1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
9 #include <linux/f2fs_fs.h>
10 #include <linux/mpage.h>
11 #include <linux/sched/mm.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagevec.h>
14 #include <linux/swap.h>
21 #include <trace/events/f2fs.h>
23 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
25 static struct kmem_cache *nat_entry_slab;
26 static struct kmem_cache *free_nid_slab;
27 static struct kmem_cache *nat_entry_set_slab;
28 static struct kmem_cache *fsync_node_entry_slab;
31 * Check whether the given nid is within node id range.
33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
35 if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36 set_sbi_flag(sbi, SBI_NEED_FSCK);
37 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
44 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
46 struct f2fs_nm_info *nm_i = NM_I(sbi);
47 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
49 unsigned long avail_ram;
50 unsigned long mem_size = 0;
58 /* only uses low memory */
59 avail_ram = val.totalram - val.totalhigh;
62 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
64 if (type == FREE_NIDS) {
65 mem_size = (nm_i->nid_cnt[FREE_NID] *
66 sizeof(struct free_nid)) >> PAGE_SHIFT;
67 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
68 } else if (type == NAT_ENTRIES) {
69 mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
70 sizeof(struct nat_entry)) >> PAGE_SHIFT;
71 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
72 if (excess_cached_nats(sbi))
74 } else if (type == DIRTY_DENTS) {
75 if (sbi->sb->s_bdi->wb.dirty_exceeded)
77 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
78 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
79 } else if (type == INO_ENTRIES) {
82 for (i = 0; i < MAX_INO_ENTRY; i++)
83 mem_size += sbi->im[i].ino_num *
84 sizeof(struct ino_entry);
85 mem_size >>= PAGE_SHIFT;
86 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
87 } else if (type == EXTENT_CACHE) {
88 mem_size = (atomic_read(&sbi->total_ext_tree) *
89 sizeof(struct extent_tree) +
90 atomic_read(&sbi->total_ext_node) *
91 sizeof(struct extent_node)) >> PAGE_SHIFT;
92 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
93 } else if (type == DISCARD_CACHE) {
94 mem_size = (atomic_read(&dcc->discard_cmd_cnt) *
95 sizeof(struct discard_cmd)) >> PAGE_SHIFT;
96 res = mem_size < (avail_ram * nm_i->ram_thresh / 100);
97 } else if (type == COMPRESS_PAGE) {
98 #ifdef CONFIG_F2FS_FS_COMPRESSION
99 unsigned long free_ram = val.freeram;
102 * free memory is lower than watermark or cached page count
103 * exceed threshold, deny caching compress page.
105 res = (free_ram > avail_ram * sbi->compress_watermark / 100) &&
106 (COMPRESS_MAPPING(sbi)->nrpages <
107 free_ram * sbi->compress_percent / 100);
112 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
118 static void clear_node_page_dirty(struct page *page)
120 if (PageDirty(page)) {
121 f2fs_clear_page_cache_dirty_tag(page);
122 clear_page_dirty_for_io(page);
123 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
125 ClearPageUptodate(page);
128 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
130 return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid));
133 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
135 struct page *src_page;
136 struct page *dst_page;
140 struct f2fs_nm_info *nm_i = NM_I(sbi);
142 dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
144 /* get current nat block page with lock */
145 src_page = get_current_nat_page(sbi, nid);
146 if (IS_ERR(src_page))
148 dst_page = f2fs_grab_meta_page(sbi, dst_off);
149 f2fs_bug_on(sbi, PageDirty(src_page));
151 src_addr = page_address(src_page);
152 dst_addr = page_address(dst_page);
153 memcpy(dst_addr, src_addr, PAGE_SIZE);
154 set_page_dirty(dst_page);
155 f2fs_put_page(src_page, 1);
157 set_to_next_nat(nm_i, nid);
162 static struct nat_entry *__alloc_nat_entry(struct f2fs_sb_info *sbi,
163 nid_t nid, bool no_fail)
165 struct nat_entry *new;
167 new = f2fs_kmem_cache_alloc(nat_entry_slab,
168 GFP_F2FS_ZERO, no_fail, sbi);
170 nat_set_nid(new, nid);
176 static void __free_nat_entry(struct nat_entry *e)
178 kmem_cache_free(nat_entry_slab, e);
181 /* must be locked by nat_tree_lock */
182 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
183 struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
186 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
187 else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
191 node_info_from_raw_nat(&ne->ni, raw_ne);
193 spin_lock(&nm_i->nat_list_lock);
194 list_add_tail(&ne->list, &nm_i->nat_entries);
195 spin_unlock(&nm_i->nat_list_lock);
197 nm_i->nat_cnt[TOTAL_NAT]++;
198 nm_i->nat_cnt[RECLAIMABLE_NAT]++;
202 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
204 struct nat_entry *ne;
206 ne = radix_tree_lookup(&nm_i->nat_root, n);
208 /* for recent accessed nat entry, move it to tail of lru list */
209 if (ne && !get_nat_flag(ne, IS_DIRTY)) {
210 spin_lock(&nm_i->nat_list_lock);
211 if (!list_empty(&ne->list))
212 list_move_tail(&ne->list, &nm_i->nat_entries);
213 spin_unlock(&nm_i->nat_list_lock);
219 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
220 nid_t start, unsigned int nr, struct nat_entry **ep)
222 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
225 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
227 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
228 nm_i->nat_cnt[TOTAL_NAT]--;
229 nm_i->nat_cnt[RECLAIMABLE_NAT]--;
233 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
234 struct nat_entry *ne)
236 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
237 struct nat_entry_set *head;
239 head = radix_tree_lookup(&nm_i->nat_set_root, set);
241 head = f2fs_kmem_cache_alloc(nat_entry_set_slab,
242 GFP_NOFS, true, NULL);
244 INIT_LIST_HEAD(&head->entry_list);
245 INIT_LIST_HEAD(&head->set_list);
248 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
253 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
254 struct nat_entry *ne)
256 struct nat_entry_set *head;
257 bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
260 head = __grab_nat_entry_set(nm_i, ne);
263 * update entry_cnt in below condition:
264 * 1. update NEW_ADDR to valid block address;
265 * 2. update old block address to new one;
267 if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
268 !get_nat_flag(ne, IS_DIRTY)))
271 set_nat_flag(ne, IS_PREALLOC, new_ne);
273 if (get_nat_flag(ne, IS_DIRTY))
276 nm_i->nat_cnt[DIRTY_NAT]++;
277 nm_i->nat_cnt[RECLAIMABLE_NAT]--;
278 set_nat_flag(ne, IS_DIRTY, true);
280 spin_lock(&nm_i->nat_list_lock);
282 list_del_init(&ne->list);
284 list_move_tail(&ne->list, &head->entry_list);
285 spin_unlock(&nm_i->nat_list_lock);
288 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
289 struct nat_entry_set *set, struct nat_entry *ne)
291 spin_lock(&nm_i->nat_list_lock);
292 list_move_tail(&ne->list, &nm_i->nat_entries);
293 spin_unlock(&nm_i->nat_list_lock);
295 set_nat_flag(ne, IS_DIRTY, false);
297 nm_i->nat_cnt[DIRTY_NAT]--;
298 nm_i->nat_cnt[RECLAIMABLE_NAT]++;
301 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
302 nid_t start, unsigned int nr, struct nat_entry_set **ep)
304 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
308 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
310 return NODE_MAPPING(sbi) == page->mapping &&
311 IS_DNODE(page) && is_cold_node(page);
314 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
316 spin_lock_init(&sbi->fsync_node_lock);
317 INIT_LIST_HEAD(&sbi->fsync_node_list);
318 sbi->fsync_seg_id = 0;
319 sbi->fsync_node_num = 0;
322 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
325 struct fsync_node_entry *fn;
329 fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab,
330 GFP_NOFS, true, NULL);
334 INIT_LIST_HEAD(&fn->list);
336 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
337 list_add_tail(&fn->list, &sbi->fsync_node_list);
338 fn->seq_id = sbi->fsync_seg_id++;
340 sbi->fsync_node_num++;
341 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
346 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
348 struct fsync_node_entry *fn;
351 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
352 list_for_each_entry(fn, &sbi->fsync_node_list, list) {
353 if (fn->page == page) {
355 sbi->fsync_node_num--;
356 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
357 kmem_cache_free(fsync_node_entry_slab, fn);
362 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
366 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
370 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
371 sbi->fsync_seg_id = 0;
372 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
375 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
377 struct f2fs_nm_info *nm_i = NM_I(sbi);
381 f2fs_down_read(&nm_i->nat_tree_lock);
382 e = __lookup_nat_cache(nm_i, nid);
384 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
385 !get_nat_flag(e, HAS_FSYNCED_INODE))
388 f2fs_up_read(&nm_i->nat_tree_lock);
392 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
394 struct f2fs_nm_info *nm_i = NM_I(sbi);
398 f2fs_down_read(&nm_i->nat_tree_lock);
399 e = __lookup_nat_cache(nm_i, nid);
400 if (e && !get_nat_flag(e, IS_CHECKPOINTED))
402 f2fs_up_read(&nm_i->nat_tree_lock);
406 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
408 struct f2fs_nm_info *nm_i = NM_I(sbi);
410 bool need_update = true;
412 f2fs_down_read(&nm_i->nat_tree_lock);
413 e = __lookup_nat_cache(nm_i, ino);
414 if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
415 (get_nat_flag(e, IS_CHECKPOINTED) ||
416 get_nat_flag(e, HAS_FSYNCED_INODE)))
418 f2fs_up_read(&nm_i->nat_tree_lock);
422 /* must be locked by nat_tree_lock */
423 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
424 struct f2fs_nat_entry *ne)
426 struct f2fs_nm_info *nm_i = NM_I(sbi);
427 struct nat_entry *new, *e;
429 /* Let's mitigate lock contention of nat_tree_lock during checkpoint */
430 if (f2fs_rwsem_is_locked(&sbi->cp_global_sem))
433 new = __alloc_nat_entry(sbi, nid, false);
437 f2fs_down_write(&nm_i->nat_tree_lock);
438 e = __lookup_nat_cache(nm_i, nid);
440 e = __init_nat_entry(nm_i, new, ne, false);
442 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
443 nat_get_blkaddr(e) !=
444 le32_to_cpu(ne->block_addr) ||
445 nat_get_version(e) != ne->version);
446 f2fs_up_write(&nm_i->nat_tree_lock);
448 __free_nat_entry(new);
451 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
452 block_t new_blkaddr, bool fsync_done)
454 struct f2fs_nm_info *nm_i = NM_I(sbi);
456 struct nat_entry *new = __alloc_nat_entry(sbi, ni->nid, true);
458 f2fs_down_write(&nm_i->nat_tree_lock);
459 e = __lookup_nat_cache(nm_i, ni->nid);
461 e = __init_nat_entry(nm_i, new, NULL, true);
462 copy_node_info(&e->ni, ni);
463 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
464 } else if (new_blkaddr == NEW_ADDR) {
466 * when nid is reallocated,
467 * previous nat entry can be remained in nat cache.
