Revert: "f2fs: check last page index in cached bio to decide submission"
[platform/kernel/linux-starfive.git] / fs / f2fs / node.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/node.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/mpage.h>
11 #include <linux/backing-dev.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagevec.h>
14 #include <linux/swap.h>
15
16 #include "f2fs.h"
17 #include "node.h"
18 #include "segment.h"
19 #include "xattr.h"
20 #include "trace.h"
21 #include <trace/events/f2fs.h>
22
23 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
24
25 static struct kmem_cache *nat_entry_slab;
26 static struct kmem_cache *free_nid_slab;
27 static struct kmem_cache *nat_entry_set_slab;
28 static struct kmem_cache *fsync_node_entry_slab;
29
30 /*
31  * Check whether the given nid is within node id range.
32  */
33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
34 {
35         if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36                 set_sbi_flag(sbi, SBI_NEED_FSCK);
37                 f2fs_msg(sbi->sb, KERN_WARNING,
38                                 "%s: out-of-range nid=%x, run fsck to fix.",
39                                 __func__, nid);
40                 return -EINVAL;
41         }
42         return 0;
43 }
44
45 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
46 {
47         struct f2fs_nm_info *nm_i = NM_I(sbi);
48         struct sysinfo val;
49         unsigned long avail_ram;
50         unsigned long mem_size = 0;
51         bool res = false;
52
53         si_meminfo(&val);
54
55         /* only uses low memory */
56         avail_ram = val.totalram - val.totalhigh;
57
58         /*
59          * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
60          */
61         if (type == FREE_NIDS) {
62                 mem_size = (nm_i->nid_cnt[FREE_NID] *
63                                 sizeof(struct free_nid)) >> PAGE_SHIFT;
64                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
65         } else if (type == NAT_ENTRIES) {
66                 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
67                                                         PAGE_SHIFT;
68                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
69                 if (excess_cached_nats(sbi))
70                         res = false;
71         } else if (type == DIRTY_DENTS) {
72                 if (sbi->sb->s_bdi->wb.dirty_exceeded)
73                         return false;
74                 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
75                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
76         } else if (type == INO_ENTRIES) {
77                 int i;
78
79                 for (i = 0; i < MAX_INO_ENTRY; i++)
80                         mem_size += sbi->im[i].ino_num *
81                                                 sizeof(struct ino_entry);
82                 mem_size >>= PAGE_SHIFT;
83                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
84         } else if (type == EXTENT_CACHE) {
85                 mem_size = (atomic_read(&sbi->total_ext_tree) *
86                                 sizeof(struct extent_tree) +
87                                 atomic_read(&sbi->total_ext_node) *
88                                 sizeof(struct extent_node)) >> PAGE_SHIFT;
89                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
90         } else if (type == INMEM_PAGES) {
91                 /* it allows 20% / total_ram for inmemory pages */
92                 mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
93                 res = mem_size < (val.totalram / 5);
94         } else {
95                 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
96                         return true;
97         }
98         return res;
99 }
100
101 static void clear_node_page_dirty(struct page *page)
102 {
103         if (PageDirty(page)) {
104                 f2fs_clear_radix_tree_dirty_tag(page);
105                 clear_page_dirty_for_io(page);
106                 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
107         }
108         ClearPageUptodate(page);
109 }
110
111 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
112 {
113         return f2fs_get_meta_page_nofail(sbi, current_nat_addr(sbi, nid));
114 }
115
116 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
117 {
118         struct page *src_page;
119         struct page *dst_page;
120         pgoff_t dst_off;
121         void *src_addr;
122         void *dst_addr;
123         struct f2fs_nm_info *nm_i = NM_I(sbi);
124
125         dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
126
127         /* get current nat block page with lock */
128         src_page = get_current_nat_page(sbi, nid);
129         if (IS_ERR(src_page))
130                 return src_page;
131         dst_page = f2fs_grab_meta_page(sbi, dst_off);
132         f2fs_bug_on(sbi, PageDirty(src_page));
133
134         src_addr = page_address(src_page);
135         dst_addr = page_address(dst_page);
136         memcpy(dst_addr, src_addr, PAGE_SIZE);
137         set_page_dirty(dst_page);
138         f2fs_put_page(src_page, 1);
139
140         set_to_next_nat(nm_i, nid);
141
142         return dst_page;
143 }
144
145 static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
146 {
147         struct nat_entry *new;
148
149         if (no_fail)
150                 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
151         else
152                 new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
153         if (new) {
154                 nat_set_nid(new, nid);
155                 nat_reset_flag(new);
156         }
157         return new;
158 }
159
160 static void __free_nat_entry(struct nat_entry *e)
161 {
162         kmem_cache_free(nat_entry_slab, e);
163 }
164
165 /* must be locked by nat_tree_lock */
166 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
167         struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
168 {
169         if (no_fail)
170                 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
171         else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
172                 return NULL;
173
174         if (raw_ne)
175                 node_info_from_raw_nat(&ne->ni, raw_ne);
176
177         spin_lock(&nm_i->nat_list_lock);
178         list_add_tail(&ne->list, &nm_i->nat_entries);
179         spin_unlock(&nm_i->nat_list_lock);
180
181         nm_i->nat_cnt++;
182         return ne;
183 }
184
185 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
186 {
187         struct nat_entry *ne;
188
189         ne = radix_tree_lookup(&nm_i->nat_root, n);
190
191         /* for recent accessed nat entry, move it to tail of lru list */
192         if (ne && !get_nat_flag(ne, IS_DIRTY)) {
193                 spin_lock(&nm_i->nat_list_lock);
194                 if (!list_empty(&ne->list))
195                         list_move_tail(&ne->list, &nm_i->nat_entries);
196                 spin_unlock(&nm_i->nat_list_lock);
197         }
198
199         return ne;
200 }
201
202 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
203                 nid_t start, unsigned int nr, struct nat_entry **ep)
204 {
205         return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
206 }
207
208 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
209 {
210         radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
211         nm_i->nat_cnt--;
212         __free_nat_entry(e);
213 }
214
215 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
216                                                         struct nat_entry *ne)
217 {
218         nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
219         struct nat_entry_set *head;
220
221         head = radix_tree_lookup(&nm_i->nat_set_root, set);
222         if (!head) {
223                 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
224
225                 INIT_LIST_HEAD(&head->entry_list);
226                 INIT_LIST_HEAD(&head->set_list);
227                 head->set = set;
228                 head->entry_cnt = 0;
229                 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
230         }
231         return head;
232 }
233
234 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
235                                                 struct nat_entry *ne)
236 {
237         struct nat_entry_set *head;
238         bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
239
240         if (!new_ne)
241                 head = __grab_nat_entry_set(nm_i, ne);
242
243         /*
244          * update entry_cnt in below condition:
245          * 1. update NEW_ADDR to valid block address;
246          * 2. update old block address to new one;
247          */
248         if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
249                                 !get_nat_flag(ne, IS_DIRTY)))
250                 head->entry_cnt++;
251
252         set_nat_flag(ne, IS_PREALLOC, new_ne);
253
254         if (get_nat_flag(ne, IS_DIRTY))
255                 goto refresh_list;
256
257         nm_i->dirty_nat_cnt++;
258         set_nat_flag(ne, IS_DIRTY, true);
259 refresh_list:
260         spin_lock(&nm_i->nat_list_lock);
261         if (new_ne)
262                 list_del_init(&ne->list);
263         else
264                 list_move_tail(&ne->list, &head->entry_list);
265         spin_unlock(&nm_i->nat_list_lock);
266 }
267
268 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
269                 struct nat_entry_set *set, struct nat_entry *ne)
270 {
271         spin_lock(&nm_i->nat_list_lock);
272         list_move_tail(&ne->list, &nm_i->nat_entries);
273         spin_unlock(&nm_i->nat_list_lock);
274
275         set_nat_flag(ne, IS_DIRTY, false);
276         set->entry_cnt--;
277         nm_i->dirty_nat_cnt--;
278 }
279
280 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
281                 nid_t start, unsigned int nr, struct nat_entry_set **ep)
282 {
283         return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
284                                                         start, nr);
285 }
286
287 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
288 {
289         return NODE_MAPPING(sbi) == page->mapping &&
290                         IS_DNODE(page) && is_cold_node(page);
291 }
292
293 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
294 {
295         spin_lock_init(&sbi->fsync_node_lock);
296         INIT_LIST_HEAD(&sbi->fsync_node_list);
297         sbi->fsync_seg_id = 0;
298         sbi->fsync_node_num = 0;
299 }
300
301 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
302                                                         struct page *page)
303 {
304         struct fsync_node_entry *fn;
305         unsigned long flags;
306         unsigned int seq_id;
307
308         fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, GFP_NOFS);
309
310         get_page(page);
311         fn->page = page;
312         INIT_LIST_HEAD(&fn->list);
313
314         spin_lock_irqsave(&sbi->fsync_node_lock, flags);
315         list_add_tail(&fn->list, &sbi->fsync_node_list);
316         fn->seq_id = sbi->fsync_seg_id++;
317         seq_id = fn->seq_id;
318         sbi->fsync_node_num++;
319         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
320
321         return seq_id;
322 }
323
324 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
325 {
326         struct fsync_node_entry *fn;
327         unsigned long flags;
328
329         spin_lock_irqsave(&sbi->fsync_node_lock, flags);
330         list_for_each_entry(fn, &sbi->fsync_node_list, list) {
331                 if (fn->page == page) {
332                         list_del(&fn->list);
333                         sbi->fsync_node_num--;
334                         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
335                         kmem_cache_free(fsync_node_entry_slab, fn);
336                         put_page(page);
337                         return;
338                 }
339         }
340         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
341         f2fs_bug_on(sbi, 1);
342 }
343
344 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
345 {
346         unsigned long flags;
347
348         spin_lock_irqsave(&sbi->fsync_node_lock, flags);
349         sbi->fsync_seg_id = 0;
350         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
351 }
352
353 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
354 {
355         struct f2fs_nm_info *nm_i = NM_I(sbi);
356         struct nat_entry *e;
357         bool need = false;
358
359         down_read(&nm_i->nat_tree_lock);
360         e = __lookup_nat_cache(nm_i, nid);
361         if (e) {
362                 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
363                                 !get_nat_flag(e, HAS_FSYNCED_INODE))
364                         need = true;
365         }
366         up_read(&nm_i->nat_tree_lock);
367         return need;
368 }
369
370 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
371 {
372         struct f2fs_nm_info *nm_i = NM_I(sbi);
373         struct nat_entry *e;
374         bool is_cp = true;
375
376         down_read(&nm_i->nat_tree_lock);
377         e = __lookup_nat_cache(nm_i, nid);
378         if (e && !get_nat_flag(e, IS_CHECKPOINTED))
379                 is_cp = false;
380         up_read(&nm_i->nat_tree_lock);
381         return is_cp;
382 }
383
384 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
385 {
386         struct f2fs_nm_info *nm_i = NM_I(sbi);
387         struct nat_entry *e;
388         bool need_update = true;
389
390         down_read(&nm_i->nat_tree_lock);
391         e = __lookup_nat_cache(nm_i, ino);
392         if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
393                         (get_nat_flag(e, IS_CHECKPOINTED) ||
394                          get_nat_flag(e, HAS_FSYNCED_INODE)))
395                 need_update = false;
396         up_read(&nm_i->nat_tree_lock);
397         return need_update;
398 }
399
400 /* must be locked by nat_tree_lock */
401 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
402                                                 struct f2fs_nat_entry *ne)
403 {
404         struct f2fs_nm_info *nm_i = NM_I(sbi);
405         struct nat_entry *new, *e;
406
407         new = __alloc_nat_entry(nid, false);
408         if (!new)
409                 return;
410
411         down_write(&nm_i->nat_tree_lock);
412         e = __lookup_nat_cache(nm_i, nid);
413         if (!e)
414                 e = __init_nat_entry(nm_i, new, ne, false);
415         else
416                 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
417                                 nat_get_blkaddr(e) !=
418                                         le32_to_cpu(ne->block_addr) ||
419                                 nat_get_version(e) != ne->version);
420         up_write(&nm_i->nat_tree_lock);
421         if (e != new)
422                 __free_nat_entry(new);
423 }
424
425 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
426                         block_t new_blkaddr, bool fsync_done)
427 {
428         struct f2fs_nm_info *nm_i = NM_I(sbi);
429         struct nat_entry *e;
430         struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
431
432         down_write(&nm_i->nat_tree_lock);
433         e = __lookup_nat_cache(nm_i, ni->nid);
434         if (!e) {
435                 e = __init_nat_entry(nm_i, new, NULL, true);
436                 copy_node_info(&e->ni, ni);
437                 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
438         } else if (new_blkaddr == NEW_ADDR) {
439                 /*
440                  * when nid is reallocated,
441                  * previous nat entry can be remained in nat cache.
