Revert "Bluetooth: Store advertising handle so it can be re-enabled"
[platform/kernel/linux-rpi.git] / fs / f2fs / segment.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/segment.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/sched/mm.h>
13 #include <linux/prefetch.h>
14 #include <linux/kthread.h>
15 #include <linux/swap.h>
16 #include <linux/timer.h>
17 #include <linux/freezer.h>
18 #include <linux/sched/signal.h>
19 #include <linux/random.h>
20
21 #include "f2fs.h"
22 #include "segment.h"
23 #include "node.h"
24 #include "gc.h"
25 #include "iostat.h"
26 #include <trace/events/f2fs.h>
27
28 #define __reverse_ffz(x) __reverse_ffs(~(x))
29
30 static struct kmem_cache *discard_entry_slab;
31 static struct kmem_cache *discard_cmd_slab;
32 static struct kmem_cache *sit_entry_set_slab;
33 static struct kmem_cache *revoke_entry_slab;
34
35 static unsigned long __reverse_ulong(unsigned char *str)
36 {
37         unsigned long tmp = 0;
38         int shift = 24, idx = 0;
39
40 #if BITS_PER_LONG == 64
41         shift = 56;
42 #endif
43         while (shift >= 0) {
44                 tmp |= (unsigned long)str[idx++] << shift;
45                 shift -= BITS_PER_BYTE;
46         }
47         return tmp;
48 }
49
50 /*
51  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
52  * MSB and LSB are reversed in a byte by f2fs_set_bit.
53  */
54 static inline unsigned long __reverse_ffs(unsigned long word)
55 {
56         int num = 0;
57
58 #if BITS_PER_LONG == 64
59         if ((word & 0xffffffff00000000UL) == 0)
60                 num += 32;
61         else
62                 word >>= 32;
63 #endif
64         if ((word & 0xffff0000) == 0)
65                 num += 16;
66         else
67                 word >>= 16;
68
69         if ((word & 0xff00) == 0)
70                 num += 8;
71         else
72                 word >>= 8;
73
74         if ((word & 0xf0) == 0)
75                 num += 4;
76         else
77                 word >>= 4;
78
79         if ((word & 0xc) == 0)
80                 num += 2;
81         else
82                 word >>= 2;
83
84         if ((word & 0x2) == 0)
85                 num += 1;
86         return num;
87 }
88
89 /*
90  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
91  * f2fs_set_bit makes MSB and LSB reversed in a byte.
92  * @size must be integral times of unsigned long.
93  * Example:
94  *                             MSB <--> LSB
95  *   f2fs_set_bit(0, bitmap) => 1000 0000
96  *   f2fs_set_bit(7, bitmap) => 0000 0001
97  */
98 static unsigned long __find_rev_next_bit(const unsigned long *addr,
99                         unsigned long size, unsigned long offset)
100 {
101         const unsigned long *p = addr + BIT_WORD(offset);
102         unsigned long result = size;
103         unsigned long tmp;
104
105         if (offset >= size)
106                 return size;
107
108         size -= (offset & ~(BITS_PER_LONG - 1));
109         offset %= BITS_PER_LONG;
110
111         while (1) {
112                 if (*p == 0)
113                         goto pass;
114
115                 tmp = __reverse_ulong((unsigned char *)p);
116
117                 tmp &= ~0UL >> offset;
118                 if (size < BITS_PER_LONG)
119                         tmp &= (~0UL << (BITS_PER_LONG - size));
120                 if (tmp)
121                         goto found;
122 pass:
123                 if (size <= BITS_PER_LONG)
124                         break;
125                 size -= BITS_PER_LONG;
126                 offset = 0;
127                 p++;
128         }
129         return result;
130 found:
131         return result - size + __reverse_ffs(tmp);
132 }
133
134 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
135                         unsigned long size, unsigned long offset)
136 {
137         const unsigned long *p = addr + BIT_WORD(offset);
138         unsigned long result = size;
139         unsigned long tmp;
140
141         if (offset >= size)
142                 return size;
143
144         size -= (offset & ~(BITS_PER_LONG - 1));
145         offset %= BITS_PER_LONG;
146
147         while (1) {
148                 if (*p == ~0UL)
149                         goto pass;
150
151                 tmp = __reverse_ulong((unsigned char *)p);
152
153                 if (offset)
154                         tmp |= ~0UL << (BITS_PER_LONG - offset);
155                 if (size < BITS_PER_LONG)
156                         tmp |= ~0UL >> size;
157                 if (tmp != ~0UL)
158                         goto found;
159 pass:
160                 if (size <= BITS_PER_LONG)
161                         break;
162                 size -= BITS_PER_LONG;
163                 offset = 0;
164                 p++;
165         }
166         return result;
167 found:
168         return result - size + __reverse_ffz(tmp);
169 }
170
171 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
172 {
173         int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
174         int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
175         int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
176
177         if (f2fs_lfs_mode(sbi))
178                 return false;
179         if (sbi->gc_mode == GC_URGENT_HIGH)
180                 return true;
181         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
182                 return true;
183
184         return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
185                         SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
186 }
187
188 void f2fs_abort_atomic_write(struct inode *inode, bool clean)
189 {
190         struct f2fs_inode_info *fi = F2FS_I(inode);
191
192         if (!f2fs_is_atomic_file(inode))
193                 return;
194
195         release_atomic_write_cnt(inode);
196         clear_inode_flag(inode, FI_ATOMIC_COMMITTED);
197         clear_inode_flag(inode, FI_ATOMIC_REPLACE);
198         clear_inode_flag(inode, FI_ATOMIC_FILE);
199         stat_dec_atomic_inode(inode);
200
201         F2FS_I(inode)->atomic_write_task = NULL;
202
203         if (clean) {
204                 truncate_inode_pages_final(inode->i_mapping);
205                 f2fs_i_size_write(inode, fi->original_i_size);
206                 fi->original_i_size = 0;
207         }
208         /* avoid stale dirty inode during eviction */
209         sync_inode_metadata(inode, 0);
210 }
211
212 static int __replace_atomic_write_block(struct inode *inode, pgoff_t index,
213                         block_t new_addr, block_t *old_addr, bool recover)
214 {
215         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
216         struct dnode_of_data dn;
217         struct node_info ni;
218         int err;
219
220 retry:
221         set_new_dnode(&dn, inode, NULL, NULL, 0);
222         err = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
223         if (err) {
224                 if (err == -ENOMEM) {
225                         f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
226                         goto retry;
227                 }
228                 return err;
229         }
230
231         err = f2fs_get_node_info(sbi, dn.nid, &ni, false);
232         if (err) {
233                 f2fs_put_dnode(&dn);
234                 return err;
235         }
236
237         if (recover) {
238                 /* dn.data_blkaddr is always valid */
239                 if (!__is_valid_data_blkaddr(new_addr)) {
240                         if (new_addr == NULL_ADDR)
241                                 dec_valid_block_count(sbi, inode, 1);
242                         f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
243                         f2fs_update_data_blkaddr(&dn, new_addr);
244                 } else {
245                         f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
246                                 new_addr, ni.version, true, true);
247                 }
248         } else {
249                 blkcnt_t count = 1;
250
251                 err = inc_valid_block_count(sbi, inode, &count);
252                 if (err) {
253                         f2fs_put_dnode(&dn);
254                         return err;
255                 }
256
257                 *old_addr = dn.data_blkaddr;
258                 f2fs_truncate_data_blocks_range(&dn, 1);
259                 dec_valid_block_count(sbi, F2FS_I(inode)->cow_inode, count);
260
261                 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr,
262                                         ni.version, true, false);
263         }
264
265         f2fs_put_dnode(&dn);
266
267         trace_f2fs_replace_atomic_write_block(inode, F2FS_I(inode)->cow_inode,
268                         index, old_addr ? *old_addr : 0, new_addr, recover);
269         return 0;
270 }
271
272 static void __complete_revoke_list(struct inode *inode, struct list_head *head,
273                                         bool revoke)
274 {
275         struct revoke_entry *cur, *tmp;
276         pgoff_t start_index = 0;
277         bool truncate = is_inode_flag_set(inode, FI_ATOMIC_REPLACE);
278
279         list_for_each_entry_safe(cur, tmp, head, list) {
280                 if (revoke) {
281                         __replace_atomic_write_block(inode, cur->index,
282                                                 cur->old_addr, NULL, true);
283                 } else if (truncate) {
284                         f2fs_truncate_hole(inode, start_index, cur->index);
285                         start_index = cur->index + 1;
286                 }
287
288                 list_del(&cur->list);
289                 kmem_cache_free(revoke_entry_slab, cur);
290         }
291
292         if (!revoke && truncate)
293                 f2fs_do_truncate_blocks(inode, start_index * PAGE_SIZE, false);
294 }
295
296 static int __f2fs_commit_atomic_write(struct inode *inode)
297 {
298         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
299         struct f2fs_inode_info *fi = F2FS_I(inode);
300         struct inode *cow_inode = fi->cow_inode;
301         struct revoke_entry *new;
302         struct list_head revoke_list;
303         block_t blkaddr;
304         struct dnode_of_data dn;
305         pgoff_t len = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
306         pgoff_t off = 0, blen, index;
307         int ret = 0, i;
308
309         INIT_LIST_HEAD(&revoke_list);
310
311         while (len) {
312                 blen = min_t(pgoff_t, ADDRS_PER_BLOCK(cow_inode), len);
313
314                 set_new_dnode(&dn, cow_inode, NULL, NULL, 0);
315                 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
316                 if (ret && ret != -ENOENT) {
317                         goto out;
318                 } else if (ret == -ENOENT) {
319                         ret = 0;
320                         if (dn.max_level == 0)
321                                 goto out;
322                         goto next;
323                 }
324
325                 blen = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, cow_inode),
326                                 len);
327                 index = off;
328                 for (i = 0; i < blen; i++, dn.ofs_in_node++, index++) {
329                         blkaddr = f2fs_data_blkaddr(&dn);
330
331                         if (!__is_valid_data_blkaddr(blkaddr)) {
332                                 continue;
333                         } else if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
334                                         DATA_GENERIC_ENHANCE)) {
335                                 f2fs_put_dnode(&dn);
336                                 ret = -EFSCORRUPTED;
337                                 f2fs_handle_error(sbi,
338                                                 ERROR_INVALID_BLKADDR);
339                                 goto out;
340                         }
341
342                         new = f2fs_kmem_cache_alloc(revoke_entry_slab, GFP_NOFS,
343                                                         true, NULL);
344
345                         ret = __replace_atomic_write_block(inode, index, blkaddr,
346                                                         &new->old_addr, false);
347                         if (ret) {
348                                 f2fs_put_dnode(&dn);
349                                 kmem_cache_free(revoke_entry_slab, new);
350                                 goto out;
351                         }
352
353                         f2fs_update_data_blkaddr(&dn, NULL_ADDR);
354                         new->index = index;
355                         list_add_tail(&new->list, &revoke_list);
356                 }
357                 f2fs_put_dnode(&dn);
358 next:
359                 off += blen;
360                 len -= blen;
361         }
362
363 out:
364         if (ret) {
365                 sbi->revoked_atomic_block += fi->atomic_write_cnt;
366         } else {
367                 sbi->committed_atomic_block += fi->atomic_write_cnt;
368                 set_inode_flag(inode, FI_ATOMIC_COMMITTED);
369         }
370
371         __complete_revoke_list(inode, &revoke_list, ret ? true : false);
372
373         return ret;
374 }
375
376 int f2fs_commit_atomic_write(struct inode *inode)
377 {
378         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
379         struct f2fs_inode_info *fi = F2FS_I(inode);
380         int err;
381
382         err = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
383         if (err)
384                 return err;
385
386         f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
387         f2fs_lock_op(sbi);
388
389         err = __f2fs_commit_atomic_write(inode);
390
391         f2fs_unlock_op(sbi);
392         f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
393
394         return err;
395 }
396
397 /*
398  * This function balances dirty node and dentry pages.
399  * In addition, it controls garbage collection.
400  */
401 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
402 {
403         if (time_to_inject(sbi, FAULT_CHECKPOINT))
404                 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_FAULT_INJECT);
405
406         /* balance_fs_bg is able to be pending */
407         if (need && excess_cached_nats(sbi))
408                 f2fs_balance_fs_bg(sbi, false);
409
410         if (!f2fs_is_checkpoint_ready(sbi))
411                 return;
412
413         /*
414          * We should do GC or end up with checkpoint, if there are so many dirty
415          * dir/node pages without enough free segments.
416          */
417         if (has_enough_free_secs(sbi, 0, 0))
418                 return;
419
420         if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
421                                 sbi->gc_thread->f2fs_gc_task) {
422                 DEFINE_WAIT(wait);
423
424                 prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
425                                         TASK_UNINTERRUPTIBLE);
426                 wake_up(&sbi->gc_thread->gc_wait_queue_head);
427                 io_schedule();
428                 finish_wait(&sbi->gc_thread->fggc_wq, &wait);
429         } else {
430                 struct f2fs_gc_control gc_control = {
431                         .victim_segno = NULL_SEGNO,
432                         .init_gc_type = BG_GC,
433                         .no_bg_gc = true,
434                         .should_migrate_blocks = false,
435                         .err_gc_skipped = false,
436                         .nr_free_secs = 1 };
437                 f2fs_down_write(&sbi->gc_lock);
438                 stat_inc_gc_call_count(sbi, FOREGROUND);
439                 f2fs_gc(sbi, &gc_control);
440         }
441 }
442
443 static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi)
444 {
445         int factor = f2fs_rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2;
446         unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS);
447         unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA);
448         unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES);
449         unsigned int meta = get_pages(sbi, F2FS_DIRTY_META);
450         unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA);
451         unsigned int threshold = sbi->blocks_per_seg * factor *
452                                         DEFAULT_DIRTY_THRESHOLD;
453         unsigned int global_threshold = threshold * 3 / 2;
454
455         if (dents >= threshold || qdata >= threshold ||
456                 nodes >= threshold || meta >= threshold ||
457                 imeta >= threshold)
458                 return true;
459         return dents + qdata + nodes + meta + imeta >  global_threshold;
460 }
461
462 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
463 {
464         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
465                 return;
466
467         /* try to shrink extent cache when there is no enough memory */
468         if (!f2fs_available_free_memory(sbi, READ_EXTENT_CACHE))
469                 f2fs_shrink_read_extent_tree(sbi,
470                                 READ_EXTENT_CACHE_SHRINK_NUMBER);
471
472         /* try to shrink age extent cache when there is no enough memory */
473         if (!f2fs_available_free_memory(sbi, AGE_EXTENT_CACHE))
474                 f2fs_shrink_age_extent_tree(sbi,
475                                 AGE_EXTENT_CACHE_SHRINK_NUMBER);
476
477         /* check the # of cached NAT entries */
478         if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
479                 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
480
481         if (!f2fs_available_free_memory(sbi, FREE_NIDS))
482                 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
483         else
484                 f2fs_build_free_nids(sbi, false, false);
485
486         if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) ||
487                 excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi))
488                 goto do_sync;
489
490         /* there is background inflight IO or foreground operation recently */
491         if (is_inflight_io(sbi, REQ_TIME) ||
492                 (!f2fs_time_over(sbi, REQ_TIME) && f2fs_rwsem_is_locked(&sbi->cp_rwsem)))
493                 return;
494
495         /* exceed periodical checkpoint timeout threshold */
496         if (f2fs_time_over(sbi, CP_TIME))
497                 goto do_sync;
498
499         /* checkpoint is the only way to shrink partial cached entries */
500         if (f2fs_available_free_memory(sbi, NAT_ENTRIES) &&
501                 f2fs_available_free_memory(sbi, INO_ENTRIES))
502                 return;
503
504 do_sync:
505         if (test_opt(sbi, DATA_FLUSH) && from_bg) {
506                 struct blk_plug plug;
507
508                 mutex_lock(&sbi->flush_lock);
509
510                 blk_start_plug(&plug);
511                 f2fs_sync_dirty_inodes(sbi, FILE_INODE, false);
512                 blk_finish_plug(&plug);
513
514                 mutex_unlock(&sbi->flush_lock);
515         }
516         stat_inc_cp_call_count(sbi, BACKGROUND);
517         f2fs_sync_fs(sbi->sb, 1);
518 }
519
520 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
521                                 struct block_device *bdev)
522 {
523         int ret = blkdev_issue_flush(bdev);
524
525         trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
526                                 test_opt(sbi, FLUSH_MERGE), ret);
527         if (!ret)
528                 f2fs_update_iostat(sbi, NULL, FS_FLUSH_IO, 0);
529         return ret;
530 }
531
532 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
533 {
534         int ret = 0;
535         int i;
536
537         if (!f2fs_is_multi_device(sbi))
538                 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
539
540         for (i = 0; i < sbi->s_ndevs; i++) {
541                 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
542                         continue;
543                 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
544                 if (ret)
545                         break;
546         }
547         return ret;
548 }
549
550 static int issue_flush_thread(void *data)
551 {
552         struct f2fs_sb_info *sbi = data;
553         struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
554         wait_queue_head_t *q = &fcc->flush_wait_queue;
555 repeat:
556         if (kthread_should_stop())
557                 return 0;
558
559         if (!llist_empty(&fcc->issue_list)) {
560                 struct flush_cmd *cmd, *next;
561                 int ret;
562
563                 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
564                 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
565
566                 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
567
568                 ret = submit_flush_wait(sbi, cmd->ino);
569                 atomic_inc(&fcc->issued_flush);
570
571                 llist_for_each_entry_safe(cmd, next,
572                                           fcc->dispatch_list, llnode) {
573                         cmd->ret = ret;
574                         complete(&cmd->wait);
575                 }
576                 fcc->dispatch_list = NULL;
577         }
578
579         wait_event_interruptible(*q,
580                 kthread_should_stop() || !llist_empty(&fcc->issue_list));
581         goto repeat;
582 }
583
584 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
585 {
586         struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
587         struct flush_cmd cmd;
588         int ret;
589
590         if (test_opt(sbi, NOBARRIER))
591                 return 0;
592
593         if (!test_opt(sbi, FLUSH_MERGE)) {
594                 atomic_inc(&fcc->queued_flush);
595                 ret = submit_flush_wait(sbi, ino);
596                 atomic_dec(&fcc->queued_flush);
597                 atomic_inc(&fcc->issued_flush);
598                 return ret;
599         }
600
601         if (atomic_inc_return(&fcc->queued_flush) == 1 ||
602             f2fs_is_multi_device(sbi)) {
603                 ret = submit_flush_wait(sbi, ino);
604                 atomic_dec(&fcc->queued_flush);
605
606                 atomic_inc(&fcc->issued_flush);
607                 return ret;
608         }
609
610         cmd.ino = ino;
611         init_completion(&cmd.wait);
612
613         llist_add(&cmd.llnode, &fcc->issue_list);
614
615         /*
616          * update issue_list before we wake up issue_flush thread, this
617          * smp_mb() pairs with another barrier in ___wait_event(), see
618          * more details in comments of waitqueue_active().
