f2fs: Change default mount options
[platform/kernel/linux-rpi.git] / fs / f2fs / super.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/super.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/fs.h>
11 #include <linux/statfs.h>
12 #include <linux/buffer_head.h>
13 #include <linux/backing-dev.h>
14 #include <linux/kthread.h>
15 #include <linux/parser.h>
16 #include <linux/mount.h>
17 #include <linux/seq_file.h>
18 #include <linux/proc_fs.h>
19 #include <linux/random.h>
20 #include <linux/exportfs.h>
21 #include <linux/blkdev.h>
22 #include <linux/quotaops.h>
23 #include <linux/f2fs_fs.h>
24 #include <linux/sysfs.h>
25 #include <linux/quota.h>
26 #include <linux/unicode.h>
27 #include <linux/part_stat.h>
28
29 #include "f2fs.h"
30 #include "node.h"
31 #include "segment.h"
32 #include "xattr.h"
33 #include "gc.h"
34 #include "trace.h"
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/f2fs.h>
38
39 static struct kmem_cache *f2fs_inode_cachep;
40
41 #ifdef CONFIG_F2FS_FAULT_INJECTION
42
43 const char *f2fs_fault_name[FAULT_MAX] = {
44         [FAULT_KMALLOC]         = "kmalloc",
45         [FAULT_KVMALLOC]        = "kvmalloc",
46         [FAULT_PAGE_ALLOC]      = "page alloc",
47         [FAULT_PAGE_GET]        = "page get",
48         [FAULT_ALLOC_BIO]       = "alloc bio",
49         [FAULT_ALLOC_NID]       = "alloc nid",
50         [FAULT_ORPHAN]          = "orphan",
51         [FAULT_BLOCK]           = "no more block",
52         [FAULT_DIR_DEPTH]       = "too big dir depth",
53         [FAULT_EVICT_INODE]     = "evict_inode fail",
54         [FAULT_TRUNCATE]        = "truncate fail",
55         [FAULT_READ_IO]         = "read IO error",
56         [FAULT_CHECKPOINT]      = "checkpoint error",
57         [FAULT_DISCARD]         = "discard error",
58         [FAULT_WRITE_IO]        = "write IO error",
59 };
60
61 void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
62                                                         unsigned int type)
63 {
64         struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
65
66         if (rate) {
67                 atomic_set(&ffi->inject_ops, 0);
68                 ffi->inject_rate = rate;
69         }
70
71         if (type)
72                 ffi->inject_type = type;
73
74         if (!rate && !type)
75                 memset(ffi, 0, sizeof(struct f2fs_fault_info));
76 }
77 #endif
78
79 /* f2fs-wide shrinker description */
80 static struct shrinker f2fs_shrinker_info = {
81         .scan_objects = f2fs_shrink_scan,
82         .count_objects = f2fs_shrink_count,
83         .seeks = DEFAULT_SEEKS,
84 };
85
86 enum {
87         Opt_gc_background,
88         Opt_disable_roll_forward,
89         Opt_norecovery,
90         Opt_discard,
91         Opt_nodiscard,
92         Opt_noheap,
93         Opt_heap,
94         Opt_user_xattr,
95         Opt_nouser_xattr,
96         Opt_acl,
97         Opt_noacl,
98         Opt_active_logs,
99         Opt_disable_ext_identify,
100         Opt_inline_xattr,
101         Opt_noinline_xattr,
102         Opt_inline_xattr_size,
103         Opt_inline_data,
104         Opt_inline_dentry,
105         Opt_noinline_dentry,
106         Opt_flush_merge,
107         Opt_noflush_merge,
108         Opt_nobarrier,
109         Opt_fastboot,
110         Opt_extent_cache,
111         Opt_noextent_cache,
112         Opt_noinline_data,
113         Opt_data_flush,
114         Opt_reserve_root,
115         Opt_resgid,
116         Opt_resuid,
117         Opt_mode,
118         Opt_io_size_bits,
119         Opt_fault_injection,
120         Opt_fault_type,
121         Opt_lazytime,
122         Opt_nolazytime,
123         Opt_quota,
124         Opt_noquota,
125         Opt_usrquota,
126         Opt_grpquota,
127         Opt_prjquota,
128         Opt_usrjquota,
129         Opt_grpjquota,
130         Opt_prjjquota,
131         Opt_offusrjquota,
132         Opt_offgrpjquota,
133         Opt_offprjjquota,
134         Opt_jqfmt_vfsold,
135         Opt_jqfmt_vfsv0,
136         Opt_jqfmt_vfsv1,
137         Opt_whint,
138         Opt_alloc,
139         Opt_fsync,
140         Opt_test_dummy_encryption,
141         Opt_inlinecrypt,
142         Opt_checkpoint_disable,
143         Opt_checkpoint_disable_cap,
144         Opt_checkpoint_disable_cap_perc,
145         Opt_checkpoint_enable,
146         Opt_compress_algorithm,
147         Opt_compress_log_size,
148         Opt_compress_extension,
149         Opt_atgc,
150         Opt_err,
151 };
152
153 static match_table_t f2fs_tokens = {
154         {Opt_gc_background, "background_gc=%s"},
155         {Opt_disable_roll_forward, "disable_roll_forward"},
156         {Opt_norecovery, "norecovery"},
157         {Opt_discard, "discard"},
158         {Opt_nodiscard, "nodiscard"},
159         {Opt_noheap, "no_heap"},
160         {Opt_heap, "heap"},
161         {Opt_user_xattr, "user_xattr"},
162         {Opt_nouser_xattr, "nouser_xattr"},
163         {Opt_acl, "acl"},
164         {Opt_noacl, "noacl"},
165         {Opt_active_logs, "active_logs=%u"},
166         {Opt_disable_ext_identify, "disable_ext_identify"},
167         {Opt_inline_xattr, "inline_xattr"},
168         {Opt_noinline_xattr, "noinline_xattr"},
169         {Opt_inline_xattr_size, "inline_xattr_size=%u"},
170         {Opt_inline_data, "inline_data"},
171         {Opt_inline_dentry, "inline_dentry"},
172         {Opt_noinline_dentry, "noinline_dentry"},
173         {Opt_flush_merge, "flush_merge"},
174         {Opt_noflush_merge, "noflush_merge"},
175         {Opt_nobarrier, "nobarrier"},
176         {Opt_fastboot, "fastboot"},
177         {Opt_extent_cache, "extent_cache"},
178         {Opt_noextent_cache, "noextent_cache"},
179         {Opt_noinline_data, "noinline_data"},
180         {Opt_data_flush, "data_flush"},
181         {Opt_reserve_root, "reserve_root=%u"},
182         {Opt_resgid, "resgid=%u"},
183         {Opt_resuid, "resuid=%u"},
184         {Opt_mode, "mode=%s"},
185         {Opt_io_size_bits, "io_bits=%u"},
186         {Opt_fault_injection, "fault_injection=%u"},
187         {Opt_fault_type, "fault_type=%u"},
188         {Opt_lazytime, "lazytime"},
189         {Opt_nolazytime, "nolazytime"},
190         {Opt_quota, "quota"},
191         {Opt_noquota, "noquota"},
192         {Opt_usrquota, "usrquota"},
193         {Opt_grpquota, "grpquota"},
194         {Opt_prjquota, "prjquota"},
195         {Opt_usrjquota, "usrjquota=%s"},
196         {Opt_grpjquota, "grpjquota=%s"},
197         {Opt_prjjquota, "prjjquota=%s"},
198         {Opt_offusrjquota, "usrjquota="},
199         {Opt_offgrpjquota, "grpjquota="},
200         {Opt_offprjjquota, "prjjquota="},
201         {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
202         {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
203         {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
204         {Opt_whint, "whint_mode=%s"},
205         {Opt_alloc, "alloc_mode=%s"},
206         {Opt_fsync, "fsync_mode=%s"},
207         {Opt_test_dummy_encryption, "test_dummy_encryption=%s"},
208         {Opt_test_dummy_encryption, "test_dummy_encryption"},
209         {Opt_inlinecrypt, "inlinecrypt"},
210         {Opt_checkpoint_disable, "checkpoint=disable"},
211         {Opt_checkpoint_disable_cap, "checkpoint=disable:%u"},
212         {Opt_checkpoint_disable_cap_perc, "checkpoint=disable:%u%%"},
213         {Opt_checkpoint_enable, "checkpoint=enable"},
214         {Opt_compress_algorithm, "compress_algorithm=%s"},
215         {Opt_compress_log_size, "compress_log_size=%u"},
216         {Opt_compress_extension, "compress_extension=%s"},
217         {Opt_atgc, "atgc"},
218         {Opt_err, NULL},
219 };
220
221 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...)
222 {
223         struct va_format vaf;
224         va_list args;
225         int level;
226
227         va_start(args, fmt);
228
229         level = printk_get_level(fmt);
230         vaf.fmt = printk_skip_level(fmt);
231         vaf.va = &args;
232         printk("%c%cF2FS-fs (%s): %pV\n",
233                KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf);
234
235         va_end(args);
236 }
237
238 #ifdef CONFIG_UNICODE
239 static const struct f2fs_sb_encodings {
240         __u16 magic;
241         char *name;
242         char *version;
243 } f2fs_sb_encoding_map[] = {
244         {F2FS_ENC_UTF8_12_1, "utf8", "12.1.0"},
245 };
246
247 static int f2fs_sb_read_encoding(const struct f2fs_super_block *sb,
248                                  const struct f2fs_sb_encodings **encoding,
249                                  __u16 *flags)
250 {
251         __u16 magic = le16_to_cpu(sb->s_encoding);
252         int i;
253
254         for (i = 0; i < ARRAY_SIZE(f2fs_sb_encoding_map); i++)
255                 if (magic == f2fs_sb_encoding_map[i].magic)
256                         break;
257
258         if (i >= ARRAY_SIZE(f2fs_sb_encoding_map))
259                 return -EINVAL;
260
261         *encoding = &f2fs_sb_encoding_map[i];
262         *flags = le16_to_cpu(sb->s_encoding_flags);
263
264         return 0;
265 }
266 #endif
267
268 static inline void limit_reserve_root(struct f2fs_sb_info *sbi)
269 {
270         block_t limit = min((sbi->user_block_count << 1) / 1000,
271                         sbi->user_block_count - sbi->reserved_blocks);
272
273         /* limit is 0.2% */
274         if (test_opt(sbi, RESERVE_ROOT) &&
275                         F2FS_OPTION(sbi).root_reserved_blocks > limit) {
276                 F2FS_OPTION(sbi).root_reserved_blocks = limit;
277                 f2fs_info(sbi, "Reduce reserved blocks for root = %u",
278                           F2FS_OPTION(sbi).root_reserved_blocks);
279         }
280         if (!test_opt(sbi, RESERVE_ROOT) &&
281                 (!uid_eq(F2FS_OPTION(sbi).s_resuid,
282                                 make_kuid(&init_user_ns, F2FS_DEF_RESUID)) ||
283                 !gid_eq(F2FS_OPTION(sbi).s_resgid,
284                                 make_kgid(&init_user_ns, F2FS_DEF_RESGID))))
285                 f2fs_info(sbi, "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root",
286                           from_kuid_munged(&init_user_ns,
287                                            F2FS_OPTION(sbi).s_resuid),
288                           from_kgid_munged(&init_user_ns,
289                                            F2FS_OPTION(sbi).s_resgid));
290 }
291
292 static inline void adjust_unusable_cap_perc(struct f2fs_sb_info *sbi)
293 {
294         if (!F2FS_OPTION(sbi).unusable_cap_perc)
295                 return;
296
297         if (F2FS_OPTION(sbi).unusable_cap_perc == 100)
298                 F2FS_OPTION(sbi).unusable_cap = sbi->user_block_count;
299         else
300                 F2FS_OPTION(sbi).unusable_cap = (sbi->user_block_count / 100) *
301                                         F2FS_OPTION(sbi).unusable_cap_perc;
302
303         f2fs_info(sbi, "Adjust unusable cap for checkpoint=disable = %u / %u%%",
304                         F2FS_OPTION(sbi).unusable_cap,
305                         F2FS_OPTION(sbi).unusable_cap_perc);
306 }
307
308 static void init_once(void *foo)
309 {
310         struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
311
312         inode_init_once(&fi->vfs_inode);
313 }
314
315 #ifdef CONFIG_QUOTA
316 static const char * const quotatypes[] = INITQFNAMES;
317 #define QTYPE2NAME(t) (quotatypes[t])
318 static int f2fs_set_qf_name(struct super_block *sb, int qtype,
319                                                         substring_t *args)
320 {
321         struct f2fs_sb_info *sbi = F2FS_SB(sb);
322         char *qname;
323         int ret = -EINVAL;
324
325         if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) {
326                 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
327                 return -EINVAL;
328         }
329         if (f2fs_sb_has_quota_ino(sbi)) {
330                 f2fs_info(sbi, "QUOTA feature is enabled, so ignore qf_name");
331                 return 0;
332         }
333
334         qname = match_strdup(args);
335         if (!qname) {
336                 f2fs_err(sbi, "Not enough memory for storing quotafile name");
337                 return -ENOMEM;
338         }
339         if (F2FS_OPTION(sbi).s_qf_names[qtype]) {
340                 if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0)
341                         ret = 0;
342                 else
343                         f2fs_err(sbi, "%s quota file already specified",
344                                  QTYPE2NAME(qtype));
345                 goto errout;
346         }
347         if (strchr(qname, '/')) {
348                 f2fs_err(sbi, "quotafile must be on filesystem root");
349                 goto errout;
350         }
351         F2FS_OPTION(sbi).s_qf_names[qtype] = qname;
352         set_opt(sbi, QUOTA);
353         return 0;
354 errout:
355         kfree(qname);
356         return ret;
357 }
358
359 static int f2fs_clear_qf_name(struct super_block *sb, int qtype)
360 {
361         struct f2fs_sb_info *sbi = F2FS_SB(sb);
362
363         if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) {
364                 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
365                 return -EINVAL;
366         }
367         kfree(F2FS_OPTION(sbi).s_qf_names[qtype]);
368         F2FS_OPTION(sbi).s_qf_names[qtype] = NULL;
369         return 0;
370 }
371
372 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi)
373 {
374         /*
375          * We do the test below only for project quotas. 'usrquota' and
376          * 'grpquota' mount options are allowed even without quota feature
377          * to support legacy quotas in quota files.
378          */
379         if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) {
380                 f2fs_err(sbi, "Project quota feature not enabled. Cannot enable project quota enforcement.");
381                 return -1;
382         }
383         if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
384                         F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
385                         F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) {
386                 if (test_opt(sbi, USRQUOTA) &&
387                                 F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
388                         clear_opt(sbi, USRQUOTA);
389
390                 if (test_opt(sbi, GRPQUOTA) &&
391                                 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
392                         clear_opt(sbi, GRPQUOTA);
393
394                 if (test_opt(sbi, PRJQUOTA) &&
395                                 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
396                         clear_opt(sbi, PRJQUOTA);
397
398                 if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) ||
399                                 test_opt(sbi, PRJQUOTA)) {
400                         f2fs_err(sbi, "old and new quota format mixing");
401                         return -1;
402                 }
403
404                 if (!F2FS_OPTION(sbi).s_jquota_fmt) {
405                         f2fs_err(sbi, "journaled quota format not specified");
406                         return -1;
407                 }
408         }
409
410         if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) {
411                 f2fs_info(sbi, "QUOTA feature is enabled, so ignore jquota_fmt");
412                 F2FS_OPTION(sbi).s_jquota_fmt = 0;
413         }
414         return 0;
415 }
416 #endif
417
418 static int f2fs_set_test_dummy_encryption(struct super_block *sb,
419                                           const char *opt,
420                                           const substring_t *arg,
421                                           bool is_remount)
422 {
423         struct f2fs_sb_info *sbi = F2FS_SB(sb);
424 #ifdef CONFIG_FS_ENCRYPTION
425         int err;
426
427         if (!f2fs_sb_has_encrypt(sbi)) {
428                 f2fs_err(sbi, "Encrypt feature is off");
429                 return -EINVAL;
430         }
431
432         /*
433          * This mount option is just for testing, and it's not worthwhile to
434          * implement the extra complexity (e.g. RCU protection) that would be
435          * needed to allow it to be set or changed during remount.  We do allow
436          * it to be specified during remount, but only if there is no change.
437          */
438         if (is_remount && !F2FS_OPTION(sbi).dummy_enc_policy.policy) {
439                 f2fs_warn(sbi, "Can't set test_dummy_encryption on remount");
440                 return -EINVAL;
441         }
442         err = fscrypt_set_test_dummy_encryption(
443                 sb, arg->from, &F2FS_OPTION(sbi).dummy_enc_policy);
444         if (err) {
445                 if (err == -EEXIST)
446                         f2fs_warn(sbi,
447                                   "Can't change test_dummy_encryption on remount");
448                 else if (err == -EINVAL)
449                         f2fs_warn(sbi, "Value of option \"%s\" is unrecognized",
450                                   opt);
451                 else
452                         f2fs_warn(sbi, "Error processing option \"%s\" [%d]",
453                                   opt, err);
454                 return -EINVAL;
455         }
456         f2fs_warn(sbi, "Test dummy encryption mode enabled");
457 #else
458         f2fs_warn(sbi, "Test dummy encryption mount option ignored");
459 #endif
460         return 0;
461 }
462
463 static int parse_options(struct super_block *sb, char *options, bool is_remount)
464 {
465         struct f2fs_sb_info *sbi = F2FS_SB(sb);
466         substring_t args[MAX_OPT_ARGS];
467 #ifdef CONFIG_F2FS_FS_COMPRESSION
468         unsigned char (*ext)[F2FS_EXTENSION_LEN];
469         int ext_cnt;
470 #endif
471         char *p, *name;
472         int arg = 0;
473         kuid_t uid;
474         kgid_t gid;
475         int ret;
476
477         if (!options)
478                 return 0;
479
480         while ((p = strsep(&options, ",")) != NULL) {
481                 int token;
482                 if (!*p)
483                         continue;
484                 /*
485                  * Initialize args struct so we know whether arg was
486                  * found; some options take optional arguments.
