait for some inode to
2120                  * become available for writeback. Otherwise
2121                  * we'll just busyloop.
2122                  */
2123                 trace_writeback_wait(wb, work);
2124                 inode = wb_inode(wb->b_more_io.prev);
2125                 spin_lock(&inode->i_lock);
2126                 spin_unlock(&wb->list_lock);
2127                 /* This function drops i_lock... */
2128                 inode_sleep_on_writeback(inode);
2129         }
2130         blk_finish_plug(&plug);
2131
2132         return nr_pages - work->nr_pages;
2133 }
2134
2135 /*
2136  * Return the next wb_writeback_work struct that hasn't been processed yet.
2137  */
2138 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
2139 {
2140         struct wb_writeback_work *work = NULL;
2141
2142         spin_lock_irq(&wb->work_lock);
2143         if (!list_empty(&wb->work_list)) {
2144                 work = list_entry(wb->work_list.next,
2145                                   struct wb_writeback_work, list);
2146                 list_del_init(&work->list);
2147         }
2148         spin_unlock_irq(&wb->work_lock);
2149         return work;
2150 }
2151
2152 static long wb_check_background_flush(struct bdi_writeback *wb)
2153 {
2154         if (wb_over_bg_thresh(wb)) {
2155
2156                 struct wb_writeback_work work = {
2157                         .nr_pages       = LONG_MAX,
2158                         .sync_mode      = WB_SYNC_NONE,
2159                         .for_background = 1,
2160                         .range_cyclic   = 1,
2161                         .reason         = WB_REASON_BACKGROUND,
2162                 };
2163
2164                 return wb_writeback(wb, &work);
2165         }
2166
2167         return 0;
2168 }
2169
2170 static long wb_check_old_data_flush(struct bdi_writeback *wb)
2171 {
2172         unsigned long expired;
2173         long nr_pages;
2174
2175         /*
2176          * When set to zero, disable periodic writeback
2177          */
2178         if (!dirty_writeback_interval)
2179                 return 0;
2180
2181         expired = wb->last_old_flush +
2182                         msecs_to_jiffies(dirty_writeback_interval * 10);
2183         if (time_before(jiffies, expired))
2184                 return 0;
2185
2186         wb->last_old_flush = jiffies;
2187         nr_pages = get_nr_dirty_pages();
2188
2189         if (nr_pages) {
2190                 struct wb_writeback_work work = {
2191                         .nr_pages       = nr_pages,
2192                         .sync_mode      = WB_SYNC_NONE,
2193                         .for_kupdate    = 1,
2194                         .range_cyclic   = 1,
2195                         .reason         = WB_REASON_PERIODIC,
2196                 };
2197
2198                 return wb_writeback(wb, &work);
2199         }
2200
2201         return 0;
2202 }
2203
2204 static long wb_check_start_all(struct bdi_writeback *wb)
2205 {
2206         long nr_pages;
2207
2208         if (!test_bit(WB_start_all, &wb->state))
2209                 return 0;
2210
2211         nr_pages = get_nr_dirty_pages();
2212         if (nr_pages) {
2213                 struct wb_writeback_work work = {
2214                         .nr_pages       = wb_split_bdi_pages(wb, nr_pages),
2215                         .sync_mode      = WB_SYNC_NONE,
2216                         .range_cyclic   = 1,
2217                         .reason         = wb->start_all_reason,
2218                 };
2219
2220                 nr_pages = wb_writeback(wb, &work);
2221         }
2222
2223         clear_bit(WB_start_all, &wb->state);
2224         return nr_pages;
2225 }
2226
2227
2228 /*
2229  * Retrieve work items and do the writeback they describe
2230  */
2231 static long wb_do_writeback(struct bdi_writeback *wb)
2232 {
2233         struct wb_writeback_work *work;
2234         long wrote = 0;
2235
2236         set_bit(WB_writeback_running, &wb->state);
2237         while ((work = get_next_work_item(wb)) != NULL) {
2238                 trace_writeback_exec(wb, work);
2239                 wrote += wb_writeback(wb, work);
2240                 finish_writeback_work(wb, work);
2241         }
2242
2243         /*
2244          * Check for a flush-everything request
2245          */
2246         wrote += wb_check_start_all(wb);
2247
2248         /*
2249          * Check for periodic writeback, kupdated() style
2250          */
2251         wrote += wb_check_old_data_flush(wb);
2252         wrote += wb_check_background_flush(wb);
2253         clear_bit(WB_writeback_running, &wb->state);
2254
2255         return wrote;
2256 }
2257
2258 /*
2259  * Handle writeback of dirty data for the device backed by this bdi. Also
2260  * reschedules periodically and does kupdated style flushing.