442                  * So, reinitialize it with new information.
443                  */
444                 copy_node_info(&e->ni, ni);
445                 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
446         }
447         /* let's free early to reduce memory consumption */
448         if (e != new)
449                 __free_nat_entry(new);
450
451         /* sanity check */
452         f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
453         f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
454                         new_blkaddr == NULL_ADDR);
455         f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
456                         new_blkaddr == NEW_ADDR);
457         f2fs_bug_on(sbi, is_valid_data_blkaddr(sbi, nat_get_blkaddr(e)) &&
458                         new_blkaddr == NEW_ADDR);
459
460         /* increment version no as node is removed */
461         if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
462                 unsigned char version = nat_get_version(e);
463                 nat_set_version(e, inc_node_version(version));
464         }
465
466         /* change address */
467         nat_set_blkaddr(e, new_blkaddr);
468         if (!is_valid_data_blkaddr(sbi, new_blkaddr))
469                 set_nat_flag(e, IS_CHECKPOINTED, false);
470         __set_nat_cache_dirty(nm_i, e);
471
472         /* update fsync_mark if its inode nat entry is still alive */
473         if (ni->nid != ni->ino)
474                 e = __lookup_nat_cache(nm_i, ni->ino);
475         if (e) {
476                 if (fsync_done && ni->nid == ni->ino)
477                         set_nat_flag(e, HAS_FSYNCED_INODE, true);
478                 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
479         }
480         up_write(&nm_i->nat_tree_lock);
481 }
482
483 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
484 {
485         struct f2fs_nm_info *nm_i = NM_I(sbi);
486         int nr = nr_shrink;
487
488         if (!down_write_trylock(&nm_i->nat_tree_lock))
489                 return 0;
490
491         spin_lock(&nm_i->nat_list_lock);
492         while (nr_shrink) {
493                 struct nat_entry *ne;
494
495                 if (list_empty(&nm_i->nat_entries))
496                         break;
497
498                 ne = list_first_entry(&nm_i->nat_entries,
499                                         struct nat_entry, list);
500                 list_del(&ne->list);
501                 spin_unlock(&nm_i->nat_list_lock);
502
503                 __del_from_nat_cache(nm_i, ne);
504                 nr_shrink--;
505
506                 spin_lock(&nm_i->nat_list_lock);
507         }
508         spin_unlock(&nm_i->nat_list_lock);
509
510         up_write(&nm_i->nat_tree_lock);
511         return nr - nr_shrink;
512 }
513
514 /*
515  * This function always returns success
516  */
517 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
518                                                 struct node_info *ni)
519 {
520         struct f2fs_nm_info *nm_i = NM_I(sbi);
521         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
522         struct f2fs_journal *journal = curseg->journal;
523         nid_t start_nid = START_NID(nid);
524         struct f2fs_nat_block *nat_blk;
525         struct page *page = NULL;
526         struct f2fs_nat_entry ne;
527         struct nat_entry *e;
528         pgoff_t index;
529         int i;
530
531         ni->nid = nid;
532
533         /* Check nat cache */
534         down_read(&nm_i->nat_tree_lock);
535         e = __lookup_nat_cache(nm_i, nid);
536         if (e) {
537                 ni->ino = nat_get_ino(e);
538                 ni->blk_addr = nat_get_blkaddr(e);
539                 ni->version = nat_get_version(e);
540                 up_read(&nm_i->nat_tree_lock);
541                 return 0;
542         }
543
544         memset(&ne, 0, sizeof(struct f2fs_nat_entry));
545
546         /* Check current segment summary */
547         down_read(&curseg->journal_rwsem);
548         i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
549         if (i >= 0) {
550                 ne = nat_in_journal(journal, i);
551                 node_info_from_raw_nat(ni, &ne);
552         }
553         up_read(&curseg->journal_rwsem);
554         if (i >= 0) {
555                 up_read(&nm_i->nat_tree_lock);
556                 goto cache;
557         }
558
559         /* Fill node_info from nat page */
560         index = current_nat_addr(sbi, nid);
561         up_read(&nm_i->nat_tree_lock);
562
563         page = f2fs_get_meta_page(sbi, index);
564         if (IS_ERR(page))
565                 return PTR_ERR(page);
566
567         nat_blk = (struct f2fs_nat_block *)page_address(page);
568         ne = nat_blk->entries[nid - start_nid];
569         node_info_from_raw_nat(ni, &ne);
570         f2fs_put_page(page, 1);
571 cache:
572         /* cache nat entry */
573         cache_nat_entry(sbi, nid, &ne);
574         return 0;
575 }
576
577 /*
578  * readahead MAX_RA_NODE number of node pages.
579  */
580 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
581 {
582         struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
583         struct blk_plug plug;
584         int i, end;
585         nid_t nid;
586
587         blk_start_plug(&plug);
588
589         /* Then, try readahead for siblings of the desired node */
590         end = start + n;
591         end = min(end, NIDS_PER_BLOCK);
592         for (i = start; i < end; i++) {
593                 nid = get_nid(parent, i, false);
594                 f2fs_ra_node_page(sbi, nid);
595         }
596
597         blk_finish_plug(&plug);
598 }
599
600 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
601 {
602         const long direct_index = ADDRS_PER_INODE(dn->inode);
603         const long direct_blks = ADDRS_PER_BLOCK;
604         const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
605         unsigned int skipped_unit = ADDRS_PER_BLOCK;
606         int cur_level = dn->cur_level;
607         int max_level = dn->max_level;
608         pgoff_t base = 0;
609
610         if (!dn->max_level)
611                 return pgofs + 1;
612
613         while (max_level-- > cur_level)
614                 skipped_unit *= NIDS_PER_BLOCK;
615
616         switch (dn->max_level) {
617         case 3:
618                 base += 2 * indirect_blks;
619         case 2:
620                 base += 2 * direct_blks;
621         case 1:
622                 base += direct_index;
623                 break;
624         default:
625                 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
626         }
627
628         return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
629 }
630
631 /*
632  * The maximum depth is four.
633  * Offset[0] will have raw inode offset.
634  */
635 static int get_node_path(struct inode *inode, long block,
636                                 int offset[4], unsigned int noffset[4])
637 {
638         const long direct_index = ADDRS_PER_INODE(inode);
639         const long direct_blks = ADDRS_PER_BLOCK;
640         const long dptrs_per_blk = NIDS_PER_BLOCK;
641         const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
642         const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
643         int n = 0;
644         int level = 0;
645
646         noffset[0] = 0;
647
648         if (block < direct_index) {
649                 offset[n] = block;
650                 goto got;
651         }
652         block -= direct_index;
653         if (block < direct_blks) {
654                 offset[n++] = NODE_DIR1_BLOCK;
655                 noffset[n] = 1;
656                 offset[n] = block;
657                 level = 1;
658                 goto got;
659         }
660         block -= direct_blks;
661         if (block < direct_blks) {
662                 offset[n++] = NODE_DIR2_BLOCK;
663                 noffset[n] = 2;
664                 offset[n] = block;
665                 level = 1;
666                 goto got;
667         }
668         block -= direct_blks;
669         if (block < indirect_blks) {
670                 offset[n++] = NODE_IND1_BLOCK;
671                 noffset[n] = 3;
672                 offset[n++] = block / direct_blks;
673                 noffset[n] = 4 + offset[n - 1];
674                 offset[n] = block % direct_blks;
675                 level = 2;
676                 goto got;
677         }
678         block -= indirect_blks;
679         if (block < indirect_blks) {
680                 offset[n++] = NODE_IND2_BLOCK;
681                 noffset[n] = 4 + dptrs_per_blk;
682                 offset[n++] = block / direct_blks;
683                 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
684                 offset[n] = block % direct_blks;
685                 level = 2;
686                 goto got;
687         }
688         block -= indirect_blks;
689         if (block < dindirect_blks) {
690                 offset[n++] = NODE_DIND_BLOCK;
691                 noffset[n] = 5 + (dptrs_per_blk * 2);
692                 offset[n++] = block / indirect_blks;
693                 noffset[n] = 6 + (dptrs_per_blk * 2) +
694                               offset[n - 1] * (dptrs_per_blk + 1);
695                 offset[n++] = (block / direct_blks) % dptrs_per_blk;
696                 noffset[n] = 7 + (dptrs_per_blk * 2) +
697                               offset[n - 2] * (dptrs_per_blk + 1) +
698                               offset[n - 1];
699                 offset[n] = block % direct_blks;
700                 level = 3;
701                 goto got;
702         } else {
703                 return -E2BIG;
704         }
705 got:
706         return level;
707 }
708
709 /*
710  * Caller should call f2fs_put_dnode(dn).
711  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
712  * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
713  * In the case of RDONLY_NODE, we don't need to care about mutex.