487                  */
488                 args[0].to = args[0].from = NULL;
489                 token = match_token(p, f2fs_tokens, args);
490
491                 switch (token) {
492                 case Opt_gc_background:
493                         name = match_strdup(&args[0]);
494
495                         if (!name)
496                                 return -ENOMEM;
497                         if (!strcmp(name, "on")) {
498                                 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON;
499                         } else if (!strcmp(name, "off")) {
500                                 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_OFF;
501                         } else if (!strcmp(name, "sync")) {
502                                 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_SYNC;
503                         } else {
504                                 kfree(name);
505                                 return -EINVAL;
506                         }
507                         kfree(name);
508                         break;
509                 case Opt_disable_roll_forward:
510                         set_opt(sbi, DISABLE_ROLL_FORWARD);
511                         break;
512                 case Opt_norecovery:
513                         /* this option mounts f2fs with ro */
514                         set_opt(sbi, NORECOVERY);
515                         if (!f2fs_readonly(sb))
516                                 return -EINVAL;
517                         break;
518                 case Opt_discard:
519                         set_opt(sbi, DISCARD);
520                         break;
521                 case Opt_nodiscard:
522                         if (f2fs_sb_has_blkzoned(sbi)) {
523                                 f2fs_warn(sbi, "discard is required for zoned block devices");
524                                 return -EINVAL;
525                         }
526                         clear_opt(sbi, DISCARD);
527                         break;
528                 case Opt_noheap:
529                         set_opt(sbi, NOHEAP);
530                         break;
531                 case Opt_heap:
532                         clear_opt(sbi, NOHEAP);
533                         break;
534 #ifdef CONFIG_F2FS_FS_XATTR
535                 case Opt_user_xattr:
536                         set_opt(sbi, XATTR_USER);
537                         break;
538                 case Opt_nouser_xattr:
539                         clear_opt(sbi, XATTR_USER);
540                         break;
541                 case Opt_inline_xattr:
542                         set_opt(sbi, INLINE_XATTR);
543                         break;
544                 case Opt_noinline_xattr:
545                         clear_opt(sbi, INLINE_XATTR);
546                         break;
547                 case Opt_inline_xattr_size:
548                         if (args->from && match_int(args, &arg))
549                                 return -EINVAL;
550                         set_opt(sbi, INLINE_XATTR_SIZE);
551                         F2FS_OPTION(sbi).inline_xattr_size = arg;
552                         break;
553 #else
554                 case Opt_user_xattr:
555                         f2fs_info(sbi, "user_xattr options not supported");
556                         break;
557                 case Opt_nouser_xattr:
558                         f2fs_info(sbi, "nouser_xattr options not supported");
559                         break;
560                 case Opt_inline_xattr:
561                         f2fs_info(sbi, "inline_xattr options not supported");
562                         break;
563                 case Opt_noinline_xattr:
564                         f2fs_info(sbi, "noinline_xattr options not supported");
565                         break;
566 #endif
567 #ifdef CONFIG_F2FS_FS_POSIX_ACL
568                 case Opt_acl:
569                         set_opt(sbi, POSIX_ACL);
570                         break;
571                 case Opt_noacl:
572                         clear_opt(sbi, POSIX_ACL);
573                         break;
574 #else
575                 case Opt_acl:
576                         f2fs_info(sbi, "acl options not supported");
577                         break;
578                 case Opt_noacl:
579                         f2fs_info(sbi, "noacl options not supported");
580                         break;
581 #endif
582                 case Opt_active_logs:
583                         if (args->from && match_int(args, &arg))
584                                 return -EINVAL;
585                         if (arg != 2 && arg != 4 &&
586                                 arg != NR_CURSEG_PERSIST_TYPE)
587                                 return -EINVAL;
588                         F2FS_OPTION(sbi).active_logs = arg;
589                         break;
590                 case Opt_disable_ext_identify:
591                         set_opt(sbi, DISABLE_EXT_IDENTIFY);
592                         break;
593                 case Opt_inline_data:
594                         set_opt(sbi, INLINE_DATA);
595                         break;
596                 case Opt_inline_dentry:
597                         set_opt(sbi, INLINE_DENTRY);
598                         break;
599                 case Opt_noinline_dentry:
600                         clear_opt(sbi, INLINE_DENTRY);
601                         break;
602                 case Opt_flush_merge:
603                         set_opt(sbi, FLUSH_MERGE);
604                         break;
605                 case Opt_noflush_merge:
606                         clear_opt(sbi, FLUSH_MERGE);
607                         break;
608                 case Opt_nobarrier:
609                         set_opt(sbi, NOBARRIER);
610                         break;
611                 case Opt_fastboot:
612                         set_opt(sbi, FASTBOOT);
613                         break;
614                 case Opt_extent_cache:
615                         set_opt(sbi, EXTENT_CACHE);
616                         break;
617                 case Opt_noextent_cache:
618                         clear_opt(sbi, EXTENT_CACHE);
619                         break;
620                 case Opt_noinline_data:
621                         clear_opt(sbi, INLINE_DATA);
622                         break;
623                 case Opt_data_flush:
624                         set_opt(sbi, DATA_FLUSH);
625                         break;
626                 case Opt_reserve_root:
627                         if (args->from && match_int(args, &arg))
628                                 return -EINVAL;
629                         if (test_opt(sbi, RESERVE_ROOT)) {
630                                 f2fs_info(sbi, "Preserve previous reserve_root=%u",
631                                           F2FS_OPTION(sbi).root_reserved_blocks);
632                         } else {
633                                 F2FS_OPTION(sbi).root_reserved_blocks = arg;
634                                 set_opt(sbi, RESERVE_ROOT);
635                         }
636                         break;
637                 case Opt_resuid:
638                         if (args->from && match_int(args, &arg))
639                                 return -EINVAL;
640                         uid = make_kuid(current_user_ns(), arg);
641                         if (!uid_valid(uid)) {
642                                 f2fs_err(sbi, "Invalid uid value %d", arg);
643                                 return -EINVAL;
644                         }
645                         F2FS_OPTION(sbi).s_resuid = uid;
646                         break;
647                 case Opt_resgid:
648                         if (args->from && match_int(args, &arg))
649                                 return -EINVAL;
650                         gid = make_kgid(current_user_ns(), arg);
651                         if (!gid_valid(gid)) {
652                                 f2fs_err(sbi, "Invalid gid value %d", arg);
653                                 return -EINVAL;
654                         }
655                         F2FS_OPTION(sbi).s_resgid = gid;
656                         break;
657                 case Opt_mode:
658                         name = match_strdup(&args[0]);
659
660                         if (!name)
661                                 return -ENOMEM;
662                         if (!strcmp(name, "adaptive")) {
663                                 if (f2fs_sb_has_blkzoned(sbi)) {
664                                         f2fs_warn(sbi, "adaptive mode is not allowed with zoned block device feature");
665                                         kfree(name);
666                                         return -EINVAL;
667                                 }
668                                 F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE;
669                         } else if (!strcmp(name, "lfs")) {
670                                 F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS;
671                         } else {
672                                 kfree(name);
673                                 return -EINVAL;
674                         }
675                         kfree(name);
676                         break;
677                 case Opt_io_size_bits:
678                         if (args->from && match_int(args, &arg))
679                                 return -EINVAL;
680                         if (arg <= 0 || arg > __ilog2_u32(BIO_MAX_PAGES)) {
681                                 f2fs_warn(sbi, "Not support %d, larger than %d",
682                                           1 << arg, BIO_MAX_PAGES);
683                                 return -EINVAL;
684                         }
685                         F2FS_OPTION(sbi).write_io_size_bits = arg;
686                         break;
687 #ifdef CONFIG_F2FS_FAULT_INJECTION
688                 case Opt_fault_injection:
689                         if (args->from && match_int(args, &arg))
690                                 return -EINVAL;
691                         f2fs_build_fault_attr(sbi, arg, F2FS_ALL_FAULT_TYPE);
692                         set_opt(sbi, FAULT_INJECTION);
693                         break;
694
695                 case Opt_fault_type:
696                         if (args->from && match_int(args, &arg))
697                                 return -EINVAL;
698                         f2fs_build_fault_attr(sbi, 0, arg);
699                         set_opt(sbi, FAULT_INJECTION);
700                         break;
701 #else
702                 case Opt_fault_injection:
703                         f2fs_info(sbi, "fault_injection options not supported");
704                         break;
705
706                 case Opt_fault_type:
707                         f2fs_info(sbi, "fault_type options not supported");
708                         break;
709 #endif
710                 case Opt_lazytime:
711                         sb->s_flags |= SB_LAZYTIME;
712                         break;
713                 case Opt_nolazytime:
714                         sb->s_flags &= ~SB_LAZYTIME;
715                         break;
716 #ifdef CONFIG_QUOTA
717                 case Opt_quota:
718                 case Opt_usrquota:
719                         set_opt(sbi, USRQUOTA);
720                         break;
721                 case Opt_grpquota:
722                         set_opt(sbi, GRPQUOTA);
723                         break;
724                 case Opt_prjquota:
725                         set_opt(sbi, PRJQUOTA);
726                         break;
727                 case Opt_usrjquota:
728                         ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]);
729                         if (ret)
730                                 return ret;
731                         break;
732                 case Opt_grpjquota:
733                         ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]);
734                         if (ret)
735                                 return ret;
736                         break;
737                 case Opt_prjjquota:
738                         ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]);
739                         if (ret)
740                                 return ret;
741                         break;
742                 case Opt_offusrjquota:
743                         ret = f2fs_clear_qf_name(sb, USRQUOTA);
744                         if (ret)
745                                 return ret;
746                         break;
747                 case Opt_offgrpjquota:
748                         ret = f2fs_clear_qf_name(sb, GRPQUOTA);
749                         if (ret)
750                                 return ret;
751                         break;
752                 case Opt_offprjjquota:
753                         ret = f2fs_clear_qf_name(sb, PRJQUOTA);
754                         if (ret)
755                                 return ret;
756                         break;
757                 case Opt_jqfmt_vfsold:
758                         F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD;
759                         break;
760                 case Opt_jqfmt_vfsv0:
761                         F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0;
762                         break;
763                 case Opt_jqfmt_vfsv1:
764                         F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1;
765                         break;
766                 case Opt_noquota:
767                         clear_opt(sbi, QUOTA);
768                         clear_opt(sbi, USRQUOTA);
769                         clear_opt(sbi, GRPQUOTA);
770                         clear_opt(sbi, PRJQUOTA);
771                         break;
772 #else
773                 case Opt_quota:
774                 case Opt_usrquota:
775                 case Opt_grpquota:
776                 case Opt_prjquota:
777                 case Opt_usrjquota:
778                 case Opt_grpjquota:
779                 case Opt_prjjquota:
780                 case Opt_offusrjquota:
781                 case Opt_offgrpjquota:
782                 case Opt_offprjjquota:
783                 case Opt_jqfmt_vfsold:
784                 case Opt_jqfmt_vfsv0:
785                 case Opt_jqfmt_vfsv1:
786                 case Opt_noquota:
787                         f2fs_info(sbi, "quota operations not supported");
788                         break;
789 #endif
790                 case Opt_whint:
791                         name = match_strdup(&args[0]);
792                         if (!name)
793                                 return -ENOMEM;
794                         if (!strcmp(name, "user-based")) {
795                                 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_USER;
796                         } else if (!strcmp(name, "off")) {
797                                 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
798                         } else if (!strcmp(name, "fs-based")) {
799                                 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_FS;
800                         } else {
801                                 kfree(name);
802                                 return -EINVAL;
803                         }
804                         kfree(name);
805                         break;
806                 case Opt_alloc:
807                         name = match_strdup(&args[0]);
808                         if (!name)
809                                 return -ENOMEM;
810
811                         if (!strcmp(name, "default")) {
812                                 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
813                         } else if (!strcmp(name, "reuse")) {
814                                 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
815                         } else {
816                                 kfree(name);
817                                 return -EINVAL;
818                         }
819                         kfree(name);
820                         break;
821                 case Opt_fsync:
822                         name = match_strdup(&args[0]);
823                         if (!name)
824                                 return -ENOMEM;
825                         if (!strcmp(name, "posix")) {
826                                 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
827                         } else if (!strcmp(name, "strict")) {
828                                 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT;
829                         } else if (!strcmp(name, "nobarrier")) {
830                                 F2FS_OPTION(sbi).fsync_mode =
831                                                         FSYNC_MODE_NOBARRIER;
832                         } else {
833                                 kfree(name);
834                                 return -EINVAL;
835                         }
836                         kfree(name);
837                         break;
838                 case Opt_test_dummy_encryption:
839                         ret = f2fs_set_test_dummy_encryption(sb, p, &args[0],
840                                                              is_remount);
841                         if (ret)
842                                 return ret;
843                         break;
844                 case Opt_inlinecrypt:
845 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
846                         sb->s_flags |= SB_INLINECRYPT;
847 #else
848                         f2fs_info(sbi, "inline encryption not supported");
849 #endif
850                         break;
851                 case Opt_checkpoint_disable_cap_perc:
852                         if (args->from && match_int(args, &arg))
853                                 return -EINVAL;
854                         if (arg < 0 || arg > 100)
855                                 return -EINVAL;
856                         F2FS_OPTION(sbi).unusable_cap_perc = arg;
857                         set_opt(sbi, DISABLE_CHECKPOINT);
858                         break;
859                 case Opt_checkpoint_disable_cap:
860                         if (args->from && match_int(args, &arg))
861                                 return -EINVAL;
862                         F2FS_OPTION(sbi).unusable_cap = arg;
863                         set_opt(sbi, DISABLE_CHECKPOINT);
864                         break;
865                 case Opt_checkpoint_disable:
866                         set_opt(sbi, DISABLE_CHECKPOINT);
867                         break;
868                 case Opt_checkpoint_enable:
869                         clear_opt(sbi, DISABLE_CHECKPOINT);
870                         break;
871 #ifdef CONFIG_F2FS_FS_COMPRESSION
872                 case Opt_compress_algorithm:
873                         if (!f2fs_sb_has_compression(sbi)) {
874                                 f2fs_info(sbi, "Image doesn't support compression");
875                                 break;
876                         }
877                         name = match_strdup(&args[0]);
878                         if (!name)
879                                 return -ENOMEM;
880                         if (!strcmp(name, "lzo")) {
881                                 F2FS_OPTION(sbi).compress_algorithm =
882                                                                 COMPRESS_LZO;
883                         } else if (!strcmp(name, "lz4")) {
884                                 F2FS_OPTION(sbi).compress_algorithm =
885                                                                 COMPRESS_LZ4;
886                         } else if (!strcmp(name, "zstd")) {
887                                 F2FS_OPTION(sbi).compress_algorithm =
888                                                                 COMPRESS_ZSTD;
889                         } else if (!strcmp(name, "lzo-rle")) {
890                                 F2FS_OPTION(sbi).compress_algorithm =
891                                                                 COMPRESS_LZORLE;
892                         } else {
893                                 kfree(name);
894                                 return -EINVAL;
895                         }
896                         kfree(name);
897                         break;
898                 case Opt_compress_log_size:
899                         if (!f2fs_sb_has_compression(sbi)) {
900                                 f2fs_info(sbi, "Image doesn't support compression");
901                                 break;
902                         }
903                         if (args->from && match_int(args, &arg))
904                                 return -EINVAL;
905                         if (arg < MIN_COMPRESS_LOG_SIZE ||
906                                 arg > MAX_COMPRESS_LOG_SIZE) {
907                                 f2fs_err(sbi,
908                                         "Compress cluster log size is out of range");
909                                 return -EINVAL;
910                         }
911                         F2FS_OPTION(sbi).compress_log_size = arg;
912                         break;
913                 case Opt_compress_extension:
914                         if (!f2fs_sb_has_compression(sbi)) {
915                                 f2fs_info(sbi, "Image doesn't support compression");
916                                 break;
917                         }
918                         name = match_strdup(&args[0]);
919                         if (!name)
920                                 return -ENOMEM;
921
922                         ext = F2FS_OPTION(sbi).extensions;
923                         ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt;
924
925                         if (strlen(name) >= F2FS_EXTENSION_LEN ||
926                                 ext_cnt >= COMPRESS_EXT_NUM) {
927                                 f2fs_err(sbi,
928                                         "invalid extension length/number");
929                                 kfree(name);
930                                 return -EINVAL;
931                         }
932
933                         strcpy(ext[ext_cnt], name);
934                         F2FS_OPTION(sbi).compress_ext_cnt++;
935                         kfree(name);
936                         break;
937 #else
938                 case Opt_compress_algorithm:
939                 case Opt_compress_log_size:
940                 case Opt_compress_extension:
941                         f2fs_info(sbi, "compression options not supported");
942                         break;
943 #endif
944                 case Opt_atgc:
945                         set_opt(sbi, ATGC);
946                         break;
947                 default:
948                         f2fs_err(sbi, "Unrecognized mount option \"%s\" or missing value",
949                                  p);
950                         return -EINVAL;
951                 }
952         }
953 #ifdef CONFIG_QUOTA
954         if (f2fs_check_quota_options(sbi))
955                 return -EINVAL;
956 #else
957         if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) {
958                 f2fs_info(sbi, "Filesystem with quota feature cannot be mounted RDWR without CONFIG_QUOTA");
959                 return -EINVAL;
960         }
961         if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) {
962                 f2fs_err(sbi, "Filesystem with project quota feature cannot be mounted RDWR without CONFIG_QUOTA");
963                 return -EINVAL;
964         }
965 #endif
966 #ifndef CONFIG_UNICODE
967         if (f2fs_sb_has_casefold(sbi)) {
968                 f2fs_err(sbi,
969                         "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
970                 return -EINVAL;
971         }
972 #endif
973         /*
974          * The BLKZONED feature indicates that the drive was formatted with
975          * zone alignment optimization. This is optional for host-aware
976          * devices, but mandatory for host-managed zoned block devices.
977          */
978 #ifndef CONFIG_BLK_DEV_ZONED
979         if (f2fs_sb_has_blkzoned(sbi)) {
980                 f2fs_err(sbi, "Zoned block device support is not enabled");
981                 return -EINVAL;
982         }
983 #endif
984
985         if (F2FS_IO_SIZE_BITS(sbi) && !f2fs_lfs_mode(sbi)) {
986                 f2fs_err(sbi, "Should set mode=lfs with %uKB-sized IO",
987                          F2FS_IO_SIZE_KB(sbi));
988                 return -EINVAL;
989         }
990
991         if (test_opt(sbi, INLINE_XATTR_SIZE)) {
992                 int min_size, max_size;
993
994                 if (!f2fs_sb_has_extra_attr(sbi) ||
995                         !f2fs_sb_has_flexible_inline_xattr(sbi)) {
996                         f2fs_err(sbi, "extra_attr or flexible_inline_xattr feature is off");
997                         return -EINVAL;
998                 }
999                 if (!test_opt(sbi, INLINE_XATTR)) {
1000                         f2fs_err(sbi, "inline_xattr_size option should be set with inline_xattr option");
1001                         return -EINVAL;
1002                 }
1003
1004                 min_size = sizeof(struct f2fs_xattr_header) / sizeof(__le32);
1005                 max_size = MAX_INLINE_XATTR_SIZE;
1006
1007                 if (F2FS_OPTION(sbi).inline_xattr_size < min_size ||
1008                                 F2FS_OPTION(sbi).inline_xattr_size > max_size) {
1009                         f2fs_err(sbi, "inline xattr size is out of range: %d ~ %d",
1010                                  min_size, max_size);
1011                         return -EINVAL;
1012                 }
1013         }
1014
1015         if (test_opt(sbi, DISABLE_CHECKPOINT) && f2fs_lfs_mode(sbi)) {
1016                 f2fs_err(sbi, "LFS not compatible with checkpoint=disable\n");
1017                 return -EINVAL;
1018         }
1019
1020         /* Not pass down write hints if the number of active logs is lesser
1021          * than NR_CURSEG_PERSIST_TYPE.
