Merge tag 'mips_5.3' of git://git.kernel.org/pub/scm/linux/kernel/git/mips/linux
[platform/kernel/linux-rpi.git] / fs / f2fs / segment.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/segment.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/prefetch.h>
13 #include <linux/kthread.h>
14 #include <linux/swap.h>
15 #include <linux/timer.h>
16 #include <linux/freezer.h>
17 #include <linux/sched/signal.h>
18
19 #include "f2fs.h"
20 #include "segment.h"
21 #include "node.h"
22 #include "gc.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 #define __reverse_ffz(x) __reverse_ffs(~(x))
27
28 static struct kmem_cache *discard_entry_slab;
29 static struct kmem_cache *discard_cmd_slab;
30 static struct kmem_cache *sit_entry_set_slab;
31 static struct kmem_cache *inmem_entry_slab;
32
33 static unsigned long __reverse_ulong(unsigned char *str)
34 {
35         unsigned long tmp = 0;
36         int shift = 24, idx = 0;
37
38 #if BITS_PER_LONG == 64
39         shift = 56;
40 #endif
41         while (shift >= 0) {
42                 tmp |= (unsigned long)str[idx++] << shift;
43                 shift -= BITS_PER_BYTE;
44         }
45         return tmp;
46 }
47
48 /*
49  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
50  * MSB and LSB are reversed in a byte by f2fs_set_bit.
51  */
52 static inline unsigned long __reverse_ffs(unsigned long word)
53 {
54         int num = 0;
55
56 #if BITS_PER_LONG == 64
57         if ((word & 0xffffffff00000000UL) == 0)
58                 num += 32;
59         else
60                 word >>= 32;
61 #endif
62         if ((word & 0xffff0000) == 0)
63                 num += 16;
64         else
65                 word >>= 16;
66
67         if ((word & 0xff00) == 0)
68                 num += 8;
69         else
70                 word >>= 8;
71
72         if ((word & 0xf0) == 0)
73                 num += 4;
74         else
75                 word >>= 4;
76
77         if ((word & 0xc) == 0)
78                 num += 2;
79         else
80                 word >>= 2;
81
82         if ((word & 0x2) == 0)
83                 num += 1;
84         return num;
85 }
86
87 /*
88  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
89  * f2fs_set_bit makes MSB and LSB reversed in a byte.
90  * @size must be integral times of unsigned long.
91  * Example:
92  *                             MSB <--> LSB
93  *   f2fs_set_bit(0, bitmap) => 1000 0000
94  *   f2fs_set_bit(7, bitmap) => 0000 0001
95  */
96 static unsigned long __find_rev_next_bit(const unsigned long *addr,
97                         unsigned long size, unsigned long offset)
98 {
99         const unsigned long *p = addr + BIT_WORD(offset);
100         unsigned long result = size;
101         unsigned long tmp;
102
103         if (offset >= size)
104                 return size;
105
106         size -= (offset & ~(BITS_PER_LONG - 1));
107         offset %= BITS_PER_LONG;
108
109         while (1) {
110                 if (*p == 0)
111                         goto pass;
112
113                 tmp = __reverse_ulong((unsigned char *)p);
114
115                 tmp &= ~0UL >> offset;
116                 if (size < BITS_PER_LONG)
117                         tmp &= (~0UL << (BITS_PER_LONG - size));
118                 if (tmp)
119                         goto found;
120 pass:
121                 if (size <= BITS_PER_LONG)
122                         break;
123                 size -= BITS_PER_LONG;
124                 offset = 0;
125                 p++;
126         }
127         return result;
128 found:
129         return result - size + __reverse_ffs(tmp);
130 }
131
132 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
133                         unsigned long size, unsigned long offset)
134 {
135         const unsigned long *p = addr + BIT_WORD(offset);
136         unsigned long result = size;
137         unsigned long tmp;
138
139         if (offset >= size)
140                 return size;
141
142         size -= (offset & ~(BITS_PER_LONG - 1));
143         offset %= BITS_PER_LONG;
144
145         while (1) {
146                 if (*p == ~0UL)
147                         goto pass;
148
149                 tmp = __reverse_ulong((unsigned char *)p);
150
151                 if (offset)
152                         tmp |= ~0UL << (BITS_PER_LONG - offset);
153                 if (size < BITS_PER_LONG)
154                         tmp |= ~0UL >> size;
155                 if (tmp != ~0UL)
156                         goto found;
157 pass:
158                 if (size <= BITS_PER_LONG)
159                         break;
160                 size -= BITS_PER_LONG;
161                 offset = 0;
162                 p++;
163         }
164         return result;
165 found:
166         return result - size + __reverse_ffz(tmp);
167 }
168
169 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
170 {
171         int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
172         int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
173         int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
174
175         if (test_opt(sbi, LFS))
176                 return false;
177         if (sbi->gc_mode == GC_URGENT)
178                 return true;
179         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
180                 return true;
181
182         return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
183                         SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
184 }
185
186 void f2fs_register_inmem_page(struct inode *inode, struct page *page)
187 {
188         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
189         struct f2fs_inode_info *fi = F2FS_I(inode);
190         struct inmem_pages *new;
191
192         f2fs_trace_pid(page);
193
194         f2fs_set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
195
196         new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
197
198         /* add atomic page indices to the list */
199         new->page = page;
200         INIT_LIST_HEAD(&new->list);
201
202         /* increase reference count with clean state */
203         mutex_lock(&fi->inmem_lock);
204         get_page(page);
205         list_add_tail(&new->list, &fi->inmem_pages);
206         spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
207         if (list_empty(&fi->inmem_ilist))
208                 list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]);
209         spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
210         inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
211         mutex_unlock(&fi->inmem_lock);
212
213         trace_f2fs_register_inmem_page(page, INMEM);
214 }
215
216 static int __revoke_inmem_pages(struct inode *inode,
217                                 struct list_head *head, bool drop, bool recover,
218                                 bool trylock)
219 {
220         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
221         struct inmem_pages *cur, *tmp;
222         int err = 0;
223
224         list_for_each_entry_safe(cur, tmp, head, list) {
225                 struct page *page = cur->page;
226
227                 if (drop)
228                         trace_f2fs_commit_inmem_page(page, INMEM_DROP);
229
230                 if (trylock) {
231                         /*
232                          * to avoid deadlock in between page lock and
233                          * inmem_lock.
234                          */
235                         if (!trylock_page(page))
236                                 continue;
237                 } else {
238                         lock_page(page);
239                 }
240
241                 f2fs_wait_on_page_writeback(page, DATA, true, true);
242
243                 if (recover) {
244                         struct dnode_of_data dn;
245                         struct node_info ni;
246
247                         trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
248 retry:
249                         set_new_dnode(&dn, inode, NULL, NULL, 0);
250                         err = f2fs_get_dnode_of_data(&dn, page->index,
251                                                                 LOOKUP_NODE);
252                         if (err) {
253                                 if (err == -ENOMEM) {
254                                         congestion_wait(BLK_RW_ASYNC, HZ/50);
255                                         cond_resched();
256                                         goto retry;
257                                 }
258                                 err = -EAGAIN;
259                                 goto next;
260                         }
261
262                         err = f2fs_get_node_info(sbi, dn.nid, &ni);
263                         if (err) {
264                                 f2fs_put_dnode(&dn);
265                                 return err;
266                         }
267
268                         if (cur->old_addr == NEW_ADDR) {
269                                 f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
270                                 f2fs_update_data_blkaddr(&dn, NEW_ADDR);
271                         } else
272                                 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
273                                         cur->old_addr, ni.version, true, true);
274                         f2fs_put_dnode(&dn);
275                 }
276 next:
277                 /* we don't need to invalidate this in the sccessful status */
278                 if (drop || recover) {
279                         ClearPageUptodate(page);
280                         clear_cold_data(page);
281                 }
282                 f2fs_clear_page_private(page);
283                 f2fs_put_page(page, 1);
284
285                 list_del(&cur->list);
286                 kmem_cache_free(inmem_entry_slab, cur);
287                 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
288         }
289         return err;
290 }
291
292 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
293 {
294         struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
295         struct inode *inode;
296         struct f2fs_inode_info *fi;
297 next:
298         spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
299         if (list_empty(head)) {
300                 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
301                 return;
302         }
303         fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
304         inode = igrab(&fi->vfs_inode);
305         spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
306
307         if (inode) {
308                 if (gc_failure) {
309                         if (fi->i_gc_failures[GC_FAILURE_ATOMIC])
310                                 goto drop;
311                         goto skip;
312                 }
313 drop:
314                 set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
315                 f2fs_drop_inmem_pages(inode);
316                 iput(inode);
317         }
318 skip:
319         congestion_wait(BLK_RW_ASYNC, HZ/50);
320         cond_resched();
321         goto next;
322 }
323
324 void f2fs_drop_inmem_pages(struct inode *inode)
325 {
326         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
327         struct f2fs_inode_info *fi = F2FS_I(inode);
328
329         while (!list_empty(&fi->inmem_pages)) {
330                 mutex_lock(&fi->inmem_lock);
331                 __revoke_inmem_pages(inode, &fi->inmem_pages,
332                                                 true, false, true);
333
334                 if (list_empty(&fi->inmem_pages)) {
335                         spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
336                         if (!list_empty(&fi->inmem_ilist))
337                                 list_del_init(&fi->inmem_ilist);
338                         spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
339                 }
340                 mutex_unlock(&fi->inmem_lock);
341         }
342
343         clear_inode_flag(inode, FI_ATOMIC_FILE);
344         fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
345         stat_dec_atomic_write(inode);
346 }
347
348 void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
349 {
350         struct f2fs_inode_info *fi = F2FS_I(inode);
351         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
352         struct list_head *head = &fi->inmem_pages;
353         struct inmem_pages *cur = NULL;
354
355         f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
356
357         mutex_lock(&fi->inmem_lock);
358         list_for_each_entry(cur, head, list) {
359                 if (cur->page == page)
360                         break;
361         }
362
363         f2fs_bug_on(sbi, list_empty(head) || cur->page != page);
364         list_del(&cur->list);
365         mutex_unlock(&fi->inmem_lock);
366
367         dec_page_count(sbi, F2FS_INMEM_PAGES);
368         kmem_cache_free(inmem_entry_slab, cur);
369
370         ClearPageUptodate(page);
371         f2fs_clear_page_private(page);
372         f2fs_put_page(page, 0);
373
374         trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
375 }
376
377 static int __f2fs_commit_inmem_pages(struct inode *inode)
378 {
379         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
380         struct f2fs_inode_info *fi = F2FS_I(inode);
381         struct inmem_pages *cur, *tmp;
382         struct f2fs_io_info fio = {
383                 .sbi = sbi,
384                 .ino = inode->i_ino,
385                 .type = DATA,
386                 .op = REQ_OP_WRITE,
387                 .op_flags = REQ_SYNC | REQ_PRIO,
388                 .io_type = FS_DATA_IO,
389         };
390         struct list_head revoke_list;
391         bool submit_bio = false;
392         int err = 0;
393
394         INIT_LIST_HEAD(&revoke_list);
395
396         list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
397                 struct page *page = cur->page;
398
399                 lock_page(page);
400                 if (page->mapping == inode->i_mapping) {
401                         trace_f2fs_commit_inmem_page(page, INMEM);
402
403                         f2fs_wait_on_page_writeback(page, DATA, true, true);
404
405                         set_page_dirty(page);
406                         if (clear_page_dirty_for_io(page)) {
407                                 inode_dec_dirty_pages(inode);
408                                 f2fs_remove_dirty_inode(inode);
409                         }
410 retry:
411                         fio.page = page;
412                         fio.old_blkaddr = NULL_ADDR;
413                         fio.encrypted_page = NULL;
414                         fio.need_lock = LOCK_DONE;
415                         err = f2fs_do_write_data_page(&fio);
416                         if (err) {
417                                 if (err == -ENOMEM) {
418                                         congestion_wait(BLK_RW_ASYNC, HZ/50);
419                                         cond_resched();
420                                         goto retry;
421                                 }
422                                 unlock_page(page);
423                                 break;
424                         }
425                         /* record old blkaddr for revoking */
426                         cur->old_addr = fio.old_blkaddr;
427                         submit_bio = true;
428                 }
429                 unlock_page(page);
430                 list_move_tail(&cur->list, &revoke_list);
431         }
432
433         if (submit_bio)
434                 f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA);
435
436         if (err) {
437                 /*
438                  * try to revoke all committed pages, but still we could fail
439                  * due to no memory or other reason, if that happened, EAGAIN
440                  * will be returned, which means in such case, transaction is
441                  * already not integrity, caller should use journal to do the
442                  * recovery or rewrite & commit last transaction. For other
443                  * error number, revoking was done by filesystem itself.
444                  */
445                 err = __revoke_inmem_pages(inode, &revoke_list,
446                                                 false, true, false);
447
448                 /* drop all uncommitted pages */
449                 __revoke_inmem_pages(inode, &fi->inmem_pages,
450                                                 true, false, false);
451         } else {
452                 __revoke_inmem_pages(inode, &revoke_list,
453                                                 false, false, false);
454         }
455
456         return err;
457 }
458
459 int f2fs_commit_inmem_pages(struct inode *inode)
460 {
461         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
462         struct f2fs_inode_info *fi = F2FS_I(inode);
463         int err;
464
465         f2fs_balance_fs(sbi, true);
466
467         down_write(&fi->i_gc_rwsem[WRITE]);
468
469         f2fs_lock_op(sbi);
470         set_inode_flag(inode, FI_ATOMIC_COMMIT);
471
472         mutex_lock(&fi->inmem_lock);
473         err = __f2fs_commit_inmem_pages(inode);
474
475         spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
476         if (!list_empty(&fi->inmem_ilist))
477                 list_del_init(&fi->inmem_ilist);
478         spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
479         mutex_unlock(&fi->inmem_lock);
480
481         clear_inode_flag(inode, FI_ATOMIC_COMMIT);
482
483         f2fs_unlock_op(sbi);
484         up_write(&fi->i_gc_rwsem[WRITE]);
485
486         return err;
487 }
488
489 /*
490  * This function balances dirty node and dentry pages.
491  * In addition, it controls garbage collection.
492  */
493 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
494 {
495         if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
496                 f2fs_show_injection_info(FAULT_CHECKPOINT);
497                 f2fs_stop_checkpoint(sbi, false);
498         }
499
500         /* balance_fs_bg is able to be pending */
501         if (need && excess_cached_nats(sbi))
502                 f2fs_balance_fs_bg(sbi);
503
504         if (f2fs_is_checkpoint_ready(sbi))
505                 return;
506
507         /*
508          * We should do GC or end up with checkpoint, if there are so many dirty
509          * dir/node pages without enough free segments.
