1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/sched/mm.h>
13 #include <linux/prefetch.h>
14 #include <linux/kthread.h>
15 #include <linux/swap.h>
16 #include <linux/timer.h>
17 #include <linux/freezer.h>
18 #include <linux/sched/signal.h>
19 #include <linux/random.h>
26 #include <trace/events/f2fs.h>
28 #define __reverse_ffz(x) __reverse_ffs(~(x))
30 static struct kmem_cache *discard_entry_slab;
31 static struct kmem_cache *discard_cmd_slab;
32 static struct kmem_cache *sit_entry_set_slab;
33 static struct kmem_cache *revoke_entry_slab;
35 static unsigned long __reverse_ulong(unsigned char *str)
37 unsigned long tmp = 0;
38 int shift = 24, idx = 0;
40 #if BITS_PER_LONG == 64
44 tmp |= (unsigned long)str[idx++] << shift;
45 shift -= BITS_PER_BYTE;
51 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
52 * MSB and LSB are reversed in a byte by f2fs_set_bit.
54 static inline unsigned long __reverse_ffs(unsigned long word)
58 #if BITS_PER_LONG == 64
59 if ((word & 0xffffffff00000000UL) == 0)
64 if ((word & 0xffff0000) == 0)
69 if ((word & 0xff00) == 0)
74 if ((word & 0xf0) == 0)
79 if ((word & 0xc) == 0)
84 if ((word & 0x2) == 0)
90 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
91 * f2fs_set_bit makes MSB and LSB reversed in a byte.
92 * @size must be integral times of unsigned long.
95 * f2fs_set_bit(0, bitmap) => 1000 0000
96 * f2fs_set_bit(7, bitmap) => 0000 0001
98 static unsigned long __find_rev_next_bit(const unsigned long *addr,
99 unsigned long size, unsigned long offset)
101 const unsigned long *p = addr + BIT_WORD(offset);
102 unsigned long result = size;
108 size -= (offset & ~(BITS_PER_LONG - 1));
109 offset %= BITS_PER_LONG;
115 tmp = __reverse_ulong((unsigned char *)p);
117 tmp &= ~0UL >> offset;
118 if (size < BITS_PER_LONG)
119 tmp &= (~0UL << (BITS_PER_LONG - size));
123 if (size <= BITS_PER_LONG)
125 size -= BITS_PER_LONG;
131 return result - size + __reverse_ffs(tmp);
134 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
135 unsigned long size, unsigned long offset)
137 const unsigned long *p = addr + BIT_WORD(offset);
138 unsigned long result = size;
144 size -= (offset & ~(BITS_PER_LONG - 1));
145 offset %= BITS_PER_LONG;
151 tmp = __reverse_ulong((unsigned char *)p);
154 tmp |= ~0UL << (BITS_PER_LONG - offset);
155 if (size < BITS_PER_LONG)
160 if (size <= BITS_PER_LONG)
162 size -= BITS_PER_LONG;
168 return result - size + __reverse_ffz(tmp);
171 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
173 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
174 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
175 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
177 if (f2fs_lfs_mode(sbi))
179 if (sbi->gc_mode == GC_URGENT_HIGH)
181 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
184 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
185 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
188 void f2fs_abort_atomic_write(struct inode *inode, bool clean)
190 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
191 struct f2fs_inode_info *fi = F2FS_I(inode);
193 if (!f2fs_is_atomic_file(inode))
197 truncate_inode_pages_final(inode->i_mapping);
198 clear_inode_flag(fi->cow_inode, FI_COW_FILE);
200 fi->cow_inode = NULL;
201 release_atomic_write_cnt(inode);
202 clear_inode_flag(inode, FI_ATOMIC_FILE);
204 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
206 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
209 static int __replace_atomic_write_block(struct inode *inode, pgoff_t index,
210 block_t new_addr, block_t *old_addr, bool recover)
212 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
213 struct dnode_of_data dn;
218 set_new_dnode(&dn, inode, NULL, NULL, 0);
219 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE_RA);
221 if (err == -ENOMEM) {
222 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
228 err = f2fs_get_node_info(sbi, dn.nid, &ni, false);
235 /* dn.data_blkaddr is always valid */
236 if (!__is_valid_data_blkaddr(new_addr)) {
237 if (new_addr == NULL_ADDR)
238 dec_valid_block_count(sbi, inode, 1);
239 f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
240 f2fs_update_data_blkaddr(&dn, new_addr);
242 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
243 new_addr, ni.version, true, true);
248 *old_addr = dn.data_blkaddr;
249 f2fs_truncate_data_blocks_range(&dn, 1);
250 dec_valid_block_count(sbi, F2FS_I(inode)->cow_inode, count);
251 inc_valid_block_count(sbi, inode, &count);
252 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr,
253 ni.version, true, false);
260 static void __complete_revoke_list(struct inode *inode, struct list_head *head,
263 struct revoke_entry *cur, *tmp;
265 list_for_each_entry_safe(cur, tmp, head, list) {
267 __replace_atomic_write_block(inode, cur->index,
268 cur->old_addr, NULL, true);
269 list_del(&cur->list);
270 kmem_cache_free(revoke_entry_slab, cur);
274 static int __f2fs_commit_atomic_write(struct inode *inode)
276 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
277 struct f2fs_inode_info *fi = F2FS_I(inode);
278 struct inode *cow_inode = fi->cow_inode;
279 struct revoke_entry *new;
280 struct list_head revoke_list;
282 struct dnode_of_data dn;
283 pgoff_t len = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
284 pgoff_t off = 0, blen, index;
287 INIT_LIST_HEAD(&revoke_list);
290 blen = min_t(pgoff_t, ADDRS_PER_BLOCK(cow_inode), len);
292 set_new_dnode(&dn, cow_inode, NULL, NULL, 0);
293 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
294 if (ret && ret != -ENOENT) {
296 } else if (ret == -ENOENT) {
298 if (dn.max_level == 0)
303 blen = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, cow_inode),
306 for (i = 0; i < blen; i++, dn.ofs_in_node++, index++) {
307 blkaddr = f2fs_data_blkaddr(&dn);
309 if (!__is_valid_data_blkaddr(blkaddr)) {
311 } else if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
312 DATA_GENERIC_ENHANCE)) {
318 new = f2fs_kmem_cache_alloc(revoke_entry_slab, GFP_NOFS,
321 ret = __replace_atomic_write_block(inode, index, blkaddr,
322 &new->old_addr, false);
325 kmem_cache_free(revoke_entry_slab, new);
329 f2fs_update_data_blkaddr(&dn, NULL_ADDR);
331 list_add_tail(&new->list, &revoke_list);
341 sbi->revoked_atomic_block += fi->atomic_write_cnt;
343 sbi->committed_atomic_block += fi->atomic_write_cnt;
345 __complete_revoke_list(inode, &revoke_list, ret ? true : false);
350 int f2fs_commit_atomic_write(struct inode *inode)
352 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
353 struct f2fs_inode_info *fi = F2FS_I(inode);
356 err = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
360 f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
363 err = __f2fs_commit_atomic_write(inode);
366 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
372 * This function balances dirty node and dentry pages.
373 * In addition, it controls garbage collection.
375 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
377 if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
378 f2fs_show_injection_info(sbi, FAULT_CHECKPOINT);
379 f2fs_stop_checkpoint(sbi, false);
382 /* balance_fs_bg is able to be pending */
383 if (need && excess_cached_nats(sbi))
384 f2fs_balance_fs_bg(sbi, false);
386 if (!f2fs_is_checkpoint_ready(sbi))
390 * We should do GC or end up with checkpoint, if there are so many dirty
391 * dir/node pages without enough free segments.
393 if (has_not_enough_free_secs(sbi, 0, 0)) {
394 if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
395 sbi->gc_thread->f2fs_gc_task) {
398 prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
399 TASK_UNINTERRUPTIBLE);
400 wake_up(&sbi->gc_thread->gc_wait_queue_head);
402 finish_wait(&sbi->gc_thread->fggc_wq, &wait);
404 struct f2fs_gc_control gc_control = {
405 .victim_segno = NULL_SEGNO,
406 .init_gc_type = BG_GC,
408 .should_migrate_blocks = false,
409 .err_gc_skipped = false,
411 f2fs_down_write(&sbi->gc_lock);
412 f2fs_gc(sbi, &gc_control);
417 static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi)
419 int factor = f2fs_rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2;
420 unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS);
421 unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA);
422 unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES);
423 unsigned int meta = get_pages(sbi, F2FS_DIRTY_META);
424 unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA);
425 unsigned int threshold = sbi->blocks_per_seg * factor *
426 DEFAULT_DIRTY_THRESHOLD;
427 unsigned int global_threshold = threshold * 3 / 2;
429 if (dents >= threshold || qdata >= threshold ||
430 nodes >= threshold || meta >= threshold ||
433 return dents + qdata + nodes + meta + imeta > global_threshold;
436 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
438 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
441 /* try to shrink extent cache when there is no enough memory */
442 if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
443 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
445 /* check the # of cached NAT entries */
446 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
447 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
449 if (!f2fs_available_free_memory(sbi, FREE_NIDS))
450 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
452 f2fs_build_free_nids(sbi, false, false);
454 if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) ||
455 excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi))
458 /* there is background inflight IO or foreground operation recently */
459 if (is_inflight_io(sbi, REQ_TIME) ||
460 (!f2fs_time_over(sbi, REQ_TIME) && f2fs_rwsem_is_locked(&sbi->cp_rwsem)))
463 /* exceed periodical checkpoint timeout threshold */
464 if (f2fs_time_over(sbi, CP_TIME))
467 /* checkpoint is the only way to shrink partial cached entries */
468 if (f2fs_available_free_memory(sbi, NAT_ENTRIES) &&
469 f2fs_available_free_memory(sbi, INO_ENTRIES))
473 if (test_opt(sbi, DATA_FLUSH) && from_bg) {
474 struct blk_plug plug;
476 mutex_lock(&sbi->flush_lock);
478 blk_start_plug(&plug);
479 f2fs_sync_dirty_inodes(sbi, FILE_INODE);
480 blk_finish_plug(&plug);
482 mutex_unlock(&sbi->flush_lock);
484 f2fs_sync_fs(sbi->sb, true);
485 stat_inc_bg_cp_count(sbi->stat_info);
488 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
489 struct block_device *bdev)
491 int ret = blkdev_issue_flush(bdev);
493 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
494 test_opt(sbi, FLUSH_MERGE), ret);
498 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
503 if (!f2fs_is_multi_device(sbi))
504 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
506 for (i = 0; i < sbi->s_ndevs; i++) {
507 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
509 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
516 static int issue_flush_thread(void *data)
518 struct f2fs_sb_info *sbi = data;
519 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
520 wait_queue_head_t *q = &fcc->flush_wait_queue;
522 if (kthread_should_stop())
525 if (!llist_empty(&fcc->issue_list)) {
526 struct flush_cmd *cmd, *next;
529 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
530 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
532 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
534 ret = submit_flush_wait(sbi, cmd->ino);
535 atomic_inc(&fcc->issued_flush);
537 llist_for_each_entry_safe(cmd, next,
538 fcc->dispatch_list, llnode) {
540 complete(&cmd->wait);
542 fcc->dispatch_list = NULL;
545 wait_event_interruptible(*q,
546 kthread_should_stop() || !llist_empty(&fcc->issue_list));
550 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
552 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
553 struct flush_cmd cmd;
556 if (test_opt(sbi, NOBARRIER))
559 if (!test_opt(sbi, FLUSH_MERGE)) {
560 atomic_inc(&fcc->queued_flush);
561 ret = submit_flush_wait(sbi, ino);
562 atomic_dec(&fcc->queued_flush);
563 atomic_inc(&fcc->issued_flush);
567 if (atomic_inc_return(&fcc->queued_flush) == 1 ||
568 f2fs_is_multi_device(sbi)) {
569 ret = submit_flush_wait(sbi, ino);
570 atomic_dec(&fcc->queued_flush);
572 atomic_inc(&fcc->issued_flush);
577 init_completion(&cmd.wait);
579 llist_add(&cmd.llnode, &fcc->issue_list);
582 * update issue_list before we wake up issue_flush thread, this
583 * smp_mb() pairs with another barrier in ___wait_event(), see
584 * more details in comments of waitqueue_active().
588 if (waitqueue_active(&fcc->flush_wait_queue))
589 wake_up(&fcc->flush_wait_queue);
591 if (fcc->f2fs_issue_flush) {
592 wait_for_completion(&cmd.wait);
593 atomic_dec(&fcc->queued_flush);
595 struct llist_node *list;
597 list = llist_del_all(&fcc->issue_list);
599 wait_for_completion(&cmd.wait);
600 atomic_dec(&fcc->queued_flush);
602 struct flush_cmd *tmp, *next;
604 ret = submit_flush_wait(sbi, ino);
606 llist_for_each_entry_safe(tmp, next, list, llnode) {
609 atomic_dec(&fcc->queued_flush);
613 complete(&tmp->wait);
621 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
623 dev_t dev = sbi->sb->s_bdev->bd_dev;
624 struct flush_cmd_control *fcc;
627 if (SM_I(sbi)->fcc_info) {
628 fcc = SM_I(sbi)->fcc_info;
629 if (fcc->f2fs_issue_flush)
634 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
637 atomic_set(&fcc->issued_flush, 0);
638 atomic_set(&fcc->queued_flush, 0);
639 init_waitqueue_head(&fcc->flush_wait_queue);
640 init_llist_head(&fcc->issue_list);
641 SM_I(sbi)->fcc_info = fcc;
642 if (!test_opt(sbi, FLUSH_MERGE))
646 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
647 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
648 if (IS_ERR(fcc->f2fs_issue_flush)) {
649 err = PTR_ERR(fcc->f2fs_issue_flush);
651 SM_I(sbi)->fcc_info = NULL;
658 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
660 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
662 if (fcc && fcc->f2fs_issue_flush) {
663 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
665 fcc->f2fs_issue_flush = NULL;
666 kthread_stop(flush_thread);
670 SM_I(sbi)->fcc_info = NULL;
674 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
678 if (!f2fs_is_multi_device(sbi))
681 if (test_opt(sbi, NOBARRIER))
684 for (i = 1; i < sbi->s_ndevs; i++) {
685 int count = DEFAULT_RETRY_IO_COUNT;
687 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
691 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
693 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
694 } while (ret && --count);
697 f2fs_stop_checkpoint(sbi, false);
701 spin_lock(&sbi->dev_lock);
702 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
703 spin_unlock(&sbi->dev_lock);
709 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
710 enum dirty_type dirty_type)
712 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
714 /* need not be added */
715 if (IS_CURSEG(sbi, segno))
718 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
719 dirty_i->nr_dirty[dirty_type]++;
721 if (dirty_type == DIRTY) {
722 struct seg_entry *sentry = get_seg_entry(sbi, segno);
723 enum dirty_type t = sentry->type;
725 if (unlikely(t >= DIRTY)) {
729 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
730 dirty_i->nr_dirty[t]++;
732 if (__is_large_section(sbi)) {
733 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
734 block_t valid_blocks =
735 get_valid_blocks(sbi, segno, true);
737 f2fs_bug_on(sbi, unlikely(!valid_blocks ||
738 valid_blocks == CAP_BLKS_PER_SEC(sbi)));
740 if (!IS_CURSEC(sbi, secno))
741 set_bit(secno, dirty_i->dirty_secmap);
746 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
747 enum dirty_type dirty_type)
749 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
750 block_t valid_blocks;
752 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
753 dirty_i->nr_dirty[dirty_type]--;
755 if (dirty_type == DIRTY) {
756 struct seg_entry *sentry = get_seg_entry(sbi, segno);
757 enum dirty_type t = sentry->type;
759 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
760 dirty_i->nr_dirty[t]--;
762 valid_blocks = get_valid_blocks(sbi, segno, true);
763 if (valid_blocks == 0) {
764 clear_bit(GET_SEC_FROM_SEG(sbi, segno),
765 dirty_i->victim_secmap);
766 #ifdef CONFIG_F2FS_CHECK_FS
767 clear_bit(segno, SIT_I(sbi)->invalid_segmap);
770 if (__is_large_section(sbi)) {
771 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
774 valid_blocks == CAP_BLKS_PER_SEC(sbi)) {
775 clear_bit(secno, dirty_i->dirty_secmap);
779 if (!IS_CURSEC(sbi, secno))
780 set_bit(secno, dirty_i->dirty_secmap);
786 * Should not occur error such as -ENOMEM.