619          */
620         smp_mb();
621
622         if (waitqueue_active(&fcc->flush_wait_queue))
623                 wake_up(&fcc->flush_wait_queue);
624
625         if (fcc->f2fs_issue_flush) {
626                 wait_for_completion(&cmd.wait);
627                 atomic_dec(&fcc->queued_flush);
628         } else {
629                 struct llist_node *list;
630
631                 list = llist_del_all(&fcc->issue_list);
632                 if (!list) {
633                         wait_for_completion(&cmd.wait);
634                         atomic_dec(&fcc->queued_flush);
635                 } else {
636                         struct flush_cmd *tmp, *next;
637
638                         ret = submit_flush_wait(sbi, ino);
639
640                         llist_for_each_entry_safe(tmp, next, list, llnode) {
641                                 if (tmp == &cmd) {
642                                         cmd.ret = ret;
643                                         atomic_dec(&fcc->queued_flush);
644                                         continue;
645                                 }
646                                 tmp->ret = ret;
647                                 complete(&tmp->wait);
648                         }
649                 }
650         }
651
652         return cmd.ret;
653 }
654
655 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
656 {
657         dev_t dev = sbi->sb->s_bdev->bd_dev;
658         struct flush_cmd_control *fcc;
659
660         if (SM_I(sbi)->fcc_info) {
661                 fcc = SM_I(sbi)->fcc_info;
662                 if (fcc->f2fs_issue_flush)
663                         return 0;
664                 goto init_thread;
665         }
666
667         fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
668         if (!fcc)
669                 return -ENOMEM;
670         atomic_set(&fcc->issued_flush, 0);
671         atomic_set(&fcc->queued_flush, 0);
672         init_waitqueue_head(&fcc->flush_wait_queue);
673         init_llist_head(&fcc->issue_list);
674         SM_I(sbi)->fcc_info = fcc;
675         if (!test_opt(sbi, FLUSH_MERGE))
676                 return 0;
677
678 init_thread:
679         fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
680                                 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
681         if (IS_ERR(fcc->f2fs_issue_flush)) {
682                 int err = PTR_ERR(fcc->f2fs_issue_flush);
683
684                 fcc->f2fs_issue_flush = NULL;
685                 return err;
686         }
687
688         return 0;
689 }
690
691 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
692 {
693         struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
694
695         if (fcc && fcc->f2fs_issue_flush) {
696                 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
697
698                 fcc->f2fs_issue_flush = NULL;
699                 kthread_stop(flush_thread);
700         }
701         if (free) {
702                 kfree(fcc);
703                 SM_I(sbi)->fcc_info = NULL;
704         }
705 }
706
707 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
708 {
709         int ret = 0, i;
710
711         if (!f2fs_is_multi_device(sbi))
712                 return 0;
713
714         if (test_opt(sbi, NOBARRIER))
715                 return 0;
716
717         for (i = 1; i < sbi->s_ndevs; i++) {
718                 int count = DEFAULT_RETRY_IO_COUNT;
719
720                 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
721                         continue;
722
723                 do {
724                         ret = __submit_flush_wait(sbi, FDEV(i).bdev);
725                         if (ret)
726                                 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
727                 } while (ret && --count);
728
729                 if (ret) {
730                         f2fs_stop_checkpoint(sbi, false,
731                                         STOP_CP_REASON_FLUSH_FAIL);
732                         break;
733                 }
734
735                 spin_lock(&sbi->dev_lock);
736                 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
737                 spin_unlock(&sbi->dev_lock);
738         }
739
740         return ret;
741 }
742
743 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
744                 enum dirty_type dirty_type)
745 {
746         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
747
748         /* need not be added */
749         if (IS_CURSEG(sbi, segno))
750                 return;
751
752         if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
753                 dirty_i->nr_dirty[dirty_type]++;
754
755         if (dirty_type == DIRTY) {
756                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
757                 enum dirty_type t = sentry->type;
758
759                 if (unlikely(t >= DIRTY)) {
760                         f2fs_bug_on(sbi, 1);
761                         return;
762                 }
763                 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
764                         dirty_i->nr_dirty[t]++;
765
766                 if (__is_large_section(sbi)) {
767                         unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
768                         block_t valid_blocks =
769                                 get_valid_blocks(sbi, segno, true);
770
771                         f2fs_bug_on(sbi, unlikely(!valid_blocks ||
772                                         valid_blocks == CAP_BLKS_PER_SEC(sbi)));
773
774                         if (!IS_CURSEC(sbi, secno))
775                                 set_bit(secno, dirty_i->dirty_secmap);
776                 }
777         }
778 }
779
780 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
781                 enum dirty_type dirty_type)
782 {
783         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
784         block_t valid_blocks;
785
786         if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
787                 dirty_i->nr_dirty[dirty_type]--;
788
789         if (dirty_type == DIRTY) {
790                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
791                 enum dirty_type t = sentry->type;
792
793                 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
794                         dirty_i->nr_dirty[t]--;
795
796                 valid_blocks = get_valid_blocks(sbi, segno, true);
797                 if (valid_blocks == 0) {
798                         clear_bit(GET_SEC_FROM_SEG(sbi, segno),
799                                                 dirty_i->victim_secmap);
800 #ifdef CONFIG_F2FS_CHECK_FS
801                         clear_bit(segno, SIT_I(sbi)->invalid_segmap);
802 #endif
803                 }
804                 if (__is_large_section(sbi)) {
805                         unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
806
807                         if (!valid_blocks ||
808                                         valid_blocks == CAP_BLKS_PER_SEC(sbi)) {
809                                 clear_bit(secno, dirty_i->dirty_secmap);
810                                 return;
811                         }
812
813                         if (!IS_CURSEC(sbi, secno))
814                                 set_bit(secno, dirty_i->dirty_secmap);
815                 }
816         }
817 }
818
819 /*
820  * Should not occur error such as -ENOMEM.
821  * Adding dirty entry into seglist is not critical operation.
822  * If a given segment is one of current working segments, it won't be added.
823  */
824 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
825 {
826         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
827         unsigned short valid_blocks, ckpt_valid_blocks;
828         unsigned int usable_blocks;
829
830         if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
831                 return;
832
833         usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
834         mutex_lock(&dirty_i->seglist_lock);
835
836         valid_blocks = get_valid_blocks(sbi, segno, false);
837         ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
838
839         if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
840                 ckpt_valid_blocks == usable_blocks)) {
841                 __locate_dirty_segment(sbi, segno, PRE);
842                 __remove_dirty_segment(sbi, segno, DIRTY);
843         } else if (valid_blocks < usable_blocks) {
844                 __locate_dirty_segment(sbi, segno, DIRTY);
845         } else {
846                 /* Recovery routine with SSR needs this */
847                 __remove_dirty_segment(sbi, segno, DIRTY);
848         }
849
850         mutex_unlock(&dirty_i->seglist_lock);
851 }
852
853 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
854 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
855 {
856         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
857         unsigned int segno;
858
859         mutex_lock(&dirty_i->seglist_lock);
860         for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
861                 if (get_valid_blocks(sbi, segno, false))
862                         continue;
863                 if (IS_CURSEG(sbi, segno))
864                         continue;
865                 __locate_dirty_segment(sbi, segno, PRE);
866                 __remove_dirty_segment(sbi, segno, DIRTY);
867         }
868         mutex_unlock(&dirty_i->seglist_lock);
869 }
870
871 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
872 {
873         int ovp_hole_segs =
874                 (overprovision_segments(sbi) - reserved_segments(sbi));
875         block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
876         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
877         block_t holes[2] = {0, 0};      /* DATA and NODE */
878         block_t unusable;
879         struct seg_entry *se;
880         unsigned int segno;
881
882         mutex_lock(&dirty_i->seglist_lock);
883         for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
884                 se = get_seg_entry(sbi, segno);
885                 if (IS_NODESEG(se->type))
886                         holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
887                                                         se->valid_blocks;
888                 else
889                         holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
890                                                         se->valid_blocks;
891         }
892         mutex_unlock(&dirty_i->seglist_lock);
893
894         unusable = max(holes[DATA], holes[NODE]);
895         if (unusable > ovp_holes)
896                 return unusable - ovp_holes;
897         return 0;
898 }
899
900 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
901 {
902         int ovp_hole_segs =
903                 (overprovision_segments(sbi) - reserved_segments(sbi));
904         if (unusable > F2FS_OPTION(sbi).unusable_cap)
905                 return -EAGAIN;
906         if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
907                 dirty_segments(sbi) > ovp_hole_segs)
908                 return -EAGAIN;
909         return 0;
910 }
911
912 /* This is only used by SBI_CP_DISABLED */
913 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
914 {
915         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
916         unsigned int segno = 0;
917
918         mutex_lock(&dirty_i->seglist_lock);
919         for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
920                 if (get_valid_blocks(sbi, segno, false))
921                         continue;
922                 if (get_ckpt_valid_blocks(sbi, segno, false))
923                         continue;
924                 mutex_unlock(&dirty_i->seglist_lock);
925                 return segno;
926         }
927         mutex_unlock(&dirty_i->seglist_lock);
928         return NULL_SEGNO;
929 }
930
931 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
932                 struct block_device *bdev, block_t lstart,
933                 block_t start, block_t len)
934 {
935         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
936         struct list_head *pend_list;
937         struct discard_cmd *dc;
938
939         f2fs_bug_on(sbi, !len);
940
941         pend_list = &dcc->pend_list[plist_idx(len)];
942
943         dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL);
944         INIT_LIST_HEAD(&dc->list);
945         dc->bdev = bdev;
946         dc->di.lstart = lstart;
947         dc->di.start = start;
948         dc->di.len = len;
949         dc->ref = 0;
950         dc->state = D_PREP;
951         dc->queued = 0;
952         dc->error = 0;
953         init_completion(&dc->wait);
954         list_add_tail(&dc->list, pend_list);
955         spin_lock_init(&dc->lock);
956         dc->bio_ref = 0;
957         atomic_inc(&dcc->discard_cmd_cnt);
958         dcc->undiscard_blks += len;
959
960         return dc;
961 }
962
963 static bool f2fs_check_discard_tree(struct f2fs_sb_info *sbi)
964 {
965 #ifdef CONFIG_F2FS_CHECK_FS
966         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
967         struct rb_node *cur = rb_first_cached(&dcc->root), *next;
968         struct discard_cmd *cur_dc, *next_dc;
969
970         while (cur) {
971                 next = rb_next(cur);
972                 if (!next)
973                         return true;
974
975                 cur_dc = rb_entry(cur, struct discard_cmd, rb_node);
976                 next_dc = rb_entry(next, struct discard_cmd, rb_node);
977
978                 if (cur_dc->di.lstart + cur_dc->di.len > next_dc->di.lstart) {
979                         f2fs_info(sbi, "broken discard_rbtree, "
980                                 "cur(%u, %u) next(%u, %u)",
981                                 cur_dc->di.lstart, cur_dc->di.len,
982                                 next_dc->di.lstart, next_dc->di.len);
983                         return false;
984                 }
985                 cur = next;
986         }
987 #endif
988         return true;
989 }
990
991 static struct discard_cmd *__lookup_discard_cmd(struct f2fs_sb_info *sbi,
992                                                 block_t blkaddr)
993 {
994         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
995         struct rb_node *node = dcc->root.rb_root.rb_node;
996         struct discard_cmd *dc;
997
998         while (node) {
999                 dc = rb_entry(node, struct discard_cmd, rb_node);
1000
1001                 if (blkaddr < dc->di.lstart)
1002                         node = node->rb_left;
1003                 else if (blkaddr >= dc->di.lstart + dc->di.len)
1004                         node = node->rb_right;
1005                 else
1006                         return dc;
1007         }
1008         return NULL;
1009 }
1010
1011 static struct discard_cmd *__lookup_discard_cmd_ret(struct rb_root_cached *root,
1012                                 block_t blkaddr,
1013                                 struct discard_cmd **prev_entry,
1014                                 struct discard_cmd **next_entry,
1015                                 struct rb_node ***insert_p,
1016                                 struct rb_node **insert_parent)
1017 {
1018         struct rb_node **pnode = &root->rb_root.rb_node;
1019         struct rb_node *parent = NULL, *tmp_node;
1020         struct discard_cmd *dc;
1021
1022         *insert_p = NULL;
1023         *insert_parent = NULL;
1024         *prev_entry = NULL;
1025         *next_entry = NULL;
1026
1027         if (RB_EMPTY_ROOT(&root->rb_root))
1028                 return NULL;
1029
1030         while (*pnode) {
1031                 parent = *pnode;
1032                 dc = rb_entry(*pnode, struct discard_cmd, rb_node);
1033
1034                 if (blkaddr < dc->di.lstart)
1035                         pnode = &(*pnode)->rb_left;
1036                 else if (blkaddr >= dc->di.lstart + dc->di.len)
1037                         pnode = &(*pnode)->rb_right;
1038                 else
1039                         goto lookup_neighbors;
1040         }
1041
1042         *insert_p = pnode;
1043         *insert_parent = parent;
1044
1045         dc = rb_entry(parent, struct discard_cmd, rb_node);
1046         tmp_node = parent;
1047         if (parent && blkaddr > dc->di.lstart)
1048                 tmp_node = rb_next(parent);
1049         *next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1050
1051         tmp_node = parent;
1052         if (parent && blkaddr < dc->di.lstart)
1053                 tmp_node = rb_prev(parent);
1054         *prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1055         return NULL;
1056
1057 lookup_neighbors:
1058         /* lookup prev node for merging backward later */
1059         tmp_node = rb_prev(&dc->rb_node);
1060         *prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1061
1062         /* lookup next node for merging frontward later */
1063         tmp_node = rb_next(&dc->rb_node);
1064         *next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1065         return dc;
1066 }
1067
1068 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
1069                                                         struct discard_cmd *dc)
1070 {
1071         if (dc->state == D_DONE)
1072                 atomic_sub(dc->queued, &dcc->queued_discard);
1073
1074         list_del(&dc->list);
1075         rb_erase_cached(&dc->rb_node, &dcc->root);
1076         dcc->undiscard_blks -= dc->di.len;
1077
1078         kmem_cache_free(discard_cmd_slab, dc);
1079
1080         atomic_dec(&dcc->discard_cmd_cnt);
1081 }
1082
1083 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1084                                                         struct discard_cmd *dc)
1085 {
1086         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1087         unsigned long flags;
1088
1089         trace_f2fs_remove_discard(dc->bdev, dc->di.start, dc->di.len);
1090
1091         spin_lock_irqsave(&dc->lock, flags);
1092         if (dc->bio_ref) {
1093                 spin_unlock_irqrestore(&dc->lock, flags);
1094                 return;
1095         }
1096         spin_unlock_irqrestore(&dc->lock, flags);
1097
1098         f2fs_bug_on(sbi, dc->ref);
1099
1100         if (dc->error == -EOPNOTSUPP)
1101                 dc->error = 0;
1102
1103         if (dc->error)
1104                 printk_ratelimited(
1105                         "%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
1106                         KERN_INFO, sbi->sb->s_id,
1107                         dc->di.lstart, dc->di.start, dc->di.len, dc->error);
1108         __detach_discard_cmd(dcc, dc);
1109 }
1110
1111 static void f2fs_submit_discard_endio(struct bio *bio)
1112 {
1113         struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1114         unsigned long flags;
1115
1116         spin_lock_irqsave(&dc->lock, flags);
1117         if (!dc->error)
1118                 dc->error = blk_status_to_errno(bio->bi_status);
1119         dc->bio_ref--;
1120         if (!dc->bio_ref && dc->state == D_SUBMIT) {
1121                 dc->state = D_DONE;
1122                 complete_all(&dc->wait);
1123         }
1124         spin_unlock_irqrestore(&dc->lock, flags);
1125         bio_put(bio);
1126 }
1127
1128 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1129                                 block_t start, block_t end)
1130 {
1131 #ifdef CONFIG_F2FS_CHECK_FS
1132         struct seg_entry *sentry;
1133         unsigned int segno;
1134         block_t blk = start;
1135         unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1136         unsigned long *map;
1137
1138         while (blk < end) {
1139                 segno = GET_SEGNO(sbi, blk);
1140                 sentry = get_seg_entry(sbi, segno);
1141                 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1142
1143                 if (end < START_BLOCK(sbi, segno + 1))
1144                         size = GET_BLKOFF_FROM_SEG0(sbi, end);
1145                 else
1146                         size = max_blocks;
1147                 map = (unsigned long *)(sentry->cur_valid_map);
1148                 offset = __find_rev_next_bit(map, size, offset);
1149                 f2fs_bug_on(sbi, offset != size);
1150                 blk = START_BLOCK(sbi, segno + 1);
1151         }
1152 #endif
1153 }
1154
1155 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1156                                 struct discard_policy *dpolicy,
1157                                 int discard_type, unsigned int granularity)
1158 {
1159         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1160
1161         /* common policy */
1162         dpolicy->type = discard_type;
1163         dpolicy->sync = true;
1164         dpolicy->ordered = false;
1165         dpolicy->granularity = granularity;
1166
1167         dpolicy->max_requests = dcc->max_discard_request;
1168         dpolicy->io_aware_gran = dcc->discard_io_aware_gran;
1169         dpolicy->timeout = false;
1170
1171         if (discard_type == DPOLICY_BG) {
1172                 dpolicy->min_interval = dcc->min_discard_issue_time;
1173                 dpolicy->mid_interval = dcc->mid_discard_issue_time;
1174                 dpolicy->max_interval = dcc->max_discard_issue_time;
1175                 dpolicy->io_aware = true;
1176                 dpolicy->sync = false;
1177                 dpolicy->ordered = true;
1178                 if (utilization(sbi) > dcc->discard_urgent_util) {
1179                         dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1180                         if (atomic_read(&dcc->discard_cmd_cnt))
1181                                 dpolicy->max_interval =
1182                                         dcc->min_discard_issue_time;
1183                 }
1184         } else if (discard_type == DPOLICY_FORCE) {
1185                 dpolicy->min_interval = dcc->min_discard_issue_time;
1186                 dpolicy->mid_interval = dcc->mid_discard_issue_time;
1187                 dpolicy->max_interval = dcc->max_discard_issue_time;
1188                 dpolicy->io_aware = false;
1189         } else if (discard_type == DPOLICY_FSTRIM) {
1190                 dpolicy->io_aware = false;
1191         } else if (discard_type == DPOLICY_UMOUNT) {
1192                 dpolicy->io_aware = false;
1193                 /* we need to issue all to keep CP_TRIMMED_FLAG */
1194                 dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1195                 dpolicy->timeout = true;
1196         }
1197 }
1198
1199 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1200                                 struct block_device *bdev, block_t lstart,
1201                                 block_t start, block_t len);
1202
1203 #ifdef CONFIG_BLK_DEV_ZONED
1204 static void __submit_zone_reset_cmd(struct f2fs_sb_info *sbi,
1205                                    struct discard_cmd *dc, blk_opf_t flag,
1206                                    struct list_head *wait_list,
1207                                    unsigned int *issued)
1208 {
1209         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1210         struct block_device *bdev = dc->bdev;
1211         struct bio *bio = bio_alloc(bdev, 0, REQ_OP_ZONE_RESET | flag, GFP_NOFS);
1212         unsigned long flags;
1213
1214         trace_f2fs_issue_reset_zone(bdev, dc->di.start);
1215
1216         spin_lock_irqsave(&dc->lock, flags);
1217         dc->state = D_SUBMIT;
1218         dc->bio_ref++;
1219         spin_unlock_irqrestore(&dc->lock, flags);
1220
1221         if (issued)
1222                 (*issued)++;
1223
1224         atomic_inc(&dcc->queued_discard);
1225         dc->queued++;
1226         list_move_tail(&dc->list, wait_list);
1227
1228         /* sanity check on discard range */
1229         __check_sit_bitmap(sbi, dc->di.lstart, dc->di.lstart + dc->di.len);
1230
1231         bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(dc->di.start);
1232         bio->bi_private = dc;
1233         bio->bi_end_io = f2fs_submit_discard_endio;
1234         submit_bio(bio);
1235
1236         atomic_inc(&dcc->issued_discard);
1237         f2fs_update_iostat(sbi, NULL, FS_ZONE_RESET_IO, dc->di.len * F2FS_BLKSIZE);
1238 }
1239 #endif
1240
1241 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1242 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1243                                 struct discard_policy *dpolicy,
1244                                 struct discard_cmd *dc, int *issued)
1245 {
1246         struct block_device *bdev = dc->bdev;
1247         unsigned int max_discard_blocks =
1248                         SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1249         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1250         struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1251                                         &(dcc->fstrim_list) : &(dcc->wait_list);
1252         blk_opf_t flag = dpolicy->sync ? REQ_SYNC : 0;
1253         block_t lstart, start, len, total_len;
1254         int err = 0;
1255
1256         if (dc->state != D_PREP)
1257                 return 0;
1258
1259         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1260                 return 0;
1261
1262 #ifdef CONFIG_BLK_DEV_ZONED
1263         if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) {
1264                 int devi = f2fs_bdev_index(sbi, bdev);
1265
1266                 if (devi < 0)
1267                         return -EINVAL;
1268
1269                 if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) {
1270                         __submit_zone_reset_cmd(sbi, dc, flag,
1271                                                 wait_list, issued);
1272                         return 0;
1273                 }
1274         }
1275 #endif
1276
1277         trace_f2fs_issue_discard(bdev, dc->di.start, dc->di.len);
1278
1279         lstart = dc->di.lstart;
1280         start = dc->di.start;
1281         len = dc->di.len;
1282         total_len = len;
1283
1284         dc->di.len = 0;
1285
1286         while (total_len && *issued < dpolicy->max_requests && !err) {
1287                 struct bio *bio = NULL;
1288                 unsigned long flags;
1289                 bool last = true;
1290
1291                 if (len > max_discard_blocks) {
1292                         len = max_discard_blocks;
1293                         last = false;
1294                 }
1295
1296                 (*issued)++;
1297                 if (*issued == dpolicy->max_requests)
1298                         last = true;
1299
1300                 dc->di.len += len;
1301
1302                 if (time_to_inject(sbi, FAULT_DISCARD)) {
1303                         err = -EIO;
1304                 } else {
1305                         err = __blkdev_issue_discard(bdev,
1306                                         SECTOR_FROM_BLOCK(start),
1307                                         SECTOR_FROM_BLOCK(len),
1308                                         GFP_NOFS, &bio);
1309                 }
1310                 if (err) {
1311                         spin_lock_irqsave(&dc->lock, flags);
1312                         if (dc->state == D_PARTIAL)
1313                                 dc->state = D_SUBMIT;
1314                         spin_unlock_irqrestore(&dc->lock, flags);
1315
1316                         break;
1317                 }
1318
1319                 f2fs_bug_on(sbi, !bio);
1320
1321                 /*
1322                  * should keep before submission to avoid D_DONE
1323                  * right away
1324                  */
1325                 spin_lock_irqsave(&dc->lock, flags);
1326                 if (last)
1327                         dc->state = D_SUBMIT;
1328                 else
1329                         dc->state = D_PARTIAL;
1330                 dc->bio_ref++;
1331                 spin_unlock_irqrestore(&dc->lock, flags);
1332
1333                 atomic_inc(&dcc->queued_discard);
1334                 dc->queued++;
1335                 list_move_tail(&dc->list, wait_list);
1336
1337                 /* sanity check on discard range */
1338                 __check_sit_bitmap(sbi, lstart, lstart + len);
1339
1340                 bio->bi_private = dc;
1341                 bio->bi_end_io = f2fs_submit_discard_endio;
1342                 bio->bi_opf |= flag;
1343                 submit_bio(bio);
1344
1345                 atomic_inc(&dcc->issued_discard);
1346
1347                 f2fs_update_iostat(sbi, NULL, FS_DISCARD_IO, len * F2FS_BLKSIZE);
1348
1349                 lstart += len;
1350                 start += len;
1351                 total_len -= len;
1352                 len = total_len;
1353         }
1354
1355         if (!err && len) {
1356                 dcc->undiscard_blks -= len;
1357                 __update_discard_tree_range(sbi, bdev, lstart, start, len);
1358         }
1359         return err;
1360 }
1361
1362 static void __insert_discard_cmd(struct f2fs_sb_info *sbi,
1363                                 struct block_device *bdev, block_t lstart,
1364                                 block_t start, block_t len)
1365 {
1366         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1367         struct rb_node **p = &dcc->root.rb_root.rb_node;
1368         struct rb_node *parent = NULL;
1369         struct discard_cmd *dc;
1370         bool leftmost = true;
1371
1372         /* look up rb tree to find parent node */
1373         while (*p) {
1374                 parent = *p;
1375                 dc = rb_entry(parent, struct discard_cmd, rb_node);
1376
1377                 if (lstart < dc->di.lstart) {
1378                         p = &(*p)->rb_left;
1379                 } else if (lstart >= dc->di.lstart + dc->di.len) {
1380                         p = &(*p)->rb_right;
1381                         leftmost = false;
1382                 } else {
1383                         f2fs_bug_on(sbi, 1);
1384                 }
1385         }
1386
