4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 /* start node id of a node block dedicated to the given node id */
12 #define START_NID(nid) ((nid / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
14 /* node block offset on the NAT area dedicated to the given start node id */
15 #define NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK)
17 /* # of pages to perform readahead before building free nids */
18 #define FREE_NID_PAGES 4
20 /* maximum # of free node ids to produce during build_free_nids */
21 #define MAX_FREE_NIDS (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
23 /* maximum readahead size for node during getting data blocks */
24 #define MAX_RA_NODE 128
26 /* maximum cached nat entries to manage memory footprint */
27 #define NM_WOUT_THRESHOLD (64 * NAT_ENTRY_PER_BLOCK)
29 /* vector size for gang look-up from nat cache that consists of radix tree */
30 #define NATVEC_SIZE 64
33 * For node information
36 nid_t nid; /* node id */
37 nid_t ino; /* inode number of the node's owner */
38 block_t blk_addr; /* block address of the node */
39 unsigned char version; /* version of the node */
43 struct list_head list; /* for clean or dirty nat list */
44 bool checkpointed; /* whether it is checkpointed or not */
45 struct node_info ni; /* in-memory node information */
48 #define nat_get_nid(nat) (nat->ni.nid)
49 #define nat_set_nid(nat, n) (nat->ni.nid = n)
50 #define nat_get_blkaddr(nat) (nat->ni.blk_addr)
51 #define nat_set_blkaddr(nat, b) (nat->ni.blk_addr = b)
52 #define nat_get_ino(nat) (nat->ni.ino)
53 #define nat_set_ino(nat, i) (nat->ni.ino = i)
54 #define nat_get_version(nat) (nat->ni.version)
55 #define nat_set_version(nat, v) (nat->ni.version = v)
57 #define __set_nat_cache_dirty(nm_i, ne) \
58 list_move_tail(&ne->list, &nm_i->dirty_nat_entries);
59 #define __clear_nat_cache_dirty(nm_i, ne) \
60 list_move_tail(&ne->list, &nm_i->nat_entries);
61 #define inc_node_version(version) (++version)
63 static inline void node_info_from_raw_nat(struct node_info *ni,
64 struct f2fs_nat_entry *raw_ne)
66 ni->ino = le32_to_cpu(raw_ne->ino);
67 ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
68 ni->version = raw_ne->version;
72 * For free nid mangement
75 NID_NEW, /* newly added to free nid list */
76 NID_ALLOC /* it is allocated */
80 struct list_head list; /* for free node id list */
81 nid_t nid; /* node id */
82 int state; /* in use or not: NID_NEW or NID_ALLOC */
85 static inline int next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
87 struct f2fs_nm_info *nm_i = NM_I(sbi);
88 struct free_nid *fnid;
92 spin_lock(&nm_i->free_nid_list_lock);
93 fnid = list_entry(nm_i->free_nid_list.next, struct free_nid, list);
95 spin_unlock(&nm_i->free_nid_list_lock);
102 static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
104 struct f2fs_nm_info *nm_i = NM_I(sbi);
105 memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
108 static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
110 struct f2fs_nm_info *nm_i = NM_I(sbi);
115 block_off = NAT_BLOCK_OFFSET(start);
116 seg_off = block_off >> sbi->log_blocks_per_seg;
118 block_addr = (pgoff_t)(nm_i->nat_blkaddr +
119 (seg_off << sbi->log_blocks_per_seg << 1) +
120 (block_off & ((1 << sbi->log_blocks_per_seg) - 1)));
122 if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
123 block_addr += sbi->blocks_per_seg;
128 static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
131 struct f2fs_nm_info *nm_i = NM_I(sbi);
133 block_addr -= nm_i->nat_blkaddr;
134 if ((block_addr >> sbi->log_blocks_per_seg) % 2)
135 block_addr -= sbi->blocks_per_seg;
137 block_addr += sbi->blocks_per_seg;
139 return block_addr + nm_i->nat_blkaddr;
142 static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
144 unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
146 if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
147 f2fs_clear_bit(block_off, nm_i->nat_bitmap);
149 f2fs_set_bit(block_off, nm_i->nat_bitmap);
152 static inline void fill_node_footer(struct page *page, nid_t nid,
153 nid_t ino, unsigned int ofs, bool reset)
155 void *kaddr = page_address(page);
156 struct f2fs_node *rn = (struct f2fs_node *)kaddr;
158 memset(rn, 0, sizeof(*rn));
159 rn->footer.nid = cpu_to_le32(nid);
160 rn->footer.ino = cpu_to_le32(ino);
161 rn->footer.flag = cpu_to_le32(ofs << OFFSET_BIT_SHIFT);
164 static inline void copy_node_footer(struct page *dst, struct page *src)
166 void *src_addr = page_address(src);
167 void *dst_addr = page_address(dst);
168 struct f2fs_node *src_rn = (struct f2fs_node *)src_addr;
169 struct f2fs_node *dst_rn = (struct f2fs_node *)dst_addr;
170 memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
173 static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
175 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
176 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
177 void *kaddr = page_address(page);
178 struct f2fs_node *rn = (struct f2fs_node *)kaddr;
179 rn->footer.cp_ver = ckpt->checkpoint_ver;
180 rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
183 static inline nid_t ino_of_node(struct page *node_page)
185 void *kaddr = page_address(node_page);
186 struct f2fs_node *rn = (struct f2fs_node *)kaddr;
187 return le32_to_cpu(rn->footer.ino);
190 static inline nid_t nid_of_node(struct page *node_page)
192 void *kaddr = page_address(node_page);
193 struct f2fs_node *rn = (struct f2fs_node *)kaddr;
194 return le32_to_cpu(rn->footer.nid);
197 static inline unsigned int ofs_of_node(struct page *node_page)
199 void *kaddr = page_address(node_page);
200 struct f2fs_node *rn = (struct f2fs_node *)kaddr;
201 unsigned flag = le32_to_cpu(rn->footer.flag);
202 return flag >> OFFSET_BIT_SHIFT;
205 static inline unsigned long long cpver_of_node(struct page *node_page)
207 void *kaddr = page_address(node_page);
208 struct f2fs_node *rn = (struct f2fs_node *)kaddr;
209 return le64_to_cpu(rn->footer.cp_ver);
212 static inline block_t next_blkaddr_of_node(struct page *node_page)
214 void *kaddr = page_address(node_page);
215 struct f2fs_node *rn = (struct f2fs_node *)kaddr;
216 return le32_to_cpu(rn->footer.next_blkaddr);
220 * f2fs assigns the following node offsets described as (num).