787 * Adding dirty entry into seglist is not critical operation.
788 * If a given segment is one of current working segments, it won't be added.
790 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
792 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
793 unsigned short valid_blocks, ckpt_valid_blocks;
794 unsigned int usable_blocks;
796 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
799 usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
800 mutex_lock(&dirty_i->seglist_lock);
802 valid_blocks = get_valid_blocks(sbi, segno, false);
803 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
805 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
806 ckpt_valid_blocks == usable_blocks)) {
807 __locate_dirty_segment(sbi, segno, PRE);
808 __remove_dirty_segment(sbi, segno, DIRTY);
809 } else if (valid_blocks < usable_blocks) {
810 __locate_dirty_segment(sbi, segno, DIRTY);
812 /* Recovery routine with SSR needs this */
813 __remove_dirty_segment(sbi, segno, DIRTY);
816 mutex_unlock(&dirty_i->seglist_lock);
819 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
820 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
822 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
825 mutex_lock(&dirty_i->seglist_lock);
826 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
827 if (get_valid_blocks(sbi, segno, false))
829 if (IS_CURSEG(sbi, segno))
831 __locate_dirty_segment(sbi, segno, PRE);
832 __remove_dirty_segment(sbi, segno, DIRTY);
834 mutex_unlock(&dirty_i->seglist_lock);
837 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
840 (overprovision_segments(sbi) - reserved_segments(sbi));
841 block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
842 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
843 block_t holes[2] = {0, 0}; /* DATA and NODE */
845 struct seg_entry *se;
848 mutex_lock(&dirty_i->seglist_lock);
849 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
850 se = get_seg_entry(sbi, segno);
851 if (IS_NODESEG(se->type))
852 holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
855 holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
858 mutex_unlock(&dirty_i->seglist_lock);
860 unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE];
861 if (unusable > ovp_holes)
862 return unusable - ovp_holes;
866 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
869 (overprovision_segments(sbi) - reserved_segments(sbi));
870 if (unusable > F2FS_OPTION(sbi).unusable_cap)
872 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
873 dirty_segments(sbi) > ovp_hole_segs)
878 /* This is only used by SBI_CP_DISABLED */
879 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
881 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
882 unsigned int segno = 0;
884 mutex_lock(&dirty_i->seglist_lock);
885 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
886 if (get_valid_blocks(sbi, segno, false))
888 if (get_ckpt_valid_blocks(sbi, segno, false))
890 mutex_unlock(&dirty_i->seglist_lock);
893 mutex_unlock(&dirty_i->seglist_lock);
897 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
898 struct block_device *bdev, block_t lstart,
899 block_t start, block_t len)
901 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
902 struct list_head *pend_list;
903 struct discard_cmd *dc;
905 f2fs_bug_on(sbi, !len);
907 pend_list = &dcc->pend_list[plist_idx(len)];
909 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL);
910 INIT_LIST_HEAD(&dc->list);
919 init_completion(&dc->wait);
920 list_add_tail(&dc->list, pend_list);
921 spin_lock_init(&dc->lock);
923 atomic_inc(&dcc->discard_cmd_cnt);
924 dcc->undiscard_blks += len;
929 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
930 struct block_device *bdev, block_t lstart,
931 block_t start, block_t len,
932 struct rb_node *parent, struct rb_node **p,
935 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
936 struct discard_cmd *dc;
938 dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
940 rb_link_node(&dc->rb_node, parent, p);
941 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
946 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
947 struct discard_cmd *dc)
949 if (dc->state == D_DONE)
950 atomic_sub(dc->queued, &dcc->queued_discard);
953 rb_erase_cached(&dc->rb_node, &dcc->root);
954 dcc->undiscard_blks -= dc->len;
956 kmem_cache_free(discard_cmd_slab, dc);
958 atomic_dec(&dcc->discard_cmd_cnt);
961 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
962 struct discard_cmd *dc)
964 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
967 trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
969 spin_lock_irqsave(&dc->lock, flags);
971 spin_unlock_irqrestore(&dc->lock, flags);
974 spin_unlock_irqrestore(&dc->lock, flags);
976 f2fs_bug_on(sbi, dc->ref);
978 if (dc->error == -EOPNOTSUPP)
983 "%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
984 KERN_INFO, sbi->sb->s_id,
985 dc->lstart, dc->start, dc->len, dc->error);
986 __detach_discard_cmd(dcc, dc);
989 static void f2fs_submit_discard_endio(struct bio *bio)
991 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
994 spin_lock_irqsave(&dc->lock, flags);
996 dc->error = blk_status_to_errno(bio->bi_status);
998 if (!dc->bio_ref && dc->state == D_SUBMIT) {
1000 complete_all(&dc->wait);
1002 spin_unlock_irqrestore(&dc->lock, flags);
1006 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1007 block_t start, block_t end)
1009 #ifdef CONFIG_F2FS_CHECK_FS
1010 struct seg_entry *sentry;
1012 block_t blk = start;
1013 unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1017 segno = GET_SEGNO(sbi, blk);
1018 sentry = get_seg_entry(sbi, segno);
1019 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1021 if (end < START_BLOCK(sbi, segno + 1))
1022 size = GET_BLKOFF_FROM_SEG0(sbi, end);
1025 map = (unsigned long *)(sentry->cur_valid_map);
1026 offset = __find_rev_next_bit(map, size, offset);
1027 f2fs_bug_on(sbi, offset != size);
1028 blk = START_BLOCK(sbi, segno + 1);
1033 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1034 struct discard_policy *dpolicy,
1035 int discard_type, unsigned int granularity)
1037 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1040 dpolicy->type = discard_type;
1041 dpolicy->sync = true;
1042 dpolicy->ordered = false;
1043 dpolicy->granularity = granularity;
1045 dpolicy->max_requests = dcc->max_discard_request;
1046 dpolicy->io_aware_gran = MAX_PLIST_NUM;
1047 dpolicy->timeout = false;
1049 if (discard_type == DPOLICY_BG) {
1050 dpolicy->min_interval = dcc->min_discard_issue_time;
1051 dpolicy->mid_interval = dcc->mid_discard_issue_time;
1052 dpolicy->max_interval = dcc->max_discard_issue_time;
1053 dpolicy->io_aware = true;
1054 dpolicy->sync = false;
1055 dpolicy->ordered = true;
1056 if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
1057 dpolicy->granularity = 1;
1058 if (atomic_read(&dcc->discard_cmd_cnt))
1059 dpolicy->max_interval =
1060 dcc->min_discard_issue_time;
1062 } else if (discard_type == DPOLICY_FORCE) {
1063 dpolicy->min_interval = dcc->min_discard_issue_time;
1064 dpolicy->mid_interval = dcc->mid_discard_issue_time;
1065 dpolicy->max_interval = dcc->max_discard_issue_time;
1066 dpolicy->io_aware = false;
1067 } else if (discard_type == DPOLICY_FSTRIM) {
1068 dpolicy->io_aware = false;
1069 } else if (discard_type == DPOLICY_UMOUNT) {
1070 dpolicy->io_aware = false;
1071 /* we need to issue all to keep CP_TRIMMED_FLAG */
1072 dpolicy->granularity = 1;
1073 dpolicy->timeout = true;
1077 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1078 struct block_device *bdev, block_t lstart,
1079 block_t start, block_t len);
1080 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1081 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1082 struct discard_policy *dpolicy,
1083 struct discard_cmd *dc,
1084 unsigned int *issued)
1086 struct block_device *bdev = dc->bdev;
1087 unsigned int max_discard_blocks =
1088 SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1089 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1090 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1091 &(dcc->fstrim_list) : &(dcc->wait_list);
1092 blk_opf_t flag = dpolicy->sync ? REQ_SYNC : 0;
1093 block_t lstart, start, len, total_len;
1096 if (dc->state != D_PREP)
1099 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1102 trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1104 lstart = dc->lstart;
1111 while (total_len && *issued < dpolicy->max_requests && !err) {
1112 struct bio *bio = NULL;
1113 unsigned long flags;
1116 if (len > max_discard_blocks) {
1117 len = max_discard_blocks;
1122 if (*issued == dpolicy->max_requests)
1127 if (time_to_inject(sbi, FAULT_DISCARD)) {
1128 f2fs_show_injection_info(sbi, FAULT_DISCARD);
1132 err = __blkdev_issue_discard(bdev,
1133 SECTOR_FROM_BLOCK(start),
1134 SECTOR_FROM_BLOCK(len),
1138 spin_lock_irqsave(&dc->lock, flags);
1139 if (dc->state == D_PARTIAL)
1140 dc->state = D_SUBMIT;
1141 spin_unlock_irqrestore(&dc->lock, flags);
1146 f2fs_bug_on(sbi, !bio);
1149 * should keep before submission to avoid D_DONE
1152 spin_lock_irqsave(&dc->lock, flags);
1154 dc->state = D_SUBMIT;
1156 dc->state = D_PARTIAL;
1158 spin_unlock_irqrestore(&dc->lock, flags);
1160 atomic_inc(&dcc->queued_discard);
1162 list_move_tail(&dc->list, wait_list);
1164 /* sanity check on discard range */
1165 __check_sit_bitmap(sbi, lstart, lstart + len);
1167 bio->bi_private = dc;
1168 bio->bi_end_io = f2fs_submit_discard_endio;
1169 bio->bi_opf |= flag;
1172 atomic_inc(&dcc->issued_discard);
1174 f2fs_update_iostat(sbi, FS_DISCARD, 1);
1183 dcc->undiscard_blks -= len;
1184 __update_discard_tree_range(sbi, bdev, lstart, start, len);
1189 static void __insert_discard_tree(struct f2fs_sb_info *sbi,
1190 struct block_device *bdev, block_t lstart,
1191 block_t start, block_t len,
1192 struct rb_node **insert_p,
1193 struct rb_node *insert_parent)
1195 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1197 struct rb_node *parent = NULL;
1198 bool leftmost = true;
1200 if (insert_p && insert_parent) {
1201 parent = insert_parent;
1206 p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1209 __attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1213 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1214 struct discard_cmd *dc)
1216 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1219 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1220 struct discard_cmd *dc, block_t blkaddr)
1222 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1223 struct discard_info di = dc->di;
1224 bool modified = false;
1226 if (dc->state == D_DONE || dc->len == 1) {
1227 __remove_discard_cmd(sbi, dc);
1231 dcc->undiscard_blks -= di.len;
1233 if (blkaddr > di.lstart) {
1234 dc->len = blkaddr - dc->lstart;
1235 dcc->undiscard_blks += dc->len;
1236 __relocate_discard_cmd(dcc, dc);
1240 if (blkaddr < di.lstart + di.len - 1) {
1242 __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1243 di.start + blkaddr + 1 - di.lstart,
1244 di.lstart + di.len - 1 - blkaddr,
1250 dcc->undiscard_blks += dc->len;
1251 __relocate_discard_cmd(dcc, dc);
1256 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1257 struct block_device *bdev, block_t lstart,
1258 block_t start, block_t len)
1260 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1261 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1262 struct discard_cmd *dc;
1263 struct discard_info di = {0};
1264 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1265 unsigned int max_discard_blocks =
1266 SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1267 block_t end = lstart + len;
1269 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1271 (struct rb_entry **)&prev_dc,
1272 (struct rb_entry **)&next_dc,
1273 &insert_p, &insert_parent, true, NULL);
1279 di.len = next_dc ? next_dc->lstart - lstart : len;
1280 di.len = min(di.len, len);
1285 struct rb_node *node;
1286 bool merged = false;
1287 struct discard_cmd *tdc = NULL;
1290 di.lstart = prev_dc->lstart + prev_dc->len;
1291 if (di.lstart < lstart)
1293 if (di.lstart >= end)
1296 if (!next_dc || next_dc->lstart > end)
1297 di.len = end - di.lstart;
1299 di.len = next_dc->lstart - di.lstart;
1300 di.start = start + di.lstart - lstart;
1306 if (prev_dc && prev_dc->state == D_PREP &&
1307 prev_dc->bdev == bdev &&
1308 __is_discard_back_mergeable(&di, &prev_dc->di,
1309 max_discard_blocks)) {
1310 prev_dc->di.len += di.len;
1311 dcc->undiscard_blks += di.len;
1312 __relocate_discard_cmd(dcc, prev_dc);
1318 if (next_dc && next_dc->state == D_PREP &&
1319 next_dc->bdev == bdev &&
1320 __is_discard_front_mergeable(&di, &next_dc->di,
1321 max_discard_blocks)) {
1322 next_dc->di.lstart = di.lstart;
1323 next_dc->di.len += di.len;
1324 next_dc->di.start = di.start;
1325 dcc->undiscard_blks += di.len;
1326 __relocate_discard_cmd(dcc, next_dc);
1328 __remove_discard_cmd(sbi, tdc);
1333 __insert_discard_tree(sbi, bdev, di.lstart, di.start,
1334 di.len, NULL, NULL);
1341 node = rb_next(&prev_dc->rb_node);
1342 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1346 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1347 struct block_device *bdev, block_t blkstart, block_t blklen)
1349 block_t lblkstart = blkstart;
1351 if (!f2fs_bdev_support_discard(bdev))
1354 trace_f2fs_queue_discard(bdev, blkstart, blklen);
1356 if (f2fs_is_multi_device(sbi)) {
1357 int devi = f2fs_target_device_index(sbi, blkstart);
1359 blkstart -= FDEV(devi).start_blk;
1361 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1362 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1363 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1367 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1368 struct discard_policy *dpolicy)
1370 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1371 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1372 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1373 struct discard_cmd *dc;
1374 struct blk_plug plug;
1375 unsigned int pos = dcc->next_pos;
1376 unsigned int issued = 0;
1377 bool io_interrupted = false;
1379 mutex_lock(&dcc->cmd_lock);
1380 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1382 (struct rb_entry **)&prev_dc,
1383 (struct rb_entry **)&next_dc,
1384 &insert_p, &insert_parent, true, NULL);
1388 blk_start_plug(&plug);
1391 struct rb_node *node;
1394 if (dc->state != D_PREP)
1397 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1398 io_interrupted = true;
1402 dcc->next_pos = dc->lstart + dc->len;
1403 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1405 if (issued >= dpolicy->max_requests)
1408 node = rb_next(&dc->rb_node);
1410 __remove_discard_cmd(sbi, dc);
1411 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1414 blk_finish_plug(&plug);
1419 mutex_unlock(&dcc->cmd_lock);
1421 if (!issued && io_interrupted)
1426 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1427 struct discard_policy *dpolicy);
1429 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1430 struct discard_policy *dpolicy)
1432 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1433 struct list_head *pend_list;
1434 struct discard_cmd *dc, *tmp;
1435 struct blk_plug plug;
1437 bool io_interrupted = false;
1439 if (dpolicy->timeout)
1440 f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1444 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1445 if (dpolicy->timeout &&
1446 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1449 if (i + 1 < dpolicy->granularity)
1452 if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
1453 return __issue_discard_cmd_orderly(sbi, dpolicy);