714  */
715 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
716 {
717         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
718         struct page *npage[4];
719         struct page *parent = NULL;
720         int offset[4];
721         unsigned int noffset[4];
722         nid_t nids[4];
723         int level, i = 0;
724         int err = 0;
725
726         level = get_node_path(dn->inode, index, offset, noffset);
727         if (level < 0)
728                 return level;
729
730         nids[0] = dn->inode->i_ino;
731         npage[0] = dn->inode_page;
732
733         if (!npage[0]) {
734                 npage[0] = f2fs_get_node_page(sbi, nids[0]);
735                 if (IS_ERR(npage[0]))
736                         return PTR_ERR(npage[0]);
737         }
738
739         /* if inline_data is set, should not report any block indices */
740         if (f2fs_has_inline_data(dn->inode) && index) {
741                 err = -ENOENT;
742                 f2fs_put_page(npage[0], 1);
743                 goto release_out;
744         }
745
746         parent = npage[0];
747         if (level != 0)
748                 nids[1] = get_nid(parent, offset[0], true);
749         dn->inode_page = npage[0];
750         dn->inode_page_locked = true;
751
752         /* get indirect or direct nodes */
753         for (i = 1; i <= level; i++) {
754                 bool done = false;
755
756                 if (!nids[i] && mode == ALLOC_NODE) {
757                         /* alloc new node */
758                         if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
759                                 err = -ENOSPC;
760                                 goto release_pages;
761                         }
762
763                         dn->nid = nids[i];
764                         npage[i] = f2fs_new_node_page(dn, noffset[i]);
765                         if (IS_ERR(npage[i])) {
766                                 f2fs_alloc_nid_failed(sbi, nids[i]);
767                                 err = PTR_ERR(npage[i]);
768                                 goto release_pages;
769                         }
770
771                         set_nid(parent, offset[i - 1], nids[i], i == 1);
772                         f2fs_alloc_nid_done(sbi, nids[i]);
773                         done = true;
774                 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
775                         npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
776                         if (IS_ERR(npage[i])) {
777                                 err = PTR_ERR(npage[i]);
778                                 goto release_pages;
779                         }
780                         done = true;
781                 }
782                 if (i == 1) {
783                         dn->inode_page_locked = false;
784                         unlock_page(parent);
785                 } else {
786                         f2fs_put_page(parent, 1);
787                 }
788
789                 if (!done) {
790                         npage[i] = f2fs_get_node_page(sbi, nids[i]);
791                         if (IS_ERR(npage[i])) {
792                                 err = PTR_ERR(npage[i]);
793                                 f2fs_put_page(npage[0], 0);
794                                 goto release_out;
795                         }
796                 }
797                 if (i < level) {
798                         parent = npage[i];
799                         nids[i + 1] = get_nid(parent, offset[i], false);
800                 }
801         }
802         dn->nid = nids[level];
803         dn->ofs_in_node = offset[level];
804         dn->node_page = npage[level];
805         dn->data_blkaddr = datablock_addr(dn->inode,
806                                 dn->node_page, dn->ofs_in_node);
807         return 0;
808
809 release_pages:
810         f2fs_put_page(parent, 1);
811         if (i > 1)
812                 f2fs_put_page(npage[0], 0);
813 release_out:
814         dn->inode_page = NULL;
815         dn->node_page = NULL;
816         if (err == -ENOENT) {
817                 dn->cur_level = i;
818                 dn->max_level = level;
819                 dn->ofs_in_node = offset[level];
820         }
821         return err;
822 }
823
824 static int truncate_node(struct dnode_of_data *dn)
825 {
826         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
827         struct node_info ni;
828         int err;
829
830         err = f2fs_get_node_info(sbi, dn->nid, &ni);
831         if (err)
832                 return err;
833
834         /* Deallocate node address */
835         f2fs_invalidate_blocks(sbi, ni.blk_addr);
836         dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
837         set_node_addr(sbi, &ni, NULL_ADDR, false);
838
839         if (dn->nid == dn->inode->i_ino) {
840                 f2fs_remove_orphan_inode(sbi, dn->nid);
841                 dec_valid_inode_count(sbi);
842                 f2fs_inode_synced(dn->inode);
843         }
844
845         clear_node_page_dirty(dn->node_page);
846         set_sbi_flag(sbi, SBI_IS_DIRTY);
847
848         f2fs_put_page(dn->node_page, 1);
849
850         invalidate_mapping_pages(NODE_MAPPING(sbi),
851                         dn->node_page->index, dn->node_page->index);
852
853         dn->node_page = NULL;
854         trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
855
856         return 0;
857 }
858
859 static int truncate_dnode(struct dnode_of_data *dn)
860 {
861         struct page *page;
862         int err;
863
864         if (dn->nid == 0)
865                 return 1;
866
867         /* get direct node */
868         page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
869         if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
870                 return 1;
871         else if (IS_ERR(page))
872                 return PTR_ERR(page);
873
874         /* Make dnode_of_data for parameter */
875         dn->node_page = page;
876         dn->ofs_in_node = 0;
877         f2fs_truncate_data_blocks(dn);
878         err = truncate_node(dn);
879         if (err)
880                 return err;
881
882         return 1;
883 }
884
885 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
886                                                 int ofs, int depth)
887 {
888         struct dnode_of_data rdn = *dn;
889         struct page *page;
890         struct f2fs_node *rn;
891         nid_t child_nid;
892         unsigned int child_nofs;
893         int freed = 0;
894         int i, ret;
895
896         if (dn->nid == 0)
897                 return NIDS_PER_BLOCK + 1;
898
899         trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
900
901         page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
902         if (IS_ERR(page)) {
903                 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
904                 return PTR_ERR(page);
905         }
906
907         f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
908
909         rn = F2FS_NODE(page);
910         if (depth < 3) {
911                 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
912                         child_nid = le32_to_cpu(rn->in.nid[i]);
913                         if (child_nid == 0)
914                                 continue;
915                         rdn.nid = child_nid;
916                         ret = truncate_dnode(&rdn);
917                         if (ret < 0)
918                                 goto out_err;
919                         if (set_nid(page, i, 0, false))
920                                 dn->node_changed = true;
921                 }
922         } else {
923                 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
924                 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
925                         child_nid = le32_to_cpu(rn->in.nid[i]);
926                         if (child_nid == 0) {
927                                 child_nofs += NIDS_PER_BLOCK + 1;
928                                 continue;
929                         }
930                         rdn.nid = child_nid;
931                         ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
932                         if (ret == (NIDS_PER_BLOCK + 1)) {
933                                 if (set_nid(page, i, 0, false))
934                                         dn->node_changed = true;
935                                 child_nofs += ret;
936                         } else if (ret < 0 && ret != -ENOENT) {
937                                 goto out_err;
938                         }
939                 }
940                 freed = child_nofs;
941         }
942
943         if (!ofs) {
944                 /* remove current indirect node */
945                 dn->node_page = page;
946                 ret = truncate_node(dn);
947                 if (ret)
948                         goto out_err;
949                 freed++;
950         } else {
951                 f2fs_put_page(page, 1);
952         }
953         trace_f2fs_truncate_nodes_exit(dn->inode, freed);
954         return freed;
955
956 out_err:
957         f2fs_put_page(page, 1);
958         trace_f2fs_truncate_nodes_exit(dn->inode, ret);
959         return ret;
960 }
961
962 static int truncate_partial_nodes(struct dnode_of_data *dn,
963                         struct f2fs_inode *ri, int *offset, int depth)
964 {
965         struct page *pages[2];
966         nid_t nid[3];
967         nid_t child_nid;
968         int err = 0;
969         int i;
970         int idx = depth - 2;
971
972         nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
973         if (!nid[0])
974                 return 0;
975
976         /* get indirect nodes in the path */
977         for (i = 0; i < idx + 1; i++) {
978                 /* reference count'll be increased */
979                 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
980                 if (IS_ERR(pages[i])) {
981                         err = PTR_ERR(pages[i]);
982                         idx = i - 1;
983                         goto fail;
984                 }
985                 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
986         }
987
988         f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
989
990         /* free direct nodes linked to a partial indirect node */
991         for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
992                 child_nid = get_nid(pages[idx], i, false);
993                 if (!child_nid)
994                         continue;
995                 dn->nid = child_nid;
996                 err = truncate_dnode(dn);
997                 if (err < 0)
998                         goto fail;
999                 if (set_nid(pages[idx], i, 0, false))
1000                         dn->node_changed = true;
1001         }
1002
1003         if (offset[idx + 1] == 0) {
1004                 dn->node_page = pages[idx];
1005                 dn->nid = nid[idx];
1006                 err = truncate_node(dn);
1007                 if (err)
1008                         goto fail;
1009         } else {
1010                 f2fs_put_page(pages[idx], 1);
1011         }
1012         offset[idx]++;
1013         offset[idx + 1] = 0;
1014         idx--;
1015 fail:
1016         for (i = idx; i >= 0; i--)
1017                 f2fs_put_page(pages[i], 1);
1018
1019         trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1020
1021         return err;
1022 }
1023
1024 /*
1025  * All the block addresses of data and nodes should be nullified.
1026  */
1027 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1028 {
1029         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1030         int err = 0, cont = 1;
1031         int level, offset[4], noffset[4];
1032         unsigned int nofs = 0;
1033         struct f2fs_inode *ri;
1034         struct dnode_of_data dn;
1035         struct page *page;
1036
1037         trace_f2fs_truncate_inode_blocks_enter(inode, from);
1038
1039         level = get_node_path(inode, from, offset, noffset);
1040         if (level < 0)
1041                 return level;
1042
1043         page = f2fs_get_node_page(sbi, inode->i_ino);
1044         if (IS_ERR(page)) {
1045                 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1046                 return PTR_ERR(page);
1047         }
1048
1049         set_new_dnode(&dn, inode, page, NULL, 0);
1050         unlock_page(page);
1051
1052         ri = F2FS_INODE(page);
1053         switch (level) {
1054         case 0:
1055         case 1:
1056                 nofs = noffset[1];
1057                 break;
1058         case 2:
1059                 nofs = noffset[1];
1060                 if (!offset[level - 1])
1061                         goto skip_partial;
1062                 err = truncate_partial_nodes(&dn, ri, offset, level);
1063                 if (err < 0 && err != -ENOENT)
1064                         goto fail;
1065                 nofs += 1 + NIDS_PER_BLOCK;
1066                 break;
1067         case 3:
1068                 nofs = 5 + 2 * NIDS_PER_BLOCK;
1069                 if (!offset[level - 1])
1070                         goto skip_partial;
1071                 err = truncate_partial_nodes(&dn, ri, offset, level);
1072                 if (err < 0 && err != -ENOENT)
1073                         goto fail;
1074                 break;
1075         default:
1076                 BUG();
1077         }
1078
1079 skip_partial:
1080         while (cont) {
1081                 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1082                 switch (offset[0]) {
1083                 case NODE_DIR1_BLOCK:
1084                 case NODE_DIR2_BLOCK:
1085                         err = truncate_dnode(&dn);
1086                         break;
1087
1088                 case NODE_IND1_BLOCK:
1089                 case NODE_IND2_BLOCK:
1090                         err = truncate_nodes(&dn, nofs, offset[1], 2);
1091                         break;
1092
1093                 case NODE_DIND_BLOCK:
1094                         err = truncate_nodes(&dn, nofs, offset[1], 3);
1095                         cont = 0;
1096                         break;
1097
1098                 default:
1099                         BUG();
1100                 }
1101                 if (err < 0 && err != -ENOENT)
1102                         goto fail;
1103                 if (offset[1] == 0 &&
1104                                 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1105                         lock_page(page);
1106                         BUG_ON(page->mapping != NODE_MAPPING(sbi));
1107                         f2fs_wait_on_page_writeback(page, NODE, true);
1108                         ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1109                         set_page_dirty(page);
1110                         unlock_page(page);
1111                 }
1112                 offset[1] = 0;
1113                 offset[0]++;
1114                 nofs += err;
1115         }
1116 fail:
1117         f2fs_put_page(page, 0);
1118         trace_f2fs_truncate_inode_blocks_exit(inode, err);
1119         return err > 0 ? 0 : err;
1120 }
1121
1122 /* caller must lock inode page */
1123 int f2fs_truncate_xattr_node(struct inode *inode)
1124 {
1125         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1126         nid_t nid = F2FS_I(inode)->i_xattr_nid;
1127         struct dnode_of_data dn;
1128         struct page *npage;
1129         int err;
1130
1131         if (!nid)
1132                 return 0;
1133
1134         npage = f2fs_get_node_page(sbi, nid);
1135         if (IS_ERR(npage))
1136                 return PTR_ERR(npage);
1137
1138         set_new_dnode(&dn, inode, NULL, npage, nid);
1139         err = truncate_node(&dn);
1140         if (err) {
1141                 f2fs_put_page(npage, 1);
1142                 return err;
1143         }
1144
1145         f2fs_i_xnid_write(inode, 0);
1146
1147         return 0;
1148 }
1149
1150 /*
1151  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1152  * f2fs_unlock_op().
1153  */
1154 int f2fs_remove_inode_page(struct inode *inode)
1155 {
1156         struct dnode_of_data dn;
1157         int err;
1158
1159         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1160         err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1161         if (err)
1162                 return err;
1163
1164         err = f2fs_truncate_xattr_node(inode);
1165         if (err) {
1166                 f2fs_put_dnode(&dn);
1167                 return err;
1168         }
1169
1170         /* remove potential inline_data blocks */
1171         if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1172                                 S_ISLNK(inode->i_mode))
1173                 f2fs_truncate_data_blocks_range(&dn, 1);
1174
1175         /* 0 is possible, after f2fs_new_inode() has failed */
1176         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1177                 f2fs_put_dnode(&dn);
1178                 return -EIO;
1179         }
1180         f2fs_bug_on(F2FS_I_SB(inode),
1181                         inode->i_blocks != 0 && inode->i_blocks != 8);
1182
1183         /* will put inode & node pages */
1184         err = truncate_node(&dn);
1185         if (err) {
1186                 f2fs_put_dnode(&dn);
1187                 return err;
1188         }
1189         return 0;
1190 }
1191
1192 struct page *f2fs_new_inode_page(struct inode *inode)
1193 {
1194         struct dnode_of_data dn;
1195
1196         /* allocate inode page for new inode */
1197         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1198
1199         /* caller should f2fs_put_page(page, 1); */
1200         return f2fs_new_node_page(&dn, 0);
1201 }
1202
1203 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1204 {
1205         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1206         struct node_info new_ni;
1207         struct page *page;
1208         int err;
1209
1210         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1211                 return ERR_PTR(-EPERM);
1212
1213         page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1214         if (!page)
1215                 return ERR_PTR(-ENOMEM);
1216
1217         if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1218                 goto fail;
1219
1220 #ifdef CONFIG_F2FS_CHECK_FS
1221         err = f2fs_get_node_info(sbi, dn->nid, &new_ni);
1222         if (err) {
1223                 dec_valid_node_count(sbi, dn->inode, !ofs);
1224                 goto fail;
1225         }
1226         f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
1227 #endif
1228         new_ni.nid = dn->nid;
1229         new_ni.ino = dn->inode->i_ino;
1230         new_ni.blk_addr = NULL_ADDR;
1231         new_ni.flag = 0;
1232         new_ni.version = 0;
1233         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1234
1235         f2fs_wait_on_page_writeback(page, NODE, true);
1236         fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1237         set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1238         if (!PageUptodate(page))
1239                 SetPageUptodate(page);
1240         if (set_page_dirty(page))
1241                 dn->node_changed = true;
1242
1243         if (f2fs_has_xattr_block(ofs))
1244                 f2fs_i_xnid_write(dn->inode, dn->nid);
1245
1246         if (ofs == 0)
1247                 inc_valid_inode_count(sbi);
1248         return page;
1249
1250 fail:
1251         clear_node_page_dirty(page);
1252         f2fs_put_page(page, 1);
1253         return ERR_PTR(err);
1254 }
1255
1256 /*
1257  * Caller should do after getting the following values.
