994bb7bd7b700c8dbe37d6968f04101ab0b6190a
[platform/adaptation/renesas_rcar/renesas_kernel.git] / fs / f2fs / segment.h
1 /*
2  * fs/f2fs/segment.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 /* constant macro */
12 #define NULL_SEGNO                      ((unsigned int)(~0))
13 #define NULL_SECNO                      ((unsigned int)(~0))
14
15 /* V: Logical segment # in volume, R: Relative segment # in main area */
16 #define GET_L2R_SEGNO(free_i, segno)    (segno - free_i->start_segno)
17 #define GET_R2L_SEGNO(free_i, segno)    (segno + free_i->start_segno)
18
19 #define IS_DATASEG(t)                                                   \
20         ((t == CURSEG_HOT_DATA) || (t == CURSEG_COLD_DATA) ||           \
21         (t == CURSEG_WARM_DATA))
22
23 #define IS_NODESEG(t)                                                   \
24         ((t == CURSEG_HOT_NODE) || (t == CURSEG_COLD_NODE) ||           \
25         (t == CURSEG_WARM_NODE))
26
27 #define IS_CURSEG(sbi, seg)                                             \
28         ((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||      \
29          (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||     \
30          (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||     \
31          (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||      \
32          (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||     \
33          (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
34
35 #define IS_CURSEC(sbi, secno)                                           \
36         ((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /              \
37           sbi->segs_per_sec) || \
38          (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /             \
39           sbi->segs_per_sec) || \
40          (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /             \
41           sbi->segs_per_sec) || \
42          (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /              \
43           sbi->segs_per_sec) || \
44          (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /             \
45           sbi->segs_per_sec) || \
46          (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /             \
47           sbi->segs_per_sec))   \
48
49 #define START_BLOCK(sbi, segno)                                         \
50         (SM_I(sbi)->seg0_blkaddr +                                      \
51          (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
52 #define NEXT_FREE_BLKADDR(sbi, curseg)                                  \
53         (START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
54
55 #define MAIN_BASE_BLOCK(sbi)    (SM_I(sbi)->main_blkaddr)
56
57 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)                             \
58         ((blk_addr) - SM_I(sbi)->seg0_blkaddr)
59 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr)                              \
60         (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
61 #define GET_SEGNO(sbi, blk_addr)                                        \
62         (((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ?          \
63         NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),                 \
64                 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
65 #define GET_SECNO(sbi, segno)                                   \
66         ((segno) / sbi->segs_per_sec)
67 #define GET_ZONENO_FROM_SEGNO(sbi, segno)                               \
68         ((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
69
70 #define GET_SUM_BLOCK(sbi, segno)                               \
71         ((sbi->sm_info->ssa_blkaddr) + segno)
72
73 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
74 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
75
76 #define SIT_ENTRY_OFFSET(sit_i, segno)                                  \
77         (segno % sit_i->sents_per_block)
78 #define SIT_BLOCK_OFFSET(sit_i, segno)                                  \
79         (segno / SIT_ENTRY_PER_BLOCK)
80 #define START_SEGNO(sit_i, segno)               \
81         (SIT_BLOCK_OFFSET(sit_i, segno) * SIT_ENTRY_PER_BLOCK)
82 #define f2fs_bitmap_size(nr)                    \
83         (BITS_TO_LONGS(nr) * sizeof(unsigned long))
84 #define TOTAL_SEGS(sbi) (SM_I(sbi)->main_segments)
85 #define TOTAL_SECS(sbi) (sbi->total_sections)
86
87 #define SECTOR_FROM_BLOCK(sbi, blk_addr)                                \
88         (blk_addr << ((sbi)->log_blocksize - F2FS_LOG_SECTOR_SIZE))
89
90 /* during checkpoint, bio_private is used to synchronize the last bio */
91 struct bio_private {
92         struct f2fs_sb_info *sbi;
93         bool is_sync;
94         void *wait;
95 };
96
97 /*
98  * indicate a block allocation direction: RIGHT and LEFT.
99  * RIGHT means allocating new sections towards the end of volume.
100  * LEFT means the opposite direction.