468 * So, reinitialize it with new information.
470 copy_node_info(&e->ni, ni);
471 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
473 /* let's free early to reduce memory consumption */
475 __free_nat_entry(new);
478 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
479 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
480 new_blkaddr == NULL_ADDR);
481 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
482 new_blkaddr == NEW_ADDR);
483 f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
484 new_blkaddr == NEW_ADDR);
486 /* increment version no as node is removed */
487 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
488 unsigned char version = nat_get_version(e);
490 nat_set_version(e, inc_node_version(version));
494 nat_set_blkaddr(e, new_blkaddr);
495 if (!__is_valid_data_blkaddr(new_blkaddr))
496 set_nat_flag(e, IS_CHECKPOINTED, false);
497 __set_nat_cache_dirty(nm_i, e);
499 /* update fsync_mark if its inode nat entry is still alive */
500 if (ni->nid != ni->ino)
501 e = __lookup_nat_cache(nm_i, ni->ino);
503 if (fsync_done && ni->nid == ni->ino)
504 set_nat_flag(e, HAS_FSYNCED_INODE, true);
505 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
507 f2fs_up_write(&nm_i->nat_tree_lock);
510 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
512 struct f2fs_nm_info *nm_i = NM_I(sbi);
515 if (!f2fs_down_write_trylock(&nm_i->nat_tree_lock))
518 spin_lock(&nm_i->nat_list_lock);
520 struct nat_entry *ne;
522 if (list_empty(&nm_i->nat_entries))
525 ne = list_first_entry(&nm_i->nat_entries,
526 struct nat_entry, list);
528 spin_unlock(&nm_i->nat_list_lock);
530 __del_from_nat_cache(nm_i, ne);
533 spin_lock(&nm_i->nat_list_lock);
535 spin_unlock(&nm_i->nat_list_lock);
537 f2fs_up_write(&nm_i->nat_tree_lock);
538 return nr - nr_shrink;
541 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
542 struct node_info *ni, bool checkpoint_context)
544 struct f2fs_nm_info *nm_i = NM_I(sbi);
545 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
546 struct f2fs_journal *journal = curseg->journal;
547 nid_t start_nid = START_NID(nid);
548 struct f2fs_nat_block *nat_blk;
549 struct page *page = NULL;
550 struct f2fs_nat_entry ne;
558 /* Check nat cache */
559 f2fs_down_read(&nm_i->nat_tree_lock);
560 e = __lookup_nat_cache(nm_i, nid);
562 ni->ino = nat_get_ino(e);
563 ni->blk_addr = nat_get_blkaddr(e);
564 ni->version = nat_get_version(e);
565 f2fs_up_read(&nm_i->nat_tree_lock);
570 * Check current segment summary by trying to grab journal_rwsem first.
571 * This sem is on the critical path on the checkpoint requiring the above
572 * nat_tree_lock. Therefore, we should retry, if we failed to grab here
573 * while not bothering checkpoint.
575 if (!f2fs_rwsem_is_locked(&sbi->cp_global_sem) || checkpoint_context) {
576 down_read(&curseg->journal_rwsem);
577 } else if (f2fs_rwsem_is_contended(&nm_i->nat_tree_lock) ||
578 !down_read_trylock(&curseg->journal_rwsem)) {
579 f2fs_up_read(&nm_i->nat_tree_lock);
583 i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
585 ne = nat_in_journal(journal, i);
586 node_info_from_raw_nat(ni, &ne);
588 up_read(&curseg->journal_rwsem);
590 f2fs_up_read(&nm_i->nat_tree_lock);
594 /* Fill node_info from nat page */
595 index = current_nat_addr(sbi, nid);
596 f2fs_up_read(&nm_i->nat_tree_lock);
598 page = f2fs_get_meta_page(sbi, index);
600 return PTR_ERR(page);
602 nat_blk = (struct f2fs_nat_block *)page_address(page);
603 ne = nat_blk->entries[nid - start_nid];
604 node_info_from_raw_nat(ni, &ne);
605 f2fs_put_page(page, 1);
607 blkaddr = le32_to_cpu(ne.block_addr);
608 if (__is_valid_data_blkaddr(blkaddr) &&
609 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
612 /* cache nat entry */
613 cache_nat_entry(sbi, nid, &ne);
618 * readahead MAX_RA_NODE number of node pages.
620 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
622 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
623 struct blk_plug plug;
627 blk_start_plug(&plug);
629 /* Then, try readahead for siblings of the desired node */
631 end = min(end, NIDS_PER_BLOCK);
632 for (i = start; i < end; i++) {
633 nid = get_nid(parent, i, false);
634 f2fs_ra_node_page(sbi, nid);
637 blk_finish_plug(&plug);
640 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
642 const long direct_index = ADDRS_PER_INODE(dn->inode);
643 const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
644 const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
645 unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
646 int cur_level = dn->cur_level;
647 int max_level = dn->max_level;
653 while (max_level-- > cur_level)
654 skipped_unit *= NIDS_PER_BLOCK;
656 switch (dn->max_level) {
658 base += 2 * indirect_blks;
661 base += 2 * direct_blks;
664 base += direct_index;
667 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
670 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
674 * The maximum depth is four.
675 * Offset[0] will have raw inode offset.