2261  */
2262 void wb_workfn(struct work_struct *work)
2263 {
2264         struct bdi_writeback *wb = container_of(to_delayed_work(work),
2265                                                 struct bdi_writeback, dwork);
2266         long pages_written;
2267
2268         set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
2269
2270         if (likely(!current_is_workqueue_rescuer() ||
2271                    !test_bit(WB_registered, &wb->state))) {
2272                 /*
2273                  * The normal path.  Keep writing back @wb until its
2274                  * work_list is empty.  Note that this path is also taken
2275                  * if @wb is shutting down even when we're running off the
2276                  * rescuer as work_list needs to be drained.
2277                  */
2278                 do {
2279                         pages_written = wb_do_writeback(wb);
2280                         trace_writeback_pages_written(pages_written);
2281                 } while (!list_empty(&wb->work_list));
2282         } else {
2283                 /*
2284                  * bdi_wq can't get enough workers and we're running off
2285                  * the emergency worker.  Don't hog it.  Hopefully, 1024 is
2286                  * enough for efficient IO.
2287                  */
2288                 pages_written = writeback_inodes_wb(wb, 1024,
2289                                                     WB_REASON_FORKER_THREAD);
2290                 trace_writeback_pages_written(pages_written);
2291         }
2292
2293         if (!list_empty(&wb->work_list))
2294                 wb_wakeup(wb);
2295         else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2296                 wb_wakeup_delayed(wb);
2297 }
2298
2299 /*
2300  * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2301  * write back the whole world.
2302  */
2303 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2304                                          enum wb_reason reason)
2305 {
2306         struct bdi_writeback *wb;
2307
2308         if (!bdi_has_dirty_io(bdi))
2309                 return;
2310
2311         list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2312                 wb_start_writeback(wb, reason);
2313 }
2314
2315 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2316                                 enum wb_reason reason)
2317 {
2318         rcu_read_lock();
2319         __wakeup_flusher_threads_bdi(bdi, reason);
2320         rcu_read_unlock();
2321 }
2322
2323 /*
2324  * Wakeup the flusher threads to start writeback of all currently dirty pages
2325  */
2326 void wakeup_flusher_threads(enum wb_reason reason)
2327 {
2328         struct backing_dev_info *bdi;
2329
2330         /*
2331          * If we are expecting writeback progress we must submit plugged IO.
2332          */
2333         blk_flush_plug(current->plug, true);
2334
2335         rcu_read_lock();
2336         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2337                 __wakeup_flusher_threads_bdi(bdi, reason);
2338         rcu_read_unlock();
2339 }
2340
2341 /*
2342  * Wake up bdi's periodically to make sure dirtytime inodes gets
2343  * written back periodically.  We deliberately do *not* check the
2344  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2345  * kernel to be constantly waking up once there are any dirtytime
2346  * inodes on the system.  So instead we define a separate delayed work
2347  * function which gets called much more rarely.  (By default, only
2348  * once every 12 hours.)
2349  *
2350  * If there is any other write activity going on in the file system,
2351  * this function won't be necessary.  But if the only thing that has
2352  * happened on the file system is a dirtytime inode caused by an atime
2353  * update, we need this infrastructure below to make sure that inode
2354  * eventually gets pushed out to disk.