101  */
102 enum {
103         ALLOC_RIGHT = 0,
104         ALLOC_LEFT
105 };
106
107 /*
108  * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
109  * LFS writes data sequentially with cleaning operations.
110  * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
111  */
112 enum {
113         LFS = 0,
114         SSR
115 };
116
117 /*
118  * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
119  * GC_CB is based on cost-benefit algorithm.
120  * GC_GREEDY is based on greedy algorithm.
121  */
122 enum {
123         GC_CB = 0,
124         GC_GREEDY
125 };
126
127 /*
128  * BG_GC means the background cleaning job.
129  * FG_GC means the on-demand cleaning job.
130  */
131 enum {
132         BG_GC = 0,
133         FG_GC
134 };
135
136 /* for a function parameter to select a victim segment */
137 struct victim_sel_policy {
138         int alloc_mode;                 /* LFS or SSR */
139         int gc_mode;                    /* GC_CB or GC_GREEDY */
140         unsigned long *dirty_segmap;    /* dirty segment bitmap */
141         unsigned int offset;            /* last scanned bitmap offset */
142         unsigned int ofs_unit;          /* bitmap search unit */
143         unsigned int min_cost;          /* minimum cost */
144         unsigned int min_segno;         /* segment # having min. cost */
145 };
146
147 struct seg_entry {
148         unsigned short valid_blocks;    /* # of valid blocks */
149         unsigned char *cur_valid_map;   /* validity bitmap of blocks */
150         /*
151          * # of valid blocks and the validity bitmap stored in the the last
152          * checkpoint pack. This information is used by the SSR mode.
153          */
154         unsigned short ckpt_valid_blocks;
155         unsigned char *ckpt_valid_map;
156         unsigned char type;             /* segment type like CURSEG_XXX_TYPE */
157         unsigned long long mtime;       /* modification time of the segment */
158 };
159
160 struct sec_entry {
161         unsigned int valid_blocks;      /* # of valid blocks in a section */
162 };
163
164 struct segment_allocation {
165         void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
166 };
167
168 struct sit_info {
169         const struct segment_allocation *s_ops;
170
171         block_t sit_base_addr;          /* start block address of SIT area */
172         block_t sit_blocks;             /* # of blocks used by SIT area */
173         block_t written_valid_blocks;   /* # of valid blocks in main area */
174         char *sit_bitmap;               /* SIT bitmap pointer */
175         unsigned int bitmap_size;       /* SIT bitmap size */
176
177         unsigned long *dirty_sentries_bitmap;   /* bitmap for dirty sentries */
178         unsigned int dirty_sentries;            /* # of dirty sentries */
179         unsigned int sents_per_block;           /* # of SIT entries per block */
180         struct mutex sentry_lock;               /* to protect SIT cache */
181         struct seg_entry *sentries;             /* SIT segment-level cache */
182         struct sec_entry *sec_entries;          /* SIT section-level cache */
183
184         /* for cost-benefit algorithm in cleaning procedure */
185         unsigned long long elapsed_time;        /* elapsed time after mount */
186         unsigned long long mounted_time;        /* mount time */
187         unsigned long long min_mtime;           /* min. modification time */
188         unsigned long long max_mtime;           /* max. modification time */
189 };
190
191 struct free_segmap_info {
192         unsigned int start_segno;       /* start segment number logically */
193         unsigned int free_segments;     /* # of free segments */
194         unsigned int free_sections;     /* # of free sections */
195         rwlock_t segmap_lock;           /* free segmap lock */
196         unsigned long *free_segmap;     /* free segment bitmap */
197         unsigned long *free_secmap;     /* free section bitmap */
198 };
199
200 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
201 enum dirty_type {
202         DIRTY_HOT_DATA,         /* dirty segments assigned as hot data logs */
203         DIRTY_WARM_DATA,        /* dirty segments assigned as warm data logs */
204         DIRTY_COLD_DATA,        /* dirty segments assigned as cold data logs */
205         DIRTY_HOT_NODE,         /* dirty segments assigned as hot node logs */
206         DIRTY_WARM_NODE,        /* dirty segments assigned as warm node logs */
207         DIRTY_COLD_NODE,        /* dirty segments assigned as cold node logs */
208         DIRTY,                  /* to count # of dirty segments */
209         PRE,                    /* to count # of entirely obsolete segments */
210         NR_DIRTY_TYPE
211 };
212
213 struct dirty_seglist_info {
214         const struct victim_selection *v_ops;   /* victim selction operation */
215         unsigned long *dirty_segmap[NR_DIRTY_TYPE];