1022          */
1023         if (F2FS_OPTION(sbi).active_logs != NR_CURSEG_TYPE)
1024                 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
1025         return 0;
1026 }
1027
1028 static struct inode *f2fs_alloc_inode(struct super_block *sb)
1029 {
1030         struct f2fs_inode_info *fi;
1031
1032         fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
1033         if (!fi)
1034                 return NULL;
1035
1036         init_once((void *) fi);
1037
1038         /* Initialize f2fs-specific inode info */
1039         atomic_set(&fi->dirty_pages, 0);
1040         atomic_set(&fi->i_compr_blocks, 0);
1041         init_rwsem(&fi->i_sem);
1042         spin_lock_init(&fi->i_size_lock);
1043         INIT_LIST_HEAD(&fi->dirty_list);
1044         INIT_LIST_HEAD(&fi->gdirty_list);
1045         INIT_LIST_HEAD(&fi->inmem_ilist);
1046         INIT_LIST_HEAD(&fi->inmem_pages);
1047         mutex_init(&fi->inmem_lock);
1048         init_rwsem(&fi->i_gc_rwsem[READ]);
1049         init_rwsem(&fi->i_gc_rwsem[WRITE]);
1050         init_rwsem(&fi->i_mmap_sem);
1051         init_rwsem(&fi->i_xattr_sem);
1052
1053         /* Will be used by directory only */
1054         fi->i_dir_level = F2FS_SB(sb)->dir_level;
1055
1056         fi->ra_offset = -1;
1057
1058         return &fi->vfs_inode;
1059 }
1060
1061 static int f2fs_drop_inode(struct inode *inode)
1062 {
1063         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1064         int ret;
1065
1066         /*
1067          * during filesystem shutdown, if checkpoint is disabled,
1068          * drop useless meta/node dirty pages.
1069          */
1070         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1071                 if (inode->i_ino == F2FS_NODE_INO(sbi) ||
1072                         inode->i_ino == F2FS_META_INO(sbi)) {
1073                         trace_f2fs_drop_inode(inode, 1);
1074                         return 1;
1075                 }
1076         }
1077
1078         /*
1079          * This is to avoid a deadlock condition like below.
1080          * writeback_single_inode(inode)
1081          *  - f2fs_write_data_page
1082          *    - f2fs_gc -> iput -> evict
1083          *       - inode_wait_for_writeback(inode)
1084          */
1085         if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
1086                 if (!inode->i_nlink && !is_bad_inode(inode)) {
1087                         /* to avoid evict_inode call simultaneously */
1088                         atomic_inc(&inode->i_count);
1089                         spin_unlock(&inode->i_lock);
1090
1091                         /* some remained atomic pages should discarded */
1092                         if (f2fs_is_atomic_file(inode))
1093                                 f2fs_drop_inmem_pages(inode);
1094
1095                         /* should remain fi->extent_tree for writepage */
1096                         f2fs_destroy_extent_node(inode);
1097
1098                         sb_start_intwrite(inode->i_sb);
1099                         f2fs_i_size_write(inode, 0);
1100
1101                         f2fs_submit_merged_write_cond(F2FS_I_SB(inode),
1102                                         inode, NULL, 0, DATA);
1103                         truncate_inode_pages_final(inode->i_mapping);
1104
1105                         if (F2FS_HAS_BLOCKS(inode))
1106                                 f2fs_truncate(inode);
1107
1108                         sb_end_intwrite(inode->i_sb);
1109
1110                         spin_lock(&inode->i_lock);
1111                         atomic_dec(&inode->i_count);
1112                 }
1113                 trace_f2fs_drop_inode(inode, 0);
1114                 return 0;
1115         }
1116         ret = generic_drop_inode(inode);
1117         if (!ret)
1118                 ret = fscrypt_drop_inode(inode);
1119         trace_f2fs_drop_inode(inode, ret);
1120         return ret;
1121 }
1122
1123 int f2fs_inode_dirtied(struct inode *inode, bool sync)
1124 {
1125         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1126         int ret = 0;
1127
1128         spin_lock(&sbi->inode_lock[DIRTY_META]);
1129         if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
1130                 ret = 1;
1131         } else {
1132                 set_inode_flag(inode, FI_DIRTY_INODE);
1133                 stat_inc_dirty_inode(sbi, DIRTY_META);
1134         }
1135         if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
1136                 list_add_tail(&F2FS_I(inode)->gdirty_list,
1137                                 &sbi->inode_list[DIRTY_META]);
1138                 inc_page_count(sbi, F2FS_DIRTY_IMETA);
1139         }
1140         spin_unlock(&sbi->inode_lock[DIRTY_META]);
1141         return ret;
1142 }
1143
1144 void f2fs_inode_synced(struct inode *inode)
1145 {
1146         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1147
1148         spin_lock(&sbi->inode_lock[DIRTY_META]);
1149         if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
1150                 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1151                 return;
1152         }
1153         if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
1154                 list_del_init(&F2FS_I(inode)->gdirty_list);
1155                 dec_page_count(sbi, F2FS_DIRTY_IMETA);
1156         }
1157         clear_inode_flag(inode, FI_DIRTY_INODE);
1158         clear_inode_flag(inode, FI_AUTO_RECOVER);
1159         stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
1160         spin_unlock(&sbi->inode_lock[DIRTY_META]);
1161 }
1162
1163 /*
1164  * f2fs_dirty_inode() is called from __mark_inode_dirty()
1165  *
1166  * We should call set_dirty_inode to write the dirty inode through write_inode.
1167  */
1168 static void f2fs_dirty_inode(struct inode *inode, int flags)
1169 {
1170         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1171
1172         if (inode->i_ino == F2FS_NODE_INO(sbi) ||
1173                         inode->i_ino == F2FS_META_INO(sbi))
1174                 return;
1175
1176         if (flags == I_DIRTY_TIME)
1177                 return;
1178
1179         if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
1180                 clear_inode_flag(inode, FI_AUTO_RECOVER);
1181
1182         f2fs_inode_dirtied(inode, false);
1183 }
1184
1185 static void f2fs_free_inode(struct inode *inode)
1186 {
1187         fscrypt_free_inode(inode);
1188         kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
1189 }
1190
1191 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
1192 {
1193         percpu_counter_destroy(&sbi->alloc_valid_block_count);
1194         percpu_counter_destroy(&sbi->total_valid_inode_count);
1195 }
1196
1197 static void destroy_device_list(struct f2fs_sb_info *sbi)
1198 {
1199         int i;
1200
1201         for (i = 0; i < sbi->s_ndevs; i++) {
1202                 blkdev_put(FDEV(i).bdev, FMODE_EXCL);
1203 #ifdef CONFIG_BLK_DEV_ZONED
1204                 kvfree(FDEV(i).blkz_seq);
1205                 kfree(FDEV(i).zone_capacity_blocks);
1206 #endif
1207         }
1208         kvfree(sbi->devs);
1209 }
1210
1211 static void f2fs_put_super(struct super_block *sb)
1212 {
1213         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1214         int i;
1215         bool dropped;
1216
1217         /* unregister procfs/sysfs entries in advance to avoid race case */
1218         f2fs_unregister_sysfs(sbi);
1219
1220         f2fs_quota_off_umount(sb);
1221
1222         /* prevent remaining shrinker jobs */
1223         mutex_lock(&sbi->umount_mutex);
1224
1225         /*
1226          * We don't need to do checkpoint when superblock is clean.
1227          * But, the previous checkpoint was not done by umount, it needs to do
1228          * clean checkpoint again.
1229          */
1230         if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
1231                         !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) {
1232                 struct cp_control cpc = {
1233                         .reason = CP_UMOUNT,
1234                 };
1235                 f2fs_write_checkpoint(sbi, &cpc);
1236         }
1237
1238         /* be sure to wait for any on-going discard commands */
1239         dropped = f2fs_issue_discard_timeout(sbi);
1240
1241         if ((f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) &&
1242                                         !sbi->discard_blks && !dropped) {
1243                 struct cp_control cpc = {
1244                         .reason = CP_UMOUNT | CP_TRIMMED,
1245                 };
1246                 f2fs_write_checkpoint(sbi, &cpc);
1247         }
1248
1249         /*
1250          * normally superblock is clean, so we need to release this.
1251          * In addition, EIO will skip do checkpoint, we need this as well.
1252          */
1253         f2fs_release_ino_entry(sbi, true);
1254
1255         f2fs_leave_shrinker(sbi);
1256         mutex_unlock(&sbi->umount_mutex);
1257
1258         /* our cp_error case, we can wait for any writeback page */
1259         f2fs_flush_merged_writes(sbi);
1260
1261         f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1262
1263         f2fs_bug_on(sbi, sbi->fsync_node_num);
1264
1265         iput(sbi->node_inode);
1266         sbi->node_inode = NULL;
1267
1268         iput(sbi->meta_inode);
1269         sbi->meta_inode = NULL;
1270
1271         /*
1272          * iput() can update stat information, if f2fs_write_checkpoint()
1273          * above failed with error.
1274          */
1275         f2fs_destroy_stats(sbi);
1276
1277         /* destroy f2fs internal modules */
1278         f2fs_destroy_node_manager(sbi);
1279         f2fs_destroy_segment_manager(sbi);
1280
1281         f2fs_destroy_post_read_wq(sbi);
1282
1283         kvfree(sbi->ckpt);
1284
1285         sb->s_fs_info = NULL;
1286         if (sbi->s_chksum_driver)
1287                 crypto_free_shash(sbi->s_chksum_driver);
1288         kfree(sbi->raw_super);
1289
1290         destroy_device_list(sbi);
1291         f2fs_destroy_page_array_cache(sbi);
1292         f2fs_destroy_xattr_caches(sbi);
1293         mempool_destroy(sbi->write_io_dummy);
1294 #ifdef CONFIG_QUOTA
1295         for (i = 0; i < MAXQUOTAS; i++)
1296                 kfree(F2FS_OPTION(sbi).s_qf_names[i]);
1297 #endif
1298         fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy);
1299         destroy_percpu_info(sbi);
1300         for (i = 0; i < NR_PAGE_TYPE; i++)
1301                 kvfree(sbi->write_io[i]);
1302 #ifdef CONFIG_UNICODE
1303         utf8_unload(sb->s_encoding);
1304 #endif
1305         kfree(sbi);
1306 }
1307
1308 int f2fs_sync_fs(struct super_block *sb, int sync)
1309 {
1310         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1311         int err = 0;
1312
1313         if (unlikely(f2fs_cp_error(sbi)))
1314                 return 0;
1315         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
1316                 return 0;
1317
1318         trace_f2fs_sync_fs(sb, sync);
1319
1320         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1321                 return -EAGAIN;
1322
1323         if (sync) {
1324                 struct cp_control cpc;
1325
1326                 cpc.reason = __get_cp_reason(sbi);
1327
1328                 down_write(&sbi->gc_lock);
1329                 err = f2fs_write_checkpoint(sbi, &cpc);
1330                 up_write(&sbi->gc_lock);
1331         }
1332         f2fs_trace_ios(NULL, 1);
1333
1334         return err;
1335 }
1336
1337 static int f2fs_freeze(struct super_block *sb)
1338 {
1339         if (f2fs_readonly(sb))
1340                 return 0;
1341
1342         /* IO error happened before */
1343         if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
1344                 return -EIO;
1345
1346         /* must be clean, since sync_filesystem() was already called */
1347         if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
1348                 return -EINVAL;
1349         return 0;
1350 }
1351
1352 static int f2fs_unfreeze(struct super_block *sb)
1353 {
1354         return 0;
1355 }
1356
1357 #ifdef CONFIG_QUOTA
1358 static int f2fs_statfs_project(struct super_block *sb,
1359                                 kprojid_t projid, struct kstatfs *buf)
1360 {
1361         struct kqid qid;
1362         struct dquot *dquot;
1363         u64 limit;
1364         u64 curblock;
1365
1366         qid = make_kqid_projid(projid);
1367         dquot = dqget(sb, qid);
1368         if (IS_ERR(dquot))
1369                 return PTR_ERR(dquot);
1370         spin_lock(&dquot->dq_dqb_lock);
1371
1372         limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
1373                                         dquot->dq_dqb.dqb_bhardlimit);
1374         if (limit)
1375                 limit >>= sb->s_blocksize_bits;
1376
1377         if (limit && buf->f_blocks > limit) {
1378                 curblock = (dquot->dq_dqb.dqb_curspace +
1379                             dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
1380                 buf->f_blocks = limit;
1381                 buf->f_bfree = buf->f_bavail =
1382                         (buf->f_blocks > curblock) ?
1383                          (buf->f_blocks - curblock) : 0;
1384         }
1385
1386         limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
1387                                         dquot->dq_dqb.dqb_ihardlimit);
1388
1389         if (limit && buf->f_files > limit) {
1390                 buf->f_files = limit;
1391                 buf->f_ffree =
1392                         (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
1393                          (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
1394         }
1395
1396         spin_unlock(&dquot->dq_dqb_lock);
1397         dqput(dquot);
1398         return 0;
1399 }
1400 #endif
1401
1402 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
1403 {
1404         struct super_block *sb = dentry->d_sb;
1405         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1406         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
1407         block_t total_count, user_block_count, start_count;
1408         u64 avail_node_count;
1409
1410         total_count = le64_to_cpu(sbi->raw_super->block_count);
1411         user_block_count = sbi->user_block_count;
1412         start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
1413         buf->f_type = F2FS_SUPER_MAGIC;
1414         buf->f_bsize = sbi->blocksize;
1415
1416         buf->f_blocks = total_count - start_count;
1417         buf->f_bfree = user_block_count - valid_user_blocks(sbi) -
1418                                                 sbi->current_reserved_blocks;
1419
1420         spin_lock(&sbi->stat_lock);
1421         if (unlikely(buf->f_bfree <= sbi->unusable_block_count))
1422                 buf->f_bfree = 0;
1423         else
1424                 buf->f_bfree -= sbi->unusable_block_count;
1425         spin_unlock(&sbi->stat_lock);
1426
1427         if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks)
1428                 buf->f_bavail = buf->f_bfree -
1429                                 F2FS_OPTION(sbi).root_reserved_blocks;
1430         else
1431                 buf->f_bavail = 0;
1432
1433         avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
1434
1435         if (avail_node_count > user_block_count) {
1436                 buf->f_files = user_block_count;
1437                 buf->f_ffree = buf->f_bavail;
1438         } else {
1439                 buf->f_files = avail_node_count;
1440                 buf->f_ffree = min(avail_node_count - valid_node_count(sbi),
1441                                         buf->f_bavail);
1442         }
1443
1444         buf->f_namelen = F2FS_NAME_LEN;
1445         buf->f_fsid    = u64_to_fsid(id);
1446
1447 #ifdef CONFIG_QUOTA
1448         if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) &&
1449                         sb_has_quota_limits_enabled(sb, PRJQUOTA)) {
1450                 f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf);
1451         }
1452 #endif
1453         return 0;
1454 }
1455
1456 static inline void f2fs_show_quota_options(struct seq_file *seq,
1457                                            struct super_block *sb)
1458 {
1459 #ifdef CONFIG_QUOTA
1460         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1461
1462         if (F2FS_OPTION(sbi).s_jquota_fmt) {
1463                 char *fmtname = "";
1464
1465                 switch (F2FS_OPTION(sbi).s_jquota_fmt) {
1466                 case QFMT_VFS_OLD:
1467                         fmtname = "vfsold";
1468                         break;
1469                 case QFMT_VFS_V0:
1470                         fmtname = "vfsv0";
1471                         break;
1472                 case QFMT_VFS_V1:
1473                         fmtname = "vfsv1";
1474                         break;
1475                 }
1476                 seq_printf(seq, ",jqfmt=%s", fmtname);
1477         }
1478
1479         if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
1480                 seq_show_option(seq, "usrjquota",
1481                         F2FS_OPTION(sbi).s_qf_names[USRQUOTA]);
1482
1483         if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
1484                 seq_show_option(seq, "grpjquota",
1485                         F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]);
1486
1487         if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
1488                 seq_show_option(seq, "prjjquota",
1489                         F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]);
1490 #endif
1491 }
1492
1493 static inline void f2fs_show_compress_options(struct seq_file *seq,
1494                                                         struct super_block *sb)
1495 {
1496         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1497         char *algtype = "";
1498         int i;