2355  */
2356 static void wakeup_dirtytime_writeback(struct work_struct *w);
2357 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2358
2359 static void wakeup_dirtytime_writeback(struct work_struct *w)
2360 {
2361         struct backing_dev_info *bdi;
2362
2363         rcu_read_lock();
2364         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2365                 struct bdi_writeback *wb;
2366
2367                 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2368                         if (!list_empty(&wb->b_dirty_time))
2369                                 wb_wakeup(wb);
2370         }
2371         rcu_read_unlock();
2372         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2373 }
2374
2375 static int __init start_dirtytime_writeback(void)
2376 {
2377         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2378         return 0;
2379 }
2380 __initcall(start_dirtytime_writeback);
2381
2382 int dirtytime_interval_handler(struct ctl_table *table, int write,
2383                                void *buffer, size_t *lenp, loff_t *ppos)
2384 {
2385         int ret;
2386
2387         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2388         if (ret == 0 && write)
2389                 mod_delayed_work(system_wq, &dirtytime_work, 0);
2390         return ret;
2391 }
2392
2393 /**
2394  * __mark_inode_dirty - internal function to mark an inode dirty
2395  *
2396  * @inode: inode to mark
2397  * @flags: what kind of dirty, e.g. I_DIRTY_SYNC.  This can be a combination of
2398  *         multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined
2399  *         with I_DIRTY_PAGES.
2400  *
2401  * Mark an inode as dirty.  We notify the filesystem, then update the inode's
2402  * dirty flags.  Then, if needed we add the inode to the appropriate dirty list.
2403  *
2404  * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync()
2405  * instead of calling this directly.
2406  *
2407  * CAREFUL!  We only add the inode to the dirty list if it is hashed or if it
2408  * refers to a blockdev.  Unhashed inodes will never be added to the dirty list
2409  * even if they are later hashed, as they will have been marked dirty already.
2410  *
2411  * In short, ensure you hash any inodes _before_ you start marking them dirty.
2412  *
2413  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2414  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2415  * the kernel-internal blockdev inode represents the dirtying time of the
2416  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2417  * page->mapping->host, so the page-dirtying time is recorded in the internal
2418  * blockdev inode.
2419  */
2420 void __mark_inode_dirty(struct inode *inode, int flags)
2421 {
2422         struct super_block *sb = inode->i_sb;
2423         int dirtytime = 0;
2424         struct bdi_writeback *wb = NULL;
2425
2426         trace_writeback_mark_inode_dirty(inode, flags);
2427
2428         if (flags & I_DIRTY_INODE) {
2429                 /*
2430                  * Inode timestamp update will piggback on this dirtying.
2431                  * We tell ->dirty_inode callback that timestamps need to
2432                  * be updated by setting I_DIRTY_TIME in flags.
2433                  */
2434                 if (inode->i_state & I_DIRTY_TIME) {
2435                         spin_lock(&inode->i_lock);
2436                         if (inode->i_state & I_DIRTY_TIME) {
2437                                 inode->i_state &= ~I_DIRTY_TIME;
2438                                 flags |= I_DIRTY_TIME;
2439                         }
2440                         spin_unlock(&inode->i_lock);
2441                 }
2442
2443                 /*
2444                  * Notify the filesystem about the inode being dirtied, so that
2445                  * (if needed) it can update on-disk fields and journal the
2446                  * inode.  This is only needed when the inode itself is being
2447                  * dirtied now.  I.e. it's only needed for I_DIRTY_INODE, not
2448                  * for just I_DIRTY_PAGES or I_DIRTY_TIME.
2449                  */
2450                 trace_writeback_dirty_inode_start(inode, flags);
2451                 if (sb->s_op->dirty_inode)
2452                         sb->s_op->dirty_inode(inode,
2453                                 flags & (I_DIRTY_INODE | I_DIRTY_TIME));
2454                 trace_writeback_dirty_inode(inode, flags);
2455
2456                 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2457                 flags &= ~I_DIRTY_TIME;
2458         } else {
2459                 /*
2460                  * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing.
2461                  * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME
2462                  * in one call to __mark_inode_dirty().)