510          */
511         if (has_not_enough_free_secs(sbi, 0, 0)) {
512                 mutex_lock(&sbi->gc_mutex);
513                 f2fs_gc(sbi, false, false, NULL_SEGNO);
514         }
515 }
516
517 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
518 {
519         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
520                 return;
521
522         /* try to shrink extent cache when there is no enough memory */
523         if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
524                 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
525
526         /* check the # of cached NAT entries */
527         if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
528                 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
529
530         if (!f2fs_available_free_memory(sbi, FREE_NIDS))
531                 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
532         else
533                 f2fs_build_free_nids(sbi, false, false);
534
535         if (!is_idle(sbi, REQ_TIME) &&
536                 (!excess_dirty_nats(sbi) && !excess_dirty_nodes(sbi)))
537                 return;
538
539         /* checkpoint is the only way to shrink partial cached entries */
540         if (!f2fs_available_free_memory(sbi, NAT_ENTRIES) ||
541                         !f2fs_available_free_memory(sbi, INO_ENTRIES) ||
542                         excess_prefree_segs(sbi) ||
543                         excess_dirty_nats(sbi) ||
544                         excess_dirty_nodes(sbi) ||
545                         f2fs_time_over(sbi, CP_TIME)) {
546                 if (test_opt(sbi, DATA_FLUSH)) {
547                         struct blk_plug plug;
548
549                         mutex_lock(&sbi->flush_lock);
550
551                         blk_start_plug(&plug);
552                         f2fs_sync_dirty_inodes(sbi, FILE_INODE);
553                         blk_finish_plug(&plug);
554
555                         mutex_unlock(&sbi->flush_lock);
556                 }
557                 f2fs_sync_fs(sbi->sb, true);
558                 stat_inc_bg_cp_count(sbi->stat_info);
559         }
560 }
561
562 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
563                                 struct block_device *bdev)
564 {
565         struct bio *bio;
566         int ret;
567
568         bio = f2fs_bio_alloc(sbi, 0, false);
569         if (!bio)
570                 return -ENOMEM;
571
572         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
573         bio_set_dev(bio, bdev);
574         ret = submit_bio_wait(bio);
575         bio_put(bio);
576
577         trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
578                                 test_opt(sbi, FLUSH_MERGE), ret);
579         return ret;
580 }
581
582 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
583 {
584         int ret = 0;
585         int i;
586
587         if (!f2fs_is_multi_device(sbi))
588                 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
589
590         for (i = 0; i < sbi->s_ndevs; i++) {
591                 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
592                         continue;
593                 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
594                 if (ret)
595                         break;
596         }
597         return ret;
598 }
599
600 static int issue_flush_thread(void *data)
601 {
602         struct f2fs_sb_info *sbi = data;
603         struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
604         wait_queue_head_t *q = &fcc->flush_wait_queue;
605 repeat:
606         if (kthread_should_stop())
607                 return 0;
608
609         sb_start_intwrite(sbi->sb);
610
611         if (!llist_empty(&fcc->issue_list)) {
612                 struct flush_cmd *cmd, *next;
613                 int ret;
614
615                 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
616                 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
617
618                 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
619
620                 ret = submit_flush_wait(sbi, cmd->ino);
621                 atomic_inc(&fcc->issued_flush);
622
623                 llist_for_each_entry_safe(cmd, next,
624                                           fcc->dispatch_list, llnode) {
625                         cmd->ret = ret;
626                         complete(&cmd->wait);
627                 }
628                 fcc->dispatch_list = NULL;
629         }
630
631         sb_end_intwrite(sbi->sb);
632
633         wait_event_interruptible(*q,
634                 kthread_should_stop() || !llist_empty(&fcc->issue_list));
635         goto repeat;
636 }
637
638 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
639 {
640         struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
641         struct flush_cmd cmd;
642         int ret;
643
644         if (test_opt(sbi, NOBARRIER))
645                 return 0;
646
647         if (!test_opt(sbi, FLUSH_MERGE)) {
648                 atomic_inc(&fcc->queued_flush);
649                 ret = submit_flush_wait(sbi, ino);
650                 atomic_dec(&fcc->queued_flush);
651                 atomic_inc(&fcc->issued_flush);
652                 return ret;
653         }
654
655         if (atomic_inc_return(&fcc->queued_flush) == 1 ||
656             f2fs_is_multi_device(sbi)) {
657                 ret = submit_flush_wait(sbi, ino);
658                 atomic_dec(&fcc->queued_flush);
659
660                 atomic_inc(&fcc->issued_flush);
661                 return ret;
662         }
663
664         cmd.ino = ino;
665         init_completion(&cmd.wait);
666
667         llist_add(&cmd.llnode, &fcc->issue_list);
668
669         /* update issue_list before we wake up issue_flush thread */
670         smp_mb();
671
672         if (waitqueue_active(&fcc->flush_wait_queue))
673                 wake_up(&fcc->flush_wait_queue);
674
675         if (fcc->f2fs_issue_flush) {
676                 wait_for_completion(&cmd.wait);
677                 atomic_dec(&fcc->queued_flush);
678         } else {
679                 struct llist_node *list;
680
681                 list = llist_del_all(&fcc->issue_list);
682                 if (!list) {
683                         wait_for_completion(&cmd.wait);
684                         atomic_dec(&fcc->queued_flush);
685                 } else {
686                         struct flush_cmd *tmp, *next;
687
688                         ret = submit_flush_wait(sbi, ino);
689
690                         llist_for_each_entry_safe(tmp, next, list, llnode) {
691                                 if (tmp == &cmd) {
692                                         cmd.ret = ret;
693                                         atomic_dec(&fcc->queued_flush);
694                                         continue;
695                                 }
696                                 tmp->ret = ret;
697                                 complete(&tmp->wait);
698                         }
699                 }
700         }
701
702         return cmd.ret;
703 }
704
705 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
706 {
707         dev_t dev = sbi->sb->s_bdev->bd_dev;
708         struct flush_cmd_control *fcc;
709         int err = 0;
710
711         if (SM_I(sbi)->fcc_info) {
712                 fcc = SM_I(sbi)->fcc_info;
713                 if (fcc->f2fs_issue_flush)
714                         return err;
715                 goto init_thread;
716         }
717
718         fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
719         if (!fcc)
720                 return -ENOMEM;
721         atomic_set(&fcc->issued_flush, 0);
722         atomic_set(&fcc->queued_flush, 0);
723         init_waitqueue_head(&fcc->flush_wait_queue);
724         init_llist_head(&fcc->issue_list);
725         SM_I(sbi)->fcc_info = fcc;
726         if (!test_opt(sbi, FLUSH_MERGE))
727                 return err;
728
729 init_thread:
730         fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
731                                 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
732         if (IS_ERR(fcc->f2fs_issue_flush)) {
733                 err = PTR_ERR(fcc->f2fs_issue_flush);
734                 kvfree(fcc);
735                 SM_I(sbi)->fcc_info = NULL;
736                 return err;
737         }
738
739         return err;
740 }
741
742 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
743 {
744         struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
745
746         if (fcc && fcc->f2fs_issue_flush) {
747                 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
748
749                 fcc->f2fs_issue_flush = NULL;
750                 kthread_stop(flush_thread);
751         }
752         if (free) {
753                 kvfree(fcc);
754                 SM_I(sbi)->fcc_info = NULL;
755         }
756 }
757
758 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
759 {
760         int ret = 0, i;
761
762         if (!f2fs_is_multi_device(sbi))
763                 return 0;
764
765         for (i = 1; i < sbi->s_ndevs; i++) {
766                 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
767                         continue;
768                 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
769                 if (ret)
770                         break;
771
772                 spin_lock(&sbi->dev_lock);
773                 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
774                 spin_unlock(&sbi->dev_lock);
775         }
776
777         return ret;
778 }
779
780 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
781                 enum dirty_type dirty_type)
782 {
783         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
784
785         /* need not be added */
786         if (IS_CURSEG(sbi, segno))
787                 return;
788
789         if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
790                 dirty_i->nr_dirty[dirty_type]++;
791
792         if (dirty_type == DIRTY) {
793                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
794                 enum dirty_type t = sentry->type;
795
796                 if (unlikely(t >= DIRTY)) {
797                         f2fs_bug_on(sbi, 1);
798                         return;
799                 }
800                 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
801                         dirty_i->nr_dirty[t]++;
802         }
803 }
804
805 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
806                 enum dirty_type dirty_type)
807 {
808         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
809
810         if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
811                 dirty_i->nr_dirty[dirty_type]--;
812
813         if (dirty_type == DIRTY) {
814                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
815                 enum dirty_type t = sentry->type;
816
817                 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
818                         dirty_i->nr_dirty[t]--;
819
820                 if (get_valid_blocks(sbi, segno, true) == 0)
821                         clear_bit(GET_SEC_FROM_SEG(sbi, segno),
822                                                 dirty_i->victim_secmap);
823         }
824 }
825
826 /*
827  * Should not occur error such as -ENOMEM.
828  * Adding dirty entry into seglist is not critical operation.
829  * If a given segment is one of current working segments, it won't be added.
830  */
831 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
832 {
833         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
834         unsigned short valid_blocks, ckpt_valid_blocks;
835
836         if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
837                 return;
838
839         mutex_lock(&dirty_i->seglist_lock);
840
841         valid_blocks = get_valid_blocks(sbi, segno, false);
842         ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno);
843
844         if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
845                                 ckpt_valid_blocks == sbi->blocks_per_seg)) {
846                 __locate_dirty_segment(sbi, segno, PRE);
847                 __remove_dirty_segment(sbi, segno, DIRTY);
848         } else if (valid_blocks < sbi->blocks_per_seg) {
849                 __locate_dirty_segment(sbi, segno, DIRTY);
850         } else {
851                 /* Recovery routine with SSR needs this */
852                 __remove_dirty_segment(sbi, segno, DIRTY);
853         }
854
855         mutex_unlock(&dirty_i->seglist_lock);
856 }
857
858 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
859 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
860 {
861         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
862         unsigned int segno;
863
864         mutex_lock(&dirty_i->seglist_lock);
865         for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
866                 if (get_valid_blocks(sbi, segno, false))
867                         continue;
868                 if (IS_CURSEG(sbi, segno))
869                         continue;
870                 __locate_dirty_segment(sbi, segno, PRE);
871                 __remove_dirty_segment(sbi, segno, DIRTY);
872         }
873         mutex_unlock(&dirty_i->seglist_lock);
874 }
875
876 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
877 {
878         int ovp_hole_segs =
879                 (overprovision_segments(sbi) - reserved_segments(sbi));
880         block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
881         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
882         block_t holes[2] = {0, 0};      /* DATA and NODE */
883         block_t unusable;
884         struct seg_entry *se;
885         unsigned int segno;
886
887         mutex_lock(&dirty_i->seglist_lock);
888         for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
889                 se = get_seg_entry(sbi, segno);
890                 if (IS_NODESEG(se->type))
891                         holes[NODE] += sbi->blocks_per_seg - se->valid_blocks;
892                 else
893                         holes[DATA] += sbi->blocks_per_seg - se->valid_blocks;
894         }
895         mutex_unlock(&dirty_i->seglist_lock);
896
897         unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE];
898         if (unusable > ovp_holes)
899                 return unusable - ovp_holes;
900         return 0;
901 }
902
903 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
904 {
905         int ovp_hole_segs =
906                 (overprovision_segments(sbi) - reserved_segments(sbi));
907         if (unusable > F2FS_OPTION(sbi).unusable_cap)
908                 return -EAGAIN;
909         if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
910                 dirty_segments(sbi) > ovp_hole_segs)
911                 return -EAGAIN;
912         return 0;
913 }
914
915 /* This is only used by SBI_CP_DISABLED */
916 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
917 {
918         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
919         unsigned int segno = 0;
920
921         mutex_lock(&dirty_i->seglist_lock);
922         for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
923                 if (get_valid_blocks(sbi, segno, false))
924                         continue;
925                 if (get_ckpt_valid_blocks(sbi, segno))
926                         continue;
927                 mutex_unlock(&dirty_i->seglist_lock);
928                 return segno;
929         }
930         mutex_unlock(&dirty_i->seglist_lock);
931         return NULL_SEGNO;
932 }
933
934 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
935                 struct block_device *bdev, block_t lstart,
936                 block_t start, block_t len)
937 {
938         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
939         struct list_head *pend_list;
940         struct discard_cmd *dc;
941
942         f2fs_bug_on(sbi, !len);
943
944         pend_list = &dcc->pend_list[plist_idx(len)];
945
946         dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
947         INIT_LIST_HEAD(&dc->list);
948         dc->bdev = bdev;
949         dc->lstart = lstart;
950         dc->start = start;
951         dc->len = len;
952         dc->ref = 0;
953         dc->state = D_PREP;
954         dc->queued = 0;
955         dc->error = 0;
956         init_completion(&dc->wait);
957         list_add_tail(&dc->list, pend_list);
958         spin_lock_init(&dc->lock);
959         dc->bio_ref = 0;
960         atomic_inc(&dcc->discard_cmd_cnt);
961         dcc->undiscard_blks += len;
962
963         return dc;
964 }
965
966 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
967                                 struct block_device *bdev, block_t lstart,
968                                 block_t start, block_t len,
969                                 struct rb_node *parent, struct rb_node **p,
970                                 bool leftmost)
971 {
972         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
973         struct discard_cmd *dc;
974
975         dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
976
977         rb_link_node(&dc->rb_node, parent, p);
978         rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
979
980         return dc;
981 }
982
983 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
984                                                         struct discard_cmd *dc)
985 {
986         if (dc->state == D_DONE)
987                 atomic_sub(dc->queued, &dcc->queued_discard);
988
989         list_del(&dc->list);
990         rb_erase_cached(&dc->rb_node, &dcc->root);
991         dcc->undiscard_blks -= dc->len;
992
993         kmem_cache_free(discard_cmd_slab, dc);
994
995         atomic_dec(&dcc->discard_cmd_cnt);
996 }
997
998 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
999                                                         struct discard_cmd *dc)
1000 {
1001         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1002         unsigned long flags;
1003
1004         trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
1005
1006         spin_lock_irqsave(&dc->lock, flags);
1007         if (dc->bio_ref) {
1008                 spin_unlock_irqrestore(&dc->lock, flags);
1009                 return;
1010         }
1011         spin_unlock_irqrestore(&dc->lock, flags);
1012
1013         f2fs_bug_on(sbi, dc->ref);
1014
1015         if (dc->error == -EOPNOTSUPP)
1016                 dc->error = 0;
1017
1018         if (dc->error)
1019                 printk_ratelimited(
1020                         "%sF2FS-fs: Issue discard(%u, %u, %u) failed, ret: %d",
1021                         KERN_INFO, dc->lstart, dc->start, dc->len, dc->error);
1022         __detach_discard_cmd(dcc, dc);
1023 }
1024
1025 static void f2fs_submit_discard_endio(struct bio *bio)
1026 {
1027         struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1028         unsigned long flags;
1029
1030         dc->error = blk_status_to_errno(bio->bi_status);
1031
1032         spin_lock_irqsave(&dc->lock, flags);
1033         dc->bio_ref--;
1034         if (!dc->bio_ref && dc->state == D_SUBMIT) {
1035                 dc->state = D_DONE;
1036                 complete_all(&dc->wait);
1037         }
1038         spin_unlock_irqrestore(&dc->lock, flags);
1039         bio_put(bio);
1040 }
1041
1042 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1043                                 block_t start, block_t end)
1044 {
1045 #ifdef CONFIG_F2FS_CHECK_FS
1046         struct seg_entry *sentry;
1047         unsigned int segno;
1048         block_t blk = start;
1049         unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1050         unsigned long *map;
1051
1052         while (blk < end) {
1053                 segno = GET_SEGNO(sbi, blk);
1054                 sentry = get_seg_entry(sbi, segno);
1055                 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1056
1057                 if (end < START_BLOCK(sbi, segno + 1))
1058                         size = GET_BLKOFF_FROM_SEG0(sbi, end);
1059                 else
1060                         size = max_blocks;
1061                 map = (unsigned long *)(sentry->cur_valid_map);
1062                 offset = __find_rev_next_bit(map, size, offset);
1063                 f2fs_bug_on(sbi, offset != size);
1064                 blk = START_BLOCK(sbi, segno + 1);
1065         }
1066 #endif
1067 }
1068
1069 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1070                                 struct discard_policy *dpolicy,
1071                                 int discard_type, unsigned int granularity)
1072 {
1073         /* common policy */
1074         dpolicy->type = discard_type;
1075         dpolicy->sync = true;
1076         dpolicy->ordered = false;
1077         dpolicy->granularity = granularity;
1078
1079         dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1080         dpolicy->io_aware_gran = MAX_PLIST_NUM;
1081         dpolicy->timeout = 0;
1082
1083         if (discard_type == DPOLICY_BG) {
1084                 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1085                 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1086                 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1087                 dpolicy->io_aware = true;
1088                 dpolicy->sync = false;
1089                 dpolicy->ordered = true;
1090                 if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
1091                         dpolicy->granularity = 1;
1092                         dpolicy->max_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1093                 }
1094         } else if (discard_type == DPOLICY_FORCE) {
1095                 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1096                 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1097                 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1098                 dpolicy->io_aware = false;
1099         } else if (discard_type == DPOLICY_FSTRIM) {
1100                 dpolicy->io_aware = false;
1101         } else if (discard_type == DPOLICY_UMOUNT) {
1102                 dpolicy->max_requests = UINT_MAX;
1103                 dpolicy->io_aware = false;
1104                 /* we need to issue all to keep CP_TRIMMED_FLAG */
1105                 dpolicy->granularity = 1;
1106         }
1107 }
1108
1109 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1110                                 struct block_device *bdev, block_t lstart,
1111                                 block_t start, block_t len);
1112 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1113 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1114                                                 struct discard_policy *dpolicy,
1115                                                 struct discard_cmd *dc,
1116                                                 unsigned int *issued)
1117 {
1118         struct block_device *bdev = dc->bdev;
1119         struct request_queue *q = bdev_get_queue(bdev);
1120         unsigned int max_discard_blocks =
1121                         SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1122         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1123         struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1124                                         &(dcc->fstrim_list) : &(dcc->wait_list);
1125         int flag = dpolicy->sync ? REQ_SYNC : 0;
1126         block_t lstart, start, len, total_len;
1127         int err = 0;
1128
1129         if (dc->state != D_PREP)
1130                 return 0;
1131
1132         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1133                 return 0;
1134
1135         trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1136
1137         lstart = dc->lstart;
1138         start = dc->start;
1139         len = dc->len;
1140         total_len = len;
1141
1142         dc->len = 0;
1143
1144         while (total_len && *issued < dpolicy->max_requests && !err) {
1145                 struct bio *bio = NULL;
1146                 unsigned long flags;
1147                 bool last = true;
1148
1149                 if (len > max_discard_blocks) {
1150                         len = max_discard_blocks;
1151                         last = false;
1152                 }
1153
1154                 (*issued)++;
1155                 if (*issued == dpolicy->max_requests)
1156                         last = true;
1157
1158                 dc->len += len;
1159
1160                 if (time_to_inject(sbi, FAULT_DISCARD)) {
1161                         f2fs_show_injection_info(FAULT_DISCARD);
1162                         err = -EIO;
1163                         goto submit;
1164                 }
1165                 err = __blkdev_issue_discard(bdev,
1166                                         SECTOR_FROM_BLOCK(start),
1167                                         SECTOR_FROM_BLOCK(len),
1168                                         GFP_NOFS, 0, &bio);
1169 submit:
1170                 if (err) {
1171                         spin_lock_irqsave(&dc->lock, flags);
1172                         if (dc->state == D_PARTIAL)
1173                                 dc->state = D_SUBMIT;
1174                         spin_unlock_irqrestore(&dc->lock, flags);
1175
1176                         break;
1177                 }
1178
1179                 f2fs_bug_on(sbi, !bio);
1180
1181                 /*
1182                  * should keep before submission to avoid D_DONE
1183                  * right away
1184                  */
1185                 spin_lock_irqsave(&dc->lock, flags);
1186                 if (last)
1187                         dc->state = D_SUBMIT;
1188                 else
1189                         dc->state = D_PARTIAL;
1190                 dc->bio_ref++;
1191                 spin_unlock_irqrestore(&dc->lock, flags);
1192
1193                 atomic_inc(&dcc->queued_discard);
1194                 dc->queued++;
1195                 list_move_tail(&dc->list, wait_list);
1196
1197                 /* sanity check on discard range */
1198                 __check_sit_bitmap(sbi, lstart, lstart + len);
1199
1200                 bio->bi_private = dc;
1201                 bio->bi_end_io = f2fs_submit_discard_endio;
1202                 bio->bi_opf |= flag;
1203                 submit_bio(bio);
1204
1205                 atomic_inc(&dcc->issued_discard);
1206
1207                 f2fs_update_iostat(sbi, FS_DISCARD, 1);
1208
1209                 lstart += len;
1210                 start += len;
1211                 total_len -= len;
1212                 len = total_len;
1213         }
1214
1215         if (!err && len)
1216                 __update_discard_tree_range(sbi, bdev, lstart, start, len);
1217         return err;
1218 }
1219
1220 static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi,
1221                                 struct block_device *bdev, block_t lstart,
1222                                 block_t start, block_t len,
1223                                 struct rb_node **insert_p,
1224                                 struct rb_node *insert_parent)
1225 {
1226         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1227         struct rb_node **p;
1228         struct rb_node *parent = NULL;
1229         struct discard_cmd *dc = NULL;
1230         bool leftmost = true;
1231
1232         if (insert_p && insert_parent) {
1233                 parent = insert_parent;
1234                 p = insert_p;
1235                 goto do_insert;