216         struct mutex seglist_lock;              /* lock for segment bitmaps */
217         int nr_dirty[NR_DIRTY_TYPE];            /* # of dirty segments */
218         unsigned long *victim_secmap;           /* background GC victims */
219 };
220
221 /* victim selection function for cleaning and SSR */
222 struct victim_selection {
223         int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
224                                                         int, int, char);
225 };
226
227 /* for active log information */
228 struct curseg_info {
229         struct mutex curseg_mutex;              /* lock for consistency */
230         struct f2fs_summary_block *sum_blk;     /* cached summary block */
231         unsigned char alloc_type;               /* current allocation type */
232         unsigned int segno;                     /* current segment number */
233         unsigned short next_blkoff;             /* next block offset to write */
234         unsigned int zone;                      /* current zone number */
235         unsigned int next_segno;                /* preallocated segment */
236 };
237
238 /*
239  * inline functions
240  */
241 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
242 {
243         return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
244 }
245
246 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
247                                                 unsigned int segno)
248 {
249         struct sit_info *sit_i = SIT_I(sbi);
250         return &sit_i->sentries[segno];
251 }
252
253 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
254                                                 unsigned int segno)
255 {
256         struct sit_info *sit_i = SIT_I(sbi);
257         return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
258 }
259
260 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
261                                 unsigned int segno, int section)
262 {
263         /*
264          * In order to get # of valid blocks in a section instantly from many
265          * segments, f2fs manages two counting structures separately.
266          */
267         if (section > 1)
268                 return get_sec_entry(sbi, segno)->valid_blocks;
269         else
270                 return get_seg_entry(sbi, segno)->valid_blocks;
271 }
272
273 static inline void seg_info_from_raw_sit(struct seg_entry *se,
274                                         struct f2fs_sit_entry *rs)
275 {
276         se->valid_blocks = GET_SIT_VBLOCKS(rs);
277         se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
278         memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
279         memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
280         se->type = GET_SIT_TYPE(rs);
281         se->mtime = le64_to_cpu(rs->mtime);
282 }
283
284 static inline void seg_info_to_raw_sit(struct seg_entry *se,
285                                         struct f2fs_sit_entry *rs)
286 {
287         unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
288                                         se->valid_blocks;
289         rs->vblocks = cpu_to_le16(raw_vblocks);
290         memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
291         memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
292         se->ckpt_valid_blocks = se->valid_blocks;
293         rs->mtime = cpu_to_le64(se->mtime);
294 }
295
296 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
297                 unsigned int max, unsigned int segno)
298 {
299         unsigned int ret;
300         read_lock(&free_i->segmap_lock);
301         ret = find_next_bit(free_i->free_segmap, max, segno);
302         read_unlock(&free_i->segmap_lock);
303         return ret;
304 }
305
306 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
307 {
308         struct free_segmap_info *free_i = FREE_I(sbi);
309         unsigned int secno = segno / sbi->segs_per_sec;
310         unsigned int start_segno = secno * sbi->segs_per_sec;
311         unsigned int next;
312
313         write_lock(&free_i->segmap_lock);
314         clear_bit(segno, free_i->free_segmap);
315         free_i->free_segments++;
316
317         next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi), start_segno);
318         if (next >= start_segno + sbi->segs_per_sec) {
319                 clear_bit(secno, free_i->free_secmap);
320                 free_i->free_sections++;
321         }
322         write_unlock(&free_i->segmap_lock);
323 }
324
325 static inline void __set_inuse(struct f2fs_sb_info *sbi,
326                 unsigned int segno)
327 {
328         struct free_segmap_info *free_i = FREE_I(sbi);
329         unsigned int secno = segno / sbi->segs_per_sec;
330         set_bit(segno, free_i->free_segmap);
331         free_i->free_segments--;
332         if (!test_and_set_bit(secno, free_i->free_secmap))
333                 free_i->free_sections--;
334 }
335
336 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
337                 unsigned int segno)