226 * |- indirect node (3)
227 * | `- direct node (4 => 4 + N - 1)
228 * |- indirect node (4 + N)
229 * | `- direct node (5 + N => 5 + 2N - 1)
230 * `- double indirect node (5 + 2N)
231 * `- indirect node (6 + 2N)
232 * `- direct node (x(N + 1))
234 static inline bool IS_DNODE(struct page *node_page)
236 unsigned int ofs = ofs_of_node(node_page);
237 if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
238 ofs == 5 + 2 * NIDS_PER_BLOCK)
240 if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
241 ofs -= 6 + 2 * NIDS_PER_BLOCK;
242 if ((long int)ofs % (NIDS_PER_BLOCK + 1))
248 static inline void set_nid(struct page *p, int off, nid_t nid, bool i)
250 struct f2fs_node *rn = (struct f2fs_node *)page_address(p);
252 wait_on_page_writeback(p);
255 rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
257 rn->in.nid[off] = cpu_to_le32(nid);
261 static inline nid_t get_nid(struct page *p, int off, bool i)
263 struct f2fs_node *rn = (struct f2fs_node *)page_address(p);
265 return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
266 return le32_to_cpu(rn->in.nid[off]);
270 * Coldness identification:
271 * - Mark cold files in f2fs_inode_info
272 * - Mark cold node blocks in their node footer
273 * - Mark cold data pages in page cache
275 static inline int is_cold_file(struct inode *inode)
277 return F2FS_I(inode)->i_advise & FADVISE_COLD_BIT;
280 static inline int is_cold_data(struct page *page)
282 return PageChecked(page);
285 static inline void set_cold_data(struct page *page)
287 SetPageChecked(page);
290 static inline void clear_cold_data(struct page *page)
292 ClearPageChecked(page);
295 static inline int is_cold_node(struct page *page)
297 void *kaddr = page_address(page);
298 struct f2fs_node *rn = (struct f2fs_node *)kaddr;
299 unsigned int flag = le32_to_cpu(rn->footer.flag);
300 return flag & (0x1 << COLD_BIT_SHIFT);
303 static inline unsigned char is_fsync_dnode(struct page *page)
305 void *kaddr = page_address(page);
306 struct f2fs_node *rn = (struct f2fs_node *)kaddr;
307 unsigned int flag = le32_to_cpu(rn->footer.flag);
308 return flag & (0x1 << FSYNC_BIT_SHIFT);
311 static inline unsigned char is_dent_dnode(struct page *page)
313 void *kaddr = page_address(page);
314 struct f2fs_node *rn = (struct f2fs_node *)kaddr;
315 unsigned int flag = le32_to_cpu(rn->footer.flag);
316 return flag & (0x1 << DENT_BIT_SHIFT);
319 static inline void set_cold_node(struct inode *inode, struct page *page)
321 struct f2fs_node *rn = (struct f2fs_node *)page_address(page);
322 unsigned int flag = le32_to_cpu(rn->footer.flag);
324 if (S_ISDIR(inode->i_mode))
325 flag &= ~(0x1 << COLD_BIT_SHIFT);
327 flag |= (0x1 << COLD_BIT_SHIFT);
328 rn->footer.flag = cpu_to_le32(flag);
331 static inline void set_fsync_mark(struct page *page, int mark)
333 void *kaddr = page_address(page);
334 struct f2fs_node *rn = (struct f2fs_node *)kaddr;
335 unsigned int flag = le32_to_cpu(rn->footer.flag);
337 flag |= (0x1 << FSYNC_BIT_SHIFT);
339 flag &= ~(0x1 << FSYNC_BIT_SHIFT);
340 rn->footer.flag = cpu_to_le32(flag);
343 static inline void set_dentry_mark(struct page *page, int mark)
345 void *kaddr = page_address(page);
346 struct f2fs_node *rn = (struct f2fs_node *)kaddr;
347 unsigned int flag = le32_to_cpu(rn->footer.flag);
349 flag |= (0x1 << DENT_BIT_SHIFT);
351 flag &= ~(0x1 << DENT_BIT_SHIFT);
352 rn->footer.flag = cpu_to_le32(flag);