Merge tag 'char-misc-4.20-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregk...
[platform/kernel/linux-starfive.git] / fs / f2fs / node.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/node.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/mpage.h>
11 #include <linux/backing-dev.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagevec.h>
14 #include <linux/swap.h>
15
16 #include "f2fs.h"
17 #include "node.h"
18 #include "segment.h"
19 #include "xattr.h"
20 #include "trace.h"
21 #include <trace/events/f2fs.h>
22
23 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
24
25 static struct kmem_cache *nat_entry_slab;
26 static struct kmem_cache *free_nid_slab;
27 static struct kmem_cache *nat_entry_set_slab;
28 static struct kmem_cache *fsync_node_entry_slab;
29
30 /*
31  * Check whether the given nid is within node id range.
32  */
33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
34 {
35         if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36                 set_sbi_flag(sbi, SBI_NEED_FSCK);
37                 f2fs_msg(sbi->sb, KERN_WARNING,
38                                 "%s: out-of-range nid=%x, run fsck to fix.",
39                                 __func__, nid);
40                 return -EINVAL;
41         }
42         return 0;
43 }
44
45 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
46 {
47         struct f2fs_nm_info *nm_i = NM_I(sbi);
48         struct sysinfo val;
49         unsigned long avail_ram;
50         unsigned long mem_size = 0;
51         bool res = false;
52
53         si_meminfo(&val);
54
55         /* only uses low memory */
56         avail_ram = val.totalram - val.totalhigh;
57
58         /*
59          * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
60          */
61         if (type == FREE_NIDS) {
62                 mem_size = (nm_i->nid_cnt[FREE_NID] *
63                                 sizeof(struct free_nid)) >> PAGE_SHIFT;
64                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
65         } else if (type == NAT_ENTRIES) {
66                 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
67                                                         PAGE_SHIFT;
68                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
69                 if (excess_cached_nats(sbi))
70                         res = false;
71         } else if (type == DIRTY_DENTS) {
72                 if (sbi->sb->s_bdi->wb.dirty_exceeded)
73                         return false;
74                 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
75                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
76         } else if (type == INO_ENTRIES) {
77                 int i;
78
79                 for (i = 0; i < MAX_INO_ENTRY; i++)
80                         mem_size += sbi->im[i].ino_num *
81                                                 sizeof(struct ino_entry);
82                 mem_size >>= PAGE_SHIFT;
83                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
84         } else if (type == EXTENT_CACHE) {
85                 mem_size = (atomic_read(&sbi->total_ext_tree) *
86                                 sizeof(struct extent_tree) +
87                                 atomic_read(&sbi->total_ext_node) *
88                                 sizeof(struct extent_node)) >> PAGE_SHIFT;
89                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
90         } else if (type == INMEM_PAGES) {
91                 /* it allows 20% / total_ram for inmemory pages */
92                 mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
93                 res = mem_size < (val.totalram / 5);
94         } else {
95                 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
96                         return true;
97         }
98         return res;
99 }
100
101 static void clear_node_page_dirty(struct page *page)
102 {
103         if (PageDirty(page)) {
104                 f2fs_clear_radix_tree_dirty_tag(page);
105                 clear_page_dirty_for_io(page);
106                 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
107         }
108         ClearPageUptodate(page);
109 }
110
111 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
112 {
113         return f2fs_get_meta_page_nofail(sbi, current_nat_addr(sbi, nid));
114 }
115
116 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
117 {
118         struct page *src_page;
119         struct page *dst_page;
120         pgoff_t dst_off;
121         void *src_addr;
122         void *dst_addr;
123         struct f2fs_nm_info *nm_i = NM_I(sbi);
124
125         dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
126
127         /* get current nat block page with lock */
128         src_page = get_current_nat_page(sbi, nid);
129         if (IS_ERR(src_page))
130                 return src_page;
131         dst_page = f2fs_grab_meta_page(sbi, dst_off);
132         f2fs_bug_on(sbi, PageDirty(src_page));
133
134         src_addr = page_address(src_page);
135         dst_addr = page_address(dst_page);
136         memcpy(dst_addr, src_addr, PAGE_SIZE);
137         set_page_dirty(dst_page);
138         f2fs_put_page(src_page, 1);
139
140         set_to_next_nat(nm_i, nid);
141
142         return dst_page;
143 }
144
145 static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
146 {
147         struct nat_entry *new;
148
149         if (no_fail)
150                 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
151         else
152                 new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
153         if (new) {
154                 nat_set_nid(new, nid);
155                 nat_reset_flag(new);
156         }
157         return new;
158 }
159
160 static void __free_nat_entry(struct nat_entry *e)
161 {
162         kmem_cache_free(nat_entry_slab, e);
163 }
164
165 /* must be locked by nat_tree_lock */
166 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
167         struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
168 {
169         if (no_fail)
170                 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
171         else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
172                 return NULL;
173
174         if (raw_ne)
175                 node_info_from_raw_nat(&ne->ni, raw_ne);
176
177         spin_lock(&nm_i->nat_list_lock);
178         list_add_tail(&ne->list, &nm_i->nat_entries);
179         spin_unlock(&nm_i->nat_list_lock);
180
181         nm_i->nat_cnt++;
182         return ne;
183 }
184
185 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
186 {
187         struct nat_entry *ne;
188
189         ne = radix_tree_lookup(&nm_i->nat_root, n);
190
191         /* for recent accessed nat entry, move it to tail of lru list */
192         if (ne && !get_nat_flag(ne, IS_DIRTY)) {
193                 spin_lock(&nm_i->nat_list_lock);
194                 if (!list_empty(&ne->list))
195                         list_move_tail(&ne->list, &nm_i->nat_entries);
196                 spin_unlock(&nm_i->nat_list_lock);
197         }
198
199         return ne;
200 }
201
202 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
203                 nid_t start, unsigned int nr, struct nat_entry **ep)
204 {
205         return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
206 }
207
208 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
209 {
210         radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
211         nm_i->nat_cnt--;
212         __free_nat_entry(e);
213 }
214
215 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
216                                                         struct nat_entry *ne)
217 {
218         nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
219         struct nat_entry_set *head;
220
221         head = radix_tree_lookup(&nm_i->nat_set_root, set);
222         if (!head) {
223                 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
224
225                 INIT_LIST_HEAD(&head->entry_list);
226                 INIT_LIST_HEAD(&head->set_list);
227                 head->set = set;
228                 head->entry_cnt = 0;
229                 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
230         }
231         return head;
232 }
233
234 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
235                                                 struct nat_entry *ne)
236 {
237         struct nat_entry_set *head;
238         bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
239
240         if (!new_ne)
241                 head = __grab_nat_entry_set(nm_i, ne);
242
243         /*
244          * update entry_cnt in below condition:
245          * 1. update NEW_ADDR to valid block address;
246          * 2. update old block address to new one;
247          */
248         if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
249                                 !get_nat_flag(ne, IS_DIRTY)))
250                 head->entry_cnt++;
251
252         set_nat_flag(ne, IS_PREALLOC, new_ne);
253
254         if (get_nat_flag(ne, IS_DIRTY))
255                 goto refresh_list;
256
257         nm_i->dirty_nat_cnt++;
258         set_nat_flag(ne, IS_DIRTY, true);
259 refresh_list:
260         spin_lock(&nm_i->nat_list_lock);
261         if (new_ne)
262                 list_del_init(&ne->list);
263         else
264                 list_move_tail(&ne->list, &head->entry_list);
265         spin_unlock(&nm_i->nat_list_lock);
266 }
267
268 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
269                 struct nat_entry_set *set, struct nat_entry *ne)
270 {
271         spin_lock(&nm_i->nat_list_lock);
272         list_move_tail(&ne->list, &nm_i->nat_entries);
273         spin_unlock(&nm_i->nat_list_lock);
274
275         set_nat_flag(ne, IS_DIRTY, false);
276         set->entry_cnt--;
277         nm_i->dirty_nat_cnt--;
278 }
279
280 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
281                 nid_t start, unsigned int nr, struct nat_entry_set **ep)
282 {
283         return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
284                                                         start, nr);
285 }
286
287 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
288 {
289         return NODE_MAPPING(sbi) == page->mapping &&
290                         IS_DNODE(page) && is_cold_node(page);
291 }
292
293 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
294 {
295         spin_lock_init(&sbi->fsync_node_lock);
296         INIT_LIST_HEAD(&sbi->fsync_node_list);
297         sbi->fsync_seg_id = 0;
298         sbi->fsync_node_num = 0;
299 }
300
301 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
302                                                         struct page *page)
303 {
304         struct fsync_node_entry *fn;
305         unsigned long flags;
306         unsigned int seq_id;
307
308         fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, GFP_NOFS);
309
310         get_page(page);
311         fn->page = page;
312         INIT_LIST_HEAD(&fn->list);
313
314         spin_lock_irqsave(&sbi->fsync_node_lock, flags);
315         list_add_tail(&fn->list, &sbi->fsync_node_list);
316         fn->seq_id = sbi->fsync_seg_id++;
317         seq_id = fn->seq_id;
318         sbi->fsync_node_num++;
319         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
320
321         return seq_id;
322 }
323
324 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
325 {
326         struct fsync_node_entry *fn;
327         unsigned long flags;
328
329         spin_lock_irqsave(&sbi->fsync_node_lock, flags);
330         list_for_each_entry(fn, &sbi->fsync_node_list, list) {
331                 if (fn->page == page) {
332                         list_del(&fn->list);
333                         sbi->fsync_node_num--;
334                         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
335                         kmem_cache_free(fsync_node_entry_slab, fn);
336                         put_page(page);
337                         return;
338                 }
339         }
340         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
341         f2fs_bug_on(sbi, 1);
342 }
343
344 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
345 {
346         unsigned long flags;
347
348         spin_lock_irqsave(&sbi->fsync_node_lock, flags);
349         sbi->fsync_seg_id = 0;
350         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
351 }
352
353 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
354 {
355         struct f2fs_nm_info *nm_i = NM_I(sbi);
356         struct nat_entry *e;
357         bool need = false;
358
359         down_read(&nm_i->nat_tree_lock);
360         e = __lookup_nat_cache(nm_i, nid);
361         if (e) {
362                 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
363                                 !get_nat_flag(e, HAS_FSYNCED_INODE))
364                         need = true;
365         }
366         up_read(&nm_i->nat_tree_lock);
367         return need;
368 }
369
370 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
371 {
372         struct f2fs_nm_info *nm_i = NM_I(sbi);
373         struct nat_entry *e;
374         bool is_cp = true;
375
376         down_read(&nm_i->nat_tree_lock);
377         e = __lookup_nat_cache(nm_i, nid);
378         if (e && !get_nat_flag(e, IS_CHECKPOINTED))
379                 is_cp = false;
380         up_read(&nm_i->nat_tree_lock);
381         return is_cp;
382 }
383
384 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
385 {
386         struct f2fs_nm_info *nm_i = NM_I(sbi);
387         struct nat_entry *e;
388         bool need_update = true;
389
390         down_read(&nm_i->nat_tree_lock);
391         e = __lookup_nat_cache(nm_i, ino);
392         if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
393                         (get_nat_flag(e, IS_CHECKPOINTED) ||
394                          get_nat_flag(e, HAS_FSYNCED_INODE)))
395                 need_update = false;
396         up_read(&nm_i->nat_tree_lock);
397         return need_update;
398 }
399
400 /* must be locked by nat_tree_lock */
401 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
402                                                 struct f2fs_nat_entry *ne)
403 {
404         struct f2fs_nm_info *nm_i = NM_I(sbi);
405         struct nat_entry *new, *e;
406
407         new = __alloc_nat_entry(nid, false);
408         if (!new)
409                 return;
410
411         down_write(&nm_i->nat_tree_lock);
412         e = __lookup_nat_cache(nm_i, nid);
413         if (!e)
414                 e = __init_nat_entry(nm_i, new, ne, false);
415         else
416                 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
417                                 nat_get_blkaddr(e) !=
418                                         le32_to_cpu(ne->block_addr) ||
419                                 nat_get_version(e) != ne->version);
420         up_write(&nm_i->nat_tree_lock);
421         if (e != new)
422                 __free_nat_entry(new);
423 }
424
425 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
426                         block_t new_blkaddr, bool fsync_done)
427 {
428         struct f2fs_nm_info *nm_i = NM_I(sbi);
429         struct nat_entry *e;
430         struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
431
432         down_write(&nm_i->nat_tree_lock);
433         e = __lookup_nat_cache(nm_i, ni->nid);
434         if (!e) {
435                 e = __init_nat_entry(nm_i, new, NULL, true);
436                 copy_node_info(&e->ni, ni);
437                 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
438         } else if (new_blkaddr == NEW_ADDR) {
439                 /*
440                  * when nid is reallocated,
441                  * previous nat entry can be remained in nat cache.