1455 pend_list = &dcc->pend_list[i];
1457 mutex_lock(&dcc->cmd_lock);
1458 if (list_empty(pend_list))
1460 if (unlikely(dcc->rbtree_check))
1461 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1462 &dcc->root, false));
1463 blk_start_plug(&plug);
1464 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1465 f2fs_bug_on(sbi, dc->state != D_PREP);
1467 if (dpolicy->timeout &&
1468 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1471 if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1472 !is_idle(sbi, DISCARD_TIME)) {
1473 io_interrupted = true;
1477 __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1479 if (issued >= dpolicy->max_requests)
1482 blk_finish_plug(&plug);
1484 mutex_unlock(&dcc->cmd_lock);
1486 if (issued >= dpolicy->max_requests || io_interrupted)
1490 if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1491 __wait_all_discard_cmd(sbi, dpolicy);
1495 if (!issued && io_interrupted)
1501 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1503 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1504 struct list_head *pend_list;
1505 struct discard_cmd *dc, *tmp;
1507 bool dropped = false;
1509 mutex_lock(&dcc->cmd_lock);
1510 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1511 pend_list = &dcc->pend_list[i];
1512 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1513 f2fs_bug_on(sbi, dc->state != D_PREP);
1514 __remove_discard_cmd(sbi, dc);
1518 mutex_unlock(&dcc->cmd_lock);
1523 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1525 __drop_discard_cmd(sbi);
1528 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1529 struct discard_cmd *dc)
1531 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1532 unsigned int len = 0;
1534 wait_for_completion_io(&dc->wait);
1535 mutex_lock(&dcc->cmd_lock);
1536 f2fs_bug_on(sbi, dc->state != D_DONE);
1541 __remove_discard_cmd(sbi, dc);
1543 mutex_unlock(&dcc->cmd_lock);
1548 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1549 struct discard_policy *dpolicy,
1550 block_t start, block_t end)
1552 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1553 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1554 &(dcc->fstrim_list) : &(dcc->wait_list);
1555 struct discard_cmd *dc = NULL, *iter, *tmp;
1556 unsigned int trimmed = 0;
1561 mutex_lock(&dcc->cmd_lock);
1562 list_for_each_entry_safe(iter, tmp, wait_list, list) {
1563 if (iter->lstart + iter->len <= start || end <= iter->lstart)
1565 if (iter->len < dpolicy->granularity)
1567 if (iter->state == D_DONE && !iter->ref) {
1568 wait_for_completion_io(&iter->wait);
1570 trimmed += iter->len;
1571 __remove_discard_cmd(sbi, iter);
1578 mutex_unlock(&dcc->cmd_lock);
1581 trimmed += __wait_one_discard_bio(sbi, dc);
1588 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1589 struct discard_policy *dpolicy)
1591 struct discard_policy dp;
1592 unsigned int discard_blks;
1595 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1598 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1599 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1600 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1601 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1603 return discard_blks;
1606 /* This should be covered by global mutex, &sit_i->sentry_lock */
1607 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1609 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1610 struct discard_cmd *dc;
1611 bool need_wait = false;
1613 mutex_lock(&dcc->cmd_lock);
1614 dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1617 if (dc->state == D_PREP) {
1618 __punch_discard_cmd(sbi, dc, blkaddr);
1624 mutex_unlock(&dcc->cmd_lock);
1627 __wait_one_discard_bio(sbi, dc);
1630 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1632 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1634 if (dcc && dcc->f2fs_issue_discard) {
1635 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1637 dcc->f2fs_issue_discard = NULL;
1638 kthread_stop(discard_thread);
1642 /* This comes from f2fs_put_super */
1643 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1645 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1646 struct discard_policy dpolicy;
1649 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1650 dcc->discard_granularity);
1651 __issue_discard_cmd(sbi, &dpolicy);
1652 dropped = __drop_discard_cmd(sbi);
1654 /* just to make sure there is no pending discard commands */
1655 __wait_all_discard_cmd(sbi, NULL);
1657 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1661 static int issue_discard_thread(void *data)
1663 struct f2fs_sb_info *sbi = data;
1664 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1665 wait_queue_head_t *q = &dcc->discard_wait_queue;
1666 struct discard_policy dpolicy;
1667 unsigned int wait_ms = dcc->min_discard_issue_time;
1673 if (sbi->gc_mode == GC_URGENT_HIGH ||
1674 !f2fs_available_free_memory(sbi, DISCARD_CACHE))
1675 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1677 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1678 dcc->discard_granularity);
1680 if (!atomic_read(&dcc->discard_cmd_cnt))
1681 wait_ms = dpolicy.max_interval;
1683 wait_event_interruptible_timeout(*q,
1684 kthread_should_stop() || freezing(current) ||
1686 msecs_to_jiffies(wait_ms));
1688 if (dcc->discard_wake)
1689 dcc->discard_wake = 0;
1691 /* clean up pending candidates before going to sleep */
1692 if (atomic_read(&dcc->queued_discard))
1693 __wait_all_discard_cmd(sbi, NULL);
1695 if (try_to_freeze())
1697 if (f2fs_readonly(sbi->sb))
1699 if (kthread_should_stop())
1701 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1702 wait_ms = dpolicy.max_interval;
1705 if (!atomic_read(&dcc->discard_cmd_cnt))
1708 sb_start_intwrite(sbi->sb);
1710 issued = __issue_discard_cmd(sbi, &dpolicy);
1712 __wait_all_discard_cmd(sbi, &dpolicy);
1713 wait_ms = dpolicy.min_interval;
1714 } else if (issued == -1) {
1715 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1717 wait_ms = dpolicy.mid_interval;
1719 wait_ms = dpolicy.max_interval;
1722 sb_end_intwrite(sbi->sb);
1724 } while (!kthread_should_stop());
1728 #ifdef CONFIG_BLK_DEV_ZONED
1729 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1730 struct block_device *bdev, block_t blkstart, block_t blklen)
1732 sector_t sector, nr_sects;
1733 block_t lblkstart = blkstart;
1736 if (f2fs_is_multi_device(sbi)) {
1737 devi = f2fs_target_device_index(sbi, blkstart);
1738 if (blkstart < FDEV(devi).start_blk ||
1739 blkstart > FDEV(devi).end_blk) {
1740 f2fs_err(sbi, "Invalid block %x", blkstart);
1743 blkstart -= FDEV(devi).start_blk;
1746 /* For sequential zones, reset the zone write pointer */
1747 if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1748 sector = SECTOR_FROM_BLOCK(blkstart);
1749 nr_sects = SECTOR_FROM_BLOCK(blklen);
1751 if (sector & (bdev_zone_sectors(bdev) - 1) ||
1752 nr_sects != bdev_zone_sectors(bdev)) {
1753 f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1754 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1758 trace_f2fs_issue_reset_zone(bdev, blkstart);
1759 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1760 sector, nr_sects, GFP_NOFS);
1763 /* For conventional zones, use regular discard if supported */
1764 return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1768 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1769 struct block_device *bdev, block_t blkstart, block_t blklen)
1771 #ifdef CONFIG_BLK_DEV_ZONED
1772 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1773 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1775 return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1778 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1779 block_t blkstart, block_t blklen)
1781 sector_t start = blkstart, len = 0;
1782 struct block_device *bdev;
1783 struct seg_entry *se;
1784 unsigned int offset;
1788 bdev = f2fs_target_device(sbi, blkstart, NULL);
1790 for (i = blkstart; i < blkstart + blklen; i++, len++) {
1792 struct block_device *bdev2 =
1793 f2fs_target_device(sbi, i, NULL);
1795 if (bdev2 != bdev) {
1796 err = __issue_discard_async(sbi, bdev,
1806 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1807 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1809 if (f2fs_block_unit_discard(sbi) &&
1810 !f2fs_test_and_set_bit(offset, se->discard_map))
1811 sbi->discard_blks--;
1815 err = __issue_discard_async(sbi, bdev, start, len);
1819 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1822 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1823 int max_blocks = sbi->blocks_per_seg;
1824 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1825 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1826 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1827 unsigned long *discard_map = (unsigned long *)se->discard_map;
1828 unsigned long *dmap = SIT_I(sbi)->tmp_map;
1829 unsigned int start = 0, end = -1;
1830 bool force = (cpc->reason & CP_DISCARD);
1831 struct discard_entry *de = NULL;
1832 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1835 if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi) ||
1836 !f2fs_block_unit_discard(sbi))
1840 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1841 SM_I(sbi)->dcc_info->nr_discards >=
1842 SM_I(sbi)->dcc_info->max_discards)
1846 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1847 for (i = 0; i < entries; i++)
1848 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1849 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1851 while (force || SM_I(sbi)->dcc_info->nr_discards <=
1852 SM_I(sbi)->dcc_info->max_discards) {
1853 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1854 if (start >= max_blocks)
1857 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1858 if (force && start && end != max_blocks
1859 && (end - start) < cpc->trim_minlen)
1866 de = f2fs_kmem_cache_alloc(discard_entry_slab,
1867 GFP_F2FS_ZERO, true, NULL);
1868 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1869 list_add_tail(&de->list, head);
1872 for (i = start; i < end; i++)
1873 __set_bit_le(i, (void *)de->discard_map);
1875 SM_I(sbi)->dcc_info->nr_discards += end - start;
1880 static void release_discard_addr(struct discard_entry *entry)
1882 list_del(&entry->list);
1883 kmem_cache_free(discard_entry_slab, entry);
1886 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1888 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1889 struct discard_entry *entry, *this;
1892 list_for_each_entry_safe(entry, this, head, list)
1893 release_discard_addr(entry);
1897 * Should call f2fs_clear_prefree_segments after checkpoint is done.
1899 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1901 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1904 mutex_lock(&dirty_i->seglist_lock);
1905 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1906 __set_test_and_free(sbi, segno, false);
1907 mutex_unlock(&dirty_i->seglist_lock);
1910 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1911 struct cp_control *cpc)
1913 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1914 struct list_head *head = &dcc->entry_list;
1915 struct discard_entry *entry, *this;
1916 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1917 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1918 unsigned int start = 0, end = -1;
1919 unsigned int secno, start_segno;
1920 bool force = (cpc->reason & CP_DISCARD);
1921 bool section_alignment = F2FS_OPTION(sbi).discard_unit ==
1922 DISCARD_UNIT_SECTION;
1924 if (f2fs_lfs_mode(sbi) && __is_large_section(sbi))
1925 section_alignment = true;
1927 mutex_lock(&dirty_i->seglist_lock);
1932 if (section_alignment && end != -1)
1934 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1935 if (start >= MAIN_SEGS(sbi))
1937 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1940 if (section_alignment) {
1941 start = rounddown(start, sbi->segs_per_sec);
1942 end = roundup(end, sbi->segs_per_sec);
1945 for (i = start; i < end; i++) {
1946 if (test_and_clear_bit(i, prefree_map))
1947 dirty_i->nr_dirty[PRE]--;
1950 if (!f2fs_realtime_discard_enable(sbi))
1953 if (force && start >= cpc->trim_start &&
1954 (end - 1) <= cpc->trim_end)
1957 if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) {
1958 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
1959 (end - start) << sbi->log_blocks_per_seg);
1963 secno = GET_SEC_FROM_SEG(sbi, start);
1964 start_segno = GET_SEG_FROM_SEC(sbi, secno);
1965 if (!IS_CURSEC(sbi, secno) &&
1966 !get_valid_blocks(sbi, start, true))
1967 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
1968 sbi->segs_per_sec << sbi->log_blocks_per_seg);
1970 start = start_segno + sbi->segs_per_sec;
1976 mutex_unlock(&dirty_i->seglist_lock);
1978 if (!f2fs_block_unit_discard(sbi))
1981 /* send small discards */
1982 list_for_each_entry_safe(entry, this, head, list) {
1983 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
1984 bool is_valid = test_bit_le(0, entry->discard_map);
1988 next_pos = find_next_zero_bit_le(entry->discard_map,
1989 sbi->blocks_per_seg, cur_pos);
1990 len = next_pos - cur_pos;
1992 if (f2fs_sb_has_blkzoned(sbi) ||
1993 (force && len < cpc->trim_minlen))
1996 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2000 next_pos = find_next_bit_le(entry->discard_map,
2001 sbi->blocks_per_seg, cur_pos);
2005 is_valid = !is_valid;
2007 if (cur_pos < sbi->blocks_per_seg)
2010 release_discard_addr(entry);
2011 dcc->nr_discards -= total_len;
2015 wake_up_discard_thread(sbi, false);
2018 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi)
2020 dev_t dev = sbi->sb->s_bdev->bd_dev;
2021 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2024 if (!f2fs_realtime_discard_enable(sbi))
2027 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2028 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2029 if (IS_ERR(dcc->f2fs_issue_discard))
2030 err = PTR_ERR(dcc->f2fs_issue_discard);
2035 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2037 struct discard_cmd_control *dcc;
2040 if (SM_I(sbi)->dcc_info) {
2041 dcc = SM_I(sbi)->dcc_info;
2045 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2049 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2050 if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT)
2051 dcc->discard_granularity = sbi->blocks_per_seg;
2052 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
2053 dcc->discard_granularity = BLKS_PER_SEC(sbi);
2055 INIT_LIST_HEAD(&dcc->entry_list);
2056 for (i = 0; i < MAX_PLIST_NUM; i++)
2057 INIT_LIST_HEAD(&dcc->pend_list[i]);
2058 INIT_LIST_HEAD(&dcc->wait_list);
2059 INIT_LIST_HEAD(&dcc->fstrim_list);
2060 mutex_init(&dcc->cmd_lock);
2061 atomic_set(&dcc->issued_discard, 0);
2062 atomic_set(&dcc->queued_discard, 0);
2063 atomic_set(&dcc->discard_cmd_cnt, 0);
2064 dcc->nr_discards = 0;
2065 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2066 dcc->max_discard_request = DEF_MAX_DISCARD_REQUEST;
2067 dcc->min_discard_issue_time = DEF_MIN_DISCARD_ISSUE_TIME;
2068 dcc->mid_discard_issue_time = DEF_MID_DISCARD_ISSUE_TIME;
2069 dcc->max_discard_issue_time = DEF_MAX_DISCARD_ISSUE_TIME;
2070 dcc->undiscard_blks = 0;
2072 dcc->root = RB_ROOT_CACHED;
2073 dcc->rbtree_check = false;
2075 init_waitqueue_head(&dcc->discard_wait_queue);
2076 SM_I(sbi)->dcc_info = dcc;
2078 err = f2fs_start_discard_thread(sbi);
2081 SM_I(sbi)->dcc_info = NULL;
2087 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2089 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2094 f2fs_stop_discard_thread(sbi);
2097 * Recovery can cache discard commands, so in error path of
2098 * fill_super(), it needs to give a chance to handle them.