1387         dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
1388
1389         rb_link_node(&dc->rb_node, parent, p);
1390         rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
1391 }
1392
1393 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1394                                                 struct discard_cmd *dc)
1395 {
1396         list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->di.len)]);
1397 }
1398
1399 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1400                                 struct discard_cmd *dc, block_t blkaddr)
1401 {
1402         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1403         struct discard_info di = dc->di;
1404         bool modified = false;
1405
1406         if (dc->state == D_DONE || dc->di.len == 1) {
1407                 __remove_discard_cmd(sbi, dc);
1408                 return;
1409         }
1410
1411         dcc->undiscard_blks -= di.len;
1412
1413         if (blkaddr > di.lstart) {
1414                 dc->di.len = blkaddr - dc->di.lstart;
1415                 dcc->undiscard_blks += dc->di.len;
1416                 __relocate_discard_cmd(dcc, dc);
1417                 modified = true;
1418         }
1419
1420         if (blkaddr < di.lstart + di.len - 1) {
1421                 if (modified) {
1422                         __insert_discard_cmd(sbi, dc->bdev, blkaddr + 1,
1423                                         di.start + blkaddr + 1 - di.lstart,
1424                                         di.lstart + di.len - 1 - blkaddr);
1425                 } else {
1426                         dc->di.lstart++;
1427                         dc->di.len--;
1428                         dc->di.start++;
1429                         dcc->undiscard_blks += dc->di.len;
1430                         __relocate_discard_cmd(dcc, dc);
1431                 }
1432         }
1433 }
1434
1435 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1436                                 struct block_device *bdev, block_t lstart,
1437                                 block_t start, block_t len)
1438 {
1439         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1440         struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1441         struct discard_cmd *dc;
1442         struct discard_info di = {0};
1443         struct rb_node **insert_p = NULL, *insert_parent = NULL;
1444         unsigned int max_discard_blocks =
1445                         SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1446         block_t end = lstart + len;
1447
1448         dc = __lookup_discard_cmd_ret(&dcc->root, lstart,
1449                                 &prev_dc, &next_dc, &insert_p, &insert_parent);
1450         if (dc)
1451                 prev_dc = dc;
1452
1453         if (!prev_dc) {
1454                 di.lstart = lstart;
1455                 di.len = next_dc ? next_dc->di.lstart - lstart : len;
1456                 di.len = min(di.len, len);
1457                 di.start = start;
1458         }
1459
1460         while (1) {
1461                 struct rb_node *node;
1462                 bool merged = false;
1463                 struct discard_cmd *tdc = NULL;
1464
1465                 if (prev_dc) {
1466                         di.lstart = prev_dc->di.lstart + prev_dc->di.len;
1467                         if (di.lstart < lstart)
1468                                 di.lstart = lstart;
1469                         if (di.lstart >= end)
1470                                 break;
1471
1472                         if (!next_dc || next_dc->di.lstart > end)
1473                                 di.len = end - di.lstart;
1474                         else
1475                                 di.len = next_dc->di.lstart - di.lstart;
1476                         di.start = start + di.lstart - lstart;
1477                 }
1478
1479                 if (!di.len)
1480                         goto next;
1481
1482                 if (prev_dc && prev_dc->state == D_PREP &&
1483                         prev_dc->bdev == bdev &&
1484                         __is_discard_back_mergeable(&di, &prev_dc->di,
1485                                                         max_discard_blocks)) {
1486                         prev_dc->di.len += di.len;
1487                         dcc->undiscard_blks += di.len;
1488                         __relocate_discard_cmd(dcc, prev_dc);
1489                         di = prev_dc->di;
1490                         tdc = prev_dc;
1491                         merged = true;
1492                 }
1493
1494                 if (next_dc && next_dc->state == D_PREP &&
1495                         next_dc->bdev == bdev &&
1496                         __is_discard_front_mergeable(&di, &next_dc->di,
1497                                                         max_discard_blocks)) {
1498                         next_dc->di.lstart = di.lstart;
1499                         next_dc->di.len += di.len;
1500                         next_dc->di.start = di.start;
1501                         dcc->undiscard_blks += di.len;
1502                         __relocate_discard_cmd(dcc, next_dc);
1503                         if (tdc)
1504                                 __remove_discard_cmd(sbi, tdc);
1505                         merged = true;
1506                 }
1507
1508                 if (!merged)
1509                         __insert_discard_cmd(sbi, bdev,
1510                                                 di.lstart, di.start, di.len);
1511  next:
1512                 prev_dc = next_dc;
1513                 if (!prev_dc)
1514                         break;
1515
1516                 node = rb_next(&prev_dc->rb_node);
1517                 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1518         }
1519 }
1520
1521 #ifdef CONFIG_BLK_DEV_ZONED
1522 static void __queue_zone_reset_cmd(struct f2fs_sb_info *sbi,
1523                 struct block_device *bdev, block_t blkstart, block_t lblkstart,
1524                 block_t blklen)
1525 {
1526         trace_f2fs_queue_reset_zone(bdev, blkstart);
1527
1528         mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1529         __insert_discard_cmd(sbi, bdev, lblkstart, blkstart, blklen);
1530         mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1531 }
1532 #endif
1533
1534 static void __queue_discard_cmd(struct f2fs_sb_info *sbi,
1535                 struct block_device *bdev, block_t blkstart, block_t blklen)
1536 {
1537         block_t lblkstart = blkstart;
1538
1539         if (!f2fs_bdev_support_discard(bdev))
1540                 return;
1541
1542         trace_f2fs_queue_discard(bdev, blkstart, blklen);
1543
1544         if (f2fs_is_multi_device(sbi)) {
1545                 int devi = f2fs_target_device_index(sbi, blkstart);
1546
1547                 blkstart -= FDEV(devi).start_blk;
1548         }
1549         mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1550         __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1551         mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1552 }
1553
1554 static void __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1555                 struct discard_policy *dpolicy, int *issued)
1556 {
1557         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1558         struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1559         struct rb_node **insert_p = NULL, *insert_parent = NULL;
1560         struct discard_cmd *dc;
1561         struct blk_plug plug;
1562         bool io_interrupted = false;
1563
1564         mutex_lock(&dcc->cmd_lock);
1565         dc = __lookup_discard_cmd_ret(&dcc->root, dcc->next_pos,
1566                                 &prev_dc, &next_dc, &insert_p, &insert_parent);
1567         if (!dc)
1568                 dc = next_dc;
1569
1570         blk_start_plug(&plug);
1571
1572         while (dc) {
1573                 struct rb_node *node;
1574                 int err = 0;
1575
1576                 if (dc->state != D_PREP)
1577                         goto next;
1578
1579                 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1580                         io_interrupted = true;
1581                         break;
1582                 }
1583
1584                 dcc->next_pos = dc->di.lstart + dc->di.len;
1585                 err = __submit_discard_cmd(sbi, dpolicy, dc, issued);
1586
1587                 if (*issued >= dpolicy->max_requests)
1588                         break;
1589 next:
1590                 node = rb_next(&dc->rb_node);
1591                 if (err)
1592                         __remove_discard_cmd(sbi, dc);
1593                 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1594         }
1595
1596         blk_finish_plug(&plug);
1597
1598         if (!dc)
1599                 dcc->next_pos = 0;
1600
1601         mutex_unlock(&dcc->cmd_lock);
1602
1603         if (!(*issued) && io_interrupted)
1604                 *issued = -1;
1605 }
1606 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1607                                         struct discard_policy *dpolicy);
1608
1609 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1610                                         struct discard_policy *dpolicy)
1611 {
1612         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1613         struct list_head *pend_list;
1614         struct discard_cmd *dc, *tmp;
1615         struct blk_plug plug;
1616         int i, issued;
1617         bool io_interrupted = false;
1618
1619         if (dpolicy->timeout)
1620                 f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1621
1622 retry:
1623         issued = 0;
1624         for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1625                 if (dpolicy->timeout &&
1626                                 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1627                         break;
1628
1629                 if (i + 1 < dpolicy->granularity)
1630                         break;
1631
1632                 if (i + 1 < dcc->max_ordered_discard && dpolicy->ordered) {
1633                         __issue_discard_cmd_orderly(sbi, dpolicy, &issued);
1634                         return issued;
1635                 }
1636
1637                 pend_list = &dcc->pend_list[i];
1638
1639                 mutex_lock(&dcc->cmd_lock);
1640                 if (list_empty(pend_list))
1641                         goto next;
1642                 if (unlikely(dcc->rbtree_check))
1643                         f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi));
1644                 blk_start_plug(&plug);
1645                 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1646                         f2fs_bug_on(sbi, dc->state != D_PREP);
1647
1648                         if (dpolicy->timeout &&
1649                                 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1650                                 break;
1651
1652                         if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1653                                                 !is_idle(sbi, DISCARD_TIME)) {
1654                                 io_interrupted = true;
1655                                 break;
1656                         }
1657
1658                         __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1659
1660                         if (issued >= dpolicy->max_requests)
1661                                 break;
1662                 }
1663                 blk_finish_plug(&plug);
1664 next:
1665                 mutex_unlock(&dcc->cmd_lock);
1666
1667                 if (issued >= dpolicy->max_requests || io_interrupted)
1668                         break;
1669         }
1670
1671         if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1672                 __wait_all_discard_cmd(sbi, dpolicy);
1673                 goto retry;
1674         }
1675
1676         if (!issued && io_interrupted)
1677                 issued = -1;
1678
1679         return issued;
1680 }
1681
1682 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1683 {
1684         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1685         struct list_head *pend_list;
1686         struct discard_cmd *dc, *tmp;
1687         int i;
1688         bool dropped = false;
1689
1690         mutex_lock(&dcc->cmd_lock);
1691         for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1692                 pend_list = &dcc->pend_list[i];
1693                 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1694                         f2fs_bug_on(sbi, dc->state != D_PREP);
1695                         __remove_discard_cmd(sbi, dc);
1696                         dropped = true;
1697                 }
1698         }
1699         mutex_unlock(&dcc->cmd_lock);
1700
1701         return dropped;
1702 }
1703
1704 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1705 {
1706         __drop_discard_cmd(sbi);
1707 }
1708
1709 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1710                                                         struct discard_cmd *dc)
1711 {
1712         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1713         unsigned int len = 0;
1714
1715         wait_for_completion_io(&dc->wait);
1716         mutex_lock(&dcc->cmd_lock);
1717         f2fs_bug_on(sbi, dc->state != D_DONE);
1718         dc->ref--;
1719         if (!dc->ref) {
1720                 if (!dc->error)
1721                         len = dc->di.len;
1722                 __remove_discard_cmd(sbi, dc);
1723         }
1724         mutex_unlock(&dcc->cmd_lock);
1725
1726         return len;
1727 }
1728
1729 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1730                                                 struct discard_policy *dpolicy,
1731                                                 block_t start, block_t end)
1732 {
1733         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1734         struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1735                                         &(dcc->fstrim_list) : &(dcc->wait_list);
1736         struct discard_cmd *dc = NULL, *iter, *tmp;
1737         unsigned int trimmed = 0;
1738
1739 next:
1740         dc = NULL;
1741
1742         mutex_lock(&dcc->cmd_lock);
1743         list_for_each_entry_safe(iter, tmp, wait_list, list) {
1744                 if (iter->di.lstart + iter->di.len <= start ||
1745                                         end <= iter->di.lstart)
1746                         continue;
1747                 if (iter->di.len < dpolicy->granularity)
1748                         continue;
1749                 if (iter->state == D_DONE && !iter->ref) {
1750                         wait_for_completion_io(&iter->wait);
1751                         if (!iter->error)
1752                                 trimmed += iter->di.len;
1753                         __remove_discard_cmd(sbi, iter);
1754                 } else {
1755                         iter->ref++;
1756                         dc = iter;
1757                         break;
1758                 }
1759         }
1760         mutex_unlock(&dcc->cmd_lock);
1761
1762         if (dc) {
1763                 trimmed += __wait_one_discard_bio(sbi, dc);
1764                 goto next;
1765         }
1766
1767         return trimmed;
1768 }
1769
1770 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1771                                                 struct discard_policy *dpolicy)
1772 {
1773         struct discard_policy dp;
1774         unsigned int discard_blks;
1775
1776         if (dpolicy)
1777                 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1778
1779         /* wait all */
1780         __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, MIN_DISCARD_GRANULARITY);
1781         discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1782         __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, MIN_DISCARD_GRANULARITY);
1783         discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1784
1785         return discard_blks;
1786 }
1787
1788 /* This should be covered by global mutex, &sit_i->sentry_lock */
1789 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1790 {
1791         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1792         struct discard_cmd *dc;
1793         bool need_wait = false;
1794
1795         mutex_lock(&dcc->cmd_lock);
1796         dc = __lookup_discard_cmd(sbi, blkaddr);
1797 #ifdef CONFIG_BLK_DEV_ZONED
1798         if (dc && f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(dc->bdev)) {
1799                 int devi = f2fs_bdev_index(sbi, dc->bdev);
1800
1801                 if (devi < 0) {
1802                         mutex_unlock(&dcc->cmd_lock);
1803                         return;
1804                 }
1805
1806                 if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) {
1807                         /* force submit zone reset */
1808                         if (dc->state == D_PREP)
1809                                 __submit_zone_reset_cmd(sbi, dc, REQ_SYNC,
1810                                                         &dcc->wait_list, NULL);
1811                         dc->ref++;
1812                         mutex_unlock(&dcc->cmd_lock);
1813                         /* wait zone reset */
1814                         __wait_one_discard_bio(sbi, dc);
1815                         return;
1816                 }
1817         }
1818 #endif
1819         if (dc) {
1820                 if (dc->state == D_PREP) {
1821                         __punch_discard_cmd(sbi, dc, blkaddr);
1822                 } else {
1823                         dc->ref++;
1824                         need_wait = true;
1825                 }
1826         }
1827         mutex_unlock(&dcc->cmd_lock);
1828
1829         if (need_wait)
1830                 __wait_one_discard_bio(sbi, dc);
1831 }
1832
1833 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1834 {
1835         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1836
1837         if (dcc && dcc->f2fs_issue_discard) {
1838                 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1839
1840                 dcc->f2fs_issue_discard = NULL;
1841                 kthread_stop(discard_thread);
1842         }
1843 }
1844
1845 /**
1846  * f2fs_issue_discard_timeout() - Issue all discard cmd within UMOUNT_DISCARD_TIMEOUT
1847  * @sbi: the f2fs_sb_info data for discard cmd to issue
1848  *
1849  * When UMOUNT_DISCARD_TIMEOUT is exceeded, all remaining discard commands will be dropped
1850  *
1851  * Return true if issued all discard cmd or no discard cmd need issue, otherwise return false.
1852  */
1853 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1854 {
1855         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1856         struct discard_policy dpolicy;
1857         bool dropped;
1858
1859         if (!atomic_read(&dcc->discard_cmd_cnt))
1860                 return true;
1861
1862         __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1863                                         dcc->discard_granularity);
1864         __issue_discard_cmd(sbi, &dpolicy);
1865         dropped = __drop_discard_cmd(sbi);
1866
1867         /* just to make sure there is no pending discard commands */
1868         __wait_all_discard_cmd(sbi, NULL);
1869
1870         f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1871         return !dropped;
1872 }
1873
1874 static int issue_discard_thread(void *data)
1875 {
1876         struct f2fs_sb_info *sbi = data;
1877         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1878         wait_queue_head_t *q = &dcc->discard_wait_queue;
1879         struct discard_policy dpolicy;
1880         unsigned int wait_ms = dcc->min_discard_issue_time;
1881         int issued;
1882
1883         set_freezable();
1884
1885         do {
1886                 wait_event_interruptible_timeout(*q,
1887                                 kthread_should_stop() || freezing(current) ||
1888                                 dcc->discard_wake,
1889                                 msecs_to_jiffies(wait_ms));
1890
1891                 if (sbi->gc_mode == GC_URGENT_HIGH ||
1892                         !f2fs_available_free_memory(sbi, DISCARD_CACHE))
1893                         __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE,
1894                                                 MIN_DISCARD_GRANULARITY);
1895                 else
1896                         __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1897                                                 dcc->discard_granularity);
1898
1899                 if (dcc->discard_wake)
1900                         dcc->discard_wake = false;
1901
1902                 /* clean up pending candidates before going to sleep */
1903                 if (atomic_read(&dcc->queued_discard))
1904                         __wait_all_discard_cmd(sbi, NULL);
1905
1906                 if (try_to_freeze())
1907                         continue;
1908                 if (f2fs_readonly(sbi->sb))
1909                         continue;
1910                 if (kthread_should_stop())
1911                         return 0;
1912                 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK) ||
1913                         !atomic_read(&dcc->discard_cmd_cnt)) {
1914                         wait_ms = dpolicy.max_interval;
1915                         continue;
1916                 }
1917
1918                 sb_start_intwrite(sbi->sb);
1919
1920                 issued = __issue_discard_cmd(sbi, &dpolicy);
1921                 if (issued > 0) {
1922                         __wait_all_discard_cmd(sbi, &dpolicy);
1923                         wait_ms = dpolicy.min_interval;
1924                 } else if (issued == -1) {
1925                         wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1926                         if (!wait_ms)
1927                                 wait_ms = dpolicy.mid_interval;
1928                 } else {
1929                         wait_ms = dpolicy.max_interval;
1930                 }
1931                 if (!atomic_read(&dcc->discard_cmd_cnt))
1932                         wait_ms = dpolicy.max_interval;
1933
1934                 sb_end_intwrite(sbi->sb);
1935
1936         } while (!kthread_should_stop());
1937         return 0;
1938 }
1939
1940 #ifdef CONFIG_BLK_DEV_ZONED
1941 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1942                 struct block_device *bdev, block_t blkstart, block_t blklen)
1943 {
1944         sector_t sector, nr_sects;
1945         block_t lblkstart = blkstart;
1946         int devi = 0;
1947         u64 remainder = 0;
1948
1949         if (f2fs_is_multi_device(sbi)) {
1950                 devi = f2fs_target_device_index(sbi, blkstart);
1951                 if (blkstart < FDEV(devi).start_blk ||
1952                     blkstart > FDEV(devi).end_blk) {
1953                         f2fs_err(sbi, "Invalid block %x", blkstart);
1954                         return -EIO;
1955                 }
1956                 blkstart -= FDEV(devi).start_blk;
1957         }
1958
1959         /* For sequential zones, reset the zone write pointer */
1960         if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1961                 sector = SECTOR_FROM_BLOCK(blkstart);
1962                 nr_sects = SECTOR_FROM_BLOCK(blklen);
1963                 div64_u64_rem(sector, bdev_zone_sectors(bdev), &remainder);
1964
1965                 if (remainder || nr_sects != bdev_zone_sectors(bdev)) {
1966                         f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1967                                  devi, sbi->s_ndevs ? FDEV(devi).path : "",
1968                                  blkstart, blklen);
1969                         return -EIO;
1970                 }
1971
1972                 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) {
1973                         trace_f2fs_issue_reset_zone(bdev, blkstart);
1974                         return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1975                                                 sector, nr_sects, GFP_NOFS);
1976                 }
1977
1978                 __queue_zone_reset_cmd(sbi, bdev, blkstart, lblkstart, blklen);
1979                 return 0;
1980         }
1981
1982         /* For conventional zones, use regular discard if supported */
1983         __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1984         return 0;
1985 }
1986 #endif
1987
1988 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1989                 struct block_device *bdev, block_t blkstart, block_t blklen)
1990 {
1991 #ifdef CONFIG_BLK_DEV_ZONED
1992         if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1993                 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1994 #endif
1995         __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1996         return 0;
1997 }
1998
1999 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
2000                                 block_t blkstart, block_t blklen)
2001 {
2002         sector_t start = blkstart, len = 0;
2003         struct block_device *bdev;
2004         struct seg_entry *se;
2005         unsigned int offset;
2006         block_t i;
2007         int err = 0;
2008
2009         bdev = f2fs_target_device(sbi, blkstart, NULL);
2010
2011         for (i = blkstart; i < blkstart + blklen; i++, len++) {
2012                 if (i != start) {
2013                         struct block_device *bdev2 =
2014                                 f2fs_target_device(sbi, i, NULL);
2015
2016                         if (bdev2 != bdev) {
2017                                 err = __issue_discard_async(sbi, bdev,
2018                                                 start, len);
2019                                 if (err)
2020                                         return err;
2021                                 bdev = bdev2;
2022                                 start = i;
2023                                 len = 0;
2024                         }
2025                 }
2026
2027                 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
2028                 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
2029
2030                 if (f2fs_block_unit_discard(sbi) &&
2031                                 !f2fs_test_and_set_bit(offset, se->discard_map))
2032                         sbi->discard_blks--;
2033         }
2034
2035         if (len)
2036                 err = __issue_discard_async(sbi, bdev, start, len);
2037         return err;
2038 }
2039
2040 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
2041                                                         bool check_only)
2042 {
2043         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2044         int max_blocks = sbi->blocks_per_seg;
2045         struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
2046         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2047         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2048         unsigned long *discard_map = (unsigned long *)se->discard_map;
2049         unsigned long *dmap = SIT_I(sbi)->tmp_map;
2050         unsigned int start = 0, end = -1;
2051         bool force = (cpc->reason & CP_DISCARD);
2052         struct discard_entry *de = NULL;
2053         struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
2054         int i;
2055
2056         if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi) ||
2057                         !f2fs_block_unit_discard(sbi))
2058                 return false;
2059
2060         if (!force) {
2061                 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
2062                         SM_I(sbi)->dcc_info->nr_discards >=
2063                                 SM_I(sbi)->dcc_info->max_discards)
2064                         return false;
2065         }
2066
2067         /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
2068         for (i = 0; i < entries; i++)
2069                 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
2070                                 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
2071
2072         while (force || SM_I(sbi)->dcc_info->nr_discards <=
2073                                 SM_I(sbi)->dcc_info->max_discards) {
2074                 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
2075                 if (start >= max_blocks)
2076                         break;
2077
2078                 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
2079                 if (force && start && end != max_blocks
2080                                         && (end - start) < cpc->trim_minlen)
2081                         continue;
2082
2083                 if (check_only)
2084                         return true;
2085
2086                 if (!de) {
2087                         de = f2fs_kmem_cache_alloc(discard_entry_slab,
2088                                                 GFP_F2FS_ZERO, true, NULL);
2089                         de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
2090                         list_add_tail(&de->list, head);
2091                 }
2092
2093                 for (i = start; i < end; i++)
2094                         __set_bit_le(i, (void *)de->discard_map);
2095
2096                 SM_I(sbi)->dcc_info->nr_discards += end - start;
2097         }
2098         return false;
2099 }
2100
2101 static void release_discard_addr(struct discard_entry *entry)
2102 {
2103         list_del(&entry->list);
2104         kmem_cache_free(discard_entry_slab, entry);
2105 }
2106
2107 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
2108 {
2109         struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
2110         struct discard_entry *entry, *this;
2111
2112         /* drop caches */
2113         list_for_each_entry_safe(entry, this, head, list)
2114                 release_discard_addr(entry);
2115 }
2116
2117 /*
2118  * Should call f2fs_clear_prefree_segments after checkpoint is done.