442                  * So, reinitialize it with new information.
443                  */
444                 copy_node_info(&e->ni, ni);
445                 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
446         }
447         /* let's free early to reduce memory consumption */
448         if (e != new)
449                 __free_nat_entry(new);
450
451         /* sanity check */
452         f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
453         f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
454                         new_blkaddr == NULL_ADDR);
455         f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
456                         new_blkaddr == NEW_ADDR);
457         f2fs_bug_on(sbi, is_valid_data_blkaddr(sbi, nat_get_blkaddr(e)) &&
458                         new_blkaddr == NEW_ADDR);
459
460         /* increment version no as node is removed */
461         if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
462                 unsigned char version = nat_get_version(e);
463                 nat_set_version(e, inc_node_version(version));
464         }
465
466         /* change address */
467         nat_set_blkaddr(e, new_blkaddr);
468         if (!is_valid_data_blkaddr(sbi, new_blkaddr))
469                 set_nat_flag(e, IS_CHECKPOINTED, false);
470         __set_nat_cache_dirty(nm_i, e);
471
472         /* update fsync_mark if its inode nat entry is still alive */
473         if (ni->nid != ni->ino)
474                 e = __lookup_nat_cache(nm_i, ni->ino);
475         if (e) {
476                 if (fsync_done && ni->nid == ni->ino)
477                         set_nat_flag(e, HAS_FSYNCED_INODE, true);
478                 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
479         }
480         up_write(&nm_i->nat_tree_lock);
481 }
482
483 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
484 {
485         struct f2fs_nm_info *nm_i = NM_I(sbi);
486         int nr = nr_shrink;
487
488         if (!down_write_trylock(&nm_i->nat_tree_lock))
489                 return 0;
490
491         spin_lock(&nm_i->nat_list_lock);
492         while (nr_shrink) {
493                 struct nat_entry *ne;
494
495                 if (list_empty(&nm_i->nat_entries))
496                         break;
497
498                 ne = list_first_entry(&nm_i->nat_entries,
499                                         struct nat_entry, list);
500                 list_del(&ne->list);
501                 spin_unlock(&nm_i->nat_list_lock);
502
503                 __del_from_nat_cache(nm_i, ne);
504                 nr_shrink--;
505
506                 spin_lock(&nm_i->nat_list_lock);
507         }
508         spin_unlock(&nm_i->nat_list_lock);
509
510         up_write(&nm_i->nat_tree_lock);
511         return nr - nr_shrink;
512 }
513
514 /*
515  * This function always returns success
516  */
517 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
518                                                 struct node_info *ni)
519 {
520         struct f2fs_nm_info *nm_i = NM_I(sbi);
521         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
522         struct f2fs_journal *journal = curseg->journal;
523         nid_t start_nid = START_NID(nid);
524         struct f2fs_nat_block *nat_blk;
525         struct page *page = NULL;
526         struct f2fs_nat_entry ne;
527         struct nat_entry *e;
528         pgoff_t index;
529         int i;
530
531         ni->nid = nid;
532
533         /* Check nat cache */
534         down_read(&nm_i->nat_tree_lock);
535         e = __lookup_nat_cache(nm_i, nid);
536         if (e) {
537                 ni->ino = nat_get_ino(e);
538                 ni->blk_addr = nat_get_blkaddr(e);
539                 ni->version = nat_get_version(e);
540                 up_read(&nm_i->nat_tree_lock);
541                 return 0;
542         }
543
544         memset(&ne, 0, sizeof(struct f2fs_nat_entry));
545
546         /* Check current segment summary */
547         down_read(&curseg->journal_rwsem);
548         i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
549         if (i >= 0) {
550                 ne = nat_in_journal(journal, i);
551                 node_info_from_raw_nat(ni, &ne);
552         }
553         up_read(&curseg->journal_rwsem);
554         if (i >= 0) {
555                 up_read(&nm_i->nat_tree_lock);
556                 goto cache;
557         }
558
559         /* Fill node_info from nat page */
560         index = current_nat_addr(sbi, nid);
561         up_read(&nm_i->nat_tree_lock);
562
563         page = f2fs_get_meta_page(sbi, index);
564         if (IS_ERR(page))
565                 return PTR_ERR(page);
566
567         nat_blk = (struct f2fs_nat_block *)page_address(page);
568         ne = nat_blk->entries[nid - start_nid];
569         node_info_from_raw_nat(ni, &ne);
570         f2fs_put_page(page, 1);
571 cache:
572         /* cache nat entry */
573         cache_nat_entry(sbi, nid, &ne);
574         return 0;
575 }
576
577 /*
578  * readahead MAX_RA_NODE number of node pages.
579  */
580 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
581 {
582         struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
583         struct blk_plug plug;
584         int i, end;
585         nid_t nid;
586
587         blk_start_plug(&plug);
588
589         /* Then, try readahead for siblings of the desired node */
590         end = start + n;
591         end = min(end, NIDS_PER_BLOCK);
592         for (i = start; i < end; i++) {
593                 nid = get_nid(parent, i, false);
594                 f2fs_ra_node_page(sbi, nid);
595         }
596
597         blk_finish_plug(&plug);
598 }
599
600 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
601 {
602         const long direct_index = ADDRS_PER_INODE(dn->inode);
603         const long direct_blks = ADDRS_PER_BLOCK;
604         const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
605         unsigned int skipped_unit = ADDRS_PER_BLOCK;
606         int cur_level = dn->cur_level;
607         int max_level = dn->max_level;
608         pgoff_t base = 0;
609
610         if (!dn->max_level)
611                 return pgofs + 1;
612
613         while (max_level-- > cur_level)
614                 skipped_unit *= NIDS_PER_BLOCK;
615
616         switch (dn->max_level) {
617         case 3:
618                 base += 2 * indirect_blks;
619         case 2:
620                 base += 2 * direct_blks;
621         case 1:
622                 base += direct_index;
623                 break;
624         default:
625                 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
626         }
627
628         return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
629 }
630
631 /*
632  * The maximum depth is four.
633  * Offset[0] will have raw inode offset.
634  */
635 static int get_node_path(struct inode *inode, long block,
636                                 int offset[4], unsigned int noffset[4])
637 {
638         const long direct_index = ADDRS_PER_INODE(inode);
639         const long direct_blks = ADDRS_PER_BLOCK;
640         const long dptrs_per_blk = NIDS_PER_BLOCK;
641         const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
642         const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
643         int n = 0;
644         int level = 0;
645
646         noffset[0] = 0;
647
648         if (block < direct_index) {
649                 offset[n] = block;
650                 goto got;
651         }
652         block -= direct_index;
653         if (block < direct_blks) {
654                 offset[n++] = NODE_DIR1_BLOCK;
655                 noffset[n] = 1;
656                 offset[n] = block;
657                 level = 1;
658                 goto got;
659         }
660         block -= direct_blks;
661         if (block < direct_blks) {
662                 offset[n++] = NODE_DIR2_BLOCK;
663                 noffset[n] = 2;
664                 offset[n] = block;
665                 level = 1;
666                 goto got;
667         }
668         block -= direct_blks;
669         if (block < indirect_blks) {
670                 offset[n++] = NODE_IND1_BLOCK;
671                 noffset[n] = 3;
672                 offset[n++] = block / direct_blks;
673                 noffset[n] = 4 + offset[n - 1];
674                 offset[n] = block % direct_blks;
675                 level = 2;
676                 goto got;
677         }
678         block -= indirect_blks;
679         if (block < indirect_blks) {
680                 offset[n++] = NODE_IND2_BLOCK;
681                 noffset[n] = 4 + dptrs_per_blk;
682                 offset[n++] = block / direct_blks;
683                 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
684                 offset[n] = block % direct_blks;
685                 level = 2;
686                 goto got;
687         }
688         block -= indirect_blks;
689         if (block < dindirect_blks) {
690                 offset[n++] = NODE_DIND_BLOCK;
691                 noffset[n] = 5 + (dptrs_per_blk * 2);
692                 offset[n++] = block / indirect_blks;
693                 noffset[n] = 6 + (dptrs_per_blk * 2) +
694                               offset[n - 1] * (dptrs_per_blk + 1);
695                 offset[n++] = (block / direct_blks) % dptrs_per_blk;
696                 noffset[n] = 7 + (dptrs_per_blk * 2) +
697                               offset[n - 2] * (dptrs_per_blk + 1) +
698                               offset[n - 1];
699                 offset[n] = block % direct_blks;
700                 level = 3;
701                 goto got;
702         } else {
703                 return -E2BIG;
704         }
705 got:
706         return level;
707 }
708
709 /*
710  * Caller should call f2fs_put_dnode(dn).
711  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
712  * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
713  * In the case of RDONLY_NODE, we don't need to care about mutex.