1236         }
1237
1238         p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1239                                                         lstart, &leftmost);
1240 do_insert:
1241         dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1242                                                                 p, leftmost);
1243         if (!dc)
1244                 return NULL;
1245
1246         return dc;
1247 }
1248
1249 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1250                                                 struct discard_cmd *dc)
1251 {
1252         list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1253 }
1254
1255 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1256                                 struct discard_cmd *dc, block_t blkaddr)
1257 {
1258         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1259         struct discard_info di = dc->di;
1260         bool modified = false;
1261
1262         if (dc->state == D_DONE || dc->len == 1) {
1263                 __remove_discard_cmd(sbi, dc);
1264                 return;
1265         }
1266
1267         dcc->undiscard_blks -= di.len;
1268
1269         if (blkaddr > di.lstart) {
1270                 dc->len = blkaddr - dc->lstart;
1271                 dcc->undiscard_blks += dc->len;
1272                 __relocate_discard_cmd(dcc, dc);
1273                 modified = true;
1274         }
1275
1276         if (blkaddr < di.lstart + di.len - 1) {
1277                 if (modified) {
1278                         __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1279                                         di.start + blkaddr + 1 - di.lstart,
1280                                         di.lstart + di.len - 1 - blkaddr,
1281                                         NULL, NULL);
1282                 } else {
1283                         dc->lstart++;
1284                         dc->len--;
1285                         dc->start++;
1286                         dcc->undiscard_blks += dc->len;
1287                         __relocate_discard_cmd(dcc, dc);
1288                 }
1289         }
1290 }
1291
1292 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1293                                 struct block_device *bdev, block_t lstart,
1294                                 block_t start, block_t len)
1295 {
1296         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1297         struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1298         struct discard_cmd *dc;
1299         struct discard_info di = {0};
1300         struct rb_node **insert_p = NULL, *insert_parent = NULL;
1301         struct request_queue *q = bdev_get_queue(bdev);
1302         unsigned int max_discard_blocks =
1303                         SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1304         block_t end = lstart + len;
1305
1306         dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1307                                         NULL, lstart,
1308                                         (struct rb_entry **)&prev_dc,
1309                                         (struct rb_entry **)&next_dc,
1310                                         &insert_p, &insert_parent, true, NULL);
1311         if (dc)
1312                 prev_dc = dc;
1313
1314         if (!prev_dc) {
1315                 di.lstart = lstart;
1316                 di.len = next_dc ? next_dc->lstart - lstart : len;
1317                 di.len = min(di.len, len);
1318                 di.start = start;
1319         }
1320
1321         while (1) {
1322                 struct rb_node *node;
1323                 bool merged = false;
1324                 struct discard_cmd *tdc = NULL;
1325
1326                 if (prev_dc) {
1327                         di.lstart = prev_dc->lstart + prev_dc->len;
1328                         if (di.lstart < lstart)
1329                                 di.lstart = lstart;
1330                         if (di.lstart >= end)
1331                                 break;
1332
1333                         if (!next_dc || next_dc->lstart > end)
1334                                 di.len = end - di.lstart;
1335                         else
1336                                 di.len = next_dc->lstart - di.lstart;
1337                         di.start = start + di.lstart - lstart;
1338                 }
1339
1340                 if (!di.len)
1341                         goto next;
1342
1343                 if (prev_dc && prev_dc->state == D_PREP &&
1344                         prev_dc->bdev == bdev &&
1345                         __is_discard_back_mergeable(&di, &prev_dc->di,
1346                                                         max_discard_blocks)) {
1347                         prev_dc->di.len += di.len;
1348                         dcc->undiscard_blks += di.len;
1349                         __relocate_discard_cmd(dcc, prev_dc);
1350                         di = prev_dc->di;
1351                         tdc = prev_dc;
1352                         merged = true;
1353                 }
1354
1355                 if (next_dc && next_dc->state == D_PREP &&
1356                         next_dc->bdev == bdev &&
1357                         __is_discard_front_mergeable(&di, &next_dc->di,
1358                                                         max_discard_blocks)) {
1359                         next_dc->di.lstart = di.lstart;
1360                         next_dc->di.len += di.len;
1361                         next_dc->di.start = di.start;
1362                         dcc->undiscard_blks += di.len;
1363                         __relocate_discard_cmd(dcc, next_dc);
1364                         if (tdc)
1365                                 __remove_discard_cmd(sbi, tdc);
1366                         merged = true;
1367                 }
1368
1369                 if (!merged) {
1370                         __insert_discard_tree(sbi, bdev, di.lstart, di.start,
1371                                                         di.len, NULL, NULL);
1372                 }
1373  next:
1374                 prev_dc = next_dc;
1375                 if (!prev_dc)
1376                         break;
1377
1378                 node = rb_next(&prev_dc->rb_node);
1379                 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1380         }
1381 }
1382
1383 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1384                 struct block_device *bdev, block_t blkstart, block_t blklen)
1385 {
1386         block_t lblkstart = blkstart;
1387
1388         if (!f2fs_bdev_support_discard(bdev))
1389                 return 0;
1390
1391         trace_f2fs_queue_discard(bdev, blkstart, blklen);
1392
1393         if (f2fs_is_multi_device(sbi)) {
1394                 int devi = f2fs_target_device_index(sbi, blkstart);
1395
1396                 blkstart -= FDEV(devi).start_blk;
1397         }
1398         mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1399         __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1400         mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1401         return 0;
1402 }
1403
1404 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1405                                         struct discard_policy *dpolicy)
1406 {
1407         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1408         struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1409         struct rb_node **insert_p = NULL, *insert_parent = NULL;
1410         struct discard_cmd *dc;
1411         struct blk_plug plug;
1412         unsigned int pos = dcc->next_pos;
1413         unsigned int issued = 0;
1414         bool io_interrupted = false;
1415
1416         mutex_lock(&dcc->cmd_lock);
1417         dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1418                                         NULL, pos,
1419                                         (struct rb_entry **)&prev_dc,
1420                                         (struct rb_entry **)&next_dc,
1421                                         &insert_p, &insert_parent, true, NULL);
1422         if (!dc)
1423                 dc = next_dc;
1424
1425         blk_start_plug(&plug);
1426
1427         while (dc) {
1428                 struct rb_node *node;
1429                 int err = 0;
1430
1431                 if (dc->state != D_PREP)
1432                         goto next;
1433
1434                 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1435                         io_interrupted = true;
1436                         break;
1437                 }
1438
1439                 dcc->next_pos = dc->lstart + dc->len;
1440                 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1441
1442                 if (issued >= dpolicy->max_requests)
1443                         break;
1444 next:
1445                 node = rb_next(&dc->rb_node);
1446                 if (err)
1447                         __remove_discard_cmd(sbi, dc);
1448                 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1449         }
1450
1451         blk_finish_plug(&plug);
1452
1453         if (!dc)
1454                 dcc->next_pos = 0;
1455
1456         mutex_unlock(&dcc->cmd_lock);
1457
1458         if (!issued && io_interrupted)
1459                 issued = -1;
1460
1461         return issued;
1462 }
1463
1464 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1465                                         struct discard_policy *dpolicy)
1466 {
1467         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1468         struct list_head *pend_list;
1469         struct discard_cmd *dc, *tmp;
1470         struct blk_plug plug;
1471         int i, issued = 0;
1472         bool io_interrupted = false;
1473
1474         if (dpolicy->timeout != 0)
1475                 f2fs_update_time(sbi, dpolicy->timeout);
1476
1477         for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1478                 if (dpolicy->timeout != 0 &&
1479                                 f2fs_time_over(sbi, dpolicy->timeout))
1480                         break;
1481
1482                 if (i + 1 < dpolicy->granularity)
1483                         break;
1484
1485                 if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
1486                         return __issue_discard_cmd_orderly(sbi, dpolicy);
1487
1488                 pend_list = &dcc->pend_list[i];
1489
1490                 mutex_lock(&dcc->cmd_lock);
1491                 if (list_empty(pend_list))
1492                         goto next;
1493                 if (unlikely(dcc->rbtree_check))
1494                         f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1495                                                                 &dcc->root));
1496                 blk_start_plug(&plug);
1497                 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1498                         f2fs_bug_on(sbi, dc->state != D_PREP);
1499
1500                         if (dpolicy->timeout != 0 &&
1501                                 f2fs_time_over(sbi, dpolicy->timeout))
1502                                 break;
1503
1504                         if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1505                                                 !is_idle(sbi, DISCARD_TIME)) {
1506                                 io_interrupted = true;
1507                                 break;
1508                         }
1509
1510                         __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1511
1512                         if (issued >= dpolicy->max_requests)
1513                                 break;
1514                 }
1515                 blk_finish_plug(&plug);
1516 next:
1517                 mutex_unlock(&dcc->cmd_lock);
1518
1519                 if (issued >= dpolicy->max_requests || io_interrupted)
1520                         break;
1521         }
1522
1523         if (!issued && io_interrupted)
1524                 issued = -1;
1525
1526         return issued;
1527 }
1528
1529 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1530 {
1531         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1532         struct list_head *pend_list;
1533         struct discard_cmd *dc, *tmp;
1534         int i;
1535         bool dropped = false;
1536
1537         mutex_lock(&dcc->cmd_lock);
1538         for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1539                 pend_list = &dcc->pend_list[i];
1540                 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1541                         f2fs_bug_on(sbi, dc->state != D_PREP);
1542                         __remove_discard_cmd(sbi, dc);
1543                         dropped = true;
1544                 }
1545         }
1546         mutex_unlock(&dcc->cmd_lock);
1547
1548         return dropped;
1549 }
1550
1551 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1552 {
1553         __drop_discard_cmd(sbi);
1554 }
1555
1556 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1557                                                         struct discard_cmd *dc)
1558 {
1559         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1560         unsigned int len = 0;
1561
1562         wait_for_completion_io(&dc->wait);
1563         mutex_lock(&dcc->cmd_lock);
1564         f2fs_bug_on(sbi, dc->state != D_DONE);
1565         dc->ref--;
1566         if (!dc->ref) {
1567                 if (!dc->error)
1568                         len = dc->len;
1569                 __remove_discard_cmd(sbi, dc);
1570         }
1571         mutex_unlock(&dcc->cmd_lock);
1572
1573         return len;
1574 }
1575
1576 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1577                                                 struct discard_policy *dpolicy,
1578                                                 block_t start, block_t end)
1579 {
1580         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1581         struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1582                                         &(dcc->fstrim_list) : &(dcc->wait_list);
1583         struct discard_cmd *dc, *tmp;
1584         bool need_wait;
1585         unsigned int trimmed = 0;
1586
1587 next:
1588         need_wait = false;
1589
1590         mutex_lock(&dcc->cmd_lock);
1591         list_for_each_entry_safe(dc, tmp, wait_list, list) {
1592                 if (dc->lstart + dc->len <= start || end <= dc->lstart)
1593                         continue;
1594                 if (dc->len < dpolicy->granularity)
1595                         continue;
1596                 if (dc->state == D_DONE && !dc->ref) {
1597                         wait_for_completion_io(&dc->wait);
1598                         if (!dc->error)
1599                                 trimmed += dc->len;
1600                         __remove_discard_cmd(sbi, dc);
1601                 } else {
1602                         dc->ref++;
1603                         need_wait = true;
1604                         break;
1605                 }
1606         }
1607         mutex_unlock(&dcc->cmd_lock);
1608
1609         if (need_wait) {
1610                 trimmed += __wait_one_discard_bio(sbi, dc);
1611                 goto next;
1612         }
1613
1614         return trimmed;
1615 }
1616
1617 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1618                                                 struct discard_policy *dpolicy)
1619 {
1620         struct discard_policy dp;
1621         unsigned int discard_blks;
1622
1623         if (dpolicy)
1624                 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1625
1626         /* wait all */
1627         __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1628         discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1629         __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1630         discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1631
1632         return discard_blks;
1633 }
1634
1635 /* This should be covered by global mutex, &sit_i->sentry_lock */
1636 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1637 {
1638         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1639         struct discard_cmd *dc;
1640         bool need_wait = false;
1641
1642         mutex_lock(&dcc->cmd_lock);
1643         dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1644                                                         NULL, blkaddr);
1645         if (dc) {
1646                 if (dc->state == D_PREP) {
1647                         __punch_discard_cmd(sbi, dc, blkaddr);
1648                 } else {
1649                         dc->ref++;
1650                         need_wait = true;
1651                 }
1652         }
1653         mutex_unlock(&dcc->cmd_lock);
1654
1655         if (need_wait)
1656                 __wait_one_discard_bio(sbi, dc);
1657 }
1658
1659 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1660 {
1661         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1662
1663         if (dcc && dcc->f2fs_issue_discard) {
1664                 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1665
1666                 dcc->f2fs_issue_discard = NULL;
1667                 kthread_stop(discard_thread);
1668         }
1669 }
1670
1671 /* This comes from f2fs_put_super */
1672 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1673 {
1674         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1675         struct discard_policy dpolicy;
1676         bool dropped;
1677
1678         __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1679                                         dcc->discard_granularity);
1680         dpolicy.timeout = UMOUNT_DISCARD_TIMEOUT;
1681         __issue_discard_cmd(sbi, &dpolicy);
1682         dropped = __drop_discard_cmd(sbi);
1683
1684         /* just to make sure there is no pending discard commands */
1685         __wait_all_discard_cmd(sbi, NULL);
1686
1687         f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1688         return dropped;
1689 }
1690
1691 static int issue_discard_thread(void *data)
1692 {
1693         struct f2fs_sb_info *sbi = data;
1694         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1695         wait_queue_head_t *q = &dcc->discard_wait_queue;
1696         struct discard_policy dpolicy;
1697         unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1698         int issued;
1699
1700         set_freezable();
1701
1702         do {
1703                 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1704                                         dcc->discard_granularity);
1705
1706                 wait_event_interruptible_timeout(*q,
1707                                 kthread_should_stop() || freezing(current) ||
1708                                 dcc->discard_wake,
1709                                 msecs_to_jiffies(wait_ms));
1710
1711                 if (dcc->discard_wake)
1712                         dcc->discard_wake = 0;
1713
1714                 /* clean up pending candidates before going to sleep */
1715                 if (atomic_read(&dcc->queued_discard))
1716                         __wait_all_discard_cmd(sbi, NULL);
1717
1718                 if (try_to_freeze())
1719                         continue;
1720                 if (f2fs_readonly(sbi->sb))
1721                         continue;
1722                 if (kthread_should_stop())
1723                         return 0;
1724                 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1725                         wait_ms = dpolicy.max_interval;
1726                         continue;
1727                 }
1728
1729                 if (sbi->gc_mode == GC_URGENT)
1730                         __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1731
1732                 sb_start_intwrite(sbi->sb);
1733
1734                 issued = __issue_discard_cmd(sbi, &dpolicy);
1735                 if (issued > 0) {
1736                         __wait_all_discard_cmd(sbi, &dpolicy);
1737                         wait_ms = dpolicy.min_interval;
1738                 } else if (issued == -1){
1739                         wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1740                         if (!wait_ms)
1741                                 wait_ms = dpolicy.mid_interval;
1742                 } else {
1743                         wait_ms = dpolicy.max_interval;
1744                 }
1745
1746                 sb_end_intwrite(sbi->sb);
1747
1748         } while (!kthread_should_stop());
1749         return 0;
1750 }
1751
1752 #ifdef CONFIG_BLK_DEV_ZONED
1753 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1754                 struct block_device *bdev, block_t blkstart, block_t blklen)
1755 {
1756         sector_t sector, nr_sects;
1757         block_t lblkstart = blkstart;
1758         int devi = 0;
1759
1760         if (f2fs_is_multi_device(sbi)) {
1761                 devi = f2fs_target_device_index(sbi, blkstart);
1762                 if (blkstart < FDEV(devi).start_blk ||
1763                     blkstart > FDEV(devi).end_blk) {
1764                         f2fs_err(sbi, "Invalid block %x", blkstart);
1765                         return -EIO;
1766                 }
1767                 blkstart -= FDEV(devi).start_blk;
1768         }
1769
1770         /* For sequential zones, reset the zone write pointer */
1771         if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1772                 sector = SECTOR_FROM_BLOCK(blkstart);
1773                 nr_sects = SECTOR_FROM_BLOCK(blklen);
1774
1775                 if (sector & (bdev_zone_sectors(bdev) - 1) ||
1776                                 nr_sects != bdev_zone_sectors(bdev)) {
1777                         f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1778                                  devi, sbi->s_ndevs ? FDEV(devi).path : "",
1779                                  blkstart, blklen);
1780                         return -EIO;
1781                 }
1782                 trace_f2fs_issue_reset_zone(bdev, blkstart);
1783                 return blkdev_reset_zones(bdev, sector, nr_sects, GFP_NOFS);
1784         }
1785
1786         /* For conventional zones, use regular discard if supported */
1787         return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1788 }
1789 #endif
1790
1791 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1792                 struct block_device *bdev, block_t blkstart, block_t blklen)
1793 {
1794 #ifdef CONFIG_BLK_DEV_ZONED
1795         if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1796                 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1797 #endif
1798         return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1799 }
1800
1801 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1802                                 block_t blkstart, block_t blklen)
1803 {
1804         sector_t start = blkstart, len = 0;
1805         struct block_device *bdev;
1806         struct seg_entry *se;
1807         unsigned int offset;
1808         block_t i;
1809         int err = 0;
1810
1811         bdev = f2fs_target_device(sbi, blkstart, NULL);
1812
1813         for (i = blkstart; i < blkstart + blklen; i++, len++) {
1814                 if (i != start) {
1815                         struct block_device *bdev2 =
1816                                 f2fs_target_device(sbi, i, NULL);
1817
1818                         if (bdev2 != bdev) {
1819                                 err = __issue_discard_async(sbi, bdev,
1820                                                 start, len);
1821                                 if (err)
1822                                         return err;
1823                                 bdev = bdev2;
1824                                 start = i;
1825                                 len = 0;
1826                         }
1827                 }
1828
1829                 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1830                 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1831
1832                 if (!f2fs_test_and_set_bit(offset, se->discard_map))
1833                         sbi->discard_blks--;
1834         }
1835
1836         if (len)
1837                 err = __issue_discard_async(sbi, bdev, start, len);
1838         return err;
1839 }
1840
1841 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1842                                                         bool check_only)
1843 {
1844         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1845         int max_blocks = sbi->blocks_per_seg;
1846         struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1847         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1848         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1849         unsigned long *discard_map = (unsigned long *)se->discard_map;
1850         unsigned long *dmap = SIT_I(sbi)->tmp_map;
1851         unsigned int start = 0, end = -1;
1852         bool force = (cpc->reason & CP_DISCARD);
1853         struct discard_entry *de = NULL;
1854         struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1855         int i;
1856
1857         if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi))
1858                 return false;
1859
1860         if (!force) {
1861                 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1862                         SM_I(sbi)->dcc_info->nr_discards >=
1863                                 SM_I(sbi)->dcc_info->max_discards)
1864                         return false;
1865         }
1866
1867         /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1868         for (i = 0; i < entries; i++)
1869                 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1870                                 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1871
1872         while (force || SM_I(sbi)->dcc_info->nr_discards <=
1873                                 SM_I(sbi)->dcc_info->max_discards) {
1874                 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1875                 if (start >= max_blocks)
1876                         break;
1877
1878                 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1879                 if (force && start && end != max_blocks
1880                                         && (end - start) < cpc->trim_minlen)
1881                         continue;
1882
1883                 if (check_only)
1884                         return true;
1885
1886                 if (!de) {
1887                         de = f2fs_kmem_cache_alloc(discard_entry_slab,
1888                                                                 GFP_F2FS_ZERO);
1889                         de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1890                         list_add_tail(&de->list, head);
1891                 }
1892
1893                 for (i = start; i < end; i++)
1894                         __set_bit_le(i, (void *)de->discard_map);
1895
1896                 SM_I(sbi)->dcc_info->nr_discards += end - start;
1897         }
1898         return false;
1899 }
1900
1901 static void release_discard_addr(struct discard_entry *entry)
1902 {
1903         list_del(&entry->list);
1904         kmem_cache_free(discard_entry_slab, entry);
1905 }
1906
1907 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1908 {
1909         struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1910         struct discard_entry *entry, *this;
1911
1912         /* drop caches */
1913         list_for_each_entry_safe(entry, this, head, list)
1914                 release_discard_addr(entry);
1915 }
1916
1917 /*
1918  * Should call f2fs_clear_prefree_segments after checkpoint is done.