677 static int get_node_path(struct inode *inode, long block,
678 int offset[4], unsigned int noffset[4])
680 const long direct_index = ADDRS_PER_INODE(inode);
681 const long direct_blks = ADDRS_PER_BLOCK(inode);
682 const long dptrs_per_blk = NIDS_PER_BLOCK;
683 const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
684 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
690 if (block < direct_index) {
694 block -= direct_index;
695 if (block < direct_blks) {
696 offset[n++] = NODE_DIR1_BLOCK;
702 block -= direct_blks;
703 if (block < direct_blks) {
704 offset[n++] = NODE_DIR2_BLOCK;
710 block -= direct_blks;
711 if (block < indirect_blks) {
712 offset[n++] = NODE_IND1_BLOCK;
714 offset[n++] = block / direct_blks;
715 noffset[n] = 4 + offset[n - 1];
716 offset[n] = block % direct_blks;
720 block -= indirect_blks;
721 if (block < indirect_blks) {
722 offset[n++] = NODE_IND2_BLOCK;
723 noffset[n] = 4 + dptrs_per_blk;
724 offset[n++] = block / direct_blks;
725 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
726 offset[n] = block % direct_blks;
730 block -= indirect_blks;
731 if (block < dindirect_blks) {
732 offset[n++] = NODE_DIND_BLOCK;
733 noffset[n] = 5 + (dptrs_per_blk * 2);
734 offset[n++] = block / indirect_blks;
735 noffset[n] = 6 + (dptrs_per_blk * 2) +
736 offset[n - 1] * (dptrs_per_blk + 1);
737 offset[n++] = (block / direct_blks) % dptrs_per_blk;
738 noffset[n] = 7 + (dptrs_per_blk * 2) +
739 offset[n - 2] * (dptrs_per_blk + 1) +
741 offset[n] = block % direct_blks;
752 * Caller should call f2fs_put_dnode(dn).
753 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
754 * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
756 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
758 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
759 struct page *npage[4];
760 struct page *parent = NULL;
762 unsigned int noffset[4];
767 level = get_node_path(dn->inode, index, offset, noffset);
771 nids[0] = dn->inode->i_ino;
772 npage[0] = dn->inode_page;
775 npage[0] = f2fs_get_node_page(sbi, nids[0]);
776 if (IS_ERR(npage[0]))
777 return PTR_ERR(npage[0]);
780 /* if inline_data is set, should not report any block indices */
781 if (f2fs_has_inline_data(dn->inode) && index) {
783 f2fs_put_page(npage[0], 1);
789 nids[1] = get_nid(parent, offset[0], true);
790 dn->inode_page = npage[0];
791 dn->inode_page_locked = true;
793 /* get indirect or direct nodes */
794 for (i = 1; i <= level; i++) {
797 if (!nids[i] && mode == ALLOC_NODE) {
799 if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
805 npage[i] = f2fs_new_node_page(dn, noffset[i]);
806 if (IS_ERR(npage[i])) {
807 f2fs_alloc_nid_failed(sbi, nids[i]);
808 err = PTR_ERR(npage[i]);
812 set_nid(parent, offset[i - 1], nids[i], i == 1);
813 f2fs_alloc_nid_done(sbi, nids[i]);
815 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
816 npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
817 if (IS_ERR(npage[i])) {
818 err = PTR_ERR(npage[i]);
824 dn->inode_page_locked = false;
827 f2fs_put_page(parent, 1);
831 npage[i] = f2fs_get_node_page(sbi, nids[i]);
832 if (IS_ERR(npage[i])) {
833 err = PTR_ERR(npage[i]);
834 f2fs_put_page(npage[0], 0);
840 nids[i + 1] = get_nid(parent, offset[i], false);
843 dn->nid = nids[level];
844 dn->ofs_in_node = offset[level];
845 dn->node_page = npage[level];
846 dn->data_blkaddr = f2fs_data_blkaddr(dn);
848 if (is_inode_flag_set(dn->inode, FI_COMPRESSED_FILE) &&
849 f2fs_sb_has_readonly(sbi)) {
850 unsigned int c_len = f2fs_cluster_blocks_are_contiguous(dn);
856 blkaddr = f2fs_data_blkaddr(dn);
857 if (blkaddr == COMPRESS_ADDR)
858 blkaddr = data_blkaddr(dn->inode, dn->node_page,
859 dn->ofs_in_node + 1);
861 f2fs_update_extent_tree_range_compressed(dn->inode,
863 F2FS_I(dn->inode)->i_cluster_size,
870 f2fs_put_page(parent, 1);
872 f2fs_put_page(npage[0], 0);
874 dn->inode_page = NULL;
875 dn->node_page = NULL;
876 if (err == -ENOENT) {
878 dn->max_level = level;
879 dn->ofs_in_node = offset[level];
884 static int truncate_node(struct dnode_of_data *dn)
886 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
891 err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
895 /* Deallocate node address */
896 f2fs_invalidate_blocks(sbi, ni.blk_addr);
897 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
898 set_node_addr(sbi, &ni, NULL_ADDR, false);
900 if (dn->nid == dn->inode->i_ino) {
901 f2fs_remove_orphan_inode(sbi, dn->nid);
902 dec_valid_inode_count(sbi);
903 f2fs_inode_synced(dn->inode);
906 clear_node_page_dirty(dn->node_page);
907 set_sbi_flag(sbi, SBI_IS_DIRTY);
909 index = dn->node_page->index;
910 f2fs_put_page(dn->node_page, 1);
912 invalidate_mapping_pages(NODE_MAPPING(sbi),
915 dn->node_page = NULL;
916 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
921 static int truncate_dnode(struct dnode_of_data *dn)
929 /* get direct node */
930 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
931 if (PTR_ERR(page) == -ENOENT)
933 else if (IS_ERR(page))
934 return PTR_ERR(page);
936 /* Make dnode_of_data for parameter */
937 dn->node_page = page;
939 f2fs_truncate_data_blocks(dn);
940 err = truncate_node(dn);
947 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
950 struct dnode_of_data rdn = *dn;
952 struct f2fs_node *rn;
954 unsigned int child_nofs;
959 return NIDS_PER_BLOCK + 1;
961 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
963 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
965 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
966 return PTR_ERR(page);
969 f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
971 rn = F2FS_NODE(page);
973 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
974 child_nid = le32_to_cpu(rn->in.nid[i]);
978 ret = truncate_dnode(&rdn);
981 if (set_nid(page, i, 0, false))
982 dn->node_changed = true;
985 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
986 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
987 child_nid = le32_to_cpu(rn->in.nid[i]);
988 if (child_nid == 0) {
989 child_nofs += NIDS_PER_BLOCK + 1;
993 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
994 if (ret == (NIDS_PER_BLOCK + 1)) {
995 if (set_nid(page, i, 0, false))
996 dn->node_changed = true;
998 } else if (ret < 0 && ret != -ENOENT) {
1006 /* remove current indirect node */
1007 dn->node_page = page;
1008 ret = truncate_node(dn);
1013 f2fs_put_page(page, 1);
1015 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
1019 f2fs_put_page(page, 1);
1020 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
1024 static int truncate_partial_nodes(struct dnode_of_data *dn,
1025 struct f2fs_inode *ri, int *offset, int depth)
1027 struct page *pages[2];
1032 int idx = depth - 2;
1034 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1038 /* get indirect nodes in the path */
1039 for (i = 0; i < idx + 1; i++) {
1040 /* reference count'll be increased */
1041 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
1042 if (IS_ERR(pages[i])) {
1043 err = PTR_ERR(pages[i]);
1047 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
1050 f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
1052 /* free direct nodes linked to a partial indirect node */
1053 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1054 child_nid = get_nid(pages[idx], i, false);
1057 dn->nid = child_nid;
1058 err = truncate_dnode(dn);
1061 if (set_nid(pages[idx], i, 0, false))
1062 dn->node_changed = true;
1065 if (offset[idx + 1] == 0) {
1066 dn->node_page = pages[idx];
1068 err = truncate_node(dn);
1072 f2fs_put_page(pages[idx], 1);
1075 offset[idx + 1] = 0;
1078 for (i = idx; i >= 0; i--)
1079 f2fs_put_page(pages[i], 1);
1081 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1087 * All the block addresses of data and nodes should be nullified.