714  */
715 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
716 {
717         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
718         struct page *npage[4];
719         struct page *parent = NULL;
720         int offset[4];
721         unsigned int noffset[4];
722         nid_t nids[4];
723         int level, i = 0;
724         int err = 0;
725
726         level = get_node_path(dn->inode, index, offset, noffset);
727         if (level < 0)
728                 return level;
729
730         nids[0] = dn->inode->i_ino;
731         npage[0] = dn->inode_page;
732
733         if (!npage[0]) {
734                 npage[0] = f2fs_get_node_page(sbi, nids[0]);
735                 if (IS_ERR(npage[0]))
736                         return PTR_ERR(npage[0]);
737         }
738
739         /* if inline_data is set, should not report any block indices */
740         if (f2fs_has_inline_data(dn->inode) && index) {
741                 err = -ENOENT;
742                 f2fs_put_page(npage[0], 1);
743                 goto release_out;
744         }
745
746         parent = npage[0];
747         if (level != 0)
748                 nids[1] = get_nid(parent, offset[0], true);
749         dn->inode_page = npage[0];
750         dn->inode_page_locked = true;
751
752         /* get indirect or direct nodes */
753         for (i = 1; i <= level; i++) {
754                 bool done = false;
755
756                 if (!nids[i] && mode == ALLOC_NODE) {
757                         /* alloc new node */
758                         if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
759                                 err = -ENOSPC;
760                                 goto release_pages;
761                         }
762
763                         dn->nid = nids[i];
764                         npage[i] = f2fs_new_node_page(dn, noffset[i]);
765                         if (IS_ERR(npage[i])) {
766                                 f2fs_alloc_nid_failed(sbi, nids[i]);
767                                 err = PTR_ERR(npage[i]);
768                                 goto release_pages;
769                         }
770
771                         set_nid(parent, offset[i - 1], nids[i], i == 1);
772                         f2fs_alloc_nid_done(sbi, nids[i]);
773                         done = true;
774                 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
775                         npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
776                         if (IS_ERR(npage[i])) {
777                                 err = PTR_ERR(npage[i]);
778                                 goto release_pages;
779                         }
780                         done = true;
781                 }
782                 if (i == 1) {
783                         dn->inode_page_locked = false;
784                         unlock_page(parent);
785                 } else {
786                         f2fs_put_page(parent, 1);
787                 }
788
789                 if (!done) {
790                         npage[i] = f2fs_get_node_page(sbi, nids[i]);
791                         if (IS_ERR(npage[i])) {
792                                 err = PTR_ERR(npage[i]);
793                                 f2fs_put_page(npage[0], 0);
794                                 goto release_out;
795                         }
796                 }
797                 if (i < level) {
798                         parent = npage[i];
799                         nids[i + 1] = get_nid(parent, offset[i], false);
800                 }
801         }
802         dn->nid = nids[level];
803         dn->ofs_in_node = offset[level];
804         dn->node_page = npage[level];
805         dn->data_blkaddr = datablock_addr(dn->inode,
806                                 dn->node_page, dn->ofs_in_node);
807         return 0;
808
809 release_pages:
810         f2fs_put_page(parent, 1);
811         if (i > 1)
812                 f2fs_put_page(npage[0], 0);
813 release_out:
814         dn->inode_page = NULL;
815         dn->node_page = NULL;
816         if (err == -ENOENT) {
817                 dn->cur_level = i;
818                 dn->max_level = level;
819                 dn->ofs_in_node = offset[level];
820         }
821         return err;
822 }
823
824 static int truncate_node(struct dnode_of_data *dn)
825 {
826         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
827         struct node_info ni;
828         int err;
829
830         err = f2fs_get_node_info(sbi, dn->nid, &ni);
831         if (err)
832                 return err;
833
834         /* Deallocate node address */
835         f2fs_invalidate_blocks(sbi, ni.blk_addr);
836         dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
837         set_node_addr(sbi, &ni, NULL_ADDR, false);
838
839         if (dn->nid == dn->inode->i_ino) {
840                 f2fs_remove_orphan_inode(sbi, dn->nid);
841                 dec_valid_inode_count(sbi);
842                 f2fs_inode_synced(dn->inode);
843         }
844
845         clear_node_page_dirty(dn->node_page);
846         set_sbi_flag(sbi, SBI_IS_DIRTY);
847
848         f2fs_put_page(dn->node_page, 1);
849
850         invalidate_mapping_pages(NODE_MAPPING(sbi),
851                         dn->node_page->index, dn->node_page->index);
852
853         dn->node_page = NULL;
854         trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
855
856         return 0;
857 }
858
859 static int truncate_dnode(struct dnode_of_data *dn)
860 {
861         struct page *page;
862         int err;
863
864         if (dn->nid == 0)
865                 return 1;
866
867         /* get direct node */
868         page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
869         if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
870                 return 1;
871         else if (IS_ERR(page))
872                 return PTR_ERR(page);
873
874         /* Make dnode_of_data for parameter */
875         dn->node_page = page;
876         dn->ofs_in_node = 0;
877         f2fs_truncate_data_blocks(dn);
878         err = truncate_node(dn);
879         if (err)
880                 return err;
881
882         return 1;
883 }
884
885 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
886                                                 int ofs, int depth)
887 {
888         struct dnode_of_data rdn = *dn;
889         struct page *page;
890         struct f2fs_node *rn;
891         nid_t child_nid;
892         unsigned int child_nofs;
893         int freed = 0;
894         int i, ret;
895
896         if (dn->nid == 0)
897                 return NIDS_PER_BLOCK + 1;
898
899         trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
900
901         page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
902         if (IS_ERR(page)) {
903                 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
904                 return PTR_ERR(page);
905         }
906
907         f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
908
909         rn = F2FS_NODE(page);
910         if (depth < 3) {
911                 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
912                         child_nid = le32_to_cpu(rn->in.nid[i]);
913                         if (child_nid == 0)
914                                 continue;
915                         rdn.nid = child_nid;
916                         ret = truncate_dnode(&rdn);
917                         if (ret < 0)
918                                 goto out_err;
919                         if (set_nid(page, i, 0, false))
920                                 dn->node_changed = true;
921                 }
922         } else {
923                 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
924                 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
925                         child_nid = le32_to_cpu(rn->in.nid[i]);
926                         if (child_nid == 0) {
927                                 child_nofs += NIDS_PER_BLOCK + 1;
928                                 continue;
929                         }
930                         rdn.nid = child_nid;
931                         ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
932                         if (ret == (NIDS_PER_BLOCK + 1)) {
933                                 if (set_nid(page, i, 0, false))
934                                         dn->node_changed = true;
935                                 child_nofs += ret;
936                         } else if (ret < 0 && ret != -ENOENT) {
937                                 goto out_err;
938                         }
939                 }
940                 freed = child_nofs;
941         }
942
943         if (!ofs) {
944                 /* remove current indirect node */
945                 dn->node_page = page;
946                 ret = truncate_node(dn);
947                 if (ret)
948                         goto out_err;
949                 freed++;
950         } else {
951                 f2fs_put_page(page, 1);
952         }
953         trace_f2fs_truncate_nodes_exit(dn->inode, freed);
954         return freed;
955
956 out_err:
957         f2fs_put_page(page, 1);
958         trace_f2fs_truncate_nodes_exit(dn->inode, ret);
959         return ret;
960 }
961
962 static int truncate_partial_nodes(struct dnode_of_data *dn,
963                         struct f2fs_inode *ri, int *offset, int depth)
964 {
965         struct page *pages[2];
966         nid_t nid[3];
967         nid_t child_nid;
968         int err = 0;
969         int i;
970         int idx = depth - 2;
971
972         nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
973         if (!nid[0])
974                 return 0;
975
976         /* get indirect nodes in the path */
977         for (i = 0; i < idx + 1; i++) {
978                 /* reference count'll be increased */
979                 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
980                 if (IS_ERR(pages[i])) {
981                         err = PTR_ERR(pages[i]);
982                         idx = i - 1;
983                         goto fail;
984                 }
985                 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
986         }
987
988         f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
989
990         /* free direct nodes linked to a partial indirect node */
991         for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
992                 child_nid = get_nid(pages[idx], i, false);
993                 if (!child_nid)
994                         continue;
995                 dn->nid = child_nid;
996                 err = truncate_dnode(dn);
997                 if (err < 0)
998                         goto fail;
999                 if (set_nid(pages[idx], i, 0, false))
1000                         dn->node_changed = true;
1001         }
1002
1003         if (offset[idx + 1] == 0) {
1004                 dn->node_page = pages[idx];
1005                 dn->nid = nid[idx];
1006                 err = truncate_node(dn);
1007                 if (err)
1008                         goto fail;
1009         } else {
1010                 f2fs_put_page(pages[idx], 1);
1011         }
1012         offset[idx]++;
1013         offset[idx + 1] = 0;
1014         idx--;
1015 fail:
1016         for (i = idx; i >= 0; i--)
1017                 f2fs_put_page(pages[i], 1);
1018
1019         trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1020
1021         return err;
1022 }
1023
1024 /*
1025  * All the block addresses of data and nodes should be nullified.
1026  */
1027 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1028 {
1029         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1030         int err = 0, cont = 1;
1031         int level, offset[4], noffset[4];
1032         unsigned int nofs = 0;
1033         struct f2fs_inode *ri;
1034         struct dnode_of_data dn;
1035         struct page *page;
1036
1037         trace_f2fs_truncate_inode_blocks_enter(inode, from);
1038
1039         level = get_node_path(inode, from, offset, noffset);
1040         if (level < 0)
1041                 return level;
1042
1043         page = f2fs_get_node_page(sbi, inode->i_ino);
1044         if (IS_ERR(page)) {
1045                 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1046                 return PTR_ERR(page);
1047         }
1048
1049         set_new_dnode(&dn, inode, page, NULL, 0);
1050         unlock_page(page);
1051
1052         ri = F2FS_INODE(page);
1053         switch (level) {
1054         case 0:
1055         case 1:
1056                 nofs = noffset[1];
1057                 break;
1058         case 2:
1059                 nofs = noffset[1];
1060                 if (!offset[level - 1])
1061                         goto skip_partial;
1062                 err = truncate_partial_nodes(&dn, ri, offset, level);
1063                 if (err < 0 && err != -ENOENT)
1064                         goto fail;
1065                 nofs += 1 + NIDS_PER_BLOCK;
1066                 break;
1067         case 3:
1068                 nofs = 5 + 2 * NIDS_PER_BLOCK;
1069                 if (!offset[level - 1])
1070                         goto skip_partial;
1071                 err = truncate_partial_nodes(&dn, ri, offset, level);
1072                 if (err < 0 && err != -ENOENT)
1073                         goto fail;
1074                 break;
1075         default:
1076                 BUG();
1077         }
1078
1079 skip_partial:
1080         while (cont) {
1081                 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1082                 switch (offset[0]) {
1083                 case NODE_DIR1_BLOCK:
1084                 case NODE_DIR2_BLOCK:
1085                         err = truncate_dnode(&dn);
1086                         break;
1087
1088                 case NODE_IND1_BLOCK:
1089                 case NODE_IND2_BLOCK:
1090                         err = truncate_nodes(&dn, nofs, offset[1], 2);
1091                         break;
1092
1093                 case NODE_DIND_BLOCK:
1094                         err = truncate_nodes(&dn, nofs, offset[1], 3);
1095                         cont = 0;
1096                         break;
1097
1098                 default:
1099                         BUG();
1100                 }
1101                 if (err < 0 && err != -ENOENT)
1102                         goto fail;
1103                 if (offset[1] == 0 &&
1104                                 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1105                         lock_page(page);
1106                         BUG_ON(page->mapping != NODE_MAPPING(sbi));
1107                         f2fs_wait_on_page_writeback(page, NODE, true);
1108                         ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1109                         set_page_dirty(page);
1110                         unlock_page(page);
1111                 }
1112                 offset[1] = 0;
1113                 offset[0]++;
1114                 nofs += err;
1115         }
1116 fail:
1117         f2fs_put_page(page, 0);
1118         trace_f2fs_truncate_inode_blocks_exit(inode, err);
1119         return err > 0 ? 0 : err;
1120 }
1121
1122 /* caller must lock inode page */
1123 int f2fs_truncate_xattr_node(struct inode *inode)
1124 {
1125         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1126         nid_t nid = F2FS_I(inode)->i_xattr_nid;
1127         struct dnode_of_data dn;
1128         struct page *npage;
1129         int err;
1130
1131         if (!nid)
1132                 return 0;
1133
1134         npage = f2fs_get_node_page(sbi, nid);
1135         if (IS_ERR(npage))
1136                 return PTR_ERR(npage);
1137
1138         set_new_dnode(&dn, inode, NULL, npage, nid);
1139         err = truncate_node(&dn);
1140         if (err) {
1141                 f2fs_put_page(npage, 1);
1142                 return err;
1143         }
1144
1145         f2fs_i_xnid_write(inode, 0);
1146
1147         return 0;
1148 }
1149
1150 /*
1151  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1152  * f2fs_unlock_op().
1153  */
1154 int f2fs_remove_inode_page(struct inode *inode)
1155 {
1156         struct dnode_of_data dn;
1157         int err;
1158
1159         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1160         err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1161         if (err)
1162                 return err;
1163
1164         err = f2fs_truncate_xattr_node(inode);
1165         if (err) {
1166                 f2fs_put_dnode(&dn);
1167                 return err;
1168         }
1169
1170         /* remove potential inline_data blocks */
1171         if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1172                                 S_ISLNK(inode->i_mode))
1173                 f2fs_truncate_data_blocks_range(&dn, 1);
1174
1175         /* 0 is possible, after f2fs_new_inode() has failed */
1176         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1177                 f2fs_put_dnode(&dn);
1178                 return -EIO;
1179         }
1180         f2fs_bug_on(F2FS_I_SB(inode),
1181                         inode->i_blocks != 0 && inode->i_blocks != 8);
1182
1183         /* will put inode & node pages */
1184         err = truncate_node(&dn);
1185         if (err) {
1186                 f2fs_put_dnode(&dn);
1187                 return err;
1188         }
1189         return 0;
1190 }
1191
1192 struct page *f2fs_new_inode_page(struct inode *inode)
1193 {
1194         struct dnode_of_data dn;
1195
1196         /* allocate inode page for new inode */
1197         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1198
1199         /* caller should f2fs_put_page(page, 1); */
1200         return f2fs_new_node_page(&dn, 0);
1201 }
1202
1203 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1204 {
1205         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1206         struct node_info new_ni;
1207         struct page *page;
1208         int err;
1209
1210         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1211                 return ERR_PTR(-EPERM);
1212
1213         page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1214         if (!page)
1215                 return ERR_PTR(-ENOMEM);
1216
1217         if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1218                 goto fail;
1219
1220 #ifdef CONFIG_F2FS_CHECK_FS
1221         err = f2fs_get_node_info(sbi, dn->nid, &new_ni);
1222         if (err) {
1223                 dec_valid_node_count(sbi, dn->inode, !ofs);
1224                 goto fail;
1225         }
1226         f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
1227 #endif
1228         new_ni.nid = dn->nid;
1229         new_ni.ino = dn->inode->i_ino;
1230         new_ni.blk_addr = NULL_ADDR;
1231         new_ni.flag = 0;
1232         new_ni.version = 0;
1233         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1234
1235         f2fs_wait_on_page_writeback(page, NODE, true);
1236         fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1237         set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1238         if (!PageUptodate(page))
1239                 SetPageUptodate(page);
1240         if (set_page_dirty(page))
1241                 dn->node_changed = true;
1242
1243         if (f2fs_has_xattr_block(ofs))
1244                 f2fs_i_xnid_write(dn->inode, dn->nid);
1245
1246         if (ofs == 0)
1247                 inc_valid_inode_count(sbi);
1248         return page;
1249
1250 fail:
1251         clear_node_page_dirty(page);
1252         f2fs_put_page(page, 1);
1253         return ERR_PTR(err);
1254 }
1255
1256 /*
1257  * Caller should do after getting the following values.