1919  */
1920 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1921 {
1922         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1923         unsigned int segno;
1924
1925         mutex_lock(&dirty_i->seglist_lock);
1926         for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1927                 __set_test_and_free(sbi, segno);
1928         mutex_unlock(&dirty_i->seglist_lock);
1929 }
1930
1931 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1932                                                 struct cp_control *cpc)
1933 {
1934         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1935         struct list_head *head = &dcc->entry_list;
1936         struct discard_entry *entry, *this;
1937         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1938         unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1939         unsigned int start = 0, end = -1;
1940         unsigned int secno, start_segno;
1941         bool force = (cpc->reason & CP_DISCARD);
1942         bool need_align = test_opt(sbi, LFS) && __is_large_section(sbi);
1943
1944         mutex_lock(&dirty_i->seglist_lock);
1945
1946         while (1) {
1947                 int i;
1948
1949                 if (need_align && end != -1)
1950                         end--;
1951                 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1952                 if (start >= MAIN_SEGS(sbi))
1953                         break;
1954                 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1955                                                                 start + 1);
1956
1957                 if (need_align) {
1958                         start = rounddown(start, sbi->segs_per_sec);
1959                         end = roundup(end, sbi->segs_per_sec);
1960                 }
1961
1962                 for (i = start; i < end; i++) {
1963                         if (test_and_clear_bit(i, prefree_map))
1964                                 dirty_i->nr_dirty[PRE]--;
1965                 }
1966
1967                 if (!f2fs_realtime_discard_enable(sbi))
1968                         continue;
1969
1970                 if (force && start >= cpc->trim_start &&
1971                                         (end - 1) <= cpc->trim_end)
1972                                 continue;
1973
1974                 if (!test_opt(sbi, LFS) || !__is_large_section(sbi)) {
1975                         f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
1976                                 (end - start) << sbi->log_blocks_per_seg);
1977                         continue;
1978                 }
1979 next:
1980                 secno = GET_SEC_FROM_SEG(sbi, start);
1981                 start_segno = GET_SEG_FROM_SEC(sbi, secno);
1982                 if (!IS_CURSEC(sbi, secno) &&
1983                         !get_valid_blocks(sbi, start, true))
1984                         f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
1985                                 sbi->segs_per_sec << sbi->log_blocks_per_seg);
1986
1987                 start = start_segno + sbi->segs_per_sec;
1988                 if (start < end)
1989                         goto next;
1990                 else
1991                         end = start - 1;
1992         }
1993         mutex_unlock(&dirty_i->seglist_lock);
1994
1995         /* send small discards */
1996         list_for_each_entry_safe(entry, this, head, list) {
1997                 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
1998                 bool is_valid = test_bit_le(0, entry->discard_map);
1999
2000 find_next:
2001                 if (is_valid) {
2002                         next_pos = find_next_zero_bit_le(entry->discard_map,
2003                                         sbi->blocks_per_seg, cur_pos);
2004                         len = next_pos - cur_pos;
2005
2006                         if (f2fs_sb_has_blkzoned(sbi) ||
2007                             (force && len < cpc->trim_minlen))
2008                                 goto skip;
2009
2010                         f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2011                                                                         len);
2012                         total_len += len;
2013                 } else {
2014                         next_pos = find_next_bit_le(entry->discard_map,
2015                                         sbi->blocks_per_seg, cur_pos);
2016                 }
2017 skip:
2018                 cur_pos = next_pos;
2019                 is_valid = !is_valid;
2020
2021                 if (cur_pos < sbi->blocks_per_seg)
2022                         goto find_next;
2023
2024                 release_discard_addr(entry);
2025                 dcc->nr_discards -= total_len;
2026         }
2027
2028         wake_up_discard_thread(sbi, false);
2029 }
2030
2031 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2032 {
2033         dev_t dev = sbi->sb->s_bdev->bd_dev;
2034         struct discard_cmd_control *dcc;
2035         int err = 0, i;
2036
2037         if (SM_I(sbi)->dcc_info) {
2038                 dcc = SM_I(sbi)->dcc_info;
2039                 goto init_thread;
2040         }
2041
2042         dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2043         if (!dcc)
2044                 return -ENOMEM;
2045
2046         dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2047         INIT_LIST_HEAD(&dcc->entry_list);
2048         for (i = 0; i < MAX_PLIST_NUM; i++)
2049                 INIT_LIST_HEAD(&dcc->pend_list[i]);
2050         INIT_LIST_HEAD(&dcc->wait_list);
2051         INIT_LIST_HEAD(&dcc->fstrim_list);
2052         mutex_init(&dcc->cmd_lock);
2053         atomic_set(&dcc->issued_discard, 0);
2054         atomic_set(&dcc->queued_discard, 0);
2055         atomic_set(&dcc->discard_cmd_cnt, 0);
2056         dcc->nr_discards = 0;
2057         dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2058         dcc->undiscard_blks = 0;
2059         dcc->next_pos = 0;
2060         dcc->root = RB_ROOT_CACHED;
2061         dcc->rbtree_check = false;
2062
2063         init_waitqueue_head(&dcc->discard_wait_queue);
2064         SM_I(sbi)->dcc_info = dcc;
2065 init_thread:
2066         dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2067                                 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2068         if (IS_ERR(dcc->f2fs_issue_discard)) {
2069                 err = PTR_ERR(dcc->f2fs_issue_discard);
2070                 kvfree(dcc);
2071                 SM_I(sbi)->dcc_info = NULL;
2072                 return err;
2073         }
2074
2075         return err;
2076 }
2077
2078 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2079 {
2080         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2081
2082         if (!dcc)
2083                 return;
2084
2085         f2fs_stop_discard_thread(sbi);
2086
2087         kvfree(dcc);
2088         SM_I(sbi)->dcc_info = NULL;
2089 }
2090
2091 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2092 {
2093         struct sit_info *sit_i = SIT_I(sbi);
2094
2095         if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2096                 sit_i->dirty_sentries++;
2097                 return false;
2098         }
2099
2100         return true;
2101 }
2102
2103 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2104                                         unsigned int segno, int modified)
2105 {
2106         struct seg_entry *se = get_seg_entry(sbi, segno);
2107         se->type = type;
2108         if (modified)
2109                 __mark_sit_entry_dirty(sbi, segno);
2110 }
2111
2112 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2113 {
2114         struct seg_entry *se;
2115         unsigned int segno, offset;
2116         long int new_vblocks;
2117         bool exist;
2118 #ifdef CONFIG_F2FS_CHECK_FS
2119         bool mir_exist;
2120 #endif
2121
2122         segno = GET_SEGNO(sbi, blkaddr);
2123
2124         se = get_seg_entry(sbi, segno);
2125         new_vblocks = se->valid_blocks + del;
2126         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2127
2128         f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
2129                                 (new_vblocks > sbi->blocks_per_seg)));
2130
2131         se->valid_blocks = new_vblocks;
2132         se->mtime = get_mtime(sbi, false);
2133         if (se->mtime > SIT_I(sbi)->max_mtime)
2134                 SIT_I(sbi)->max_mtime = se->mtime;
2135
2136         /* Update valid block bitmap */
2137         if (del > 0) {
2138                 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2139 #ifdef CONFIG_F2FS_CHECK_FS
2140                 mir_exist = f2fs_test_and_set_bit(offset,
2141                                                 se->cur_valid_map_mir);
2142                 if (unlikely(exist != mir_exist)) {
2143                         f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2144                                  blkaddr, exist);
2145                         f2fs_bug_on(sbi, 1);
2146                 }
2147 #endif
2148                 if (unlikely(exist)) {
2149                         f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2150                                  blkaddr);
2151                         f2fs_bug_on(sbi, 1);
2152                         se->valid_blocks--;
2153                         del = 0;
2154                 }
2155
2156                 if (!f2fs_test_and_set_bit(offset, se->discard_map))
2157                         sbi->discard_blks--;
2158
2159                 /* don't overwrite by SSR to keep node chain */
2160                 if (IS_NODESEG(se->type) &&
2161                                 !is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2162                         if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2163                                 se->ckpt_valid_blocks++;
2164                 }
2165         } else {
2166                 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2167 #ifdef CONFIG_F2FS_CHECK_FS
2168                 mir_exist = f2fs_test_and_clear_bit(offset,
2169                                                 se->cur_valid_map_mir);
2170                 if (unlikely(exist != mir_exist)) {
2171                         f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2172                                  blkaddr, exist);
2173                         f2fs_bug_on(sbi, 1);
2174                 }
2175 #endif
2176                 if (unlikely(!exist)) {
2177                         f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2178                                  blkaddr);
2179                         f2fs_bug_on(sbi, 1);
2180                         se->valid_blocks++;
2181                         del = 0;
2182                 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2183                         /*
2184                          * If checkpoints are off, we must not reuse data that
2185                          * was used in the previous checkpoint. If it was used
2186                          * before, we must track that to know how much space we
2187                          * really have.
2188                          */
2189                         if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2190                                 spin_lock(&sbi->stat_lock);
2191                                 sbi->unusable_block_count++;
2192                                 spin_unlock(&sbi->stat_lock);
2193                         }
2194                 }
2195
2196                 if (f2fs_test_and_clear_bit(offset, se->discard_map))
2197                         sbi->discard_blks++;
2198         }
2199         if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2200                 se->ckpt_valid_blocks += del;
2201
2202         __mark_sit_entry_dirty(sbi, segno);
2203
2204         /* update total number of valid blocks to be written in ckpt area */
2205         SIT_I(sbi)->written_valid_blocks += del;
2206
2207         if (__is_large_section(sbi))
2208                 get_sec_entry(sbi, segno)->valid_blocks += del;
2209 }
2210
2211 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2212 {
2213         unsigned int segno = GET_SEGNO(sbi, addr);
2214         struct sit_info *sit_i = SIT_I(sbi);
2215
2216         f2fs_bug_on(sbi, addr == NULL_ADDR);
2217         if (addr == NEW_ADDR)
2218                 return;
2219
2220         invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2221
2222         /* add it into sit main buffer */
2223         down_write(&sit_i->sentry_lock);
2224
2225         update_sit_entry(sbi, addr, -1);
2226
2227         /* add it into dirty seglist */
2228         locate_dirty_segment(sbi, segno);
2229
2230         up_write(&sit_i->sentry_lock);
2231 }
2232
2233 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2234 {
2235         struct sit_info *sit_i = SIT_I(sbi);
2236         unsigned int segno, offset;
2237         struct seg_entry *se;
2238         bool is_cp = false;
2239
2240         if (!__is_valid_data_blkaddr(blkaddr))
2241                 return true;
2242
2243         down_read(&sit_i->sentry_lock);
2244
2245         segno = GET_SEGNO(sbi, blkaddr);
2246         se = get_seg_entry(sbi, segno);
2247         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2248
2249         if (f2fs_test_bit(offset, se->ckpt_valid_map))
2250                 is_cp = true;
2251
2252         up_read(&sit_i->sentry_lock);
2253
2254         return is_cp;
2255 }
2256
2257 /*
2258  * This function should be resided under the curseg_mutex lock
2259  */
2260 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2261                                         struct f2fs_summary *sum)
2262 {
2263         struct curseg_info *curseg = CURSEG_I(sbi, type);
2264         void *addr = curseg->sum_blk;
2265         addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2266         memcpy(addr, sum, sizeof(struct f2fs_summary));
2267 }
2268
2269 /*
2270  * Calculate the number of current summary pages for writing
2271  */
2272 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2273 {
2274         int valid_sum_count = 0;
2275         int i, sum_in_page;
2276
2277         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2278                 if (sbi->ckpt->alloc_type[i] == SSR)
2279                         valid_sum_count += sbi->blocks_per_seg;
2280                 else {
2281                         if (for_ra)
2282                                 valid_sum_count += le16_to_cpu(
2283                                         F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2284                         else
2285                                 valid_sum_count += curseg_blkoff(sbi, i);
2286                 }
2287         }
2288
2289         sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2290                         SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2291         if (valid_sum_count <= sum_in_page)
2292                 return 1;
2293         else if ((valid_sum_count - sum_in_page) <=
2294                 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2295                 return 2;
2296         return 3;
2297 }
2298
2299 /*
2300  * Caller should put this summary page
2301  */
2302 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2303 {
2304         return f2fs_get_meta_page_nofail(sbi, GET_SUM_BLOCK(sbi, segno));
2305 }
2306
2307 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2308                                         void *src, block_t blk_addr)
2309 {
2310         struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2311
2312         memcpy(page_address(page), src, PAGE_SIZE);
2313         set_page_dirty(page);
2314         f2fs_put_page(page, 1);
2315 }
2316
2317 static void write_sum_page(struct f2fs_sb_info *sbi,
2318                         struct f2fs_summary_block *sum_blk, block_t blk_addr)
2319 {
2320         f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2321 }
2322
2323 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2324                                                 int type, block_t blk_addr)
2325 {
2326         struct curseg_info *curseg = CURSEG_I(sbi, type);
2327         struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2328         struct f2fs_summary_block *src = curseg->sum_blk;
2329         struct f2fs_summary_block *dst;
2330
2331         dst = (struct f2fs_summary_block *)page_address(page);
2332         memset(dst, 0, PAGE_SIZE);
2333
2334         mutex_lock(&curseg->curseg_mutex);
2335
2336         down_read(&curseg->journal_rwsem);
2337         memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2338         up_read(&curseg->journal_rwsem);
2339
2340         memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2341         memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2342
2343         mutex_unlock(&curseg->curseg_mutex);
2344
2345         set_page_dirty(page);
2346         f2fs_put_page(page, 1);
2347 }
2348
2349 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
2350 {
2351         struct curseg_info *curseg = CURSEG_I(sbi, type);
2352         unsigned int segno = curseg->segno + 1;
2353         struct free_segmap_info *free_i = FREE_I(sbi);
2354
2355         if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2356                 return !test_bit(segno, free_i->free_segmap);
2357         return 0;
2358 }
2359
2360 /*
2361  * Find a new segment from the free segments bitmap to right order
2362  * This function should be returned with success, otherwise BUG
2363  */
2364 static void get_new_segment(struct f2fs_sb_info *sbi,
2365                         unsigned int *newseg, bool new_sec, int dir)
2366 {
2367         struct free_segmap_info *free_i = FREE_I(sbi);
2368         unsigned int segno, secno, zoneno;
2369         unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2370         unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2371         unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2372         unsigned int left_start = hint;
2373         bool init = true;
2374         int go_left = 0;
2375         int i;
2376
2377         spin_lock(&free_i->segmap_lock);
2378
2379         if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2380                 segno = find_next_zero_bit(free_i->free_segmap,
2381                         GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2382                 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2383                         goto got_it;
2384         }
2385 find_other_zone:
2386         secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2387         if (secno >= MAIN_SECS(sbi)) {
2388                 if (dir == ALLOC_RIGHT) {
2389                         secno = find_next_zero_bit(free_i->free_secmap,
2390                                                         MAIN_SECS(sbi), 0);
2391                         f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2392                 } else {
2393                         go_left = 1;
2394                         left_start = hint - 1;
2395                 }
2396         }
2397         if (go_left == 0)
2398                 goto skip_left;
2399
2400         while (test_bit(left_start, free_i->free_secmap)) {
2401                 if (left_start > 0) {
2402                         left_start--;
2403                         continue;
2404                 }
2405                 left_start = find_next_zero_bit(free_i->free_secmap,
2406                                                         MAIN_SECS(sbi), 0);
2407                 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2408                 break;
2409         }
2410         secno = left_start;
2411 skip_left:
2412         segno = GET_SEG_FROM_SEC(sbi, secno);
2413         zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2414
2415         /* give up on finding another zone */
2416         if (!init)
2417                 goto got_it;
2418         if (sbi->secs_per_zone == 1)
2419                 goto got_it;
2420         if (zoneno == old_zoneno)
2421                 goto got_it;
2422         if (dir == ALLOC_LEFT) {
2423                 if (!go_left && zoneno + 1 >= total_zones)
2424                         goto got_it;
2425                 if (go_left && zoneno == 0)
2426                         goto got_it;
2427         }
2428         for (i = 0; i < NR_CURSEG_TYPE; i++)
2429                 if (CURSEG_I(sbi, i)->zone == zoneno)
2430                         break;
2431
2432         if (i < NR_CURSEG_TYPE) {
2433                 /* zone is in user, try another */
2434                 if (go_left)
2435                         hint = zoneno * sbi->secs_per_zone - 1;
2436                 else if (zoneno + 1 >= total_zones)
2437                         hint = 0;
2438                 else
2439                         hint = (zoneno + 1) * sbi->secs_per_zone;
2440                 init = false;
2441                 goto find_other_zone;
2442         }
2443 got_it:
2444         /* set it as dirty segment in free segmap */
2445         f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2446         __set_inuse(sbi, segno);
2447         *newseg = segno;
2448         spin_unlock(&free_i->segmap_lock);
2449 }
2450
2451 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2452 {
2453         struct curseg_info *curseg = CURSEG_I(sbi, type);
2454         struct summary_footer *sum_footer;
2455
2456         curseg->segno = curseg->next_segno;
2457         curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2458         curseg->next_blkoff = 0;
2459         curseg->next_segno = NULL_SEGNO;
2460
2461         sum_footer = &(curseg->sum_blk->footer);
2462         memset(sum_footer, 0, sizeof(struct summary_footer));
2463         if (IS_DATASEG(type))
2464                 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2465         if (IS_NODESEG(type))
2466                 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2467         __set_sit_entry_type(sbi, type, curseg->segno, modified);
2468 }
2469
2470 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2471 {
2472         /* if segs_per_sec is large than 1, we need to keep original policy. */
2473         if (__is_large_section(sbi))
2474                 return CURSEG_I(sbi, type)->segno;
2475
2476         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2477                 return 0;
2478
2479         if (test_opt(sbi, NOHEAP) &&
2480                 (type == CURSEG_HOT_DATA || IS_NODESEG(type)))
2481                 return 0;
2482
2483         if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2484                 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2485
2486         /* find segments from 0 to reuse freed segments */
2487         if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2488                 return 0;
2489
2490         return CURSEG_I(sbi, type)->segno;
2491 }
2492
2493 /*
2494  * Allocate a current working segment.