1089 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1091 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1092 int err = 0, cont = 1;
1093 int level, offset[4], noffset[4];
1094 unsigned int nofs = 0;
1095 struct f2fs_inode *ri;
1096 struct dnode_of_data dn;
1099 trace_f2fs_truncate_inode_blocks_enter(inode, from);
1101 level = get_node_path(inode, from, offset, noffset);
1103 trace_f2fs_truncate_inode_blocks_exit(inode, level);
1107 page = f2fs_get_node_page(sbi, inode->i_ino);
1109 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1110 return PTR_ERR(page);
1113 set_new_dnode(&dn, inode, page, NULL, 0);
1116 ri = F2FS_INODE(page);
1124 if (!offset[level - 1])
1126 err = truncate_partial_nodes(&dn, ri, offset, level);
1127 if (err < 0 && err != -ENOENT)
1129 nofs += 1 + NIDS_PER_BLOCK;
1132 nofs = 5 + 2 * NIDS_PER_BLOCK;
1133 if (!offset[level - 1])
1135 err = truncate_partial_nodes(&dn, ri, offset, level);
1136 if (err < 0 && err != -ENOENT)
1145 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1146 switch (offset[0]) {
1147 case NODE_DIR1_BLOCK:
1148 case NODE_DIR2_BLOCK:
1149 err = truncate_dnode(&dn);
1152 case NODE_IND1_BLOCK:
1153 case NODE_IND2_BLOCK:
1154 err = truncate_nodes(&dn, nofs, offset[1], 2);
1157 case NODE_DIND_BLOCK:
1158 err = truncate_nodes(&dn, nofs, offset[1], 3);
1165 if (err < 0 && err != -ENOENT)
1167 if (offset[1] == 0 &&
1168 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1170 BUG_ON(page->mapping != NODE_MAPPING(sbi));
1171 f2fs_wait_on_page_writeback(page, NODE, true, true);
1172 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1173 set_page_dirty(page);
1181 f2fs_put_page(page, 0);
1182 trace_f2fs_truncate_inode_blocks_exit(inode, err);
1183 return err > 0 ? 0 : err;
1186 /* caller must lock inode page */
1187 int f2fs_truncate_xattr_node(struct inode *inode)
1189 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1190 nid_t nid = F2FS_I(inode)->i_xattr_nid;
1191 struct dnode_of_data dn;
1198 npage = f2fs_get_node_page(sbi, nid);
1200 return PTR_ERR(npage);
1202 set_new_dnode(&dn, inode, NULL, npage, nid);
1203 err = truncate_node(&dn);
1205 f2fs_put_page(npage, 1);
1209 f2fs_i_xnid_write(inode, 0);
1215 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1218 int f2fs_remove_inode_page(struct inode *inode)
1220 struct dnode_of_data dn;
1223 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1224 err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1228 err = f2fs_truncate_xattr_node(inode);
1230 f2fs_put_dnode(&dn);
1234 /* remove potential inline_data blocks */
1235 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1236 S_ISLNK(inode->i_mode))
1237 f2fs_truncate_data_blocks_range(&dn, 1);
1239 /* 0 is possible, after f2fs_new_inode() has failed */
1240 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1241 f2fs_put_dnode(&dn);
1245 if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1246 f2fs_warn(F2FS_I_SB(inode),
1247 "f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1248 inode->i_ino, (unsigned long long)inode->i_blocks);
1249 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1252 /* will put inode & node pages */
1253 err = truncate_node(&dn);
1255 f2fs_put_dnode(&dn);
1261 struct page *f2fs_new_inode_page(struct inode *inode)
1263 struct dnode_of_data dn;
1265 /* allocate inode page for new inode */
1266 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1268 /* caller should f2fs_put_page(page, 1); */
1269 return f2fs_new_node_page(&dn, 0);
1272 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1274 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1275 struct node_info new_ni;
1279 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1280 return ERR_PTR(-EPERM);
1282 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1284 return ERR_PTR(-ENOMEM);
1286 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1289 #ifdef CONFIG_F2FS_CHECK_FS
1290 err = f2fs_get_node_info(sbi, dn->nid, &new_ni, false);
1292 dec_valid_node_count(sbi, dn->inode, !ofs);
1295 if (unlikely(new_ni.blk_addr != NULL_ADDR)) {
1296 err = -EFSCORRUPTED;
1297 set_sbi_flag(sbi, SBI_NEED_FSCK);
1301 new_ni.nid = dn->nid;
1302 new_ni.ino = dn->inode->i_ino;
1303 new_ni.blk_addr = NULL_ADDR;
1306 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1308 f2fs_wait_on_page_writeback(page, NODE, true, true);
1309 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1310 set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1311 if (!PageUptodate(page))
1312 SetPageUptodate(page);
1313 if (set_page_dirty(page))
1314 dn->node_changed = true;
1316 if (f2fs_has_xattr_block(ofs))
1317 f2fs_i_xnid_write(dn->inode, dn->nid);
1320 inc_valid_inode_count(sbi);
1324 clear_node_page_dirty(page);
1325 f2fs_put_page(page, 1);
1326 return ERR_PTR(err);
1330 * Caller should do after getting the following values.
1331 * 0: f2fs_put_page(page, 0)
1332 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1334 static int read_node_page(struct page *page, blk_opf_t op_flags)
1336 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1337 struct node_info ni;
1338 struct f2fs_io_info fio = {
1342 .op_flags = op_flags,
1344 .encrypted_page = NULL,
1348 if (PageUptodate(page)) {
1349 if (!f2fs_inode_chksum_verify(sbi, page)) {
1350 ClearPageUptodate(page);
1356 err = f2fs_get_node_info(sbi, page->index, &ni, false);
1360 /* NEW_ADDR can be seen, after cp_error drops some dirty node pages */
1361 if (unlikely(ni.blk_addr == NULL_ADDR || ni.blk_addr == NEW_ADDR) ||
1362 is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) {
1363 ClearPageUptodate(page);
1367 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1369 err = f2fs_submit_page_bio(&fio);
1372 f2fs_update_iostat(sbi, FS_NODE_READ_IO, F2FS_BLKSIZE);
1378 * Readahead a node page
1380 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1387 if (f2fs_check_nid_range(sbi, nid))
1390 apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1394 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1398 err = read_node_page(apage, REQ_RAHEAD);
1399 f2fs_put_page(apage, err ? 1 : 0);
1402 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1403 struct page *parent, int start)
1409 return ERR_PTR(-ENOENT);
1410 if (f2fs_check_nid_range(sbi, nid))
1411 return ERR_PTR(-EINVAL);
1413 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1415 return ERR_PTR(-ENOMEM);
1417 err = read_node_page(page, 0);
1420 } else if (err == LOCKED_PAGE) {
1426 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1430 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1431 f2fs_put_page(page, 1);
1435 if (unlikely(!PageUptodate(page))) {
1440 if (!f2fs_inode_chksum_verify(sbi, page)) {
1445 if (likely(nid == nid_of_node(page)))
1448 f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1449 nid, nid_of_node(page), ino_of_node(page),
1450 ofs_of_node(page), cpver_of_node(page),
1451 next_blkaddr_of_node(page));
1452 set_sbi_flag(sbi, SBI_NEED_FSCK);
1455 ClearPageUptodate(page);
1457 /* ENOENT comes from read_node_page which is not an error. */
1459 f2fs_handle_page_eio(sbi, page->index, NODE);
1460 f2fs_put_page(page, 1);
1461 return ERR_PTR(err);
1464 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1466 return __get_node_page(sbi, nid, NULL, 0);
1469 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1471 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1472 nid_t nid = get_nid(parent, start, false);
1474 return __get_node_page(sbi, nid, parent, start);
1477 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1479 struct inode *inode;
1483 /* should flush inline_data before evict_inode */
1484 inode = ilookup(sbi->sb, ino);
1488 page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1489 FGP_LOCK|FGP_NOWAIT, 0);
1493 if (!PageUptodate(page))
1496 if (!PageDirty(page))
1499 if (!clear_page_dirty_for_io(page))
1502 ret = f2fs_write_inline_data(inode, page);
1503 inode_dec_dirty_pages(inode);
1504 f2fs_remove_dirty_inode(inode);
1506 set_page_dirty(page);
1508 f2fs_put_page(page, 1);
1513 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1516 struct pagevec pvec;
1517 struct page *last_page = NULL;
1520 pagevec_init(&pvec);
1523 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1524 PAGECACHE_TAG_DIRTY))) {
1527 for (i = 0; i < nr_pages; i++) {
1528 struct page *page = pvec.pages[i];
1530 if (unlikely(f2fs_cp_error(sbi))) {
1531 f2fs_put_page(last_page, 0);
1532 pagevec_release(&pvec);
1533 return ERR_PTR(-EIO);
1536 if (!IS_DNODE(page) || !is_cold_node(page))
1538 if (ino_of_node(page) != ino)
1543 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1548 if (ino_of_node(page) != ino)
1549 goto continue_unlock;
1551 if (!PageDirty(page)) {
1552 /* someone wrote it for us */
1553 goto continue_unlock;
1557 f2fs_put_page(last_page, 0);
1563 pagevec_release(&pvec);
1569 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1570 struct writeback_control *wbc, bool do_balance,
1571 enum iostat_type io_type, unsigned int *seq_id)
1573 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1575 struct node_info ni;
1576 struct f2fs_io_info fio = {
1578 .ino = ino_of_node(page),
1581 .op_flags = wbc_to_write_flags(wbc),
1583 .encrypted_page = NULL,
1590 trace_f2fs_writepage(page, NODE);