1258  * 0: f2fs_put_page(page, 0)
1259  * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1260  */
1261 static int read_node_page(struct page *page, int op_flags)
1262 {
1263         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1264         struct node_info ni;
1265         struct f2fs_io_info fio = {
1266                 .sbi = sbi,
1267                 .type = NODE,
1268                 .op = REQ_OP_READ,
1269                 .op_flags = op_flags,
1270                 .page = page,
1271                 .encrypted_page = NULL,
1272         };
1273         int err;
1274
1275         if (PageUptodate(page)) {
1276 #ifdef CONFIG_F2FS_CHECK_FS
1277                 f2fs_bug_on(sbi, !f2fs_inode_chksum_verify(sbi, page));
1278 #endif
1279                 return LOCKED_PAGE;
1280         }
1281
1282         err = f2fs_get_node_info(sbi, page->index, &ni);
1283         if (err)
1284                 return err;
1285
1286         if (unlikely(ni.blk_addr == NULL_ADDR) ||
1287                         is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) {
1288                 ClearPageUptodate(page);
1289                 return -ENOENT;
1290         }
1291
1292         fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1293         return f2fs_submit_page_bio(&fio);
1294 }
1295
1296 /*
1297  * Readahead a node page
1298  */
1299 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1300 {
1301         struct page *apage;
1302         int err;
1303
1304         if (!nid)
1305                 return;
1306         if (f2fs_check_nid_range(sbi, nid))
1307                 return;
1308
1309         rcu_read_lock();
1310         apage = radix_tree_lookup(&NODE_MAPPING(sbi)->i_pages, nid);
1311         rcu_read_unlock();
1312         if (apage)
1313                 return;
1314
1315         apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1316         if (!apage)
1317                 return;
1318
1319         err = read_node_page(apage, REQ_RAHEAD);
1320         f2fs_put_page(apage, err ? 1 : 0);
1321 }
1322
1323 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1324                                         struct page *parent, int start)
1325 {
1326         struct page *page;
1327         int err;
1328
1329         if (!nid)
1330                 return ERR_PTR(-ENOENT);
1331         if (f2fs_check_nid_range(sbi, nid))
1332                 return ERR_PTR(-EINVAL);
1333 repeat:
1334         page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1335         if (!page)
1336                 return ERR_PTR(-ENOMEM);
1337
1338         err = read_node_page(page, 0);
1339         if (err < 0) {
1340                 f2fs_put_page(page, 1);
1341                 return ERR_PTR(err);
1342         } else if (err == LOCKED_PAGE) {
1343                 err = 0;
1344                 goto page_hit;
1345         }
1346
1347         if (parent)
1348                 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1349
1350         lock_page(page);
1351
1352         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1353                 f2fs_put_page(page, 1);
1354                 goto repeat;
1355         }
1356
1357         if (unlikely(!PageUptodate(page))) {
1358                 err = -EIO;
1359                 goto out_err;
1360         }
1361
1362         if (!f2fs_inode_chksum_verify(sbi, page)) {
1363                 err = -EBADMSG;
1364                 goto out_err;
1365         }
1366 page_hit:
1367         if(unlikely(nid != nid_of_node(page))) {
1368                 f2fs_msg(sbi->sb, KERN_WARNING, "inconsistent node block, "
1369                         "nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1370                         nid, nid_of_node(page), ino_of_node(page),
1371                         ofs_of_node(page), cpver_of_node(page),
1372                         next_blkaddr_of_node(page));
1373                 err = -EINVAL;
1374 out_err:
1375                 ClearPageUptodate(page);
1376                 f2fs_put_page(page, 1);
1377                 return ERR_PTR(err);
1378         }
1379         return page;
1380 }
1381
1382 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1383 {
1384         return __get_node_page(sbi, nid, NULL, 0);
1385 }
1386
1387 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1388 {
1389         struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1390         nid_t nid = get_nid(parent, start, false);
1391
1392         return __get_node_page(sbi, nid, parent, start);
1393 }
1394
1395 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1396 {
1397         struct inode *inode;
1398         struct page *page;
1399         int ret;
1400
1401         /* should flush inline_data before evict_inode */
1402         inode = ilookup(sbi->sb, ino);
1403         if (!inode)
1404                 return;
1405
1406         page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1407                                         FGP_LOCK|FGP_NOWAIT, 0);
1408         if (!page)
1409                 goto iput_out;
1410
1411         if (!PageUptodate(page))
1412                 goto page_out;
1413
1414         if (!PageDirty(page))
1415                 goto page_out;
1416
1417         if (!clear_page_dirty_for_io(page))
1418                 goto page_out;
1419
1420         ret = f2fs_write_inline_data(inode, page);
1421         inode_dec_dirty_pages(inode);
1422         f2fs_remove_dirty_inode(inode);
1423         if (ret)
1424                 set_page_dirty(page);
1425 page_out:
1426         f2fs_put_page(page, 1);
1427 iput_out:
1428         iput(inode);
1429 }
1430
1431 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1432 {
1433         pgoff_t index;
1434         struct pagevec pvec;
1435         struct page *last_page = NULL;
1436         int nr_pages;
1437
1438         pagevec_init(&pvec);
1439         index = 0;
1440
1441         while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1442                                 PAGECACHE_TAG_DIRTY))) {
1443                 int i;
1444
1445                 for (i = 0; i < nr_pages; i++) {
1446                         struct page *page = pvec.pages[i];
1447
1448                         if (unlikely(f2fs_cp_error(sbi))) {
1449                                 f2fs_put_page(last_page, 0);
1450                                 pagevec_release(&pvec);
1451                                 return ERR_PTR(-EIO);
1452                         }
1453
1454                         if (!IS_DNODE(page) || !is_cold_node(page))
1455                                 continue;
1456                         if (ino_of_node(page) != ino)
1457                                 continue;
1458
1459                         lock_page(page);
1460
1461                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1462 continue_unlock:
1463                                 unlock_page(page);
1464                                 continue;
1465                         }
1466                         if (ino_of_node(page) != ino)
1467                                 goto continue_unlock;
1468
1469                         if (!PageDirty(page)) {
1470                                 /* someone wrote it for us */
1471                                 goto continue_unlock;
1472                         }
1473
1474                         if (last_page)
1475                                 f2fs_put_page(last_page, 0);
1476
1477                         get_page(page);
1478                         last_page = page;
1479                         unlock_page(page);
1480                 }
1481                 pagevec_release(&pvec);
1482                 cond_resched();
1483         }
1484         return last_page;
1485 }
1486
1487 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1488                                 struct writeback_control *wbc, bool do_balance,
1489                                 enum iostat_type io_type, unsigned int *seq_id)
1490 {
1491         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1492         nid_t nid;
1493         struct node_info ni;
1494         struct f2fs_io_info fio = {
1495                 .sbi = sbi,
1496                 .ino = ino_of_node(page),
1497                 .type = NODE,
1498                 .op = REQ_OP_WRITE,
1499                 .op_flags = wbc_to_write_flags(wbc),
1500                 .page = page,
1501                 .encrypted_page = NULL,
1502                 .submitted = false,
1503                 .io_type = io_type,
1504                 .io_wbc = wbc,
1505         };
1506         unsigned int seq;
1507
1508         trace_f2fs_writepage(page, NODE);
1509
1510         if (unlikely(f2fs_cp_error(sbi)))
1511                 goto redirty_out;
1512
1513         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1514                 goto redirty_out;
1515
1516         if (wbc->sync_mode == WB_SYNC_NONE &&
1517                         IS_DNODE(page) && is_cold_node(page))
1518                 goto redirty_out;
1519
1520         /* get old block addr of this node page */
1521         nid = nid_of_node(page);
1522         f2fs_bug_on(sbi, page->index != nid);
1523
1524         if (f2fs_get_node_info(sbi, nid, &ni))
1525                 goto redirty_out;
1526
1527         if (wbc->for_reclaim) {
1528                 if (!down_read_trylock(&sbi->node_write))
1529                         goto redirty_out;
1530         } else {
1531                 down_read(&sbi->node_write);
1532         }
1533
1534         /* This page is already truncated */
1535         if (unlikely(ni.blk_addr == NULL_ADDR)) {
1536                 ClearPageUptodate(page);
1537                 dec_page_count(sbi, F2FS_DIRTY_NODES);
1538                 up_read(&sbi->node_write);
1539                 unlock_page(page);
1540                 return 0;
1541         }
1542
1543         if (__is_valid_data_blkaddr(ni.blk_addr) &&
1544                 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr, DATA_GENERIC)) {
1545                 up_read(&sbi->node_write);
1546                 goto redirty_out;
1547         }
1548
1549         if (atomic && !test_opt(sbi, NOBARRIER))
1550                 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1551
1552         set_page_writeback(page);
1553         ClearPageError(page);
1554
1555         if (f2fs_in_warm_node_list(sbi, page)) {
1556                 seq = f2fs_add_fsync_node_entry(sbi, page);
1557                 if (seq_id)
1558                         *seq_id = seq;
1559         }
1560
1561         fio.old_blkaddr = ni.blk_addr;
1562         f2fs_do_write_node_page(nid, &fio);
1563         set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1564         dec_page_count(sbi, F2FS_DIRTY_NODES);
1565         up_read(&sbi->node_write);
1566
1567         if (wbc->for_reclaim) {
1568                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1569                 submitted = NULL;
1570         }
1571
1572         unlock_page(page);
1573
1574         if (unlikely(f2fs_cp_error(sbi))) {
1575                 f2fs_submit_merged_write(sbi, NODE);
1576                 submitted = NULL;
1577         }
1578         if (submitted)
1579                 *submitted = fio.submitted;
1580
1581         if (do_balance)
1582                 f2fs_balance_fs(sbi, false);
1583         return 0;
1584
1585 redirty_out:
1586         redirty_page_for_writepage(wbc, page);
1587         return AOP_WRITEPAGE_ACTIVATE;
1588 }
1589
1590 int f2fs_move_node_page(struct page *node_page, int gc_type)
1591 {
1592         int err = 0;
1593
1594         if (gc_type == FG_GC) {
1595                 struct writeback_control wbc = {
1596                         .sync_mode = WB_SYNC_ALL,
1597                         .nr_to_write = 1,
1598                         .for_reclaim = 0,
1599                 };
1600
1601                 set_page_dirty(node_page);
1602                 f2fs_wait_on_page_writeback(node_page, NODE, true);
1603
1604                 f2fs_bug_on(F2FS_P_SB(node_page), PageWriteback(node_page));
1605                 if (!clear_page_dirty_for_io(node_page)) {
1606                         err = -EAGAIN;
1607                         goto out_page;
1608                 }
1609
1610                 if (__write_node_page(node_page, false, NULL,
1611                                         &wbc, false, FS_GC_NODE_IO, NULL)) {
1612                         err = -EAGAIN;
1613                         unlock_page(node_page);
1614                 }
1615                 goto release_page;
1616         } else {
1617                 /* set page dirty and write it */
1618                 if (!PageWriteback(node_page))
1619                         set_page_dirty(node_page);
1620         }
1621 out_page:
1622         unlock_page(node_page);
1623 release_page:
1624         f2fs_put_page(node_page, 0);
1625         return err;
1626 }
1627
1628 static int f2fs_write_node_page(struct page *page,
1629                                 struct writeback_control *wbc)
1630 {
1631         return __write_node_page(page, false, NULL, wbc, false,
1632                                                 FS_NODE_IO, NULL);
1633 }
1634
1635 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1636                         struct writeback_control *wbc, bool atomic,
1637                         unsigned int *seq_id)
1638 {
1639         pgoff_t index;
1640         struct pagevec pvec;
1641         int ret = 0;
1642         struct page *last_page = NULL;
1643         bool marked = false;
1644         nid_t ino = inode->i_ino;
1645         int nr_pages;
1646         int nwritten = 0;
1647
1648         if (atomic) {
1649                 last_page = last_fsync_dnode(sbi, ino);
1650                 if (IS_ERR_OR_NULL(last_page))
1651                         return PTR_ERR_OR_ZERO(last_page);
1652         }
1653 retry:
1654         pagevec_init(&pvec);
1655         index = 0;
1656
1657         while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1658                                 PAGECACHE_TAG_DIRTY))) {
1659                 int i;
1660
1661                 for (i = 0; i < nr_pages; i++) {
1662                         struct page *page = pvec.pages[i];
1663                         bool submitted = false;