2463                  */
2464                 dirtytime = flags & I_DIRTY_TIME;
2465                 WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME);
2466         }
2467
2468         /*
2469          * Paired with smp_mb() in __writeback_single_inode() for the
2470          * following lockless i_state test.  See there for details.
2471          */
2472         smp_mb();
2473
2474         if ((inode->i_state & flags) == flags)
2475                 return;
2476
2477         spin_lock(&inode->i_lock);
2478         if ((inode->i_state & flags) != flags) {
2479                 const int was_dirty = inode->i_state & I_DIRTY;
2480
2481                 inode_attach_wb(inode, NULL);
2482
2483                 inode->i_state |= flags;
2484
2485                 /*
2486                  * Grab inode's wb early because it requires dropping i_lock and we
2487                  * need to make sure following checks happen atomically with dirty
2488                  * list handling so that we don't move inodes under flush worker's
2489                  * hands.
2490                  */
2491                 if (!was_dirty) {
2492                         wb = locked_inode_to_wb_and_lock_list(inode);
2493                         spin_lock(&inode->i_lock);
2494                 }
2495
2496                 /*
2497                  * If the inode is queued for writeback by flush worker, just
2498                  * update its dirty state. Once the flush worker is done with
2499                  * the inode it will place it on the appropriate superblock
2500                  * list, based upon its state.
2501                  */
2502                 if (inode->i_state & I_SYNC_QUEUED)
2503                         goto out_unlock;
2504
2505                 /*
2506                  * Only add valid (hashed) inodes to the superblock's
2507                  * dirty list.  Add blockdev inodes as well.
2508                  */
2509                 if (!S_ISBLK(inode->i_mode)) {
2510                         if (inode_unhashed(inode))
2511                                 goto out_unlock;
2512                 }
2513                 if (inode->i_state & I_FREEING)
2514                         goto out_unlock;
2515
2516                 /*
2517                  * If the inode was already on b_dirty/b_io/b_more_io, don't
2518                  * reposition it (that would break b_dirty time-ordering).
2519                  */
2520                 if (!was_dirty) {
2521                         struct list_head *dirty_list;
2522                         bool wakeup_bdi = false;
2523
2524                         inode->dirtied_when = jiffies;
2525                         if (dirtytime)
2526                                 inode->dirtied_time_when = jiffies;
2527
2528                         if (inode->i_state & I_DIRTY)
2529                                 dirty_list = &wb->b_dirty;
2530                         else
2531                                 dirty_list = &wb->b_dirty_time;
2532
2533                         wakeup_bdi = inode_io_list_move_locked(inode, wb,
2534                                                                dirty_list);
2535
2536                         spin_unlock(&wb->list_lock);
2537                         spin_unlock(&inode->i_lock);
2538                         trace_writeback_dirty_inode_enqueue(inode);
2539
2540                         /*
2541                          * If this is the first dirty inode for this bdi,
2542                          * we have to wake-up the corresponding bdi thread
2543                          * to make sure background write-back happens
2544                          * later.
2545                          */
2546                         if (wakeup_bdi &&
2547                             (wb->bdi->capabilities & BDI_CAP_WRITEBACK))
2548                                 wb_wakeup_delayed(wb);
2549                         return;
2550                 }
2551         }
2552 out_unlock:
2553         if (wb)
2554                 spin_unlock(&wb->list_lock);
2555         spin_unlock(&inode->i_lock);
2556 }
2557 EXPORT_SYMBOL(__mark_inode_dirty);
2558
2559 /*
2560  * The @s_sync_lock is used to serialise concurrent sync operations
2561  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2562  * Concurrent callers will block on the s_sync_lock rather than doing contending
2563  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2564  * has been issued up to the time this function is enter is guaranteed to be
2565  * completed by the time we have gained the lock and waited for all IO that is
2566  * in progress regardless of the order callers are granted the lock.
2567  */
2568 static void wait_sb_inodes(struct super_block *sb)
2569 {
2570         LIST_HEAD(sync_list);
2571
2572         /*
2573          * We need to be protected against the filesystem going from
2574          * r/o to r/w or vice versa.