1499
1500         if (!f2fs_sb_has_compression(sbi))
1501                 return;
1502
1503         switch (F2FS_OPTION(sbi).compress_algorithm) {
1504         case COMPRESS_LZO:
1505                 algtype = "lzo";
1506                 break;
1507         case COMPRESS_LZ4:
1508                 algtype = "lz4";
1509                 break;
1510         case COMPRESS_ZSTD:
1511                 algtype = "zstd";
1512                 break;
1513         case COMPRESS_LZORLE:
1514                 algtype = "lzo-rle";
1515                 break;
1516         }
1517         seq_printf(seq, ",compress_algorithm=%s", algtype);
1518
1519         seq_printf(seq, ",compress_log_size=%u",
1520                         F2FS_OPTION(sbi).compress_log_size);
1521
1522         for (i = 0; i < F2FS_OPTION(sbi).compress_ext_cnt; i++) {
1523                 seq_printf(seq, ",compress_extension=%s",
1524                         F2FS_OPTION(sbi).extensions[i]);
1525         }
1526 }
1527
1528 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
1529 {
1530         struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
1531
1532         if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC)
1533                 seq_printf(seq, ",background_gc=%s", "sync");
1534         else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_ON)
1535                 seq_printf(seq, ",background_gc=%s", "on");
1536         else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF)
1537                 seq_printf(seq, ",background_gc=%s", "off");
1538
1539         if (test_opt(sbi, DISABLE_ROLL_FORWARD))
1540                 seq_puts(seq, ",disable_roll_forward");
1541         if (test_opt(sbi, NORECOVERY))
1542                 seq_puts(seq, ",norecovery");
1543         if (test_opt(sbi, DISCARD))
1544                 seq_puts(seq, ",discard");
1545         else
1546                 seq_puts(seq, ",nodiscard");
1547         if (test_opt(sbi, NOHEAP))
1548                 seq_puts(seq, ",no_heap");
1549         else
1550                 seq_puts(seq, ",heap");
1551 #ifdef CONFIG_F2FS_FS_XATTR
1552         if (test_opt(sbi, XATTR_USER))
1553                 seq_puts(seq, ",user_xattr");
1554         else
1555                 seq_puts(seq, ",nouser_xattr");
1556         if (test_opt(sbi, INLINE_XATTR))
1557                 seq_puts(seq, ",inline_xattr");
1558         else
1559                 seq_puts(seq, ",noinline_xattr");
1560         if (test_opt(sbi, INLINE_XATTR_SIZE))
1561                 seq_printf(seq, ",inline_xattr_size=%u",
1562                                         F2FS_OPTION(sbi).inline_xattr_size);
1563 #endif
1564 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1565         if (test_opt(sbi, POSIX_ACL))
1566                 seq_puts(seq, ",acl");
1567         else
1568                 seq_puts(seq, ",noacl");
1569 #endif
1570         if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
1571                 seq_puts(seq, ",disable_ext_identify");
1572         if (test_opt(sbi, INLINE_DATA))
1573                 seq_puts(seq, ",inline_data");
1574         else
1575                 seq_puts(seq, ",noinline_data");
1576         if (test_opt(sbi, INLINE_DENTRY))
1577                 seq_puts(seq, ",inline_dentry");
1578         else
1579                 seq_puts(seq, ",noinline_dentry");
1580         if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
1581                 seq_puts(seq, ",flush_merge");
1582         if (test_opt(sbi, NOBARRIER))
1583                 seq_puts(seq, ",nobarrier");
1584         if (test_opt(sbi, FASTBOOT))
1585                 seq_puts(seq, ",fastboot");
1586         if (test_opt(sbi, EXTENT_CACHE))
1587                 seq_puts(seq, ",extent_cache");
1588         else
1589                 seq_puts(seq, ",noextent_cache");
1590         if (test_opt(sbi, DATA_FLUSH))
1591                 seq_puts(seq, ",data_flush");
1592
1593         seq_puts(seq, ",mode=");
1594         if (F2FS_OPTION(sbi).fs_mode == FS_MODE_ADAPTIVE)
1595                 seq_puts(seq, "adaptive");
1596         else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS)
1597                 seq_puts(seq, "lfs");
1598         seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs);
1599         if (test_opt(sbi, RESERVE_ROOT))
1600                 seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u",
1601                                 F2FS_OPTION(sbi).root_reserved_blocks,
1602                                 from_kuid_munged(&init_user_ns,
1603                                         F2FS_OPTION(sbi).s_resuid),
1604                                 from_kgid_munged(&init_user_ns,
1605                                         F2FS_OPTION(sbi).s_resgid));
1606         if (F2FS_IO_SIZE_BITS(sbi))
1607                 seq_printf(seq, ",io_bits=%u",
1608                                 F2FS_OPTION(sbi).write_io_size_bits);
1609 #ifdef CONFIG_F2FS_FAULT_INJECTION
1610         if (test_opt(sbi, FAULT_INJECTION)) {
1611                 seq_printf(seq, ",fault_injection=%u",
1612                                 F2FS_OPTION(sbi).fault_info.inject_rate);
1613                 seq_printf(seq, ",fault_type=%u",
1614                                 F2FS_OPTION(sbi).fault_info.inject_type);
1615         }
1616 #endif
1617 #ifdef CONFIG_QUOTA
1618         if (test_opt(sbi, QUOTA))
1619                 seq_puts(seq, ",quota");
1620         if (test_opt(sbi, USRQUOTA))
1621                 seq_puts(seq, ",usrquota");
1622         if (test_opt(sbi, GRPQUOTA))
1623                 seq_puts(seq, ",grpquota");
1624         if (test_opt(sbi, PRJQUOTA))
1625                 seq_puts(seq, ",prjquota");
1626 #endif
1627         f2fs_show_quota_options(seq, sbi->sb);
1628         if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER)
1629                 seq_printf(seq, ",whint_mode=%s", "user-based");
1630         else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS)
1631                 seq_printf(seq, ",whint_mode=%s", "fs-based");
1632
1633         fscrypt_show_test_dummy_encryption(seq, ',', sbi->sb);
1634
1635         if (sbi->sb->s_flags & SB_INLINECRYPT)
1636                 seq_puts(seq, ",inlinecrypt");
1637
1638         if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT)
1639                 seq_printf(seq, ",alloc_mode=%s", "default");
1640         else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
1641                 seq_printf(seq, ",alloc_mode=%s", "reuse");
1642
1643         if (test_opt(sbi, DISABLE_CHECKPOINT))
1644                 seq_printf(seq, ",checkpoint=disable:%u",
1645                                 F2FS_OPTION(sbi).unusable_cap);
1646         if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX)
1647                 seq_printf(seq, ",fsync_mode=%s", "posix");
1648         else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT)
1649                 seq_printf(seq, ",fsync_mode=%s", "strict");
1650         else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER)
1651                 seq_printf(seq, ",fsync_mode=%s", "nobarrier");
1652
1653 #ifdef CONFIG_F2FS_FS_COMPRESSION
1654         f2fs_show_compress_options(seq, sbi->sb);
1655 #endif
1656
1657         if (test_opt(sbi, ATGC))
1658                 seq_puts(seq, ",atgc");
1659         return 0;
1660 }
1661
1662 static void default_options(struct f2fs_sb_info *sbi)
1663 {
1664         /* init some FS parameters */
1665         F2FS_OPTION(sbi).active_logs = NR_CURSEG_PERSIST_TYPE;
1666         F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS;
1667         F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
1668         F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
1669         F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_NOBARRIER;
1670         F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID);
1671         F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID);
1672         F2FS_OPTION(sbi).compress_algorithm = COMPRESS_LZ4;
1673         F2FS_OPTION(sbi).compress_log_size = MIN_COMPRESS_LOG_SIZE;
1674         F2FS_OPTION(sbi).compress_ext_cnt = 0;
1675         F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON;
1676
1677         sbi->sb->s_flags &= ~SB_INLINECRYPT;
1678
1679         set_opt(sbi, INLINE_XATTR);
1680         set_opt(sbi, INLINE_DATA);
1681         set_opt(sbi, INLINE_DENTRY);
1682         set_opt(sbi, EXTENT_CACHE);
1683         set_opt(sbi, NOHEAP);
1684         set_opt(sbi, ATGC);
1685         clear_opt(sbi, DISABLE_CHECKPOINT);
1686         F2FS_OPTION(sbi).unusable_cap = 0;
1687         sbi->sb->s_flags |= SB_LAZYTIME;
1688         set_opt(sbi, FLUSH_MERGE);
1689         set_opt(sbi, DISCARD);
1690         if (f2fs_sb_has_blkzoned(sbi))
1691                 F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS;
1692         else
1693                 F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE;
1694
1695 #ifdef CONFIG_F2FS_FS_XATTR
1696         set_opt(sbi, XATTR_USER);
1697 #endif
1698 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1699         set_opt(sbi, POSIX_ACL);
1700 #endif
1701
1702         f2fs_build_fault_attr(sbi, 0, 0);
1703 }
1704
1705 #ifdef CONFIG_QUOTA
1706 static int f2fs_enable_quotas(struct super_block *sb);
1707 #endif
1708
1709 static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi)
1710 {
1711         unsigned int s_flags = sbi->sb->s_flags;
1712         struct cp_control cpc;
1713         int err = 0;
1714         int ret;
1715         block_t unusable;
1716
1717         if (s_flags & SB_RDONLY) {
1718                 f2fs_err(sbi, "checkpoint=disable on readonly fs");
1719                 return -EINVAL;
1720         }
1721         sbi->sb->s_flags |= SB_ACTIVE;
1722
1723         f2fs_update_time(sbi, DISABLE_TIME);
1724
1725         while (!f2fs_time_over(sbi, DISABLE_TIME)) {
1726                 down_write(&sbi->gc_lock);
1727                 err = f2fs_gc(sbi, true, false, NULL_SEGNO);
1728                 if (err == -ENODATA) {
1729                         err = 0;
1730                         break;
1731                 }
1732                 if (err && err != -EAGAIN)
1733                         break;
1734         }
1735
1736         ret = sync_filesystem(sbi->sb);
1737         if (ret || err) {
1738                 err = ret ? ret: err;
1739                 goto restore_flag;
1740         }
1741
1742         unusable = f2fs_get_unusable_blocks(sbi);
1743         if (f2fs_disable_cp_again(sbi, unusable)) {
1744                 err = -EAGAIN;
1745                 goto restore_flag;
1746         }
1747
1748         down_write(&sbi->gc_lock);
1749         cpc.reason = CP_PAUSE;
1750         set_sbi_flag(sbi, SBI_CP_DISABLED);
1751         err = f2fs_write_checkpoint(sbi, &cpc);
1752         if (err)
1753                 goto out_unlock;
1754
1755         spin_lock(&sbi->stat_lock);
1756         sbi->unusable_block_count = unusable;
1757         spin_unlock(&sbi->stat_lock);
1758
1759 out_unlock:
1760         up_write(&sbi->gc_lock);
1761 restore_flag:
1762         sbi->sb->s_flags = s_flags;     /* Restore SB_RDONLY status */
1763         return err;
1764 }
1765
1766 static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi)
1767 {
1768         /* we should flush all the data to keep data consistency */
1769         sync_inodes_sb(sbi->sb);
1770
1771         down_write(&sbi->gc_lock);
1772         f2fs_dirty_to_prefree(sbi);
1773
1774         clear_sbi_flag(sbi, SBI_CP_DISABLED);
1775         set_sbi_flag(sbi, SBI_IS_DIRTY);
1776         up_write(&sbi->gc_lock);
1777
1778         f2fs_sync_fs(sbi->sb, 1);
1779 }
1780
1781 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
1782 {
1783         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1784         struct f2fs_mount_info org_mount_opt;
1785         unsigned long old_sb_flags;
1786         int err;
1787         bool need_restart_gc = false;
1788         bool need_stop_gc = false;
1789         bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
1790         bool disable_checkpoint = test_opt(sbi, DISABLE_CHECKPOINT);
1791         bool no_io_align = !F2FS_IO_ALIGNED(sbi);
1792         bool no_atgc = !test_opt(sbi, ATGC);
1793         bool checkpoint_changed;
1794 #ifdef CONFIG_QUOTA
1795         int i, j;
1796 #endif
1797
1798         /*
1799          * Save the old mount options in case we
1800          * need to restore them.
1801          */
1802         org_mount_opt = sbi->mount_opt;
1803         old_sb_flags = sb->s_flags;
1804
1805 #ifdef CONFIG_QUOTA
1806         org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt;
1807         for (i = 0; i < MAXQUOTAS; i++) {
1808                 if (F2FS_OPTION(sbi).s_qf_names[i]) {
1809                         org_mount_opt.s_qf_names[i] =
1810                                 kstrdup(F2FS_OPTION(sbi).s_qf_names[i],
1811                                 GFP_KERNEL);
1812                         if (!org_mount_opt.s_qf_names[i]) {
1813                                 for (j = 0; j < i; j++)
1814                                         kfree(org_mount_opt.s_qf_names[j]);
1815                                 return -ENOMEM;
1816                         }
1817                 } else {
1818                         org_mount_opt.s_qf_names[i] = NULL;
1819                 }
1820         }
1821 #endif
1822
1823         /* recover superblocks we couldn't write due to previous RO mount */
1824         if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
1825                 err = f2fs_commit_super(sbi, false);
1826                 f2fs_info(sbi, "Try to recover all the superblocks, ret: %d",
1827                           err);
1828                 if (!err)
1829                         clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1830         }
1831
1832         default_options(sbi);
1833
1834         /* parse mount options */
1835         err = parse_options(sb, data, true);
1836         if (err)
1837                 goto restore_opts;
1838         checkpoint_changed =
1839                         disable_checkpoint != test_opt(sbi, DISABLE_CHECKPOINT);
1840
1841         /*
1842          * Previous and new state of filesystem is RO,
1843          * so skip checking GC and FLUSH_MERGE conditions.
1844          */
1845         if (f2fs_readonly(sb) && (*flags & SB_RDONLY))
1846                 goto skip;
1847
1848 #ifdef CONFIG_QUOTA
1849         if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) {
1850                 err = dquot_suspend(sb, -1);
1851                 if (err < 0)
1852                         goto restore_opts;
1853         } else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) {
1854                 /* dquot_resume needs RW */
1855                 sb->s_flags &= ~SB_RDONLY;
1856                 if (sb_any_quota_suspended(sb)) {
1857                         dquot_resume(sb, -1);
1858                 } else if (f2fs_sb_has_quota_ino(sbi)) {
1859                         err = f2fs_enable_quotas(sb);
1860                         if (err)
1861                                 goto restore_opts;
1862                 }
1863         }
1864 #endif
1865         /* disallow enable atgc dynamically */
1866         if (no_atgc == !!test_opt(sbi, ATGC)) {
1867                 err = -EINVAL;
1868                 f2fs_warn(sbi, "switch atgc option is not allowed");
1869                 goto restore_opts;
1870         }
1871
1872         /* disallow enable/disable extent_cache dynamically */
1873         if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
1874                 err = -EINVAL;
1875                 f2fs_warn(sbi, "switch extent_cache option is not allowed");
1876                 goto restore_opts;
1877         }
1878
1879         if (no_io_align == !!F2FS_IO_ALIGNED(sbi)) {
1880                 err = -EINVAL;
1881                 f2fs_warn(sbi, "switch io_bits option is not allowed");
1882                 goto restore_opts;
1883         }
1884
1885         if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) {
1886                 err = -EINVAL;
1887                 f2fs_warn(sbi, "disabling checkpoint not compatible with read-only");
1888                 goto restore_opts;
1889         }
1890
1891         /*
1892          * We stop the GC thread if FS is mounted as RO
1893          * or if background_gc = off is passed in mount
1894          * option. Also sync the filesystem.
1895          */
1896         if ((*flags & SB_RDONLY) ||
1897                         F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF) {
1898                 if (sbi->gc_thread) {
1899                         f2fs_stop_gc_thread(sbi);
1900                         need_restart_gc = true;
1901                 }
1902         } else if (!sbi->gc_thread) {
1903                 err = f2fs_start_gc_thread(sbi);
1904                 if (err)
1905                         goto restore_opts;
1906                 need_stop_gc = true;
1907         }
1908
1909         if (*flags & SB_RDONLY ||
1910                 F2FS_OPTION(sbi).whint_mode != org_mount_opt.whint_mode) {
1911                 writeback_inodes_sb(sb, WB_REASON_SYNC);
1912                 sync_inodes_sb(sb);
1913
1914                 set_sbi_flag(sbi, SBI_IS_DIRTY);
1915                 set_sbi_flag(sbi, SBI_IS_CLOSE);
1916                 f2fs_sync_fs(sb, 1);
1917                 clear_sbi_flag(sbi, SBI_IS_CLOSE);
1918         }
1919
1920         if (checkpoint_changed) {
1921                 if (test_opt(sbi, DISABLE_CHECKPOINT)) {
1922                         err = f2fs_disable_checkpoint(sbi);
1923                         if (err)
1924                                 goto restore_gc;
1925                 } else {
1926                         f2fs_enable_checkpoint(sbi);
1927                 }
1928         }
1929
1930         /*
1931          * We stop issue flush thread if FS is mounted as RO
1932          * or if flush_merge is not passed in mount option.