1664
1665                         if (unlikely(f2fs_cp_error(sbi))) {
1666                                 f2fs_put_page(last_page, 0);
1667                                 pagevec_release(&pvec);
1668                                 ret = -EIO;
1669                                 goto out;
1670                         }
1671
1672                         if (!IS_DNODE(page) || !is_cold_node(page))
1673                                 continue;
1674                         if (ino_of_node(page) != ino)
1675                                 continue;
1676
1677                         lock_page(page);
1678
1679                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1680 continue_unlock:
1681                                 unlock_page(page);
1682                                 continue;
1683                         }
1684                         if (ino_of_node(page) != ino)
1685                                 goto continue_unlock;
1686
1687                         if (!PageDirty(page) && page != last_page) {
1688                                 /* someone wrote it for us */
1689                                 goto continue_unlock;
1690                         }
1691
1692                         f2fs_wait_on_page_writeback(page, NODE, true);
1693                         BUG_ON(PageWriteback(page));
1694
1695                         set_fsync_mark(page, 0);
1696                         set_dentry_mark(page, 0);
1697
1698                         if (!atomic || page == last_page) {
1699                                 set_fsync_mark(page, 1);
1700                                 if (IS_INODE(page)) {
1701                                         if (is_inode_flag_set(inode,
1702                                                                 FI_DIRTY_INODE))
1703                                                 f2fs_update_inode(inode, page);
1704                                         set_dentry_mark(page,
1705                                                 f2fs_need_dentry_mark(sbi, ino));
1706                                 }
1707                                 /*  may be written by other thread */
1708                                 if (!PageDirty(page))
1709                                         set_page_dirty(page);
1710                         }
1711
1712                         if (!clear_page_dirty_for_io(page))
1713                                 goto continue_unlock;
1714
1715                         ret = __write_node_page(page, atomic &&
1716                                                 page == last_page,
1717                                                 &submitted, wbc, true,
1718                                                 FS_NODE_IO, seq_id);
1719                         if (ret) {
1720                                 unlock_page(page);
1721                                 f2fs_put_page(last_page, 0);
1722                                 break;
1723                         } else if (submitted) {
1724                                 nwritten++;
1725                         }
1726
1727                         if (page == last_page) {
1728                                 f2fs_put_page(page, 0);
1729                                 marked = true;
1730                                 break;
1731                         }
1732                 }
1733                 pagevec_release(&pvec);
1734                 cond_resched();
1735
1736                 if (ret || marked)
1737                         break;
1738         }
1739         if (!ret && atomic && !marked) {
1740                 f2fs_msg(sbi->sb, KERN_DEBUG,
1741                         "Retry to write fsync mark: ino=%u, idx=%lx",
1742                                         ino, last_page->index);
1743                 lock_page(last_page);
1744                 f2fs_wait_on_page_writeback(last_page, NODE, true);
1745                 set_page_dirty(last_page);
1746                 unlock_page(last_page);
1747                 goto retry;
1748         }
1749 out:
1750         if (nwritten)
1751                 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1752         return ret ? -EIO: 0;
1753 }
1754
1755 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1756                                 struct writeback_control *wbc,
1757                                 bool do_balance, enum iostat_type io_type)
1758 {
1759         pgoff_t index;
1760         struct pagevec pvec;
1761         int step = 0;
1762         int nwritten = 0;
1763         int ret = 0;
1764         int nr_pages, done = 0;
1765
1766         pagevec_init(&pvec);
1767
1768 next_step:
1769         index = 0;
1770
1771         while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1772                         NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1773                 int i;
1774
1775                 for (i = 0; i < nr_pages; i++) {
1776                         struct page *page = pvec.pages[i];
1777                         bool submitted = false;
1778
1779                         /* give a priority to WB_SYNC threads */
1780                         if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1781                                         wbc->sync_mode == WB_SYNC_NONE) {
1782                                 done = 1;
1783                                 break;
1784                         }
1785
1786                         /*
1787                          * flushing sequence with step:
1788                          * 0. indirect nodes
1789                          * 1. dentry dnodes
1790                          * 2. file dnodes
1791                          */
1792                         if (step == 0 && IS_DNODE(page))
1793                                 continue;
1794                         if (step == 1 && (!IS_DNODE(page) ||
1795                                                 is_cold_node(page)))
1796                                 continue;
1797                         if (step == 2 && (!IS_DNODE(page) ||
1798                                                 !is_cold_node(page)))
1799                                 continue;
1800 lock_node:
1801                         if (wbc->sync_mode == WB_SYNC_ALL)
1802                                 lock_page(page);
1803                         else if (!trylock_page(page))
1804                                 continue;
1805
1806                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1807 continue_unlock:
1808                                 unlock_page(page);
1809                                 continue;
1810                         }
1811
1812                         if (!PageDirty(page)) {
1813                                 /* someone wrote it for us */
1814                                 goto continue_unlock;
1815                         }
1816
1817                         /* flush inline_data */
1818                         if (is_inline_node(page)) {
1819                                 clear_inline_node(page);
1820                                 unlock_page(page);
1821                                 flush_inline_data(sbi, ino_of_node(page));
1822                                 goto lock_node;
1823                         }
1824
1825                         f2fs_wait_on_page_writeback(page, NODE, true);
1826
1827                         BUG_ON(PageWriteback(page));
1828                         if (!clear_page_dirty_for_io(page))
1829                                 goto continue_unlock;
1830
1831                         set_fsync_mark(page, 0);
1832                         set_dentry_mark(page, 0);
1833
1834                         ret = __write_node_page(page, false, &submitted,
1835                                                 wbc, do_balance, io_type, NULL);
1836                         if (ret)
1837                                 unlock_page(page);
1838                         else if (submitted)
1839                                 nwritten++;
1840
1841                         if (--wbc->nr_to_write == 0)
1842                                 break;
1843                 }
1844                 pagevec_release(&pvec);
1845                 cond_resched();
1846
1847                 if (wbc->nr_to_write == 0) {
1848                         step = 2;
1849                         break;
1850                 }
1851         }
1852
1853         if (step < 2) {
1854                 if (wbc->sync_mode == WB_SYNC_NONE && step == 1)
1855                         goto out;
1856                 step++;
1857                 goto next_step;
1858         }
1859 out:
1860         if (nwritten)
1861                 f2fs_submit_merged_write(sbi, NODE);
1862
1863         if (unlikely(f2fs_cp_error(sbi)))
1864                 return -EIO;
1865         return ret;
1866 }
1867
1868 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
1869                                                 unsigned int seq_id)
1870 {
1871         struct fsync_node_entry *fn;
1872         struct page *page;
1873         struct list_head *head = &sbi->fsync_node_list;
1874         unsigned long flags;
1875         unsigned int cur_seq_id = 0;
1876         int ret2, ret = 0;
1877
1878         while (seq_id && cur_seq_id < seq_id) {
1879                 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
1880                 if (list_empty(head)) {
1881                         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1882                         break;
1883                 }
1884                 fn = list_first_entry(head, struct fsync_node_entry, list);
1885                 if (fn->seq_id > seq_id) {
1886                         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1887                         break;
1888                 }
1889                 cur_seq_id = fn->seq_id;
1890                 page = fn->page;
1891                 get_page(page);
1892                 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1893
1894                 f2fs_wait_on_page_writeback(page, NODE, true);
1895                 if (TestClearPageError(page))
1896                         ret = -EIO;
1897
1898                 put_page(page);
1899
1900                 if (ret)
1901                         break;
1902         }
1903
1904         ret2 = filemap_check_errors(NODE_MAPPING(sbi));
1905         if (!ret)
1906                 ret = ret2;
1907
1908         return ret;
1909 }
1910
1911 static int f2fs_write_node_pages(struct address_space *mapping,
1912                             struct writeback_control *wbc)
1913 {
1914         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1915         struct blk_plug plug;
1916         long diff;
1917
1918         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1919                 goto skip_write;
1920
1921         /* balancing f2fs's metadata in background */
1922         f2fs_balance_fs_bg(sbi);
1923
1924         /* collect a number of dirty node pages and write together */
1925         if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1926                 goto skip_write;
1927
1928         if (wbc->sync_mode == WB_SYNC_ALL)
1929                 atomic_inc(&sbi->wb_sync_req[NODE]);
1930         else if (atomic_read(&sbi->wb_sync_req[NODE]))
1931                 goto skip_write;
1932
1933         trace_f2fs_writepages(mapping->host, wbc, NODE);
1934
1935         diff = nr_pages_to_write(sbi, NODE, wbc);
1936         blk_start_plug(&plug);
1937         f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
1938         blk_finish_plug(&plug);
1939         wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1940
1941         if (wbc->sync_mode == WB_SYNC_ALL)
1942                 atomic_dec(&sbi->wb_sync_req[NODE]);
1943         return 0;
1944
1945 skip_write:
1946         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1947         trace_f2fs_writepages(mapping->host, wbc, NODE);
1948         return 0;
1949 }
1950
1951 static int f2fs_set_node_page_dirty(struct page *page)
1952 {
1953         trace_f2fs_set_page_dirty(page, NODE);
1954
1955         if (!PageUptodate(page))
1956                 SetPageUptodate(page);
1957 #ifdef CONFIG_F2FS_CHECK_FS
1958         if (IS_INODE(page))
1959                 f2fs_inode_chksum_set(F2FS_P_SB(page), page);
1960 #endif
1961         if (!PageDirty(page)) {
1962                 __set_page_dirty_nobuffers(page);
1963                 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1964                 SetPagePrivate(page);
1965                 f2fs_trace_pid(page);
1966                 return 1;
1967         }
1968         return 0;
1969 }
1970
1971 /*
1972  * Structure of the f2fs node operations
1973  */
1974 const struct address_space_operations f2fs_node_aops = {
1975         .writepage      = f2fs_write_node_page,
1976         .writepages     = f2fs_write_node_pages,
1977         .set_page_dirty = f2fs_set_node_page_dirty,
1978         .invalidatepage = f2fs_invalidate_page,
1979         .releasepage    = f2fs_release_page,
1980 #ifdef CONFIG_MIGRATION
1981         .migratepage    = f2fs_migrate_page,
1982 #endif
1983 };
1984
1985 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1986                                                 nid_t n)
1987 {
1988         return radix_tree_lookup(&nm_i->free_nid_root, n);
1989 }
1990
1991 static int __insert_free_nid(struct f2fs_sb_info *sbi,
1992                         struct free_nid *i, enum nid_state state)
1993 {
1994         struct f2fs_nm_info *nm_i = NM_I(sbi);
1995
1996         int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
1997         if (err)
1998                 return err;
1999
2000         f2fs_bug_on(sbi, state != i->state);
2001         nm_i->nid_cnt[state]++;
2002         if (state == FREE_NID)
2003                 list_add_tail(&i->list, &nm_i->free_nid_list);
2004         return 0;
2005 }
2006
2007 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2008                         struct free_nid *i, enum nid_state state)
2009 {
2010         struct f2fs_nm_info *nm_i = NM_I(sbi);
2011
2012         f2fs_bug_on(sbi, state != i->state);
2013         nm_i->nid_cnt[state]--;
2014         if (state == FREE_NID)
2015                 list_del(&i->list);