2575          */
2576         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2577
2578         mutex_lock(&sb->s_sync_lock);
2579
2580         /*
2581          * Splice the writeback list onto a temporary list to avoid waiting on
2582          * inodes that have started writeback after this point.
2583          *
2584          * Use rcu_read_lock() to keep the inodes around until we have a
2585          * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2586          * the local list because inodes can be dropped from either by writeback
2587          * completion.
2588          */
2589         rcu_read_lock();
2590         spin_lock_irq(&sb->s_inode_wblist_lock);
2591         list_splice_init(&sb->s_inodes_wb, &sync_list);
2592
2593         /*
2594          * Data integrity sync. Must wait for all pages under writeback, because
2595          * there may have been pages dirtied before our sync call, but which had
2596          * writeout started before we write it out.  In which case, the inode
2597          * may not be on the dirty list, but we still have to wait for that
2598          * writeout.
2599          */
2600         while (!list_empty(&sync_list)) {
2601                 struct inode *inode = list_first_entry(&sync_list, struct inode,
2602                                                        i_wb_list);
2603                 struct address_space *mapping = inode->i_mapping;
2604
2605                 /*
2606                  * Move each inode back to the wb list before we drop the lock
2607                  * to preserve consistency between i_wb_list and the mapping
2608                  * writeback tag. Writeback completion is responsible to remove
2609                  * the inode from either list once the writeback tag is cleared.
2610                  */
2611                 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2612
2613                 /*
2614                  * The mapping can appear untagged while still on-list since we
2615                  * do not have the mapping lock. Skip it here, wb completion
2616                  * will remove it.
2617                  */
2618                 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2619                         continue;
2620
2621                 spin_unlock_irq(&sb->s_inode_wblist_lock);
2622
2623                 spin_lock(&inode->i_lock);
2624                 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2625                         spin_unlock(&inode->i_lock);
2626
2627                         spin_lock_irq(&sb->s_inode_wblist_lock);
2628                         continue;
2629                 }
2630                 __iget(inode);
2631                 spin_unlock(&inode->i_lock);
2632                 rcu_read_unlock();
2633
2634                 /*
2635                  * We keep the error status of individual mapping so that
2636                  * applications can catch the writeback error using fsync(2).
2637                  * See filemap_fdatawait_keep_errors() for details.
2638                  */
2639                 filemap_fdatawait_keep_errors(mapping);
2640
2641                 cond_resched();
2642
2643                 iput(inode);
2644
2645                 rcu_read_lock();
2646                 spin_lock_irq(&sb->s_inode_wblist_lock);
2647         }
2648         spin_unlock_irq(&sb->s_inode_wblist_lock);
2649         rcu_read_unlock();
2650         mutex_unlock(&sb->s_sync_lock);
2651 }
2652
2653 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2654                                      enum wb_reason reason, bool skip_if_busy)
2655 {
2656         struct backing_dev_info *bdi = sb->s_bdi;
2657         DEFINE_WB_COMPLETION(done, bdi);
2658         struct wb_writeback_work work = {
2659                 .sb                     = sb,
2660                 .sync_mode              = WB_SYNC_NONE,
2661                 .tagged_writepages      = 1,
2662                 .done                   = &done,
2663                 .nr_pages               = nr,
2664                 .reason                 = reason,
2665         };
2666
2667         if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2668                 return;
2669         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2670
2671         bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2672         wb_wait_for_completion(&done);
2673 }
2674
2675 /**
2676  * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
2677  * @sb: the superblock
2678  * @nr: the number of pages to write
2679  * @reason: reason why some writeback work initiated
2680  *
2681  * Start writeback on some inodes on this super_block. No guarantees are made
2682  * on how many (if any) will be written, and this function does not wait
2683  * for IO completion of submitted IO.