1258  * 0: f2fs_put_page(page, 0)
1259  * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1260  */
1261 static int read_node_page(struct page *page, int op_flags)
1262 {
1263         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1264         struct node_info ni;
1265         struct f2fs_io_info fio = {
1266                 .sbi = sbi,
1267                 .type = NODE,
1268                 .op = REQ_OP_READ,
1269                 .op_flags = op_flags,
1270                 .page = page,
1271                 .encrypted_page = NULL,
1272         };
1273         int err;
1274
1275         if (PageUptodate(page)) {
1276 #ifdef CONFIG_F2FS_CHECK_FS
1277                 f2fs_bug_on(sbi, !f2fs_inode_chksum_verify(sbi, page));
1278 #endif
1279                 return LOCKED_PAGE;
1280         }
1281
1282         err = f2fs_get_node_info(sbi, page->index, &ni);
1283         if (err)
1284                 return err;
1285
1286         if (unlikely(ni.blk_addr == NULL_ADDR) ||
1287                         is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) {
1288                 ClearPageUptodate(page);
1289                 return -ENOENT;
1290         }
1291
1292         fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1293         return f2fs_submit_page_bio(&fio);
1294 }
1295
1296 /*
1297  * Readahead a node page
1298  */
1299 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1300 {
1301         struct page *apage;
1302         int err;
1303
1304         if (!nid)
1305                 return;
1306         if (f2fs_check_nid_range(sbi, nid))
1307                 return;
1308
1309         rcu_read_lock();
1310         apage = radix_tree_lookup(&NODE_MAPPING(sbi)->i_pages, nid);
1311         rcu_read_unlock();
1312         if (apage)
1313                 return;
1314
1315         apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1316         if (!apage)
1317                 return;
1318
1319         err = read_node_page(apage, REQ_RAHEAD);
1320         f2fs_put_page(apage, err ? 1 : 0);
1321 }
1322
1323 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1324                                         struct page *parent, int start)
1325 {
1326         struct page *page;
1327         int err;
1328
1329         if (!nid)
1330                 return ERR_PTR(-ENOENT);
1331         if (f2fs_check_nid_range(sbi, nid))
1332                 return ERR_PTR(-EINVAL);
1333 repeat:
1334         page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1335         if (!page)
1336                 return ERR_PTR(-ENOMEM);
1337
1338         err = read_node_page(page, 0);
1339         if (err < 0) {
1340                 f2fs_put_page(page, 1);
1341                 return ERR_PTR(err);
1342         } else if (err == LOCKED_PAGE) {
1343                 err = 0;
1344                 goto page_hit;
1345         }
1346
1347         if (parent)
1348                 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1349
1350         lock_page(page);
1351
1352         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1353                 f2fs_put_page(page, 1);
1354                 goto repeat;
1355         }
1356
1357         if (unlikely(!PageUptodate(page))) {
1358                 err = -EIO;
1359                 goto out_err;
1360         }
1361
1362         if (!f2fs_inode_chksum_verify(sbi, page)) {
1363                 err = -EBADMSG;
1364                 goto out_err;
1365         }
1366 page_hit:
1367         if(unlikely(nid != nid_of_node(page))) {
1368                 f2fs_msg(sbi->sb, KERN_WARNING, "inconsistent node block, "
1369                         "nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1370                         nid, nid_of_node(page), ino_of_node(page),
1371                         ofs_of_node(page), cpver_of_node(page),
1372                         next_blkaddr_of_node(page));
1373                 err = -EINVAL;
1374 out_err:
1375                 ClearPageUptodate(page);
1376                 f2fs_put_page(page, 1);
1377                 return ERR_PTR(err);
1378         }
1379         return page;
1380 }
1381
1382 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1383 {
1384         return __get_node_page(sbi, nid, NULL, 0);
1385 }
1386
1387 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1388 {
1389         struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1390         nid_t nid = get_nid(parent, start, false);
1391
1392         return __get_node_page(sbi, nid, parent, start);
1393 }
1394
1395 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1396 {
1397         struct inode *inode;
1398         struct page *page;
1399         int ret;
1400
1401         /* should flush inline_data before evict_inode */
1402         inode = ilookup(sbi->sb, ino);
1403         if (!inode)
1404                 return;
1405
1406         page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1407                                         FGP_LOCK|FGP_NOWAIT, 0);
1408         if (!page)
1409                 goto iput_out;
1410
1411         if (!PageUptodate(page))
1412                 goto page_out;
1413
1414         if (!PageDirty(page))
1415                 goto page_out;
1416
1417         if (!clear_page_dirty_for_io(page))
1418                 goto page_out;
1419
1420         ret = f2fs_write_inline_data(inode, page);
1421         inode_dec_dirty_pages(inode);
1422         f2fs_remove_dirty_inode(inode);
1423         if (ret)
1424                 set_page_dirty(page);
1425 page_out:
1426         f2fs_put_page(page, 1);
1427 iput_out:
1428         iput(inode);
1429 }
1430
1431 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1432 {
1433         pgoff_t index;
1434         struct pagevec pvec;
1435         struct page *last_page = NULL;
1436         int nr_pages;
1437
1438         pagevec_init(&pvec);
1439         index = 0;
1440
1441         while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1442                                 PAGECACHE_TAG_DIRTY))) {
1443                 int i;
1444
1445                 for (i = 0; i < nr_pages; i++) {
1446                         struct page *page = pvec.pages[i];
1447
1448                         if (unlikely(f2fs_cp_error(sbi))) {
1449                                 f2fs_put_page(last_page, 0);
1450                                 pagevec_release(&pvec);
1451                                 return ERR_PTR(-EIO);
1452                         }
1453
1454                         if (!IS_DNODE(page) || !is_cold_node(page))
1455                                 continue;
1456                         if (ino_of_node(page) != ino)
1457                                 continue;
1458
1459                         lock_page(page);
1460
1461                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1462 continue_unlock:
1463                                 unlock_page(page);
1464                                 continue;
1465                         }
1466                         if (ino_of_node(page) != ino)
1467                                 goto continue_unlock;
1468
1469                         if (!PageDirty(page)) {
1470                                 /* someone wrote it for us */
1471                                 goto continue_unlock;
1472                         }
1473
1474                         if (last_page)
1475                                 f2fs_put_page(last_page, 0);
1476
1477                         get_page(page);
1478                         last_page = page;
1479                         unlock_page(page);
1480                 }
1481                 pagevec_release(&pvec);
1482                 cond_resched();
1483         }
1484         return last_page;
1485 }
1486
1487 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1488                                 struct writeback_control *wbc, bool do_balance,
1489                                 enum iostat_type io_type, unsigned int *seq_id)
1490 {
1491         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1492         nid_t nid;
1493         struct node_info ni;
1494         struct f2fs_io_info fio = {
1495                 .sbi = sbi,
1496                 .ino = ino_of_node(page),
1497                 .type = NODE,
1498                 .op = REQ_OP_WRITE,
1499                 .op_flags = wbc_to_write_flags(wbc),
1500                 .page = page,
1501                 .encrypted_page = NULL,
1502                 .submitted = false,
1503                 .io_type = io_type,
1504                 .io_wbc = wbc,
1505         };
1506         unsigned int seq;
1507
1508         trace_f2fs_writepage(page, NODE);
1509
1510         if (unlikely(f2fs_cp_error(sbi)))
1511                 goto redirty_out;
1512
1513         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1514                 goto redirty_out;
1515
1516         if (wbc->sync_mode == WB_SYNC_NONE &&
1517                         IS_DNODE(page) && is_cold_node(page))
1518                 goto redirty_out;
1519
1520         /* get old block addr of this node page */
1521         nid = nid_of_node(page);
1522         f2fs_bug_on(sbi, page->index != nid);
1523
1524         if (f2fs_get_node_info(sbi, nid, &ni))
1525                 goto redirty_out;
1526
1527         if (wbc->for_reclaim) {
1528                 if (!down_read_trylock(&sbi->node_write))
1529                         goto redirty_out;
1530         } else {
1531                 down_read(&sbi->node_write);
1532         }
1533
1534         /* This page is already truncated */
1535         if (unlikely(ni.blk_addr == NULL_ADDR)) {
1536                 ClearPageUptodate(page);
1537                 dec_page_count(sbi, F2FS_DIRTY_NODES);
1538                 up_read(&sbi->node_write);
1539                 unlock_page(page);
1540                 return 0;
1541         }
1542
1543         if (__is_valid_data_blkaddr(ni.blk_addr) &&
1544                 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr, DATA_GENERIC)) {
1545                 up_read(&sbi->node_write);
1546                 goto redirty_out;
1547         }
1548
1549         if (atomic && !test_opt(sbi, NOBARRIER))
1550                 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1551
1552         set_page_writeback(page);
1553         ClearPageError(page);
1554
1555         if (f2fs_in_warm_node_list(sbi, page)) {
1556                 seq = f2fs_add_fsync_node_entry(sbi, page);
1557                 if (seq_id)
1558                         *seq_id = seq;
1559         }
1560
1561         fio.old_blkaddr = ni.blk_addr;
1562         f2fs_do_write_node_page(nid, &fio);
1563         set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1564         dec_page_count(sbi, F2FS_DIRTY_NODES);
1565         up_read(&sbi->node_write);
1566
1567         if (wbc->for_reclaim) {
1568                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1569                 submitted = NULL;
1570         }
1571
1572         unlock_page(page);
1573
1574         if (unlikely(f2fs_cp_error(sbi))) {
1575                 f2fs_submit_merged_write(sbi, NODE);
1576                 submitted = NULL;
1577         }
1578         if (submitted)
1579                 *submitted = fio.submitted;
1580
1581         if (do_balance)
1582                 f2fs_balance_fs(sbi, false);
1583         return 0;
1584
1585 redirty_out:
1586         redirty_page_for_writepage(wbc, page);
1587         return AOP_WRITEPAGE_ACTIVATE;
1588 }
1589
1590 void f2fs_move_node_page(struct page *node_page, int gc_type)
1591 {
1592         if (gc_type == FG_GC) {
1593                 struct writeback_control wbc = {
1594                         .sync_mode = WB_SYNC_ALL,
1595                         .nr_to_write = 1,
1596                         .for_reclaim = 0,
1597                 };
1598
1599                 set_page_dirty(node_page);
1600                 f2fs_wait_on_page_writeback(node_page, NODE, true);
1601
1602                 f2fs_bug_on(F2FS_P_SB(node_page), PageWriteback(node_page));
1603                 if (!clear_page_dirty_for_io(node_page))
1604                         goto out_page;
1605
1606                 if (__write_node_page(node_page, false, NULL,
1607                                         &wbc, false, FS_GC_NODE_IO, NULL))
1608                         unlock_page(node_page);
1609                 goto release_page;
1610         } else {
1611                 /* set page dirty and write it */
1612                 if (!PageWriteback(node_page))
1613                         set_page_dirty(node_page);
1614         }
1615 out_page:
1616         unlock_page(node_page);
1617 release_page:
1618         f2fs_put_page(node_page, 0);
1619 }
1620
1621 static int f2fs_write_node_page(struct page *page,
1622                                 struct writeback_control *wbc)
1623 {
1624         return __write_node_page(page, false, NULL, wbc, false,
1625                                                 FS_NODE_IO, NULL);
1626 }
1627
1628 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1629                         struct writeback_control *wbc, bool atomic,
1630                         unsigned int *seq_id)
1631 {
1632         pgoff_t index;
1633         struct pagevec pvec;
1634         int ret = 0;
1635         struct page *last_page = NULL;
1636         bool marked = false;
1637         nid_t ino = inode->i_ino;
1638         int nr_pages;
1639         int nwritten = 0;
1640
1641         if (atomic) {
1642                 last_page = last_fsync_dnode(sbi, ino);
1643                 if (IS_ERR_OR_NULL(last_page))
1644                         return PTR_ERR_OR_ZERO(last_page);
1645         }
1646 retry:
1647         pagevec_init(&pvec);
1648         index = 0;
1649
1650         while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1651                                 PAGECACHE_TAG_DIRTY))) {
1652                 int i;
1653
1654                 for (i = 0; i < nr_pages; i++) {
1655                         struct page *page = pvec.pages[i];
1656                         bool submitted = false;
1657
1658                         if (unlikely(f2fs_cp_error(sbi))) {
1659                                 f2fs_put_page(last_page, 0);