2016         radix_tree_delete(&nm_i->free_nid_root, i->nid);
2017 }
2018
2019 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2020                         enum nid_state org_state, enum nid_state dst_state)
2021 {
2022         struct f2fs_nm_info *nm_i = NM_I(sbi);
2023
2024         f2fs_bug_on(sbi, org_state != i->state);
2025         i->state = dst_state;
2026         nm_i->nid_cnt[org_state]--;
2027         nm_i->nid_cnt[dst_state]++;
2028
2029         switch (dst_state) {
2030         case PREALLOC_NID:
2031                 list_del(&i->list);
2032                 break;
2033         case FREE_NID:
2034                 list_add_tail(&i->list, &nm_i->free_nid_list);
2035                 break;
2036         default:
2037                 BUG_ON(1);
2038         }
2039 }
2040
2041 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2042                                                         bool set, bool build)
2043 {
2044         struct f2fs_nm_info *nm_i = NM_I(sbi);
2045         unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2046         unsigned int nid_ofs = nid - START_NID(nid);
2047
2048         if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2049                 return;
2050
2051         if (set) {
2052                 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2053                         return;
2054                 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2055                 nm_i->free_nid_count[nat_ofs]++;
2056         } else {
2057                 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2058                         return;
2059                 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2060                 if (!build)
2061                         nm_i->free_nid_count[nat_ofs]--;
2062         }
2063 }
2064
2065 /* return if the nid is recognized as free */
2066 static bool add_free_nid(struct f2fs_sb_info *sbi,
2067                                 nid_t nid, bool build, bool update)
2068 {
2069         struct f2fs_nm_info *nm_i = NM_I(sbi);
2070         struct free_nid *i, *e;
2071         struct nat_entry *ne;
2072         int err = -EINVAL;
2073         bool ret = false;
2074
2075         /* 0 nid should not be used */
2076         if (unlikely(nid == 0))
2077                 return false;
2078
2079         i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
2080         i->nid = nid;
2081         i->state = FREE_NID;
2082
2083         radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2084
2085         spin_lock(&nm_i->nid_list_lock);
2086
2087         if (build) {
2088                 /*
2089                  *   Thread A             Thread B
2090                  *  - f2fs_create
2091                  *   - f2fs_new_inode
2092                  *    - f2fs_alloc_nid
2093                  *     - __insert_nid_to_list(PREALLOC_NID)
2094                  *                     - f2fs_balance_fs_bg
2095                  *                      - f2fs_build_free_nids
2096                  *                       - __f2fs_build_free_nids
2097                  *                        - scan_nat_page
2098                  *                         - add_free_nid
2099                  *                          - __lookup_nat_cache
2100                  *  - f2fs_add_link
2101                  *   - f2fs_init_inode_metadata
2102                  *    - f2fs_new_inode_page
2103                  *     - f2fs_new_node_page
2104                  *      - set_node_addr
2105                  *  - f2fs_alloc_nid_done
2106                  *   - __remove_nid_from_list(PREALLOC_NID)
2107                  *                         - __insert_nid_to_list(FREE_NID)
2108                  */
2109                 ne = __lookup_nat_cache(nm_i, nid);
2110                 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2111                                 nat_get_blkaddr(ne) != NULL_ADDR))
2112                         goto err_out;
2113
2114                 e = __lookup_free_nid_list(nm_i, nid);
2115                 if (e) {
2116                         if (e->state == FREE_NID)
2117                                 ret = true;
2118                         goto err_out;
2119                 }
2120         }
2121         ret = true;
2122         err = __insert_free_nid(sbi, i, FREE_NID);
2123 err_out:
2124         if (update) {
2125                 update_free_nid_bitmap(sbi, nid, ret, build);
2126                 if (!build)
2127                         nm_i->available_nids++;
2128         }
2129         spin_unlock(&nm_i->nid_list_lock);
2130         radix_tree_preload_end();
2131
2132         if (err)
2133                 kmem_cache_free(free_nid_slab, i);
2134         return ret;
2135 }
2136
2137 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2138 {
2139         struct f2fs_nm_info *nm_i = NM_I(sbi);
2140         struct free_nid *i;
2141         bool need_free = false;
2142
2143         spin_lock(&nm_i->nid_list_lock);
2144         i = __lookup_free_nid_list(nm_i, nid);
2145         if (i && i->state == FREE_NID) {
2146                 __remove_free_nid(sbi, i, FREE_NID);
2147                 need_free = true;
2148         }
2149         spin_unlock(&nm_i->nid_list_lock);
2150
2151         if (need_free)
2152                 kmem_cache_free(free_nid_slab, i);
2153 }
2154
2155 static int scan_nat_page(struct f2fs_sb_info *sbi,
2156                         struct page *nat_page, nid_t start_nid)
2157 {
2158         struct f2fs_nm_info *nm_i = NM_I(sbi);
2159         struct f2fs_nat_block *nat_blk = page_address(nat_page);
2160         block_t blk_addr;
2161         unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2162         int i;
2163
2164         __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2165
2166         i = start_nid % NAT_ENTRY_PER_BLOCK;
2167
2168         for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2169                 if (unlikely(start_nid >= nm_i->max_nid))
2170                         break;
2171
2172                 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2173
2174                 if (blk_addr == NEW_ADDR)
2175                         return -EINVAL;
2176
2177                 if (blk_addr == NULL_ADDR) {
2178                         add_free_nid(sbi, start_nid, true, true);
2179                 } else {
2180                         spin_lock(&NM_I(sbi)->nid_list_lock);
2181                         update_free_nid_bitmap(sbi, start_nid, false, true);
2182                         spin_unlock(&NM_I(sbi)->nid_list_lock);
2183                 }
2184         }
2185
2186         return 0;
2187 }
2188
2189 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2190 {
2191         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2192         struct f2fs_journal *journal = curseg->journal;
2193         int i;
2194
2195         down_read(&curseg->journal_rwsem);
2196         for (i = 0; i < nats_in_cursum(journal); i++) {
2197                 block_t addr;
2198                 nid_t nid;
2199
2200                 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2201                 nid = le32_to_cpu(nid_in_journal(journal, i));
2202                 if (addr == NULL_ADDR)
2203                         add_free_nid(sbi, nid, true, false);
2204                 else
2205                         remove_free_nid(sbi, nid);
2206         }
2207         up_read(&curseg->journal_rwsem);
2208 }
2209
2210 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2211 {
2212         struct f2fs_nm_info *nm_i = NM_I(sbi);
2213         unsigned int i, idx;
2214         nid_t nid;
2215
2216         down_read(&nm_i->nat_tree_lock);
2217
2218         for (i = 0; i < nm_i->nat_blocks; i++) {
2219                 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2220                         continue;
2221                 if (!nm_i->free_nid_count[i])
2222                         continue;
2223                 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2224                         idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2225                                                 NAT_ENTRY_PER_BLOCK, idx);
2226                         if (idx >= NAT_ENTRY_PER_BLOCK)
2227                                 break;
2228
2229                         nid = i * NAT_ENTRY_PER_BLOCK + idx;
2230                         add_free_nid(sbi, nid, true, false);
2231
2232                         if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2233                                 goto out;
2234                 }
2235         }
2236 out:
2237         scan_curseg_cache(sbi);
2238
2239         up_read(&nm_i->nat_tree_lock);
2240 }
2241
2242 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2243                                                 bool sync, bool mount)
2244 {
2245         struct f2fs_nm_info *nm_i = NM_I(sbi);
2246         int i = 0, ret;
2247         nid_t nid = nm_i->next_scan_nid;
2248
2249         if (unlikely(nid >= nm_i->max_nid))
2250                 nid = 0;
2251
2252         /* Enough entries */
2253         if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2254                 return 0;
2255
2256         if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2257                 return 0;
2258
2259         if (!mount) {
2260                 /* try to find free nids in free_nid_bitmap */
2261                 scan_free_nid_bits(sbi);
2262
2263                 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2264                         return 0;
2265         }
2266
2267         /* readahead nat pages to be scanned */
2268         f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2269                                                         META_NAT, true);
2270
2271         down_read(&nm_i->nat_tree_lock);
2272
2273         while (1) {
2274                 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2275                                                 nm_i->nat_block_bitmap)) {
2276                         struct page *page = get_current_nat_page(sbi, nid);
2277
2278                         if (IS_ERR(page)) {
2279                                 ret = PTR_ERR(page);
2280                         } else {
2281                                 ret = scan_nat_page(sbi, page, nid);
2282                                 f2fs_put_page(page, 1);
2283                         }
2284
2285                         if (ret) {
2286                                 up_read(&nm_i->nat_tree_lock);
2287                                 f2fs_bug_on(sbi, !mount);
2288                                 f2fs_msg(sbi->sb, KERN_ERR,
2289                                         "NAT is corrupt, run fsck to fix it");
2290                                 return ret;
2291                         }
2292                 }
2293
2294                 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2295                 if (unlikely(nid >= nm_i->max_nid))
2296                         nid = 0;
2297
2298                 if (++i >= FREE_NID_PAGES)
2299                         break;
2300         }
2301
2302         /* go to the next free nat pages to find free nids abundantly */
2303         nm_i->next_scan_nid = nid;
2304
2305         /* find free nids from current sum_pages */
2306         scan_curseg_cache(sbi);
2307
2308         up_read(&nm_i->nat_tree_lock);
2309
2310         f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2311                                         nm_i->ra_nid_pages, META_NAT, false);
2312
2313         return 0;
2314 }
2315
2316 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2317 {
2318         int ret;
2319
2320         mutex_lock(&NM_I(sbi)->build_lock);
2321         ret = __f2fs_build_free_nids(sbi, sync, mount);
2322         mutex_unlock(&NM_I(sbi)->build_lock);
2323
2324         return ret;
2325 }
2326
2327 /*
2328  * If this function returns success, caller can obtain a new nid
2329  * from second parameter of this function.
2330  * The returned nid could be used ino as well as nid when inode is created.
2331  */
2332 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2333 {
2334         struct f2fs_nm_info *nm_i = NM_I(sbi);
2335         struct free_nid *i = NULL;
2336 retry:
2337         if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2338                 f2fs_show_injection_info(FAULT_ALLOC_NID);
2339                 return false;
2340         }
2341
2342         spin_lock(&nm_i->nid_list_lock);
2343
2344         if (unlikely(nm_i->available_nids == 0)) {
2345                 spin_unlock(&nm_i->nid_list_lock);
2346                 return false;
2347         }
2348
2349         /* We should not use stale free nids created by f2fs_build_free_nids */
2350         if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2351                 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2352                 i = list_first_entry(&nm_i->free_nid_list,
2353                                         struct free_nid, list);
2354                 *nid = i->nid;
2355
2356                 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2357                 nm_i->available_nids--;
2358
2359                 update_free_nid_bitmap(sbi, *nid, false, false);
2360
2361                 spin_unlock(&nm_i->nid_list_lock);
2362                 return true;
2363         }
2364         spin_unlock(&nm_i->nid_list_lock);
2365
2366         /* Let's scan nat pages and its caches to get free nids */
2367         if (!f2fs_build_free_nids(sbi, true, false))
2368                 goto retry;
2369         return false;
2370 }
2371
2372 /*
2373  * f2fs_alloc_nid() should be called prior to this function.
2374  */
2375 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2376 {
2377         struct f2fs_nm_info *nm_i = NM_I(sbi);
2378         struct free_nid *i;
2379
2380         spin_lock(&nm_i->nid_list_lock);
2381         i = __lookup_free_nid_list(nm_i, nid);
2382         f2fs_bug_on(sbi, !i);
2383         __remove_free_nid(sbi, i, PREALLOC_NID);
2384         spin_unlock(&nm_i->nid_list_lock);
2385
2386         kmem_cache_free(free_nid_slab, i);
2387 }
2388
2389 /*
2390  * f2fs_alloc_nid() should be called prior to this function.