2495  * This function always allocates a free segment in LFS manner.
2496  */
2497 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2498 {
2499         struct curseg_info *curseg = CURSEG_I(sbi, type);
2500         unsigned int segno = curseg->segno;
2501         int dir = ALLOC_LEFT;
2502
2503         write_sum_page(sbi, curseg->sum_blk,
2504                                 GET_SUM_BLOCK(sbi, segno));
2505         if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
2506                 dir = ALLOC_RIGHT;
2507
2508         if (test_opt(sbi, NOHEAP))
2509                 dir = ALLOC_RIGHT;
2510
2511         segno = __get_next_segno(sbi, type);
2512         get_new_segment(sbi, &segno, new_sec, dir);
2513         curseg->next_segno = segno;
2514         reset_curseg(sbi, type, 1);
2515         curseg->alloc_type = LFS;
2516 }
2517
2518 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
2519                         struct curseg_info *seg, block_t start)
2520 {
2521         struct seg_entry *se = get_seg_entry(sbi, seg->segno);
2522         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2523         unsigned long *target_map = SIT_I(sbi)->tmp_map;
2524         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2525         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2526         int i, pos;
2527
2528         for (i = 0; i < entries; i++)
2529                 target_map[i] = ckpt_map[i] | cur_map[i];
2530
2531         pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2532
2533         seg->next_blkoff = pos;
2534 }
2535
2536 /*
2537  * If a segment is written by LFS manner, next block offset is just obtained
2538  * by increasing the current block offset. However, if a segment is written by
2539  * SSR manner, next block offset obtained by calling __next_free_blkoff
2540  */
2541 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2542                                 struct curseg_info *seg)
2543 {
2544         if (seg->alloc_type == SSR)
2545                 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
2546         else
2547                 seg->next_blkoff++;
2548 }
2549
2550 /*
2551  * This function always allocates a used segment(from dirty seglist) by SSR
2552  * manner, so it should recover the existing segment information of valid blocks
2553  */
2554 static void change_curseg(struct f2fs_sb_info *sbi, int type)
2555 {
2556         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2557         struct curseg_info *curseg = CURSEG_I(sbi, type);
2558         unsigned int new_segno = curseg->next_segno;
2559         struct f2fs_summary_block *sum_node;
2560         struct page *sum_page;
2561
2562         write_sum_page(sbi, curseg->sum_blk,
2563                                 GET_SUM_BLOCK(sbi, curseg->segno));
2564         __set_test_and_inuse(sbi, new_segno);
2565
2566         mutex_lock(&dirty_i->seglist_lock);
2567         __remove_dirty_segment(sbi, new_segno, PRE);
2568         __remove_dirty_segment(sbi, new_segno, DIRTY);
2569         mutex_unlock(&dirty_i->seglist_lock);
2570
2571         reset_curseg(sbi, type, 1);
2572         curseg->alloc_type = SSR;
2573         __next_free_blkoff(sbi, curseg, 0);
2574
2575         sum_page = f2fs_get_sum_page(sbi, new_segno);
2576         f2fs_bug_on(sbi, IS_ERR(sum_page));
2577         sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2578         memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2579         f2fs_put_page(sum_page, 1);
2580 }
2581
2582 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
2583 {
2584         struct curseg_info *curseg = CURSEG_I(sbi, type);
2585         const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2586         unsigned segno = NULL_SEGNO;
2587         int i, cnt;
2588         bool reversed = false;
2589
2590         /* f2fs_need_SSR() already forces to do this */
2591         if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) {
2592                 curseg->next_segno = segno;
2593                 return 1;
2594         }
2595
2596         /* For node segments, let's do SSR more intensively */
2597         if (IS_NODESEG(type)) {
2598                 if (type >= CURSEG_WARM_NODE) {
2599                         reversed = true;
2600                         i = CURSEG_COLD_NODE;
2601                 } else {
2602                         i = CURSEG_HOT_NODE;
2603                 }
2604                 cnt = NR_CURSEG_NODE_TYPE;
2605         } else {
2606                 if (type >= CURSEG_WARM_DATA) {
2607                         reversed = true;
2608                         i = CURSEG_COLD_DATA;
2609                 } else {
2610                         i = CURSEG_HOT_DATA;
2611                 }
2612                 cnt = NR_CURSEG_DATA_TYPE;
2613         }
2614
2615         for (; cnt-- > 0; reversed ? i-- : i++) {
2616                 if (i == type)
2617                         continue;
2618                 if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) {
2619                         curseg->next_segno = segno;
2620                         return 1;
2621                 }
2622         }
2623
2624         /* find valid_blocks=0 in dirty list */
2625         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2626                 segno = get_free_segment(sbi);
2627                 if (segno != NULL_SEGNO) {
2628                         curseg->next_segno = segno;
2629                         return 1;
2630                 }
2631         }
2632         return 0;
2633 }
2634
2635 /*
2636  * flush out current segment and replace it with new segment
2637  * This function should be returned with success, otherwise BUG
2638  */
2639 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2640                                                 int type, bool force)
2641 {
2642         struct curseg_info *curseg = CURSEG_I(sbi, type);
2643
2644         if (force)
2645                 new_curseg(sbi, type, true);
2646         else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2647                                         type == CURSEG_WARM_NODE)
2648                 new_curseg(sbi, type, false);
2649         else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type) &&
2650                         likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2651                 new_curseg(sbi, type, false);
2652         else if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type))
2653                 change_curseg(sbi, type);
2654         else
2655                 new_curseg(sbi, type, false);
2656
2657         stat_inc_seg_type(sbi, curseg);
2658 }
2659
2660 void allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
2661                                         unsigned int start, unsigned int end)
2662 {
2663         struct curseg_info *curseg = CURSEG_I(sbi, type);
2664         unsigned int segno;
2665
2666         down_read(&SM_I(sbi)->curseg_lock);
2667         mutex_lock(&curseg->curseg_mutex);
2668         down_write(&SIT_I(sbi)->sentry_lock);
2669
2670         segno = CURSEG_I(sbi, type)->segno;
2671         if (segno < start || segno > end)
2672                 goto unlock;
2673
2674         if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type))
2675                 change_curseg(sbi, type);
2676         else
2677                 new_curseg(sbi, type, true);
2678
2679         stat_inc_seg_type(sbi, curseg);
2680
2681         locate_dirty_segment(sbi, segno);
2682 unlock:
2683         up_write(&SIT_I(sbi)->sentry_lock);
2684
2685         if (segno != curseg->segno)
2686                 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
2687                             type, segno, curseg->segno);
2688
2689         mutex_unlock(&curseg->curseg_mutex);
2690         up_read(&SM_I(sbi)->curseg_lock);
2691 }
2692
2693 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
2694 {
2695         struct curseg_info *curseg;
2696         unsigned int old_segno;
2697         int i;
2698
2699         down_write(&SIT_I(sbi)->sentry_lock);
2700
2701         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2702                 curseg = CURSEG_I(sbi, i);
2703                 old_segno = curseg->segno;
2704                 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
2705                 locate_dirty_segment(sbi, old_segno);
2706         }
2707
2708         up_write(&SIT_I(sbi)->sentry_lock);
2709 }
2710
2711 static const struct segment_allocation default_salloc_ops = {
2712         .allocate_segment = allocate_segment_by_default,
2713 };
2714
2715 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2716                                                 struct cp_control *cpc)
2717 {
2718         __u64 trim_start = cpc->trim_start;
2719         bool has_candidate = false;
2720
2721         down_write(&SIT_I(sbi)->sentry_lock);
2722         for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2723                 if (add_discard_addrs(sbi, cpc, true)) {
2724                         has_candidate = true;
2725                         break;
2726                 }
2727         }
2728         up_write(&SIT_I(sbi)->sentry_lock);
2729
2730         cpc->trim_start = trim_start;
2731         return has_candidate;
2732 }
2733
2734 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
2735                                         struct discard_policy *dpolicy,
2736                                         unsigned int start, unsigned int end)
2737 {
2738         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2739         struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
2740         struct rb_node **insert_p = NULL, *insert_parent = NULL;
2741         struct discard_cmd *dc;
2742         struct blk_plug plug;
2743         int issued;
2744         unsigned int trimmed = 0;
2745
2746 next:
2747         issued = 0;
2748
2749         mutex_lock(&dcc->cmd_lock);
2750         if (unlikely(dcc->rbtree_check))
2751                 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
2752                                                                 &dcc->root));
2753
2754         dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
2755                                         NULL, start,
2756                                         (struct rb_entry **)&prev_dc,
2757                                         (struct rb_entry **)&next_dc,
2758                                         &insert_p, &insert_parent, true, NULL);
2759         if (!dc)
2760                 dc = next_dc;
2761
2762         blk_start_plug(&plug);
2763
2764         while (dc && dc->lstart <= end) {
2765                 struct rb_node *node;
2766                 int err = 0;
2767
2768                 if (dc->len < dpolicy->granularity)
2769                         goto skip;
2770
2771                 if (dc->state != D_PREP) {
2772                         list_move_tail(&dc->list, &dcc->fstrim_list);
2773                         goto skip;
2774                 }
2775
2776                 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
2777
2778                 if (issued >= dpolicy->max_requests) {
2779                         start = dc->lstart + dc->len;
2780
2781                         if (err)
2782                                 __remove_discard_cmd(sbi, dc);
2783
2784                         blk_finish_plug(&plug);
2785                         mutex_unlock(&dcc->cmd_lock);
2786                         trimmed += __wait_all_discard_cmd(sbi, NULL);
2787                         congestion_wait(BLK_RW_ASYNC, HZ/50);
2788                         goto next;
2789                 }
2790 skip:
2791                 node = rb_next(&dc->rb_node);
2792                 if (err)
2793                         __remove_discard_cmd(sbi, dc);
2794                 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
2795
2796                 if (fatal_signal_pending(current))
2797                         break;
2798         }
2799
2800         blk_finish_plug(&plug);
2801         mutex_unlock(&dcc->cmd_lock);
2802
2803         return trimmed;
2804 }
2805
2806 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
2807 {
2808         __u64 start = F2FS_BYTES_TO_BLK(range->start);
2809         __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
2810         unsigned int start_segno, end_segno;
2811         block_t start_block, end_block;
2812         struct cp_control cpc;
2813         struct discard_policy dpolicy;
2814         unsigned long long trimmed = 0;
2815         int err = 0;
2816         bool need_align = test_opt(sbi, LFS) && __is_large_section(sbi);
2817
2818         if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
2819                 return -EINVAL;
2820
2821         if (end < MAIN_BLKADDR(sbi))
2822                 goto out;
2823
2824         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
2825                 f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
2826                 return -EFSCORRUPTED;
2827         }
2828
2829         /* start/end segment number in main_area */
2830         start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
2831         end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
2832                                                 GET_SEGNO(sbi, end);
2833         if (need_align) {
2834                 start_segno = rounddown(start_segno, sbi->segs_per_sec);
2835                 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
2836         }
2837
2838         cpc.reason = CP_DISCARD;
2839         cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
2840         cpc.trim_start = start_segno;
2841         cpc.trim_end = end_segno;
2842
2843         if (sbi->discard_blks == 0)
2844                 goto out;
2845
2846         mutex_lock(&sbi->gc_mutex);
2847         err = f2fs_write_checkpoint(sbi, &cpc);
2848         mutex_unlock(&sbi->gc_mutex);
2849         if (err)
2850                 goto out;
2851
2852         /*
2853          * We filed discard candidates, but actually we don't need to wait for
2854          * all of them, since they'll be issued in idle time along with runtime
2855          * discard option. User configuration looks like using runtime discard
2856          * or periodic fstrim instead of it.
2857          */
2858         if (f2fs_realtime_discard_enable(sbi))
2859                 goto out;
2860
2861         start_block = START_BLOCK(sbi, start_segno);
2862         end_block = START_BLOCK(sbi, end_segno + 1);
2863
2864         __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
2865         trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
2866                                         start_block, end_block);
2867
2868         trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
2869                                         start_block, end_block);
2870 out:
2871         if (!err)
2872                 range->len = F2FS_BLK_TO_BYTES(trimmed);
2873         return err;
2874 }
2875
2876 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
2877 {
2878         struct curseg_info *curseg = CURSEG_I(sbi, type);
2879         if (curseg->next_blkoff < sbi->blocks_per_seg)
2880                 return true;
2881         return false;
2882 }
2883
2884 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
2885 {
2886         switch (hint) {
2887         case WRITE_LIFE_SHORT:
2888                 return CURSEG_HOT_DATA;
2889         case WRITE_LIFE_EXTREME:
2890                 return CURSEG_COLD_DATA;
2891         default:
2892                 return CURSEG_WARM_DATA;
2893         }
2894 }
2895
2896 /* This returns write hints for each segment type. This hints will be
2897  * passed down to block layer. There are mapping tables which depend on
2898  * the mount option 'whint_mode'.