2100 if (unlikely(atomic_read(&dcc->discard_cmd_cnt)))
2101 f2fs_issue_discard_timeout(sbi);
2104 SM_I(sbi)->dcc_info = NULL;
2107 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2109 struct sit_info *sit_i = SIT_I(sbi);
2111 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2112 sit_i->dirty_sentries++;
2119 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2120 unsigned int segno, int modified)
2122 struct seg_entry *se = get_seg_entry(sbi, segno);
2126 __mark_sit_entry_dirty(sbi, segno);
2129 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2132 unsigned int segno = GET_SEGNO(sbi, blkaddr);
2134 if (segno == NULL_SEGNO)
2136 return get_seg_entry(sbi, segno)->mtime;
2139 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2140 unsigned long long old_mtime)
2142 struct seg_entry *se;
2143 unsigned int segno = GET_SEGNO(sbi, blkaddr);
2144 unsigned long long ctime = get_mtime(sbi, false);
2145 unsigned long long mtime = old_mtime ? old_mtime : ctime;
2147 if (segno == NULL_SEGNO)
2150 se = get_seg_entry(sbi, segno);
2155 se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2156 se->valid_blocks + 1);
2158 if (ctime > SIT_I(sbi)->max_mtime)
2159 SIT_I(sbi)->max_mtime = ctime;
2162 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2164 struct seg_entry *se;
2165 unsigned int segno, offset;
2166 long int new_vblocks;
2168 #ifdef CONFIG_F2FS_CHECK_FS
2172 segno = GET_SEGNO(sbi, blkaddr);
2174 se = get_seg_entry(sbi, segno);
2175 new_vblocks = se->valid_blocks + del;
2176 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2178 f2fs_bug_on(sbi, (new_vblocks < 0 ||
2179 (new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2181 se->valid_blocks = new_vblocks;
2183 /* Update valid block bitmap */
2185 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2186 #ifdef CONFIG_F2FS_CHECK_FS
2187 mir_exist = f2fs_test_and_set_bit(offset,
2188 se->cur_valid_map_mir);
2189 if (unlikely(exist != mir_exist)) {
2190 f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2192 f2fs_bug_on(sbi, 1);
2195 if (unlikely(exist)) {
2196 f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2198 f2fs_bug_on(sbi, 1);
2203 if (f2fs_block_unit_discard(sbi) &&
2204 !f2fs_test_and_set_bit(offset, se->discard_map))
2205 sbi->discard_blks--;
2208 * SSR should never reuse block which is checkpointed
2209 * or newly invalidated.
2211 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2212 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2213 se->ckpt_valid_blocks++;
2216 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2217 #ifdef CONFIG_F2FS_CHECK_FS
2218 mir_exist = f2fs_test_and_clear_bit(offset,
2219 se->cur_valid_map_mir);
2220 if (unlikely(exist != mir_exist)) {
2221 f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2223 f2fs_bug_on(sbi, 1);
2226 if (unlikely(!exist)) {
2227 f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2229 f2fs_bug_on(sbi, 1);
2232 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2234 * If checkpoints are off, we must not reuse data that
2235 * was used in the previous checkpoint. If it was used
2236 * before, we must track that to know how much space we
2239 if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2240 spin_lock(&sbi->stat_lock);
2241 sbi->unusable_block_count++;
2242 spin_unlock(&sbi->stat_lock);
2246 if (f2fs_block_unit_discard(sbi) &&
2247 f2fs_test_and_clear_bit(offset, se->discard_map))
2248 sbi->discard_blks++;
2250 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2251 se->ckpt_valid_blocks += del;
2253 __mark_sit_entry_dirty(sbi, segno);
2255 /* update total number of valid blocks to be written in ckpt area */
2256 SIT_I(sbi)->written_valid_blocks += del;
2258 if (__is_large_section(sbi))
2259 get_sec_entry(sbi, segno)->valid_blocks += del;
2262 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2264 unsigned int segno = GET_SEGNO(sbi, addr);
2265 struct sit_info *sit_i = SIT_I(sbi);
2267 f2fs_bug_on(sbi, addr == NULL_ADDR);
2268 if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2271 invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2272 f2fs_invalidate_compress_page(sbi, addr);
2274 /* add it into sit main buffer */
2275 down_write(&sit_i->sentry_lock);
2277 update_segment_mtime(sbi, addr, 0);
2278 update_sit_entry(sbi, addr, -1);
2280 /* add it into dirty seglist */
2281 locate_dirty_segment(sbi, segno);
2283 up_write(&sit_i->sentry_lock);
2286 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2288 struct sit_info *sit_i = SIT_I(sbi);
2289 unsigned int segno, offset;
2290 struct seg_entry *se;
2293 if (!__is_valid_data_blkaddr(blkaddr))
2296 down_read(&sit_i->sentry_lock);
2298 segno = GET_SEGNO(sbi, blkaddr);
2299 se = get_seg_entry(sbi, segno);
2300 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2302 if (f2fs_test_bit(offset, se->ckpt_valid_map))
2305 up_read(&sit_i->sentry_lock);
2311 * This function should be resided under the curseg_mutex lock
2313 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2314 struct f2fs_summary *sum)
2316 struct curseg_info *curseg = CURSEG_I(sbi, type);
2317 void *addr = curseg->sum_blk;
2319 addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2320 memcpy(addr, sum, sizeof(struct f2fs_summary));
2324 * Calculate the number of current summary pages for writing
2326 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2328 int valid_sum_count = 0;
2331 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2332 if (sbi->ckpt->alloc_type[i] == SSR)
2333 valid_sum_count += sbi->blocks_per_seg;
2336 valid_sum_count += le16_to_cpu(
2337 F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2339 valid_sum_count += curseg_blkoff(sbi, i);
2343 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2344 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2345 if (valid_sum_count <= sum_in_page)
2347 else if ((valid_sum_count - sum_in_page) <=
2348 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2354 * Caller should put this summary page
2356 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2358 if (unlikely(f2fs_cp_error(sbi)))
2359 return ERR_PTR(-EIO);
2360 return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2363 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2364 void *src, block_t blk_addr)
2366 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2368 memcpy(page_address(page), src, PAGE_SIZE);
2369 set_page_dirty(page);
2370 f2fs_put_page(page, 1);
2373 static void write_sum_page(struct f2fs_sb_info *sbi,
2374 struct f2fs_summary_block *sum_blk, block_t blk_addr)
2376 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2379 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2380 int type, block_t blk_addr)
2382 struct curseg_info *curseg = CURSEG_I(sbi, type);
2383 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2384 struct f2fs_summary_block *src = curseg->sum_blk;
2385 struct f2fs_summary_block *dst;
2387 dst = (struct f2fs_summary_block *)page_address(page);
2388 memset(dst, 0, PAGE_SIZE);
2390 mutex_lock(&curseg->curseg_mutex);
2392 down_read(&curseg->journal_rwsem);
2393 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2394 up_read(&curseg->journal_rwsem);
2396 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2397 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2399 mutex_unlock(&curseg->curseg_mutex);
2401 set_page_dirty(page);
2402 f2fs_put_page(page, 1);
2405 static int is_next_segment_free(struct f2fs_sb_info *sbi,
2406 struct curseg_info *curseg, int type)
2408 unsigned int segno = curseg->segno + 1;
2409 struct free_segmap_info *free_i = FREE_I(sbi);
2411 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2412 return !test_bit(segno, free_i->free_segmap);
2417 * Find a new segment from the free segments bitmap to right order
2418 * This function should be returned with success, otherwise BUG
2420 static void get_new_segment(struct f2fs_sb_info *sbi,
2421 unsigned int *newseg, bool new_sec, int dir)
2423 struct free_segmap_info *free_i = FREE_I(sbi);
2424 unsigned int segno, secno, zoneno;
2425 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2426 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2427 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2428 unsigned int left_start = hint;
2433 spin_lock(&free_i->segmap_lock);
2435 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2436 segno = find_next_zero_bit(free_i->free_segmap,
2437 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2438 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2442 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2443 if (secno >= MAIN_SECS(sbi)) {
2444 if (dir == ALLOC_RIGHT) {
2445 secno = find_first_zero_bit(free_i->free_secmap,
2447 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2450 left_start = hint - 1;
2456 while (test_bit(left_start, free_i->free_secmap)) {
2457 if (left_start > 0) {
2461 left_start = find_first_zero_bit(free_i->free_secmap,
2463 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2468 segno = GET_SEG_FROM_SEC(sbi, secno);
2469 zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2471 /* give up on finding another zone */
2474 if (sbi->secs_per_zone == 1)
2476 if (zoneno == old_zoneno)
2478 if (dir == ALLOC_LEFT) {
2479 if (!go_left && zoneno + 1 >= total_zones)
2481 if (go_left && zoneno == 0)
2484 for (i = 0; i < NR_CURSEG_TYPE; i++)
2485 if (CURSEG_I(sbi, i)->zone == zoneno)
2488 if (i < NR_CURSEG_TYPE) {
2489 /* zone is in user, try another */
2491 hint = zoneno * sbi->secs_per_zone - 1;
2492 else if (zoneno + 1 >= total_zones)
2495 hint = (zoneno + 1) * sbi->secs_per_zone;
2497 goto find_other_zone;
2500 /* set it as dirty segment in free segmap */
2501 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2502 __set_inuse(sbi, segno);
2504 spin_unlock(&free_i->segmap_lock);
2507 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2509 struct curseg_info *curseg = CURSEG_I(sbi, type);
2510 struct summary_footer *sum_footer;
2511 unsigned short seg_type = curseg->seg_type;
2513 curseg->inited = true;
2514 curseg->segno = curseg->next_segno;
2515 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2516 curseg->next_blkoff = 0;
2517 curseg->next_segno = NULL_SEGNO;
2519 sum_footer = &(curseg->sum_blk->footer);
2520 memset(sum_footer, 0, sizeof(struct summary_footer));
2522 sanity_check_seg_type(sbi, seg_type);
2524 if (IS_DATASEG(seg_type))
2525 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2526 if (IS_NODESEG(seg_type))
2527 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2528 __set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2531 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2533 struct curseg_info *curseg = CURSEG_I(sbi, type);
2534 unsigned short seg_type = curseg->seg_type;
2536 sanity_check_seg_type(sbi, seg_type);
2537 if (f2fs_need_rand_seg(sbi))
2538 return prandom_u32() % (MAIN_SECS(sbi) * sbi->segs_per_sec);
2540 /* if segs_per_sec is large than 1, we need to keep original policy. */
2541 if (__is_large_section(sbi))
2542 return curseg->segno;
2544 /* inmem log may not locate on any segment after mount */
2545 if (!curseg->inited)
2548 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2551 if (test_opt(sbi, NOHEAP) &&
2552 (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type)))
2555 if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2556 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2558 /* find segments from 0 to reuse freed segments */
2559 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2562 return curseg->segno;
2566 * Allocate a current working segment.
2567 * This function always allocates a free segment in LFS manner.