1592 if (unlikely(f2fs_cp_error(sbi))) {
1593 ClearPageUptodate(page);
1594 dec_page_count(sbi, F2FS_DIRTY_NODES);
1599 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1602 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1603 wbc->sync_mode == WB_SYNC_NONE &&
1604 IS_DNODE(page) && is_cold_node(page))
1607 /* get old block addr of this node page */
1608 nid = nid_of_node(page);
1609 f2fs_bug_on(sbi, page->index != nid);
1611 if (f2fs_get_node_info(sbi, nid, &ni, !do_balance))
1614 if (wbc->for_reclaim) {
1615 if (!f2fs_down_read_trylock(&sbi->node_write))
1618 f2fs_down_read(&sbi->node_write);
1621 /* This page is already truncated */
1622 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1623 ClearPageUptodate(page);
1624 dec_page_count(sbi, F2FS_DIRTY_NODES);
1625 f2fs_up_read(&sbi->node_write);
1630 if (__is_valid_data_blkaddr(ni.blk_addr) &&
1631 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1632 DATA_GENERIC_ENHANCE)) {
1633 f2fs_up_read(&sbi->node_write);
1637 if (atomic && !test_opt(sbi, NOBARRIER) && !f2fs_sb_has_blkzoned(sbi))
1638 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1640 /* should add to global list before clearing PAGECACHE status */
1641 if (f2fs_in_warm_node_list(sbi, page)) {
1642 seq = f2fs_add_fsync_node_entry(sbi, page);
1647 set_page_writeback(page);
1648 ClearPageError(page);
1650 fio.old_blkaddr = ni.blk_addr;
1651 f2fs_do_write_node_page(nid, &fio);
1652 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1653 dec_page_count(sbi, F2FS_DIRTY_NODES);
1654 f2fs_up_read(&sbi->node_write);
1656 if (wbc->for_reclaim) {
1657 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1663 if (unlikely(f2fs_cp_error(sbi))) {
1664 f2fs_submit_merged_write(sbi, NODE);
1668 *submitted = fio.submitted;
1671 f2fs_balance_fs(sbi, false);
1675 redirty_page_for_writepage(wbc, page);
1676 return AOP_WRITEPAGE_ACTIVATE;
1679 int f2fs_move_node_page(struct page *node_page, int gc_type)
1683 if (gc_type == FG_GC) {
1684 struct writeback_control wbc = {
1685 .sync_mode = WB_SYNC_ALL,
1690 f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1692 set_page_dirty(node_page);
1694 if (!clear_page_dirty_for_io(node_page)) {
1699 if (__write_node_page(node_page, false, NULL,
1700 &wbc, false, FS_GC_NODE_IO, NULL)) {
1702 unlock_page(node_page);
1706 /* set page dirty and write it */
1707 if (!PageWriteback(node_page))
1708 set_page_dirty(node_page);
1711 unlock_page(node_page);
1713 f2fs_put_page(node_page, 0);
1717 static int f2fs_write_node_page(struct page *page,
1718 struct writeback_control *wbc)
1720 return __write_node_page(page, false, NULL, wbc, false,
1724 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1725 struct writeback_control *wbc, bool atomic,
1726 unsigned int *seq_id)
1729 struct pagevec pvec;
1731 struct page *last_page = NULL;
1732 bool marked = false;
1733 nid_t ino = inode->i_ino;
1738 last_page = last_fsync_dnode(sbi, ino);
1739 if (IS_ERR_OR_NULL(last_page))
1740 return PTR_ERR_OR_ZERO(last_page);
1743 pagevec_init(&pvec);
1746 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1747 PAGECACHE_TAG_DIRTY))) {
1750 for (i = 0; i < nr_pages; i++) {
1751 struct page *page = pvec.pages[i];
1752 bool submitted = false;
1754 if (unlikely(f2fs_cp_error(sbi))) {
1755 f2fs_put_page(last_page, 0);
1756 pagevec_release(&pvec);
1761 if (!IS_DNODE(page) || !is_cold_node(page))
1763 if (ino_of_node(page) != ino)
1768 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1773 if (ino_of_node(page) != ino)
1774 goto continue_unlock;
1776 if (!PageDirty(page) && page != last_page) {
1777 /* someone wrote it for us */
1778 goto continue_unlock;
1781 f2fs_wait_on_page_writeback(page, NODE, true, true);
1783 set_fsync_mark(page, 0);
1784 set_dentry_mark(page, 0);
1786 if (!atomic || page == last_page) {
1787 set_fsync_mark(page, 1);
1788 percpu_counter_inc(&sbi->rf_node_block_count);
1789 if (IS_INODE(page)) {
1790 if (is_inode_flag_set(inode,
1792 f2fs_update_inode(inode, page);
1793 set_dentry_mark(page,
1794 f2fs_need_dentry_mark(sbi, ino));
1796 /* may be written by other thread */
1797 if (!PageDirty(page))
1798 set_page_dirty(page);
1801 if (!clear_page_dirty_for_io(page))
1802 goto continue_unlock;
1804 ret = __write_node_page(page, atomic &&
1806 &submitted, wbc, true,
1807 FS_NODE_IO, seq_id);
1810 f2fs_put_page(last_page, 0);
1812 } else if (submitted) {
1816 if (page == last_page) {
1817 f2fs_put_page(page, 0);
1822 pagevec_release(&pvec);
1828 if (!ret && atomic && !marked) {
1829 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1830 ino, last_page->index);
1831 lock_page(last_page);
1832 f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1833 set_page_dirty(last_page);
1834 unlock_page(last_page);
1839 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1840 return ret ? -EIO : 0;
1843 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1845 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1848 if (inode->i_ino != ino)
1851 if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1854 spin_lock(&sbi->inode_lock[DIRTY_META]);
1855 clean = list_empty(&F2FS_I(inode)->gdirty_list);
1856 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1861 inode = igrab(inode);
1867 static bool flush_dirty_inode(struct page *page)
1869 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1870 struct inode *inode;
1871 nid_t ino = ino_of_node(page);
1873 inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1877 f2fs_update_inode(inode, page);
1884 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1887 struct pagevec pvec;
1890 pagevec_init(&pvec);
1892 while ((nr_pages = pagevec_lookup_tag(&pvec,
1893 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1896 for (i = 0; i < nr_pages; i++) {
1897 struct page *page = pvec.pages[i];
1899 if (!IS_DNODE(page))
1904 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1910 if (!PageDirty(page)) {
1911 /* someone wrote it for us */
1912 goto continue_unlock;
1915 /* flush inline_data, if it's async context. */
1916 if (page_private_inline(page)) {
1917 clear_page_private_inline(page);
1919 flush_inline_data(sbi, ino_of_node(page));
1924 pagevec_release(&pvec);
1929 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1930 struct writeback_control *wbc,
1931 bool do_balance, enum iostat_type io_type)
1934 struct pagevec pvec;
1938 int nr_pages, done = 0;
1940 pagevec_init(&pvec);
1945 while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1946 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1949 for (i = 0; i < nr_pages; i++) {
1950 struct page *page = pvec.pages[i];
1951 bool submitted = false;
1953 /* give a priority to WB_SYNC threads */
1954 if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1955 wbc->sync_mode == WB_SYNC_NONE) {
1961 * flushing sequence with step:
1966 if (step == 0 && IS_DNODE(page))
1968 if (step == 1 && (!IS_DNODE(page) ||
1969 is_cold_node(page)))
1971 if (step == 2 && (!IS_DNODE(page) ||
1972 !is_cold_node(page)))
1975 if (wbc->sync_mode == WB_SYNC_ALL)
1977 else if (!trylock_page(page))
1980 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1986 if (!PageDirty(page)) {
1987 /* someone wrote it for us */
1988 goto continue_unlock;
1991 /* flush inline_data/inode, if it's async context. */
1995 /* flush inline_data */
1996 if (page_private_inline(page)) {
1997 clear_page_private_inline(page);
1999 flush_inline_data(sbi, ino_of_node(page));
2003 /* flush dirty inode */
2004 if (IS_INODE(page) && flush_dirty_inode(page))
2007 f2fs_wait_on_page_writeback(page, NODE, true, true);
2009 if (!clear_page_dirty_for_io(page))
2010 goto continue_unlock;
2012 set_fsync_mark(page, 0);
2013 set_dentry_mark(page, 0);
2015 ret = __write_node_page(page, false, &submitted,
2016 wbc, do_balance, io_type, NULL);
2022 if (--wbc->nr_to_write == 0)
2025 pagevec_release(&pvec);
2028 if (wbc->nr_to_write == 0) {
2035 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2036 wbc->sync_mode == WB_SYNC_NONE && step == 1)
2043 f2fs_submit_merged_write(sbi, NODE);
2045 if (unlikely(f2fs_cp_error(sbi)))
2050 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2051 unsigned int seq_id)
2053 struct fsync_node_entry *fn;
2055 struct list_head *head = &sbi->fsync_node_list;
2056 unsigned long flags;
2057 unsigned int cur_seq_id = 0;
2060 while (seq_id && cur_seq_id < seq_id) {
2061 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2062 if (list_empty(head)) {
2063 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2066 fn = list_first_entry(head, struct fsync_node_entry, list);
2067 if (fn->seq_id > seq_id) {
2068 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2071 cur_seq_id = fn->seq_id;
2074 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2076 f2fs_wait_on_page_writeback(page, NODE, true, false);
2077 if (TestClearPageError(page))
2086 ret2 = filemap_check_errors(NODE_MAPPING(sbi));
2093 static int f2fs_write_node_pages(struct address_space *mapping,
2094 struct writeback_control *wbc)
2096 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2097 struct blk_plug plug;
2100 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2103 /* balancing f2fs's metadata in background */
2104 f2fs_balance_fs_bg(sbi, true);
2106 /* collect a number of dirty node pages and write together */