338 {
339         struct free_segmap_info *free_i = FREE_I(sbi);
340         unsigned int secno = segno / sbi->segs_per_sec;
341         unsigned int start_segno = secno * sbi->segs_per_sec;
342         unsigned int next;
343
344         write_lock(&free_i->segmap_lock);
345         if (test_and_clear_bit(segno, free_i->free_segmap)) {
346                 free_i->free_segments++;
347
348                 next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi),
349                                                                 start_segno);
350                 if (next >= start_segno + sbi->segs_per_sec) {
351                         if (test_and_clear_bit(secno, free_i->free_secmap))
352                                 free_i->free_sections++;
353                 }
354         }
355         write_unlock(&free_i->segmap_lock);
356 }
357
358 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
359                 unsigned int segno)
360 {
361         struct free_segmap_info *free_i = FREE_I(sbi);
362         unsigned int secno = segno / sbi->segs_per_sec;
363         write_lock(&free_i->segmap_lock);
364         if (!test_and_set_bit(segno, free_i->free_segmap)) {
365                 free_i->free_segments--;
366                 if (!test_and_set_bit(secno, free_i->free_secmap))
367                         free_i->free_sections--;
368         }
369         write_unlock(&free_i->segmap_lock);
370 }
371
372 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
373                 void *dst_addr)
374 {
375         struct sit_info *sit_i = SIT_I(sbi);
376         memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
377 }
378
379 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
380 {
381         struct sit_info *sit_i = SIT_I(sbi);
382         block_t vblocks;
383
384         mutex_lock(&sit_i->sentry_lock);
385         vblocks = sit_i->written_valid_blocks;
386         mutex_unlock(&sit_i->sentry_lock);
387
388         return vblocks;
389 }
390
391 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
392 {
393         struct free_segmap_info *free_i = FREE_I(sbi);
394         unsigned int free_segs;
395
396         read_lock(&free_i->segmap_lock);
397         free_segs = free_i->free_segments;
398         read_unlock(&free_i->segmap_lock);
399
400         return free_segs;
401 }
402
403 static inline int reserved_segments(struct f2fs_sb_info *sbi)
404 {
405         return SM_I(sbi)->reserved_segments;
406 }
407
408 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
409 {
410         struct free_segmap_info *free_i = FREE_I(sbi);
411         unsigned int free_secs;
412
413         read_lock(&free_i->segmap_lock);
414         free_secs = free_i->free_sections;
415         read_unlock(&free_i->segmap_lock);
416
417         return free_secs;
418 }
419
420 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
421 {
422         return DIRTY_I(sbi)->nr_dirty[PRE];
423 }
424
425 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
426 {
427         return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
428                 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
429                 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
430                 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
431                 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
432                 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
433 }
434
435 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
436 {
437         return SM_I(sbi)->ovp_segments;
438 }
439
440 static inline int overprovision_sections(struct f2fs_sb_info *sbi)
441 {
442         return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
443 }
444
445 static inline int reserved_sections(struct f2fs_sb_info *sbi)
446 {
447         return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
448 }
449
450 static inline bool need_SSR(struct f2fs_sb_info *sbi)
451 {
452         return (free_sections(sbi) < overprovision_sections(sbi));
453 }
454
455 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed)
456 {
457         int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
458         int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
459
460         if (sbi->por_doing)
461                 return false;
462
463         return ((free_sections(sbi) + freed) <= (node_secs + 2 * dent_secs +
464                                                 reserved_sections(sbi)));
465 }
466
467 static inline int utilization(struct f2fs_sb_info *sbi)
468 {
469         return div_u64(valid_user_blocks(sbi) * 100, sbi->user_block_count);
470 }
471
472 /*
473  * Sometimes f2fs may be better to drop out-of-place update policy.
474  * So, if fs utilization is over MIN_IPU_UTIL, then f2fs tries to write
475  * data in the original place likewise other traditional file systems.
476  * But, currently set 100 in percentage, which means it is disabled.
477  * See below need_inplace_update().