2119  */
2120 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
2121 {
2122         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2123         unsigned int segno;
2124
2125         mutex_lock(&dirty_i->seglist_lock);
2126         for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
2127                 __set_test_and_free(sbi, segno, false);
2128         mutex_unlock(&dirty_i->seglist_lock);
2129 }
2130
2131 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
2132                                                 struct cp_control *cpc)
2133 {
2134         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2135         struct list_head *head = &dcc->entry_list;
2136         struct discard_entry *entry, *this;
2137         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2138         unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
2139         unsigned int start = 0, end = -1;
2140         unsigned int secno, start_segno;
2141         bool force = (cpc->reason & CP_DISCARD);
2142         bool section_alignment = F2FS_OPTION(sbi).discard_unit ==
2143                                                 DISCARD_UNIT_SECTION;
2144
2145         if (f2fs_lfs_mode(sbi) && __is_large_section(sbi))
2146                 section_alignment = true;
2147
2148         mutex_lock(&dirty_i->seglist_lock);
2149
2150         while (1) {
2151                 int i;
2152
2153                 if (section_alignment && end != -1)
2154                         end--;
2155                 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
2156                 if (start >= MAIN_SEGS(sbi))
2157                         break;
2158                 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
2159                                                                 start + 1);
2160
2161                 if (section_alignment) {
2162                         start = rounddown(start, sbi->segs_per_sec);
2163                         end = roundup(end, sbi->segs_per_sec);
2164                 }
2165
2166                 for (i = start; i < end; i++) {
2167                         if (test_and_clear_bit(i, prefree_map))
2168                                 dirty_i->nr_dirty[PRE]--;
2169                 }
2170
2171                 if (!f2fs_realtime_discard_enable(sbi))
2172                         continue;
2173
2174                 if (force && start >= cpc->trim_start &&
2175                                         (end - 1) <= cpc->trim_end)
2176                         continue;
2177
2178                 /* Should cover 2MB zoned device for zone-based reset */
2179                 if (!f2fs_sb_has_blkzoned(sbi) &&
2180                     (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi))) {
2181                         f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
2182                                 (end - start) << sbi->log_blocks_per_seg);
2183                         continue;
2184                 }
2185 next:
2186                 secno = GET_SEC_FROM_SEG(sbi, start);
2187                 start_segno = GET_SEG_FROM_SEC(sbi, secno);
2188                 if (!IS_CURSEC(sbi, secno) &&
2189                         !get_valid_blocks(sbi, start, true))
2190                         f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
2191                                 sbi->segs_per_sec << sbi->log_blocks_per_seg);
2192
2193                 start = start_segno + sbi->segs_per_sec;
2194                 if (start < end)
2195                         goto next;
2196                 else
2197                         end = start - 1;
2198         }
2199         mutex_unlock(&dirty_i->seglist_lock);
2200
2201         if (!f2fs_block_unit_discard(sbi))
2202                 goto wakeup;
2203
2204         /* send small discards */
2205         list_for_each_entry_safe(entry, this, head, list) {
2206                 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2207                 bool is_valid = test_bit_le(0, entry->discard_map);
2208
2209 find_next:
2210                 if (is_valid) {
2211                         next_pos = find_next_zero_bit_le(entry->discard_map,
2212                                         sbi->blocks_per_seg, cur_pos);
2213                         len = next_pos - cur_pos;
2214
2215                         if (f2fs_sb_has_blkzoned(sbi) ||
2216                             (force && len < cpc->trim_minlen))
2217                                 goto skip;
2218
2219                         f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2220                                                                         len);
2221                         total_len += len;
2222                 } else {
2223                         next_pos = find_next_bit_le(entry->discard_map,
2224                                         sbi->blocks_per_seg, cur_pos);
2225                 }
2226 skip:
2227                 cur_pos = next_pos;
2228                 is_valid = !is_valid;
2229
2230                 if (cur_pos < sbi->blocks_per_seg)
2231                         goto find_next;
2232
2233                 release_discard_addr(entry);
2234                 dcc->nr_discards -= total_len;
2235         }
2236
2237 wakeup:
2238         wake_up_discard_thread(sbi, false);
2239 }
2240
2241 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi)
2242 {
2243         dev_t dev = sbi->sb->s_bdev->bd_dev;
2244         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2245         int err = 0;
2246
2247         if (!f2fs_realtime_discard_enable(sbi))
2248                 return 0;
2249
2250         dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2251                                 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2252         if (IS_ERR(dcc->f2fs_issue_discard)) {
2253                 err = PTR_ERR(dcc->f2fs_issue_discard);
2254                 dcc->f2fs_issue_discard = NULL;
2255         }
2256
2257         return err;
2258 }
2259
2260 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2261 {
2262         struct discard_cmd_control *dcc;
2263         int err = 0, i;
2264
2265         if (SM_I(sbi)->dcc_info) {
2266                 dcc = SM_I(sbi)->dcc_info;
2267                 goto init_thread;
2268         }
2269
2270         dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2271         if (!dcc)
2272                 return -ENOMEM;
2273
2274         dcc->discard_io_aware_gran = MAX_PLIST_NUM;
2275         dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2276         dcc->max_ordered_discard = DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY;
2277         if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT)
2278                 dcc->discard_granularity = sbi->blocks_per_seg;
2279         else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
2280                 dcc->discard_granularity = BLKS_PER_SEC(sbi);
2281
2282         INIT_LIST_HEAD(&dcc->entry_list);
2283         for (i = 0; i < MAX_PLIST_NUM; i++)
2284                 INIT_LIST_HEAD(&dcc->pend_list[i]);
2285         INIT_LIST_HEAD(&dcc->wait_list);
2286         INIT_LIST_HEAD(&dcc->fstrim_list);
2287         mutex_init(&dcc->cmd_lock);
2288         atomic_set(&dcc->issued_discard, 0);
2289         atomic_set(&dcc->queued_discard, 0);
2290         atomic_set(&dcc->discard_cmd_cnt, 0);
2291         dcc->nr_discards = 0;
2292         dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2293         dcc->max_discard_request = DEF_MAX_DISCARD_REQUEST;
2294         dcc->min_discard_issue_time = DEF_MIN_DISCARD_ISSUE_TIME;
2295         dcc->mid_discard_issue_time = DEF_MID_DISCARD_ISSUE_TIME;
2296         dcc->max_discard_issue_time = DEF_MAX_DISCARD_ISSUE_TIME;
2297         dcc->discard_urgent_util = DEF_DISCARD_URGENT_UTIL;
2298         dcc->undiscard_blks = 0;
2299         dcc->next_pos = 0;
2300         dcc->root = RB_ROOT_CACHED;
2301         dcc->rbtree_check = false;
2302
2303         init_waitqueue_head(&dcc->discard_wait_queue);
2304         SM_I(sbi)->dcc_info = dcc;
2305 init_thread:
2306         err = f2fs_start_discard_thread(sbi);
2307         if (err) {
2308                 kfree(dcc);
2309                 SM_I(sbi)->dcc_info = NULL;
2310         }
2311
2312         return err;
2313 }
2314
2315 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2316 {
2317         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2318
2319         if (!dcc)
2320                 return;
2321
2322         f2fs_stop_discard_thread(sbi);
2323
2324         /*
2325          * Recovery can cache discard commands, so in error path of
2326          * fill_super(), it needs to give a chance to handle them.
2327          */
2328         f2fs_issue_discard_timeout(sbi);
2329
2330         kfree(dcc);
2331         SM_I(sbi)->dcc_info = NULL;
2332 }
2333
2334 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2335 {
2336         struct sit_info *sit_i = SIT_I(sbi);
2337
2338         if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2339                 sit_i->dirty_sentries++;
2340                 return false;
2341         }
2342
2343         return true;
2344 }
2345
2346 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2347                                         unsigned int segno, int modified)
2348 {
2349         struct seg_entry *se = get_seg_entry(sbi, segno);
2350
2351         se->type = type;
2352         if (modified)
2353                 __mark_sit_entry_dirty(sbi, segno);
2354 }
2355
2356 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2357                                                                 block_t blkaddr)
2358 {
2359         unsigned int segno = GET_SEGNO(sbi, blkaddr);
2360
2361         if (segno == NULL_SEGNO)
2362                 return 0;
2363         return get_seg_entry(sbi, segno)->mtime;
2364 }
2365
2366 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2367                                                 unsigned long long old_mtime)
2368 {
2369         struct seg_entry *se;
2370         unsigned int segno = GET_SEGNO(sbi, blkaddr);
2371         unsigned long long ctime = get_mtime(sbi, false);
2372         unsigned long long mtime = old_mtime ? old_mtime : ctime;
2373
2374         if (segno == NULL_SEGNO)
2375                 return;
2376
2377         se = get_seg_entry(sbi, segno);
2378
2379         if (!se->mtime)
2380                 se->mtime = mtime;
2381         else
2382                 se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2383                                                 se->valid_blocks + 1);
2384
2385         if (ctime > SIT_I(sbi)->max_mtime)
2386                 SIT_I(sbi)->max_mtime = ctime;
2387 }
2388
2389 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2390 {
2391         struct seg_entry *se;
2392         unsigned int segno, offset;
2393         long int new_vblocks;
2394         bool exist;
2395 #ifdef CONFIG_F2FS_CHECK_FS
2396         bool mir_exist;
2397 #endif
2398
2399         segno = GET_SEGNO(sbi, blkaddr);
2400
2401         se = get_seg_entry(sbi, segno);
2402         new_vblocks = se->valid_blocks + del;
2403         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2404
2405         f2fs_bug_on(sbi, (new_vblocks < 0 ||
2406                         (new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2407
2408         se->valid_blocks = new_vblocks;
2409
2410         /* Update valid block bitmap */
2411         if (del > 0) {
2412                 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2413 #ifdef CONFIG_F2FS_CHECK_FS
2414                 mir_exist = f2fs_test_and_set_bit(offset,
2415                                                 se->cur_valid_map_mir);
2416                 if (unlikely(exist != mir_exist)) {
2417                         f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2418                                  blkaddr, exist);
2419                         f2fs_bug_on(sbi, 1);
2420                 }
2421 #endif
2422                 if (unlikely(exist)) {
2423                         f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2424                                  blkaddr);
2425                         f2fs_bug_on(sbi, 1);
2426                         se->valid_blocks--;
2427                         del = 0;
2428                 }
2429
2430                 if (f2fs_block_unit_discard(sbi) &&
2431                                 !f2fs_test_and_set_bit(offset, se->discard_map))
2432                         sbi->discard_blks--;
2433
2434                 /*
2435                  * SSR should never reuse block which is checkpointed
2436                  * or newly invalidated.
2437                  */
2438                 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2439                         if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2440                                 se->ckpt_valid_blocks++;
2441                 }
2442         } else {
2443                 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2444 #ifdef CONFIG_F2FS_CHECK_FS
2445                 mir_exist = f2fs_test_and_clear_bit(offset,
2446                                                 se->cur_valid_map_mir);
2447                 if (unlikely(exist != mir_exist)) {
2448                         f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2449                                  blkaddr, exist);
2450                         f2fs_bug_on(sbi, 1);
2451                 }
2452 #endif
2453                 if (unlikely(!exist)) {
2454                         f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2455                                  blkaddr);
2456                         f2fs_bug_on(sbi, 1);
2457                         se->valid_blocks++;
2458                         del = 0;
2459                 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2460                         /*
2461                          * If checkpoints are off, we must not reuse data that
2462                          * was used in the previous checkpoint. If it was used
2463                          * before, we must track that to know how much space we
2464                          * really have.
2465                          */
2466                         if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2467                                 spin_lock(&sbi->stat_lock);
2468                                 sbi->unusable_block_count++;
2469                                 spin_unlock(&sbi->stat_lock);
2470                         }
2471                 }
2472
2473                 if (f2fs_block_unit_discard(sbi) &&
2474                         f2fs_test_and_clear_bit(offset, se->discard_map))
2475                         sbi->discard_blks++;
2476         }
2477         if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2478                 se->ckpt_valid_blocks += del;
2479
2480         __mark_sit_entry_dirty(sbi, segno);
2481
2482         /* update total number of valid blocks to be written in ckpt area */
2483         SIT_I(sbi)->written_valid_blocks += del;
2484
2485         if (__is_large_section(sbi))
2486                 get_sec_entry(sbi, segno)->valid_blocks += del;
2487 }
2488
2489 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2490 {
2491         unsigned int segno = GET_SEGNO(sbi, addr);
2492         struct sit_info *sit_i = SIT_I(sbi);
2493
2494         f2fs_bug_on(sbi, addr == NULL_ADDR);
2495         if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2496                 return;
2497
2498         invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2499         f2fs_invalidate_compress_page(sbi, addr);
2500
2501         /* add it into sit main buffer */
2502         down_write(&sit_i->sentry_lock);
2503
2504         update_segment_mtime(sbi, addr, 0);
2505         update_sit_entry(sbi, addr, -1);
2506
2507         /* add it into dirty seglist */
2508         locate_dirty_segment(sbi, segno);
2509
2510         up_write(&sit_i->sentry_lock);
2511 }
2512
2513 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2514 {
2515         struct sit_info *sit_i = SIT_I(sbi);
2516         unsigned int segno, offset;
2517         struct seg_entry *se;
2518         bool is_cp = false;
2519
2520         if (!__is_valid_data_blkaddr(blkaddr))
2521                 return true;
2522
2523         down_read(&sit_i->sentry_lock);
2524
2525         segno = GET_SEGNO(sbi, blkaddr);
2526         se = get_seg_entry(sbi, segno);
2527         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2528
2529         if (f2fs_test_bit(offset, se->ckpt_valid_map))
2530                 is_cp = true;
2531
2532         up_read(&sit_i->sentry_lock);
2533
2534         return is_cp;
2535 }
2536
2537 static unsigned short f2fs_curseg_valid_blocks(struct f2fs_sb_info *sbi, int type)
2538 {
2539         struct curseg_info *curseg = CURSEG_I(sbi, type);
2540
2541         if (sbi->ckpt->alloc_type[type] == SSR)
2542                 return sbi->blocks_per_seg;
2543         return curseg->next_blkoff;
2544 }
2545
2546 /*
2547  * Calculate the number of current summary pages for writing
2548  */
2549 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2550 {
2551         int valid_sum_count = 0;
2552         int i, sum_in_page;
2553
2554         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2555                 if (sbi->ckpt->alloc_type[i] != SSR && for_ra)
2556                         valid_sum_count +=
2557                                 le16_to_cpu(F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2558                 else
2559                         valid_sum_count += f2fs_curseg_valid_blocks(sbi, i);
2560         }
2561
2562         sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2563                         SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2564         if (valid_sum_count <= sum_in_page)
2565                 return 1;
2566         else if ((valid_sum_count - sum_in_page) <=
2567                 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2568                 return 2;
2569         return 3;
2570 }
2571
2572 /*
2573  * Caller should put this summary page
2574  */
2575 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2576 {
2577         if (unlikely(f2fs_cp_error(sbi)))
2578                 return ERR_PTR(-EIO);
2579         return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2580 }
2581
2582 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2583                                         void *src, block_t blk_addr)
2584 {
2585         struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2586
2587         memcpy(page_address(page), src, PAGE_SIZE);
2588         set_page_dirty(page);
2589         f2fs_put_page(page, 1);
2590 }
2591
2592 static void write_sum_page(struct f2fs_sb_info *sbi,
2593                         struct f2fs_summary_block *sum_blk, block_t blk_addr)
2594 {
2595         f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2596 }
2597
2598 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2599                                                 int type, block_t blk_addr)
2600 {
2601         struct curseg_info *curseg = CURSEG_I(sbi, type);
2602         struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2603         struct f2fs_summary_block *src = curseg->sum_blk;
2604         struct f2fs_summary_block *dst;
2605
2606         dst = (struct f2fs_summary_block *)page_address(page);
2607         memset(dst, 0, PAGE_SIZE);
2608
2609         mutex_lock(&curseg->curseg_mutex);
2610
2611         down_read(&curseg->journal_rwsem);
2612         memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2613         up_read(&curseg->journal_rwsem);
2614
2615         memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2616         memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2617
2618         mutex_unlock(&curseg->curseg_mutex);
2619
2620         set_page_dirty(page);
2621         f2fs_put_page(page, 1);
2622 }
2623
2624 static int is_next_segment_free(struct f2fs_sb_info *sbi,
2625                                 struct curseg_info *curseg, int type)
2626 {
2627         unsigned int segno = curseg->segno + 1;
2628         struct free_segmap_info *free_i = FREE_I(sbi);
2629
2630         if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2631                 return !test_bit(segno, free_i->free_segmap);
2632         return 0;
2633 }
2634
2635 /*
2636  * Find a new segment from the free segments bitmap to right order
2637  * This function should be returned with success, otherwise BUG
2638  */
2639 static void get_new_segment(struct f2fs_sb_info *sbi,
2640                         unsigned int *newseg, bool new_sec, int dir)
2641 {
2642         struct free_segmap_info *free_i = FREE_I(sbi);
2643         unsigned int segno, secno, zoneno;
2644         unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2645         unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2646         unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2647         unsigned int left_start = hint;
2648         bool init = true;
2649         int go_left = 0;
2650         int i;
2651
2652         spin_lock(&free_i->segmap_lock);
2653
2654         if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2655                 segno = find_next_zero_bit(free_i->free_segmap,
2656                         GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2657                 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2658                         goto got_it;
2659         }
2660 find_other_zone:
2661         secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2662         if (secno >= MAIN_SECS(sbi)) {
2663                 if (dir == ALLOC_RIGHT) {
2664                         secno = find_first_zero_bit(free_i->free_secmap,
2665                                                         MAIN_SECS(sbi));
2666                         f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2667                 } else {
2668                         go_left = 1;
2669                         left_start = hint - 1;
2670                 }
2671         }
2672         if (go_left == 0)
2673                 goto skip_left;
2674
2675         while (test_bit(left_start, free_i->free_secmap)) {
2676                 if (left_start > 0) {
2677                         left_start--;
2678                         continue;
2679                 }
2680                 left_start = find_first_zero_bit(free_i->free_secmap,
2681                                                         MAIN_SECS(sbi));
2682                 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2683                 break;
2684         }
2685         secno = left_start;
2686 skip_left:
2687         segno = GET_SEG_FROM_SEC(sbi, secno);
2688         zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2689
2690         /* give up on finding another zone */
2691         if (!init)
2692                 goto got_it;
2693         if (sbi->secs_per_zone == 1)
2694                 goto got_it;
2695         if (zoneno == old_zoneno)
2696                 goto got_it;
2697         if (dir == ALLOC_LEFT) {
2698                 if (!go_left && zoneno + 1 >= total_zones)
2699                         goto got_it;
2700                 if (go_left && zoneno == 0)
2701                         goto got_it;
2702         }
2703         for (i = 0; i < NR_CURSEG_TYPE; i++)
2704                 if (CURSEG_I(sbi, i)->zone == zoneno)
2705                         break;
2706
2707         if (i < NR_CURSEG_TYPE) {
2708                 /* zone is in user, try another */
2709                 if (go_left)
2710                         hint = zoneno * sbi->secs_per_zone - 1;
2711                 else if (zoneno + 1 >= total_zones)
2712                         hint = 0;
2713                 else
2714                         hint = (zoneno + 1) * sbi->secs_per_zone;
2715                 init = false;
2716                 goto find_other_zone;
2717         }
2718 got_it:
2719         /* set it as dirty segment in free segmap */
2720         f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2721         __set_inuse(sbi, segno);
2722         *newseg = segno;
2723         spin_unlock(&free_i->segmap_lock);
2724 }
2725
2726 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2727 {
2728         struct curseg_info *curseg = CURSEG_I(sbi, type);
2729         struct summary_footer *sum_footer;
2730         unsigned short seg_type = curseg->seg_type;
2731
2732         curseg->inited = true;
2733         curseg->segno = curseg->next_segno;
2734         curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2735         curseg->next_blkoff = 0;
2736         curseg->next_segno = NULL_SEGNO;
2737
2738         sum_footer = &(curseg->sum_blk->footer);
2739         memset(sum_footer, 0, sizeof(struct summary_footer));
2740
2741         sanity_check_seg_type(sbi, seg_type);
2742
2743         if (IS_DATASEG(seg_type))
2744                 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2745         if (IS_NODESEG(seg_type))
2746                 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2747         __set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2748 }
2749
2750 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2751 {
2752         struct curseg_info *curseg = CURSEG_I(sbi, type);
2753         unsigned short seg_type = curseg->seg_type;
2754
2755         sanity_check_seg_type(sbi, seg_type);
2756         if (f2fs_need_rand_seg(sbi))
2757                 return get_random_u32_below(MAIN_SECS(sbi) * sbi->segs_per_sec);
2758
2759         /* if segs_per_sec is large than 1, we need to keep original policy. */
2760         if (__is_large_section(sbi))
2761                 return curseg->segno;
2762
2763         /* inmem log may not locate on any segment after mount */
2764         if (!curseg->inited)
2765                 return 0;
2766
2767         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2768                 return 0;
2769
2770         if (test_opt(sbi, NOHEAP) &&
2771                 (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type)))
2772                 return 0;
2773
2774         if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2775                 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2776
2777         /* find segments from 0 to reuse freed segments */
2778         if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2779                 return 0;
2780
2781         return curseg->segno;
2782 }
2783
2784 /*
2785  * Allocate a current working segment.