1660                                 pagevec_release(&pvec);
1661                                 ret = -EIO;
1662                                 goto out;
1663                         }
1664
1665                         if (!IS_DNODE(page) || !is_cold_node(page))
1666                                 continue;
1667                         if (ino_of_node(page) != ino)
1668                                 continue;
1669
1670                         lock_page(page);
1671
1672                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1673 continue_unlock:
1674                                 unlock_page(page);
1675                                 continue;
1676                         }
1677                         if (ino_of_node(page) != ino)
1678                                 goto continue_unlock;
1679
1680                         if (!PageDirty(page) && page != last_page) {
1681                                 /* someone wrote it for us */
1682                                 goto continue_unlock;
1683                         }
1684
1685                         f2fs_wait_on_page_writeback(page, NODE, true);
1686                         BUG_ON(PageWriteback(page));
1687
1688                         set_fsync_mark(page, 0);
1689                         set_dentry_mark(page, 0);
1690
1691                         if (!atomic || page == last_page) {
1692                                 set_fsync_mark(page, 1);
1693                                 if (IS_INODE(page)) {
1694                                         if (is_inode_flag_set(inode,
1695                                                                 FI_DIRTY_INODE))
1696                                                 f2fs_update_inode(inode, page);
1697                                         set_dentry_mark(page,
1698                                                 f2fs_need_dentry_mark(sbi, ino));
1699                                 }
1700                                 /*  may be written by other thread */
1701                                 if (!PageDirty(page))
1702                                         set_page_dirty(page);
1703                         }
1704
1705                         if (!clear_page_dirty_for_io(page))
1706                                 goto continue_unlock;
1707
1708                         ret = __write_node_page(page, atomic &&
1709                                                 page == last_page,
1710                                                 &submitted, wbc, true,
1711                                                 FS_NODE_IO, seq_id);
1712                         if (ret) {
1713                                 unlock_page(page);
1714                                 f2fs_put_page(last_page, 0);
1715                                 break;
1716                         } else if (submitted) {
1717                                 nwritten++;
1718                         }
1719
1720                         if (page == last_page) {
1721                                 f2fs_put_page(page, 0);
1722                                 marked = true;
1723                                 break;
1724                         }
1725                 }
1726                 pagevec_release(&pvec);
1727                 cond_resched();
1728
1729                 if (ret || marked)
1730                         break;
1731         }
1732         if (!ret && atomic && !marked) {
1733                 f2fs_msg(sbi->sb, KERN_DEBUG,
1734                         "Retry to write fsync mark: ino=%u, idx=%lx",
1735                                         ino, last_page->index);
1736                 lock_page(last_page);
1737                 f2fs_wait_on_page_writeback(last_page, NODE, true);
1738                 set_page_dirty(last_page);
1739                 unlock_page(last_page);
1740                 goto retry;
1741         }
1742 out:
1743         if (nwritten)
1744                 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1745         return ret ? -EIO: 0;
1746 }
1747
1748 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1749                                 struct writeback_control *wbc,
1750                                 bool do_balance, enum iostat_type io_type)
1751 {
1752         pgoff_t index;
1753         struct pagevec pvec;
1754         int step = 0;
1755         int nwritten = 0;
1756         int ret = 0;
1757         int nr_pages, done = 0;
1758
1759         pagevec_init(&pvec);
1760
1761 next_step:
1762         index = 0;
1763
1764         while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1765                         NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1766                 int i;
1767
1768                 for (i = 0; i < nr_pages; i++) {
1769                         struct page *page = pvec.pages[i];
1770                         bool submitted = false;
1771
1772                         /* give a priority to WB_SYNC threads */
1773                         if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1774                                         wbc->sync_mode == WB_SYNC_NONE) {
1775                                 done = 1;
1776                                 break;
1777                         }
1778
1779                         /*
1780                          * flushing sequence with step:
1781                          * 0. indirect nodes
1782                          * 1. dentry dnodes
1783                          * 2. file dnodes
1784                          */
1785                         if (step == 0 && IS_DNODE(page))
1786                                 continue;
1787                         if (step == 1 && (!IS_DNODE(page) ||
1788                                                 is_cold_node(page)))
1789                                 continue;
1790                         if (step == 2 && (!IS_DNODE(page) ||
1791                                                 !is_cold_node(page)))
1792                                 continue;
1793 lock_node:
1794                         if (wbc->sync_mode == WB_SYNC_ALL)
1795                                 lock_page(page);
1796                         else if (!trylock_page(page))
1797                                 continue;
1798
1799                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1800 continue_unlock:
1801                                 unlock_page(page);
1802                                 continue;
1803                         }
1804
1805                         if (!PageDirty(page)) {
1806                                 /* someone wrote it for us */
1807                                 goto continue_unlock;
1808                         }
1809
1810                         /* flush inline_data */
1811                         if (is_inline_node(page)) {
1812                                 clear_inline_node(page);
1813                                 unlock_page(page);
1814                                 flush_inline_data(sbi, ino_of_node(page));
1815                                 goto lock_node;
1816                         }
1817
1818                         f2fs_wait_on_page_writeback(page, NODE, true);
1819
1820                         BUG_ON(PageWriteback(page));
1821                         if (!clear_page_dirty_for_io(page))
1822                                 goto continue_unlock;
1823
1824                         set_fsync_mark(page, 0);
1825                         set_dentry_mark(page, 0);
1826
1827                         ret = __write_node_page(page, false, &submitted,
1828                                                 wbc, do_balance, io_type, NULL);
1829                         if (ret)
1830                                 unlock_page(page);
1831                         else if (submitted)
1832                                 nwritten++;
1833
1834                         if (--wbc->nr_to_write == 0)
1835                                 break;
1836                 }
1837                 pagevec_release(&pvec);
1838                 cond_resched();
1839
1840                 if (wbc->nr_to_write == 0) {
1841                         step = 2;
1842                         break;
1843                 }
1844         }
1845
1846         if (step < 2) {
1847                 if (wbc->sync_mode == WB_SYNC_NONE && step == 1)
1848                         goto out;
1849                 step++;
1850                 goto next_step;
1851         }
1852 out:
1853         if (nwritten)
1854                 f2fs_submit_merged_write(sbi, NODE);
1855
1856         if (unlikely(f2fs_cp_error(sbi)))
1857                 return -EIO;
1858         return ret;
1859 }
1860
1861 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
1862                                                 unsigned int seq_id)
1863 {
1864         struct fsync_node_entry *fn;
1865         struct page *page;
1866         struct list_head *head = &sbi->fsync_node_list;
1867         unsigned long flags;
1868         unsigned int cur_seq_id = 0;
1869         int ret2, ret = 0;
1870
1871         while (seq_id && cur_seq_id < seq_id) {
1872                 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
1873                 if (list_empty(head)) {
1874                         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1875                         break;
1876                 }
1877                 fn = list_first_entry(head, struct fsync_node_entry, list);
1878                 if (fn->seq_id > seq_id) {
1879                         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1880                         break;
1881                 }
1882                 cur_seq_id = fn->seq_id;
1883                 page = fn->page;
1884                 get_page(page);
1885                 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1886
1887                 f2fs_wait_on_page_writeback(page, NODE, true);
1888                 if (TestClearPageError(page))
1889                         ret = -EIO;
1890
1891                 put_page(page);
1892
1893                 if (ret)
1894                         break;
1895         }
1896
1897         ret2 = filemap_check_errors(NODE_MAPPING(sbi));
1898         if (!ret)
1899                 ret = ret2;
1900
1901         return ret;
1902 }
1903
1904 static int f2fs_write_node_pages(struct address_space *mapping,
1905                             struct writeback_control *wbc)
1906 {
1907         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1908         struct blk_plug plug;
1909         long diff;
1910
1911         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1912                 goto skip_write;
1913
1914         /* balancing f2fs's metadata in background */
1915         f2fs_balance_fs_bg(sbi);
1916
1917         /* collect a number of dirty node pages and write together */
1918         if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1919                 goto skip_write;
1920
1921         if (wbc->sync_mode == WB_SYNC_ALL)
1922                 atomic_inc(&sbi->wb_sync_req[NODE]);
1923         else if (atomic_read(&sbi->wb_sync_req[NODE]))
1924                 goto skip_write;
1925
1926         trace_f2fs_writepages(mapping->host, wbc, NODE);
1927
1928         diff = nr_pages_to_write(sbi, NODE, wbc);
1929         blk_start_plug(&plug);
1930         f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
1931         blk_finish_plug(&plug);
1932         wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1933
1934         if (wbc->sync_mode == WB_SYNC_ALL)
1935                 atomic_dec(&sbi->wb_sync_req[NODE]);
1936         return 0;
1937
1938 skip_write:
1939         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1940         trace_f2fs_writepages(mapping->host, wbc, NODE);
1941         return 0;
1942 }
1943
1944 static int f2fs_set_node_page_dirty(struct page *page)
1945 {
1946         trace_f2fs_set_page_dirty(page, NODE);
1947
1948         if (!PageUptodate(page))
1949                 SetPageUptodate(page);
1950 #ifdef CONFIG_F2FS_CHECK_FS
1951         if (IS_INODE(page))
1952                 f2fs_inode_chksum_set(F2FS_P_SB(page), page);
1953 #endif
1954         if (!PageDirty(page)) {
1955                 __set_page_dirty_nobuffers(page);
1956                 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1957                 SetPagePrivate(page);
1958                 f2fs_trace_pid(page);
1959                 return 1;
1960         }
1961         return 0;
1962 }
1963
1964 /*
1965  * Structure of the f2fs node operations
1966  */
1967 const struct address_space_operations f2fs_node_aops = {
1968         .writepage      = f2fs_write_node_page,
1969         .writepages     = f2fs_write_node_pages,
1970         .set_page_dirty = f2fs_set_node_page_dirty,
1971         .invalidatepage = f2fs_invalidate_page,
1972         .releasepage    = f2fs_release_page,
1973 #ifdef CONFIG_MIGRATION
1974         .migratepage    = f2fs_migrate_page,
1975 #endif
1976 };
1977
1978 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1979                                                 nid_t n)
1980 {
1981         return radix_tree_lookup(&nm_i->free_nid_root, n);
1982 }
1983
1984 static int __insert_free_nid(struct f2fs_sb_info *sbi,
1985                         struct free_nid *i, enum nid_state state)
1986 {
1987         struct f2fs_nm_info *nm_i = NM_I(sbi);
1988
1989         int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
1990         if (err)
1991                 return err;
1992
1993         f2fs_bug_on(sbi, state != i->state);
1994         nm_i->nid_cnt[state]++;
1995         if (state == FREE_NID)
1996                 list_add_tail(&i->list, &nm_i->free_nid_list);
1997         return 0;
1998 }
1999
2000 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2001                         struct free_nid *i, enum nid_state state)
2002 {
2003         struct f2fs_nm_info *nm_i = NM_I(sbi);
2004
2005         f2fs_bug_on(sbi, state != i->state);
2006         nm_i->nid_cnt[state]--;
2007         if (state == FREE_NID)
2008                 list_del(&i->list);
2009         radix_tree_delete(&nm_i->free_nid_root, i->nid);
2010 }