2391  */
2392 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2393 {
2394         struct f2fs_nm_info *nm_i = NM_I(sbi);
2395         struct free_nid *i;
2396         bool need_free = false;
2397
2398         if (!nid)
2399                 return;
2400
2401         spin_lock(&nm_i->nid_list_lock);
2402         i = __lookup_free_nid_list(nm_i, nid);
2403         f2fs_bug_on(sbi, !i);
2404
2405         if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2406                 __remove_free_nid(sbi, i, PREALLOC_NID);
2407                 need_free = true;
2408         } else {
2409                 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2410         }
2411
2412         nm_i->available_nids++;
2413
2414         update_free_nid_bitmap(sbi, nid, true, false);
2415
2416         spin_unlock(&nm_i->nid_list_lock);
2417
2418         if (need_free)
2419                 kmem_cache_free(free_nid_slab, i);
2420 }
2421
2422 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2423 {
2424         struct f2fs_nm_info *nm_i = NM_I(sbi);
2425         struct free_nid *i, *next;
2426         int nr = nr_shrink;
2427
2428         if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2429                 return 0;
2430
2431         if (!mutex_trylock(&nm_i->build_lock))
2432                 return 0;
2433
2434         spin_lock(&nm_i->nid_list_lock);
2435         list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2436                 if (nr_shrink <= 0 ||
2437                                 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2438                         break;
2439
2440                 __remove_free_nid(sbi, i, FREE_NID);
2441                 kmem_cache_free(free_nid_slab, i);
2442                 nr_shrink--;
2443         }
2444         spin_unlock(&nm_i->nid_list_lock);
2445         mutex_unlock(&nm_i->build_lock);
2446
2447         return nr - nr_shrink;
2448 }
2449
2450 void f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2451 {
2452         void *src_addr, *dst_addr;
2453         size_t inline_size;
2454         struct page *ipage;
2455         struct f2fs_inode *ri;
2456
2457         ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2458         f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
2459
2460         ri = F2FS_INODE(page);
2461         if (ri->i_inline & F2FS_INLINE_XATTR) {
2462                 set_inode_flag(inode, FI_INLINE_XATTR);
2463         } else {
2464                 clear_inode_flag(inode, FI_INLINE_XATTR);
2465                 goto update_inode;
2466         }
2467
2468         dst_addr = inline_xattr_addr(inode, ipage);
2469         src_addr = inline_xattr_addr(inode, page);
2470         inline_size = inline_xattr_size(inode);
2471
2472         f2fs_wait_on_page_writeback(ipage, NODE, true);
2473         memcpy(dst_addr, src_addr, inline_size);
2474 update_inode:
2475         f2fs_update_inode(inode, ipage);
2476         f2fs_put_page(ipage, 1);
2477 }
2478
2479 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2480 {
2481         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2482         nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2483         nid_t new_xnid;
2484         struct dnode_of_data dn;
2485         struct node_info ni;
2486         struct page *xpage;
2487         int err;
2488
2489         if (!prev_xnid)
2490                 goto recover_xnid;
2491
2492         /* 1: invalidate the previous xattr nid */
2493         err = f2fs_get_node_info(sbi, prev_xnid, &ni);
2494         if (err)
2495                 return err;
2496
2497         f2fs_invalidate_blocks(sbi, ni.blk_addr);
2498         dec_valid_node_count(sbi, inode, false);
2499         set_node_addr(sbi, &ni, NULL_ADDR, false);
2500
2501 recover_xnid:
2502         /* 2: update xattr nid in inode */
2503         if (!f2fs_alloc_nid(sbi, &new_xnid))
2504                 return -ENOSPC;
2505
2506         set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2507         xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2508         if (IS_ERR(xpage)) {
2509                 f2fs_alloc_nid_failed(sbi, new_xnid);
2510                 return PTR_ERR(xpage);
2511         }
2512
2513         f2fs_alloc_nid_done(sbi, new_xnid);
2514         f2fs_update_inode_page(inode);
2515
2516         /* 3: update and set xattr node page dirty */
2517         memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2518
2519         set_page_dirty(xpage);
2520         f2fs_put_page(xpage, 1);
2521
2522         return 0;
2523 }
2524
2525 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2526 {
2527         struct f2fs_inode *src, *dst;
2528         nid_t ino = ino_of_node(page);
2529         struct node_info old_ni, new_ni;
2530         struct page *ipage;
2531         int err;
2532
2533         err = f2fs_get_node_info(sbi, ino, &old_ni);
2534         if (err)
2535                 return err;
2536
2537         if (unlikely(old_ni.blk_addr != NULL_ADDR))
2538                 return -EINVAL;
2539 retry:
2540         ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2541         if (!ipage) {
2542                 congestion_wait(BLK_RW_ASYNC, HZ/50);
2543                 goto retry;
2544         }
2545
2546         /* Should not use this inode from free nid list */
2547         remove_free_nid(sbi, ino);
2548
2549         if (!PageUptodate(ipage))
2550                 SetPageUptodate(ipage);
2551         fill_node_footer(ipage, ino, ino, 0, true);
2552         set_cold_node(ipage, false);
2553
2554         src = F2FS_INODE(page);
2555         dst = F2FS_INODE(ipage);
2556
2557         memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2558         dst->i_size = 0;
2559         dst->i_blocks = cpu_to_le64(1);
2560         dst->i_links = cpu_to_le32(1);
2561         dst->i_xattr_nid = 0;
2562         dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2563         if (dst->i_inline & F2FS_EXTRA_ATTR) {
2564                 dst->i_extra_isize = src->i_extra_isize;
2565
2566                 if (f2fs_sb_has_flexible_inline_xattr(sbi->sb) &&
2567                         F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2568                                                         i_inline_xattr_size))
2569                         dst->i_inline_xattr_size = src->i_inline_xattr_size;
2570
2571                 if (f2fs_sb_has_project_quota(sbi->sb) &&
2572                         F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2573                                                                 i_projid))
2574                         dst->i_projid = src->i_projid;
2575
2576                 if (f2fs_sb_has_inode_crtime(sbi->sb) &&
2577                         F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2578                                                         i_crtime_nsec)) {
2579                         dst->i_crtime = src->i_crtime;
2580                         dst->i_crtime_nsec = src->i_crtime_nsec;
2581                 }
2582         }
2583
2584         new_ni = old_ni;
2585         new_ni.ino = ino;
2586
2587         if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2588                 WARN_ON(1);
2589         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2590         inc_valid_inode_count(sbi);
2591         set_page_dirty(ipage);
2592         f2fs_put_page(ipage, 1);
2593         return 0;
2594 }
2595
2596 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2597                         unsigned int segno, struct f2fs_summary_block *sum)
2598 {
2599         struct f2fs_node *rn;
2600         struct f2fs_summary *sum_entry;
2601         block_t addr;
2602         int i, idx, last_offset, nrpages;
2603
2604         /* scan the node segment */
2605         last_offset = sbi->blocks_per_seg;
2606         addr = START_BLOCK(sbi, segno);
2607         sum_entry = &sum->entries[0];
2608
2609         for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2610                 nrpages = min(last_offset - i, BIO_MAX_PAGES);
2611
2612                 /* readahead node pages */
2613                 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2614
2615                 for (idx = addr; idx < addr + nrpages; idx++) {
2616                         struct page *page = f2fs_get_tmp_page(sbi, idx);
2617
2618                         if (IS_ERR(page))
2619                                 return PTR_ERR(page);
2620
2621                         rn = F2FS_NODE(page);
2622                         sum_entry->nid = rn->footer.nid;
2623                         sum_entry->version = 0;
2624                         sum_entry->ofs_in_node = 0;
2625                         sum_entry++;
2626                         f2fs_put_page(page, 1);
2627                 }
2628
2629                 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2630                                                         addr + nrpages);
2631         }
2632         return 0;
2633 }
2634
2635 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2636 {
2637         struct f2fs_nm_info *nm_i = NM_I(sbi);
2638         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2639         struct f2fs_journal *journal = curseg->journal;
2640         int i;
2641
2642         down_write(&curseg->journal_rwsem);
2643         for (i = 0; i < nats_in_cursum(journal); i++) {
2644                 struct nat_entry *ne;
2645                 struct f2fs_nat_entry raw_ne;
2646                 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2647
2648                 raw_ne = nat_in_journal(journal, i);
2649
2650                 ne = __lookup_nat_cache(nm_i, nid);
2651                 if (!ne) {
2652                         ne = __alloc_nat_entry(nid, true);
2653                         __init_nat_entry(nm_i, ne, &raw_ne, true);
2654                 }
2655
2656                 /*
2657                  * if a free nat in journal has not been used after last
2658                  * checkpoint, we should remove it from available nids,
2659                  * since later we will add it again.
2660                  */
2661                 if (!get_nat_flag(ne, IS_DIRTY) &&
2662                                 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2663                         spin_lock(&nm_i->nid_list_lock);
2664                         nm_i->available_nids--;
2665                         spin_unlock(&nm_i->nid_list_lock);
2666                 }
2667
2668                 __set_nat_cache_dirty(nm_i, ne);
2669         }
2670         update_nats_in_cursum(journal, -i);
2671         up_write(&curseg->journal_rwsem);
2672 }
2673
2674 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2675                                                 struct list_head *head, int max)
2676 {
2677         struct nat_entry_set *cur;
2678
2679         if (nes->entry_cnt >= max)
2680                 goto add_out;
2681
2682         list_for_each_entry(cur, head, set_list) {
2683                 if (cur->entry_cnt >= nes->entry_cnt) {
2684                         list_add(&nes->set_list, cur->set_list.prev);
2685                         return;
2686                 }
2687         }
2688 add_out:
2689         list_add_tail(&nes->set_list, head);
2690 }
2691
2692 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2693                                                 struct page *page)
2694 {
2695         struct f2fs_nm_info *nm_i = NM_I(sbi);
2696         unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2697         struct f2fs_nat_block *nat_blk = page_address(page);
2698         int valid = 0;
2699         int i = 0;
2700
2701         if (!enabled_nat_bits(sbi, NULL))
2702                 return;
2703
2704         if (nat_index == 0) {
2705                 valid = 1;
2706                 i = 1;
2707         }
2708         for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2709                 if (nat_blk->entries[i].block_addr != NULL_ADDR)
2710                         valid++;
2711         }
2712         if (valid == 0) {
2713                 __set_bit_le(nat_index, nm_i->empty_nat_bits);
2714                 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2715                 return;
2716         }
2717
2718         __clear_bit_le(nat_index, nm_i->empty_nat_bits);
2719         if (valid == NAT_ENTRY_PER_BLOCK)
2720                 __set_bit_le(nat_index, nm_i->full_nat_bits);
2721         else
2722                 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2723 }
2724
2725 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2726                 struct nat_entry_set *set, struct cp_control *cpc)
2727 {
2728         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2729         struct f2fs_journal *journal = curseg->journal;
2730         nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2731         bool to_journal = true;
2732         struct f2fs_nat_block *nat_blk;
2733         struct nat_entry *ne, *cur;
2734         struct page *page = NULL;
2735
2736         /*
2737          * there are two steps to flush nat entries:
2738          * #1, flush nat entries to journal in current hot data summary block.
2739          * #2, flush nat entries to nat page.
2740          */
2741         if (enabled_nat_bits(sbi, cpc) ||
2742                 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2743                 to_journal = false;
2744
2745         if (to_journal) {
2746                 down_write(&curseg->journal_rwsem);
2747         } else {
2748                 page = get_next_nat_page(sbi, start_nid);
2749                 if (IS_ERR(page))
2750                         return PTR_ERR(page);
2751
2752                 nat_blk = page_address(page);
2753                 f2fs_bug_on(sbi, !nat_blk);
2754         }
2755
2756         /* flush dirty nats in nat entry set */
2757         list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2758                 struct f2fs_nat_entry *raw_ne;
2759                 nid_t nid = nat_get_nid(ne);
2760                 int offset;
2761
2762                 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2763
2764                 if (to_journal) {
2765                         offset = f2fs_lookup_journal_in_cursum(journal,
2766                                                         NAT_JOURNAL, nid, 1);
2767                         f2fs_bug_on(sbi, offset < 0);
2768                         raw_ne = &nat_in_journal(journal, offset);
2769                         nid_in_journal(journal, offset) = cpu_to_le32(nid);
2770                 } else {
2771                         raw_ne = &nat_blk->entries[nid - start_nid];
2772                 }
2773                 raw_nat_from_node_info(raw_ne, &ne->ni);
2774                 nat_reset_flag(ne);
2775                 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
2776                 if (nat_get_blkaddr(ne) == NULL_ADDR) {
2777                         add_free_nid(sbi, nid, false, true);
2778                 } else {
2779                         spin_lock(&NM_I(sbi)->nid_list_lock);
2780                         update_free_nid_bitmap(sbi, nid, false, false);
2781                         spin_unlock(&NM_I(sbi)->nid_list_lock);
2782                 }
2783         }
2784
2785         if (to_journal) {
2786                 up_write(&curseg->journal_rwsem);
2787         } else {
2788                 __update_nat_bits(sbi, start_nid, page);
2789                 f2fs_put_page(page, 1);
2790         }
2791
2792         /* Allow dirty nats by node block allocation in write_begin */
2793         if (!set->entry_cnt) {
2794                 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2795                 kmem_cache_free(nat_entry_set_slab, set);
2796         }
2797         return 0;
2798 }
2799
2800 /*
2801  * This function is called during the checkpointing process.