2786  * This function always allocates a free segment in LFS manner.
2787  */
2788 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2789 {
2790         struct curseg_info *curseg = CURSEG_I(sbi, type);
2791         unsigned short seg_type = curseg->seg_type;
2792         unsigned int segno = curseg->segno;
2793         int dir = ALLOC_LEFT;
2794
2795         if (curseg->inited)
2796                 write_sum_page(sbi, curseg->sum_blk,
2797                                 GET_SUM_BLOCK(sbi, segno));
2798         if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA)
2799                 dir = ALLOC_RIGHT;
2800
2801         if (test_opt(sbi, NOHEAP))
2802                 dir = ALLOC_RIGHT;
2803
2804         segno = __get_next_segno(sbi, type);
2805         get_new_segment(sbi, &segno, new_sec, dir);
2806         curseg->next_segno = segno;
2807         reset_curseg(sbi, type, 1);
2808         curseg->alloc_type = LFS;
2809         if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
2810                 curseg->fragment_remained_chunk =
2811                                 get_random_u32_inclusive(1, sbi->max_fragment_chunk);
2812 }
2813
2814 static int __next_free_blkoff(struct f2fs_sb_info *sbi,
2815                                         int segno, block_t start)
2816 {
2817         struct seg_entry *se = get_seg_entry(sbi, segno);
2818         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2819         unsigned long *target_map = SIT_I(sbi)->tmp_map;
2820         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2821         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2822         int i;
2823
2824         for (i = 0; i < entries; i++)
2825                 target_map[i] = ckpt_map[i] | cur_map[i];
2826
2827         return __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2828 }
2829
2830 static int f2fs_find_next_ssr_block(struct f2fs_sb_info *sbi,
2831                 struct curseg_info *seg)
2832 {
2833         return __next_free_blkoff(sbi, seg->segno, seg->next_blkoff + 1);
2834 }
2835
2836 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
2837 {
2838         return __next_free_blkoff(sbi, segno, 0) < sbi->blocks_per_seg;
2839 }
2840
2841 /*
2842  * This function always allocates a used segment(from dirty seglist) by SSR
2843  * manner, so it should recover the existing segment information of valid blocks
2844  */
2845 static void change_curseg(struct f2fs_sb_info *sbi, int type)
2846 {
2847         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2848         struct curseg_info *curseg = CURSEG_I(sbi, type);
2849         unsigned int new_segno = curseg->next_segno;
2850         struct f2fs_summary_block *sum_node;
2851         struct page *sum_page;
2852
2853         write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, curseg->segno));
2854
2855         __set_test_and_inuse(sbi, new_segno);
2856
2857         mutex_lock(&dirty_i->seglist_lock);
2858         __remove_dirty_segment(sbi, new_segno, PRE);
2859         __remove_dirty_segment(sbi, new_segno, DIRTY);
2860         mutex_unlock(&dirty_i->seglist_lock);
2861
2862         reset_curseg(sbi, type, 1);
2863         curseg->alloc_type = SSR;
2864         curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
2865
2866         sum_page = f2fs_get_sum_page(sbi, new_segno);
2867         if (IS_ERR(sum_page)) {
2868                 /* GC won't be able to use stale summary pages by cp_error */
2869                 memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
2870                 return;
2871         }
2872         sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2873         memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2874         f2fs_put_page(sum_page, 1);
2875 }
2876
2877 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2878                                 int alloc_mode, unsigned long long age);
2879
2880 static void get_atssr_segment(struct f2fs_sb_info *sbi, int type,
2881                                         int target_type, int alloc_mode,
2882                                         unsigned long long age)
2883 {
2884         struct curseg_info *curseg = CURSEG_I(sbi, type);
2885
2886         curseg->seg_type = target_type;
2887
2888         if (get_ssr_segment(sbi, type, alloc_mode, age)) {
2889                 struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
2890
2891                 curseg->seg_type = se->type;
2892                 change_curseg(sbi, type);
2893         } else {
2894                 /* allocate cold segment by default */
2895                 curseg->seg_type = CURSEG_COLD_DATA;
2896                 new_curseg(sbi, type, true);
2897         }
2898         stat_inc_seg_type(sbi, curseg);
2899 }
2900
2901 static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi)
2902 {
2903         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
2904
2905         if (!sbi->am.atgc_enabled)
2906                 return;
2907
2908         f2fs_down_read(&SM_I(sbi)->curseg_lock);
2909
2910         mutex_lock(&curseg->curseg_mutex);
2911         down_write(&SIT_I(sbi)->sentry_lock);
2912
2913         get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0);
2914
2915         up_write(&SIT_I(sbi)->sentry_lock);
2916         mutex_unlock(&curseg->curseg_mutex);
2917
2918         f2fs_up_read(&SM_I(sbi)->curseg_lock);
2919
2920 }
2921 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
2922 {
2923         __f2fs_init_atgc_curseg(sbi);
2924 }
2925
2926 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2927 {
2928         struct curseg_info *curseg = CURSEG_I(sbi, type);
2929
2930         mutex_lock(&curseg->curseg_mutex);
2931         if (!curseg->inited)
2932                 goto out;
2933
2934         if (get_valid_blocks(sbi, curseg->segno, false)) {
2935                 write_sum_page(sbi, curseg->sum_blk,
2936                                 GET_SUM_BLOCK(sbi, curseg->segno));
2937         } else {
2938                 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2939                 __set_test_and_free(sbi, curseg->segno, true);
2940                 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2941         }
2942 out:
2943         mutex_unlock(&curseg->curseg_mutex);
2944 }
2945
2946 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
2947 {
2948         __f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2949
2950         if (sbi->am.atgc_enabled)
2951                 __f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2952 }
2953
2954 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2955 {
2956         struct curseg_info *curseg = CURSEG_I(sbi, type);
2957
2958         mutex_lock(&curseg->curseg_mutex);
2959         if (!curseg->inited)
2960                 goto out;
2961         if (get_valid_blocks(sbi, curseg->segno, false))
2962                 goto out;
2963
2964         mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2965         __set_test_and_inuse(sbi, curseg->segno);
2966         mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2967 out:
2968         mutex_unlock(&curseg->curseg_mutex);
2969 }
2970
2971 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
2972 {
2973         __f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2974
2975         if (sbi->am.atgc_enabled)
2976                 __f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2977 }
2978
2979 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2980                                 int alloc_mode, unsigned long long age)
2981 {
2982         struct curseg_info *curseg = CURSEG_I(sbi, type);
2983         unsigned segno = NULL_SEGNO;
2984         unsigned short seg_type = curseg->seg_type;
2985         int i, cnt;
2986         bool reversed = false;
2987
2988         sanity_check_seg_type(sbi, seg_type);
2989
2990         /* f2fs_need_SSR() already forces to do this */
2991         if (!f2fs_get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) {
2992                 curseg->next_segno = segno;
2993                 return 1;
2994         }
2995
2996         /* For node segments, let's do SSR more intensively */
2997         if (IS_NODESEG(seg_type)) {
2998                 if (seg_type >= CURSEG_WARM_NODE) {
2999                         reversed = true;
3000                         i = CURSEG_COLD_NODE;
3001                 } else {
3002                         i = CURSEG_HOT_NODE;
3003                 }
3004                 cnt = NR_CURSEG_NODE_TYPE;
3005         } else {
3006                 if (seg_type >= CURSEG_WARM_DATA) {
3007                         reversed = true;
3008                         i = CURSEG_COLD_DATA;
3009                 } else {
3010                         i = CURSEG_HOT_DATA;
3011                 }
3012                 cnt = NR_CURSEG_DATA_TYPE;
3013         }
3014
3015         for (; cnt-- > 0; reversed ? i-- : i++) {
3016                 if (i == seg_type)
3017                         continue;
3018                 if (!f2fs_get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) {
3019                         curseg->next_segno = segno;
3020                         return 1;
3021                 }
3022         }
3023
3024         /* find valid_blocks=0 in dirty list */
3025         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
3026                 segno = get_free_segment(sbi);
3027                 if (segno != NULL_SEGNO) {
3028                         curseg->next_segno = segno;
3029                         return 1;
3030                 }
3031         }
3032         return 0;
3033 }
3034
3035 static bool need_new_seg(struct f2fs_sb_info *sbi, int type)
3036 {
3037         struct curseg_info *curseg = CURSEG_I(sbi, type);
3038
3039         if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
3040             curseg->seg_type == CURSEG_WARM_NODE)
3041                 return true;
3042         if (curseg->alloc_type == LFS &&
3043             is_next_segment_free(sbi, curseg, type) &&
3044             likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
3045                 return true;
3046         if (!f2fs_need_SSR(sbi) || !get_ssr_segment(sbi, type, SSR, 0))
3047                 return true;
3048         return false;
3049 }
3050
3051 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3052                                         unsigned int start, unsigned int end)
3053 {
3054         struct curseg_info *curseg = CURSEG_I(sbi, type);
3055         unsigned int segno;
3056
3057         f2fs_down_read(&SM_I(sbi)->curseg_lock);
3058         mutex_lock(&curseg->curseg_mutex);
3059         down_write(&SIT_I(sbi)->sentry_lock);
3060
3061         segno = CURSEG_I(sbi, type)->segno;
3062         if (segno < start || segno > end)
3063                 goto unlock;
3064
3065         if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
3066                 change_curseg(sbi, type);
3067         else
3068                 new_curseg(sbi, type, true);
3069
3070         stat_inc_seg_type(sbi, curseg);
3071
3072         locate_dirty_segment(sbi, segno);
3073 unlock:
3074         up_write(&SIT_I(sbi)->sentry_lock);
3075
3076         if (segno != curseg->segno)
3077                 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
3078                             type, segno, curseg->segno);
3079
3080         mutex_unlock(&curseg->curseg_mutex);
3081         f2fs_up_read(&SM_I(sbi)->curseg_lock);
3082 }
3083
3084 static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
3085                                                 bool new_sec, bool force)
3086 {
3087         struct curseg_info *curseg = CURSEG_I(sbi, type);
3088         unsigned int old_segno;
3089
3090         if (!force && curseg->inited &&
3091             !curseg->next_blkoff &&
3092             !get_valid_blocks(sbi, curseg->segno, new_sec) &&
3093             !get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
3094                 return;
3095
3096         old_segno = curseg->segno;
3097         new_curseg(sbi, type, true);
3098         stat_inc_seg_type(sbi, curseg);
3099         locate_dirty_segment(sbi, old_segno);
3100 }
3101
3102 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
3103 {
3104         f2fs_down_read(&SM_I(sbi)->curseg_lock);
3105         down_write(&SIT_I(sbi)->sentry_lock);
3106         __allocate_new_segment(sbi, type, true, force);
3107         up_write(&SIT_I(sbi)->sentry_lock);
3108         f2fs_up_read(&SM_I(sbi)->curseg_lock);
3109 }
3110
3111 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
3112 {
3113         int i;
3114
3115         f2fs_down_read(&SM_I(sbi)->curseg_lock);
3116         down_write(&SIT_I(sbi)->sentry_lock);
3117         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
3118                 __allocate_new_segment(sbi, i, false, false);
3119         up_write(&SIT_I(sbi)->sentry_lock);
3120         f2fs_up_read(&SM_I(sbi)->curseg_lock);
3121 }
3122
3123 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3124                                                 struct cp_control *cpc)
3125 {
3126         __u64 trim_start = cpc->trim_start;
3127         bool has_candidate = false;
3128
3129         down_write(&SIT_I(sbi)->sentry_lock);
3130         for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
3131                 if (add_discard_addrs(sbi, cpc, true)) {
3132                         has_candidate = true;
3133                         break;
3134                 }
3135         }
3136         up_write(&SIT_I(sbi)->sentry_lock);
3137
3138         cpc->trim_start = trim_start;
3139         return has_candidate;
3140 }
3141
3142 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
3143                                         struct discard_policy *dpolicy,
3144                                         unsigned int start, unsigned int end)
3145 {
3146         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
3147         struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
3148         struct rb_node **insert_p = NULL, *insert_parent = NULL;
3149         struct discard_cmd *dc;
3150         struct blk_plug plug;
3151         int issued;
3152         unsigned int trimmed = 0;
3153
3154 next:
3155         issued = 0;
3156
3157         mutex_lock(&dcc->cmd_lock);
3158         if (unlikely(dcc->rbtree_check))
3159                 f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi));
3160
3161         dc = __lookup_discard_cmd_ret(&dcc->root, start,
3162                                 &prev_dc, &next_dc, &insert_p, &insert_parent);
3163         if (!dc)
3164                 dc = next_dc;
3165
3166         blk_start_plug(&plug);
3167
3168         while (dc && dc->di.lstart <= end) {
3169                 struct rb_node *node;
3170                 int err = 0;
3171
3172                 if (dc->di.len < dpolicy->granularity)
3173                         goto skip;
3174
3175                 if (dc->state != D_PREP) {
3176                         list_move_tail(&dc->list, &dcc->fstrim_list);
3177                         goto skip;
3178                 }
3179
3180                 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3181
3182                 if (issued >= dpolicy->max_requests) {
3183                         start = dc->di.lstart + dc->di.len;
3184
3185                         if (err)
3186                                 __remove_discard_cmd(sbi, dc);
3187
3188                         blk_finish_plug(&plug);
3189                         mutex_unlock(&dcc->cmd_lock);
3190                         trimmed += __wait_all_discard_cmd(sbi, NULL);
3191                         f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
3192                         goto next;
3193                 }
3194 skip:
3195                 node = rb_next(&dc->rb_node);
3196                 if (err)
3197                         __remove_discard_cmd(sbi, dc);
3198                 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3199
3200                 if (fatal_signal_pending(current))
3201                         break;
3202         }
3203
3204         blk_finish_plug(&plug);
3205         mutex_unlock(&dcc->cmd_lock);
3206
3207         return trimmed;
3208 }
3209
3210 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3211 {
3212         __u64 start = F2FS_BYTES_TO_BLK(range->start);
3213         __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3214         unsigned int start_segno, end_segno;
3215         block_t start_block, end_block;
3216         struct cp_control cpc;
3217         struct discard_policy dpolicy;
3218         unsigned long long trimmed = 0;
3219         int err = 0;
3220         bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3221
3222         if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3223                 return -EINVAL;
3224
3225         if (end < MAIN_BLKADDR(sbi))
3226                 goto out;
3227
3228         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3229                 f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3230                 return -EFSCORRUPTED;
3231         }
3232
3233         /* start/end segment number in main_area */
3234         start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3235         end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3236                                                 GET_SEGNO(sbi, end);
3237         if (need_align) {
3238                 start_segno = rounddown(start_segno, sbi->segs_per_sec);
3239                 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
3240         }
3241
3242         cpc.reason = CP_DISCARD;
3243         cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3244         cpc.trim_start = start_segno;
3245         cpc.trim_end = end_segno;
3246
3247         if (sbi->discard_blks == 0)
3248                 goto out;
3249
3250         f2fs_down_write(&sbi->gc_lock);
3251         stat_inc_cp_call_count(sbi, TOTAL_CALL);
3252         err = f2fs_write_checkpoint(sbi, &cpc);
3253         f2fs_up_write(&sbi->gc_lock);
3254         if (err)
3255                 goto out;
3256
3257         /*
3258          * We filed discard candidates, but actually we don't need to wait for
3259          * all of them, since they'll be issued in idle time along with runtime
3260          * discard option. User configuration looks like using runtime discard
3261          * or periodic fstrim instead of it.
3262          */
3263         if (f2fs_realtime_discard_enable(sbi))
3264                 goto out;
3265
3266         start_block = START_BLOCK(sbi, start_segno);
3267         end_block = START_BLOCK(sbi, end_segno + 1);
3268
3269         __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3270         trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3271                                         start_block, end_block);
3272
3273         trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3274                                         start_block, end_block);
3275 out:
3276         if (!err)
3277                 range->len = F2FS_BLK_TO_BYTES(trimmed);
3278         return err;
3279 }
3280
3281 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
3282 {
3283         switch (hint) {
3284         case WRITE_LIFE_SHORT:
3285                 return CURSEG_HOT_DATA;
3286         case WRITE_LIFE_EXTREME:
3287                 return CURSEG_COLD_DATA;
3288         default:
3289                 return CURSEG_WARM_DATA;
3290         }
3291 }
3292
3293 static int __get_segment_type_2(struct f2fs_io_info *fio)
3294 {
3295         if (fio->type == DATA)
3296                 return CURSEG_HOT_DATA;
3297         else
3298                 return CURSEG_HOT_NODE;
3299 }
3300
3301 static int __get_segment_type_4(struct f2fs_io_info *fio)
3302 {
3303         if (fio->type == DATA) {
3304                 struct inode *inode = fio->page->mapping->host;
3305
3306                 if (S_ISDIR(inode->i_mode))
3307                         return CURSEG_HOT_DATA;
3308                 else
3309                         return CURSEG_COLD_DATA;
3310         } else {
3311                 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3312                         return CURSEG_WARM_NODE;
3313                 else
3314                         return CURSEG_COLD_NODE;
3315         }
3316 }
3317
3318 static int __get_age_segment_type(struct inode *inode, pgoff_t pgofs)
3319 {
3320         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3321         struct extent_info ei = {};
3322
3323         if (f2fs_lookup_age_extent_cache(inode, pgofs, &ei)) {
3324                 if (!ei.age)
3325                         return NO_CHECK_TYPE;
3326                 if (ei.age <= sbi->hot_data_age_threshold)
3327                         return CURSEG_HOT_DATA;
3328                 if (ei.age <= sbi->warm_data_age_threshold)
3329                         return CURSEG_WARM_DATA;
3330                 return CURSEG_COLD_DATA;
3331         }
3332         return NO_CHECK_TYPE;
3333 }
3334
3335 static int __get_segment_type_6(struct f2fs_io_info *fio)
3336 {
3337         if (fio->type == DATA) {
3338                 struct inode *inode = fio->page->mapping->host;
3339                 int type;
3340
3341                 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
3342                         return CURSEG_COLD_DATA_PINNED;
3343
3344                 if (page_private_gcing(fio->page)) {
3345                         if (fio->sbi->am.atgc_enabled &&
3346                                 (fio->io_type == FS_DATA_IO) &&
3347                                 (fio->sbi->gc_mode != GC_URGENT_HIGH))
3348                                 return CURSEG_ALL_DATA_ATGC;
3349                         else
3350                                 return CURSEG_COLD_DATA;
3351                 }
3352                 if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3353                         return CURSEG_COLD_DATA;
3354
3355                 type = __get_age_segment_type(inode, fio->page->index);
3356                 if (type != NO_CHECK_TYPE)
3357                         return type;
3358
3359                 if (file_is_hot(inode) ||
3360                                 is_inode_flag_set(inode, FI_HOT_DATA) ||
3361                                 f2fs_is_cow_file(inode))
3362                         return CURSEG_HOT_DATA;
3363                 return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3364         } else {
3365                 if (IS_DNODE(fio->page))
3366                         return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3367                                                 CURSEG_HOT_NODE;
3368                 return CURSEG_COLD_NODE;
3369         }
3370 }
3371
3372 static int __get_segment_type(struct f2fs_io_info *fio)
3373 {
3374         int type = 0;
3375
3376         switch (F2FS_OPTION(fio->sbi).active_logs) {
3377         case 2:
3378                 type = __get_segment_type_2(fio);
3379                 break;
3380         case 4:
3381                 type = __get_segment_type_4(fio);
3382                 break;
3383         case 6:
3384                 type = __get_segment_type_6(fio);
3385                 break;
3386         default:
3387                 f2fs_bug_on(fio->sbi, true);
3388         }
3389
3390         if (IS_HOT(type))
3391                 fio->temp = HOT;
3392         else if (IS_WARM(type))
3393                 fio->temp = WARM;
3394         else
3395                 fio->temp = COLD;
3396         return type;
3397 }
3398
3399 static void f2fs_randomize_chunk(struct f2fs_sb_info *sbi,
3400                 struct curseg_info *seg)
3401 {
3402         /* To allocate block chunks in different sizes, use random number */
3403         if (--seg->fragment_remained_chunk > 0)
3404                 return;
3405
3406         seg->fragment_remained_chunk =
3407                 get_random_u32_inclusive(1, sbi->max_fragment_chunk);
3408         seg->next_blkoff +=
3409                 get_random_u32_inclusive(1, sbi->max_fragment_hole);
3410 }
3411
3412 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3413                 block_t old_blkaddr, block_t *new_blkaddr,
3414                 struct f2fs_summary *sum, int type,
3415                 struct f2fs_io_info *fio)
3416 {
3417         struct sit_info *sit_i = SIT_I(sbi);
3418         struct curseg_info *curseg = CURSEG_I(sbi, type);
3419         unsigned long long old_mtime;
3420         bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3421         struct seg_entry *se = NULL;
3422         bool segment_full = false;
3423
3424         f2fs_down_read(&SM_I(sbi)->curseg_lock);
3425
3426         mutex_lock(&curseg->curseg_mutex);
3427         down_write(&sit_i->sentry_lock);
3428
3429         if (from_gc) {
3430                 f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3431                 se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3432                 sanity_check_seg_type(sbi, se->type);
3433                 f2fs_bug_on(sbi, IS_NODESEG(se->type));
3434         }
3435         *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3436
3437         f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg);
3438
3439         f2fs_wait_discard_bio(sbi, *new_blkaddr);
3440
3441         curseg->sum_blk->entries[curseg->next_blkoff] = *sum;
3442         if (curseg->alloc_type == SSR) {
3443                 curseg->next_blkoff = f2fs_find_next_ssr_block(sbi, curseg);
3444         } else {
3445                 curseg->next_blkoff++;
3446                 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
3447                         f2fs_randomize_chunk(sbi, curseg);
3448         }
3449         if (curseg->next_blkoff >= f2fs_usable_blks_in_seg(sbi, curseg->segno))
3450                 segment_full = true;
3451         stat_inc_block_count(sbi, curseg);
3452
3453         if (from_gc) {
3454                 old_mtime = get_segment_mtime(sbi, old_blkaddr);
3455         } else {
3456                 update_segment_mtime(sbi, old_blkaddr, 0);
3457                 old_mtime = 0;
3458         }
3459         update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3460
3461         /*
3462          * SIT information should be updated before segment allocation,
3463          * since SSR needs latest valid block information.