2107 if (wbc->sync_mode != WB_SYNC_ALL &&
2108 get_pages(sbi, F2FS_DIRTY_NODES) <
2109 nr_pages_to_skip(sbi, NODE))
2112 if (wbc->sync_mode == WB_SYNC_ALL)
2113 atomic_inc(&sbi->wb_sync_req[NODE]);
2114 else if (atomic_read(&sbi->wb_sync_req[NODE])) {
2115 /* to avoid potential deadlock */
2117 blk_finish_plug(current->plug);
2121 trace_f2fs_writepages(mapping->host, wbc, NODE);
2123 diff = nr_pages_to_write(sbi, NODE, wbc);
2124 blk_start_plug(&plug);
2125 f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2126 blk_finish_plug(&plug);
2127 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2129 if (wbc->sync_mode == WB_SYNC_ALL)
2130 atomic_dec(&sbi->wb_sync_req[NODE]);
2134 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2135 trace_f2fs_writepages(mapping->host, wbc, NODE);
2139 static bool f2fs_dirty_node_folio(struct address_space *mapping,
2140 struct folio *folio)
2142 trace_f2fs_set_page_dirty(&folio->page, NODE);
2144 if (!folio_test_uptodate(folio))
2145 folio_mark_uptodate(folio);
2146 #ifdef CONFIG_F2FS_CHECK_FS
2147 if (IS_INODE(&folio->page))
2148 f2fs_inode_chksum_set(F2FS_M_SB(mapping), &folio->page);
2150 if (!folio_test_dirty(folio)) {
2151 filemap_dirty_folio(mapping, folio);
2152 inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
2153 set_page_private_reference(&folio->page);
2160 * Structure of the f2fs node operations
2162 const struct address_space_operations f2fs_node_aops = {
2163 .writepage = f2fs_write_node_page,
2164 .writepages = f2fs_write_node_pages,
2165 .dirty_folio = f2fs_dirty_node_folio,
2166 .invalidate_folio = f2fs_invalidate_folio,
2167 .release_folio = f2fs_release_folio,
2168 .migrate_folio = filemap_migrate_folio,
2171 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2174 return radix_tree_lookup(&nm_i->free_nid_root, n);
2177 static int __insert_free_nid(struct f2fs_sb_info *sbi,
2180 struct f2fs_nm_info *nm_i = NM_I(sbi);
2181 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2186 nm_i->nid_cnt[FREE_NID]++;
2187 list_add_tail(&i->list, &nm_i->free_nid_list);
2191 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2192 struct free_nid *i, enum nid_state state)
2194 struct f2fs_nm_info *nm_i = NM_I(sbi);
2196 f2fs_bug_on(sbi, state != i->state);
2197 nm_i->nid_cnt[state]--;
2198 if (state == FREE_NID)
2200 radix_tree_delete(&nm_i->free_nid_root, i->nid);
2203 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2204 enum nid_state org_state, enum nid_state dst_state)
2206 struct f2fs_nm_info *nm_i = NM_I(sbi);
2208 f2fs_bug_on(sbi, org_state != i->state);
2209 i->state = dst_state;
2210 nm_i->nid_cnt[org_state]--;
2211 nm_i->nid_cnt[dst_state]++;
2213 switch (dst_state) {
2218 list_add_tail(&i->list, &nm_i->free_nid_list);
2225 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi)
2227 struct f2fs_nm_info *nm_i = NM_I(sbi);
2231 f2fs_down_read(&nm_i->nat_tree_lock);
2232 for (i = 0; i < nm_i->nat_blocks; i++) {
2233 if (!test_bit_le(i, nm_i->nat_block_bitmap)) {
2238 f2fs_up_read(&nm_i->nat_tree_lock);
2243 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2244 bool set, bool build)
2246 struct f2fs_nm_info *nm_i = NM_I(sbi);
2247 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2248 unsigned int nid_ofs = nid - START_NID(nid);
2250 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2254 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2256 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2257 nm_i->free_nid_count[nat_ofs]++;
2259 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2261 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2263 nm_i->free_nid_count[nat_ofs]--;
2267 /* return if the nid is recognized as free */
2268 static bool add_free_nid(struct f2fs_sb_info *sbi,
2269 nid_t nid, bool build, bool update)
2271 struct f2fs_nm_info *nm_i = NM_I(sbi);
2272 struct free_nid *i, *e;
2273 struct nat_entry *ne;
2277 /* 0 nid should not be used */
2278 if (unlikely(nid == 0))
2281 if (unlikely(f2fs_check_nid_range(sbi, nid)))
2284 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS, true, NULL);
2286 i->state = FREE_NID;
2288 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2290 spin_lock(&nm_i->nid_list_lock);
2298 * - __insert_nid_to_list(PREALLOC_NID)
2299 * - f2fs_balance_fs_bg
2300 * - f2fs_build_free_nids
2301 * - __f2fs_build_free_nids
2304 * - __lookup_nat_cache
2306 * - f2fs_init_inode_metadata
2307 * - f2fs_new_inode_page
2308 * - f2fs_new_node_page
2310 * - f2fs_alloc_nid_done
2311 * - __remove_nid_from_list(PREALLOC_NID)
2312 * - __insert_nid_to_list(FREE_NID)
2314 ne = __lookup_nat_cache(nm_i, nid);
2315 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2316 nat_get_blkaddr(ne) != NULL_ADDR))
2319 e = __lookup_free_nid_list(nm_i, nid);
2321 if (e->state == FREE_NID)
2327 err = __insert_free_nid(sbi, i);
2330 update_free_nid_bitmap(sbi, nid, ret, build);
2332 nm_i->available_nids++;
2334 spin_unlock(&nm_i->nid_list_lock);
2335 radix_tree_preload_end();
2338 kmem_cache_free(free_nid_slab, i);
2342 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2344 struct f2fs_nm_info *nm_i = NM_I(sbi);
2346 bool need_free = false;
2348 spin_lock(&nm_i->nid_list_lock);
2349 i = __lookup_free_nid_list(nm_i, nid);
2350 if (i && i->state == FREE_NID) {
2351 __remove_free_nid(sbi, i, FREE_NID);
2354 spin_unlock(&nm_i->nid_list_lock);
2357 kmem_cache_free(free_nid_slab, i);
2360 static int scan_nat_page(struct f2fs_sb_info *sbi,
2361 struct page *nat_page, nid_t start_nid)
2363 struct f2fs_nm_info *nm_i = NM_I(sbi);
2364 struct f2fs_nat_block *nat_blk = page_address(nat_page);
2366 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2369 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2371 i = start_nid % NAT_ENTRY_PER_BLOCK;
2373 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2374 if (unlikely(start_nid >= nm_i->max_nid))
2377 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2379 if (blk_addr == NEW_ADDR)
2382 if (blk_addr == NULL_ADDR) {
2383 add_free_nid(sbi, start_nid, true, true);
2385 spin_lock(&NM_I(sbi)->nid_list_lock);
2386 update_free_nid_bitmap(sbi, start_nid, false, true);
2387 spin_unlock(&NM_I(sbi)->nid_list_lock);
2394 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2396 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2397 struct f2fs_journal *journal = curseg->journal;
2400 down_read(&curseg->journal_rwsem);
2401 for (i = 0; i < nats_in_cursum(journal); i++) {
2405 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2406 nid = le32_to_cpu(nid_in_journal(journal, i));
2407 if (addr == NULL_ADDR)
2408 add_free_nid(sbi, nid, true, false);
2410 remove_free_nid(sbi, nid);
2412 up_read(&curseg->journal_rwsem);
2415 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2417 struct f2fs_nm_info *nm_i = NM_I(sbi);
2418 unsigned int i, idx;
2421 f2fs_down_read(&nm_i->nat_tree_lock);
2423 for (i = 0; i < nm_i->nat_blocks; i++) {
2424 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2426 if (!nm_i->free_nid_count[i])
2428 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2429 idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2430 NAT_ENTRY_PER_BLOCK, idx);
2431 if (idx >= NAT_ENTRY_PER_BLOCK)
2434 nid = i * NAT_ENTRY_PER_BLOCK + idx;
2435 add_free_nid(sbi, nid, true, false);
2437 if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2442 scan_curseg_cache(sbi);
2444 f2fs_up_read(&nm_i->nat_tree_lock);
2447 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2448 bool sync, bool mount)
2450 struct f2fs_nm_info *nm_i = NM_I(sbi);
2452 nid_t nid = nm_i->next_scan_nid;
2454 if (unlikely(nid >= nm_i->max_nid))
2457 if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2458 nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2460 /* Enough entries */
2461 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2464 if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2468 /* try to find free nids in free_nid_bitmap */
2469 scan_free_nid_bits(sbi);
2471 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2475 /* readahead nat pages to be scanned */
2476 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2479 f2fs_down_read(&nm_i->nat_tree_lock);
2482 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2483 nm_i->nat_block_bitmap)) {
2484 struct page *page = get_current_nat_page(sbi, nid);
2487 ret = PTR_ERR(page);
2489 ret = scan_nat_page(sbi, page, nid);
2490 f2fs_put_page(page, 1);
2494 f2fs_up_read(&nm_i->nat_tree_lock);
2495 f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2500 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2501 if (unlikely(nid >= nm_i->max_nid))
2504 if (++i >= FREE_NID_PAGES)
2508 /* go to the next free nat pages to find free nids abundantly */
2509 nm_i->next_scan_nid = nid;
2511 /* find free nids from current sum_pages */
2512 scan_curseg_cache(sbi);
2514 f2fs_up_read(&nm_i->nat_tree_lock);
2516 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2517 nm_i->ra_nid_pages, META_NAT, false);
2522 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2526 mutex_lock(&NM_I(sbi)->build_lock);
2527 ret = __f2fs_build_free_nids(sbi, sync, mount);
2528 mutex_unlock(&NM_I(sbi)->build_lock);
2534 * If this function returns success, caller can obtain a new nid
2535 * from second parameter of this function.