1933          */
1934         if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
1935                 clear_opt(sbi, FLUSH_MERGE);
1936                 f2fs_destroy_flush_cmd_control(sbi, false);
1937         } else {
1938                 err = f2fs_create_flush_cmd_control(sbi);
1939                 if (err)
1940                         goto restore_gc;
1941         }
1942 skip:
1943 #ifdef CONFIG_QUOTA
1944         /* Release old quota file names */
1945         for (i = 0; i < MAXQUOTAS; i++)
1946                 kfree(org_mount_opt.s_qf_names[i]);
1947 #endif
1948         /* Update the POSIXACL Flag */
1949         sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
1950                 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
1951
1952         limit_reserve_root(sbi);
1953         adjust_unusable_cap_perc(sbi);
1954         *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
1955         return 0;
1956 restore_gc:
1957         if (need_restart_gc) {
1958                 if (f2fs_start_gc_thread(sbi))
1959                         f2fs_warn(sbi, "background gc thread has stopped");
1960         } else if (need_stop_gc) {
1961                 f2fs_stop_gc_thread(sbi);
1962         }
1963 restore_opts:
1964 #ifdef CONFIG_QUOTA
1965         F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt;
1966         for (i = 0; i < MAXQUOTAS; i++) {
1967                 kfree(F2FS_OPTION(sbi).s_qf_names[i]);
1968                 F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i];
1969         }
1970 #endif
1971         sbi->mount_opt = org_mount_opt;
1972         sb->s_flags = old_sb_flags;
1973         return err;
1974 }
1975
1976 #ifdef CONFIG_QUOTA
1977 /* Read data from quotafile */
1978 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data,
1979                                size_t len, loff_t off)
1980 {
1981         struct inode *inode = sb_dqopt(sb)->files[type];
1982         struct address_space *mapping = inode->i_mapping;
1983         block_t blkidx = F2FS_BYTES_TO_BLK(off);
1984         int offset = off & (sb->s_blocksize - 1);
1985         int tocopy;
1986         size_t toread;
1987         loff_t i_size = i_size_read(inode);
1988         struct page *page;
1989         char *kaddr;
1990
1991         if (off > i_size)
1992                 return 0;
1993
1994         if (off + len > i_size)
1995                 len = i_size - off;
1996         toread = len;
1997         while (toread > 0) {
1998                 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
1999 repeat:
2000                 page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS);
2001                 if (IS_ERR(page)) {
2002                         if (PTR_ERR(page) == -ENOMEM) {
2003                                 congestion_wait(BLK_RW_ASYNC,
2004                                                 DEFAULT_IO_TIMEOUT);
2005                                 goto repeat;
2006                         }
2007                         set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2008                         return PTR_ERR(page);
2009                 }
2010
2011                 lock_page(page);
2012
2013                 if (unlikely(page->mapping != mapping)) {
2014                         f2fs_put_page(page, 1);
2015                         goto repeat;
2016                 }
2017                 if (unlikely(!PageUptodate(page))) {
2018                         f2fs_put_page(page, 1);
2019                         set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2020                         return -EIO;
2021                 }
2022
2023                 kaddr = kmap_atomic(page);
2024                 memcpy(data, kaddr + offset, tocopy);
2025                 kunmap_atomic(kaddr);
2026                 f2fs_put_page(page, 1);
2027
2028                 offset = 0;
2029                 toread -= tocopy;
2030                 data += tocopy;
2031                 blkidx++;
2032         }
2033         return len;
2034 }
2035
2036 /* Write to quotafile */
2037 static ssize_t f2fs_quota_write(struct super_block *sb, int type,
2038                                 const char *data, size_t len, loff_t off)
2039 {
2040         struct inode *inode = sb_dqopt(sb)->files[type];
2041         struct address_space *mapping = inode->i_mapping;
2042         const struct address_space_operations *a_ops = mapping->a_ops;
2043         int offset = off & (sb->s_blocksize - 1);
2044         size_t towrite = len;
2045         struct page *page;
2046         void *fsdata = NULL;
2047         char *kaddr;
2048         int err = 0;
2049         int tocopy;
2050
2051         while (towrite > 0) {
2052                 tocopy = min_t(unsigned long, sb->s_blocksize - offset,
2053                                                                 towrite);
2054 retry:
2055                 err = a_ops->write_begin(NULL, mapping, off, tocopy, 0,
2056                                                         &page, &fsdata);
2057                 if (unlikely(err)) {
2058                         if (err == -ENOMEM) {
2059                                 congestion_wait(BLK_RW_ASYNC,
2060                                                 DEFAULT_IO_TIMEOUT);
2061                                 goto retry;
2062                         }
2063                         set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2064                         break;
2065                 }
2066
2067                 kaddr = kmap_atomic(page);
2068                 memcpy(kaddr + offset, data, tocopy);
2069                 kunmap_atomic(kaddr);
2070                 flush_dcache_page(page);
2071
2072                 a_ops->write_end(NULL, mapping, off, tocopy, tocopy,
2073                                                 page, fsdata);
2074                 offset = 0;
2075                 towrite -= tocopy;
2076                 off += tocopy;
2077                 data += tocopy;
2078                 cond_resched();
2079         }
2080
2081         if (len == towrite)
2082                 return err;
2083         inode->i_mtime = inode->i_ctime = current_time(inode);
2084         f2fs_mark_inode_dirty_sync(inode, false);
2085         return len - towrite;
2086 }
2087
2088 static struct dquot **f2fs_get_dquots(struct inode *inode)
2089 {
2090         return F2FS_I(inode)->i_dquot;
2091 }
2092
2093 static qsize_t *f2fs_get_reserved_space(struct inode *inode)
2094 {
2095         return &F2FS_I(inode)->i_reserved_quota;
2096 }
2097
2098 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type)
2099 {
2100         if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) {
2101                 f2fs_err(sbi, "quota sysfile may be corrupted, skip loading it");
2102                 return 0;
2103         }
2104
2105         return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type],
2106                                         F2FS_OPTION(sbi).s_jquota_fmt, type);
2107 }
2108
2109 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly)
2110 {
2111         int enabled = 0;
2112         int i, err;
2113
2114         if (f2fs_sb_has_quota_ino(sbi) && rdonly) {
2115                 err = f2fs_enable_quotas(sbi->sb);
2116                 if (err) {
2117                         f2fs_err(sbi, "Cannot turn on quota_ino: %d", err);
2118                         return 0;
2119                 }
2120                 return 1;
2121         }
2122
2123         for (i = 0; i < MAXQUOTAS; i++) {
2124                 if (F2FS_OPTION(sbi).s_qf_names[i]) {
2125                         err = f2fs_quota_on_mount(sbi, i);
2126                         if (!err) {
2127                                 enabled = 1;
2128                                 continue;
2129                         }
2130                         f2fs_err(sbi, "Cannot turn on quotas: %d on %d",
2131                                  err, i);
2132                 }
2133         }
2134         return enabled;
2135 }
2136
2137 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id,
2138                              unsigned int flags)
2139 {
2140         struct inode *qf_inode;
2141         unsigned long qf_inum;
2142         int err;
2143
2144         BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb)));
2145
2146         qf_inum = f2fs_qf_ino(sb, type);
2147         if (!qf_inum)
2148                 return -EPERM;
2149
2150         qf_inode = f2fs_iget(sb, qf_inum);
2151         if (IS_ERR(qf_inode)) {
2152                 f2fs_err(F2FS_SB(sb), "Bad quota inode %u:%lu", type, qf_inum);
2153                 return PTR_ERR(qf_inode);
2154         }
2155
2156         /* Don't account quota for quota files to avoid recursion */
2157         qf_inode->i_flags |= S_NOQUOTA;
2158         err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
2159         iput(qf_inode);
2160         return err;
2161 }
2162
2163 static int f2fs_enable_quotas(struct super_block *sb)
2164 {
2165         struct f2fs_sb_info *sbi = F2FS_SB(sb);
2166         int type, err = 0;
2167         unsigned long qf_inum;
2168         bool quota_mopt[MAXQUOTAS] = {
2169                 test_opt(sbi, USRQUOTA),
2170                 test_opt(sbi, GRPQUOTA),
2171                 test_opt(sbi, PRJQUOTA),
2172         };
2173
2174         if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) {
2175                 f2fs_err(sbi, "quota file may be corrupted, skip loading it");
2176                 return 0;
2177         }
2178
2179         sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
2180
2181         for (type = 0; type < MAXQUOTAS; type++) {
2182                 qf_inum = f2fs_qf_ino(sb, type);
2183                 if (qf_inum) {
2184                         err = f2fs_quota_enable(sb, type, QFMT_VFS_V1,
2185                                 DQUOT_USAGE_ENABLED |
2186                                 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
2187                         if (err) {
2188                                 f2fs_err(sbi, "Failed to enable quota tracking (type=%d, err=%d). Please run fsck to fix.",
2189                                          type, err);
2190                                 for (type--; type >= 0; type--)
2191                                         dquot_quota_off(sb, type);
2192                                 set_sbi_flag(F2FS_SB(sb),
2193                                                 SBI_QUOTA_NEED_REPAIR);
2194                                 return err;
2195                         }
2196                 }
2197         }
2198         return 0;
2199 }
2200
2201 int f2fs_quota_sync(struct super_block *sb, int type)
2202 {
2203         struct f2fs_sb_info *sbi = F2FS_SB(sb);
2204         struct quota_info *dqopt = sb_dqopt(sb);
2205         int cnt;
2206         int ret;
2207
2208         /*
2209          * do_quotactl
2210          *  f2fs_quota_sync
2211          *  down_read(quota_sem)
2212          *  dquot_writeback_dquots()
2213          *  f2fs_dquot_commit
2214          *                            block_operation
2215          *                            down_read(quota_sem)
2216          */
2217         f2fs_lock_op(sbi);
2218
2219         down_read(&sbi->quota_sem);
2220         ret = dquot_writeback_dquots(sb, type);
2221         if (ret)
2222                 goto out;
2223
2224         /*
2225          * Now when everything is written we can discard the pagecache so
2226          * that userspace sees the changes.
2227          */
2228         for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
2229                 struct address_space *mapping;
2230
2231                 if (type != -1 && cnt != type)
2232                         continue;
2233                 if (!sb_has_quota_active(sb, cnt))
2234                         continue;
2235
2236                 mapping = dqopt->files[cnt]->i_mapping;
2237
2238                 ret = filemap_fdatawrite(mapping);
2239                 if (ret)
2240                         goto out;
2241
2242                 /* if we are using journalled quota */
2243                 if (is_journalled_quota(sbi))
2244                         continue;
2245
2246                 ret = filemap_fdatawait(mapping);
2247                 if (ret)
2248                         set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2249
2250                 inode_lock(dqopt->files[cnt]);
2251                 truncate_inode_pages(&dqopt->files[cnt]->i_data, 0);
2252                 inode_unlock(dqopt->files[cnt]);
2253         }
2254 out:
2255         if (ret)
2256                 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2257         up_read(&sbi->quota_sem);
2258         f2fs_unlock_op(sbi);
2259         return ret;
2260 }
2261
2262 static int f2fs_quota_on(struct super_block *sb, int type, int format_id,
2263                                                         const struct path *path)
2264 {
2265         struct inode *inode;
2266         int err;
2267
2268         /* if quota sysfile exists, deny enabling quota with specific file */
2269         if (f2fs_sb_has_quota_ino(F2FS_SB(sb))) {
2270                 f2fs_err(F2FS_SB(sb), "quota sysfile already exists");
2271                 return -EBUSY;
2272         }
2273
2274         err = f2fs_quota_sync(sb, type);
2275         if (err)
2276                 return err;
2277
2278         err = dquot_quota_on(sb, type, format_id, path);
2279         if (err)
2280                 return err;
2281
2282         inode = d_inode(path->dentry);
2283
2284         inode_lock(inode);
2285         F2FS_I(inode)->i_flags |= F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL;
2286         f2fs_set_inode_flags(inode);
2287         inode_unlock(inode);
2288         f2fs_mark_inode_dirty_sync(inode, false);
2289
2290         return 0;
2291 }
2292
2293 static int __f2fs_quota_off(struct super_block *sb, int type)
2294 {
2295         struct inode *inode = sb_dqopt(sb)->files[type];
2296         int err;
2297
2298         if (!inode || !igrab(inode))
2299                 return dquot_quota_off(sb, type);
2300
2301         err = f2fs_quota_sync(sb, type);
2302         if (err)
2303                 goto out_put;
2304
2305         err = dquot_quota_off(sb, type);
2306         if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb)))
2307                 goto out_put;
2308
2309         inode_lock(inode);
2310         F2FS_I(inode)->i_flags &= ~(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL);
2311         f2fs_set_inode_flags(inode);
2312         inode_unlock(inode);
2313         f2fs_mark_inode_dirty_sync(inode, false);
2314 out_put:
2315         iput(inode);
2316         return err;
2317 }
2318
2319 static int f2fs_quota_off(struct super_block *sb, int type)
2320 {
2321         struct f2fs_sb_info *sbi = F2FS_SB(sb);
2322         int err;
2323
2324         err = __f2fs_quota_off(sb, type);
2325
2326         /*
2327          * quotactl can shutdown journalled quota, result in inconsistence
2328          * between quota record and fs data by following updates, tag the
2329          * flag to let fsck be aware of it.
2330          */
2331         if (is_journalled_quota(sbi))
2332                 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2333         return err;
2334 }
2335
2336 void f2fs_quota_off_umount(struct super_block *sb)
2337 {
2338         int type;
2339         int err;
2340
2341         for (type = 0; type < MAXQUOTAS; type++) {
2342                 err = __f2fs_quota_off(sb, type);
2343                 if (err) {
2344                         int ret = dquot_quota_off(sb, type);
2345
2346                         f2fs_err(F2FS_SB(sb), "Fail to turn off disk quota (type: %d, err: %d, ret:%d), Please run fsck to fix it.",
2347                                  type, err, ret);
2348                         set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2349                 }
2350         }
2351         /*
2352          * In case of checkpoint=disable, we must flush quota blocks.
2353          * This can cause NULL exception for node_inode in end_io, since
2354          * put_super already dropped it.
2355          */
2356         sync_filesystem(sb);
2357 }
2358
2359 static void f2fs_truncate_quota_inode_pages(struct super_block *sb)
2360 {
2361         struct quota_info *dqopt = sb_dqopt(sb);
2362         int type;
2363
2364         for (type = 0; type < MAXQUOTAS; type++) {
2365                 if (!dqopt->files[type])
2366                         continue;
2367                 f2fs_inode_synced(dqopt->files[type]);
2368         }
2369 }
2370
2371 static int f2fs_dquot_commit(struct dquot *dquot)
2372 {
2373         struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2374         int ret;
2375
2376         down_read_nested(&sbi->quota_sem, SINGLE_DEPTH_NESTING);
2377         ret = dquot_commit(dquot);
2378         if (ret < 0)
2379                 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2380         up_read(&sbi->quota_sem);
2381         return ret;
2382 }
2383
2384 static int f2fs_dquot_acquire(struct dquot *dquot)
2385 {
2386         struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2387         int ret;
2388
2389         down_read(&sbi->quota_sem);
2390         ret = dquot_acquire(dquot);
2391         if (ret < 0)
2392                 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2393         up_read(&sbi->quota_sem);
2394         return ret;
2395 }
2396
2397 static int f2fs_dquot_release(struct dquot *dquot)
2398 {
2399         struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2400         int ret = dquot_release(dquot);
2401
2402         if (ret < 0)
2403                 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2404         return ret;
2405 }
2406
2407 static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot)
2408 {
2409         struct super_block *sb = dquot->dq_sb;
2410         struct f2fs_sb_info *sbi = F2FS_SB(sb);
2411         int ret = dquot_mark_dquot_dirty(dquot);
2412
2413         /* if we are using journalled quota */
2414         if (is_journalled_quota(sbi))
2415                 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
2416
2417         return ret;
2418 }
2419
2420 static int f2fs_dquot_commit_info(struct super_block *sb, int type)
2421 {
2422         struct f2fs_sb_info *sbi = F2FS_SB(sb);
2423         int ret = dquot_commit_info(sb, type);
2424
2425         if (ret < 0)
2426                 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2427         return ret;
2428 }
2429
2430 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid)
2431 {
2432         *projid = F2FS_I(inode)->i_projid;
2433         return 0;
2434 }
2435
2436 static const struct dquot_operations f2fs_quota_operations = {
2437         .get_reserved_space = f2fs_get_reserved_space,
2438         .write_dquot    = f2fs_dquot_commit,
2439         .acquire_dquot  = f2fs_dquot_acquire,
2440         .release_dquot  = f2fs_dquot_release,
2441         .mark_dirty     = f2fs_dquot_mark_dquot_dirty,
2442         .write_info     = f2fs_dquot_commit_info,
2443         .alloc_dquot    = dquot_alloc,
2444         .destroy_dquot  = dquot_destroy,
2445         .get_projid     = f2fs_get_projid,
2446         .get_next_id    = dquot_get_next_id,
2447 };
2448
2449 static const struct quotactl_ops f2fs_quotactl_ops = {
2450         .quota_on       = f2fs_quota_on,
2451         .quota_off      = f2fs_quota_off,
2452         .quota_sync     = f2fs_quota_sync,
2453         .get_state      = dquot_get_state,
2454         .set_info       = dquot_set_dqinfo,
2455         .get_dqblk      = dquot_get_dqblk,
2456         .set_dqblk      = dquot_set_dqblk,
2457         .get_nextdqblk  = dquot_get_next_dqblk,
2458 };
2459 #else
2460 int f2fs_quota_sync(struct super_block *sb, int type)
2461 {
2462         return 0;
2463 }
2464
2465 void f2fs_quota_off_umount(struct super_block *sb)
2466 {
2467 }
2468 #endif
2469
2470 static const struct super_operations f2fs_sops = {
2471         .alloc_inode    = f2fs_alloc_inode,
2472         .free_inode     = f2fs_free_inode,
2473         .drop_inode     = f2fs_drop_inode,
2474         .write_inode    = f2fs_write_inode,
2475         .dirty_inode    = f2fs_dirty_inode,
2476         .show_options   = f2fs_show_options,
2477 #ifdef CONFIG_QUOTA
2478         .quota_read     = f2fs_quota_read,
2479         .quota_write    = f2fs_quota_write,
2480         .get_dquots     = f2fs_get_dquots,
2481 #endif
2482         .evict_inode    = f2fs_evict_inode,
2483         .put_super      = f2fs_put_super,
2484         .sync_fs        = f2fs_sync_fs,
2485         .freeze_fs      = f2fs_freeze,
2486         .unfreeze_fs    = f2fs_unfreeze,
2487         .statfs         = f2fs_statfs,
2488         .remount_fs     = f2fs_remount,
2489 };
2490
2491 #ifdef CONFIG_FS_ENCRYPTION
2492 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
2493 {
2494         return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
2495                                 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
2496                                 ctx, len, NULL);
2497 }
2498
2499 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
2500                                                         void *fs_data)
2501 {
2502         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2503
2504         /*
2505          * Encrypting the root directory is not allowed because fsck
2506          * expects lost+found directory to exist and remain unencrypted
2507          * if LOST_FOUND feature is enabled.
2508          *
2509          */
2510         if (f2fs_sb_has_lost_found(sbi) &&
2511                         inode->i_ino == F2FS_ROOT_INO(sbi))
2512                 return -EPERM;
2513
2514         return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
2515                                 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
2516                                 ctx, len, fs_data, XATTR_CREATE);
2517 }
2518
2519 static const union fscrypt_policy *f2fs_get_dummy_policy(struct super_block *sb)
2520 {
2521         return F2FS_OPTION(F2FS_SB(sb)).dummy_enc_policy.policy;
2522 }
2523
2524 static bool f2fs_has_stable_inodes(struct super_block *sb)
2525 {
2526         return true;
2527 }
2528
2529 static void f2fs_get_ino_and_lblk_bits(struct super_block *sb,
2530                                        int *ino_bits_ret, int *lblk_bits_ret)
2531 {
2532         *ino_bits_ret = 8 * sizeof(nid_t);
2533         *lblk_bits_ret = 8 * sizeof(block_t);
2534 }
2535
2536 static int f2fs_get_num_devices(struct super_block *sb)
2537 {
2538         struct f2fs_sb_info *sbi = F2FS_SB(sb);
2539
2540         if (f2fs_is_multi_device(sbi))
2541                 return sbi->s_ndevs;
2542         return 1;
2543 }
2544
2545 static void f2fs_get_devices(struct super_block *sb,
2546                              struct request_queue **devs)
2547 {
2548         struct f2fs_sb_info *sbi = F2FS_SB(sb);
2549         int i;
2550
2551         for (i = 0; i < sbi->s_ndevs; i++)
2552                 devs[i] = bdev_get_queue(FDEV(i).bdev);
2553 }
2554
2555 static const struct fscrypt_operations f2fs_cryptops = {
2556         .key_prefix             = "f2fs:",
2557         .get_context            = f2fs_get_context,
2558         .set_context            = f2fs_set_context,
2559         .get_dummy_policy       = f2fs_get_dummy_policy,
2560         .empty_dir              = f2fs_empty_dir,
2561         .max_namelen            = F2FS_NAME_LEN,
2562         .has_stable_inodes      = f2fs_has_stable_inodes,
2563         .get_ino_and_lblk_bits  = f2fs_get_ino_and_lblk_bits,
2564         .get_num_devices        = f2fs_get_num_devices,
2565         .get_devices            = f2fs_get_devices,
2566 };
2567 #endif
2568
2569 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
2570                 u64 ino, u32 generation)
2571 {
2572         struct f2fs_sb_info *sbi = F2FS_SB(sb);
2573         struct inode *inode;
2574
2575         if (f2fs_check_nid_range(sbi, ino))
2576                 return ERR_PTR(-ESTALE);
2577
2578         /*
2579          * f2fs_iget isn't quite right if the inode is currently unallocated!
2580          * However f2fs_iget currently does appropriate checks to handle stale
2581          * inodes so everything is OK.