3464          */
3465         update_sit_entry(sbi, *new_blkaddr, 1);
3466         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3467                 update_sit_entry(sbi, old_blkaddr, -1);
3468
3469         /*
3470          * If the current segment is full, flush it out and replace it with a
3471          * new segment.
3472          */
3473         if (segment_full) {
3474                 if (from_gc) {
3475                         get_atssr_segment(sbi, type, se->type,
3476                                                 AT_SSR, se->mtime);
3477                 } else {
3478                         if (need_new_seg(sbi, type))
3479                                 new_curseg(sbi, type, false);
3480                         else
3481                                 change_curseg(sbi, type);
3482                         stat_inc_seg_type(sbi, curseg);
3483                 }
3484         }
3485         /*
3486          * segment dirty status should be updated after segment allocation,
3487          * so we just need to update status only one time after previous
3488          * segment being closed.
3489          */
3490         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3491         locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3492
3493         if (IS_DATASEG(type))
3494                 atomic64_inc(&sbi->allocated_data_blocks);
3495
3496         up_write(&sit_i->sentry_lock);
3497
3498         if (page && IS_NODESEG(type)) {
3499                 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3500
3501                 f2fs_inode_chksum_set(sbi, page);
3502         }
3503
3504         if (fio) {
3505                 struct f2fs_bio_info *io;
3506
3507                 if (F2FS_IO_ALIGNED(sbi))
3508                         fio->retry = 0;
3509
3510                 INIT_LIST_HEAD(&fio->list);
3511                 fio->in_list = 1;
3512                 io = sbi->write_io[fio->type] + fio->temp;
3513                 spin_lock(&io->io_lock);
3514                 list_add_tail(&fio->list, &io->io_list);
3515                 spin_unlock(&io->io_lock);
3516         }
3517
3518         mutex_unlock(&curseg->curseg_mutex);
3519
3520         f2fs_up_read(&SM_I(sbi)->curseg_lock);
3521 }
3522
3523 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3524                                         block_t blkaddr, unsigned int blkcnt)
3525 {
3526         if (!f2fs_is_multi_device(sbi))
3527                 return;
3528
3529         while (1) {
3530                 unsigned int devidx = f2fs_target_device_index(sbi, blkaddr);
3531                 unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1;
3532
3533                 /* update device state for fsync */
3534                 f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO);
3535
3536                 /* update device state for checkpoint */
3537                 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3538                         spin_lock(&sbi->dev_lock);
3539                         f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3540                         spin_unlock(&sbi->dev_lock);
3541                 }
3542
3543                 if (blkcnt <= blks)
3544                         break;
3545                 blkcnt -= blks;
3546                 blkaddr += blks;
3547         }
3548 }
3549
3550 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3551 {
3552         int type = __get_segment_type(fio);
3553         bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3554
3555         if (keep_order)
3556                 f2fs_down_read(&fio->sbi->io_order_lock);
3557 reallocate:
3558         f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3559                         &fio->new_blkaddr, sum, type, fio);
3560         if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) {
3561                 invalidate_mapping_pages(META_MAPPING(fio->sbi),
3562                                         fio->old_blkaddr, fio->old_blkaddr);
3563                 f2fs_invalidate_compress_page(fio->sbi, fio->old_blkaddr);
3564         }
3565
3566         /* writeout dirty page into bdev */
3567         f2fs_submit_page_write(fio);
3568         if (fio->retry) {
3569                 fio->old_blkaddr = fio->new_blkaddr;
3570                 goto reallocate;
3571         }
3572
3573         f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1);
3574
3575         if (keep_order)
3576                 f2fs_up_read(&fio->sbi->io_order_lock);
3577 }
3578
3579 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3580                                         enum iostat_type io_type)
3581 {
3582         struct f2fs_io_info fio = {
3583                 .sbi = sbi,
3584                 .type = META,
3585                 .temp = HOT,
3586                 .op = REQ_OP_WRITE,
3587                 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3588                 .old_blkaddr = page->index,
3589                 .new_blkaddr = page->index,
3590                 .page = page,
3591                 .encrypted_page = NULL,
3592                 .in_list = 0,
3593         };
3594
3595         if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3596                 fio.op_flags &= ~REQ_META;
3597
3598         set_page_writeback(page);
3599         f2fs_submit_page_write(&fio);
3600
3601         stat_inc_meta_count(sbi, page->index);
3602         f2fs_update_iostat(sbi, NULL, io_type, F2FS_BLKSIZE);
3603 }
3604
3605 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3606 {
3607         struct f2fs_summary sum;
3608
3609         set_summary(&sum, nid, 0, 0);
3610         do_write_page(&sum, fio);
3611
3612         f2fs_update_iostat(fio->sbi, NULL, fio->io_type, F2FS_BLKSIZE);
3613 }
3614
3615 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3616                                         struct f2fs_io_info *fio)
3617 {
3618         struct f2fs_sb_info *sbi = fio->sbi;
3619         struct f2fs_summary sum;
3620
3621         f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3622         if (fio->io_type == FS_DATA_IO || fio->io_type == FS_CP_DATA_IO)
3623                 f2fs_update_age_extent_cache(dn);
3624         set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3625         do_write_page(&sum, fio);
3626         f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3627
3628         f2fs_update_iostat(sbi, dn->inode, fio->io_type, F2FS_BLKSIZE);
3629 }
3630
3631 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3632 {
3633         int err;
3634         struct f2fs_sb_info *sbi = fio->sbi;
3635         unsigned int segno;
3636
3637         fio->new_blkaddr = fio->old_blkaddr;
3638         /* i/o temperature is needed for passing down write hints */
3639         __get_segment_type(fio);
3640
3641         segno = GET_SEGNO(sbi, fio->new_blkaddr);
3642
3643         if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3644                 set_sbi_flag(sbi, SBI_NEED_FSCK);
3645                 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3646                           __func__, segno);
3647                 err = -EFSCORRUPTED;
3648                 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
3649                 goto drop_bio;
3650         }
3651
3652         if (f2fs_cp_error(sbi)) {
3653                 err = -EIO;
3654                 goto drop_bio;
3655         }
3656
3657         if (fio->post_read)
3658                 invalidate_mapping_pages(META_MAPPING(sbi),
3659                                 fio->new_blkaddr, fio->new_blkaddr);
3660
3661         stat_inc_inplace_blocks(fio->sbi);
3662
3663         if (fio->bio && !IS_F2FS_IPU_NOCACHE(sbi))
3664                 err = f2fs_merge_page_bio(fio);
3665         else
3666                 err = f2fs_submit_page_bio(fio);
3667         if (!err) {
3668                 f2fs_update_device_state(fio->sbi, fio->ino,
3669                                                 fio->new_blkaddr, 1);
3670                 f2fs_update_iostat(fio->sbi, fio->page->mapping->host,
3671                                                 fio->io_type, F2FS_BLKSIZE);
3672         }
3673
3674         return err;
3675 drop_bio:
3676         if (fio->bio && *(fio->bio)) {
3677                 struct bio *bio = *(fio->bio);
3678
3679                 bio->bi_status = BLK_STS_IOERR;
3680                 bio_endio(bio);
3681                 *(fio->bio) = NULL;
3682         }
3683         return err;
3684 }
3685
3686 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3687                                                 unsigned int segno)
3688 {
3689         int i;
3690
3691         for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3692                 if (CURSEG_I(sbi, i)->segno == segno)
3693                         break;
3694         }
3695         return i;
3696 }
3697
3698 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3699                                 block_t old_blkaddr, block_t new_blkaddr,
3700                                 bool recover_curseg, bool recover_newaddr,
3701                                 bool from_gc)
3702 {
3703         struct sit_info *sit_i = SIT_I(sbi);
3704         struct curseg_info *curseg;
3705         unsigned int segno, old_cursegno;
3706         struct seg_entry *se;
3707         int type;
3708         unsigned short old_blkoff;
3709         unsigned char old_alloc_type;
3710
3711         segno = GET_SEGNO(sbi, new_blkaddr);
3712         se = get_seg_entry(sbi, segno);
3713         type = se->type;
3714
3715         f2fs_down_write(&SM_I(sbi)->curseg_lock);
3716
3717         if (!recover_curseg) {
3718                 /* for recovery flow */
3719                 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3720                         if (old_blkaddr == NULL_ADDR)
3721                                 type = CURSEG_COLD_DATA;
3722                         else
3723                                 type = CURSEG_WARM_DATA;
3724                 }
3725         } else {
3726                 if (IS_CURSEG(sbi, segno)) {
3727                         /* se->type is volatile as SSR allocation */
3728                         type = __f2fs_get_curseg(sbi, segno);
3729                         f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3730                 } else {
3731                         type = CURSEG_WARM_DATA;
3732                 }
3733         }
3734
3735         f2fs_bug_on(sbi, !IS_DATASEG(type));
3736         curseg = CURSEG_I(sbi, type);
3737
3738         mutex_lock(&curseg->curseg_mutex);
3739         down_write(&sit_i->sentry_lock);
3740
3741         old_cursegno = curseg->segno;
3742         old_blkoff = curseg->next_blkoff;
3743         old_alloc_type = curseg->alloc_type;
3744
3745         /* change the current segment */
3746         if (segno != curseg->segno) {
3747                 curseg->next_segno = segno;
3748                 change_curseg(sbi, type);
3749         }
3750
3751         curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3752         curseg->sum_blk->entries[curseg->next_blkoff] = *sum;
3753
3754         if (!recover_curseg || recover_newaddr) {
3755                 if (!from_gc)
3756                         update_segment_mtime(sbi, new_blkaddr, 0);
3757                 update_sit_entry(sbi, new_blkaddr, 1);
3758         }
3759         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3760                 invalidate_mapping_pages(META_MAPPING(sbi),
3761                                         old_blkaddr, old_blkaddr);
3762                 f2fs_invalidate_compress_page(sbi, old_blkaddr);
3763                 if (!from_gc)
3764                         update_segment_mtime(sbi, old_blkaddr, 0);
3765                 update_sit_entry(sbi, old_blkaddr, -1);
3766         }
3767
3768         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3769         locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3770
3771         locate_dirty_segment(sbi, old_cursegno);
3772
3773         if (recover_curseg) {
3774                 if (old_cursegno != curseg->segno) {
3775                         curseg->next_segno = old_cursegno;
3776                         change_curseg(sbi, type);
3777                 }
3778                 curseg->next_blkoff = old_blkoff;
3779                 curseg->alloc_type = old_alloc_type;
3780         }
3781
3782         up_write(&sit_i->sentry_lock);
3783         mutex_unlock(&curseg->curseg_mutex);
3784         f2fs_up_write(&SM_I(sbi)->curseg_lock);
3785 }
3786
3787 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3788                                 block_t old_addr, block_t new_addr,
3789                                 unsigned char version, bool recover_curseg,
3790                                 bool recover_newaddr)
3791 {
3792         struct f2fs_summary sum;
3793
3794         set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3795
3796         f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3797                                         recover_curseg, recover_newaddr, false);
3798
3799         f2fs_update_data_blkaddr(dn, new_addr);
3800 }
3801
3802 void f2fs_wait_on_page_writeback(struct page *page,
3803                                 enum page_type type, bool ordered, bool locked)
3804 {
3805         if (PageWriteback(page)) {
3806                 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3807
3808                 /* submit cached LFS IO */
3809                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3810                 /* submit cached IPU IO */
3811                 f2fs_submit_merged_ipu_write(sbi, NULL, page);
3812                 if (ordered) {
3813                         wait_on_page_writeback(page);
3814                         f2fs_bug_on(sbi, locked && PageWriteback(page));
3815                 } else {
3816                         wait_for_stable_page(page);
3817                 }
3818         }
3819 }
3820
3821 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3822 {
3823         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3824         struct page *cpage;
3825
3826         if (!f2fs_post_read_required(inode))
3827                 return;
3828
3829         if (!__is_valid_data_blkaddr(blkaddr))
3830                 return;
3831
3832         cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3833         if (cpage) {
3834                 f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3835                 f2fs_put_page(cpage, 1);
3836         }
3837 }
3838
3839 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3840                                                                 block_t len)
3841 {
3842         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3843         block_t i;
3844
3845         if (!f2fs_post_read_required(inode))
3846                 return;
3847
3848         for (i = 0; i < len; i++)
3849                 f2fs_wait_on_block_writeback(inode, blkaddr + i);
3850
3851         invalidate_mapping_pages(META_MAPPING(sbi), blkaddr, blkaddr + len - 1);
3852 }
3853
3854 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3855 {
3856         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3857         struct curseg_info *seg_i;
3858         unsigned char *kaddr;
3859         struct page *page;
3860         block_t start;
3861         int i, j, offset;
3862
3863         start = start_sum_block(sbi);
3864
3865         page = f2fs_get_meta_page(sbi, start++);
3866         if (IS_ERR(page))
3867                 return PTR_ERR(page);
3868         kaddr = (unsigned char *)page_address(page);
3869
3870         /* Step 1: restore nat cache */
3871         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3872         memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3873
3874         /* Step 2: restore sit cache */
3875         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3876         memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3877         offset = 2 * SUM_JOURNAL_SIZE;
3878
3879         /* Step 3: restore summary entries */
3880         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3881                 unsigned short blk_off;
3882                 unsigned int segno;
3883
3884                 seg_i = CURSEG_I(sbi, i);
3885                 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3886                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3887                 seg_i->next_segno = segno;
3888                 reset_curseg(sbi, i, 0);
3889                 seg_i->alloc_type = ckpt->alloc_type[i];
3890                 seg_i->next_blkoff = blk_off;
3891
3892                 if (seg_i->alloc_type == SSR)
3893                         blk_off = sbi->blocks_per_seg;
3894
3895                 for (j = 0; j < blk_off; j++) {
3896                         struct f2fs_summary *s;
3897
3898                         s = (struct f2fs_summary *)(kaddr + offset);
3899                         seg_i->sum_blk->entries[j] = *s;
3900                         offset += SUMMARY_SIZE;
3901                         if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3902                                                 SUM_FOOTER_SIZE)
3903                                 continue;
3904
3905                         f2fs_put_page(page, 1);
3906                         page = NULL;
3907
3908                         page = f2fs_get_meta_page(sbi, start++);
3909                         if (IS_ERR(page))
3910                                 return PTR_ERR(page);
3911                         kaddr = (unsigned char *)page_address(page);
3912                         offset = 0;
3913                 }
3914         }
3915         f2fs_put_page(page, 1);
3916         return 0;
3917 }
3918
3919 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3920 {
3921         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3922         struct f2fs_summary_block *sum;
3923         struct curseg_info *curseg;
3924         struct page *new;
3925         unsigned short blk_off;
3926         unsigned int segno = 0;
3927         block_t blk_addr = 0;
3928         int err = 0;
3929
3930         /* get segment number and block addr */
3931         if (IS_DATASEG(type)) {
3932                 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3933                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3934                                                         CURSEG_HOT_DATA]);
3935                 if (__exist_node_summaries(sbi))
3936                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
3937                 else
3938                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3939         } else {
3940                 segno = le32_to_cpu(ckpt->cur_node_segno[type -
3941                                                         CURSEG_HOT_NODE]);
3942                 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3943                                                         CURSEG_HOT_NODE]);
3944                 if (__exist_node_summaries(sbi))
3945                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3946                                                         type - CURSEG_HOT_NODE);
3947                 else
3948                         blk_addr = GET_SUM_BLOCK(sbi, segno);
3949         }
3950
3951         new = f2fs_get_meta_page(sbi, blk_addr);
3952         if (IS_ERR(new))
3953                 return PTR_ERR(new);
3954         sum = (struct f2fs_summary_block *)page_address(new);
3955
3956         if (IS_NODESEG(type)) {
3957                 if (__exist_node_summaries(sbi)) {
3958                         struct f2fs_summary *ns = &sum->entries[0];
3959                         int i;
3960
3961                         for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3962                                 ns->version = 0;
3963                                 ns->ofs_in_node = 0;
3964                         }
3965                 } else {
3966                         err = f2fs_restore_node_summary(sbi, segno, sum);
3967                         if (err)
3968                                 goto out;
3969                 }
3970         }
3971
3972         /* set uncompleted segment to curseg */
3973         curseg = CURSEG_I(sbi, type);
3974         mutex_lock(&curseg->curseg_mutex);
3975
3976         /* update journal info */
3977         down_write(&curseg->journal_rwsem);
3978         memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3979         up_write(&curseg->journal_rwsem);
3980
3981         memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3982         memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3983         curseg->next_segno = segno;
3984         reset_curseg(sbi, type, 0);
3985         curseg->alloc_type = ckpt->alloc_type[type];
3986         curseg->next_blkoff = blk_off;
3987         mutex_unlock(&curseg->curseg_mutex);
3988 out:
3989         f2fs_put_page(new, 1);
3990         return err;
3991 }
3992
3993 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3994 {
3995         struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3996         struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3997         int type = CURSEG_HOT_DATA;
3998         int err;
3999
4000         if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
4001                 int npages = f2fs_npages_for_summary_flush(sbi, true);
4002
4003                 if (npages >= 2)
4004                         f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
4005                                                         META_CP, true);
4006
4007                 /* restore for compacted data summary */
4008                 err = read_compacted_summaries(sbi);
4009                 if (err)
4010                         return err;
4011                 type = CURSEG_HOT_NODE;
4012         }
4013
4014         if (__exist_node_summaries(sbi))
4015                 f2fs_ra_meta_pages(sbi,
4016                                 sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
4017                                 NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
4018
4019         for (; type <= CURSEG_COLD_NODE; type++) {
4020                 err = read_normal_summaries(sbi, type);
4021                 if (err)
4022                         return err;
4023         }
4024
4025         /* sanity check for summary blocks */
4026         if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
4027                         sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
4028                 f2fs_err(sbi, "invalid journal entries nats %u sits %u",
4029                          nats_in_cursum(nat_j), sits_in_cursum(sit_j));
4030                 return -EINVAL;
4031         }
4032
4033         return 0;
4034 }
4035
4036 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
4037 {
4038         struct page *page;
4039         unsigned char *kaddr;
4040         struct f2fs_summary *summary;
4041         struct curseg_info *seg_i;
4042         int written_size = 0;
4043         int i, j;
4044
4045         page = f2fs_grab_meta_page(sbi, blkaddr++);
4046         kaddr = (unsigned char *)page_address(page);
4047         memset(kaddr, 0, PAGE_SIZE);
4048
4049         /* Step 1: write nat cache */
4050         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
4051         memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
4052         written_size += SUM_JOURNAL_SIZE;
4053
4054         /* Step 2: write sit cache */
4055         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
4056         memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
4057         written_size += SUM_JOURNAL_SIZE;
4058
4059         /* Step 3: write summary entries */
4060         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
4061                 seg_i = CURSEG_I(sbi, i);
4062                 for (j = 0; j < f2fs_curseg_valid_blocks(sbi, i); j++) {
4063                         if (!page) {
4064                                 page = f2fs_grab_meta_page(sbi, blkaddr++);
4065                                 kaddr = (unsigned char *)page_address(page);
4066                                 memset(kaddr, 0, PAGE_SIZE);
4067                                 written_size = 0;
4068                         }
4069                         summary = (struct f2fs_summary *)(kaddr + written_size);
4070                         *summary = seg_i->sum_blk->entries[j];
4071                         written_size += SUMMARY_SIZE;
4072
4073                         if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
4074                                                         SUM_FOOTER_SIZE)
4075                                 continue;
4076
4077                         set_page_dirty(page);
4078                         f2fs_put_page(page, 1);
4079                         page = NULL;
4080                 }
4081         }
4082         if (page) {
4083                 set_page_dirty(page);
4084                 f2fs_put_page(page, 1);
4085         }
4086 }
4087
4088 static void write_normal_summaries(struct f2fs_sb_info *sbi,
4089                                         block_t blkaddr, int type)
4090 {
4091         int i, end;
4092
4093         if (IS_DATASEG(type))
4094                 end = type + NR_CURSEG_DATA_TYPE;
4095         else
4096                 end = type + NR_CURSEG_NODE_TYPE;
4097
4098         for (i = type; i < end; i++)
4099                 write_current_sum_page(sbi, i, blkaddr + (i - type));
4100 }
4101
4102 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4103 {
4104         if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
4105                 write_compacted_summaries(sbi, start_blk);
4106         else
4107                 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
4108 }
4109
4110 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4111 {
4112         write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
4113 }
4114
4115 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
4116                                         unsigned int val, int alloc)
4117 {
4118         int i;
4119
4120         if (type == NAT_JOURNAL) {
4121                 for (i = 0; i < nats_in_cursum(journal); i++) {
4122                         if (le32_to_cpu(nid_in_journal(journal, i)) == val)
4123                                 return i;
4124                 }
4125                 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
4126                         return update_nats_in_cursum(journal, 1);
4127         } else if (type == SIT_JOURNAL) {
4128                 for (i = 0; i < sits_in_cursum(journal); i++)
4129                         if (le32_to_cpu(segno_in_journal(journal, i)) == val)
4130                                 return i;
4131                 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
4132                         return update_sits_in_cursum(journal, 1);
4133         }
4134         return -1;
4135 }
4136
4137 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
4138                                         unsigned int segno)
4139 {
4140         return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
4141 }
4142
4143 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
4144                                         unsigned int start)
4145 {
4146         struct sit_info *sit_i = SIT_I(sbi);
4147         struct page *page;
4148         pgoff_t src_off, dst_off;
4149
4150         src_off = current_sit_addr(sbi, start);
4151         dst_off = next_sit_addr(sbi, src_off);
4152
4153         page = f2fs_grab_meta_page(sbi, dst_off);
4154         seg_info_to_sit_page(sbi, page, start);
4155
4156         set_page_dirty(page);
4157         set_to_next_sit(sit_i, start);
4158
4159         return page;
4160 }
4161
4162 static struct sit_entry_set *grab_sit_entry_set(void)
4163 {
4164         struct sit_entry_set *ses =
4165                         f2fs_kmem_cache_alloc(sit_entry_set_slab,
4166                                                 GFP_NOFS, true, NULL);
4167
4168         ses->entry_cnt = 0;
4169         INIT_LIST_HEAD(&ses->set_list);
4170         return ses;
4171 }
4172
4173 static void release_sit_entry_set(struct sit_entry_set *ses)
4174 {
4175         list_del(&ses->set_list);
4176         kmem_cache_free(sit_entry_set_slab, ses);
4177 }
4178
4179 static void adjust_sit_entry_set(struct sit_entry_set *ses,
4180                                                 struct list_head *head)
4181 {
4182         struct sit_entry_set *next = ses;
4183
4184         if (list_is_last(&ses->set_list, head))
4185                 return;
4186
4187         list_for_each_entry_continue(next, head, set_list)
4188                 if (ses->entry_cnt <= next->entry_cnt) {
4189                         list_move_tail(&ses->set_list, &next->set_list);
4190                         return;
4191                 }
4192
4193         list_move_tail(&ses->set_list, head);
4194 }
4195
4196 static void add_sit_entry(unsigned int segno, struct list_head *head)
4197 {
4198         struct sit_entry_set *ses;
4199         unsigned int start_segno = START_SEGNO(segno);
4200
4201         list_for_each_entry(ses, head, set_list) {
4202                 if (ses->start_segno == start_segno) {
4203                         ses->entry_cnt++;
4204                         adjust_sit_entry_set(ses, head);
4205                         return;
4206                 }
4207         }
4208
4209         ses = grab_sit_entry_set();
4210
4211         ses->start_segno = start_segno;
4212         ses->entry_cnt++;
4213         list_add(&ses->set_list, head);
4214 }
4215
4216 static void add_sits_in_set(struct f2fs_sb_info *sbi)
4217 {
4218         struct f2fs_sm_info *sm_info = SM_I(sbi);
4219         struct list_head *set_list = &sm_info->sit_entry_set;
4220         unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4221         unsigned int segno;
4222
4223         for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4224                 add_sit_entry(segno, set_list);
4225 }
4226
4227 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4228 {
4229         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4230         struct f2fs_journal *journal = curseg->journal;
4231         int i;
4232
4233         down_write(&curseg->journal_rwsem);
4234         for (i = 0; i < sits_in_cursum(journal); i++) {
4235                 unsigned int segno;
4236                 bool dirtied;
4237
4238                 segno = le32_to_cpu(segno_in_journal(journal, i));
4239                 dirtied = __mark_sit_entry_dirty(sbi, segno);
4240
4241                 if (!dirtied)
4242                         add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4243         }
4244         update_sits_in_cursum(journal, -i);
4245         up_write(&curseg->journal_rwsem);
4246 }
4247
4248 /*
4249  * CP calls this function, which flushes SIT entries including sit_journal,
4250  * and moves prefree segs to free segs.