2569 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2571 struct curseg_info *curseg = CURSEG_I(sbi, type);
2572 unsigned short seg_type = curseg->seg_type;
2573 unsigned int segno = curseg->segno;
2574 int dir = ALLOC_LEFT;
2577 write_sum_page(sbi, curseg->sum_blk,
2578 GET_SUM_BLOCK(sbi, segno));
2579 if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA)
2582 if (test_opt(sbi, NOHEAP))
2585 segno = __get_next_segno(sbi, type);
2586 get_new_segment(sbi, &segno, new_sec, dir);
2587 curseg->next_segno = segno;
2588 reset_curseg(sbi, type, 1);
2589 curseg->alloc_type = LFS;
2590 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
2591 curseg->fragment_remained_chunk =
2592 prandom_u32() % sbi->max_fragment_chunk + 1;
2595 static int __next_free_blkoff(struct f2fs_sb_info *sbi,
2596 int segno, block_t start)
2598 struct seg_entry *se = get_seg_entry(sbi, segno);
2599 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2600 unsigned long *target_map = SIT_I(sbi)->tmp_map;
2601 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2602 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2605 for (i = 0; i < entries; i++)
2606 target_map[i] = ckpt_map[i] | cur_map[i];
2608 return __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2612 * If a segment is written by LFS manner, next block offset is just obtained
2613 * by increasing the current block offset. However, if a segment is written by
2614 * SSR manner, next block offset obtained by calling __next_free_blkoff
2616 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2617 struct curseg_info *seg)
2619 if (seg->alloc_type == SSR) {
2621 __next_free_blkoff(sbi, seg->segno,
2622 seg->next_blkoff + 1);
2625 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) {
2626 /* To allocate block chunks in different sizes, use random number */
2627 if (--seg->fragment_remained_chunk <= 0) {
2628 seg->fragment_remained_chunk =
2629 prandom_u32() % sbi->max_fragment_chunk + 1;
2631 prandom_u32() % sbi->max_fragment_hole + 1;
2637 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
2639 return __next_free_blkoff(sbi, segno, 0) < sbi->blocks_per_seg;
2643 * This function always allocates a used segment(from dirty seglist) by SSR
2644 * manner, so it should recover the existing segment information of valid blocks
2646 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool flush)
2648 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2649 struct curseg_info *curseg = CURSEG_I(sbi, type);
2650 unsigned int new_segno = curseg->next_segno;
2651 struct f2fs_summary_block *sum_node;
2652 struct page *sum_page;
2655 write_sum_page(sbi, curseg->sum_blk,
2656 GET_SUM_BLOCK(sbi, curseg->segno));
2658 __set_test_and_inuse(sbi, new_segno);
2660 mutex_lock(&dirty_i->seglist_lock);
2661 __remove_dirty_segment(sbi, new_segno, PRE);
2662 __remove_dirty_segment(sbi, new_segno, DIRTY);
2663 mutex_unlock(&dirty_i->seglist_lock);
2665 reset_curseg(sbi, type, 1);
2666 curseg->alloc_type = SSR;
2667 curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
2669 sum_page = f2fs_get_sum_page(sbi, new_segno);
2670 if (IS_ERR(sum_page)) {
2671 /* GC won't be able to use stale summary pages by cp_error */
2672 memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
2675 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2676 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2677 f2fs_put_page(sum_page, 1);
2680 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2681 int alloc_mode, unsigned long long age);
2683 static void get_atssr_segment(struct f2fs_sb_info *sbi, int type,
2684 int target_type, int alloc_mode,
2685 unsigned long long age)
2687 struct curseg_info *curseg = CURSEG_I(sbi, type);
2689 curseg->seg_type = target_type;
2691 if (get_ssr_segment(sbi, type, alloc_mode, age)) {
2692 struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
2694 curseg->seg_type = se->type;
2695 change_curseg(sbi, type, true);
2697 /* allocate cold segment by default */
2698 curseg->seg_type = CURSEG_COLD_DATA;
2699 new_curseg(sbi, type, true);
2701 stat_inc_seg_type(sbi, curseg);
2704 static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi)
2706 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
2708 if (!sbi->am.atgc_enabled)
2711 f2fs_down_read(&SM_I(sbi)->curseg_lock);
2713 mutex_lock(&curseg->curseg_mutex);
2714 down_write(&SIT_I(sbi)->sentry_lock);
2716 get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0);
2718 up_write(&SIT_I(sbi)->sentry_lock);
2719 mutex_unlock(&curseg->curseg_mutex);
2721 f2fs_up_read(&SM_I(sbi)->curseg_lock);
2724 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
2726 __f2fs_init_atgc_curseg(sbi);
2729 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2731 struct curseg_info *curseg = CURSEG_I(sbi, type);
2733 mutex_lock(&curseg->curseg_mutex);
2734 if (!curseg->inited)
2737 if (get_valid_blocks(sbi, curseg->segno, false)) {
2738 write_sum_page(sbi, curseg->sum_blk,
2739 GET_SUM_BLOCK(sbi, curseg->segno));
2741 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2742 __set_test_and_free(sbi, curseg->segno, true);
2743 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2746 mutex_unlock(&curseg->curseg_mutex);
2749 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
2751 __f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2753 if (sbi->am.atgc_enabled)
2754 __f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2757 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2759 struct curseg_info *curseg = CURSEG_I(sbi, type);
2761 mutex_lock(&curseg->curseg_mutex);
2762 if (!curseg->inited)
2764 if (get_valid_blocks(sbi, curseg->segno, false))
2767 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2768 __set_test_and_inuse(sbi, curseg->segno);
2769 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2771 mutex_unlock(&curseg->curseg_mutex);
2774 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
2776 __f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2778 if (sbi->am.atgc_enabled)
2779 __f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2782 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2783 int alloc_mode, unsigned long long age)
2785 struct curseg_info *curseg = CURSEG_I(sbi, type);
2786 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2787 unsigned segno = NULL_SEGNO;
2788 unsigned short seg_type = curseg->seg_type;
2790 bool reversed = false;
2792 sanity_check_seg_type(sbi, seg_type);
2794 /* f2fs_need_SSR() already forces to do this */
2795 if (!v_ops->get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) {
2796 curseg->next_segno = segno;
2800 /* For node segments, let's do SSR more intensively */
2801 if (IS_NODESEG(seg_type)) {
2802 if (seg_type >= CURSEG_WARM_NODE) {
2804 i = CURSEG_COLD_NODE;
2806 i = CURSEG_HOT_NODE;
2808 cnt = NR_CURSEG_NODE_TYPE;
2810 if (seg_type >= CURSEG_WARM_DATA) {
2812 i = CURSEG_COLD_DATA;
2814 i = CURSEG_HOT_DATA;
2816 cnt = NR_CURSEG_DATA_TYPE;
2819 for (; cnt-- > 0; reversed ? i-- : i++) {
2822 if (!v_ops->get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) {
2823 curseg->next_segno = segno;
2828 /* find valid_blocks=0 in dirty list */
2829 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2830 segno = get_free_segment(sbi);
2831 if (segno != NULL_SEGNO) {
2832 curseg->next_segno = segno;
2840 * flush out current segment and replace it with new segment
2841 * This function should be returned with success, otherwise BUG
2843 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2844 int type, bool force)
2846 struct curseg_info *curseg = CURSEG_I(sbi, type);
2849 new_curseg(sbi, type, true);
2850 else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2851 curseg->seg_type == CURSEG_WARM_NODE)
2852 new_curseg(sbi, type, false);
2853 else if (curseg->alloc_type == LFS &&
2854 is_next_segment_free(sbi, curseg, type) &&
2855 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2856 new_curseg(sbi, type, false);
2857 else if (f2fs_need_SSR(sbi) &&
2858 get_ssr_segment(sbi, type, SSR, 0))
2859 change_curseg(sbi, type, true);
2861 new_curseg(sbi, type, false);
2863 stat_inc_seg_type(sbi, curseg);
2866 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
2867 unsigned int start, unsigned int end)
2869 struct curseg_info *curseg = CURSEG_I(sbi, type);
2872 f2fs_down_read(&SM_I(sbi)->curseg_lock);
2873 mutex_lock(&curseg->curseg_mutex);
2874 down_write(&SIT_I(sbi)->sentry_lock);
2876 segno = CURSEG_I(sbi, type)->segno;
2877 if (segno < start || segno > end)
2880 if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
2881 change_curseg(sbi, type, true);
2883 new_curseg(sbi, type, true);
2885 stat_inc_seg_type(sbi, curseg);
2887 locate_dirty_segment(sbi, segno);
2889 up_write(&SIT_I(sbi)->sentry_lock);
2891 if (segno != curseg->segno)
2892 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
2893 type, segno, curseg->segno);
2895 mutex_unlock(&curseg->curseg_mutex);
2896 f2fs_up_read(&SM_I(sbi)->curseg_lock);
2899 static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
2900 bool new_sec, bool force)
2902 struct curseg_info *curseg = CURSEG_I(sbi, type);
2903 unsigned int old_segno;
2905 if (!curseg->inited)
2908 if (force || curseg->next_blkoff ||
2909 get_valid_blocks(sbi, curseg->segno, new_sec))
2912 if (!get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
2915 old_segno = curseg->segno;
2916 SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true);
2917 locate_dirty_segment(sbi, old_segno);
2920 static void __allocate_new_section(struct f2fs_sb_info *sbi,
2921 int type, bool force)
2923 __allocate_new_segment(sbi, type, true, force);
2926 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
2928 f2fs_down_read(&SM_I(sbi)->curseg_lock);
2929 down_write(&SIT_I(sbi)->sentry_lock);
2930 __allocate_new_section(sbi, type, force);
2931 up_write(&SIT_I(sbi)->sentry_lock);
2932 f2fs_up_read(&SM_I(sbi)->curseg_lock);
2935 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
2939 f2fs_down_read(&SM_I(sbi)->curseg_lock);
2940 down_write(&SIT_I(sbi)->sentry_lock);
2941 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
2942 __allocate_new_segment(sbi, i, false, false);
2943 up_write(&SIT_I(sbi)->sentry_lock);
2944 f2fs_up_read(&SM_I(sbi)->curseg_lock);
2947 static const struct segment_allocation default_salloc_ops = {
2948 .allocate_segment = allocate_segment_by_default,
2951 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2952 struct cp_control *cpc)
2954 __u64 trim_start = cpc->trim_start;
2955 bool has_candidate = false;
2957 down_write(&SIT_I(sbi)->sentry_lock);
2958 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2959 if (add_discard_addrs(sbi, cpc, true)) {
2960 has_candidate = true;
2964 up_write(&SIT_I(sbi)->sentry_lock);
2966 cpc->trim_start = trim_start;
2967 return has_candidate;
2970 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
2971 struct discard_policy *dpolicy,
2972 unsigned int start, unsigned int end)
2974 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2975 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
2976 struct rb_node **insert_p = NULL, *insert_parent = NULL;
2977 struct discard_cmd *dc;
2978 struct blk_plug plug;
2980 unsigned int trimmed = 0;
2985 mutex_lock(&dcc->cmd_lock);
2986 if (unlikely(dcc->rbtree_check))
2987 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
2988 &dcc->root, false));
2990 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
2992 (struct rb_entry **)&prev_dc,
2993 (struct rb_entry **)&next_dc,
2994 &insert_p, &insert_parent, true, NULL);
2998 blk_start_plug(&plug);
3000 while (dc && dc->lstart <= end) {
3001 struct rb_node *node;
3004 if (dc->len < dpolicy->granularity)
3007 if (dc->state != D_PREP) {
3008 list_move_tail(&dc->list, &dcc->fstrim_list);
3012 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3014 if (issued >= dpolicy->max_requests) {
3015 start = dc->lstart + dc->len;
3018 __remove_discard_cmd(sbi, dc);
3020 blk_finish_plug(&plug);
3021 mutex_unlock(&dcc->cmd_lock);
3022 trimmed += __wait_all_discard_cmd(sbi, NULL);
3023 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
3027 node = rb_next(&dc->rb_node);
3029 __remove_discard_cmd(sbi, dc);
3030 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3032 if (fatal_signal_pending(current))
3036 blk_finish_plug(&plug);
3037 mutex_unlock(&dcc->cmd_lock);
3042 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3044 __u64 start = F2FS_BYTES_TO_BLK(range->start);
3045 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3046 unsigned int start_segno, end_segno;
3047 block_t start_block, end_block;
3048 struct cp_control cpc;
3049 struct discard_policy dpolicy;
3050 unsigned long long trimmed = 0;
3052 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3054 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3057 if (end < MAIN_BLKADDR(sbi))
3060 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3061 f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3062 return -EFSCORRUPTED;
3065 /* start/end segment number in main_area */
3066 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3067 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3068 GET_SEGNO(sbi, end);
3070 start_segno = rounddown(start_segno, sbi->segs_per_sec);
3071 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
3074 cpc.reason = CP_DISCARD;
3075 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3076 cpc.trim_start = start_segno;
3077 cpc.trim_end = end_segno;
3079 if (sbi->discard_blks == 0)
3082 f2fs_down_write(&sbi->gc_lock);
3083 err = f2fs_write_checkpoint(sbi, &cpc);
3084 f2fs_up_write(&sbi->gc_lock);
3089 * We filed discard candidates, but actually we don't need to wait for
3090 * all of them, since they'll be issued in idle time along with runtime
3091 * discard option. User configuration looks like using runtime discard
3092 * or periodic fstrim instead of it.
3094 if (f2fs_realtime_discard_enable(sbi))
3097 start_block = START_BLOCK(sbi, start_segno);
3098 end_block = START_BLOCK(sbi, end_segno + 1);
3100 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3101 trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3102 start_block, end_block);
3104 trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3105 start_block, end_block);
3108 range->len = F2FS_BLK_TO_BYTES(trimmed);
3112 static bool __has_curseg_space(struct f2fs_sb_info *sbi,
3113 struct curseg_info *curseg)
3115 return curseg->next_blkoff < f2fs_usable_blks_in_seg(sbi,
3119 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
3122 case WRITE_LIFE_SHORT:
3123 return CURSEG_HOT_DATA;
3124 case WRITE_LIFE_EXTREME:
3125 return CURSEG_COLD_DATA;
3127 return CURSEG_WARM_DATA;
3131 static int __get_segment_type_2(struct f2fs_io_info *fio)
3133 if (fio->type == DATA)
3134 return CURSEG_HOT_DATA;
3136 return CURSEG_HOT_NODE;
3139 static int __get_segment_type_4(struct f2fs_io_info *fio)
3141 if (fio->type == DATA) {
3142 struct inode *inode = fio->page->mapping->host;
3144 if (S_ISDIR(inode->i_mode))
3145 return CURSEG_HOT_DATA;
3147 return CURSEG_COLD_DATA;
3149 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3150 return CURSEG_WARM_NODE;
3152 return CURSEG_COLD_NODE;
3156 static int __get_segment_type_6(struct f2fs_io_info *fio)
3158 if (fio->type == DATA) {
3159 struct inode *inode = fio->page->mapping->host;
3161 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
3162 return CURSEG_COLD_DATA_PINNED;
3164 if (page_private_gcing(fio->page)) {
3165 if (fio->sbi->am.atgc_enabled &&
3166 (fio->io_type == FS_DATA_IO) &&
3167 (fio->sbi->gc_mode != GC_URGENT_HIGH))
3168 return CURSEG_ALL_DATA_ATGC;
3170 return CURSEG_COLD_DATA;
3172 if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3173 return CURSEG_COLD_DATA;
3174 if (file_is_hot(inode) ||
3175 is_inode_flag_set(inode, FI_HOT_DATA) ||
3176 f2fs_is_cow_file(inode))
3177 return CURSEG_HOT_DATA;
3178 return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3180 if (IS_DNODE(fio->page))
3181 return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3183 return CURSEG_COLD_NODE;
3187 static int __get_segment_type(struct f2fs_io_info *fio)
3191 switch (F2FS_OPTION(fio->sbi).active_logs) {
3193 type = __get_segment_type_2(fio);
3196 type = __get_segment_type_4(fio);
3199 type = __get_segment_type_6(fio);
3202 f2fs_bug_on(fio->sbi, true);
3207 else if (IS_WARM(type))
3214 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3215 block_t old_blkaddr, block_t *new_blkaddr,
3216 struct f2fs_summary *sum, int type,
3217 struct f2fs_io_info *fio)
3219 struct sit_info *sit_i = SIT_I(sbi);
3220 struct curseg_info *curseg = CURSEG_I(sbi, type);
3221 unsigned long long old_mtime;
3222 bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3223 struct seg_entry *se = NULL;
3225 f2fs_down_read(&SM_I(sbi)->curseg_lock);
3227 mutex_lock(&curseg->curseg_mutex);
3228 down_write(&sit_i->sentry_lock);
3231 f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3232 se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3233 sanity_check_seg_type(sbi, se->type);
3234 f2fs_bug_on(sbi, IS_NODESEG(se->type));
3236 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3238 f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg);
3240 f2fs_wait_discard_bio(sbi, *new_blkaddr);
3243 * __add_sum_entry should be resided under the curseg_mutex
3244 * because, this function updates a summary entry in the
3245 * current summary block.
3247 __add_sum_entry(sbi, type, sum);
3249 __refresh_next_blkoff(sbi, curseg);
3251 stat_inc_block_count(sbi, curseg);
3254 old_mtime = get_segment_mtime(sbi, old_blkaddr);
3256 update_segment_mtime(sbi, old_blkaddr, 0);
3259 update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3262 * SIT information should be updated before segment allocation,
3263 * since SSR needs latest valid block information.
3265 update_sit_entry(sbi, *new_blkaddr, 1);
3266 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3267 update_sit_entry(sbi, old_blkaddr, -1);
3269 if (!__has_curseg_space(sbi, curseg)) {
3271 get_atssr_segment(sbi, type, se->type,
3274 sit_i->s_ops->allocate_segment(sbi, type, false);
3277 * segment dirty status should be updated after segment allocation,
3278 * so we just need to update status only one time after previous
3279 * segment being closed.