2536 * The returned nid could be used ino as well as nid when inode is created.
2538 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2540 struct f2fs_nm_info *nm_i = NM_I(sbi);
2541 struct free_nid *i = NULL;
2543 if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2544 f2fs_show_injection_info(sbi, FAULT_ALLOC_NID);
2548 spin_lock(&nm_i->nid_list_lock);
2550 if (unlikely(nm_i->available_nids == 0)) {
2551 spin_unlock(&nm_i->nid_list_lock);
2555 /* We should not use stale free nids created by f2fs_build_free_nids */
2556 if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2557 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2558 i = list_first_entry(&nm_i->free_nid_list,
2559 struct free_nid, list);
2562 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2563 nm_i->available_nids--;
2565 update_free_nid_bitmap(sbi, *nid, false, false);
2567 spin_unlock(&nm_i->nid_list_lock);
2570 spin_unlock(&nm_i->nid_list_lock);
2572 /* Let's scan nat pages and its caches to get free nids */
2573 if (!f2fs_build_free_nids(sbi, true, false))
2579 * f2fs_alloc_nid() should be called prior to this function.
2581 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2583 struct f2fs_nm_info *nm_i = NM_I(sbi);
2586 spin_lock(&nm_i->nid_list_lock);
2587 i = __lookup_free_nid_list(nm_i, nid);
2588 f2fs_bug_on(sbi, !i);
2589 __remove_free_nid(sbi, i, PREALLOC_NID);
2590 spin_unlock(&nm_i->nid_list_lock);
2592 kmem_cache_free(free_nid_slab, i);
2596 * f2fs_alloc_nid() should be called prior to this function.
2598 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2600 struct f2fs_nm_info *nm_i = NM_I(sbi);
2602 bool need_free = false;
2607 spin_lock(&nm_i->nid_list_lock);
2608 i = __lookup_free_nid_list(nm_i, nid);
2609 f2fs_bug_on(sbi, !i);
2611 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2612 __remove_free_nid(sbi, i, PREALLOC_NID);
2615 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2618 nm_i->available_nids++;
2620 update_free_nid_bitmap(sbi, nid, true, false);
2622 spin_unlock(&nm_i->nid_list_lock);
2625 kmem_cache_free(free_nid_slab, i);
2628 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2630 struct f2fs_nm_info *nm_i = NM_I(sbi);
2633 if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2636 if (!mutex_trylock(&nm_i->build_lock))
2639 while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2640 struct free_nid *i, *next;
2641 unsigned int batch = SHRINK_NID_BATCH_SIZE;
2643 spin_lock(&nm_i->nid_list_lock);
2644 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2645 if (!nr_shrink || !batch ||
2646 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2648 __remove_free_nid(sbi, i, FREE_NID);
2649 kmem_cache_free(free_nid_slab, i);
2653 spin_unlock(&nm_i->nid_list_lock);
2656 mutex_unlock(&nm_i->build_lock);
2658 return nr - nr_shrink;
2661 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2663 void *src_addr, *dst_addr;
2666 struct f2fs_inode *ri;
2668 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2670 return PTR_ERR(ipage);
2672 ri = F2FS_INODE(page);
2673 if (ri->i_inline & F2FS_INLINE_XATTR) {
2674 if (!f2fs_has_inline_xattr(inode)) {
2675 set_inode_flag(inode, FI_INLINE_XATTR);
2676 stat_inc_inline_xattr(inode);
2679 if (f2fs_has_inline_xattr(inode)) {
2680 stat_dec_inline_xattr(inode);
2681 clear_inode_flag(inode, FI_INLINE_XATTR);
2686 dst_addr = inline_xattr_addr(inode, ipage);
2687 src_addr = inline_xattr_addr(inode, page);
2688 inline_size = inline_xattr_size(inode);
2690 f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2691 memcpy(dst_addr, src_addr, inline_size);
2693 f2fs_update_inode(inode, ipage);
2694 f2fs_put_page(ipage, 1);
2698 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2700 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2701 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2703 struct dnode_of_data dn;
2704 struct node_info ni;
2711 /* 1: invalidate the previous xattr nid */
2712 err = f2fs_get_node_info(sbi, prev_xnid, &ni, false);
2716 f2fs_invalidate_blocks(sbi, ni.blk_addr);
2717 dec_valid_node_count(sbi, inode, false);
2718 set_node_addr(sbi, &ni, NULL_ADDR, false);
2721 /* 2: update xattr nid in inode */
2722 if (!f2fs_alloc_nid(sbi, &new_xnid))
2725 set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2726 xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2727 if (IS_ERR(xpage)) {
2728 f2fs_alloc_nid_failed(sbi, new_xnid);
2729 return PTR_ERR(xpage);
2732 f2fs_alloc_nid_done(sbi, new_xnid);
2733 f2fs_update_inode_page(inode);
2735 /* 3: update and set xattr node page dirty */
2736 memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2738 set_page_dirty(xpage);
2739 f2fs_put_page(xpage, 1);
2744 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2746 struct f2fs_inode *src, *dst;
2747 nid_t ino = ino_of_node(page);
2748 struct node_info old_ni, new_ni;
2752 err = f2fs_get_node_info(sbi, ino, &old_ni, false);
2756 if (unlikely(old_ni.blk_addr != NULL_ADDR))
2759 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2761 memalloc_retry_wait(GFP_NOFS);
2765 /* Should not use this inode from free nid list */
2766 remove_free_nid(sbi, ino);
2768 if (!PageUptodate(ipage))
2769 SetPageUptodate(ipage);
2770 fill_node_footer(ipage, ino, ino, 0, true);
2771 set_cold_node(ipage, false);
2773 src = F2FS_INODE(page);
2774 dst = F2FS_INODE(ipage);
2776 memcpy(dst, src, offsetof(struct f2fs_inode, i_ext));
2778 dst->i_blocks = cpu_to_le64(1);
2779 dst->i_links = cpu_to_le32(1);
2780 dst->i_xattr_nid = 0;
2781 dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2782 if (dst->i_inline & F2FS_EXTRA_ATTR) {
2783 dst->i_extra_isize = src->i_extra_isize;
2785 if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2786 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2787 i_inline_xattr_size))
2788 dst->i_inline_xattr_size = src->i_inline_xattr_size;
2790 if (f2fs_sb_has_project_quota(sbi) &&
2791 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2793 dst->i_projid = src->i_projid;
2795 if (f2fs_sb_has_inode_crtime(sbi) &&
2796 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2798 dst->i_crtime = src->i_crtime;
2799 dst->i_crtime_nsec = src->i_crtime_nsec;
2806 if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2808 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2809 inc_valid_inode_count(sbi);
2810 set_page_dirty(ipage);
2811 f2fs_put_page(ipage, 1);
2815 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2816 unsigned int segno, struct f2fs_summary_block *sum)
2818 struct f2fs_node *rn;
2819 struct f2fs_summary *sum_entry;
2821 int i, idx, last_offset, nrpages;
2823 /* scan the node segment */
2824 last_offset = sbi->blocks_per_seg;
2825 addr = START_BLOCK(sbi, segno);
2826 sum_entry = &sum->entries[0];
2828 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2829 nrpages = bio_max_segs(last_offset - i);
2831 /* readahead node pages */
2832 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2834 for (idx = addr; idx < addr + nrpages; idx++) {
2835 struct page *page = f2fs_get_tmp_page(sbi, idx);
2838 return PTR_ERR(page);
2840 rn = F2FS_NODE(page);
2841 sum_entry->nid = rn->footer.nid;
2842 sum_entry->version = 0;
2843 sum_entry->ofs_in_node = 0;
2845 f2fs_put_page(page, 1);
2848 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2854 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2856 struct f2fs_nm_info *nm_i = NM_I(sbi);
2857 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2858 struct f2fs_journal *journal = curseg->journal;
2861 down_write(&curseg->journal_rwsem);
2862 for (i = 0; i < nats_in_cursum(journal); i++) {
2863 struct nat_entry *ne;
2864 struct f2fs_nat_entry raw_ne;
2865 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2867 if (f2fs_check_nid_range(sbi, nid))
2870 raw_ne = nat_in_journal(journal, i);
2872 ne = __lookup_nat_cache(nm_i, nid);
2874 ne = __alloc_nat_entry(sbi, nid, true);
2875 __init_nat_entry(nm_i, ne, &raw_ne, true);
2879 * if a free nat in journal has not been used after last
2880 * checkpoint, we should remove it from available nids,
2881 * since later we will add it again.