2582          */
2583         inode = f2fs_iget(sb, ino);
2584         if (IS_ERR(inode))
2585                 return ERR_CAST(inode);
2586         if (unlikely(generation && inode->i_generation != generation)) {
2587                 /* we didn't find the right inode.. */
2588                 iput(inode);
2589                 return ERR_PTR(-ESTALE);
2590         }
2591         return inode;
2592 }
2593
2594 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
2595                 int fh_len, int fh_type)
2596 {
2597         return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
2598                                     f2fs_nfs_get_inode);
2599 }
2600
2601 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
2602                 int fh_len, int fh_type)
2603 {
2604         return generic_fh_to_parent(sb, fid, fh_len, fh_type,
2605                                     f2fs_nfs_get_inode);
2606 }
2607
2608 static const struct export_operations f2fs_export_ops = {
2609         .fh_to_dentry = f2fs_fh_to_dentry,
2610         .fh_to_parent = f2fs_fh_to_parent,
2611         .get_parent = f2fs_get_parent,
2612 };
2613
2614 static loff_t max_file_blocks(void)
2615 {
2616         loff_t result = 0;
2617         loff_t leaf_count = DEF_ADDRS_PER_BLOCK;
2618
2619         /*
2620          * note: previously, result is equal to (DEF_ADDRS_PER_INODE -
2621          * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more
2622          * space in inode.i_addr, it will be more safe to reassign
2623          * result as zero.
2624          */
2625
2626         /* two direct node blocks */
2627         result += (leaf_count * 2);
2628
2629         /* two indirect node blocks */
2630         leaf_count *= NIDS_PER_BLOCK;
2631         result += (leaf_count * 2);
2632
2633         /* one double indirect node block */
2634         leaf_count *= NIDS_PER_BLOCK;
2635         result += leaf_count;
2636
2637         return result;
2638 }
2639
2640 static int __f2fs_commit_super(struct buffer_head *bh,
2641                         struct f2fs_super_block *super)
2642 {
2643         lock_buffer(bh);
2644         if (super)
2645                 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
2646         set_buffer_dirty(bh);
2647         unlock_buffer(bh);
2648
2649         /* it's rare case, we can do fua all the time */
2650         return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
2651 }
2652
2653 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
2654                                         struct buffer_head *bh)
2655 {
2656         struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2657                                         (bh->b_data + F2FS_SUPER_OFFSET);
2658         struct super_block *sb = sbi->sb;
2659         u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2660         u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
2661         u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
2662         u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
2663         u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2664         u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2665         u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
2666         u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
2667         u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
2668         u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
2669         u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2670         u32 segment_count = le32_to_cpu(raw_super->segment_count);
2671         u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2672         u64 main_end_blkaddr = main_blkaddr +
2673                                 (segment_count_main << log_blocks_per_seg);
2674         u64 seg_end_blkaddr = segment0_blkaddr +
2675                                 (segment_count << log_blocks_per_seg);
2676
2677         if (segment0_blkaddr != cp_blkaddr) {
2678                 f2fs_info(sbi, "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
2679                           segment0_blkaddr, cp_blkaddr);
2680                 return true;
2681         }
2682
2683         if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
2684                                                         sit_blkaddr) {
2685                 f2fs_info(sbi, "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
2686                           cp_blkaddr, sit_blkaddr,
2687                           segment_count_ckpt << log_blocks_per_seg);
2688                 return true;
2689         }
2690
2691         if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
2692                                                         nat_blkaddr) {
2693                 f2fs_info(sbi, "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
2694                           sit_blkaddr, nat_blkaddr,
2695                           segment_count_sit << log_blocks_per_seg);
2696                 return true;
2697         }
2698
2699         if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
2700                                                         ssa_blkaddr) {
2701                 f2fs_info(sbi, "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
2702                           nat_blkaddr, ssa_blkaddr,
2703                           segment_count_nat << log_blocks_per_seg);
2704                 return true;
2705         }
2706
2707         if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
2708                                                         main_blkaddr) {
2709                 f2fs_info(sbi, "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
2710                           ssa_blkaddr, main_blkaddr,
2711                           segment_count_ssa << log_blocks_per_seg);
2712                 return true;
2713         }
2714
2715         if (main_end_blkaddr > seg_end_blkaddr) {
2716                 f2fs_info(sbi, "Wrong MAIN_AREA boundary, start(%u) end(%llu) block(%u)",
2717                           main_blkaddr, seg_end_blkaddr,
2718                           segment_count_main << log_blocks_per_seg);
2719                 return true;
2720         } else if (main_end_blkaddr < seg_end_blkaddr) {
2721                 int err = 0;
2722                 char *res;
2723
2724                 /* fix in-memory information all the time */
2725                 raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
2726                                 segment0_blkaddr) >> log_blocks_per_seg);
2727
2728                 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
2729                         set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2730                         res = "internally";
2731                 } else {
2732                         err = __f2fs_commit_super(bh, NULL);
2733                         res = err ? "failed" : "done";
2734                 }
2735                 f2fs_info(sbi, "Fix alignment : %s, start(%u) end(%llu) block(%u)",
2736                           res, main_blkaddr, seg_end_blkaddr,
2737                           segment_count_main << log_blocks_per_seg);
2738                 if (err)
2739                         return true;
2740         }
2741         return false;
2742 }
2743
2744 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
2745                                 struct buffer_head *bh)
2746 {
2747         block_t segment_count, segs_per_sec, secs_per_zone, segment_count_main;
2748         block_t total_sections, blocks_per_seg;
2749         struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2750                                         (bh->b_data + F2FS_SUPER_OFFSET);
2751         size_t crc_offset = 0;
2752         __u32 crc = 0;
2753
2754         if (le32_to_cpu(raw_super->magic) != F2FS_SUPER_MAGIC) {
2755                 f2fs_info(sbi, "Magic Mismatch, valid(0x%x) - read(0x%x)",
2756                           F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
2757                 return -EINVAL;
2758         }
2759
2760         /* Check checksum_offset and crc in superblock */
2761         if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) {
2762                 crc_offset = le32_to_cpu(raw_super->checksum_offset);
2763                 if (crc_offset !=
2764                         offsetof(struct f2fs_super_block, crc)) {
2765                         f2fs_info(sbi, "Invalid SB checksum offset: %zu",
2766                                   crc_offset);
2767                         return -EFSCORRUPTED;
2768                 }
2769                 crc = le32_to_cpu(raw_super->crc);
2770                 if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) {
2771                         f2fs_info(sbi, "Invalid SB checksum value: %u", crc);
2772                         return -EFSCORRUPTED;
2773                 }
2774         }
2775
2776         /* Currently, support only 4KB page cache size */
2777         if (F2FS_BLKSIZE != PAGE_SIZE) {
2778                 f2fs_info(sbi, "Invalid page_cache_size (%lu), supports only 4KB",
2779                           PAGE_SIZE);
2780                 return -EFSCORRUPTED;
2781         }
2782
2783         /* Currently, support only 4KB block size */
2784         if (le32_to_cpu(raw_super->log_blocksize) != F2FS_BLKSIZE_BITS) {
2785                 f2fs_info(sbi, "Invalid log_blocksize (%u), supports only %u",
2786                           le32_to_cpu(raw_super->log_blocksize),
2787                           F2FS_BLKSIZE_BITS);
2788                 return -EFSCORRUPTED;
2789         }
2790
2791         /* check log blocks per segment */
2792         if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
2793                 f2fs_info(sbi, "Invalid log blocks per segment (%u)",
2794                           le32_to_cpu(raw_super->log_blocks_per_seg));
2795                 return -EFSCORRUPTED;
2796         }
2797
2798         /* Currently, support 512/1024/2048/4096 bytes sector size */
2799         if (le32_to_cpu(raw_super->log_sectorsize) >
2800                                 F2FS_MAX_LOG_SECTOR_SIZE ||
2801                 le32_to_cpu(raw_super->log_sectorsize) <
2802                                 F2FS_MIN_LOG_SECTOR_SIZE) {
2803                 f2fs_info(sbi, "Invalid log sectorsize (%u)",
2804                           le32_to_cpu(raw_super->log_sectorsize));
2805                 return -EFSCORRUPTED;
2806         }
2807         if (le32_to_cpu(raw_super->log_sectors_per_block) +
2808                 le32_to_cpu(raw_super->log_sectorsize) !=
2809                         F2FS_MAX_LOG_SECTOR_SIZE) {
2810                 f2fs_info(sbi, "Invalid log sectors per block(%u) log sectorsize(%u)",
2811                           le32_to_cpu(raw_super->log_sectors_per_block),
2812                           le32_to_cpu(raw_super->log_sectorsize));
2813                 return -EFSCORRUPTED;
2814         }
2815
2816         segment_count = le32_to_cpu(raw_super->segment_count);
2817         segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2818         segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
2819         secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
2820         total_sections = le32_to_cpu(raw_super->section_count);
2821
2822         /* blocks_per_seg should be 512, given the above check */
2823         blocks_per_seg = 1 << le32_to_cpu(raw_super->log_blocks_per_seg);
2824
2825         if (segment_count > F2FS_MAX_SEGMENT ||
2826                                 segment_count < F2FS_MIN_SEGMENTS) {
2827                 f2fs_info(sbi, "Invalid segment count (%u)", segment_count);
2828                 return -EFSCORRUPTED;
2829         }
2830
2831         if (total_sections > segment_count_main || total_sections < 1 ||
2832                         segs_per_sec > segment_count || !segs_per_sec) {
2833                 f2fs_info(sbi, "Invalid segment/section count (%u, %u x %u)",
2834                           segment_count, total_sections, segs_per_sec);
2835                 return -EFSCORRUPTED;
2836         }
2837
2838         if (segment_count_main != total_sections * segs_per_sec) {
2839                 f2fs_info(sbi, "Invalid segment/section count (%u != %u * %u)",
2840                           segment_count_main, total_sections, segs_per_sec);
2841                 return -EFSCORRUPTED;
2842         }
2843
2844         if ((segment_count / segs_per_sec) < total_sections) {
2845                 f2fs_info(sbi, "Small segment_count (%u < %u * %u)",
2846                           segment_count, segs_per_sec, total_sections);
2847                 return -EFSCORRUPTED;
2848         }
2849
2850         if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) {
2851                 f2fs_info(sbi, "Wrong segment_count / block_count (%u > %llu)",
2852                           segment_count, le64_to_cpu(raw_super->block_count));
2853                 return -EFSCORRUPTED;
2854         }
2855
2856         if (RDEV(0).path[0]) {
2857                 block_t dev_seg_count = le32_to_cpu(RDEV(0).total_segments);
2858                 int i = 1;
2859
2860                 while (i < MAX_DEVICES && RDEV(i).path[0]) {
2861                         dev_seg_count += le32_to_cpu(RDEV(i).total_segments);
2862                         i++;
2863                 }
2864                 if (segment_count != dev_seg_count) {
2865                         f2fs_info(sbi, "Segment count (%u) mismatch with total segments from devices (%u)",
2866                                         segment_count, dev_seg_count);
2867                         return -EFSCORRUPTED;
2868                 }
2869         } else {
2870                 if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_BLKZONED) &&
2871                                         !bdev_is_zoned(sbi->sb->s_bdev)) {
2872                         f2fs_info(sbi, "Zoned block device path is missing");
2873                         return -EFSCORRUPTED;
2874                 }
2875         }
2876
2877         if (secs_per_zone > total_sections || !secs_per_zone) {
2878                 f2fs_info(sbi, "Wrong secs_per_zone / total_sections (%u, %u)",
2879                           secs_per_zone, total_sections);
2880                 return -EFSCORRUPTED;
2881         }
2882         if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION ||
2883                         raw_super->hot_ext_count > F2FS_MAX_EXTENSION ||
2884                         (le32_to_cpu(raw_super->extension_count) +
2885                         raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) {
2886                 f2fs_info(sbi, "Corrupted extension count (%u + %u > %u)",
2887                           le32_to_cpu(raw_super->extension_count),
2888                           raw_super->hot_ext_count,
2889                           F2FS_MAX_EXTENSION);
2890                 return -EFSCORRUPTED;
2891         }
2892
2893         if (le32_to_cpu(raw_super->cp_payload) >
2894                                 (blocks_per_seg - F2FS_CP_PACKS)) {
2895                 f2fs_info(sbi, "Insane cp_payload (%u > %u)",
2896                           le32_to_cpu(raw_super->cp_payload),
2897                           blocks_per_seg - F2FS_CP_PACKS);
2898                 return -EFSCORRUPTED;
2899         }
2900
2901         /* check reserved ino info */
2902         if (le32_to_cpu(raw_super->node_ino) != 1 ||
2903                 le32_to_cpu(raw_super->meta_ino) != 2 ||
2904                 le32_to_cpu(raw_super->root_ino) != 3) {
2905                 f2fs_info(sbi, "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
2906                           le32_to_cpu(raw_super->node_ino),
2907                           le32_to_cpu(raw_super->meta_ino),
2908                           le32_to_cpu(raw_super->root_ino));
2909                 return -EFSCORRUPTED;
2910         }
2911
2912         /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
2913         if (sanity_check_area_boundary(sbi, bh))
2914                 return -EFSCORRUPTED;
2915
2916         return 0;
2917 }
2918
2919 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi)
2920 {
2921         unsigned int total, fsmeta;
2922         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2923         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2924         unsigned int ovp_segments, reserved_segments;
2925         unsigned int main_segs, blocks_per_seg;
2926         unsigned int sit_segs, nat_segs;
2927         unsigned int sit_bitmap_size, nat_bitmap_size;
2928         unsigned int log_blocks_per_seg;
2929         unsigned int segment_count_main;
2930         unsigned int cp_pack_start_sum, cp_payload;
2931         block_t user_block_count, valid_user_blocks;
2932         block_t avail_node_count, valid_node_count;
2933         int i, j;
2934
2935         total = le32_to_cpu(raw_super->segment_count);
2936         fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
2937         sit_segs = le32_to_cpu(raw_super->segment_count_sit);
2938         fsmeta += sit_segs;
2939         nat_segs = le32_to_cpu(raw_super->segment_count_nat);
2940         fsmeta += nat_segs;
2941         fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
2942         fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
2943
2944         if (unlikely(fsmeta >= total))
2945                 return 1;
2946
2947         ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2948         reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2949
2950         if (unlikely(fsmeta < F2FS_MIN_META_SEGMENTS ||
2951                         ovp_segments == 0 || reserved_segments == 0)) {
2952                 f2fs_err(sbi, "Wrong layout: check mkfs.f2fs version");
2953                 return 1;
2954         }
2955
2956         user_block_count = le64_to_cpu(ckpt->user_block_count);
2957         segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2958         log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2959         if (!user_block_count || user_block_count >=
2960                         segment_count_main << log_blocks_per_seg) {
2961                 f2fs_err(sbi, "Wrong user_block_count: %u",
2962                          user_block_count);
2963                 return 1;
2964         }
2965
2966         valid_user_blocks = le64_to_cpu(ckpt->valid_block_count);
2967         if (valid_user_blocks > user_block_count) {
2968                 f2fs_err(sbi, "Wrong valid_user_blocks: %u, user_block_count: %u",
2969                          valid_user_blocks, user_block_count);
2970                 return 1;
2971         }
2972
2973         valid_node_count = le32_to_cpu(ckpt->valid_node_count);
2974         avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
2975         if (valid_node_count > avail_node_count) {
2976                 f2fs_err(sbi, "Wrong valid_node_count: %u, avail_node_count: %u",
2977                          valid_node_count, avail_node_count);
2978                 return 1;
2979         }
2980
2981         main_segs = le32_to_cpu(raw_super->segment_count_main);
2982         blocks_per_seg = sbi->blocks_per_seg;
2983
2984         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
2985                 if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs ||
2986                         le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg)
2987                         return 1;
2988                 for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) {
2989                         if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
2990                                 le32_to_cpu(ckpt->cur_node_segno[j])) {
2991                                 f2fs_err(sbi, "Node segment (%u, %u) has the same segno: %u",
2992                                          i, j,
2993                                          le32_to_cpu(ckpt->cur_node_segno[i]));
2994                                 return 1;
2995                         }
2996                 }
2997         }
2998         for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
2999                 if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs ||
3000                         le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg)
3001                         return 1;
3002                 for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) {
3003                         if (le32_to_cpu(ckpt->cur_data_segno[i]) ==
3004                                 le32_to_cpu(ckpt->cur_data_segno[j])) {
3005                                 f2fs_err(sbi, "Data segment (%u, %u) has the same segno: %u",
3006                                          i, j,
3007                                          le32_to_cpu(ckpt->cur_data_segno[i]));
3008                                 return 1;
3009                         }
3010                 }
3011         }
3012         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
3013                 for (j = 0; j < NR_CURSEG_DATA_TYPE; j++) {
3014                         if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
3015                                 le32_to_cpu(ckpt->cur_data_segno[j])) {
3016                                 f2fs_err(sbi, "Node segment (%u) and Data segment (%u) has the same segno: %u",
3017                                          i, j,
3018                                          le32_to_cpu(ckpt->cur_node_segno[i]));
3019                                 return 1;
3020                         }
3021                 }
3022         }
3023
3024         sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
3025         nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
3026
3027         if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 ||
3028                 nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) {
3029                 f2fs_err(sbi, "Wrong bitmap size: sit: %u, nat:%u",
3030                          sit_bitmap_size, nat_bitmap_size);
3031                 return 1;
3032         }
3033
3034         cp_pack_start_sum = __start_sum_addr(sbi);
3035         cp_payload = __cp_payload(sbi);
3036         if (cp_pack_start_sum < cp_payload + 1 ||
3037                 cp_pack_start_sum > blocks_per_seg - 1 -
3038                         NR_CURSEG_PERSIST_TYPE) {
3039                 f2fs_err(sbi, "Wrong cp_pack_start_sum: %u",
3040                          cp_pack_start_sum);
3041                 return 1;
3042         }
3043
3044         if (__is_set_ckpt_flags(ckpt, CP_LARGE_NAT_BITMAP_FLAG) &&
3045                 le32_to_cpu(ckpt->checksum_offset) != CP_MIN_CHKSUM_OFFSET) {
3046                 f2fs_warn(sbi, "using deprecated layout of large_nat_bitmap, "
3047                           "please run fsck v1.13.0 or higher to repair, chksum_offset: %u, "
3048                           "fixed with patch: \"f2fs-tools: relocate chksum_offset for large_nat_bitmap feature\"",
3049                           le32_to_cpu(ckpt->checksum_offset));
3050                 return 1;
3051         }
3052
3053         if (unlikely(f2fs_cp_error(sbi))) {
3054                 f2fs_err(sbi, "A bug case: need to run fsck");
3055                 return 1;
3056         }
3057         return 0;
3058 }
3059
3060 static void init_sb_info(struct f2fs_sb_info *sbi)
3061 {
3062         struct f2fs_super_block *raw_super = sbi->raw_super;
3063         int i;
3064
3065         sbi->log_sectors_per_block =
3066                 le32_to_cpu(raw_super->log_sectors_per_block);
3067         sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
3068         sbi->blocksize = 1 << sbi->log_blocksize;
3069         sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
3070         sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
3071         sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
3072         sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
3073         sbi->total_sections = le32_to_cpu(raw_super->section_count);
3074         sbi->total_node_count =
3075                 (le32_to_cpu(raw_super->segment_count_nat) / 2)
3076                         * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
3077         sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
3078         sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
3079         sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
3080         sbi->cur_victim_sec = NULL_SECNO;
3081         sbi->next_victim_seg[BG_GC] = NULL_SEGNO;
3082         sbi->next_victim_seg[FG_GC] = NULL_SEGNO;
3083         sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
3084         sbi->migration_granularity = sbi->segs_per_sec;
3085
3086         sbi->dir_level = DEF_DIR_LEVEL;
3087         sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
3088         sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
3089         sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL;
3090         sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL;
3091         sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL;
3092         sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] =
3093                                 DEF_UMOUNT_DISCARD_TIMEOUT;
3094         clear_sbi_flag(sbi, SBI_NEED_FSCK);
3095
3096         for (i = 0; i < NR_COUNT_TYPE; i++)
3097                 atomic_set(&sbi->nr_pages[i], 0);
3098
3099         for (i = 0; i < META; i++)
3100                 atomic_set(&sbi->wb_sync_req[i], 0);
3101
3102         INIT_LIST_HEAD(&sbi->s_list);
3103         mutex_init(&sbi->umount_mutex);
3104         init_rwsem(&sbi->io_order_lock);
3105         spin_lock_init(&sbi->cp_lock);
3106
3107         sbi->dirty_device = 0;
3108         spin_lock_init(&sbi->dev_lock);
3109
3110         init_rwsem(&sbi->sb_lock);
3111         init_rwsem(&sbi->pin_sem);
3112 }
3113
3114 static int init_percpu_info(struct f2fs_sb_info *sbi)
3115 {
3116         int err;
3117
3118         err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
3119         if (err)
3120                 return err;
3121
3122         err = percpu_counter_init(&sbi->total_valid_inode_count, 0,
3123                                                                 GFP_KERNEL);
3124         if (err)
3125                 percpu_counter_destroy(&sbi->alloc_valid_block_count);
3126
3127         return err;
3128 }
3129
3130 #ifdef CONFIG_BLK_DEV_ZONED
3131
3132 struct f2fs_report_zones_args {
3133         struct f2fs_dev_info *dev;
3134         bool zone_cap_mismatch;
3135 };
3136
3137 static int f2fs_report_zone_cb(struct blk_zone *zone, unsigned int idx,
3138                               void *data)
3139 {
3140         struct f2fs_report_zones_args *rz_args = data;
3141
3142         if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL)
3143                 return 0;
3144
3145         set_bit(idx, rz_args->dev->blkz_seq);
3146         rz_args->dev->zone_capacity_blocks[idx] = zone->capacity >>
3147                                                 F2FS_LOG_SECTORS_PER_BLOCK;
3148         if (zone->len != zone->capacity && !rz_args->zone_cap_mismatch)
3149                 rz_args->zone_cap_mismatch = true;
3150
3151         return 0;
3152 }
3153
3154 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
3155 {
3156         struct block_device *bdev = FDEV(devi).bdev;
3157         sector_t nr_sectors = bdev->bd_part->nr_sects;
3158         struct f2fs_report_zones_args rep_zone_arg;
3159         int ret;
3160
3161         if (!f2fs_sb_has_blkzoned(sbi))
3162                 return 0;
3163
3164         if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
3165                                 SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)))
3166                 return -EINVAL;
3167         sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev));
3168         if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz !=
3169                                 __ilog2_u32(sbi->blocks_per_blkz))
3170                 return -EINVAL;
3171         sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz);
3172         FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >>
3173                                         sbi->log_blocks_per_blkz;
3174         if (nr_sectors & (bdev_zone_sectors(bdev) - 1))
3175                 FDEV(devi).nr_blkz++;
3176
3177         FDEV(devi).blkz_seq = f2fs_kvzalloc(sbi,
3178                                         BITS_TO_LONGS(FDEV(devi).nr_blkz)
3179                                         * sizeof(unsigned long),
3180                                         GFP_KERNEL);
3181         if (!FDEV(devi).blkz_seq)
3182                 return -ENOMEM;
3183
3184         /* Get block zones type and zone-capacity */
3185         FDEV(devi).zone_capacity_blocks = f2fs_kzalloc(sbi,
3186                                         FDEV(devi).nr_blkz * sizeof(block_t),
3187                                         GFP_KERNEL);
3188         if (!FDEV(devi).zone_capacity_blocks)
3189                 return -ENOMEM;
3190
3191         rep_zone_arg.dev = &FDEV(devi);
3192         rep_zone_arg.zone_cap_mismatch = false;
3193
3194         ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, f2fs_report_zone_cb,
3195                                   &rep_zone_arg);
3196         if (ret < 0)
3197                 return ret;
3198
3199         if (!rep_zone_arg.zone_cap_mismatch) {
3200                 kfree(FDEV(devi).zone_capacity_blocks);
3201                 FDEV(devi).zone_capacity_blocks = NULL;
3202         }
3203
3204         return 0;
3205 }
3206 #endif
3207
3208 /*
3209  * Read f2fs raw super block.