2011
2012 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2013                         enum nid_state org_state, enum nid_state dst_state)
2014 {
2015         struct f2fs_nm_info *nm_i = NM_I(sbi);
2016
2017         f2fs_bug_on(sbi, org_state != i->state);
2018         i->state = dst_state;
2019         nm_i->nid_cnt[org_state]--;
2020         nm_i->nid_cnt[dst_state]++;
2021
2022         switch (dst_state) {
2023         case PREALLOC_NID:
2024                 list_del(&i->list);
2025                 break;
2026         case FREE_NID:
2027                 list_add_tail(&i->list, &nm_i->free_nid_list);
2028                 break;
2029         default:
2030                 BUG_ON(1);
2031         }
2032 }
2033
2034 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2035                                                         bool set, bool build)
2036 {
2037         struct f2fs_nm_info *nm_i = NM_I(sbi);
2038         unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2039         unsigned int nid_ofs = nid - START_NID(nid);
2040
2041         if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2042                 return;
2043
2044         if (set) {
2045                 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2046                         return;
2047                 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2048                 nm_i->free_nid_count[nat_ofs]++;
2049         } else {
2050                 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2051                         return;
2052                 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2053                 if (!build)
2054                         nm_i->free_nid_count[nat_ofs]--;
2055         }
2056 }
2057
2058 /* return if the nid is recognized as free */
2059 static bool add_free_nid(struct f2fs_sb_info *sbi,
2060                                 nid_t nid, bool build, bool update)
2061 {
2062         struct f2fs_nm_info *nm_i = NM_I(sbi);
2063         struct free_nid *i, *e;
2064         struct nat_entry *ne;
2065         int err = -EINVAL;
2066         bool ret = false;
2067
2068         /* 0 nid should not be used */
2069         if (unlikely(nid == 0))
2070                 return false;
2071
2072         i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
2073         i->nid = nid;
2074         i->state = FREE_NID;
2075
2076         radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2077
2078         spin_lock(&nm_i->nid_list_lock);
2079
2080         if (build) {
2081                 /*
2082                  *   Thread A             Thread B
2083                  *  - f2fs_create
2084                  *   - f2fs_new_inode
2085                  *    - f2fs_alloc_nid
2086                  *     - __insert_nid_to_list(PREALLOC_NID)
2087                  *                     - f2fs_balance_fs_bg
2088                  *                      - f2fs_build_free_nids
2089                  *                       - __f2fs_build_free_nids
2090                  *                        - scan_nat_page
2091                  *                         - add_free_nid
2092                  *                          - __lookup_nat_cache
2093                  *  - f2fs_add_link
2094                  *   - f2fs_init_inode_metadata
2095                  *    - f2fs_new_inode_page
2096                  *     - f2fs_new_node_page
2097                  *      - set_node_addr
2098                  *  - f2fs_alloc_nid_done
2099                  *   - __remove_nid_from_list(PREALLOC_NID)
2100                  *                         - __insert_nid_to_list(FREE_NID)
2101                  */
2102                 ne = __lookup_nat_cache(nm_i, nid);
2103                 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2104                                 nat_get_blkaddr(ne) != NULL_ADDR))
2105                         goto err_out;
2106
2107                 e = __lookup_free_nid_list(nm_i, nid);
2108                 if (e) {
2109                         if (e->state == FREE_NID)
2110                                 ret = true;
2111                         goto err_out;
2112                 }
2113         }
2114         ret = true;
2115         err = __insert_free_nid(sbi, i, FREE_NID);
2116 err_out:
2117         if (update) {
2118                 update_free_nid_bitmap(sbi, nid, ret, build);
2119                 if (!build)
2120                         nm_i->available_nids++;
2121         }
2122         spin_unlock(&nm_i->nid_list_lock);
2123         radix_tree_preload_end();
2124
2125         if (err)
2126                 kmem_cache_free(free_nid_slab, i);
2127         return ret;
2128 }
2129
2130 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2131 {
2132         struct f2fs_nm_info *nm_i = NM_I(sbi);
2133         struct free_nid *i;
2134         bool need_free = false;
2135
2136         spin_lock(&nm_i->nid_list_lock);
2137         i = __lookup_free_nid_list(nm_i, nid);
2138         if (i && i->state == FREE_NID) {
2139                 __remove_free_nid(sbi, i, FREE_NID);
2140                 need_free = true;
2141         }
2142         spin_unlock(&nm_i->nid_list_lock);
2143
2144         if (need_free)
2145                 kmem_cache_free(free_nid_slab, i);
2146 }
2147
2148 static int scan_nat_page(struct f2fs_sb_info *sbi,
2149                         struct page *nat_page, nid_t start_nid)
2150 {
2151         struct f2fs_nm_info *nm_i = NM_I(sbi);
2152         struct f2fs_nat_block *nat_blk = page_address(nat_page);
2153         block_t blk_addr;
2154         unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2155         int i;
2156
2157         __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2158
2159         i = start_nid % NAT_ENTRY_PER_BLOCK;
2160
2161         for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2162                 if (unlikely(start_nid >= nm_i->max_nid))
2163                         break;
2164
2165                 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2166
2167                 if (blk_addr == NEW_ADDR)
2168                         return -EINVAL;
2169
2170                 if (blk_addr == NULL_ADDR) {
2171                         add_free_nid(sbi, start_nid, true, true);
2172                 } else {
2173                         spin_lock(&NM_I(sbi)->nid_list_lock);
2174                         update_free_nid_bitmap(sbi, start_nid, false, true);
2175                         spin_unlock(&NM_I(sbi)->nid_list_lock);
2176                 }
2177         }
2178
2179         return 0;
2180 }
2181
2182 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2183 {
2184         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2185         struct f2fs_journal *journal = curseg->journal;
2186         int i;
2187
2188         down_read(&curseg->journal_rwsem);
2189         for (i = 0; i < nats_in_cursum(journal); i++) {
2190                 block_t addr;
2191                 nid_t nid;
2192
2193                 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2194                 nid = le32_to_cpu(nid_in_journal(journal, i));
2195                 if (addr == NULL_ADDR)
2196                         add_free_nid(sbi, nid, true, false);
2197                 else
2198                         remove_free_nid(sbi, nid);
2199         }
2200         up_read(&curseg->journal_rwsem);
2201 }
2202
2203 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2204 {
2205         struct f2fs_nm_info *nm_i = NM_I(sbi);
2206         unsigned int i, idx;
2207         nid_t nid;
2208
2209         down_read(&nm_i->nat_tree_lock);
2210
2211         for (i = 0; i < nm_i->nat_blocks; i++) {
2212                 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2213                         continue;
2214                 if (!nm_i->free_nid_count[i])
2215                         continue;
2216                 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2217                         idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2218                                                 NAT_ENTRY_PER_BLOCK, idx);
2219                         if (idx >= NAT_ENTRY_PER_BLOCK)
2220                                 break;
2221
2222                         nid = i * NAT_ENTRY_PER_BLOCK + idx;
2223                         add_free_nid(sbi, nid, true, false);
2224
2225                         if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2226                                 goto out;
2227                 }
2228         }
2229 out:
2230         scan_curseg_cache(sbi);
2231
2232         up_read(&nm_i->nat_tree_lock);
2233 }
2234
2235 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2236                                                 bool sync, bool mount)
2237 {
2238         struct f2fs_nm_info *nm_i = NM_I(sbi);
2239         int i = 0, ret;
2240         nid_t nid = nm_i->next_scan_nid;
2241
2242         if (unlikely(nid >= nm_i->max_nid))
2243                 nid = 0;
2244
2245         /* Enough entries */
2246         if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2247                 return 0;
2248
2249         if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2250                 return 0;
2251
2252         if (!mount) {
2253                 /* try to find free nids in free_nid_bitmap */
2254                 scan_free_nid_bits(sbi);
2255
2256                 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2257                         return 0;
2258         }
2259
2260         /* readahead nat pages to be scanned */
2261         f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2262                                                         META_NAT, true);
2263
2264         down_read(&nm_i->nat_tree_lock);
2265
2266         while (1) {
2267                 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2268                                                 nm_i->nat_block_bitmap)) {
2269                         struct page *page = get_current_nat_page(sbi, nid);
2270
2271                         if (IS_ERR(page)) {
2272                                 ret = PTR_ERR(page);
2273                         } else {
2274                                 ret = scan_nat_page(sbi, page, nid);
2275                                 f2fs_put_page(page, 1);
2276                         }
2277
2278                         if (ret) {
2279                                 up_read(&nm_i->nat_tree_lock);
2280                                 f2fs_bug_on(sbi, !mount);
2281                                 f2fs_msg(sbi->sb, KERN_ERR,
2282                                         "NAT is corrupt, run fsck to fix it");
2283                                 return ret;
2284                         }
2285                 }
2286
2287                 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2288                 if (unlikely(nid >= nm_i->max_nid))
2289                         nid = 0;
2290
2291                 if (++i >= FREE_NID_PAGES)
2292                         break;
2293         }
2294
2295         /* go to the next free nat pages to find free nids abundantly */
2296         nm_i->next_scan_nid = nid;
2297
2298         /* find free nids from current sum_pages */
2299         scan_curseg_cache(sbi);
2300
2301         up_read(&nm_i->nat_tree_lock);
2302
2303         f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2304                                         nm_i->ra_nid_pages, META_NAT, false);
2305
2306         return 0;
2307 }
2308
2309 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2310 {
2311         int ret;
2312
2313         mutex_lock(&NM_I(sbi)->build_lock);
2314         ret = __f2fs_build_free_nids(sbi, sync, mount);
2315         mutex_unlock(&NM_I(sbi)->build_lock);
2316
2317         return ret;
2318 }
2319
2320 /*
2321  * If this function returns success, caller can obtain a new nid
2322  * from second parameter of this function.
2323  * The returned nid could be used ino as well as nid when inode is created.
2324  */
2325 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2326 {
2327         struct f2fs_nm_info *nm_i = NM_I(sbi);
2328         struct free_nid *i = NULL;
2329 retry:
2330         if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2331                 f2fs_show_injection_info(FAULT_ALLOC_NID);
2332                 return false;
2333         }
2334
2335         spin_lock(&nm_i->nid_list_lock);
2336
2337         if (unlikely(nm_i->available_nids == 0)) {
2338                 spin_unlock(&nm_i->nid_list_lock);
2339                 return false;
2340         }
2341
2342         /* We should not use stale free nids created by f2fs_build_free_nids */
2343         if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2344                 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2345                 i = list_first_entry(&nm_i->free_nid_list,
2346                                         struct free_nid, list);
2347                 *nid = i->nid;
2348
2349                 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2350                 nm_i->available_nids--;
2351
2352                 update_free_nid_bitmap(sbi, *nid, false, false);
2353
2354                 spin_unlock(&nm_i->nid_list_lock);
2355                 return true;
2356         }
2357         spin_unlock(&nm_i->nid_list_lock);
2358
2359         /* Let's scan nat pages and its caches to get free nids */
2360         if (!f2fs_build_free_nids(sbi, true, false))
2361                 goto retry;
2362         return false;
2363 }
2364
2365 /*
2366  * f2fs_alloc_nid() should be called prior to this function.
2367  */
2368 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2369 {
2370         struct f2fs_nm_info *nm_i = NM_I(sbi);
2371         struct free_nid *i;
2372
2373         spin_lock(&nm_i->nid_list_lock);
2374         i = __lookup_free_nid_list(nm_i, nid);
2375         f2fs_bug_on(sbi, !i);
2376         __remove_free_nid(sbi, i, PREALLOC_NID);
2377         spin_unlock(&nm_i->nid_list_lock);
2378
2379         kmem_cache_free(free_nid_slab, i);
2380 }
2381
2382 /*
2383  * f2fs_alloc_nid() should be called prior to this function.