2899  *
2900  * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
2901  *
2902  * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
2903  *
2904  * User                  F2FS                     Block
2905  * ----                  ----                     -----
2906  *                       META                     WRITE_LIFE_NOT_SET
2907  *                       HOT_NODE                 "
2908  *                       WARM_NODE                "
2909  *                       COLD_NODE                "
2910  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
2911  * extension list        "                        "
2912  *
2913  * -- buffered io
2914  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2915  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2916  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
2917  * WRITE_LIFE_NONE       "                        "
2918  * WRITE_LIFE_MEDIUM     "                        "
2919  * WRITE_LIFE_LONG       "                        "
2920  *
2921  * -- direct io
2922  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2923  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2924  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
2925  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
2926  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
2927  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
2928  *
2929  * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
2930  *
2931  * User                  F2FS                     Block
2932  * ----                  ----                     -----
2933  *                       META                     WRITE_LIFE_MEDIUM;
2934  *                       HOT_NODE                 WRITE_LIFE_NOT_SET
2935  *                       WARM_NODE                "
2936  *                       COLD_NODE                WRITE_LIFE_NONE
2937  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
2938  * extension list        "                        "
2939  *
2940  * -- buffered io
2941  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2942  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2943  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_LONG
2944  * WRITE_LIFE_NONE       "                        "
2945  * WRITE_LIFE_MEDIUM     "                        "
2946  * WRITE_LIFE_LONG       "                        "
2947  *
2948  * -- direct io
2949  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2950  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2951  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
2952  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
2953  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
2954  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
2955  */
2956
2957 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
2958                                 enum page_type type, enum temp_type temp)
2959 {
2960         if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
2961                 if (type == DATA) {
2962                         if (temp == WARM)
2963                                 return WRITE_LIFE_NOT_SET;
2964                         else if (temp == HOT)
2965                                 return WRITE_LIFE_SHORT;
2966                         else if (temp == COLD)
2967                                 return WRITE_LIFE_EXTREME;
2968                 } else {
2969                         return WRITE_LIFE_NOT_SET;
2970                 }
2971         } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
2972                 if (type == DATA) {
2973                         if (temp == WARM)
2974                                 return WRITE_LIFE_LONG;
2975                         else if (temp == HOT)
2976                                 return WRITE_LIFE_SHORT;
2977                         else if (temp == COLD)
2978                                 return WRITE_LIFE_EXTREME;
2979                 } else if (type == NODE) {
2980                         if (temp == WARM || temp == HOT)
2981                                 return WRITE_LIFE_NOT_SET;
2982                         else if (temp == COLD)
2983                                 return WRITE_LIFE_NONE;
2984                 } else if (type == META) {
2985                         return WRITE_LIFE_MEDIUM;
2986                 }
2987         }
2988         return WRITE_LIFE_NOT_SET;
2989 }
2990
2991 static int __get_segment_type_2(struct f2fs_io_info *fio)
2992 {
2993         if (fio->type == DATA)
2994                 return CURSEG_HOT_DATA;
2995         else
2996                 return CURSEG_HOT_NODE;
2997 }
2998
2999 static int __get_segment_type_4(struct f2fs_io_info *fio)
3000 {
3001         if (fio->type == DATA) {
3002                 struct inode *inode = fio->page->mapping->host;
3003
3004                 if (S_ISDIR(inode->i_mode))
3005                         return CURSEG_HOT_DATA;
3006                 else
3007                         return CURSEG_COLD_DATA;
3008         } else {
3009                 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3010                         return CURSEG_WARM_NODE;
3011                 else
3012                         return CURSEG_COLD_NODE;
3013         }
3014 }
3015
3016 static int __get_segment_type_6(struct f2fs_io_info *fio)
3017 {
3018         if (fio->type == DATA) {
3019                 struct inode *inode = fio->page->mapping->host;
3020
3021                 if (is_cold_data(fio->page) || file_is_cold(inode))
3022                         return CURSEG_COLD_DATA;
3023                 if (file_is_hot(inode) ||
3024                                 is_inode_flag_set(inode, FI_HOT_DATA) ||
3025                                 f2fs_is_atomic_file(inode) ||
3026                                 f2fs_is_volatile_file(inode))
3027                         return CURSEG_HOT_DATA;
3028                 return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3029         } else {
3030                 if (IS_DNODE(fio->page))
3031                         return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3032                                                 CURSEG_HOT_NODE;
3033                 return CURSEG_COLD_NODE;
3034         }
3035 }
3036
3037 static int __get_segment_type(struct f2fs_io_info *fio)
3038 {
3039         int type = 0;
3040
3041         switch (F2FS_OPTION(fio->sbi).active_logs) {
3042         case 2:
3043                 type = __get_segment_type_2(fio);
3044                 break;
3045         case 4:
3046                 type = __get_segment_type_4(fio);
3047                 break;
3048         case 6:
3049                 type = __get_segment_type_6(fio);
3050                 break;
3051         default:
3052                 f2fs_bug_on(fio->sbi, true);
3053         }
3054
3055         if (IS_HOT(type))
3056                 fio->temp = HOT;
3057         else if (IS_WARM(type))
3058                 fio->temp = WARM;
3059         else
3060                 fio->temp = COLD;
3061         return type;
3062 }
3063
3064 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3065                 block_t old_blkaddr, block_t *new_blkaddr,
3066                 struct f2fs_summary *sum, int type,
3067                 struct f2fs_io_info *fio, bool add_list)
3068 {
3069         struct sit_info *sit_i = SIT_I(sbi);
3070         struct curseg_info *curseg = CURSEG_I(sbi, type);
3071
3072         down_read(&SM_I(sbi)->curseg_lock);
3073
3074         mutex_lock(&curseg->curseg_mutex);
3075         down_write(&sit_i->sentry_lock);
3076
3077         *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3078
3079         f2fs_wait_discard_bio(sbi, *new_blkaddr);
3080
3081         /*
3082          * __add_sum_entry should be resided under the curseg_mutex
3083          * because, this function updates a summary entry in the
3084          * current summary block.
3085          */
3086         __add_sum_entry(sbi, type, sum);
3087
3088         __refresh_next_blkoff(sbi, curseg);
3089
3090         stat_inc_block_count(sbi, curseg);
3091
3092         /*
3093          * SIT information should be updated before segment allocation,
3094          * since SSR needs latest valid block information.
3095          */
3096         update_sit_entry(sbi, *new_blkaddr, 1);
3097         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3098                 update_sit_entry(sbi, old_blkaddr, -1);
3099
3100         if (!__has_curseg_space(sbi, type))
3101                 sit_i->s_ops->allocate_segment(sbi, type, false);
3102
3103         /*
3104          * segment dirty status should be updated after segment allocation,
3105          * so we just need to update status only one time after previous
3106          * segment being closed.
3107          */
3108         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3109         locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3110
3111         up_write(&sit_i->sentry_lock);
3112
3113         if (page && IS_NODESEG(type)) {
3114                 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3115
3116                 f2fs_inode_chksum_set(sbi, page);
3117         }
3118
3119         if (add_list) {
3120                 struct f2fs_bio_info *io;
3121
3122                 INIT_LIST_HEAD(&fio->list);
3123                 fio->in_list = true;
3124                 fio->retry = false;
3125                 io = sbi->write_io[fio->type] + fio->temp;
3126                 spin_lock(&io->io_lock);
3127                 list_add_tail(&fio->list, &io->io_list);
3128                 spin_unlock(&io->io_lock);
3129         }
3130
3131         mutex_unlock(&curseg->curseg_mutex);
3132
3133         up_read(&SM_I(sbi)->curseg_lock);
3134 }
3135
3136 static void update_device_state(struct f2fs_io_info *fio)
3137 {
3138         struct f2fs_sb_info *sbi = fio->sbi;
3139         unsigned int devidx;
3140
3141         if (!f2fs_is_multi_device(sbi))
3142                 return;
3143
3144         devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
3145
3146         /* update device state for fsync */
3147         f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
3148
3149         /* update device state for checkpoint */
3150         if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3151                 spin_lock(&sbi->dev_lock);
3152                 f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3153                 spin_unlock(&sbi->dev_lock);
3154         }
3155 }
3156
3157 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3158 {
3159         int type = __get_segment_type(fio);
3160         bool keep_order = (test_opt(fio->sbi, LFS) && type == CURSEG_COLD_DATA);
3161
3162         if (keep_order)
3163                 down_read(&fio->sbi->io_order_lock);
3164 reallocate:
3165         f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3166                         &fio->new_blkaddr, sum, type, fio, true);
3167         if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
3168                 invalidate_mapping_pages(META_MAPPING(fio->sbi),
3169                                         fio->old_blkaddr, fio->old_blkaddr);
3170
3171         /* writeout dirty page into bdev */
3172         f2fs_submit_page_write(fio);
3173         if (fio->retry) {
3174                 fio->old_blkaddr = fio->new_blkaddr;
3175                 goto reallocate;
3176         }
3177
3178         update_device_state(fio);
3179
3180         if (keep_order)
3181                 up_read(&fio->sbi->io_order_lock);
3182 }
3183
3184 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3185                                         enum iostat_type io_type)
3186 {
3187         struct f2fs_io_info fio = {
3188                 .sbi = sbi,
3189                 .type = META,
3190                 .temp = HOT,
3191                 .op = REQ_OP_WRITE,
3192                 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3193                 .old_blkaddr = page->index,
3194                 .new_blkaddr = page->index,
3195                 .page = page,
3196                 .encrypted_page = NULL,
3197                 .in_list = false,
3198         };
3199
3200         if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3201                 fio.op_flags &= ~REQ_META;
3202
3203         set_page_writeback(page);
3204         ClearPageError(page);
3205         f2fs_submit_page_write(&fio);
3206
3207         stat_inc_meta_count(sbi, page->index);
3208         f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
3209 }
3210
3211 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3212 {
3213         struct f2fs_summary sum;
3214
3215         set_summary(&sum, nid, 0, 0);
3216         do_write_page(&sum, fio);
3217
3218         f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3219 }
3220
3221 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3222                                         struct f2fs_io_info *fio)
3223 {
3224         struct f2fs_sb_info *sbi = fio->sbi;
3225         struct f2fs_summary sum;
3226
3227         f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3228         set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3229         do_write_page(&sum, fio);
3230         f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3231
3232         f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
3233 }
3234
3235 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3236 {
3237         int err;
3238         struct f2fs_sb_info *sbi = fio->sbi;
3239         unsigned int segno;
3240
3241         fio->new_blkaddr = fio->old_blkaddr;
3242         /* i/o temperature is needed for passing down write hints */
3243         __get_segment_type(fio);
3244
3245         segno = GET_SEGNO(sbi, fio->new_blkaddr);
3246
3247         if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3248                 set_sbi_flag(sbi, SBI_NEED_FSCK);
3249                 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3250                           __func__, segno);
3251                 return -EFSCORRUPTED;
3252         }
3253
3254         stat_inc_inplace_blocks(fio->sbi);
3255
3256         if (fio->bio)
3257                 err = f2fs_merge_page_bio(fio);
3258         else
3259                 err = f2fs_submit_page_bio(fio);
3260         if (!err) {
3261                 update_device_state(fio);
3262                 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3263         }
3264
3265         return err;
3266 }
3267
3268 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3269                                                 unsigned int segno)
3270 {
3271         int i;
3272
3273         for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3274                 if (CURSEG_I(sbi, i)->segno == segno)
3275                         break;
3276         }
3277         return i;
3278 }
3279
3280 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3281                                 block_t old_blkaddr, block_t new_blkaddr,
3282                                 bool recover_curseg, bool recover_newaddr)
3283 {
3284         struct sit_info *sit_i = SIT_I(sbi);
3285         struct curseg_info *curseg;
3286         unsigned int segno, old_cursegno;
3287         struct seg_entry *se;
3288         int type;
3289         unsigned short old_blkoff;
3290
3291         segno = GET_SEGNO(sbi, new_blkaddr);
3292         se = get_seg_entry(sbi, segno);
3293         type = se->type;
3294
3295         down_write(&SM_I(sbi)->curseg_lock);
3296
3297         if (!recover_curseg) {
3298                 /* for recovery flow */
3299                 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3300                         if (old_blkaddr == NULL_ADDR)
3301                                 type = CURSEG_COLD_DATA;
3302                         else
3303                                 type = CURSEG_WARM_DATA;
3304                 }
3305         } else {
3306                 if (IS_CURSEG(sbi, segno)) {
3307                         /* se->type is volatile as SSR allocation */
3308                         type = __f2fs_get_curseg(sbi, segno);
3309                         f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3310                 } else {
3311                         type = CURSEG_WARM_DATA;
3312                 }
3313         }
3314
3315         f2fs_bug_on(sbi, !IS_DATASEG(type));
3316         curseg = CURSEG_I(sbi, type);
3317
3318         mutex_lock(&curseg->curseg_mutex);
3319         down_write(&sit_i->sentry_lock);
3320
3321         old_cursegno = curseg->segno;
3322         old_blkoff = curseg->next_blkoff;
3323
3324         /* change the current segment */
3325         if (segno != curseg->segno) {
3326                 curseg->next_segno = segno;
3327                 change_curseg(sbi, type);
3328         }
3329
3330         curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3331         __add_sum_entry(sbi, type, sum);
3332
3333         if (!recover_curseg || recover_newaddr)
3334                 update_sit_entry(sbi, new_blkaddr, 1);
3335         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3336                 invalidate_mapping_pages(META_MAPPING(sbi),
3337                                         old_blkaddr, old_blkaddr);
3338                 update_sit_entry(sbi, old_blkaddr, -1);
3339         }
3340
3341         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3342         locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3343
3344         locate_dirty_segment(sbi, old_cursegno);
3345
3346         if (recover_curseg) {
3347                 if (old_cursegno != curseg->segno) {
3348                         curseg->next_segno = old_cursegno;
3349                         change_curseg(sbi, type);
3350                 }
3351                 curseg->next_blkoff = old_blkoff;
3352         }
3353
3354         up_write(&sit_i->sentry_lock);
3355         mutex_unlock(&curseg->curseg_mutex);
3356         up_write(&SM_I(sbi)->curseg_lock);
3357 }
3358
3359 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3360                                 block_t old_addr, block_t new_addr,
3361                                 unsigned char version, bool recover_curseg,
3362                                 bool recover_newaddr)
3363 {
3364         struct f2fs_summary sum;
3365
3366         set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3367
3368         f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3369                                         recover_curseg, recover_newaddr);
3370
3371         f2fs_update_data_blkaddr(dn, new_addr);
3372 }
3373
3374 void f2fs_wait_on_page_writeback(struct page *page,
3375                                 enum page_type type, bool ordered, bool locked)
3376 {
3377         if (PageWriteback(page)) {
3378                 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3379
3380                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3381                 if (ordered) {
3382                         wait_on_page_writeback(page);
3383                         f2fs_bug_on(sbi, locked && PageWriteback(page));
3384                 } else {
3385                         wait_for_stable_page(page);
3386                 }
3387         }
3388 }
3389
3390 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3391 {
3392         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3393         struct page *cpage;
3394
3395         if (!f2fs_post_read_required(inode))
3396                 return;
3397
3398         if (!__is_valid_data_blkaddr(blkaddr))
3399                 return;
3400
3401         cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3402         if (cpage) {
3403                 f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3404                 f2fs_put_page(cpage, 1);
3405         }
3406 }
3407
3408 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3409                                                                 block_t len)
3410 {
3411         block_t i;
3412
3413         for (i = 0; i < len; i++)
3414                 f2fs_wait_on_block_writeback(inode, blkaddr + i);
3415 }
3416
3417 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3418 {
3419         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3420         struct curseg_info *seg_i;
3421         unsigned char *kaddr;
3422         struct page *page;
3423         block_t start;
3424         int i, j, offset;
3425
3426         start = start_sum_block(sbi);
3427
3428         page = f2fs_get_meta_page(sbi, start++);
3429         if (IS_ERR(page))
3430                 return PTR_ERR(page);
3431         kaddr = (unsigned char *)page_address(page);
3432
3433         /* Step 1: restore nat cache */
3434         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3435         memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3436
3437         /* Step 2: restore sit cache */
3438         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3439         memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3440         offset = 2 * SUM_JOURNAL_SIZE;
3441
3442         /* Step 3: restore summary entries */
3443         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3444                 unsigned short blk_off;
3445                 unsigned int segno;
3446
3447                 seg_i = CURSEG_I(sbi, i);
3448                 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3449                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3450                 if (blk_off > ENTRIES_IN_SUM) {
3451                         f2fs_bug_on(sbi, 1);
3452                         f2fs_put_page(page, 1);
3453                         return -EFAULT;
3454                 }
3455                 seg_i->next_segno = segno;
3456                 reset_curseg(sbi, i, 0);
3457                 seg_i->alloc_type = ckpt->alloc_type[i];
3458                 seg_i->next_blkoff = blk_off;
3459
3460                 if (seg_i->alloc_type == SSR)
3461                         blk_off = sbi->blocks_per_seg;
3462
3463                 for (j = 0; j < blk_off; j++) {
3464                         struct f2fs_summary *s;
3465                         s = (struct f2fs_summary *)(kaddr + offset);
3466                         seg_i->sum_blk->entries[j] = *s;
3467                         offset += SUMMARY_SIZE;
3468                         if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3469                                                 SUM_FOOTER_SIZE)