3210  * Because we have two copies of super block, so read both of them
3211  * to get the first valid one. If any one of them is broken, we pass
3212  * them recovery flag back to the caller.
3213  */
3214 static int read_raw_super_block(struct f2fs_sb_info *sbi,
3215                         struct f2fs_super_block **raw_super,
3216                         int *valid_super_block, int *recovery)
3217 {
3218         struct super_block *sb = sbi->sb;
3219         int block;
3220         struct buffer_head *bh;
3221         struct f2fs_super_block *super;
3222         int err = 0;
3223
3224         super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
3225         if (!super)
3226                 return -ENOMEM;
3227
3228         for (block = 0; block < 2; block++) {
3229                 bh = sb_bread(sb, block);
3230                 if (!bh) {
3231                         f2fs_err(sbi, "Unable to read %dth superblock",
3232                                  block + 1);
3233                         err = -EIO;
3234                         *recovery = 1;
3235                         continue;
3236                 }
3237
3238                 /* sanity checking of raw super */
3239                 err = sanity_check_raw_super(sbi, bh);
3240                 if (err) {
3241                         f2fs_err(sbi, "Can't find valid F2FS filesystem in %dth superblock",
3242                                  block + 1);
3243                         brelse(bh);
3244                         *recovery = 1;
3245                         continue;
3246                 }
3247
3248                 if (!*raw_super) {
3249                         memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
3250                                                         sizeof(*super));
3251                         *valid_super_block = block;
3252                         *raw_super = super;
3253                 }
3254                 brelse(bh);
3255         }
3256
3257         /* No valid superblock */
3258         if (!*raw_super)
3259                 kfree(super);
3260         else
3261                 err = 0;
3262
3263         return err;
3264 }
3265
3266 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
3267 {
3268         struct buffer_head *bh;
3269         __u32 crc = 0;
3270         int err;
3271
3272         if ((recover && f2fs_readonly(sbi->sb)) ||
3273                                 bdev_read_only(sbi->sb->s_bdev)) {
3274                 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
3275                 return -EROFS;
3276         }
3277
3278         /* we should update superblock crc here */
3279         if (!recover && f2fs_sb_has_sb_chksum(sbi)) {
3280                 crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi),
3281                                 offsetof(struct f2fs_super_block, crc));
3282                 F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc);
3283         }
3284
3285         /* write back-up superblock first */
3286         bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1);
3287         if (!bh)
3288                 return -EIO;
3289         err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
3290         brelse(bh);
3291
3292         /* if we are in recovery path, skip writing valid superblock */
3293         if (recover || err)
3294                 return err;
3295
3296         /* write current valid superblock */
3297         bh = sb_bread(sbi->sb, sbi->valid_super_block);
3298         if (!bh)
3299                 return -EIO;
3300         err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
3301         brelse(bh);
3302         return err;
3303 }
3304
3305 static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
3306 {
3307         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3308         unsigned int max_devices = MAX_DEVICES;
3309         int i;
3310
3311         /* Initialize single device information */
3312         if (!RDEV(0).path[0]) {
3313                 if (!bdev_is_zoned(sbi->sb->s_bdev))
3314                         return 0;
3315                 max_devices = 1;
3316         }
3317
3318         /*
3319          * Initialize multiple devices information, or single
3320          * zoned block device information.
3321          */
3322         sbi->devs = f2fs_kzalloc(sbi,
3323                                  array_size(max_devices,
3324                                             sizeof(struct f2fs_dev_info)),
3325                                  GFP_KERNEL);
3326         if (!sbi->devs)
3327                 return -ENOMEM;
3328
3329         for (i = 0; i < max_devices; i++) {
3330
3331                 if (i > 0 && !RDEV(i).path[0])
3332                         break;
3333
3334                 if (max_devices == 1) {
3335                         /* Single zoned block device mount */
3336                         FDEV(0).bdev =
3337                                 blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev,
3338                                         sbi->sb->s_mode, sbi->sb->s_type);
3339                 } else {
3340                         /* Multi-device mount */
3341                         memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
3342                         FDEV(i).total_segments =
3343                                 le32_to_cpu(RDEV(i).total_segments);
3344                         if (i == 0) {
3345                                 FDEV(i).start_blk = 0;
3346                                 FDEV(i).end_blk = FDEV(i).start_blk +
3347                                     (FDEV(i).total_segments <<
3348                                     sbi->log_blocks_per_seg) - 1 +
3349                                     le32_to_cpu(raw_super->segment0_blkaddr);
3350                         } else {
3351                                 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
3352                                 FDEV(i).end_blk = FDEV(i).start_blk +
3353                                         (FDEV(i).total_segments <<
3354                                         sbi->log_blocks_per_seg) - 1;
3355                         }
3356                         FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
3357                                         sbi->sb->s_mode, sbi->sb->s_type);
3358                 }
3359                 if (IS_ERR(FDEV(i).bdev))
3360                         return PTR_ERR(FDEV(i).bdev);
3361
3362                 /* to release errored devices */
3363                 sbi->s_ndevs = i + 1;
3364
3365 #ifdef CONFIG_BLK_DEV_ZONED
3366                 if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
3367                                 !f2fs_sb_has_blkzoned(sbi)) {
3368                         f2fs_err(sbi, "Zoned block device feature not enabled\n");
3369                         return -EINVAL;
3370                 }
3371                 if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
3372                         if (init_blkz_info(sbi, i)) {
3373                                 f2fs_err(sbi, "Failed to initialize F2FS blkzone information");
3374                                 return -EINVAL;
3375                         }
3376                         if (max_devices == 1)
3377                                 break;
3378                         f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
3379                                   i, FDEV(i).path,
3380                                   FDEV(i).total_segments,
3381                                   FDEV(i).start_blk, FDEV(i).end_blk,
3382                                   bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
3383                                   "Host-aware" : "Host-managed");
3384                         continue;
3385                 }
3386 #endif
3387                 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x",
3388                           i, FDEV(i).path,
3389                           FDEV(i).total_segments,
3390                           FDEV(i).start_blk, FDEV(i).end_blk);
3391         }
3392         f2fs_info(sbi,
3393                   "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi));
3394         return 0;
3395 }
3396
3397 static int f2fs_setup_casefold(struct f2fs_sb_info *sbi)
3398 {
3399 #ifdef CONFIG_UNICODE
3400         if (f2fs_sb_has_casefold(sbi) && !sbi->sb->s_encoding) {
3401                 const struct f2fs_sb_encodings *encoding_info;
3402                 struct unicode_map *encoding;
3403                 __u16 encoding_flags;
3404
3405                 if (f2fs_sb_has_encrypt(sbi)) {
3406                         f2fs_err(sbi,
3407                                 "Can't mount with encoding and encryption");
3408                         return -EINVAL;
3409                 }
3410
3411                 if (f2fs_sb_read_encoding(sbi->raw_super, &encoding_info,
3412                                           &encoding_flags)) {
3413                         f2fs_err(sbi,
3414                                  "Encoding requested by superblock is unknown");
3415                         return -EINVAL;
3416                 }
3417
3418                 encoding = utf8_load(encoding_info->version);
3419                 if (IS_ERR(encoding)) {
3420                         f2fs_err(sbi,
3421                                  "can't mount with superblock charset: %s-%s "
3422                                  "not supported by the kernel. flags: 0x%x.",
3423                                  encoding_info->name, encoding_info->version,
3424                                  encoding_flags);
3425                         return PTR_ERR(encoding);
3426                 }
3427                 f2fs_info(sbi, "Using encoding defined by superblock: "
3428                          "%s-%s with flags 0x%hx", encoding_info->name,
3429                          encoding_info->version?:"\b", encoding_flags);
3430
3431                 sbi->sb->s_encoding = encoding;
3432                 sbi->sb->s_encoding_flags = encoding_flags;
3433                 sbi->sb->s_d_op = &f2fs_dentry_ops;
3434         }
3435 #else
3436         if (f2fs_sb_has_casefold(sbi)) {
3437                 f2fs_err(sbi, "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
3438                 return -EINVAL;
3439         }
3440 #endif
3441         return 0;
3442 }
3443
3444 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi)
3445 {
3446         struct f2fs_sm_info *sm_i = SM_I(sbi);
3447
3448         /* adjust parameters according to the volume size */
3449         if (sm_i->main_segments <= SMALL_VOLUME_SEGMENTS) {
3450                 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
3451                 sm_i->dcc_info->discard_granularity = 1;
3452                 sm_i->ipu_policy = 1 << F2FS_IPU_FORCE;
3453         }
3454
3455         sbi->readdir_ra = 1;
3456 }
3457
3458 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
3459 {
3460         struct f2fs_sb_info *sbi;
3461         struct f2fs_super_block *raw_super;
3462         struct inode *root;
3463         int err;
3464         bool skip_recovery = false, need_fsck = false;
3465         char *options = NULL;
3466         int recovery, i, valid_super_block;
3467         struct curseg_info *seg_i;
3468         int retry_cnt = 1;
3469
3470 try_onemore:
3471         err = -EINVAL;
3472         raw_super = NULL;
3473         valid_super_block = -1;
3474         recovery = 0;
3475
3476         /* allocate memory for f2fs-specific super block info */
3477         sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
3478         if (!sbi)
3479                 return -ENOMEM;
3480
3481         sbi->sb = sb;
3482
3483         /* Load the checksum driver */
3484         sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
3485         if (IS_ERR(sbi->s_chksum_driver)) {
3486                 f2fs_err(sbi, "Cannot load crc32 driver.");
3487                 err = PTR_ERR(sbi->s_chksum_driver);
3488                 sbi->s_chksum_driver = NULL;
3489                 goto free_sbi;
3490         }
3491
3492         /* set a block size */
3493         if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
3494                 f2fs_err(sbi, "unable to set blocksize");
3495                 goto free_sbi;
3496         }
3497
3498         err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
3499                                                                 &recovery);
3500         if (err)
3501                 goto free_sbi;
3502
3503         sb->s_fs_info = sbi;
3504         sbi->raw_super = raw_super;
3505
3506         /* precompute checksum seed for metadata */
3507         if (f2fs_sb_has_inode_chksum(sbi))
3508                 sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid,
3509                                                 sizeof(raw_super->uuid));
3510
3511         default_options(sbi);
3512         /* parse mount options */
3513         options = kstrdup((const char *)data, GFP_KERNEL);
3514         if (data && !options) {
3515                 err = -ENOMEM;
3516                 goto free_sb_buf;
3517         }
3518
3519         err = parse_options(sb, options, false);
3520         if (err)
3521                 goto free_options;
3522
3523         sbi->max_file_blocks = max_file_blocks();
3524         sb->s_maxbytes = sbi->max_file_blocks <<
3525                                 le32_to_cpu(raw_super->log_blocksize);
3526         sb->s_max_links = F2FS_LINK_MAX;
3527
3528         err = f2fs_setup_casefold(sbi);
3529         if (err)
3530                 goto free_options;
3531
3532 #ifdef CONFIG_QUOTA
3533         sb->dq_op = &f2fs_quota_operations;
3534         sb->s_qcop = &f2fs_quotactl_ops;
3535         sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
3536
3537         if (f2fs_sb_has_quota_ino(sbi)) {
3538                 for (i = 0; i < MAXQUOTAS; i++) {
3539                         if (f2fs_qf_ino(sbi->sb, i))
3540                                 sbi->nquota_files++;
3541                 }
3542         }
3543 #endif
3544
3545         sb->s_op = &f2fs_sops;
3546 #ifdef CONFIG_FS_ENCRYPTION
3547         sb->s_cop = &f2fs_cryptops;
3548 #endif
3549 #ifdef CONFIG_FS_VERITY
3550         sb->s_vop = &f2fs_verityops;
3551 #endif
3552         sb->s_xattr = f2fs_xattr_handlers;
3553         sb->s_export_op = &f2fs_export_ops;
3554         sb->s_magic = F2FS_SUPER_MAGIC;
3555         sb->s_time_gran = 1;
3556         sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
3557                 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
3558         memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
3559         sb->s_iflags |= SB_I_CGROUPWB;
3560
3561         /* init f2fs-specific super block info */
3562         sbi->valid_super_block = valid_super_block;
3563         init_rwsem(&sbi->gc_lock);
3564         mutex_init(&sbi->writepages);
3565         mutex_init(&sbi->cp_mutex);
3566         init_rwsem(&sbi->node_write);
3567         init_rwsem(&sbi->node_change);
3568
3569         /* disallow all the data/node/meta page writes */
3570         set_sbi_flag(sbi, SBI_POR_DOING);
3571         spin_lock_init(&sbi->stat_lock);
3572
3573         /* init iostat info */
3574         spin_lock_init(&sbi->iostat_lock);
3575         sbi->iostat_enable = false;
3576         sbi->iostat_period_ms = DEFAULT_IOSTAT_PERIOD_MS;
3577
3578         for (i = 0; i < NR_PAGE_TYPE; i++) {
3579                 int n = (i == META) ? 1: NR_TEMP_TYPE;
3580                 int j;
3581
3582                 sbi->write_io[i] =
3583                         f2fs_kmalloc(sbi,
3584                                      array_size(n,
3585                                                 sizeof(struct f2fs_bio_info)),
3586                                      GFP_KERNEL);
3587                 if (!sbi->write_io[i]) {
3588                         err = -ENOMEM;
3589                         goto free_bio_info;
3590                 }
3591
3592                 for (j = HOT; j < n; j++) {
3593                         init_rwsem(&sbi->write_io[i][j].io_rwsem);
3594                         sbi->write_io[i][j].sbi = sbi;
3595                         sbi->write_io[i][j].bio = NULL;
3596                         spin_lock_init(&sbi->write_io[i][j].io_lock);
3597                         INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
3598                         INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list);
3599                         init_rwsem(&sbi->write_io[i][j].bio_list_lock);
3600                 }
3601         }
3602
3603         init_rwsem(&sbi->cp_rwsem);
3604         init_rwsem(&sbi->quota_sem);
3605         init_waitqueue_head(&sbi->cp_wait);
3606         init_sb_info(sbi);
3607
3608         err = init_percpu_info(sbi);
3609         if (err)
3610                 goto free_bio_info;
3611
3612         if (F2FS_IO_ALIGNED(sbi)) {
3613                 sbi->write_io_dummy =
3614                         mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0);
3615                 if (!sbi->write_io_dummy) {
3616                         err = -ENOMEM;
3617                         goto free_percpu;
3618                 }
3619         }
3620
3621         /* init per sbi slab cache */
3622         err = f2fs_init_xattr_caches(sbi);
3623         if (err)
3624                 goto free_io_dummy;
3625         err = f2fs_init_page_array_cache(sbi);
3626         if (err)
3627                 goto free_xattr_cache;
3628
3629         /* get an inode for meta space */
3630         sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
3631         if (IS_ERR(sbi->meta_inode)) {
3632                 f2fs_err(sbi, "Failed to read F2FS meta data inode");
3633                 err = PTR_ERR(sbi->meta_inode);
3634                 goto free_page_array_cache;
3635         }
3636
3637         err = f2fs_get_valid_checkpoint(sbi);
3638         if (err) {
3639                 f2fs_err(sbi, "Failed to get valid F2FS checkpoint");
3640                 goto free_meta_inode;
3641         }
3642
3643         if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG))