2802  */
2803 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2804 {
2805         struct f2fs_nm_info *nm_i = NM_I(sbi);
2806         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2807         struct f2fs_journal *journal = curseg->journal;
2808         struct nat_entry_set *setvec[SETVEC_SIZE];
2809         struct nat_entry_set *set, *tmp;
2810         unsigned int found;
2811         nid_t set_idx = 0;
2812         LIST_HEAD(sets);
2813         int err = 0;
2814
2815         /* during unmount, let's flush nat_bits before checking dirty_nat_cnt */
2816         if (enabled_nat_bits(sbi, cpc)) {
2817                 down_write(&nm_i->nat_tree_lock);
2818                 remove_nats_in_journal(sbi);
2819                 up_write(&nm_i->nat_tree_lock);
2820         }
2821
2822         if (!nm_i->dirty_nat_cnt)
2823                 return 0;
2824
2825         down_write(&nm_i->nat_tree_lock);
2826
2827         /*
2828          * if there are no enough space in journal to store dirty nat
2829          * entries, remove all entries from journal and merge them
2830          * into nat entry set.
2831          */
2832         if (enabled_nat_bits(sbi, cpc) ||
2833                 !__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2834                 remove_nats_in_journal(sbi);
2835
2836         while ((found = __gang_lookup_nat_set(nm_i,
2837                                         set_idx, SETVEC_SIZE, setvec))) {
2838                 unsigned idx;
2839                 set_idx = setvec[found - 1]->set + 1;
2840                 for (idx = 0; idx < found; idx++)
2841                         __adjust_nat_entry_set(setvec[idx], &sets,
2842                                                 MAX_NAT_JENTRIES(journal));
2843         }
2844
2845         /* flush dirty nats in nat entry set */
2846         list_for_each_entry_safe(set, tmp, &sets, set_list) {
2847                 err = __flush_nat_entry_set(sbi, set, cpc);
2848                 if (err)
2849                         break;
2850         }
2851
2852         up_write(&nm_i->nat_tree_lock);
2853         /* Allow dirty nats by node block allocation in write_begin */
2854
2855         return err;
2856 }
2857
2858 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
2859 {
2860         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2861         struct f2fs_nm_info *nm_i = NM_I(sbi);
2862         unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
2863         unsigned int i;
2864         __u64 cp_ver = cur_cp_version(ckpt);
2865         block_t nat_bits_addr;
2866
2867         if (!enabled_nat_bits(sbi, NULL))
2868                 return 0;
2869
2870         nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
2871         nm_i->nat_bits = f2fs_kzalloc(sbi,
2872                         nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
2873         if (!nm_i->nat_bits)
2874                 return -ENOMEM;
2875
2876         nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
2877                                                 nm_i->nat_bits_blocks;
2878         for (i = 0; i < nm_i->nat_bits_blocks; i++) {
2879                 struct page *page;
2880
2881                 page = f2fs_get_meta_page(sbi, nat_bits_addr++);
2882                 if (IS_ERR(page))
2883                         return PTR_ERR(page);
2884
2885                 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
2886                                         page_address(page), F2FS_BLKSIZE);
2887                 f2fs_put_page(page, 1);
2888         }
2889
2890         cp_ver |= (cur_cp_crc(ckpt) << 32);
2891         if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
2892                 disable_nat_bits(sbi, true);
2893                 return 0;
2894         }
2895
2896         nm_i->full_nat_bits = nm_i->nat_bits + 8;
2897         nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
2898
2899         f2fs_msg(sbi->sb, KERN_NOTICE, "Found nat_bits in checkpoint");
2900         return 0;
2901 }
2902
2903 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
2904 {
2905         struct f2fs_nm_info *nm_i = NM_I(sbi);
2906         unsigned int i = 0;
2907         nid_t nid, last_nid;
2908
2909         if (!enabled_nat_bits(sbi, NULL))
2910                 return;
2911
2912         for (i = 0; i < nm_i->nat_blocks; i++) {
2913                 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
2914                 if (i >= nm_i->nat_blocks)
2915                         break;
2916
2917                 __set_bit_le(i, nm_i->nat_block_bitmap);
2918
2919                 nid = i * NAT_ENTRY_PER_BLOCK;
2920                 last_nid = nid + NAT_ENTRY_PER_BLOCK;
2921
2922                 spin_lock(&NM_I(sbi)->nid_list_lock);
2923                 for (; nid < last_nid; nid++)
2924                         update_free_nid_bitmap(sbi, nid, true, true);
2925                 spin_unlock(&NM_I(sbi)->nid_list_lock);
2926         }
2927
2928         for (i = 0; i < nm_i->nat_blocks; i++) {
2929                 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
2930                 if (i >= nm_i->nat_blocks)
2931                         break;
2932
2933                 __set_bit_le(i, nm_i->nat_block_bitmap);
2934         }
2935 }
2936
2937 static int init_node_manager(struct f2fs_sb_info *sbi)
2938 {
2939         struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
2940         struct f2fs_nm_info *nm_i = NM_I(sbi);
2941         unsigned char *version_bitmap;
2942         unsigned int nat_segs;
2943         int err;
2944
2945         nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
2946
2947         /* segment_count_nat includes pair segment so divide to 2. */
2948         nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
2949         nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
2950         nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
2951
2952         /* not used nids: 0, node, meta, (and root counted as valid node) */
2953         nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
2954                                 sbi->nquota_files - F2FS_RESERVED_NODE_NUM;
2955         nm_i->nid_cnt[FREE_NID] = 0;
2956         nm_i->nid_cnt[PREALLOC_NID] = 0;
2957         nm_i->nat_cnt = 0;
2958         nm_i->ram_thresh = DEF_RAM_THRESHOLD;
2959         nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
2960         nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
2961
2962         INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
2963         INIT_LIST_HEAD(&nm_i->free_nid_list);
2964         INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
2965         INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
2966         INIT_LIST_HEAD(&nm_i->nat_entries);
2967         spin_lock_init(&nm_i->nat_list_lock);
2968
2969         mutex_init(&nm_i->build_lock);
2970         spin_lock_init(&nm_i->nid_list_lock);
2971         init_rwsem(&nm_i->nat_tree_lock);
2972
2973         nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
2974         nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
2975         version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
2976         if (!version_bitmap)
2977                 return -EFAULT;
2978
2979         nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
2980                                         GFP_KERNEL);
2981         if (!nm_i->nat_bitmap)
2982                 return -ENOMEM;
2983
2984         err = __get_nat_bitmaps(sbi);
2985         if (err)
2986                 return err;
2987
2988 #ifdef CONFIG_F2FS_CHECK_FS
2989         nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
2990                                         GFP_KERNEL);
2991         if (!nm_i->nat_bitmap_mir)
2992                 return -ENOMEM;
2993 #endif
2994
2995         return 0;
2996 }
2997
2998 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
2999 {
3000         struct f2fs_nm_info *nm_i = NM_I(sbi);
3001         int i;
3002
3003         nm_i->free_nid_bitmap =
3004                 f2fs_kzalloc(sbi, array_size(sizeof(unsigned char *),
3005                                              nm_i->nat_blocks),
3006                              GFP_KERNEL);
3007         if (!nm_i->free_nid_bitmap)
3008                 return -ENOMEM;
3009
3010         for (i = 0; i < nm_i->nat_blocks; i++) {
3011                 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3012                         f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3013                 if (!nm_i->free_nid_bitmap[i])
3014                         return -ENOMEM;
3015         }
3016
3017         nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3018                                                                 GFP_KERNEL);
3019         if (!nm_i->nat_block_bitmap)
3020                 return -ENOMEM;
3021
3022         nm_i->free_nid_count =
3023                 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3024                                               nm_i->nat_blocks),
3025                               GFP_KERNEL);
3026         if (!nm_i->free_nid_count)
3027                 return -ENOMEM;
3028         return 0;
3029 }
3030
3031 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3032 {
3033         int err;
3034
3035         sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3036                                                         GFP_KERNEL);
3037         if (!sbi->nm_info)
3038                 return -ENOMEM;
3039
3040         err = init_node_manager(sbi);
3041         if (err)
3042                 return err;
3043
3044         err = init_free_nid_cache(sbi);
3045         if (err)
3046                 return err;
3047
3048         /* load free nid status from nat_bits table */
3049         load_free_nid_bitmap(sbi);
3050
3051         return f2fs_build_free_nids(sbi, true, true);
3052 }
3053
3054 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3055 {
3056         struct f2fs_nm_info *nm_i = NM_I(sbi);
3057         struct free_nid *i, *next_i;
3058         struct nat_entry *natvec[NATVEC_SIZE];
3059         struct nat_entry_set *setvec[SETVEC_SIZE];
3060         nid_t nid = 0;
3061         unsigned int found;
3062
3063         if (!nm_i)
3064                 return;
3065
3066         /* destroy free nid list */
3067         spin_lock(&nm_i->nid_list_lock);
3068         list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3069                 __remove_free_nid(sbi, i, FREE_NID);
3070                 spin_unlock(&nm_i->nid_list_lock);
3071                 kmem_cache_free(free_nid_slab, i);
3072                 spin_lock(&nm_i->nid_list_lock);
3073         }
3074         f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3075         f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3076         f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3077         spin_unlock(&nm_i->nid_list_lock);
3078
3079         /* destroy nat cache */
3080         down_write(&nm_i->nat_tree_lock);
3081         while ((found = __gang_lookup_nat_cache(nm_i,
3082                                         nid, NATVEC_SIZE, natvec))) {
3083                 unsigned idx;
3084
3085                 nid = nat_get_nid(natvec[found - 1]) + 1;
3086                 for (idx = 0; idx < found; idx++) {
3087                         spin_lock(&nm_i->nat_list_lock);
3088                         list_del(&natvec[idx]->list);
3089                         spin_unlock(&nm_i->nat_list_lock);
3090
3091                         __del_from_nat_cache(nm_i, natvec[idx]);
3092                 }
3093         }
3094         f2fs_bug_on(sbi, nm_i->nat_cnt);
3095
3096         /* destroy nat set cache */
3097         nid = 0;
3098         while ((found = __gang_lookup_nat_set(nm_i,
3099                                         nid, SETVEC_SIZE, setvec))) {
3100                 unsigned idx;
3101
3102                 nid = setvec[found - 1]->set + 1;
3103                 for (idx = 0; idx < found; idx++) {
3104                         /* entry_cnt is not zero, when cp_error was occurred */
3105                         f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3106                         radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3107                         kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3108                 }
3109         }
3110         up_write(&nm_i->nat_tree_lock);
3111
3112         kvfree(nm_i->nat_block_bitmap);
3113         if (nm_i->free_nid_bitmap) {
3114                 int i;
3115
3116                 for (i = 0; i < nm_i->nat_blocks; i++)
3117                         kvfree(nm_i->free_nid_bitmap[i]);
3118                 kfree(nm_i->free_nid_bitmap);
3119         }
3120         kvfree(nm_i->free_nid_count);
3121
3122         kfree(nm_i->nat_bitmap);
3123         kfree(nm_i->nat_bits);
3124 #ifdef CONFIG_F2FS_CHECK_FS
3125         kfree(nm_i->nat_bitmap_mir);
3126 #endif
3127         sbi->nm_info = NULL;
3128         kfree(nm_i);
3129 }
3130
3131 int __init f2fs_create_node_manager_caches(void)
3132 {
3133         nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
3134                         sizeof(struct nat_entry));
3135         if (!nat_entry_slab)
3136                 goto fail;
3137
3138         free_nid_slab = f2fs_kmem_cache_create("free_nid",
3139                         sizeof(struct free_nid));
3140         if (!free_nid_slab)
3141                 goto destroy_nat_entry;
3142
3143         nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
3144                         sizeof(struct nat_entry_set));
3145         if (!nat_entry_set_slab)
3146                 goto destroy_free_nid;
3147
3148         fsync_node_entry_slab = f2fs_kmem_cache_create("fsync_node_entry",
3149                         sizeof(struct fsync_node_entry));
3150         if (!fsync_node_entry_slab)
3151                 goto destroy_nat_entry_set;
3152         return 0;
3153
3154 destroy_nat_entry_set:
3155         kmem_cache_destroy(nat_entry_set_slab);
3156 destroy_free_nid:
3157         kmem_cache_destroy(free_nid_slab);
3158 destroy_nat_entry:
3159         kmem_cache_destroy(nat_entry_slab);
3160 fail:
3161         return -ENOMEM;
3162 }
3163
3164 void f2fs_destroy_node_manager_caches(void)
3165 {
3166         kmem_cache_destroy(fsync_node_entry_slab);
3167         kmem_cache_destroy(nat_entry_set_slab);
3168         kmem_cache_destroy(free_nid_slab);
3169         kmem_cache_destroy(nat_entry_slab);
3170 }