2684  */
2685 void writeback_inodes_sb_nr(struct super_block *sb,
2686                             unsigned long nr,
2687                             enum wb_reason reason)
2688 {
2689         __writeback_inodes_sb_nr(sb, nr, reason, false);
2690 }
2691 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2692
2693 /**
2694  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
2695  * @sb: the superblock
2696  * @reason: reason why some writeback work was initiated
2697  *
2698  * Start writeback on some inodes on this super_block. No guarantees are made
2699  * on how many (if any) will be written, and this function does not wait
2700  * for IO completion of submitted IO.
2701  */
2702 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2703 {
2704         return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2705 }
2706 EXPORT_SYMBOL(writeback_inodes_sb);
2707
2708 /**
2709  * try_to_writeback_inodes_sb - try to start writeback if none underway
2710  * @sb: the superblock
2711  * @reason: reason why some writeback work was initiated
2712  *
2713  * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2714  */
2715 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2716 {
2717         if (!down_read_trylock(&sb->s_umount))
2718                 return;
2719
2720         __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2721         up_read(&sb->s_umount);
2722 }
2723 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2724
2725 /**
2726  * sync_inodes_sb       -       sync sb inode pages
2727  * @sb: the superblock
2728  *
2729  * This function writes and waits on any dirty inode belonging to this
2730  * super_block.
2731  */
2732 void sync_inodes_sb(struct super_block *sb)
2733 {
2734         struct backing_dev_info *bdi = sb->s_bdi;
2735         DEFINE_WB_COMPLETION(done, bdi);
2736         struct wb_writeback_work work = {
2737                 .sb             = sb,
2738                 .sync_mode      = WB_SYNC_ALL,
2739                 .nr_pages       = LONG_MAX,
2740                 .range_cyclic   = 0,
2741                 .done           = &done,
2742                 .reason         = WB_REASON_SYNC,
2743                 .for_sync       = 1,
2744         };
2745
2746         /*
2747          * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2748          * inodes under writeback and I_DIRTY_TIME inodes ignored by
2749          * bdi_has_dirty() need to be written out too.
2750          */
2751         if (bdi == &noop_backing_dev_info)
2752                 return;
2753         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2754
2755         /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2756         bdi_down_write_wb_switch_rwsem(bdi);
2757         bdi_split_work_to_wbs(bdi, &work, false);
2758         wb_wait_for_completion(&done);
2759         bdi_up_write_wb_switch_rwsem(bdi);
2760
2761         wait_sb_inodes(sb);
2762 }
2763 EXPORT_SYMBOL(sync_inodes_sb);
2764
2765 /**
2766  * write_inode_now      -       write an inode to disk
2767  * @inode: inode to write to disk
2768  * @sync: whether the write should be synchronous or not
2769  *
2770  * This function commits an inode to disk immediately if it is dirty. This is
2771  * primarily needed by knfsd.
2772  *
2773  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2774  */
2775 int write_inode_now(struct inode *inode, int sync)
2776 {
2777         struct writeback_control wbc = {
2778                 .nr_to_write = LONG_MAX,
2779                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2780                 .range_start = 0,
2781                 .range_end = LLONG_MAX,
2782         };
2783
2784         if (!mapping_can_writeback(inode->i_mapping))
2785                 wbc.nr_to_write = 0;
2786
2787         might_sleep();
2788         return writeback_single_inode(inode, &wbc);
2789 }
2790 EXPORT_SYMBOL(write_inode_now);
2791
2792 /**
2793  * sync_inode_metadata - write an inode to disk
2794  * @inode: the inode to sync
2795  * @wait: wait for I/O to complete.
2796  *
2797  * Write an inode to disk and adjust its dirty state after completion.
2798  *
2799  * Note: only writes the actual inode, no associated data or other metadata.
2800  */
2801 int sync_inode_metadata(struct inode *inode, int wait)
2802 {
2803         struct writeback_control wbc = {
2804                 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2805                 .nr_to_write = 0, /* metadata-only */
2806         };
2807
2808         return writeback_single_inode(inode, &wbc);
2809 }
2810 EXPORT_SYMBOL(sync_inode_metadata);