3644                 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3645         if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) {
3646                 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
3647                 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL;
3648         }
3649
3650         if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FSCK_FLAG))
3651                 set_sbi_flag(sbi, SBI_NEED_FSCK);
3652
3653         /* Initialize device list */
3654         err = f2fs_scan_devices(sbi);
3655         if (err) {
3656                 f2fs_err(sbi, "Failed to find devices");
3657                 goto free_devices;
3658         }
3659
3660         err = f2fs_init_post_read_wq(sbi);
3661         if (err) {
3662                 f2fs_err(sbi, "Failed to initialize post read workqueue");
3663                 goto free_devices;
3664         }
3665
3666         sbi->total_valid_node_count =
3667                                 le32_to_cpu(sbi->ckpt->valid_node_count);
3668         percpu_counter_set(&sbi->total_valid_inode_count,
3669                                 le32_to_cpu(sbi->ckpt->valid_inode_count));
3670         sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
3671         sbi->total_valid_block_count =
3672                                 le64_to_cpu(sbi->ckpt->valid_block_count);
3673         sbi->last_valid_block_count = sbi->total_valid_block_count;
3674         sbi->reserved_blocks = 0;
3675         sbi->current_reserved_blocks = 0;
3676         limit_reserve_root(sbi);
3677         adjust_unusable_cap_perc(sbi);
3678
3679         for (i = 0; i < NR_INODE_TYPE; i++) {
3680                 INIT_LIST_HEAD(&sbi->inode_list[i]);
3681                 spin_lock_init(&sbi->inode_lock[i]);
3682         }
3683         mutex_init(&sbi->flush_lock);
3684
3685         f2fs_init_extent_cache_info(sbi);
3686
3687         f2fs_init_ino_entry_info(sbi);
3688
3689         f2fs_init_fsync_node_info(sbi);
3690
3691         /* setup f2fs internal modules */
3692         err = f2fs_build_segment_manager(sbi);
3693         if (err) {
3694                 f2fs_err(sbi, "Failed to initialize F2FS segment manager (%d)",
3695                          err);
3696                 goto free_sm;
3697         }
3698         err = f2fs_build_node_manager(sbi);
3699         if (err) {
3700                 f2fs_err(sbi, "Failed to initialize F2FS node manager (%d)",
3701                          err);
3702                 goto free_nm;
3703         }
3704
3705         /* For write statistics */
3706         if (sb->s_bdev->bd_part)
3707                 sbi->sectors_written_start =
3708                         (u64)part_stat_read(sb->s_bdev->bd_part,
3709                                             sectors[STAT_WRITE]);
3710
3711         /* Read accumulated write IO statistics if exists */
3712         seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
3713         if (__exist_node_summaries(sbi))
3714                 sbi->kbytes_written =
3715                         le64_to_cpu(seg_i->journal->info.kbytes_written);
3716
3717         f2fs_build_gc_manager(sbi);
3718
3719         err = f2fs_build_stats(sbi);
3720         if (err)
3721                 goto free_nm;
3722
3723         /* get an inode for node space */
3724         sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
3725         if (IS_ERR(sbi->node_inode)) {
3726                 f2fs_err(sbi, "Failed to read node inode");
3727                 err = PTR_ERR(sbi->node_inode);
3728                 goto free_stats;
3729         }
3730
3731         /* read root inode and dentry */
3732         root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
3733         if (IS_ERR(root)) {
3734                 f2fs_err(sbi, "Failed to read root inode");
3735                 err = PTR_ERR(root);
3736                 goto free_node_inode;
3737         }
3738         if (!S_ISDIR(root->i_mode) || !root->i_blocks ||
3739                         !root->i_size || !root->i_nlink) {
3740                 iput(root);
3741                 err = -EINVAL;
3742                 goto free_node_inode;
3743         }
3744
3745         sb->s_root = d_make_root(root); /* allocate root dentry */
3746         if (!sb->s_root) {
3747                 err = -ENOMEM;
3748                 goto free_node_inode;
3749         }
3750
3751         err = f2fs_register_sysfs(sbi);
3752         if (err)
3753                 goto free_root_inode;
3754
3755 #ifdef CONFIG_QUOTA
3756         /* Enable quota usage during mount */
3757         if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) {
3758                 err = f2fs_enable_quotas(sb);
3759                 if (err)
3760                         f2fs_err(sbi, "Cannot turn on quotas: error %d", err);
3761         }
3762 #endif
3763         /* if there are any orphan inodes, free them */
3764         err = f2fs_recover_orphan_inodes(sbi);
3765         if (err)
3766                 goto free_meta;
3767
3768         if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)))
3769                 goto reset_checkpoint;
3770
3771         /* recover fsynced data */
3772         if (!test_opt(sbi, DISABLE_ROLL_FORWARD) &&
3773                         !test_opt(sbi, NORECOVERY)) {
3774                 /*
3775                  * mount should be failed, when device has readonly mode, and
3776                  * previous checkpoint was not done by clean system shutdown.
3777                  */
3778                 if (f2fs_hw_is_readonly(sbi)) {
3779                         if (!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
3780                                 err = -EROFS;
3781                                 f2fs_err(sbi, "Need to recover fsync data, but write access unavailable");
3782                                 goto free_meta;
3783                         }
3784                         f2fs_info(sbi, "write access unavailable, skipping recovery");
3785                         goto reset_checkpoint;
3786                 }
3787
3788                 if (need_fsck)
3789                         set_sbi_flag(sbi, SBI_NEED_FSCK);
3790
3791                 if (skip_recovery)
3792                         goto reset_checkpoint;
3793
3794                 err = f2fs_recover_fsync_data(sbi, false);
3795                 if (err < 0) {
3796                         if (err != -ENOMEM)
3797                                 skip_recovery = true;
3798                         need_fsck = true;
3799                         f2fs_err(sbi, "Cannot recover all fsync data errno=%d",
3800                                  err);
3801                         goto free_meta;
3802                 }
3803         } else {
3804                 err = f2fs_recover_fsync_data(sbi, true);
3805
3806                 if (!f2fs_readonly(sb) && err > 0) {
3807                         err = -EINVAL;
3808                         f2fs_err(sbi, "Need to recover fsync data");
3809                         goto free_meta;
3810                 }
3811         }
3812
3813         /*
3814          * If the f2fs is not readonly and fsync data recovery succeeds,
3815          * check zoned block devices' write pointer consistency.
3816          */
3817         if (!err && !f2fs_readonly(sb) && f2fs_sb_has_blkzoned(sbi)) {
3818                 err = f2fs_check_write_pointer(sbi);
3819                 if (err)
3820                         goto free_meta;
3821         }
3822
3823 reset_checkpoint:
3824         f2fs_init_inmem_curseg(sbi);
3825
3826         /* f2fs_recover_fsync_data() cleared this already */
3827         clear_sbi_flag(sbi, SBI_POR_DOING);
3828
3829         if (test_opt(sbi, DISABLE_CHECKPOINT)) {
3830                 err = f2fs_disable_checkpoint(sbi);
3831                 if (err)
3832                         goto sync_free_meta;
3833         } else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) {
3834                 f2fs_enable_checkpoint(sbi);
3835         }
3836
3837         /*
3838          * If filesystem is not mounted as read-only then
3839          * do start the gc_thread.
3840          */
3841         if (F2FS_OPTION(sbi).bggc_mode != BGGC_MODE_OFF && !f2fs_readonly(sb)) {
3842                 /* After POR, we can run background GC thread.*/
3843                 err = f2fs_start_gc_thread(sbi);
3844                 if (err)
3845                         goto sync_free_meta;
3846         }
3847         kvfree(options);
3848
3849         /* recover broken superblock */
3850         if (recovery) {
3851                 err = f2fs_commit_super(sbi, true);
3852                 f2fs_info(sbi, "Try to recover %dth superblock, ret: %d",
3853                           sbi->valid_super_block ? 1 : 2, err);
3854         }
3855
3856         f2fs_join_shrinker(sbi);
3857
3858         f2fs_tuning_parameters(sbi);
3859
3860         f2fs_notice(sbi, "Mounted with checkpoint version = %llx",
3861                     cur_cp_version(F2FS_CKPT(sbi)));
3862         f2fs_update_time(sbi, CP_TIME);
3863         f2fs_update_time(sbi, REQ_TIME);
3864         clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
3865         return 0;
3866
3867 sync_free_meta:
3868         /* safe to flush all the data */
3869         sync_filesystem(sbi->sb);
3870         retry_cnt = 0;
3871
3872 free_meta:
3873 #ifdef CONFIG_QUOTA
3874         f2fs_truncate_quota_inode_pages(sb);
3875         if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb))
3876                 f2fs_quota_off_umount(sbi->sb);
3877 #endif
3878         /*
3879          * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes()
3880          * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
3881          * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which
3882          * falls into an infinite loop in f2fs_sync_meta_pages().
3883          */
3884         truncate_inode_pages_final(META_MAPPING(sbi));
3885         /* evict some inodes being cached by GC */
3886         evict_inodes(sb);
3887         f2fs_unregister_sysfs(sbi);
3888 free_root_inode:
3889         dput(sb->s_root);
3890         sb->s_root = NULL;
3891 free_node_inode:
3892         f2fs_release_ino_entry(sbi, true);
3893         truncate_inode_pages_final(NODE_MAPPING(sbi));
3894         iput(sbi->node_inode);
3895         sbi->node_inode = NULL;
3896 free_stats:
3897         f2fs_destroy_stats(sbi);
3898 free_nm:
3899         f2fs_destroy_node_manager(sbi);
3900 free_sm:
3901         f2fs_destroy_segment_manager(sbi);
3902         f2fs_destroy_post_read_wq(sbi);
3903 free_devices:
3904         destroy_device_list(sbi);
3905         kvfree(sbi->ckpt);
3906 free_meta_inode:
3907         make_bad_inode(sbi->meta_inode);
3908         iput(sbi->meta_inode);
3909         sbi->meta_inode = NULL;
3910 free_page_array_cache:
3911         f2fs_destroy_page_array_cache(sbi);
3912 free_xattr_cache:
3913         f2fs_destroy_xattr_caches(sbi);
3914 free_io_dummy:
3915         mempool_destroy(sbi->write_io_dummy);
3916 free_percpu:
3917         destroy_percpu_info(sbi);
3918 free_bio_info:
3919         for (i = 0; i < NR_PAGE_TYPE; i++)
3920                 kvfree(sbi->write_io[i]);
3921
3922 #ifdef CONFIG_UNICODE
3923         utf8_unload(sb->s_encoding);
3924         sb->s_encoding = NULL;
3925 #endif
3926 free_options:
3927 #ifdef CONFIG_QUOTA
3928         for (i = 0; i < MAXQUOTAS; i++)
3929                 kfree(F2FS_OPTION(sbi).s_qf_names[i]);
3930 #endif
3931         fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy);
3932         kvfree(options);
3933 free_sb_buf:
3934         kfree(raw_super);
3935 free_sbi:
3936         if (sbi->s_chksum_driver)
3937                 crypto_free_shash(sbi->s_chksum_driver);
3938         kfree(sbi);
3939
3940         /* give only one another chance */
3941         if (retry_cnt > 0 && skip_recovery) {
3942                 retry_cnt--;
3943                 shrink_dcache_sb(sb);
3944                 goto try_onemore;
3945         }
3946         return err;
3947 }
3948
3949 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
3950                         const char *dev_name, void *data)
3951 {
3952         return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
3953 }
3954
3955 static void kill_f2fs_super(struct super_block *sb)
3956 {
3957         if (sb->s_root) {
3958                 struct f2fs_sb_info *sbi = F2FS_SB(sb);
3959
3960                 set_sbi_flag(sbi, SBI_IS_CLOSE);
3961                 f2fs_stop_gc_thread(sbi);
3962                 f2fs_stop_discard_thread(sbi);
3963
3964                 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
3965                                 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
3966                         struct cp_control cpc = {
3967                                 .reason = CP_UMOUNT,
3968                         };
3969                         f2fs_write_checkpoint(sbi, &cpc);
3970                 }
3971
3972                 if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb))
3973                         sb->s_flags &= ~SB_RDONLY;
3974         }
3975         kill_block_super(sb);
3976 }
3977
3978 static struct file_system_type f2fs_fs_type = {
3979         .owner          = THIS_MODULE,
3980         .name           = "f2fs",
3981         .mount          = f2fs_mount,
3982         .kill_sb        = kill_f2fs_super,
3983         .fs_flags       = FS_REQUIRES_DEV,
3984 };
3985 MODULE_ALIAS_FS("f2fs");
3986
3987 static int __init init_inodecache(void)
3988 {
3989         f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
3990                         sizeof(struct f2fs_inode_info), 0,
3991                         SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
3992         if (!f2fs_inode_cachep)
3993                 return -ENOMEM;
3994         return 0;
3995 }
3996
3997 static void destroy_inodecache(void)
3998 {
3999         /*
4000          * Make sure all delayed rcu free inodes are flushed before we
4001          * destroy cache.
4002          */
4003         rcu_barrier();
4004         kmem_cache_destroy(f2fs_inode_cachep);
4005 }
4006
4007 static int __init init_f2fs_fs(void)
4008 {
4009         int err;
4010
4011         if (PAGE_SIZE != F2FS_BLKSIZE) {
4012                 printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n",
4013                                 PAGE_SIZE, F2FS_BLKSIZE);
4014                 return -EINVAL;
4015         }
4016
4017         f2fs_build_trace_ios();
4018
4019         err = init_inodecache();
4020         if (err)
4021                 goto fail;
4022         err = f2fs_create_node_manager_caches();
4023         if (err)
4024                 goto free_inodecache;
4025         err = f2fs_create_segment_manager_caches();
4026         if (err)
4027                 goto free_node_manager_caches;
4028         err = f2fs_create_checkpoint_caches();
4029         if (err)
4030                 goto free_segment_manager_caches;
4031         err = f2fs_create_extent_cache();
4032         if (err)
4033                 goto free_checkpoint_caches;
4034         err = f2fs_create_garbage_collection_cache();
4035         if (err)
4036                 goto free_extent_cache;
4037         err = f2fs_init_sysfs();
4038         if (err)
4039                 goto free_garbage_collection_cache;
4040         err = register_shrinker(&f2fs_shrinker_info);
4041         if (err)
4042                 goto free_sysfs;
4043         err = register_filesystem(&f2fs_fs_type);
4044         if (err)
4045                 goto free_shrinker;
4046         f2fs_create_root_stats();
4047         err = f2fs_init_post_read_processing();
4048         if (err)
4049                 goto free_root_stats;
4050         err = f2fs_init_bio_entry_cache();
4051         if (err)
4052                 goto free_post_read;
4053         err = f2fs_init_bioset();
4054         if (err)
4055                 goto free_bio_enrty_cache;
4056         err = f2fs_init_compress_mempool();
4057         if (err)
4058                 goto free_bioset;
4059         err = f2fs_init_compress_cache();
4060         if (err)
4061                 goto free_compress_mempool;
4062         return 0;
4063 free_compress_mempool:
4064         f2fs_destroy_compress_mempool();
4065 free_bioset:
4066         f2fs_destroy_bioset();
4067 free_bio_enrty_cache:
4068         f2fs_destroy_bio_entry_cache();
4069 free_post_read:
4070         f2fs_destroy_post_read_processing();
4071 free_root_stats:
4072         f2fs_destroy_root_stats();
4073         unregister_filesystem(&f2fs_fs_type);
4074 free_shrinker:
4075         unregister_shrinker(&f2fs_shrinker_info);
4076 free_sysfs:
4077         f2fs_exit_sysfs();
4078 free_garbage_collection_cache:
4079         f2fs_destroy_garbage_collection_cache();
4080 free_extent_cache:
4081         f2fs_destroy_extent_cache();
4082 free_checkpoint_caches:
4083         f2fs_destroy_checkpoint_caches();
4084 free_segment_manager_caches:
4085         f2fs_destroy_segment_manager_caches();
4086 free_node_manager_caches:
4087         f2fs_destroy_node_manager_caches();
4088 free_inodecache:
4089         destroy_inodecache();
4090 fail:
4091         return err;
4092 }
4093
4094 static void __exit exit_f2fs_fs(void)
4095 {
4096         f2fs_destroy_compress_cache();
4097         f2fs_destroy_compress_mempool();
4098         f2fs_destroy_bioset();
4099         f2fs_destroy_bio_entry_cache();
4100         f2fs_destroy_post_read_processing();
4101         f2fs_destroy_root_stats();
4102         unregister_filesystem(&f2fs_fs_type);
4103         unregister_shrinker(&f2fs_shrinker_info);
4104         f2fs_exit_sysfs();
4105         f2fs_destroy_garbage_collection_cache();
4106         f2fs_destroy_extent_cache();
4107         f2fs_destroy_checkpoint_caches();
4108         f2fs_destroy_segment_manager_caches();
4109         f2fs_destroy_node_manager_caches();
4110         destroy_inodecache();
4111         f2fs_destroy_trace_ios();
4112 }
4113
4114 module_init(init_f2fs_fs)
4115 module_exit(exit_f2fs_fs)
4116
4117 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
4118 MODULE_DESCRIPTION("Flash Friendly File System");
4119 MODULE_LICENSE("GPL");
4120