3470                                 continue;
3471
3472                         f2fs_put_page(page, 1);
3473                         page = NULL;
3474
3475                         page = f2fs_get_meta_page(sbi, start++);
3476                         if (IS_ERR(page))
3477                                 return PTR_ERR(page);
3478                         kaddr = (unsigned char *)page_address(page);
3479                         offset = 0;
3480                 }
3481         }
3482         f2fs_put_page(page, 1);
3483         return 0;
3484 }
3485
3486 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3487 {
3488         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3489         struct f2fs_summary_block *sum;
3490         struct curseg_info *curseg;
3491         struct page *new;
3492         unsigned short blk_off;
3493         unsigned int segno = 0;
3494         block_t blk_addr = 0;
3495         int err = 0;
3496
3497         /* get segment number and block addr */
3498         if (IS_DATASEG(type)) {
3499                 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3500                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3501                                                         CURSEG_HOT_DATA]);
3502                 if (__exist_node_summaries(sbi))
3503                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
3504                 else
3505                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3506         } else {
3507                 segno = le32_to_cpu(ckpt->cur_node_segno[type -
3508                                                         CURSEG_HOT_NODE]);
3509                 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3510                                                         CURSEG_HOT_NODE]);
3511                 if (__exist_node_summaries(sbi))
3512                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3513                                                         type - CURSEG_HOT_NODE);
3514                 else
3515                         blk_addr = GET_SUM_BLOCK(sbi, segno);
3516         }
3517
3518         new = f2fs_get_meta_page(sbi, blk_addr);
3519         if (IS_ERR(new))
3520                 return PTR_ERR(new);
3521         sum = (struct f2fs_summary_block *)page_address(new);
3522
3523         if (IS_NODESEG(type)) {
3524                 if (__exist_node_summaries(sbi)) {
3525                         struct f2fs_summary *ns = &sum->entries[0];
3526                         int i;
3527                         for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3528                                 ns->version = 0;
3529                                 ns->ofs_in_node = 0;
3530                         }
3531                 } else {
3532                         err = f2fs_restore_node_summary(sbi, segno, sum);
3533                         if (err)
3534                                 goto out;
3535                 }
3536         }
3537
3538         /* set uncompleted segment to curseg */
3539         curseg = CURSEG_I(sbi, type);
3540         mutex_lock(&curseg->curseg_mutex);
3541
3542         /* update journal info */
3543         down_write(&curseg->journal_rwsem);
3544         memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3545         up_write(&curseg->journal_rwsem);
3546
3547         memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3548         memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3549         curseg->next_segno = segno;
3550         reset_curseg(sbi, type, 0);
3551         curseg->alloc_type = ckpt->alloc_type[type];
3552         curseg->next_blkoff = blk_off;
3553         mutex_unlock(&curseg->curseg_mutex);
3554 out:
3555         f2fs_put_page(new, 1);
3556         return err;
3557 }
3558
3559 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3560 {
3561         struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3562         struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3563         int type = CURSEG_HOT_DATA;
3564         int err;
3565
3566         if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3567                 int npages = f2fs_npages_for_summary_flush(sbi, true);
3568
3569                 if (npages >= 2)
3570                         f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3571                                                         META_CP, true);
3572
3573                 /* restore for compacted data summary */
3574                 err = read_compacted_summaries(sbi);
3575                 if (err)
3576                         return err;
3577                 type = CURSEG_HOT_NODE;
3578         }
3579
3580         if (__exist_node_summaries(sbi))
3581                 f2fs_ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
3582                                         NR_CURSEG_TYPE - type, META_CP, true);
3583
3584         for (; type <= CURSEG_COLD_NODE; type++) {
3585                 err = read_normal_summaries(sbi, type);
3586                 if (err)
3587                         return err;
3588         }
3589
3590         /* sanity check for summary blocks */
3591         if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3592                         sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
3593                 f2fs_err(sbi, "invalid journal entries nats %u sits %u\n",
3594                          nats_in_cursum(nat_j), sits_in_cursum(sit_j));
3595                 return -EINVAL;
3596         }
3597
3598         return 0;
3599 }
3600
3601 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3602 {
3603         struct page *page;
3604         unsigned char *kaddr;
3605         struct f2fs_summary *summary;
3606         struct curseg_info *seg_i;
3607         int written_size = 0;
3608         int i, j;
3609
3610         page = f2fs_grab_meta_page(sbi, blkaddr++);
3611         kaddr = (unsigned char *)page_address(page);
3612         memset(kaddr, 0, PAGE_SIZE);
3613
3614         /* Step 1: write nat cache */
3615         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3616         memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3617         written_size += SUM_JOURNAL_SIZE;
3618
3619         /* Step 2: write sit cache */
3620         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3621         memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3622         written_size += SUM_JOURNAL_SIZE;
3623
3624         /* Step 3: write summary entries */
3625         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3626                 unsigned short blkoff;
3627                 seg_i = CURSEG_I(sbi, i);
3628                 if (sbi->ckpt->alloc_type[i] == SSR)
3629                         blkoff = sbi->blocks_per_seg;
3630                 else
3631                         blkoff = curseg_blkoff(sbi, i);
3632
3633                 for (j = 0; j < blkoff; j++) {
3634                         if (!page) {
3635                                 page = f2fs_grab_meta_page(sbi, blkaddr++);
3636                                 kaddr = (unsigned char *)page_address(page);
3637                                 memset(kaddr, 0, PAGE_SIZE);
3638                                 written_size = 0;
3639                         }
3640                         summary = (struct f2fs_summary *)(kaddr + written_size);
3641                         *summary = seg_i->sum_blk->entries[j];
3642                         written_size += SUMMARY_SIZE;
3643
3644                         if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3645                                                         SUM_FOOTER_SIZE)
3646                                 continue;
3647
3648                         set_page_dirty(page);
3649                         f2fs_put_page(page, 1);
3650                         page = NULL;
3651                 }
3652         }
3653         if (page) {
3654                 set_page_dirty(page);
3655                 f2fs_put_page(page, 1);
3656         }
3657 }
3658
3659 static void write_normal_summaries(struct f2fs_sb_info *sbi,
3660                                         block_t blkaddr, int type)
3661 {
3662         int i, end;
3663         if (IS_DATASEG(type))
3664                 end = type + NR_CURSEG_DATA_TYPE;
3665         else
3666                 end = type + NR_CURSEG_NODE_TYPE;
3667
3668         for (i = type; i < end; i++)
3669                 write_current_sum_page(sbi, i, blkaddr + (i - type));
3670 }
3671
3672 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3673 {
3674         if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
3675                 write_compacted_summaries(sbi, start_blk);
3676         else
3677                 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
3678 }
3679
3680 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3681 {
3682         write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
3683 }
3684
3685 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3686                                         unsigned int val, int alloc)
3687 {
3688         int i;
3689
3690         if (type == NAT_JOURNAL) {
3691                 for (i = 0; i < nats_in_cursum(journal); i++) {
3692                         if (le32_to_cpu(nid_in_journal(journal, i)) == val)
3693                                 return i;
3694                 }
3695                 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
3696                         return update_nats_in_cursum(journal, 1);
3697         } else if (type == SIT_JOURNAL) {
3698                 for (i = 0; i < sits_in_cursum(journal); i++)
3699                         if (le32_to_cpu(segno_in_journal(journal, i)) == val)
3700                                 return i;
3701                 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
3702                         return update_sits_in_cursum(journal, 1);
3703         }
3704         return -1;
3705 }
3706
3707 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
3708                                         unsigned int segno)
3709 {
3710         return f2fs_get_meta_page_nofail(sbi, current_sit_addr(sbi, segno));
3711 }
3712
3713 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
3714                                         unsigned int start)
3715 {
3716         struct sit_info *sit_i = SIT_I(sbi);
3717         struct page *page;
3718         pgoff_t src_off, dst_off;
3719
3720         src_off = current_sit_addr(sbi, start);
3721         dst_off = next_sit_addr(sbi, src_off);
3722
3723         page = f2fs_grab_meta_page(sbi, dst_off);
3724         seg_info_to_sit_page(sbi, page, start);
3725
3726         set_page_dirty(page);
3727         set_to_next_sit(sit_i, start);
3728
3729         return page;
3730 }
3731
3732 static struct sit_entry_set *grab_sit_entry_set(void)
3733 {
3734         struct sit_entry_set *ses =
3735                         f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
3736
3737         ses->entry_cnt = 0;
3738         INIT_LIST_HEAD(&ses->set_list);
3739         return ses;
3740 }
3741
3742 static void release_sit_entry_set(struct sit_entry_set *ses)
3743 {
3744         list_del(&ses->set_list);
3745         kmem_cache_free(sit_entry_set_slab, ses);
3746 }
3747
3748 static void adjust_sit_entry_set(struct sit_entry_set *ses,
3749                                                 struct list_head *head)
3750 {
3751         struct sit_entry_set *next = ses;
3752
3753         if (list_is_last(&ses->set_list, head))
3754                 return;
3755
3756         list_for_each_entry_continue(next, head, set_list)
3757                 if (ses->entry_cnt <= next->entry_cnt)
3758                         break;
3759
3760         list_move_tail(&ses->set_list, &next->set_list);
3761 }
3762
3763 static void add_sit_entry(unsigned int segno, struct list_head *head)
3764 {
3765         struct sit_entry_set *ses;
3766         unsigned int start_segno = START_SEGNO(segno);
3767
3768         list_for_each_entry(ses, head, set_list) {
3769                 if (ses->start_segno == start_segno) {
3770                         ses->entry_cnt++;
3771                         adjust_sit_entry_set(ses, head);
3772                         return;
3773                 }
3774         }
3775
3776         ses = grab_sit_entry_set();
3777
3778         ses->start_segno = start_segno;
3779         ses->entry_cnt++;
3780         list_add(&ses->set_list, head);
3781 }
3782
3783 static void add_sits_in_set(struct f2fs_sb_info *sbi)
3784 {
3785         struct f2fs_sm_info *sm_info = SM_I(sbi);
3786         struct list_head *set_list = &sm_info->sit_entry_set;
3787         unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
3788         unsigned int segno;
3789
3790         for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
3791                 add_sit_entry(segno, set_list);
3792 }
3793
3794 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
3795 {
3796         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3797         struct f2fs_journal *journal = curseg->journal;
3798         int i;
3799
3800         down_write(&curseg->journal_rwsem);
3801         for (i = 0; i < sits_in_cursum(journal); i++) {
3802                 unsigned int segno;
3803                 bool dirtied;
3804
3805                 segno = le32_to_cpu(segno_in_journal(journal, i));
3806                 dirtied = __mark_sit_entry_dirty(sbi, segno);
3807
3808                 if (!dirtied)
3809                         add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
3810         }
3811         update_sits_in_cursum(journal, -i);
3812         up_write(&curseg->journal_rwsem);
3813 }
3814
3815 /*
3816  * CP calls this function, which flushes SIT entries including sit_journal,
3817  * and moves prefree segs to free segs.
3818  */
3819 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3820 {
3821         struct sit_info *sit_i = SIT_I(sbi);
3822         unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
3823         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3824         struct f2fs_journal *journal = curseg->journal;
3825         struct sit_entry_set *ses, *tmp;
3826         struct list_head *head = &SM_I(sbi)->sit_entry_set;
3827         bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
3828         struct seg_entry *se;
3829
3830         down_write(&sit_i->sentry_lock);
3831
3832         if (!sit_i->dirty_sentries)
3833                 goto out;
3834
3835         /*
3836          * add and account sit entries of dirty bitmap in sit entry
3837          * set temporarily
3838          */
3839         add_sits_in_set(sbi);
3840
3841         /*
3842          * if there are no enough space in journal to store dirty sit
3843          * entries, remove all entries from journal and add and account
3844          * them in sit entry set.
3845          */
3846         if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
3847                                                                 !to_journal)
3848                 remove_sits_in_journal(sbi);
3849
3850         /*
3851          * there are two steps to flush sit entries:
3852          * #1, flush sit entries to journal in current cold data summary block.
3853          * #2, flush sit entries to sit page.
3854          */
3855         list_for_each_entry_safe(ses, tmp, head, set_list) {
3856                 struct page *page = NULL;
3857                 struct f2fs_sit_block *raw_sit = NULL;
3858                 unsigned int start_segno = ses->start_segno;
3859                 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
3860                                                 (unsigned long)MAIN_SEGS(sbi));
3861                 unsigned int segno = start_segno;
3862
3863                 if (to_journal &&
3864                         !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
3865                         to_journal = false;
3866
3867                 if (to_journal) {
3868                         down_write(&curseg->journal_rwsem);
3869                 } else {
3870                         page = get_next_sit_page(sbi, start_segno);
3871                         raw_sit = page_address(page);
3872                 }
3873
3874                 /* flush dirty sit entries in region of current sit set */
3875                 for_each_set_bit_from(segno, bitmap, end) {
3876                         int offset, sit_offset;
3877
3878                         se = get_seg_entry(sbi, segno);
3879 #ifdef CONFIG_F2FS_CHECK_FS
3880                         if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
3881                                                 SIT_VBLOCK_MAP_SIZE))
3882                                 f2fs_bug_on(sbi, 1);
3883 #endif
3884
3885                         /* add discard candidates */
3886                         if (!(cpc->reason & CP_DISCARD)) {
3887                                 cpc->trim_start = segno;
3888                                 add_discard_addrs(sbi, cpc, false);
3889                         }
3890
3891                         if (to_journal) {
3892                                 offset = f2fs_lookup_journal_in_cursum(journal,
3893                                                         SIT_JOURNAL, segno, 1);
3894                                 f2fs_bug_on(sbi, offset < 0);
3895                                 segno_in_journal(journal, offset) =
3896                                                         cpu_to_le32(segno);
3897                                 seg_info_to_raw_sit(se,
3898                                         &sit_in_journal(journal, offset));
3899                                 check_block_count(sbi, segno,
3900                                         &sit_in_journal(journal, offset));
3901                         } else {
3902                                 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
3903                                 seg_info_to_raw_sit(se,
3904                                                 &raw_sit->entries[sit_offset]);
3905                                 check_block_count(sbi, segno,
3906                                                 &raw_sit->entries[sit_offset]);
3907                         }
3908
3909                         __clear_bit(segno, bitmap);
3910                         sit_i->dirty_sentries--;
3911                         ses->entry_cnt--;
3912                 }
3913
3914                 if (to_journal)
3915                         up_write(&curseg->journal_rwsem);
3916                 else
3917                         f2fs_put_page(page, 1);
3918
3919                 f2fs_bug_on(sbi, ses->entry_cnt);
3920                 release_sit_entry_set(ses);
3921         }
3922
3923         f2fs_bug_on(sbi, !list_empty(head));
3924         f2fs_bug_on(sbi, sit_i->dirty_sentries);
3925 out:
3926         if (cpc->reason & CP_DISCARD) {
3927                 __u64 trim_start = cpc->trim_start;
3928
3929                 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
3930                         add_discard_addrs(sbi, cpc, false);
3931
3932                 cpc->trim_start = trim_start;
3933         }
3934         up_write(&sit_i->sentry_lock);
3935
3936         set_prefree_as_free_segments(sbi);
3937 }
3938
3939 static int build_sit_info(struct f2fs_sb_info *sbi)
3940 {
3941         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3942         struct sit_info *sit_i;
3943         unsigned int sit_segs, start;
3944         char *src_bitmap;
3945         unsigned int bitmap_size;
3946
3947         /* allocate memory for SIT information */
3948         sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
3949         if (!sit_i)
3950                 return -ENOMEM;
3951
3952         SM_I(sbi)->sit_info = sit_i;
3953
3954         sit_i->sentries =
3955                 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
3956                                               MAIN_SEGS(sbi)),
3957                               GFP_KERNEL);
3958         if (!sit_i->sentries)
3959                 return -ENOMEM;
3960
3961         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3962         sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, bitmap_size,
3963                                                                 GFP_KERNEL);
3964         if (!sit_i->dirty_sentries_bitmap)
3965                 return -ENOMEM;
3966
3967         for (start = 0; start < MAIN_SEGS(sbi); start++) {
3968                 sit_i->sentries[start].cur_valid_map
3969                         = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3970                 sit_i->sentries[start].ckpt_valid_map
3971                         = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3972                 if (!sit_i->sentries[start].cur_valid_map ||
3973                                 !sit_i->sentries[start].ckpt_valid_map)
3974                         return -ENOMEM;
3975
3976 #ifdef CONFIG_F2FS_CHECK_FS
3977                 sit_i->sentries[start].cur_valid_map_mir
3978                         = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3979                 if (!sit_i->sentries[start].cur_valid_map_mir)
3980                         return -ENOMEM;
3981 #endif
3982
3983                 sit_i->sentries[start].discard_map
3984                         = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE,
3985                                                         GFP_KERNEL);
3986                 if (!sit_i->sentries[start].discard_map)
3987                         return -ENOMEM;
3988         }
3989
3990         sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3991         if (!sit_i->tmp_map)
3992                 return -ENOMEM;
3993
3994         if (__is_large_section(sbi)) {
3995                 sit_i->sec_entries =
3996                         f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
3997                                                       MAIN_SECS(sbi)),
3998                                       GFP_KERNEL);
3999                 if (!sit_i->sec_entries)
4000                         return -ENOMEM;
4001         }
4002
4003         /* get information related with SIT */
4004         sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4005
4006         /* setup SIT bitmap from ckeckpoint pack */
4007         bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4008         src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4009