478  */
479 #define MIN_IPU_UTIL            100
480 static inline bool need_inplace_update(struct inode *inode)
481 {
482         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
483         if (S_ISDIR(inode->i_mode))
484                 return false;
485         if (need_SSR(sbi) && utilization(sbi) > MIN_IPU_UTIL)
486                 return true;
487         return false;
488 }
489
490 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
491                 int type)
492 {
493         struct curseg_info *curseg = CURSEG_I(sbi, type);
494         return curseg->segno;
495 }
496
497 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
498                 int type)
499 {
500         struct curseg_info *curseg = CURSEG_I(sbi, type);
501         return curseg->alloc_type;
502 }
503
504 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
505 {
506         struct curseg_info *curseg = CURSEG_I(sbi, type);
507         return curseg->next_blkoff;
508 }
509
510 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
511 {
512         unsigned int end_segno = SM_I(sbi)->segment_count - 1;
513         BUG_ON(segno > end_segno);
514 }
515
516 /*
517  * This function is used for only debugging.
518  * NOTE: In future, we have to remove this function.
519  */
520 static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
521 {
522         struct f2fs_sm_info *sm_info = SM_I(sbi);
523         block_t total_blks = sm_info->segment_count << sbi->log_blocks_per_seg;
524         block_t start_addr = sm_info->seg0_blkaddr;
525         block_t end_addr = start_addr + total_blks - 1;
526         BUG_ON(blk_addr < start_addr);
527         BUG_ON(blk_addr > end_addr);
528 }
529
530 /*
531  * Summary block is always treated as invalid block
532  */
533 static inline void check_block_count(struct f2fs_sb_info *sbi,
534                 int segno, struct f2fs_sit_entry *raw_sit)
535 {
536         struct f2fs_sm_info *sm_info = SM_I(sbi);
537         unsigned int end_segno = sm_info->segment_count - 1;
538         int valid_blocks = 0;
539         int i;
540
541         /* check segment usage */
542         BUG_ON(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg);
543
544         /* check boundary of a given segment number */
545         BUG_ON(segno > end_segno);
546
547         /* check bitmap with valid block count */
548         for (i = 0; i < sbi->blocks_per_seg; i++)
549                 if (f2fs_test_bit(i, raw_sit->valid_map))
550                         valid_blocks++;
551         BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
552 }
553
554 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
555                                                 unsigned int start)
556 {
557         struct sit_info *sit_i = SIT_I(sbi);
558         unsigned int offset = SIT_BLOCK_OFFSET(sit_i, start);
559         block_t blk_addr = sit_i->sit_base_addr + offset;
560
561         check_seg_range(sbi, start);
562
563         /* calculate sit block address */
564         if (f2fs_test_bit(offset, sit_i->sit_bitmap))
565                 blk_addr += sit_i->sit_blocks;
566
567         return blk_addr;
568 }
569
570 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
571                                                 pgoff_t block_addr)
572 {
573         struct sit_info *sit_i = SIT_I(sbi);
574         block_addr -= sit_i->sit_base_addr;
575         if (block_addr < sit_i->sit_blocks)
576                 block_addr += sit_i->sit_blocks;
577         else
578                 block_addr -= sit_i->sit_blocks;
579
580         return block_addr + sit_i->sit_base_addr;
581 }
582
583 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
584 {
585         unsigned int block_off = SIT_BLOCK_OFFSET(sit_i, start);
586
587         if (f2fs_test_bit(block_off, sit_i->sit_bitmap))
588                 f2fs_clear_bit(block_off, sit_i->sit_bitmap);
589         else
590                 f2fs_set_bit(block_off, sit_i->sit_bitmap);
591 }
592
593 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
594 {
595         struct sit_info *sit_i = SIT_I(sbi);
596         return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
597                                                 sit_i->mounted_time;
598 }
599
600 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
601                         unsigned int ofs_in_node, unsigned char version)
602 {
603         sum->nid = cpu_to_le32(nid);
604         sum->ofs_in_node = cpu_to_le16(ofs_in_node);
605         sum->version = version;
606 }
607
608 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
609 {
610         return __start_cp_addr(sbi) +
611                 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
612 }
613
614 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
615 {
616         return __start_cp_addr(sbi) +
617                 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
618                                 - (base + 1) + type;
619 }
620
621 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
622 {
623         if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
624                 return true;
625         return false;
626 }