3281 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3282 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3284 up_write(&sit_i->sentry_lock);
3286 if (page && IS_NODESEG(type)) {
3287 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3289 f2fs_inode_chksum_set(sbi, page);
3293 struct f2fs_bio_info *io;
3295 if (F2FS_IO_ALIGNED(sbi))
3298 INIT_LIST_HEAD(&fio->list);
3299 fio->in_list = true;
3300 io = sbi->write_io[fio->type] + fio->temp;
3301 spin_lock(&io->io_lock);
3302 list_add_tail(&fio->list, &io->io_list);
3303 spin_unlock(&io->io_lock);
3306 mutex_unlock(&curseg->curseg_mutex);
3308 f2fs_up_read(&SM_I(sbi)->curseg_lock);
3311 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3312 block_t blkaddr, unsigned int blkcnt)
3314 if (!f2fs_is_multi_device(sbi))
3318 unsigned int devidx = f2fs_target_device_index(sbi, blkaddr);
3319 unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1;
3321 /* update device state for fsync */
3322 f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO);
3324 /* update device state for checkpoint */
3325 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3326 spin_lock(&sbi->dev_lock);
3327 f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3328 spin_unlock(&sbi->dev_lock);
3338 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3340 int type = __get_segment_type(fio);
3341 bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3344 f2fs_down_read(&fio->sbi->io_order_lock);
3346 f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3347 &fio->new_blkaddr, sum, type, fio);
3348 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) {
3349 invalidate_mapping_pages(META_MAPPING(fio->sbi),
3350 fio->old_blkaddr, fio->old_blkaddr);
3351 f2fs_invalidate_compress_page(fio->sbi, fio->old_blkaddr);
3354 /* writeout dirty page into bdev */
3355 f2fs_submit_page_write(fio);
3357 fio->old_blkaddr = fio->new_blkaddr;
3361 f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1);
3364 f2fs_up_read(&fio->sbi->io_order_lock);
3367 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3368 enum iostat_type io_type)
3370 struct f2fs_io_info fio = {
3375 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3376 .old_blkaddr = page->index,
3377 .new_blkaddr = page->index,
3379 .encrypted_page = NULL,
3383 if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3384 fio.op_flags &= ~REQ_META;
3386 set_page_writeback(page);
3387 ClearPageError(page);
3388 f2fs_submit_page_write(&fio);
3390 stat_inc_meta_count(sbi, page->index);
3391 f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
3394 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3396 struct f2fs_summary sum;
3398 set_summary(&sum, nid, 0, 0);
3399 do_write_page(&sum, fio);
3401 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3404 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3405 struct f2fs_io_info *fio)
3407 struct f2fs_sb_info *sbi = fio->sbi;
3408 struct f2fs_summary sum;
3410 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3411 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3412 do_write_page(&sum, fio);
3413 f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3415 f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
3418 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3421 struct f2fs_sb_info *sbi = fio->sbi;
3424 fio->new_blkaddr = fio->old_blkaddr;
3425 /* i/o temperature is needed for passing down write hints */
3426 __get_segment_type(fio);
3428 segno = GET_SEGNO(sbi, fio->new_blkaddr);
3430 if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3431 set_sbi_flag(sbi, SBI_NEED_FSCK);
3432 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3434 err = -EFSCORRUPTED;
3438 if (f2fs_cp_error(sbi)) {
3444 invalidate_mapping_pages(META_MAPPING(sbi),
3445 fio->new_blkaddr, fio->new_blkaddr);
3447 stat_inc_inplace_blocks(fio->sbi);
3449 if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE)))
3450 err = f2fs_merge_page_bio(fio);
3452 err = f2fs_submit_page_bio(fio);
3454 f2fs_update_device_state(fio->sbi, fio->ino,
3455 fio->new_blkaddr, 1);
3456 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3461 if (fio->bio && *(fio->bio)) {
3462 struct bio *bio = *(fio->bio);
3464 bio->bi_status = BLK_STS_IOERR;
3471 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3476 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3477 if (CURSEG_I(sbi, i)->segno == segno)
3483 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3484 block_t old_blkaddr, block_t new_blkaddr,
3485 bool recover_curseg, bool recover_newaddr,
3488 struct sit_info *sit_i = SIT_I(sbi);
3489 struct curseg_info *curseg;
3490 unsigned int segno, old_cursegno;
3491 struct seg_entry *se;
3493 unsigned short old_blkoff;
3494 unsigned char old_alloc_type;
3496 segno = GET_SEGNO(sbi, new_blkaddr);
3497 se = get_seg_entry(sbi, segno);
3500 f2fs_down_write(&SM_I(sbi)->curseg_lock);
3502 if (!recover_curseg) {
3503 /* for recovery flow */
3504 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3505 if (old_blkaddr == NULL_ADDR)
3506 type = CURSEG_COLD_DATA;
3508 type = CURSEG_WARM_DATA;
3511 if (IS_CURSEG(sbi, segno)) {
3512 /* se->type is volatile as SSR allocation */
3513 type = __f2fs_get_curseg(sbi, segno);
3514 f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3516 type = CURSEG_WARM_DATA;
3520 f2fs_bug_on(sbi, !IS_DATASEG(type));
3521 curseg = CURSEG_I(sbi, type);
3523 mutex_lock(&curseg->curseg_mutex);
3524 down_write(&sit_i->sentry_lock);
3526 old_cursegno = curseg->segno;
3527 old_blkoff = curseg->next_blkoff;
3528 old_alloc_type = curseg->alloc_type;
3530 /* change the current segment */
3531 if (segno != curseg->segno) {
3532 curseg->next_segno = segno;
3533 change_curseg(sbi, type, true);
3536 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3537 __add_sum_entry(sbi, type, sum);
3539 if (!recover_curseg || recover_newaddr) {
3541 update_segment_mtime(sbi, new_blkaddr, 0);
3542 update_sit_entry(sbi, new_blkaddr, 1);
3544 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3545 invalidate_mapping_pages(META_MAPPING(sbi),
3546 old_blkaddr, old_blkaddr);
3547 f2fs_invalidate_compress_page(sbi, old_blkaddr);
3549 update_segment_mtime(sbi, old_blkaddr, 0);
3550 update_sit_entry(sbi, old_blkaddr, -1);
3553 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3554 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3556 locate_dirty_segment(sbi, old_cursegno);
3558 if (recover_curseg) {
3559 if (old_cursegno != curseg->segno) {
3560 curseg->next_segno = old_cursegno;
3561 change_curseg(sbi, type, true);
3563 curseg->next_blkoff = old_blkoff;
3564 curseg->alloc_type = old_alloc_type;
3567 up_write(&sit_i->sentry_lock);
3568 mutex_unlock(&curseg->curseg_mutex);
3569 f2fs_up_write(&SM_I(sbi)->curseg_lock);
3572 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3573 block_t old_addr, block_t new_addr,
3574 unsigned char version, bool recover_curseg,
3575 bool recover_newaddr)
3577 struct f2fs_summary sum;
3579 set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3581 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3582 recover_curseg, recover_newaddr, false);
3584 f2fs_update_data_blkaddr(dn, new_addr);
3587 void f2fs_wait_on_page_writeback(struct page *page,
3588 enum page_type type, bool ordered, bool locked)
3590 if (PageWriteback(page)) {
3591 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3593 /* submit cached LFS IO */
3594 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3595 /* sbumit cached IPU IO */
3596 f2fs_submit_merged_ipu_write(sbi, NULL, page);
3598 wait_on_page_writeback(page);
3599 f2fs_bug_on(sbi, locked && PageWriteback(page));
3601 wait_for_stable_page(page);
3606 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3608 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3611 if (!f2fs_post_read_required(inode))
3614 if (!__is_valid_data_blkaddr(blkaddr))
3617 cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3619 f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3620 f2fs_put_page(cpage, 1);
3624 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3627 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3630 if (!f2fs_post_read_required(inode))
3633 for (i = 0; i < len; i++)
3634 f2fs_wait_on_block_writeback(inode, blkaddr + i);
3636 invalidate_mapping_pages(META_MAPPING(sbi), blkaddr, blkaddr + len - 1);
3639 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3641 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3642 struct curseg_info *seg_i;
3643 unsigned char *kaddr;
3648 start = start_sum_block(sbi);
3650 page = f2fs_get_meta_page(sbi, start++);
3652 return PTR_ERR(page);
3653 kaddr = (unsigned char *)page_address(page);
3655 /* Step 1: restore nat cache */
3656 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3657 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3659 /* Step 2: restore sit cache */
3660 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3661 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3662 offset = 2 * SUM_JOURNAL_SIZE;
3664 /* Step 3: restore summary entries */
3665 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3666 unsigned short blk_off;
3669 seg_i = CURSEG_I(sbi, i);
3670 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3671 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3672 seg_i->next_segno = segno;
3673 reset_curseg(sbi, i, 0);
3674 seg_i->alloc_type = ckpt->alloc_type[i];
3675 seg_i->next_blkoff = blk_off;
3677 if (seg_i->alloc_type == SSR)
3678 blk_off = sbi->blocks_per_seg;
3680 for (j = 0; j < blk_off; j++) {
3681 struct f2fs_summary *s;
3683 s = (struct f2fs_summary *)(kaddr + offset);
3684 seg_i->sum_blk->entries[j] = *s;
3685 offset += SUMMARY_SIZE;
3686 if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3690 f2fs_put_page(page, 1);
3693 page = f2fs_get_meta_page(sbi, start++);
3695 return PTR_ERR(page);
3696 kaddr = (unsigned char *)page_address(page);
3700 f2fs_put_page(page, 1);
3704 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3706 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3707 struct f2fs_summary_block *sum;
3708 struct curseg_info *curseg;
3710 unsigned short blk_off;
3711 unsigned int segno = 0;
3712 block_t blk_addr = 0;
3715 /* get segment number and block addr */
3716 if (IS_DATASEG(type)) {
3717 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3718 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3720 if (__exist_node_summaries(sbi))
3721 blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
3723 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3725 segno = le32_to_cpu(ckpt->cur_node_segno[type -
3727 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3729 if (__exist_node_summaries(sbi))
3730 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3731 type - CURSEG_HOT_NODE);
3733 blk_addr = GET_SUM_BLOCK(sbi, segno);
3736 new = f2fs_get_meta_page(sbi, blk_addr);
3738 return PTR_ERR(new);
3739 sum = (struct f2fs_summary_block *)page_address(new);
3741 if (IS_NODESEG(type)) {
3742 if (__exist_node_summaries(sbi)) {
3743 struct f2fs_summary *ns = &sum->entries[0];
3746 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3748 ns->ofs_in_node = 0;
3751 err = f2fs_restore_node_summary(sbi, segno, sum);
3757 /* set uncompleted segment to curseg */
3758 curseg = CURSEG_I(sbi, type);
3759 mutex_lock(&curseg->curseg_mutex);
3761 /* update journal info */
3762 down_write(&curseg->journal_rwsem);
3763 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3764 up_write(&curseg->journal_rwsem);
3766 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3767 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3768 curseg->next_segno = segno;
3769 reset_curseg(sbi, type, 0);
3770 curseg->alloc_type = ckpt->alloc_type[type];
3771 curseg->next_blkoff = blk_off;
3772 mutex_unlock(&curseg->curseg_mutex);
3774 f2fs_put_page(new, 1);
3778 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3780 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3781 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3782 int type = CURSEG_HOT_DATA;
3785 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3786 int npages = f2fs_npages_for_summary_flush(sbi, true);
3789 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3792 /* restore for compacted data summary */
3793 err = read_compacted_summaries(sbi);
3796 type = CURSEG_HOT_NODE;
3799 if (__exist_node_summaries(sbi))
3800 f2fs_ra_meta_pages(sbi,
3801 sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
3802 NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
3804 for (; type <= CURSEG_COLD_NODE; type++) {
3805 err = read_normal_summaries(sbi, type);
3810 /* sanity check for summary blocks */
3811 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3812 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
3813 f2fs_err(sbi, "invalid journal entries nats %u sits %u",
3814 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
3821 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3824 unsigned char *kaddr;
3825 struct f2fs_summary *summary;
3826 struct curseg_info *seg_i;
3827 int written_size = 0;
3830 page = f2fs_grab_meta_page(sbi, blkaddr++);
3831 kaddr = (unsigned char *)page_address(page);
3832 memset(kaddr, 0, PAGE_SIZE);
3834 /* Step 1: write nat cache */
3835 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3836 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3837 written_size += SUM_JOURNAL_SIZE;
3839 /* Step 2: write sit cache */
3840 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3841 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3842 written_size += SUM_JOURNAL_SIZE;
3844 /* Step 3: write summary entries */
3845 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3846 unsigned short blkoff;
3848 seg_i = CURSEG_I(sbi, i);
3849 if (sbi->ckpt->alloc_type[i] == SSR)
3850 blkoff = sbi->blocks_per_seg;
3852 blkoff = curseg_blkoff(sbi, i);
3854 for (j = 0; j < blkoff; j++) {
3856 page = f2fs_grab_meta_page(sbi, blkaddr++);
3857 kaddr = (unsigned char *)page_address(page);
3858 memset(kaddr, 0, PAGE_SIZE);
3861 summary = (struct f2fs_summary *)(kaddr + written_size);
3862 *summary = seg_i->sum_blk->entries[j];
3863 written_size += SUMMARY_SIZE;
3865 if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3869 set_page_dirty(page);
3870 f2fs_put_page(page, 1);
3875 set_page_dirty(page);
3876 f2fs_put_page(page, 1);
3880 static void write_normal_summaries(struct f2fs_sb_info *sbi,
3881 block_t blkaddr, int type)
3885 if (IS_DATASEG(type))
3886 end = type + NR_CURSEG_DATA_TYPE;
3888 end = type + NR_CURSEG_NODE_TYPE;
3890 for (i = type; i < end; i++)
3891 write_current_sum_page(sbi, i, blkaddr + (i - type));
3894 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3896 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
3897 write_compacted_summaries(sbi, start_blk);
3899 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
3902 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3904 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
3907 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3908 unsigned int val, int alloc)
3912 if (type == NAT_JOURNAL) {
3913 for (i = 0; i < nats_in_cursum(journal); i++) {
3914 if (le32_to_cpu(nid_in_journal(journal, i)) == val)
3917 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
3918 return update_nats_in_cursum(journal, 1);
3919 } else if (type == SIT_JOURNAL) {
3920 for (i = 0; i < sits_in_cursum(journal); i++)
3921 if (le32_to_cpu(segno_in_journal(journal, i)) == val)
3923 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
3924 return update_sits_in_cursum(journal, 1);
3929 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
3932 return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
3935 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
3938 struct sit_info *sit_i = SIT_I(sbi);
3940 pgoff_t src_off, dst_off;
3942 src_off = current_sit_addr(sbi, start);
3943 dst_off = next_sit_addr(sbi, src_off);
3945 page = f2fs_grab_meta_page(sbi, dst_off);
3946 seg_info_to_sit_page(sbi, page, start);
3948 set_page_dirty(page);
3949 set_to_next_sit(sit_i, start);
3954 static struct sit_entry_set *grab_sit_entry_set(void)
3956 struct sit_entry_set *ses =
3957 f2fs_kmem_cache_alloc(sit_entry_set_slab,
3958 GFP_NOFS, true, NULL);
3961 INIT_LIST_HEAD(&ses->set_list);
3965 static void release_sit_entry_set(struct sit_entry_set *ses)
3967 list_del(&ses->set_list);
3968 kmem_cache_free(sit_entry_set_slab, ses);
3971 static void adjust_sit_entry_set(struct sit_entry_set *ses,
3972 struct list_head *head)
3974 struct sit_entry_set *next = ses;
3976 if (list_is_last(&ses->set_list, head))
3979 list_for_each_entry_continue(next, head, set_list)
3980 if (ses->entry_cnt <= next->entry_cnt) {
3981 list_move_tail(&ses->set_list, &next->set_list);
3985 list_move_tail(&ses->set_list, head);
3988 static void add_sit_entry(unsigned int segno, struct list_head *head)
3990 struct sit_entry_set *ses;
3991 unsigned int start_segno = START_SEGNO(segno);
3993 list_for_each_entry(ses, head, set_list) {
3994 if (ses->start_segno == start_segno) {
3996 adjust_sit_entry_set(ses, head);
4001 ses = grab_sit_entry_set();
4003 ses->start_segno = start_segno;
4005 list_add(&ses->set_list, head);
4008 static void add_sits_in_set(struct f2fs_sb_info *sbi)
4010 struct f2fs_sm_info *sm_info = SM_I(sbi);
4011 struct list_head *set_list = &sm_info->sit_entry_set;
4012 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4015 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4016 add_sit_entry(segno, set_list);
4019 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4021 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4022 struct f2fs_journal *journal = curseg->journal;
4025 down_write(&curseg->journal_rwsem);
4026 for (i = 0; i < sits_in_cursum(journal); i++) {
4030 segno = le32_to_cpu(segno_in_journal(journal, i));
4031 dirtied = __mark_sit_entry_dirty(sbi, segno);
4034 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4036 update_sits_in_cursum(journal, -i);
4037 up_write(&curseg->journal_rwsem);
4041 * CP calls this function, which flushes SIT entries including sit_journal,
4042 * and moves prefree segs to free segs.
