4 * Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes
6 * Manage the dynamic fd arrays in the process files_struct.
11 #include <linux/time.h>
12 #include <linux/slab.h>
13 #include <linux/vmalloc.h>
14 #include <linux/file.h>
15 #include <linux/bitops.h>
16 #include <linux/interrupt.h>
17 #include <linux/spinlock.h>
18 #include <linux/rcupdate.h>
19 #include <linux/workqueue.h>
21 struct fdtable_defer {
23 struct work_struct wq;
28 * We use this list to defer free fdtables that have vmalloced
29 * sets/arrays. By keeping a per-cpu list, we avoid having to embed
30 * the work_struct in fdtable itself which avoids a 64 byte (i386) increase in
31 * this per-task structure.
33 static DEFINE_PER_CPU(struct fdtable_defer, fdtable_defer_list);
35 static inline void * alloc_fdmem(unsigned int size)
37 if (size <= PAGE_SIZE)
38 return kmalloc(size, GFP_KERNEL);
43 static inline void free_fdarr(struct fdtable *fdt)
45 if (fdt->max_fds <= (PAGE_SIZE / sizeof(struct file *)))
51 static inline void free_fdset(struct fdtable *fdt)
53 if (fdt->max_fds <= (PAGE_SIZE * BITS_PER_BYTE / 2))
59 static void free_fdtable_work(struct work_struct *work)
61 struct fdtable_defer *f =
62 container_of(work, struct fdtable_defer, wq);
65 spin_lock_bh(&f->lock);
68 spin_unlock_bh(&f->lock);
70 struct fdtable *next = fdt->next;
78 void free_fdtable_rcu(struct rcu_head *rcu)
80 struct fdtable *fdt = container_of(rcu, struct fdtable, rcu);
81 struct fdtable_defer *fddef;
85 if (fdt->max_fds <= NR_OPEN_DEFAULT) {
87 * This fdtable is embedded in the files structure and that
88 * structure itself is getting destroyed.
90 kmem_cache_free(files_cachep,
91 container_of(fdt, struct files_struct, fdtab));
94 if (fdt->max_fds <= (PAGE_SIZE / sizeof(struct file *))) {
99 fddef = &get_cpu_var(fdtable_defer_list);
100 spin_lock(&fddef->lock);
101 fdt->next = fddef->next;
103 /* vmallocs are handled from the workqueue context */
104 schedule_work(&fddef->wq);
105 spin_unlock(&fddef->lock);
106 put_cpu_var(fdtable_defer_list);
111 * Expand the fdset in the files_struct. Called with the files spinlock
114 static void copy_fdtable(struct fdtable *nfdt, struct fdtable *ofdt)
116 unsigned int cpy, set;
118 BUG_ON(nfdt->max_fds < ofdt->max_fds);
119 if (ofdt->max_fds == 0)
122 cpy = ofdt->max_fds * sizeof(struct file *);
123 set = (nfdt->max_fds - ofdt->max_fds) * sizeof(struct file *);
124 memcpy(nfdt->fd, ofdt->fd, cpy);
125 memset((char *)(nfdt->fd) + cpy, 0, set);
127 cpy = ofdt->max_fds / BITS_PER_BYTE;
128 set = (nfdt->max_fds - ofdt->max_fds) / BITS_PER_BYTE;
129 memcpy(nfdt->open_fds, ofdt->open_fds, cpy);
130 memset((char *)(nfdt->open_fds) + cpy, 0, set);
131 memcpy(nfdt->close_on_exec, ofdt->close_on_exec, cpy);
132 memset((char *)(nfdt->close_on_exec) + cpy, 0, set);
135 static struct fdtable * alloc_fdtable(unsigned int nr)
141 * Figure out how many fds we actually want to support in this fdtable.
142 * Allocation steps are keyed to the size of the fdarray, since it
143 * grows far faster than any of the other dynamic data. We try to fit
144 * the fdarray into comfortable page-tuned chunks: starting at 1024B
145 * and growing in powers of two from there on.
147 nr /= (1024 / sizeof(struct file *));
148 nr = roundup_pow_of_two(nr + 1);
149 nr *= (1024 / sizeof(struct file *));
153 fdt = kmalloc(sizeof(struct fdtable), GFP_KERNEL);
157 data = alloc_fdmem(nr * sizeof(struct file *));
160 fdt->fd = (struct file **)data;
161 data = alloc_fdmem(max_t(unsigned int,
162 2 * nr / BITS_PER_BYTE, L1_CACHE_BYTES));
165 fdt->open_fds = (fd_set *)data;
166 data += nr / BITS_PER_BYTE;
167 fdt->close_on_exec = (fd_set *)data;
168 INIT_RCU_HEAD(&fdt->rcu);
182 * Expand the file descriptor table.
183 * This function will allocate a new fdtable and both fd array and fdset, of
185 * Return <0 error code on error; 1 on successful completion.
186 * The files->file_lock should be held on entry, and will be held on exit.
188 static int expand_fdtable(struct files_struct *files, int nr)
189 __releases(files->file_lock)
190 __acquires(files->file_lock)
192 struct fdtable *new_fdt, *cur_fdt;
194 spin_unlock(&files->file_lock);
195 new_fdt = alloc_fdtable(nr);
196 spin_lock(&files->file_lock);
200 * Check again since another task may have expanded the fd table while
201 * we dropped the lock
203 cur_fdt = files_fdtable(files);
204 if (nr >= cur_fdt->max_fds) {
205 /* Continue as planned */
206 copy_fdtable(new_fdt, cur_fdt);
207 rcu_assign_pointer(files->fdt, new_fdt);
208 if (cur_fdt->max_fds > NR_OPEN_DEFAULT)
209 call_rcu(&cur_fdt->rcu, free_fdtable_rcu);
211 /* Somebody else expanded, so undo our attempt */
221 * This function will expand the file structures, if the requested size exceeds
222 * the current capacity and there is room for expansion.
223 * Return <0 error code on error; 0 when nothing done; 1 when files were
224 * expanded and execution may have blocked.
225 * The files->file_lock should be held on entry, and will be held on exit.
227 int expand_files(struct files_struct *files, int nr)
231 fdt = files_fdtable(files);
232 /* Do we need to expand? */
233 if (nr < fdt->max_fds)
239 /* All good, so we try */
240 return expand_fdtable(files, nr);
243 static void __devinit fdtable_defer_list_init(int cpu)
245 struct fdtable_defer *fddef = &per_cpu(fdtable_defer_list, cpu);
246 spin_lock_init(&fddef->lock);
247 INIT_WORK(&fddef->wq, free_fdtable_work);
251 void __init files_defer_init(void)
254 for_each_possible_cpu(i)
255 fdtable_defer_list_init(i);