2384  */
2385 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2386 {
2387         struct f2fs_nm_info *nm_i = NM_I(sbi);
2388         struct free_nid *i;
2389         bool need_free = false;
2390
2391         if (!nid)
2392                 return;
2393
2394         spin_lock(&nm_i->nid_list_lock);
2395         i = __lookup_free_nid_list(nm_i, nid);
2396         f2fs_bug_on(sbi, !i);
2397
2398         if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2399                 __remove_free_nid(sbi, i, PREALLOC_NID);
2400                 need_free = true;
2401         } else {
2402                 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2403         }
2404
2405         nm_i->available_nids++;
2406
2407         update_free_nid_bitmap(sbi, nid, true, false);
2408
2409         spin_unlock(&nm_i->nid_list_lock);
2410
2411         if (need_free)
2412                 kmem_cache_free(free_nid_slab, i);
2413 }
2414
2415 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2416 {
2417         struct f2fs_nm_info *nm_i = NM_I(sbi);
2418         struct free_nid *i, *next;
2419         int nr = nr_shrink;
2420
2421         if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2422                 return 0;
2423
2424         if (!mutex_trylock(&nm_i->build_lock))
2425                 return 0;
2426
2427         spin_lock(&nm_i->nid_list_lock);
2428         list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2429                 if (nr_shrink <= 0 ||
2430                                 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2431                         break;
2432
2433                 __remove_free_nid(sbi, i, FREE_NID);
2434                 kmem_cache_free(free_nid_slab, i);
2435                 nr_shrink--;
2436         }
2437         spin_unlock(&nm_i->nid_list_lock);
2438         mutex_unlock(&nm_i->build_lock);
2439
2440         return nr - nr_shrink;
2441 }
2442
2443 void f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2444 {
2445         void *src_addr, *dst_addr;
2446         size_t inline_size;
2447         struct page *ipage;
2448         struct f2fs_inode *ri;
2449
2450         ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2451         f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
2452
2453         ri = F2FS_INODE(page);
2454         if (ri->i_inline & F2FS_INLINE_XATTR) {
2455                 set_inode_flag(inode, FI_INLINE_XATTR);
2456         } else {
2457                 clear_inode_flag(inode, FI_INLINE_XATTR);
2458                 goto update_inode;
2459         }
2460
2461         dst_addr = inline_xattr_addr(inode, ipage);
2462         src_addr = inline_xattr_addr(inode, page);
2463         inline_size = inline_xattr_size(inode);
2464
2465         f2fs_wait_on_page_writeback(ipage, NODE, true);
2466         memcpy(dst_addr, src_addr, inline_size);
2467 update_inode:
2468         f2fs_update_inode(inode, ipage);
2469         f2fs_put_page(ipage, 1);
2470 }
2471
2472 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2473 {
2474         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2475         nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2476         nid_t new_xnid;
2477         struct dnode_of_data dn;
2478         struct node_info ni;
2479         struct page *xpage;
2480         int err;
2481
2482         if (!prev_xnid)
2483                 goto recover_xnid;
2484
2485         /* 1: invalidate the previous xattr nid */
2486         err = f2fs_get_node_info(sbi, prev_xnid, &ni);
2487         if (err)
2488                 return err;
2489
2490         f2fs_invalidate_blocks(sbi, ni.blk_addr);
2491         dec_valid_node_count(sbi, inode, false);
2492         set_node_addr(sbi, &ni, NULL_ADDR, false);
2493
2494 recover_xnid:
2495         /* 2: update xattr nid in inode */
2496         if (!f2fs_alloc_nid(sbi, &new_xnid))
2497                 return -ENOSPC;
2498
2499         set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2500         xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2501         if (IS_ERR(xpage)) {
2502                 f2fs_alloc_nid_failed(sbi, new_xnid);
2503                 return PTR_ERR(xpage);
2504         }
2505
2506         f2fs_alloc_nid_done(sbi, new_xnid);
2507         f2fs_update_inode_page(inode);
2508
2509         /* 3: update and set xattr node page dirty */
2510         memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2511
2512         set_page_dirty(xpage);
2513         f2fs_put_page(xpage, 1);
2514
2515         return 0;
2516 }
2517
2518 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2519 {
2520         struct f2fs_inode *src, *dst;
2521         nid_t ino = ino_of_node(page);
2522         struct node_info old_ni, new_ni;
2523         struct page *ipage;
2524         int err;
2525
2526         err = f2fs_get_node_info(sbi, ino, &old_ni);
2527         if (err)
2528                 return err;
2529
2530         if (unlikely(old_ni.blk_addr != NULL_ADDR))
2531                 return -EINVAL;
2532 retry:
2533         ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2534         if (!ipage) {
2535                 congestion_wait(BLK_RW_ASYNC, HZ/50);
2536                 goto retry;
2537         }
2538
2539         /* Should not use this inode from free nid list */
2540         remove_free_nid(sbi, ino);
2541
2542         if (!PageUptodate(ipage))
2543                 SetPageUptodate(ipage);
2544         fill_node_footer(ipage, ino, ino, 0, true);
2545         set_cold_node(page, false);
2546
2547         src = F2FS_INODE(page);
2548         dst = F2FS_INODE(ipage);
2549
2550         memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2551         dst->i_size = 0;
2552         dst->i_blocks = cpu_to_le64(1);
2553         dst->i_links = cpu_to_le32(1);
2554         dst->i_xattr_nid = 0;
2555         dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2556         if (dst->i_inline & F2FS_EXTRA_ATTR) {
2557                 dst->i_extra_isize = src->i_extra_isize;
2558
2559                 if (f2fs_sb_has_flexible_inline_xattr(sbi->sb) &&
2560                         F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2561                                                         i_inline_xattr_size))
2562                         dst->i_inline_xattr_size = src->i_inline_xattr_size;
2563
2564                 if (f2fs_sb_has_project_quota(sbi->sb) &&
2565                         F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2566                                                                 i_projid))
2567                         dst->i_projid = src->i_projid;
2568
2569                 if (f2fs_sb_has_inode_crtime(sbi->sb) &&
2570                         F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2571                                                         i_crtime_nsec)) {
2572                         dst->i_crtime = src->i_crtime;
2573                         dst->i_crtime_nsec = src->i_crtime_nsec;
2574                 }
2575         }
2576
2577         new_ni = old_ni;
2578         new_ni.ino = ino;
2579
2580         if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2581                 WARN_ON(1);
2582         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2583         inc_valid_inode_count(sbi);
2584         set_page_dirty(ipage);
2585         f2fs_put_page(ipage, 1);
2586         return 0;
2587 }
2588
2589 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2590                         unsigned int segno, struct f2fs_summary_block *sum)
2591 {
2592         struct f2fs_node *rn;
2593         struct f2fs_summary *sum_entry;
2594         block_t addr;
2595         int i, idx, last_offset, nrpages;
2596
2597         /* scan the node segment */
2598         last_offset = sbi->blocks_per_seg;
2599         addr = START_BLOCK(sbi, segno);
2600         sum_entry = &sum->entries[0];
2601
2602         for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2603                 nrpages = min(last_offset - i, BIO_MAX_PAGES);
2604
2605                 /* readahead node pages */
2606                 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2607
2608                 for (idx = addr; idx < addr + nrpages; idx++) {
2609                         struct page *page = f2fs_get_tmp_page(sbi, idx);
2610
2611                         if (IS_ERR(page))
2612                                 return PTR_ERR(page);
2613
2614                         rn = F2FS_NODE(page);
2615                         sum_entry->nid = rn->footer.nid;
2616                         sum_entry->version = 0;
2617                         sum_entry->ofs_in_node = 0;
2618                         sum_entry++;
2619                         f2fs_put_page(page, 1);
2620                 }
2621
2622                 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2623                                                         addr + nrpages);
2624         }
2625         return 0;
2626 }
2627
2628 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2629 {
2630         struct f2fs_nm_info *nm_i = NM_I(sbi);
2631         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2632         struct f2fs_journal *journal = curseg->journal;
2633         int i;
2634
2635         down_write(&curseg->journal_rwsem);
2636         for (i = 0; i < nats_in_cursum(journal); i++) {
2637                 struct nat_entry *ne;
2638                 struct f2fs_nat_entry raw_ne;
2639                 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2640
2641                 raw_ne = nat_in_journal(journal, i);
2642
2643                 ne = __lookup_nat_cache(nm_i, nid);
2644                 if (!ne) {
2645                         ne = __alloc_nat_entry(nid, true);
2646                         __init_nat_entry(nm_i, ne, &raw_ne, true);
2647                 }
2648
2649                 /*
2650                  * if a free nat in journal has not been used after last
2651                  * checkpoint, we should remove it from available nids,
2652                  * since later we will add it again.
2653                  */
2654                 if (!get_nat_flag(ne, IS_DIRTY) &&
2655                                 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2656                         spin_lock(&nm_i->nid_list_lock);
2657                         nm_i->available_nids--;
2658                         spin_unlock(&nm_i->nid_list_lock);
2659                 }
2660
2661                 __set_nat_cache_dirty(nm_i, ne);
2662         }
2663         update_nats_in_cursum(journal, -i);
2664         up_write(&curseg->journal_rwsem);
2665 }
2666
2667 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2668                                                 struct list_head *head, int max)
2669 {
2670         struct nat_entry_set *cur;
2671
2672         if (nes->entry_cnt >= max)
2673                 goto add_out;
2674
2675         list_for_each_entry(cur, head, set_list) {
2676                 if (cur->entry_cnt >= nes->entry_cnt) {
2677                         list_add(&nes->set_list, cur->set_list.prev);
2678                         return;
2679                 }
2680         }
2681 add_out:
2682         list_add_tail(&nes->set_list, head);
2683 }
2684
2685 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2686                                                 struct page *page)
2687 {
2688         struct f2fs_nm_info *nm_i = NM_I(sbi);
2689         unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2690         struct f2fs_nat_block *nat_blk = page_address(page);
2691         int valid = 0;
2692         int i = 0;
2693
2694         if (!enabled_nat_bits(sbi, NULL))
2695                 return;
2696
2697         if (nat_index == 0) {
2698                 valid = 1;
2699                 i = 1;
2700         }
2701         for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2702                 if (nat_blk->entries[i].block_addr != NULL_ADDR)
2703                         valid++;
2704         }
2705         if (valid == 0) {
2706                 __set_bit_le(nat_index, nm_i->empty_nat_bits);
2707                 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2708                 return;
2709         }
2710
2711         __clear_bit_le(nat_index, nm_i->empty_nat_bits);
2712         if (valid == NAT_ENTRY_PER_BLOCK)
2713                 __set_bit_le(nat_index, nm_i->full_nat_bits);
2714         else
2715                 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2716 }
2717
2718 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2719                 struct nat_entry_set *set, struct cp_control *cpc)
2720 {
2721         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2722         struct f2fs_journal *journal = curseg->journal;
2723         nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2724         bool to_journal = true;
2725         struct f2fs_nat_block *nat_blk;
2726         struct nat_entry *ne, *cur;
2727         struct page *page = NULL;
2728
2729         /*
2730          * there are two steps to flush nat entries:
2731          * #1, flush nat entries to journal in current hot data summary block.
2732          * #2, flush nat entries to nat page.
2733          */
2734         if (enabled_nat_bits(sbi, cpc) ||
2735                 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2736                 to_journal = false;
2737
2738         if (to_journal) {
2739                 down_write(&curseg->journal_rwsem);
2740         } else {
2741                 page = get_next_nat_page(sbi, start_nid);
2742                 if (IS_ERR(page))
2743                         return PTR_ERR(page);
2744
2745                 nat_blk = page_address(page);
2746                 f2fs_bug_on(sbi, !nat_blk);
2747         }
2748
2749         /* flush dirty nats in nat entry set */
2750         list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2751                 struct f2fs_nat_entry *raw_ne;
2752                 nid_t nid = nat_get_nid(ne);
2753                 int offset;
2754
2755                 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2756
2757                 if (to_journal) {
2758                         offset = f2fs_lookup_journal_in_cursum(journal,
2759                                                         NAT_JOURNAL, nid, 1);
2760                         f2fs_bug_on(sbi, offset < 0);
2761                         raw_ne = &nat_in_journal(journal, offset);
2762                         nid_in_journal(journal, offset) = cpu_to_le32(nid);
2763                 } else {
2764                         raw_ne = &nat_blk->entries[nid - start_nid];
2765                 }
2766                 raw_nat_from_node_info(raw_ne, &ne->ni);
2767                 nat_reset_flag(ne);
2768                 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
2769                 if (nat_get_blkaddr(ne) == NULL_ADDR) {
2770                         add_free_nid(sbi, nid, false, true);
2771                 } else {
2772                         spin_lock(&NM_I(sbi)->nid_list_lock);
2773                         update_free_nid_bitmap(sbi, nid, false, false);
2774                         spin_unlock(&NM_I(sbi)->nid_list_lock);
2775                 }
2776         }
2777
2778         if (to_journal) {
2779                 up_write(&curseg->journal_rwsem);
2780         } else {
2781                 __update_nat_bits(sbi, start_nid, page);
2782                 f2fs_put_page(page, 1);
2783         }
2784
2785         /* Allow dirty nats by node block allocation in write_begin */
2786         if (!set->entry_cnt) {
2787                 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2788                 kmem_cache_free(nat_entry_set_slab, set);
2789         }
2790         return 0;
2791 }
2792
2793 /*
2794  * This function is called during the checkpointing process.