4010         sit_i->sit_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
4011         if (!sit_i->sit_bitmap)
4012                 return -ENOMEM;
4013
4014 #ifdef CONFIG_F2FS_CHECK_FS
4015         sit_i->sit_bitmap_mir = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
4016         if (!sit_i->sit_bitmap_mir)
4017                 return -ENOMEM;
4018 #endif
4019
4020         /* init SIT information */
4021         sit_i->s_ops = &default_salloc_ops;
4022
4023         sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4024         sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4025         sit_i->written_valid_blocks = 0;
4026         sit_i->bitmap_size = bitmap_size;
4027         sit_i->dirty_sentries = 0;
4028         sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4029         sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4030         sit_i->mounted_time = ktime_get_real_seconds();
4031         init_rwsem(&sit_i->sentry_lock);
4032         return 0;
4033 }
4034
4035 static int build_free_segmap(struct f2fs_sb_info *sbi)
4036 {
4037         struct free_segmap_info *free_i;
4038         unsigned int bitmap_size, sec_bitmap_size;
4039
4040         /* allocate memory for free segmap information */
4041         free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4042         if (!free_i)
4043                 return -ENOMEM;
4044
4045         SM_I(sbi)->free_info = free_i;
4046
4047         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4048         free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4049         if (!free_i->free_segmap)
4050                 return -ENOMEM;
4051
4052         sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4053         free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4054         if (!free_i->free_secmap)
4055                 return -ENOMEM;
4056
4057         /* set all segments as dirty temporarily */
4058         memset(free_i->free_segmap, 0xff, bitmap_size);
4059         memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4060
4061         /* init free segmap information */
4062         free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4063         free_i->free_segments = 0;
4064         free_i->free_sections = 0;
4065         spin_lock_init(&free_i->segmap_lock);
4066         return 0;
4067 }
4068
4069 static int build_curseg(struct f2fs_sb_info *sbi)
4070 {
4071         struct curseg_info *array;
4072         int i;
4073
4074         array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, sizeof(*array)),
4075                              GFP_KERNEL);
4076         if (!array)
4077                 return -ENOMEM;
4078
4079         SM_I(sbi)->curseg_array = array;
4080
4081         for (i = 0; i < NR_CURSEG_TYPE; i++) {
4082                 mutex_init(&array[i].curseg_mutex);
4083                 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4084                 if (!array[i].sum_blk)
4085                         return -ENOMEM;
4086                 init_rwsem(&array[i].journal_rwsem);
4087                 array[i].journal = f2fs_kzalloc(sbi,
4088                                 sizeof(struct f2fs_journal), GFP_KERNEL);
4089                 if (!array[i].journal)
4090                         return -ENOMEM;
4091                 array[i].segno = NULL_SEGNO;
4092                 array[i].next_blkoff = 0;
4093         }
4094         return restore_curseg_summaries(sbi);
4095 }
4096
4097 static int build_sit_entries(struct f2fs_sb_info *sbi)
4098 {
4099         struct sit_info *sit_i = SIT_I(sbi);
4100         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4101         struct f2fs_journal *journal = curseg->journal;
4102         struct seg_entry *se;
4103         struct f2fs_sit_entry sit;
4104         int sit_blk_cnt = SIT_BLK_CNT(sbi);
4105         unsigned int i, start, end;
4106         unsigned int readed, start_blk = 0;
4107         int err = 0;
4108         block_t total_node_blocks = 0;
4109
4110         do {
4111                 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
4112                                                         META_SIT, true);
4113
4114                 start = start_blk * sit_i->sents_per_block;
4115                 end = (start_blk + readed) * sit_i->sents_per_block;
4116
4117                 for (; start < end && start < MAIN_SEGS(sbi); start++) {
4118                         struct f2fs_sit_block *sit_blk;
4119                         struct page *page;
4120
4121                         se = &sit_i->sentries[start];
4122                         page = get_current_sit_page(sbi, start);
4123                         if (IS_ERR(page))
4124                                 return PTR_ERR(page);
4125                         sit_blk = (struct f2fs_sit_block *)page_address(page);
4126                         sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4127                         f2fs_put_page(page, 1);
4128
4129                         err = check_block_count(sbi, start, &sit);
4130                         if (err)
4131                                 return err;
4132                         seg_info_from_raw_sit(se, &sit);
4133                         if (IS_NODESEG(se->type))
4134                                 total_node_blocks += se->valid_blocks;
4135
4136                         /* build discard map only one time */
4137                         if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4138                                 memset(se->discard_map, 0xff,
4139                                         SIT_VBLOCK_MAP_SIZE);
4140                         } else {
4141                                 memcpy(se->discard_map,
4142                                         se->cur_valid_map,
4143                                         SIT_VBLOCK_MAP_SIZE);
4144                                 sbi->discard_blks +=
4145                                         sbi->blocks_per_seg -
4146                                         se->valid_blocks;
4147                         }
4148
4149                         if (__is_large_section(sbi))
4150                                 get_sec_entry(sbi, start)->valid_blocks +=
4151                                                         se->valid_blocks;
4152                 }
4153                 start_blk += readed;
4154         } while (start_blk < sit_blk_cnt);
4155
4156         down_read(&curseg->journal_rwsem);
4157         for (i = 0; i < sits_in_cursum(journal); i++) {
4158                 unsigned int old_valid_blocks;
4159
4160                 start = le32_to_cpu(segno_in_journal(journal, i));
4161                 if (start >= MAIN_SEGS(sbi)) {
4162                         f2fs_err(sbi, "Wrong journal entry on segno %u",
4163                                  start);
4164                         set_sbi_flag(sbi, SBI_NEED_FSCK);
4165                         err = -EFSCORRUPTED;
4166                         break;
4167                 }
4168
4169                 se = &sit_i->sentries[start];
4170                 sit = sit_in_journal(journal, i);
4171
4172                 old_valid_blocks = se->valid_blocks;
4173                 if (IS_NODESEG(se->type))
4174                         total_node_blocks -= old_valid_blocks;
4175
4176                 err = check_block_count(sbi, start, &sit);
4177                 if (err)
4178                         break;
4179                 seg_info_from_raw_sit(se, &sit);
4180                 if (IS_NODESEG(se->type))
4181                         total_node_blocks += se->valid_blocks;
4182
4183                 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4184                         memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4185                 } else {
4186                         memcpy(se->discard_map, se->cur_valid_map,
4187                                                 SIT_VBLOCK_MAP_SIZE);
4188                         sbi->discard_blks += old_valid_blocks;
4189                         sbi->discard_blks -= se->valid_blocks;
4190                 }
4191
4192                 if (__is_large_section(sbi)) {
4193                         get_sec_entry(sbi, start)->valid_blocks +=
4194                                                         se->valid_blocks;
4195                         get_sec_entry(sbi, start)->valid_blocks -=
4196                                                         old_valid_blocks;
4197                 }
4198         }
4199         up_read(&curseg->journal_rwsem);
4200
4201         if (!err && total_node_blocks != valid_node_count(sbi)) {
4202                 f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4203                          total_node_blocks, valid_node_count(sbi));
4204                 set_sbi_flag(sbi, SBI_NEED_FSCK);
4205                 err = -EFSCORRUPTED;
4206         }
4207
4208         return err;
4209 }
4210
4211 static void init_free_segmap(struct f2fs_sb_info *sbi)
4212 {
4213         unsigned int start;
4214         int type;
4215
4216         for (start = 0; start < MAIN_SEGS(sbi); start++) {
4217                 struct seg_entry *sentry = get_seg_entry(sbi, start);
4218                 if (!sentry->valid_blocks)
4219                         __set_free(sbi, start);
4220                 else
4221                         SIT_I(sbi)->written_valid_blocks +=
4222                                                 sentry->valid_blocks;
4223         }
4224
4225         /* set use the current segments */
4226         for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4227                 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4228                 __set_test_and_inuse(sbi, curseg_t->segno);
4229         }
4230 }
4231
4232 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4233 {
4234         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4235         struct free_segmap_info *free_i = FREE_I(sbi);
4236         unsigned int segno = 0, offset = 0;
4237         unsigned short valid_blocks;
4238
4239         while (1) {
4240                 /* find dirty segment based on free segmap */
4241                 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4242                 if (segno >= MAIN_SEGS(sbi))
4243                         break;
4244                 offset = segno + 1;
4245                 valid_blocks = get_valid_blocks(sbi, segno, false);
4246                 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
4247                         continue;
4248                 if (valid_blocks > sbi->blocks_per_seg) {
4249                         f2fs_bug_on(sbi, 1);
4250                         continue;
4251                 }
4252                 mutex_lock(&dirty_i->seglist_lock);
4253                 __locate_dirty_segment(sbi, segno, DIRTY);
4254                 mutex_unlock(&dirty_i->seglist_lock);
4255         }
4256 }
4257
4258 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4259 {
4260         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4261         unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4262
4263         dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4264         if (!dirty_i->victim_secmap)
4265                 return -ENOMEM;
4266         return 0;
4267 }
4268
4269 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4270 {
4271         struct dirty_seglist_info *dirty_i;
4272         unsigned int bitmap_size, i;
4273
4274         /* allocate memory for dirty segments list information */
4275         dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4276                                                                 GFP_KERNEL);
4277         if (!dirty_i)
4278                 return -ENOMEM;
4279
4280         SM_I(sbi)->dirty_info = dirty_i;
4281         mutex_init(&dirty_i->seglist_lock);
4282
4283         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4284
4285         for (i = 0; i < NR_DIRTY_TYPE; i++) {
4286                 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4287                                                                 GFP_KERNEL);
4288                 if (!dirty_i->dirty_segmap[i])
4289                         return -ENOMEM;
4290         }
4291
4292         init_dirty_segmap(sbi);
4293         return init_victim_secmap(sbi);
4294 }
4295
4296 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4297 {
4298         int i;
4299
4300         /*
4301          * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4302          * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4303          */
4304         for (i = 0; i < NO_CHECK_TYPE; i++) {
4305                 struct curseg_info *curseg = CURSEG_I(sbi, i);
4306                 struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4307                 unsigned int blkofs = curseg->next_blkoff;
4308
4309                 if (f2fs_test_bit(blkofs, se->cur_valid_map))
4310                         goto out;
4311
4312                 if (curseg->alloc_type == SSR)
4313                         continue;
4314
4315                 for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4316                         if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4317                                 continue;
4318 out:
4319                         f2fs_err(sbi,
4320                                  "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4321                                  i, curseg->segno, curseg->alloc_type,
4322                                  curseg->next_blkoff, blkofs);
4323                         return -EFSCORRUPTED;
4324                 }
4325         }
4326         return 0;
4327 }
4328
4329 /*
4330  * Update min, max modified time for cost-benefit GC algorithm
4331  */
4332 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
4333 {
4334         struct sit_info *sit_i = SIT_I(sbi);
4335         unsigned int segno;
4336
4337         down_write(&sit_i->sentry_lock);
4338
4339         sit_i->min_mtime = ULLONG_MAX;
4340
4341         for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4342                 unsigned int i;
4343                 unsigned long long mtime = 0;
4344
4345                 for (i = 0; i < sbi->segs_per_sec; i++)
4346                         mtime += get_seg_entry(sbi, segno + i)->mtime;
4347
4348                 mtime = div_u64(mtime, sbi->segs_per_sec);
4349
4350                 if (sit_i->min_mtime > mtime)
4351                         sit_i->min_mtime = mtime;
4352         }
4353         sit_i->max_mtime = get_mtime(sbi, false);
4354         up_write(&sit_i->sentry_lock);
4355 }
4356
4357 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
4358 {
4359         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4360         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
4361         struct f2fs_sm_info *sm_info;
4362         int err;
4363
4364         sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
4365         if (!sm_info)
4366                 return -ENOMEM;
4367
4368         /* init sm info */
4369         sbi->sm_info = sm_info;
4370         sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
4371         sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
4372         sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
4373         sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
4374         sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
4375         sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
4376         sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
4377         sm_info->rec_prefree_segments = sm_info->main_segments *
4378                                         DEF_RECLAIM_PREFREE_SEGMENTS / 100;
4379         if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
4380                 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
4381
4382         if (!test_opt(sbi, LFS))
4383                 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
4384         sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
4385         sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
4386         sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec;
4387         sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
4388         sm_info->min_ssr_sections = reserved_sections(sbi);
4389
4390         INIT_LIST_HEAD(&sm_info->sit_entry_set);
4391
4392         init_rwsem(&sm_info->curseg_lock);
4393
4394         if (!f2fs_readonly(sbi->sb)) {
4395                 err = f2fs_create_flush_cmd_control(sbi);
4396                 if (err)
4397                         return err;
4398         }
4399
4400         err = create_discard_cmd_control(sbi);
4401         if (err)
4402                 return err;
4403
4404         err = build_sit_info(sbi);
4405         if (err)
4406                 return err;
4407         err = build_free_segmap(sbi);
4408         if (err)
4409                 return err;
4410         err = build_curseg(sbi);
4411         if (err)
4412                 return err;
4413
4414         /* reinit free segmap based on SIT */
4415         err = build_sit_entries(sbi);
4416         if (err)
4417                 return err;
4418
4419         init_free_segmap(sbi);
4420         err = build_dirty_segmap(sbi);
4421         if (err)
4422                 return err;
4423
4424         err = sanity_check_curseg(sbi);
4425         if (err)
4426                 return err;
4427
4428         init_min_max_mtime(sbi);
4429         return 0;
4430 }
4431
4432 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
4433                 enum dirty_type dirty_type)
4434 {
4435         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4436
4437         mutex_lock(&dirty_i->seglist_lock);
4438         kvfree(dirty_i->dirty_segmap[dirty_type]);
4439         dirty_i->nr_dirty[dirty_type] = 0;
4440         mutex_unlock(&dirty_i->seglist_lock);
4441 }
4442
4443 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
4444 {
4445         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4446         kvfree(dirty_i->victim_secmap);
4447 }
4448
4449 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
4450 {
4451         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4452         int i;
4453
4454         if (!dirty_i)
4455                 return;
4456
4457         /* discard pre-free/dirty segments list */
4458         for (i = 0; i < NR_DIRTY_TYPE; i++)
4459                 discard_dirty_segmap(sbi, i);
4460
4461         destroy_victim_secmap(sbi);
4462         SM_I(sbi)->dirty_info = NULL;
4463         kvfree(dirty_i);
4464 }
4465
4466 static void destroy_curseg(struct f2fs_sb_info *sbi)
4467 {
4468         struct curseg_info *array = SM_I(sbi)->curseg_array;
4469         int i;
4470
4471         if (!array)
4472                 return;
4473         SM_I(sbi)->curseg_array = NULL;
4474         for (i = 0; i < NR_CURSEG_TYPE; i++) {
4475                 kvfree(array[i].sum_blk);
4476                 kvfree(array[i].journal);
4477         }
4478         kvfree(array);
4479 }
4480
4481 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
4482 {
4483         struct free_segmap_info *free_i = SM_I(sbi)->free_info;
4484         if (!free_i)
4485                 return;
4486         SM_I(sbi)->free_info = NULL;
4487         kvfree(free_i->free_segmap);
4488         kvfree(free_i->free_secmap);
4489         kvfree(free_i);
4490 }
4491
4492 static void destroy_sit_info(struct f2fs_sb_info *sbi)
4493 {
4494         struct sit_info *sit_i = SIT_I(sbi);
4495         unsigned int start;
4496
4497         if (!sit_i)
4498                 return;
4499
4500         if (sit_i->sentries) {
4501                 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4502                         kvfree(sit_i->sentries[start].cur_valid_map);
4503 #ifdef CONFIG_F2FS_CHECK_FS
4504                         kvfree(sit_i->sentries[start].cur_valid_map_mir);
4505 #endif
4506                         kvfree(sit_i->sentries[start].ckpt_valid_map);
4507                         kvfree(sit_i->sentries[start].discard_map);
4508                 }
4509         }
4510         kvfree(sit_i->tmp_map);
4511
4512         kvfree(sit_i->sentries);
4513         kvfree(sit_i->sec_entries);
4514         kvfree(sit_i->dirty_sentries_bitmap);
4515
4516         SM_I(sbi)->sit_info = NULL;
4517         kvfree(sit_i->sit_bitmap);
4518 #ifdef CONFIG_F2FS_CHECK_FS
4519         kvfree(sit_i->sit_bitmap_mir);
4520 #endif
4521         kvfree(sit_i);
4522 }
4523
4524 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
4525 {
4526         struct f2fs_sm_info *sm_info = SM_I(sbi);
4527
4528         if (!sm_info)
4529                 return;
4530         f2fs_destroy_flush_cmd_control(sbi, true);
4531         destroy_discard_cmd_control(sbi);
4532         destroy_dirty_segmap(sbi);
4533         destroy_curseg(sbi);
4534         destroy_free_segmap(sbi);
4535         destroy_sit_info(sbi);
4536         sbi->sm_info = NULL;
4537         kvfree(sm_info);
4538 }
4539
4540 int __init f2fs_create_segment_manager_caches(void)
4541 {
4542         discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
4543                         sizeof(struct discard_entry));
4544         if (!discard_entry_slab)
4545                 goto fail;
4546
4547         discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd",
4548                         sizeof(struct discard_cmd));
4549         if (!discard_cmd_slab)
4550                 goto destroy_discard_entry;
4551
4552         sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
4553                         sizeof(struct sit_entry_set));
4554         if (!sit_entry_set_slab)
4555                 goto destroy_discard_cmd;
4556
4557         inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
4558                         sizeof(struct inmem_pages));
4559         if (!inmem_entry_slab)
4560                 goto destroy_sit_entry_set;
4561         return 0;
4562
4563 destroy_sit_entry_set:
4564         kmem_cache_destroy(sit_entry_set_slab);
4565 destroy_discard_cmd:
4566         kmem_cache_destroy(discard_cmd_slab);
4567 destroy_discard_entry:
4568         kmem_cache_destroy(discard_entry_slab);
4569 fail:
4570         return -ENOMEM;
4571 }
4572
4573 void f2fs_destroy_segment_manager_caches(void)
4574 {
4575         kmem_cache_destroy(sit_entry_set_slab);
4576         kmem_cache_destroy(discard_cmd_slab);
4577         kmem_cache_destroy(discard_entry_slab);
4578         kmem_cache_destroy(inmem_entry_slab);
4579 }