4044 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4046 struct sit_info *sit_i = SIT_I(sbi);
4047 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4048 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4049 struct f2fs_journal *journal = curseg->journal;
4050 struct sit_entry_set *ses, *tmp;
4051 struct list_head *head = &SM_I(sbi)->sit_entry_set;
4052 bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4053 struct seg_entry *se;
4055 down_write(&sit_i->sentry_lock);
4057 if (!sit_i->dirty_sentries)
4061 * add and account sit entries of dirty bitmap in sit entry
4064 add_sits_in_set(sbi);
4067 * if there are no enough space in journal to store dirty sit
4068 * entries, remove all entries from journal and add and account
4069 * them in sit entry set.
4071 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4073 remove_sits_in_journal(sbi);
4076 * there are two steps to flush sit entries:
4077 * #1, flush sit entries to journal in current cold data summary block.
4078 * #2, flush sit entries to sit page.
4080 list_for_each_entry_safe(ses, tmp, head, set_list) {
4081 struct page *page = NULL;
4082 struct f2fs_sit_block *raw_sit = NULL;
4083 unsigned int start_segno = ses->start_segno;
4084 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4085 (unsigned long)MAIN_SEGS(sbi));
4086 unsigned int segno = start_segno;
4089 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4093 down_write(&curseg->journal_rwsem);
4095 page = get_next_sit_page(sbi, start_segno);
4096 raw_sit = page_address(page);
4099 /* flush dirty sit entries in region of current sit set */
4100 for_each_set_bit_from(segno, bitmap, end) {
4101 int offset, sit_offset;
4103 se = get_seg_entry(sbi, segno);
4104 #ifdef CONFIG_F2FS_CHECK_FS
4105 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4106 SIT_VBLOCK_MAP_SIZE))
4107 f2fs_bug_on(sbi, 1);
4110 /* add discard candidates */
4111 if (!(cpc->reason & CP_DISCARD)) {
4112 cpc->trim_start = segno;
4113 add_discard_addrs(sbi, cpc, false);
4117 offset = f2fs_lookup_journal_in_cursum(journal,
4118 SIT_JOURNAL, segno, 1);
4119 f2fs_bug_on(sbi, offset < 0);
4120 segno_in_journal(journal, offset) =
4122 seg_info_to_raw_sit(se,
4123 &sit_in_journal(journal, offset));
4124 check_block_count(sbi, segno,
4125 &sit_in_journal(journal, offset));
4127 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4128 seg_info_to_raw_sit(se,
4129 &raw_sit->entries[sit_offset]);
4130 check_block_count(sbi, segno,
4131 &raw_sit->entries[sit_offset]);
4134 __clear_bit(segno, bitmap);
4135 sit_i->dirty_sentries--;
4140 up_write(&curseg->journal_rwsem);
4142 f2fs_put_page(page, 1);
4144 f2fs_bug_on(sbi, ses->entry_cnt);
4145 release_sit_entry_set(ses);
4148 f2fs_bug_on(sbi, !list_empty(head));
4149 f2fs_bug_on(sbi, sit_i->dirty_sentries);
4151 if (cpc->reason & CP_DISCARD) {
4152 __u64 trim_start = cpc->trim_start;
4154 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4155 add_discard_addrs(sbi, cpc, false);
4157 cpc->trim_start = trim_start;
4159 up_write(&sit_i->sentry_lock);
4161 set_prefree_as_free_segments(sbi);
4164 static int build_sit_info(struct f2fs_sb_info *sbi)
4166 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4167 struct sit_info *sit_i;
4168 unsigned int sit_segs, start;
4169 char *src_bitmap, *bitmap;
4170 unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4171 unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0;
4173 /* allocate memory for SIT information */
4174 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4178 SM_I(sbi)->sit_info = sit_i;
4181 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4184 if (!sit_i->sentries)
4187 main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4188 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4190 if (!sit_i->dirty_sentries_bitmap)
4193 #ifdef CONFIG_F2FS_CHECK_FS
4194 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map);
4196 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map);
4198 sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4202 bitmap = sit_i->bitmap;
4204 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4205 sit_i->sentries[start].cur_valid_map = bitmap;
4206 bitmap += SIT_VBLOCK_MAP_SIZE;
4208 sit_i->sentries[start].ckpt_valid_map = bitmap;
4209 bitmap += SIT_VBLOCK_MAP_SIZE;
4211 #ifdef CONFIG_F2FS_CHECK_FS
4212 sit_i->sentries[start].cur_valid_map_mir = bitmap;
4213 bitmap += SIT_VBLOCK_MAP_SIZE;
4217 sit_i->sentries[start].discard_map = bitmap;
4218 bitmap += SIT_VBLOCK_MAP_SIZE;
4222 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4223 if (!sit_i->tmp_map)
4226 if (__is_large_section(sbi)) {
4227 sit_i->sec_entries =
4228 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4231 if (!sit_i->sec_entries)
4235 /* get information related with SIT */
4236 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4238 /* setup SIT bitmap from ckeckpoint pack */
4239 sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4240 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4242 sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4243 if (!sit_i->sit_bitmap)
4246 #ifdef CONFIG_F2FS_CHECK_FS
4247 sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4248 sit_bitmap_size, GFP_KERNEL);
4249 if (!sit_i->sit_bitmap_mir)
4252 sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4253 main_bitmap_size, GFP_KERNEL);
4254 if (!sit_i->invalid_segmap)
4258 /* init SIT information */
4259 sit_i->s_ops = &default_salloc_ops;
4261 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4262 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4263 sit_i->written_valid_blocks = 0;
4264 sit_i->bitmap_size = sit_bitmap_size;
4265 sit_i->dirty_sentries = 0;
4266 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4267 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4268 sit_i->mounted_time = ktime_get_boottime_seconds();
4269 init_rwsem(&sit_i->sentry_lock);
4273 static int build_free_segmap(struct f2fs_sb_info *sbi)
4275 struct free_segmap_info *free_i;
4276 unsigned int bitmap_size, sec_bitmap_size;
4278 /* allocate memory for free segmap information */
4279 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4283 SM_I(sbi)->free_info = free_i;
4285 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4286 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4287 if (!free_i->free_segmap)
4290 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4291 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4292 if (!free_i->free_secmap)
4295 /* set all segments as dirty temporarily */
4296 memset(free_i->free_segmap, 0xff, bitmap_size);
4297 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4299 /* init free segmap information */
4300 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4301 free_i->free_segments = 0;
4302 free_i->free_sections = 0;
4303 spin_lock_init(&free_i->segmap_lock);
4307 static int build_curseg(struct f2fs_sb_info *sbi)
4309 struct curseg_info *array;
4312 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4313 sizeof(*array)), GFP_KERNEL);
4317 SM_I(sbi)->curseg_array = array;
4319 for (i = 0; i < NO_CHECK_TYPE; i++) {
4320 mutex_init(&array[i].curseg_mutex);
4321 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4322 if (!array[i].sum_blk)
4324 init_rwsem(&array[i].journal_rwsem);
4325 array[i].journal = f2fs_kzalloc(sbi,
4326 sizeof(struct f2fs_journal), GFP_KERNEL);
4327 if (!array[i].journal)
4329 if (i < NR_PERSISTENT_LOG)
4330 array[i].seg_type = CURSEG_HOT_DATA + i;
4331 else if (i == CURSEG_COLD_DATA_PINNED)
4332 array[i].seg_type = CURSEG_COLD_DATA;
4333 else if (i == CURSEG_ALL_DATA_ATGC)
4334 array[i].seg_type = CURSEG_COLD_DATA;
4335 array[i].segno = NULL_SEGNO;
4336 array[i].next_blkoff = 0;
4337 array[i].inited = false;
4339 return restore_curseg_summaries(sbi);
4342 static int build_sit_entries(struct f2fs_sb_info *sbi)
4344 struct sit_info *sit_i = SIT_I(sbi);
4345 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4346 struct f2fs_journal *journal = curseg->journal;
4347 struct seg_entry *se;
4348 struct f2fs_sit_entry sit;
4349 int sit_blk_cnt = SIT_BLK_CNT(sbi);
4350 unsigned int i, start, end;
4351 unsigned int readed, start_blk = 0;
4353 block_t sit_valid_blocks[2] = {0, 0};
4356 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4359 start = start_blk * sit_i->sents_per_block;
4360 end = (start_blk + readed) * sit_i->sents_per_block;
4362 for (; start < end && start < MAIN_SEGS(sbi); start++) {
4363 struct f2fs_sit_block *sit_blk;
4366 se = &sit_i->sentries[start];
4367 page = get_current_sit_page(sbi, start);
4369 return PTR_ERR(page);
4370 sit_blk = (struct f2fs_sit_block *)page_address(page);
4371 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4372 f2fs_put_page(page, 1);
4374 err = check_block_count(sbi, start, &sit);
4377 seg_info_from_raw_sit(se, &sit);
4379 if (se->type >= NR_PERSISTENT_LOG) {
4380 f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4382 return -EFSCORRUPTED;
4385 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4387 if (f2fs_block_unit_discard(sbi)) {
4388 /* build discard map only one time */
4389 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4390 memset(se->discard_map, 0xff,
4391 SIT_VBLOCK_MAP_SIZE);
4393 memcpy(se->discard_map,
4395 SIT_VBLOCK_MAP_SIZE);
4396 sbi->discard_blks +=
4397 sbi->blocks_per_seg -
4402 if (__is_large_section(sbi))
4403 get_sec_entry(sbi, start)->valid_blocks +=
4406 start_blk += readed;
4407 } while (start_blk < sit_blk_cnt);
4409 down_read(&curseg->journal_rwsem);
4410 for (i = 0; i < sits_in_cursum(journal); i++) {
4411 unsigned int old_valid_blocks;
4413 start = le32_to_cpu(segno_in_journal(journal, i));
4414 if (start >= MAIN_SEGS(sbi)) {
4415 f2fs_err(sbi, "Wrong journal entry on segno %u",
4417 err = -EFSCORRUPTED;
4421 se = &sit_i->sentries[start];
4422 sit = sit_in_journal(journal, i);
4424 old_valid_blocks = se->valid_blocks;
4426 sit_valid_blocks[SE_PAGETYPE(se)] -= old_valid_blocks;
4428 err = check_block_count(sbi, start, &sit);
4431 seg_info_from_raw_sit(se, &sit);
4433 if (se->type >= NR_PERSISTENT_LOG) {
4434 f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4436 err = -EFSCORRUPTED;
4440 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4442 if (f2fs_block_unit_discard(sbi)) {
4443 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4444 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4446 memcpy(se->discard_map, se->cur_valid_map,
4447 SIT_VBLOCK_MAP_SIZE);
4448 sbi->discard_blks += old_valid_blocks;
4449 sbi->discard_blks -= se->valid_blocks;
4453 if (__is_large_section(sbi)) {
4454 get_sec_entry(sbi, start)->valid_blocks +=
4456 get_sec_entry(sbi, start)->valid_blocks -=
4460 up_read(&curseg->journal_rwsem);
4465 if (sit_valid_blocks[NODE] != valid_node_count(sbi)) {
4466 f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4467 sit_valid_blocks[NODE], valid_node_count(sbi));
4468 return -EFSCORRUPTED;
4471 if (sit_valid_blocks[DATA] + sit_valid_blocks[NODE] >
4472 valid_user_blocks(sbi)) {
4473 f2fs_err(sbi, "SIT is corrupted data# %u %u vs %u",
4474 sit_valid_blocks[DATA], sit_valid_blocks[NODE],
4475 valid_user_blocks(sbi));
4476 return -EFSCORRUPTED;
4482 static void init_free_segmap(struct f2fs_sb_info *sbi)
4486 struct seg_entry *sentry;
4488 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4489 if (f2fs_usable_blks_in_seg(sbi, start) == 0)
4491 sentry = get_seg_entry(sbi, start);
4492 if (!sentry->valid_blocks)
4493 __set_free(sbi, start);
4495 SIT_I(sbi)->written_valid_blocks +=
4496 sentry->valid_blocks;
4499 /* set use the current segments */
4500 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4501 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4503 __set_test_and_inuse(sbi, curseg_t->segno);
4507 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4509 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4510 struct free_segmap_info *free_i = FREE_I(sbi);
4511 unsigned int segno = 0, offset = 0, secno;
4512 block_t valid_blocks, usable_blks_in_seg;
4515 /* find dirty segment based on free segmap */
4516 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4517 if (segno >= MAIN_SEGS(sbi))
4520 valid_blocks = get_valid_blocks(sbi, segno, false);
4521 usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
4522 if (valid_blocks == usable_blks_in_seg || !valid_blocks)
4524 if (valid_blocks > usable_blks_in_seg) {
4525 f2fs_bug_on(sbi, 1);
4528 mutex_lock(&dirty_i->seglist_lock);
4529 __locate_dirty_segment(sbi, segno, DIRTY);
4530 mutex_unlock(&dirty_i->seglist_lock);
4533 if (!__is_large_section(sbi))
4536 mutex_lock(&dirty_i->seglist_lock);
4537 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4538 valid_blocks = get_valid_blocks(sbi, segno, true);
4539 secno = GET_SEC_FROM_SEG(sbi, segno);
4541 if (!valid_blocks || valid_blocks == CAP_BLKS_PER_SEC(sbi))
4543 if (IS_CURSEC(sbi, secno))
4545 set_bit(secno, dirty_i->dirty_secmap);
4547 mutex_unlock(&dirty_i->seglist_lock);
4550 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4552 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4553 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4555 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4556 if (!dirty_i->victim_secmap)
4559 dirty_i->pinned_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4560 if (!dirty_i->pinned_secmap)
4563 dirty_i->pinned_secmap_cnt = 0;
4564 dirty_i->enable_pin_section = true;
4568 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4570 struct dirty_seglist_info *dirty_i;
4571 unsigned int bitmap_size, i;
4573 /* allocate memory for dirty segments list information */
4574 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4579 SM_I(sbi)->dirty_info = dirty_i;
4580 mutex_init(&dirty_i->seglist_lock);
4582 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4584 for (i = 0; i < NR_DIRTY_TYPE; i++) {
4585 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4587 if (!dirty_i->dirty_segmap[i])
4591 if (__is_large_section(sbi)) {
4592 bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4593 dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
4594 bitmap_size, GFP_KERNEL);
4595 if (!dirty_i->dirty_secmap)
4599 init_dirty_segmap(sbi);
4600 return init_victim_secmap(sbi);
4603 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4608 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4609 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4611 for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4612 struct curseg_info *curseg = CURSEG_I(sbi, i);
4613 struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4614 unsigned int blkofs = curseg->next_blkoff;
4616 if (f2fs_sb_has_readonly(sbi) &&
4617 i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
4620 sanity_check_seg_type(sbi, curseg->seg_type);
4622 if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) {
4624 "Current segment has invalid alloc_type:%d",
4625 curseg->alloc_type);
4626 return -EFSCORRUPTED;
4629 if (f2fs_test_bit(blkofs, se->cur_valid_map))
4632 if (curseg->alloc_type == SSR)
4635 for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4636 if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4640 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4641 i, curseg->segno, curseg->alloc_type,
4642 curseg->next_blkoff, blkofs);
4643 return -EFSCORRUPTED;
4649 #ifdef CONFIG_BLK_DEV_ZONED
4651 static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4652 struct f2fs_dev_info *fdev,
4653 struct blk_zone *zone)
4655 unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno;
4656 block_t zone_block, wp_block, last_valid_block;
4657 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4659 struct seg_entry *se;
4661 if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4664 wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block);
4665 wp_segno = GET_SEGNO(sbi, wp_block);
4666 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4667 zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4668 zone_segno = GET_SEGNO(sbi, zone_block);
4669 zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno);
4671 if (zone_segno >= MAIN_SEGS(sbi))
4675 * Skip check of zones cursegs point to, since
4676 * fix_curseg_write_pointer() checks them.