4251  */
4252 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4253 {
4254         struct sit_info *sit_i = SIT_I(sbi);
4255         unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4256         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4257         struct f2fs_journal *journal = curseg->journal;
4258         struct sit_entry_set *ses, *tmp;
4259         struct list_head *head = &SM_I(sbi)->sit_entry_set;
4260         bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4261         struct seg_entry *se;
4262
4263         down_write(&sit_i->sentry_lock);
4264
4265         if (!sit_i->dirty_sentries)
4266                 goto out;
4267
4268         /*
4269          * add and account sit entries of dirty bitmap in sit entry
4270          * set temporarily
4271          */
4272         add_sits_in_set(sbi);
4273
4274         /*
4275          * if there are no enough space in journal to store dirty sit
4276          * entries, remove all entries from journal and add and account
4277          * them in sit entry set.
4278          */
4279         if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4280                                                                 !to_journal)
4281                 remove_sits_in_journal(sbi);
4282
4283         /*
4284          * there are two steps to flush sit entries:
4285          * #1, flush sit entries to journal in current cold data summary block.
4286          * #2, flush sit entries to sit page.
4287          */
4288         list_for_each_entry_safe(ses, tmp, head, set_list) {
4289                 struct page *page = NULL;
4290                 struct f2fs_sit_block *raw_sit = NULL;
4291                 unsigned int start_segno = ses->start_segno;
4292                 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4293                                                 (unsigned long)MAIN_SEGS(sbi));
4294                 unsigned int segno = start_segno;
4295
4296                 if (to_journal &&
4297                         !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4298                         to_journal = false;
4299
4300                 if (to_journal) {
4301                         down_write(&curseg->journal_rwsem);
4302                 } else {
4303                         page = get_next_sit_page(sbi, start_segno);
4304                         raw_sit = page_address(page);
4305                 }
4306
4307                 /* flush dirty sit entries in region of current sit set */
4308                 for_each_set_bit_from(segno, bitmap, end) {
4309                         int offset, sit_offset;
4310
4311                         se = get_seg_entry(sbi, segno);
4312 #ifdef CONFIG_F2FS_CHECK_FS
4313                         if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4314                                                 SIT_VBLOCK_MAP_SIZE))
4315                                 f2fs_bug_on(sbi, 1);
4316 #endif
4317
4318                         /* add discard candidates */
4319                         if (!(cpc->reason & CP_DISCARD)) {
4320                                 cpc->trim_start = segno;
4321                                 add_discard_addrs(sbi, cpc, false);
4322                         }
4323
4324                         if (to_journal) {
4325                                 offset = f2fs_lookup_journal_in_cursum(journal,
4326                                                         SIT_JOURNAL, segno, 1);
4327                                 f2fs_bug_on(sbi, offset < 0);
4328                                 segno_in_journal(journal, offset) =
4329                                                         cpu_to_le32(segno);
4330                                 seg_info_to_raw_sit(se,
4331                                         &sit_in_journal(journal, offset));
4332                                 check_block_count(sbi, segno,
4333                                         &sit_in_journal(journal, offset));
4334                         } else {
4335                                 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4336                                 seg_info_to_raw_sit(se,
4337                                                 &raw_sit->entries[sit_offset]);
4338                                 check_block_count(sbi, segno,
4339                                                 &raw_sit->entries[sit_offset]);
4340                         }
4341
4342                         __clear_bit(segno, bitmap);
4343                         sit_i->dirty_sentries--;
4344                         ses->entry_cnt--;
4345                 }
4346
4347                 if (to_journal)
4348                         up_write(&curseg->journal_rwsem);
4349                 else
4350                         f2fs_put_page(page, 1);
4351
4352                 f2fs_bug_on(sbi, ses->entry_cnt);
4353                 release_sit_entry_set(ses);
4354         }
4355
4356         f2fs_bug_on(sbi, !list_empty(head));
4357         f2fs_bug_on(sbi, sit_i->dirty_sentries);
4358 out:
4359         if (cpc->reason & CP_DISCARD) {
4360                 __u64 trim_start = cpc->trim_start;
4361
4362                 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4363                         add_discard_addrs(sbi, cpc, false);
4364
4365                 cpc->trim_start = trim_start;
4366         }
4367         up_write(&sit_i->sentry_lock);
4368
4369         set_prefree_as_free_segments(sbi);
4370 }
4371
4372 static int build_sit_info(struct f2fs_sb_info *sbi)
4373 {
4374         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4375         struct sit_info *sit_i;
4376         unsigned int sit_segs, start;
4377         char *src_bitmap, *bitmap;
4378         unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4379         unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0;
4380
4381         /* allocate memory for SIT information */
4382         sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4383         if (!sit_i)
4384                 return -ENOMEM;
4385
4386         SM_I(sbi)->sit_info = sit_i;
4387
4388         sit_i->sentries =
4389                 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4390                                               MAIN_SEGS(sbi)),
4391                               GFP_KERNEL);
4392         if (!sit_i->sentries)
4393                 return -ENOMEM;
4394
4395         main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4396         sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4397                                                                 GFP_KERNEL);
4398         if (!sit_i->dirty_sentries_bitmap)
4399                 return -ENOMEM;
4400
4401 #ifdef CONFIG_F2FS_CHECK_FS
4402         bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map);
4403 #else
4404         bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map);
4405 #endif
4406         sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4407         if (!sit_i->bitmap)
4408                 return -ENOMEM;
4409
4410         bitmap = sit_i->bitmap;
4411
4412         for (start = 0; start < MAIN_SEGS(sbi); start++) {
4413                 sit_i->sentries[start].cur_valid_map = bitmap;
4414                 bitmap += SIT_VBLOCK_MAP_SIZE;
4415
4416                 sit_i->sentries[start].ckpt_valid_map = bitmap;
4417                 bitmap += SIT_VBLOCK_MAP_SIZE;
4418
4419 #ifdef CONFIG_F2FS_CHECK_FS
4420                 sit_i->sentries[start].cur_valid_map_mir = bitmap;
4421                 bitmap += SIT_VBLOCK_MAP_SIZE;
4422 #endif
4423
4424                 if (discard_map) {
4425                         sit_i->sentries[start].discard_map = bitmap;
4426                         bitmap += SIT_VBLOCK_MAP_SIZE;
4427                 }
4428         }
4429
4430         sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4431         if (!sit_i->tmp_map)
4432                 return -ENOMEM;
4433
4434         if (__is_large_section(sbi)) {
4435                 sit_i->sec_entries =
4436                         f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4437                                                       MAIN_SECS(sbi)),
4438                                       GFP_KERNEL);
4439                 if (!sit_i->sec_entries)
4440                         return -ENOMEM;
4441         }
4442
4443         /* get information related with SIT */
4444         sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4445
4446         /* setup SIT bitmap from ckeckpoint pack */
4447         sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4448         src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4449
4450         sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4451         if (!sit_i->sit_bitmap)
4452                 return -ENOMEM;
4453
4454 #ifdef CONFIG_F2FS_CHECK_FS
4455         sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4456                                         sit_bitmap_size, GFP_KERNEL);
4457         if (!sit_i->sit_bitmap_mir)
4458                 return -ENOMEM;
4459
4460         sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4461                                         main_bitmap_size, GFP_KERNEL);
4462         if (!sit_i->invalid_segmap)
4463                 return -ENOMEM;
4464 #endif
4465
4466         sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4467         sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4468         sit_i->written_valid_blocks = 0;
4469         sit_i->bitmap_size = sit_bitmap_size;
4470         sit_i->dirty_sentries = 0;
4471         sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4472         sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4473         sit_i->mounted_time = ktime_get_boottime_seconds();
4474         init_rwsem(&sit_i->sentry_lock);
4475         return 0;
4476 }
4477
4478 static int build_free_segmap(struct f2fs_sb_info *sbi)
4479 {
4480         struct free_segmap_info *free_i;
4481         unsigned int bitmap_size, sec_bitmap_size;
4482
4483         /* allocate memory for free segmap information */
4484         free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4485         if (!free_i)
4486                 return -ENOMEM;
4487
4488         SM_I(sbi)->free_info = free_i;
4489
4490         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4491         free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4492         if (!free_i->free_segmap)
4493                 return -ENOMEM;
4494
4495         sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4496         free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4497         if (!free_i->free_secmap)
4498                 return -ENOMEM;
4499
4500         /* set all segments as dirty temporarily */
4501         memset(free_i->free_segmap, 0xff, bitmap_size);
4502         memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4503
4504         /* init free segmap information */
4505         free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4506         free_i->free_segments = 0;
4507         free_i->free_sections = 0;
4508         spin_lock_init(&free_i->segmap_lock);
4509         return 0;
4510 }
4511
4512 static int build_curseg(struct f2fs_sb_info *sbi)
4513 {
4514         struct curseg_info *array;
4515         int i;
4516
4517         array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4518                                         sizeof(*array)), GFP_KERNEL);
4519         if (!array)
4520                 return -ENOMEM;
4521
4522         SM_I(sbi)->curseg_array = array;
4523
4524         for (i = 0; i < NO_CHECK_TYPE; i++) {
4525                 mutex_init(&array[i].curseg_mutex);
4526                 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4527                 if (!array[i].sum_blk)
4528                         return -ENOMEM;
4529                 init_rwsem(&array[i].journal_rwsem);
4530                 array[i].journal = f2fs_kzalloc(sbi,
4531                                 sizeof(struct f2fs_journal), GFP_KERNEL);
4532                 if (!array[i].journal)
4533                         return -ENOMEM;
4534                 if (i < NR_PERSISTENT_LOG)
4535                         array[i].seg_type = CURSEG_HOT_DATA + i;
4536                 else if (i == CURSEG_COLD_DATA_PINNED)
4537                         array[i].seg_type = CURSEG_COLD_DATA;
4538                 else if (i == CURSEG_ALL_DATA_ATGC)
4539                         array[i].seg_type = CURSEG_COLD_DATA;
4540                 array[i].segno = NULL_SEGNO;
4541                 array[i].next_blkoff = 0;
4542                 array[i].inited = false;
4543         }
4544         return restore_curseg_summaries(sbi);
4545 }
4546
4547 static int build_sit_entries(struct f2fs_sb_info *sbi)
4548 {
4549         struct sit_info *sit_i = SIT_I(sbi);
4550         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4551         struct f2fs_journal *journal = curseg->journal;
4552         struct seg_entry *se;
4553         struct f2fs_sit_entry sit;
4554         int sit_blk_cnt = SIT_BLK_CNT(sbi);
4555         unsigned int i, start, end;
4556         unsigned int readed, start_blk = 0;
4557         int err = 0;
4558         block_t sit_valid_blocks[2] = {0, 0};
4559
4560         do {
4561                 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4562                                                         META_SIT, true);
4563
4564                 start = start_blk * sit_i->sents_per_block;
4565                 end = (start_blk + readed) * sit_i->sents_per_block;
4566
4567                 for (; start < end && start < MAIN_SEGS(sbi); start++) {
4568                         struct f2fs_sit_block *sit_blk;
4569                         struct page *page;
4570
4571                         se = &sit_i->sentries[start];
4572                         page = get_current_sit_page(sbi, start);
4573                         if (IS_ERR(page))
4574                                 return PTR_ERR(page);
4575                         sit_blk = (struct f2fs_sit_block *)page_address(page);
4576                         sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4577                         f2fs_put_page(page, 1);
4578
4579                         err = check_block_count(sbi, start, &sit);
4580                         if (err)
4581                                 return err;
4582                         seg_info_from_raw_sit(se, &sit);
4583
4584                         if (se->type >= NR_PERSISTENT_LOG) {
4585                                 f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4586                                                         se->type, start);
4587                                 f2fs_handle_error(sbi,
4588                                                 ERROR_INCONSISTENT_SUM_TYPE);
4589                                 return -EFSCORRUPTED;
4590                         }
4591
4592                         sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4593
4594                         if (f2fs_block_unit_discard(sbi)) {
4595                                 /* build discard map only one time */
4596                                 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4597                                         memset(se->discard_map, 0xff,
4598                                                 SIT_VBLOCK_MAP_SIZE);
4599                                 } else {
4600                                         memcpy(se->discard_map,
4601                                                 se->cur_valid_map,
4602                                                 SIT_VBLOCK_MAP_SIZE);
4603                                         sbi->discard_blks +=
4604                                                 sbi->blocks_per_seg -
4605                                                 se->valid_blocks;
4606                                 }
4607                         }
4608
4609                         if (__is_large_section(sbi))
4610                                 get_sec_entry(sbi, start)->valid_blocks +=
4611                                                         se->valid_blocks;
4612                 }
4613                 start_blk += readed;
4614         } while (start_blk < sit_blk_cnt);
4615
4616         down_read(&curseg->journal_rwsem);
4617         for (i = 0; i < sits_in_cursum(journal); i++) {
4618                 unsigned int old_valid_blocks;
4619
4620                 start = le32_to_cpu(segno_in_journal(journal, i));
4621                 if (start >= MAIN_SEGS(sbi)) {
4622                         f2fs_err(sbi, "Wrong journal entry on segno %u",
4623                                  start);
4624                         err = -EFSCORRUPTED;
4625                         f2fs_handle_error(sbi, ERROR_CORRUPTED_JOURNAL);
4626                         break;
4627                 }
4628
4629                 se = &sit_i->sentries[start];
4630                 sit = sit_in_journal(journal, i);
4631
4632                 old_valid_blocks = se->valid_blocks;
4633
4634                 sit_valid_blocks[SE_PAGETYPE(se)] -= old_valid_blocks;
4635
4636                 err = check_block_count(sbi, start, &sit);
4637                 if (err)
4638                         break;
4639                 seg_info_from_raw_sit(se, &sit);
4640
4641                 if (se->type >= NR_PERSISTENT_LOG) {
4642                         f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4643                                                         se->type, start);
4644                         err = -EFSCORRUPTED;
4645                         f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
4646                         break;
4647                 }
4648
4649                 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4650
4651                 if (f2fs_block_unit_discard(sbi)) {
4652                         if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4653                                 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4654                         } else {
4655                                 memcpy(se->discard_map, se->cur_valid_map,
4656                                                         SIT_VBLOCK_MAP_SIZE);
4657                                 sbi->discard_blks += old_valid_blocks;
4658                                 sbi->discard_blks -= se->valid_blocks;
4659                         }
4660                 }
4661
4662                 if (__is_large_section(sbi)) {
4663                         get_sec_entry(sbi, start)->valid_blocks +=
4664                                                         se->valid_blocks;
4665                         get_sec_entry(sbi, start)->valid_blocks -=
4666                                                         old_valid_blocks;
4667                 }
4668         }
4669         up_read(&curseg->journal_rwsem);
4670
4671         if (err)
4672                 return err;
4673
4674         if (sit_valid_blocks[NODE] != valid_node_count(sbi)) {
4675                 f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4676                          sit_valid_blocks[NODE], valid_node_count(sbi));
4677                 f2fs_handle_error(sbi, ERROR_INCONSISTENT_NODE_COUNT);
4678                 return -EFSCORRUPTED;
4679         }
4680
4681         if (sit_valid_blocks[DATA] + sit_valid_blocks[NODE] >
4682                                 valid_user_blocks(sbi)) {
4683                 f2fs_err(sbi, "SIT is corrupted data# %u %u vs %u",
4684                          sit_valid_blocks[DATA], sit_valid_blocks[NODE],
4685                          valid_user_blocks(sbi));
4686                 f2fs_handle_error(sbi, ERROR_INCONSISTENT_BLOCK_COUNT);
4687                 return -EFSCORRUPTED;
4688         }
4689
4690         return 0;
4691 }
4692
4693 static void init_free_segmap(struct f2fs_sb_info *sbi)
4694 {
4695         unsigned int start;
4696         int type;
4697         struct seg_entry *sentry;
4698
4699         for (start = 0; start < MAIN_SEGS(sbi); start++) {
4700                 if (f2fs_usable_blks_in_seg(sbi, start) == 0)
4701                         continue;
4702                 sentry = get_seg_entry(sbi, start);
4703                 if (!sentry->valid_blocks)
4704                         __set_free(sbi, start);
4705                 else
4706                         SIT_I(sbi)->written_valid_blocks +=
4707                                                 sentry->valid_blocks;
4708         }
4709
4710         /* set use the current segments */
4711         for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4712                 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4713
4714                 __set_test_and_inuse(sbi, curseg_t->segno);
4715         }
4716 }
4717
4718 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4719 {
4720         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4721         struct free_segmap_info *free_i = FREE_I(sbi);
4722         unsigned int segno = 0, offset = 0, secno;
4723         block_t valid_blocks, usable_blks_in_seg;
4724
4725         while (1) {
4726                 /* find dirty segment based on free segmap */
4727                 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4728                 if (segno >= MAIN_SEGS(sbi))
4729                         break;
4730                 offset = segno + 1;
4731                 valid_blocks = get_valid_blocks(sbi, segno, false);
4732                 usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
4733                 if (valid_blocks == usable_blks_in_seg || !valid_blocks)
4734                         continue;
4735                 if (valid_blocks > usable_blks_in_seg) {
4736                         f2fs_bug_on(sbi, 1);
4737                         continue;
4738                 }
4739                 mutex_lock(&dirty_i->seglist_lock);
4740                 __locate_dirty_segment(sbi, segno, DIRTY);
4741                 mutex_unlock(&dirty_i->seglist_lock);
4742         }
4743
4744         if (!__is_large_section(sbi))
4745                 return;
4746
4747         mutex_lock(&dirty_i->seglist_lock);
4748         for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4749                 valid_blocks = get_valid_blocks(sbi, segno, true);
4750                 secno = GET_SEC_FROM_SEG(sbi, segno);
4751
4752                 if (!valid_blocks || valid_blocks == CAP_BLKS_PER_SEC(sbi))
4753                         continue;
4754                 if (IS_CURSEC(sbi, secno))
4755                         continue;
4756                 set_bit(secno, dirty_i->dirty_secmap);
4757         }
4758         mutex_unlock(&dirty_i->seglist_lock);
4759 }
4760
4761 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4762 {
4763         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4764         unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4765
4766         dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4767         if (!dirty_i->victim_secmap)
4768                 return -ENOMEM;
4769
4770         dirty_i->pinned_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4771         if (!dirty_i->pinned_secmap)
4772                 return -ENOMEM;
4773
4774         dirty_i->pinned_secmap_cnt = 0;
4775         dirty_i->enable_pin_section = true;
4776         return 0;
4777 }
4778
4779 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4780 {
4781         struct dirty_seglist_info *dirty_i;
4782         unsigned int bitmap_size, i;
4783
4784         /* allocate memory for dirty segments list information */
4785         dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4786                                                                 GFP_KERNEL);
4787         if (!dirty_i)
4788                 return -ENOMEM;
4789
4790         SM_I(sbi)->dirty_info = dirty_i;
4791         mutex_init(&dirty_i->seglist_lock);
4792
4793         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4794
4795         for (i = 0; i < NR_DIRTY_TYPE; i++) {
4796                 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4797                                                                 GFP_KERNEL);
4798                 if (!dirty_i->dirty_segmap[i])
4799                         return -ENOMEM;
4800         }
4801
4802         if (__is_large_section(sbi)) {
4803                 bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4804                 dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
4805                                                 bitmap_size, GFP_KERNEL);
4806                 if (!dirty_i->dirty_secmap)
4807                         return -ENOMEM;
4808         }
4809
4810         init_dirty_segmap(sbi);
4811         return init_victim_secmap(sbi);
4812 }
4813
4814 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4815 {
4816         int i;
4817
4818         /*
4819          * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4820          * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4821          */
4822         for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4823                 struct curseg_info *curseg = CURSEG_I(sbi, i);
4824                 struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4825                 unsigned int blkofs = curseg->next_blkoff;
4826
4827                 if (f2fs_sb_has_readonly(sbi) &&
4828                         i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
4829                         continue;
4830
4831                 sanity_check_seg_type(sbi, curseg->seg_type);
4832
4833                 if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) {
4834                         f2fs_err(sbi,
4835                                  "Current segment has invalid alloc_type:%d",
4836                                  curseg->alloc_type);
4837                         f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
4838                         return -EFSCORRUPTED;
4839                 }
4840
4841                 if (f2fs_test_bit(blkofs, se->cur_valid_map))
4842                         goto out;
4843
4844                 if (curseg->alloc_type == SSR)
4845                         continue;
4846
4847                 for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4848                         if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4849                                 continue;
4850 out:
4851                         f2fs_err(sbi,
4852                                  "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4853                                  i, curseg->segno, curseg->alloc_type,
4854                                  curseg->next_blkoff, blkofs);
4855                         f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
4856                         return -EFSCORRUPTED;
4857                 }
4858         }
4859         return 0;
4860 }
4861
4862 #ifdef CONFIG_BLK_DEV_ZONED
4863
4864 static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4865                                     struct f2fs_dev_info *fdev,
4866                                     struct blk_zone *zone)
4867 {
4868         unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno;
4869         block_t zone_block, wp_block, last_valid_block;
4870         unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4871         int i, s, b, ret;
4872         struct seg_entry *se;
4873
4874         if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4875                 return 0;
4876
4877         wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block);
4878         wp_segno = GET_SEGNO(sbi, wp_block);
4879         wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4880         zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4881         zone_segno = GET_SEGNO(sbi, zone_block);
4882         zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno);
4883
4884         if (zone_segno >= MAIN_SEGS(sbi))
4885                 return 0;
4886
4887         /*
4888          * Skip check of zones cursegs point to, since
4889          * fix_curseg_write_pointer() checks them.