2795  */
2796 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2797 {
2798         struct f2fs_nm_info *nm_i = NM_I(sbi);
2799         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2800         struct f2fs_journal *journal = curseg->journal;
2801         struct nat_entry_set *setvec[SETVEC_SIZE];
2802         struct nat_entry_set *set, *tmp;
2803         unsigned int found;
2804         nid_t set_idx = 0;
2805         LIST_HEAD(sets);
2806         int err = 0;
2807
2808         /* during unmount, let's flush nat_bits before checking dirty_nat_cnt */
2809         if (enabled_nat_bits(sbi, cpc)) {
2810                 down_write(&nm_i->nat_tree_lock);
2811                 remove_nats_in_journal(sbi);
2812                 up_write(&nm_i->nat_tree_lock);
2813         }
2814
2815         if (!nm_i->dirty_nat_cnt)
2816                 return 0;
2817
2818         down_write(&nm_i->nat_tree_lock);
2819
2820         /*
2821          * if there are no enough space in journal to store dirty nat
2822          * entries, remove all entries from journal and merge them
2823          * into nat entry set.
2824          */
2825         if (enabled_nat_bits(sbi, cpc) ||
2826                 !__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2827                 remove_nats_in_journal(sbi);
2828
2829         while ((found = __gang_lookup_nat_set(nm_i,
2830                                         set_idx, SETVEC_SIZE, setvec))) {
2831                 unsigned idx;
2832                 set_idx = setvec[found - 1]->set + 1;
2833                 for (idx = 0; idx < found; idx++)
2834                         __adjust_nat_entry_set(setvec[idx], &sets,
2835                                                 MAX_NAT_JENTRIES(journal));
2836         }
2837
2838         /* flush dirty nats in nat entry set */
2839         list_for_each_entry_safe(set, tmp, &sets, set_list) {
2840                 err = __flush_nat_entry_set(sbi, set, cpc);
2841                 if (err)
2842                         break;
2843         }
2844
2845         up_write(&nm_i->nat_tree_lock);
2846         /* Allow dirty nats by node block allocation in write_begin */
2847
2848         return err;
2849 }
2850
2851 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
2852 {
2853         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2854         struct f2fs_nm_info *nm_i = NM_I(sbi);
2855         unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
2856         unsigned int i;
2857         __u64 cp_ver = cur_cp_version(ckpt);
2858         block_t nat_bits_addr;
2859
2860         if (!enabled_nat_bits(sbi, NULL))
2861                 return 0;
2862
2863         nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
2864         nm_i->nat_bits = f2fs_kzalloc(sbi,
2865                         nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
2866         if (!nm_i->nat_bits)
2867                 return -ENOMEM;
2868
2869         nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
2870                                                 nm_i->nat_bits_blocks;
2871         for (i = 0; i < nm_i->nat_bits_blocks; i++) {
2872                 struct page *page;
2873
2874                 page = f2fs_get_meta_page(sbi, nat_bits_addr++);
2875                 if (IS_ERR(page)) {
2876                         disable_nat_bits(sbi, true);
2877                         return PTR_ERR(page);
2878                 }
2879
2880                 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
2881                                         page_address(page), F2FS_BLKSIZE);
2882                 f2fs_put_page(page, 1);
2883         }
2884
2885         cp_ver |= (cur_cp_crc(ckpt) << 32);
2886         if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
2887                 disable_nat_bits(sbi, true);
2888                 return 0;
2889         }
2890
2891         nm_i->full_nat_bits = nm_i->nat_bits + 8;
2892         nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
2893
2894         f2fs_msg(sbi->sb, KERN_NOTICE, "Found nat_bits in checkpoint");
2895         return 0;
2896 }
2897
2898 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
2899 {
2900         struct f2fs_nm_info *nm_i = NM_I(sbi);
2901         unsigned int i = 0;
2902         nid_t nid, last_nid;
2903
2904         if (!enabled_nat_bits(sbi, NULL))
2905                 return;
2906
2907         for (i = 0; i < nm_i->nat_blocks; i++) {
2908                 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
2909                 if (i >= nm_i->nat_blocks)
2910                         break;
2911
2912                 __set_bit_le(i, nm_i->nat_block_bitmap);
2913
2914                 nid = i * NAT_ENTRY_PER_BLOCK;
2915                 last_nid = nid + NAT_ENTRY_PER_BLOCK;
2916
2917                 spin_lock(&NM_I(sbi)->nid_list_lock);
2918                 for (; nid < last_nid; nid++)
2919                         update_free_nid_bitmap(sbi, nid, true, true);
2920                 spin_unlock(&NM_I(sbi)->nid_list_lock);
2921         }
2922
2923         for (i = 0; i < nm_i->nat_blocks; i++) {
2924                 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
2925                 if (i >= nm_i->nat_blocks)
2926                         break;
2927
2928                 __set_bit_le(i, nm_i->nat_block_bitmap);
2929         }
2930 }
2931
2932 static int init_node_manager(struct f2fs_sb_info *sbi)
2933 {
2934         struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
2935         struct f2fs_nm_info *nm_i = NM_I(sbi);
2936         unsigned char *version_bitmap;
2937         unsigned int nat_segs;
2938         int err;
2939
2940         nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
2941
2942         /* segment_count_nat includes pair segment so divide to 2. */
2943         nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
2944         nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
2945         nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
2946
2947         /* not used nids: 0, node, meta, (and root counted as valid node) */
2948         nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
2949                                 sbi->nquota_files - F2FS_RESERVED_NODE_NUM;
2950         nm_i->nid_cnt[FREE_NID] = 0;
2951         nm_i->nid_cnt[PREALLOC_NID] = 0;
2952         nm_i->nat_cnt = 0;
2953         nm_i->ram_thresh = DEF_RAM_THRESHOLD;
2954         nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
2955         nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
2956
2957         INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
2958         INIT_LIST_HEAD(&nm_i->free_nid_list);
2959         INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
2960         INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
2961         INIT_LIST_HEAD(&nm_i->nat_entries);
2962         spin_lock_init(&nm_i->nat_list_lock);
2963
2964         mutex_init(&nm_i->build_lock);
2965         spin_lock_init(&nm_i->nid_list_lock);
2966         init_rwsem(&nm_i->nat_tree_lock);
2967
2968         nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
2969         nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
2970         version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
2971         if (!version_bitmap)
2972                 return -EFAULT;
2973
2974         nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
2975                                         GFP_KERNEL);
2976         if (!nm_i->nat_bitmap)
2977                 return -ENOMEM;
2978
2979         err = __get_nat_bitmaps(sbi);
2980         if (err)
2981                 return err;
2982
2983 #ifdef CONFIG_F2FS_CHECK_FS
2984         nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
2985                                         GFP_KERNEL);
2986         if (!nm_i->nat_bitmap_mir)
2987                 return -ENOMEM;
2988 #endif
2989
2990         return 0;
2991 }
2992
2993 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
2994 {
2995         struct f2fs_nm_info *nm_i = NM_I(sbi);
2996         int i;
2997
2998         nm_i->free_nid_bitmap =
2999                 f2fs_kzalloc(sbi, array_size(sizeof(unsigned char *),
3000                                              nm_i->nat_blocks),
3001                              GFP_KERNEL);
3002         if (!nm_i->free_nid_bitmap)
3003                 return -ENOMEM;
3004
3005         for (i = 0; i < nm_i->nat_blocks; i++) {
3006                 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3007                         f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3008                 if (!nm_i->free_nid_bitmap[i])
3009                         return -ENOMEM;
3010         }
3011
3012         nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3013                                                                 GFP_KERNEL);
3014         if (!nm_i->nat_block_bitmap)
3015                 return -ENOMEM;
3016
3017         nm_i->free_nid_count =
3018                 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3019                                               nm_i->nat_blocks),
3020                               GFP_KERNEL);
3021         if (!nm_i->free_nid_count)
3022                 return -ENOMEM;
3023         return 0;
3024 }
3025
3026 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3027 {
3028         int err;
3029
3030         sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3031                                                         GFP_KERNEL);
3032         if (!sbi->nm_info)
3033                 return -ENOMEM;
3034
3035         err = init_node_manager(sbi);
3036         if (err)
3037                 return err;
3038
3039         err = init_free_nid_cache(sbi);
3040         if (err)
3041                 return err;
3042
3043         /* load free nid status from nat_bits table */
3044         load_free_nid_bitmap(sbi);
3045
3046         return f2fs_build_free_nids(sbi, true, true);
3047 }
3048
3049 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3050 {
3051         struct f2fs_nm_info *nm_i = NM_I(sbi);
3052         struct free_nid *i, *next_i;
3053         struct nat_entry *natvec[NATVEC_SIZE];
3054         struct nat_entry_set *setvec[SETVEC_SIZE];
3055         nid_t nid = 0;
3056         unsigned int found;
3057
3058         if (!nm_i)
3059                 return;
3060
3061         /* destroy free nid list */
3062         spin_lock(&nm_i->nid_list_lock);
3063         list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3064                 __remove_free_nid(sbi, i, FREE_NID);
3065                 spin_unlock(&nm_i->nid_list_lock);
3066                 kmem_cache_free(free_nid_slab, i);
3067                 spin_lock(&nm_i->nid_list_lock);
3068         }
3069         f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3070         f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3071         f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3072         spin_unlock(&nm_i->nid_list_lock);
3073
3074         /* destroy nat cache */
3075         down_write(&nm_i->nat_tree_lock);
3076         while ((found = __gang_lookup_nat_cache(nm_i,
3077                                         nid, NATVEC_SIZE, natvec))) {
3078                 unsigned idx;
3079
3080                 nid = nat_get_nid(natvec[found - 1]) + 1;
3081                 for (idx = 0; idx < found; idx++) {
3082                         spin_lock(&nm_i->nat_list_lock);
3083                         list_del(&natvec[idx]->list);
3084                         spin_unlock(&nm_i->nat_list_lock);
3085
3086                         __del_from_nat_cache(nm_i, natvec[idx]);
3087                 }
3088         }
3089         f2fs_bug_on(sbi, nm_i->nat_cnt);
3090
3091         /* destroy nat set cache */
3092         nid = 0;
3093         while ((found = __gang_lookup_nat_set(nm_i,
3094                                         nid, SETVEC_SIZE, setvec))) {
3095                 unsigned idx;
3096
3097                 nid = setvec[found - 1]->set + 1;
3098                 for (idx = 0; idx < found; idx++) {
3099                         /* entry_cnt is not zero, when cp_error was occurred */
3100                         f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3101                         radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3102                         kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3103                 }
3104         }
3105         up_write(&nm_i->nat_tree_lock);
3106
3107         kvfree(nm_i->nat_block_bitmap);
3108         if (nm_i->free_nid_bitmap) {
3109                 int i;
3110
3111                 for (i = 0; i < nm_i->nat_blocks; i++)
3112                         kvfree(nm_i->free_nid_bitmap[i]);
3113                 kfree(nm_i->free_nid_bitmap);
3114         }
3115         kvfree(nm_i->free_nid_count);
3116
3117         kfree(nm_i->nat_bitmap);
3118         kfree(nm_i->nat_bits);
3119 #ifdef CONFIG_F2FS_CHECK_FS
3120         kfree(nm_i->nat_bitmap_mir);
3121 #endif
3122         sbi->nm_info = NULL;
3123         kfree(nm_i);
3124 }
3125
3126 int __init f2fs_create_node_manager_caches(void)
3127 {
3128         nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
3129                         sizeof(struct nat_entry));
3130         if (!nat_entry_slab)
3131                 goto fail;
3132
3133         free_nid_slab = f2fs_kmem_cache_create("free_nid",
3134                         sizeof(struct free_nid));
3135         if (!free_nid_slab)
3136                 goto destroy_nat_entry;
3137
3138         nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
3139                         sizeof(struct nat_entry_set));
3140         if (!nat_entry_set_slab)
3141                 goto destroy_free_nid;
3142
3143         fsync_node_entry_slab = f2fs_kmem_cache_create("fsync_node_entry",
3144                         sizeof(struct fsync_node_entry));
3145         if (!fsync_node_entry_slab)
3146                 goto destroy_nat_entry_set;
3147         return 0;
3148
3149 destroy_nat_entry_set:
3150         kmem_cache_destroy(nat_entry_set_slab);
3151 destroy_free_nid:
3152         kmem_cache_destroy(free_nid_slab);
3153 destroy_nat_entry:
3154         kmem_cache_destroy(nat_entry_slab);
3155 fail:
3156         return -ENOMEM;
3157 }
3158
3159 void f2fs_destroy_node_manager_caches(void)
3160 {
3161         kmem_cache_destroy(fsync_node_entry_slab);
3162         kmem_cache_destroy(nat_entry_set_slab);
3163         kmem_cache_destroy(free_nid_slab);
3164         kmem_cache_destroy(nat_entry_slab);
3165 }