4678 for (i = 0; i < NO_CHECK_TYPE; i++)
4679 if (zone_secno == GET_SEC_FROM_SEG(sbi,
4680 CURSEG_I(sbi, i)->segno))
4684 * Get last valid block of the zone.
4686 last_valid_block = zone_block - 1;
4687 for (s = sbi->segs_per_sec - 1; s >= 0; s--) {
4688 segno = zone_segno + s;
4689 se = get_seg_entry(sbi, segno);
4690 for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
4691 if (f2fs_test_bit(b, se->cur_valid_map)) {
4692 last_valid_block = START_BLOCK(sbi, segno) + b;
4695 if (last_valid_block >= zone_block)
4700 * If last valid block is beyond the write pointer, report the
4701 * inconsistency. This inconsistency does not cause write error
4702 * because the zone will not be selected for write operation until
4703 * it get discarded. Just report it.
4705 if (last_valid_block >= wp_block) {
4706 f2fs_notice(sbi, "Valid block beyond write pointer: "
4707 "valid block[0x%x,0x%x] wp[0x%x,0x%x]",
4708 GET_SEGNO(sbi, last_valid_block),
4709 GET_BLKOFF_FROM_SEG0(sbi, last_valid_block),
4710 wp_segno, wp_blkoff);
4715 * If there is no valid block in the zone and if write pointer is
4716 * not at zone start, reset the write pointer.
4718 if (last_valid_block + 1 == zone_block && zone->wp != zone->start) {
4720 "Zone without valid block has non-zero write "
4721 "pointer. Reset the write pointer: wp[0x%x,0x%x]",
4722 wp_segno, wp_blkoff);
4723 ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4724 zone->len >> log_sectors_per_block);
4726 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4735 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
4736 block_t zone_blkaddr)
4740 for (i = 0; i < sbi->s_ndevs; i++) {
4741 if (!bdev_is_zoned(FDEV(i).bdev))
4743 if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
4744 zone_blkaddr <= FDEV(i).end_blk))
4751 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
4754 memcpy(data, zone, sizeof(struct blk_zone));
4758 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
4760 struct curseg_info *cs = CURSEG_I(sbi, type);
4761 struct f2fs_dev_info *zbd;
4762 struct blk_zone zone;
4763 unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
4764 block_t cs_zone_block, wp_block;
4765 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4766 sector_t zone_sector;
4769 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4770 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4772 zbd = get_target_zoned_dev(sbi, cs_zone_block);
4776 /* report zone for the sector the curseg points to */
4777 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4778 << log_sectors_per_block;
4779 err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4780 report_one_zone_cb, &zone);
4782 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4787 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4790 wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
4791 wp_segno = GET_SEGNO(sbi, wp_block);
4792 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4793 wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
4795 if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
4799 f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
4800 "curseg[0x%x,0x%x] wp[0x%x,0x%x]",
4801 type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff);
4803 f2fs_notice(sbi, "Assign new section to curseg[%d]: "
4804 "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff);
4806 f2fs_allocate_new_section(sbi, type, true);
4808 /* check consistency of the zone curseg pointed to */
4809 if (check_zone_write_pointer(sbi, zbd, &zone))
4812 /* check newly assigned zone */
4813 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4814 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4816 zbd = get_target_zoned_dev(sbi, cs_zone_block);
4820 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4821 << log_sectors_per_block;
4822 err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4823 report_one_zone_cb, &zone);
4825 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4830 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4833 if (zone.wp != zone.start) {
4835 "New zone for curseg[%d] is not yet discarded. "
4836 "Reset the zone: curseg[0x%x,0x%x]",
4837 type, cs->segno, cs->next_blkoff);
4838 err = __f2fs_issue_discard_zone(sbi, zbd->bdev,
4839 zone_sector >> log_sectors_per_block,
4840 zone.len >> log_sectors_per_block);
4842 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4851 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4855 for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4856 ret = fix_curseg_write_pointer(sbi, i);
4864 struct check_zone_write_pointer_args {
4865 struct f2fs_sb_info *sbi;
4866 struct f2fs_dev_info *fdev;
4869 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
4872 struct check_zone_write_pointer_args *args;
4874 args = (struct check_zone_write_pointer_args *)data;
4876 return check_zone_write_pointer(args->sbi, args->fdev, zone);
4879 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
4882 struct check_zone_write_pointer_args args;
4884 for (i = 0; i < sbi->s_ndevs; i++) {
4885 if (!bdev_is_zoned(FDEV(i).bdev))
4889 args.fdev = &FDEV(i);
4890 ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
4891 check_zone_write_pointer_cb, &args);
4899 static bool is_conv_zone(struct f2fs_sb_info *sbi, unsigned int zone_idx,
4900 unsigned int dev_idx)
4902 if (!bdev_is_zoned(FDEV(dev_idx).bdev))
4904 return !test_bit(zone_idx, FDEV(dev_idx).blkz_seq);
4907 /* Return the zone index in the given device */
4908 static unsigned int get_zone_idx(struct f2fs_sb_info *sbi, unsigned int secno,
4911 block_t sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
4913 return (sec_start_blkaddr - FDEV(dev_idx).start_blk) >>
4914 sbi->log_blocks_per_blkz;
4918 * Return the usable segments in a section based on the zone's
4919 * corresponding zone capacity. Zone is equal to a section.
4921 static inline unsigned int f2fs_usable_zone_segs_in_sec(
4922 struct f2fs_sb_info *sbi, unsigned int segno)
4924 unsigned int dev_idx, zone_idx;
4926 dev_idx = f2fs_target_device_index(sbi, START_BLOCK(sbi, segno));
4927 zone_idx = get_zone_idx(sbi, GET_SEC_FROM_SEG(sbi, segno), dev_idx);
4929 /* Conventional zone's capacity is always equal to zone size */
4930 if (is_conv_zone(sbi, zone_idx, dev_idx))
4931 return sbi->segs_per_sec;
4933 if (!sbi->unusable_blocks_per_sec)
4934 return sbi->segs_per_sec;
4936 /* Get the segment count beyond zone capacity block */
4937 return sbi->segs_per_sec - (sbi->unusable_blocks_per_sec >>
4938 sbi->log_blocks_per_seg);
4942 * Return the number of usable blocks in a segment. The number of blocks
4943 * returned is always equal to the number of blocks in a segment for
4944 * segments fully contained within a sequential zone capacity or a
4945 * conventional zone. For segments partially contained in a sequential
4946 * zone capacity, the number of usable blocks up to the zone capacity
4947 * is returned. 0 is returned in all other cases.
4949 static inline unsigned int f2fs_usable_zone_blks_in_seg(
4950 struct f2fs_sb_info *sbi, unsigned int segno)
4952 block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
4953 unsigned int zone_idx, dev_idx, secno;
4955 secno = GET_SEC_FROM_SEG(sbi, segno);
4956 seg_start = START_BLOCK(sbi, segno);
4957 dev_idx = f2fs_target_device_index(sbi, seg_start);
4958 zone_idx = get_zone_idx(sbi, secno, dev_idx);
4961 * Conventional zone's capacity is always equal to zone size,
4962 * so, blocks per segment is unchanged.
4964 if (is_conv_zone(sbi, zone_idx, dev_idx))
4965 return sbi->blocks_per_seg;
4967 if (!sbi->unusable_blocks_per_sec)
4968 return sbi->blocks_per_seg;
4970 sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
4971 sec_cap_blkaddr = sec_start_blkaddr + CAP_BLKS_PER_SEC(sbi);
4974 * If segment starts before zone capacity and spans beyond
4975 * zone capacity, then usable blocks are from seg start to
4976 * zone capacity. If the segment starts after the zone capacity,
4977 * then there are no usable blocks.
4979 if (seg_start >= sec_cap_blkaddr)
4981 if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr)
4982 return sec_cap_blkaddr - seg_start;
4984 return sbi->blocks_per_seg;
4987 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4992 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
4997 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5003 static inline unsigned int f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info *sbi,
5009 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5012 if (f2fs_sb_has_blkzoned(sbi))
5013 return f2fs_usable_zone_blks_in_seg(sbi, segno);
5015 return sbi->blocks_per_seg;
5018 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
5021 if (f2fs_sb_has_blkzoned(sbi))
5022 return f2fs_usable_zone_segs_in_sec(sbi, segno);
5024 return sbi->segs_per_sec;
5028 * Update min, max modified time for cost-benefit GC algorithm
5030 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5032 struct sit_info *sit_i = SIT_I(sbi);
5035 down_write(&sit_i->sentry_lock);
5037 sit_i->min_mtime = ULLONG_MAX;
5039 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
5041 unsigned long long mtime = 0;
5043 for (i = 0; i < sbi->segs_per_sec; i++)
5044 mtime += get_seg_entry(sbi, segno + i)->mtime;
5046 mtime = div_u64(mtime, sbi->segs_per_sec);
5048 if (sit_i->min_mtime > mtime)
5049 sit_i->min_mtime = mtime;
5051 sit_i->max_mtime = get_mtime(sbi, false);
5052 sit_i->dirty_max_mtime = 0;
5053 up_write(&sit_i->sentry_lock);
5056 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5058 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5059 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5060 struct f2fs_sm_info *sm_info;
5063 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5068 sbi->sm_info = sm_info;
5069 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5070 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5071 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5072 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5073 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5074 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5075 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5076 sm_info->rec_prefree_segments = sm_info->main_segments *
5077 DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5078 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5079 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5081 if (!f2fs_lfs_mode(sbi))
5082 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
5083 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5084 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5085 sm_info->min_seq_blocks = sbi->blocks_per_seg;
5086 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5087 sm_info->min_ssr_sections = reserved_sections(sbi);
5089 INIT_LIST_HEAD(&sm_info->sit_entry_set);
5091 init_f2fs_rwsem(&sm_info->curseg_lock);
5093 if (!f2fs_readonly(sbi->sb)) {
5094 err = f2fs_create_flush_cmd_control(sbi);
5099 err = create_discard_cmd_control(sbi);
5103 err = build_sit_info(sbi);
5106 err = build_free_segmap(sbi);
5109 err = build_curseg(sbi);
5113 /* reinit free segmap based on SIT */
5114 err = build_sit_entries(sbi);
5118 init_free_segmap(sbi);
5119 err = build_dirty_segmap(sbi);
5123 err = sanity_check_curseg(sbi);
5127 init_min_max_mtime(sbi);
5131 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5132 enum dirty_type dirty_type)
5134 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5136 mutex_lock(&dirty_i->seglist_lock);
5137 kvfree(dirty_i->dirty_segmap[dirty_type]);
5138 dirty_i->nr_dirty[dirty_type] = 0;
5139 mutex_unlock(&dirty_i->seglist_lock);
5142 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5144 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5146 kvfree(dirty_i->pinned_secmap);
5147 kvfree(dirty_i->victim_secmap);
5150 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5152 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5158 /* discard pre-free/dirty segments list */
5159 for (i = 0; i < NR_DIRTY_TYPE; i++)
5160 discard_dirty_segmap(sbi, i);
5162 if (__is_large_section(sbi)) {
5163 mutex_lock(&dirty_i->seglist_lock);
5164 kvfree(dirty_i->dirty_secmap);
5165 mutex_unlock(&dirty_i->seglist_lock);
5168 destroy_victim_secmap(sbi);
5169 SM_I(sbi)->dirty_info = NULL;
5173 static void destroy_curseg(struct f2fs_sb_info *sbi)
5175 struct curseg_info *array = SM_I(sbi)->curseg_array;
5180 SM_I(sbi)->curseg_array = NULL;
5181 for (i = 0; i < NR_CURSEG_TYPE; i++) {
5182 kfree(array[i].sum_blk);
5183 kfree(array[i].journal);
5188 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5190 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5194 SM_I(sbi)->free_info = NULL;
5195 kvfree(free_i->free_segmap);
5196 kvfree(free_i->free_secmap);
5200 static void destroy_sit_info(struct f2fs_sb_info *sbi)
5202 struct sit_info *sit_i = SIT_I(sbi);
5207 if (sit_i->sentries)
5208 kvfree(sit_i->bitmap);
5209 kfree(sit_i->tmp_map);
5211 kvfree(sit_i->sentries);
5212 kvfree(sit_i->sec_entries);
5213 kvfree(sit_i->dirty_sentries_bitmap);
5215 SM_I(sbi)->sit_info = NULL;
5216 kvfree(sit_i->sit_bitmap);
5217 #ifdef CONFIG_F2FS_CHECK_FS
5218 kvfree(sit_i->sit_bitmap_mir);
5219 kvfree(sit_i->invalid_segmap);
5224 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5226 struct f2fs_sm_info *sm_info = SM_I(sbi);
5230 f2fs_destroy_flush_cmd_control(sbi, true);
5231 destroy_discard_cmd_control(sbi);
5232 destroy_dirty_segmap(sbi);
5233 destroy_curseg(sbi);
5234 destroy_free_segmap(sbi);
5235 destroy_sit_info(sbi);
5236 sbi->sm_info = NULL;
5240 int __init f2fs_create_segment_manager_caches(void)
5242 discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5243 sizeof(struct discard_entry));
5244 if (!discard_entry_slab)
5247 discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5248 sizeof(struct discard_cmd));
5249 if (!discard_cmd_slab)
5250 goto destroy_discard_entry;
5252 sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5253 sizeof(struct sit_entry_set));
5254 if (!sit_entry_set_slab)
5255 goto destroy_discard_cmd;
5257 revoke_entry_slab = f2fs_kmem_cache_create("f2fs_revoke_entry",
5258 sizeof(struct revoke_entry));
5259 if (!revoke_entry_slab)
5260 goto destroy_sit_entry_set;
5263 destroy_sit_entry_set:
5264 kmem_cache_destroy(sit_entry_set_slab);
5265 destroy_discard_cmd:
5266 kmem_cache_destroy(discard_cmd_slab);
5267 destroy_discard_entry:
5268 kmem_cache_destroy(discard_entry_slab);
5273 void f2fs_destroy_segment_manager_caches(void)
5275 kmem_cache_destroy(sit_entry_set_slab);
5276 kmem_cache_destroy(discard_cmd_slab);
5277 kmem_cache_destroy(discard_entry_slab);
5278 kmem_cache_destroy(revoke_entry_slab);