4890          */
4891         for (i = 0; i < NO_CHECK_TYPE; i++)
4892                 if (zone_secno == GET_SEC_FROM_SEG(sbi,
4893                                                    CURSEG_I(sbi, i)->segno))
4894                         return 0;
4895
4896         /*
4897          * Get last valid block of the zone.
4898          */
4899         last_valid_block = zone_block - 1;
4900         for (s = sbi->segs_per_sec - 1; s >= 0; s--) {
4901                 segno = zone_segno + s;
4902                 se = get_seg_entry(sbi, segno);
4903                 for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
4904                         if (f2fs_test_bit(b, se->cur_valid_map)) {
4905                                 last_valid_block = START_BLOCK(sbi, segno) + b;
4906                                 break;
4907                         }
4908                 if (last_valid_block >= zone_block)
4909                         break;
4910         }
4911
4912         /*
4913          * The write pointer matches with the valid blocks or
4914          * already points to the end of the zone.
4915          */
4916         if ((last_valid_block + 1 == wp_block) ||
4917                         (zone->wp == zone->start + zone->len))
4918                 return 0;
4919
4920         if (last_valid_block + 1 == zone_block) {
4921                 /*
4922                  * If there is no valid block in the zone and if write pointer
4923                  * is not at zone start, reset the write pointer.
4924                  */
4925                 f2fs_notice(sbi,
4926                             "Zone without valid block has non-zero write "
4927                             "pointer. Reset the write pointer: wp[0x%x,0x%x]",
4928                             wp_segno, wp_blkoff);
4929                 ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4930                                         zone->len >> log_sectors_per_block);
4931                 if (ret)
4932                         f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4933                                  fdev->path, ret);
4934
4935                 return ret;
4936         }
4937
4938         /*
4939          * If there are valid blocks and the write pointer doesn't
4940          * match with them, we need to report the inconsistency and
4941          * fill the zone till the end to close the zone. This inconsistency
4942          * does not cause write error because the zone will not be selected
4943          * for write operation until it get discarded.
4944          */
4945         f2fs_notice(sbi, "Valid blocks are not aligned with write pointer: "
4946                     "valid block[0x%x,0x%x] wp[0x%x,0x%x]",
4947                     GET_SEGNO(sbi, last_valid_block),
4948                     GET_BLKOFF_FROM_SEG0(sbi, last_valid_block),
4949                     wp_segno, wp_blkoff);
4950
4951         ret = blkdev_zone_mgmt(fdev->bdev, REQ_OP_ZONE_FINISH,
4952                                 zone->start, zone->len, GFP_NOFS);
4953         if (ret == -EOPNOTSUPP) {
4954                 ret = blkdev_issue_zeroout(fdev->bdev, zone->wp,
4955                                         zone->len - (zone->wp - zone->start),
4956                                         GFP_NOFS, 0);
4957                 if (ret)
4958                         f2fs_err(sbi, "Fill up zone failed: %s (errno=%d)",
4959                                         fdev->path, ret);
4960         } else if (ret) {
4961                 f2fs_err(sbi, "Finishing zone failed: %s (errno=%d)",
4962                                 fdev->path, ret);
4963         }
4964
4965         return ret;
4966 }
4967
4968 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
4969                                                   block_t zone_blkaddr)
4970 {
4971         int i;
4972
4973         for (i = 0; i < sbi->s_ndevs; i++) {
4974                 if (!bdev_is_zoned(FDEV(i).bdev))
4975                         continue;
4976                 if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
4977                                 zone_blkaddr <= FDEV(i).end_blk))
4978                         return &FDEV(i);
4979         }
4980
4981         return NULL;
4982 }
4983
4984 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
4985                               void *data)
4986 {
4987         memcpy(data, zone, sizeof(struct blk_zone));
4988         return 0;
4989 }
4990
4991 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
4992 {
4993         struct curseg_info *cs = CURSEG_I(sbi, type);
4994         struct f2fs_dev_info *zbd;
4995         struct blk_zone zone;
4996         unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
4997         block_t cs_zone_block, wp_block;
4998         unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4999         sector_t zone_sector;
5000         int err;
5001
5002         cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
5003         cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
5004
5005         zbd = get_target_zoned_dev(sbi, cs_zone_block);
5006         if (!zbd)
5007                 return 0;
5008
5009         /* report zone for the sector the curseg points to */
5010         zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
5011                 << log_sectors_per_block;
5012         err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
5013                                   report_one_zone_cb, &zone);
5014         if (err != 1) {
5015                 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
5016                          zbd->path, err);
5017                 return err;
5018         }
5019
5020         if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5021                 return 0;
5022
5023         wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
5024         wp_segno = GET_SEGNO(sbi, wp_block);
5025         wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
5026         wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
5027
5028         if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
5029                 wp_sector_off == 0)
5030                 return 0;
5031
5032         f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
5033                     "curseg[0x%x,0x%x] wp[0x%x,0x%x]",
5034                     type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff);
5035
5036         f2fs_notice(sbi, "Assign new section to curseg[%d]: "
5037                     "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff);
5038
5039         f2fs_allocate_new_section(sbi, type, true);
5040
5041         /* check consistency of the zone curseg pointed to */
5042         if (check_zone_write_pointer(sbi, zbd, &zone))
5043                 return -EIO;
5044
5045         /* check newly assigned zone */
5046         cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
5047         cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
5048
5049         zbd = get_target_zoned_dev(sbi, cs_zone_block);
5050         if (!zbd)
5051                 return 0;
5052
5053         zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
5054                 << log_sectors_per_block;
5055         err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
5056                                   report_one_zone_cb, &zone);
5057         if (err != 1) {
5058                 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
5059                          zbd->path, err);
5060                 return err;
5061         }
5062
5063         if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5064                 return 0;
5065
5066         if (zone.wp != zone.start) {
5067                 f2fs_notice(sbi,
5068                             "New zone for curseg[%d] is not yet discarded. "
5069                             "Reset the zone: curseg[0x%x,0x%x]",
5070                             type, cs->segno, cs->next_blkoff);
5071                 err = __f2fs_issue_discard_zone(sbi, zbd->bdev, cs_zone_block,
5072                                         zone.len >> log_sectors_per_block);
5073                 if (err) {
5074                         f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
5075                                  zbd->path, err);
5076                         return err;
5077                 }
5078         }
5079
5080         return 0;
5081 }
5082
5083 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5084 {
5085         int i, ret;
5086
5087         for (i = 0; i < NR_PERSISTENT_LOG; i++) {
5088                 ret = fix_curseg_write_pointer(sbi, i);
5089                 if (ret)
5090                         return ret;
5091         }
5092
5093         return 0;
5094 }
5095
5096 struct check_zone_write_pointer_args {
5097         struct f2fs_sb_info *sbi;
5098         struct f2fs_dev_info *fdev;
5099 };
5100
5101 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
5102                                       void *data)
5103 {
5104         struct check_zone_write_pointer_args *args;
5105
5106         args = (struct check_zone_write_pointer_args *)data;
5107
5108         return check_zone_write_pointer(args->sbi, args->fdev, zone);
5109 }
5110
5111 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5112 {
5113         int i, ret;
5114         struct check_zone_write_pointer_args args;
5115
5116         for (i = 0; i < sbi->s_ndevs; i++) {
5117                 if (!bdev_is_zoned(FDEV(i).bdev))
5118                         continue;
5119
5120                 args.sbi = sbi;
5121                 args.fdev = &FDEV(i);
5122                 ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
5123                                           check_zone_write_pointer_cb, &args);
5124                 if (ret < 0)
5125                         return ret;
5126         }
5127
5128         return 0;
5129 }
5130
5131 /*
5132  * Return the number of usable blocks in a segment. The number of blocks
5133  * returned is always equal to the number of blocks in a segment for
5134  * segments fully contained within a sequential zone capacity or a
5135  * conventional zone. For segments partially contained in a sequential
5136  * zone capacity, the number of usable blocks up to the zone capacity
5137  * is returned. 0 is returned in all other cases.
5138  */
5139 static inline unsigned int f2fs_usable_zone_blks_in_seg(
5140                         struct f2fs_sb_info *sbi, unsigned int segno)
5141 {
5142         block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
5143         unsigned int secno;
5144
5145         if (!sbi->unusable_blocks_per_sec)
5146                 return sbi->blocks_per_seg;
5147
5148         secno = GET_SEC_FROM_SEG(sbi, segno);
5149         seg_start = START_BLOCK(sbi, segno);
5150         sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5151         sec_cap_blkaddr = sec_start_blkaddr + CAP_BLKS_PER_SEC(sbi);
5152
5153         /*
5154          * If segment starts before zone capacity and spans beyond
5155          * zone capacity, then usable blocks are from seg start to
5156          * zone capacity. If the segment starts after the zone capacity,
5157          * then there are no usable blocks.
5158          */
5159         if (seg_start >= sec_cap_blkaddr)
5160                 return 0;
5161         if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr)
5162                 return sec_cap_blkaddr - seg_start;
5163
5164         return sbi->blocks_per_seg;
5165 }
5166 #else
5167 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5168 {
5169         return 0;
5170 }
5171
5172 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5173 {
5174         return 0;
5175 }
5176
5177 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5178                                                         unsigned int segno)
5179 {
5180         return 0;
5181 }
5182
5183 #endif
5184 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5185                                         unsigned int segno)
5186 {
5187         if (f2fs_sb_has_blkzoned(sbi))
5188                 return f2fs_usable_zone_blks_in_seg(sbi, segno);
5189
5190         return sbi->blocks_per_seg;
5191 }
5192
5193 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
5194                                         unsigned int segno)
5195 {
5196         if (f2fs_sb_has_blkzoned(sbi))
5197                 return CAP_SEGS_PER_SEC(sbi);
5198
5199         return sbi->segs_per_sec;
5200 }
5201
5202 /*
5203  * Update min, max modified time for cost-benefit GC algorithm
5204  */
5205 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5206 {
5207         struct sit_info *sit_i = SIT_I(sbi);
5208         unsigned int segno;
5209
5210         down_write(&sit_i->sentry_lock);
5211
5212         sit_i->min_mtime = ULLONG_MAX;
5213
5214         for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
5215                 unsigned int i;
5216                 unsigned long long mtime = 0;
5217
5218                 for (i = 0; i < sbi->segs_per_sec; i++)
5219                         mtime += get_seg_entry(sbi, segno + i)->mtime;
5220
5221                 mtime = div_u64(mtime, sbi->segs_per_sec);
5222
5223                 if (sit_i->min_mtime > mtime)
5224                         sit_i->min_mtime = mtime;
5225         }
5226         sit_i->max_mtime = get_mtime(sbi, false);
5227         sit_i->dirty_max_mtime = 0;
5228         up_write(&sit_i->sentry_lock);
5229 }
5230
5231 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5232 {
5233         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5234         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5235         struct f2fs_sm_info *sm_info;
5236         int err;
5237
5238         sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5239         if (!sm_info)
5240                 return -ENOMEM;
5241
5242         /* init sm info */
5243         sbi->sm_info = sm_info;
5244         sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5245         sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5246         sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5247         sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5248         sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5249         sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5250         sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5251         sm_info->rec_prefree_segments = sm_info->main_segments *
5252                                         DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5253         if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5254                 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5255
5256         if (!f2fs_lfs_mode(sbi))
5257                 sm_info->ipu_policy = BIT(F2FS_IPU_FSYNC);
5258         sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5259         sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5260         sm_info->min_seq_blocks = sbi->blocks_per_seg;
5261         sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5262         sm_info->min_ssr_sections = reserved_sections(sbi);
5263
5264         INIT_LIST_HEAD(&sm_info->sit_entry_set);
5265
5266         init_f2fs_rwsem(&sm_info->curseg_lock);
5267
5268         err = f2fs_create_flush_cmd_control(sbi);
5269         if (err)
5270                 return err;
5271
5272         err = create_discard_cmd_control(sbi);
5273         if (err)
5274                 return err;
5275
5276         err = build_sit_info(sbi);
5277         if (err)
5278                 return err;
5279         err = build_free_segmap(sbi);
5280         if (err)
5281                 return err;
5282         err = build_curseg(sbi);
5283         if (err)
5284                 return err;
5285
5286         /* reinit free segmap based on SIT */
5287         err = build_sit_entries(sbi);
5288         if (err)
5289                 return err;
5290
5291         init_free_segmap(sbi);
5292         err = build_dirty_segmap(sbi);
5293         if (err)
5294                 return err;
5295
5296         err = sanity_check_curseg(sbi);
5297         if (err)
5298                 return err;
5299
5300         init_min_max_mtime(sbi);
5301         return 0;
5302 }
5303
5304 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5305                 enum dirty_type dirty_type)
5306 {
5307         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5308
5309         mutex_lock(&dirty_i->seglist_lock);
5310         kvfree(dirty_i->dirty_segmap[dirty_type]);
5311         dirty_i->nr_dirty[dirty_type] = 0;
5312         mutex_unlock(&dirty_i->seglist_lock);
5313 }
5314
5315 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5316 {
5317         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5318
5319         kvfree(dirty_i->pinned_secmap);
5320         kvfree(dirty_i->victim_secmap);
5321 }
5322
5323 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5324 {
5325         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5326         int i;
5327
5328         if (!dirty_i)
5329                 return;
5330
5331         /* discard pre-free/dirty segments list */
5332         for (i = 0; i < NR_DIRTY_TYPE; i++)
5333                 discard_dirty_segmap(sbi, i);
5334
5335         if (__is_large_section(sbi)) {
5336                 mutex_lock(&dirty_i->seglist_lock);
5337                 kvfree(dirty_i->dirty_secmap);
5338                 mutex_unlock(&dirty_i->seglist_lock);
5339         }
5340
5341         destroy_victim_secmap(sbi);
5342         SM_I(sbi)->dirty_info = NULL;
5343         kfree(dirty_i);
5344 }
5345
5346 static void destroy_curseg(struct f2fs_sb_info *sbi)
5347 {
5348         struct curseg_info *array = SM_I(sbi)->curseg_array;
5349         int i;
5350
5351         if (!array)
5352                 return;
5353         SM_I(sbi)->curseg_array = NULL;
5354         for (i = 0; i < NR_CURSEG_TYPE; i++) {
5355                 kfree(array[i].sum_blk);
5356                 kfree(array[i].journal);
5357         }
5358         kfree(array);
5359 }
5360
5361 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5362 {
5363         struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5364
5365         if (!free_i)
5366                 return;
5367         SM_I(sbi)->free_info = NULL;
5368         kvfree(free_i->free_segmap);
5369         kvfree(free_i->free_secmap);
5370         kfree(free_i);
5371 }
5372
5373 static void destroy_sit_info(struct f2fs_sb_info *sbi)
5374 {
5375         struct sit_info *sit_i = SIT_I(sbi);
5376
5377         if (!sit_i)
5378                 return;
5379
5380         if (sit_i->sentries)
5381                 kvfree(sit_i->bitmap);
5382         kfree(sit_i->tmp_map);
5383
5384         kvfree(sit_i->sentries);
5385         kvfree(sit_i->sec_entries);
5386         kvfree(sit_i->dirty_sentries_bitmap);
5387
5388         SM_I(sbi)->sit_info = NULL;
5389         kvfree(sit_i->sit_bitmap);
5390 #ifdef CONFIG_F2FS_CHECK_FS
5391         kvfree(sit_i->sit_bitmap_mir);
5392         kvfree(sit_i->invalid_segmap);
5393 #endif
5394         kfree(sit_i);
5395 }
5396
5397 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5398 {
5399         struct f2fs_sm_info *sm_info = SM_I(sbi);
5400
5401         if (!sm_info)
5402                 return;
5403         f2fs_destroy_flush_cmd_control(sbi, true);
5404         destroy_discard_cmd_control(sbi);
5405         destroy_dirty_segmap(sbi);
5406         destroy_curseg(sbi);
5407         destroy_free_segmap(sbi);
5408         destroy_sit_info(sbi);
5409         sbi->sm_info = NULL;
5410         kfree(sm_info);
5411 }
5412
5413 int __init f2fs_create_segment_manager_caches(void)
5414 {
5415         discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5416                         sizeof(struct discard_entry));
5417         if (!discard_entry_slab)
5418                 goto fail;
5419
5420         discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5421                         sizeof(struct discard_cmd));
5422         if (!discard_cmd_slab)
5423                 goto destroy_discard_entry;
5424
5425         sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5426                         sizeof(struct sit_entry_set));
5427         if (!sit_entry_set_slab)
5428                 goto destroy_discard_cmd;
5429
5430         revoke_entry_slab = f2fs_kmem_cache_create("f2fs_revoke_entry",
5431                         sizeof(struct revoke_entry));
5432         if (!revoke_entry_slab)
5433                 goto destroy_sit_entry_set;
5434         return 0;
5435
5436 destroy_sit_entry_set:
5437         kmem_cache_destroy(sit_entry_set_slab);
5438 destroy_discard_cmd:
5439         kmem_cache_destroy(discard_cmd_slab);
5440 destroy_discard_entry:
5441         kmem_cache_destroy(discard_entry_slab);
5442 fail:
5443         return -ENOMEM;
5444 }
5445
5446 void f2fs_destroy_segment_manager_caches(void)
5447 {
5448         kmem_cache_destroy(sit_entry_set_slab);
5449         kmem_cache_destroy(discard_cmd_slab);
5450         kmem_cache_destroy(discard_entry_slab);
5451         kmem_cache_destroy(revoke_entry_slab);
5452 }