2883 if (!get_nat_flag(ne, IS_DIRTY) &&
2884 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2885 spin_lock(&nm_i->nid_list_lock);
2886 nm_i->available_nids--;
2887 spin_unlock(&nm_i->nid_list_lock);
2890 __set_nat_cache_dirty(nm_i, ne);
2892 update_nats_in_cursum(journal, -i);
2893 up_write(&curseg->journal_rwsem);
2896 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2897 struct list_head *head, int max)
2899 struct nat_entry_set *cur;
2901 if (nes->entry_cnt >= max)
2904 list_for_each_entry(cur, head, set_list) {
2905 if (cur->entry_cnt >= nes->entry_cnt) {
2906 list_add(&nes->set_list, cur->set_list.prev);
2911 list_add_tail(&nes->set_list, head);
2914 static void __update_nat_bits(struct f2fs_nm_info *nm_i, unsigned int nat_ofs,
2918 __set_bit_le(nat_ofs, nm_i->empty_nat_bits);
2919 __clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2923 __clear_bit_le(nat_ofs, nm_i->empty_nat_bits);
2924 if (valid == NAT_ENTRY_PER_BLOCK)
2925 __set_bit_le(nat_ofs, nm_i->full_nat_bits);
2927 __clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2930 static void update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2933 struct f2fs_nm_info *nm_i = NM_I(sbi);
2934 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2935 struct f2fs_nat_block *nat_blk = page_address(page);
2939 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
2942 if (nat_index == 0) {
2946 for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2947 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2951 __update_nat_bits(nm_i, nat_index, valid);
2954 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi)
2956 struct f2fs_nm_info *nm_i = NM_I(sbi);
2957 unsigned int nat_ofs;
2959 f2fs_down_read(&nm_i->nat_tree_lock);
2961 for (nat_ofs = 0; nat_ofs < nm_i->nat_blocks; nat_ofs++) {
2962 unsigned int valid = 0, nid_ofs = 0;
2964 /* handle nid zero due to it should never be used */
2965 if (unlikely(nat_ofs == 0)) {
2970 for (; nid_ofs < NAT_ENTRY_PER_BLOCK; nid_ofs++) {
2971 if (!test_bit_le(nid_ofs,
2972 nm_i->free_nid_bitmap[nat_ofs]))
2976 __update_nat_bits(nm_i, nat_ofs, valid);
2979 f2fs_up_read(&nm_i->nat_tree_lock);
2982 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2983 struct nat_entry_set *set, struct cp_control *cpc)
2985 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2986 struct f2fs_journal *journal = curseg->journal;
2987 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2988 bool to_journal = true;
2989 struct f2fs_nat_block *nat_blk;
2990 struct nat_entry *ne, *cur;
2991 struct page *page = NULL;
2994 * there are two steps to flush nat entries:
2995 * #1, flush nat entries to journal in current hot data summary block.
2996 * #2, flush nat entries to nat page.
2998 if ((cpc->reason & CP_UMOUNT) ||
2999 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
3003 down_write(&curseg->journal_rwsem);
3005 page = get_next_nat_page(sbi, start_nid);
3007 return PTR_ERR(page);
3009 nat_blk = page_address(page);
3010 f2fs_bug_on(sbi, !nat_blk);
3013 /* flush dirty nats in nat entry set */
3014 list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
3015 struct f2fs_nat_entry *raw_ne;
3016 nid_t nid = nat_get_nid(ne);
3019 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
3022 offset = f2fs_lookup_journal_in_cursum(journal,
3023 NAT_JOURNAL, nid, 1);
3024 f2fs_bug_on(sbi, offset < 0);
3025 raw_ne = &nat_in_journal(journal, offset);
3026 nid_in_journal(journal, offset) = cpu_to_le32(nid);
3028 raw_ne = &nat_blk->entries[nid - start_nid];
3030 raw_nat_from_node_info(raw_ne, &ne->ni);
3032 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
3033 if (nat_get_blkaddr(ne) == NULL_ADDR) {
3034 add_free_nid(sbi, nid, false, true);
3036 spin_lock(&NM_I(sbi)->nid_list_lock);
3037 update_free_nid_bitmap(sbi, nid, false, false);
3038 spin_unlock(&NM_I(sbi)->nid_list_lock);
3043 up_write(&curseg->journal_rwsem);
3045 update_nat_bits(sbi, start_nid, page);
3046 f2fs_put_page(page, 1);
3049 /* Allow dirty nats by node block allocation in write_begin */
3050 if (!set->entry_cnt) {
3051 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
3052 kmem_cache_free(nat_entry_set_slab, set);
3058 * This function is called during the checkpointing process.
3060 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3062 struct f2fs_nm_info *nm_i = NM_I(sbi);
3063 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3064 struct f2fs_journal *journal = curseg->journal;
3065 struct nat_entry_set *setvec[SETVEC_SIZE];
3066 struct nat_entry_set *set, *tmp;
3073 * during unmount, let's flush nat_bits before checking
3074 * nat_cnt[DIRTY_NAT].
3076 if (cpc->reason & CP_UMOUNT) {
3077 f2fs_down_write(&nm_i->nat_tree_lock);
3078 remove_nats_in_journal(sbi);
3079 f2fs_up_write(&nm_i->nat_tree_lock);
3082 if (!nm_i->nat_cnt[DIRTY_NAT])
3085 f2fs_down_write(&nm_i->nat_tree_lock);
3088 * if there are no enough space in journal to store dirty nat
3089 * entries, remove all entries from journal and merge them
3090 * into nat entry set.
3092 if (cpc->reason & CP_UMOUNT ||
3093 !__has_cursum_space(journal,
3094 nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
3095 remove_nats_in_journal(sbi);
3097 while ((found = __gang_lookup_nat_set(nm_i,
3098 set_idx, SETVEC_SIZE, setvec))) {
3101 set_idx = setvec[found - 1]->set + 1;
3102 for (idx = 0; idx < found; idx++)
3103 __adjust_nat_entry_set(setvec[idx], &sets,
3104 MAX_NAT_JENTRIES(journal));
3107 /* flush dirty nats in nat entry set */
3108 list_for_each_entry_safe(set, tmp, &sets, set_list) {
3109 err = __flush_nat_entry_set(sbi, set, cpc);
3114 f2fs_up_write(&nm_i->nat_tree_lock);
3115 /* Allow dirty nats by node block allocation in write_begin */
3120 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3122 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3123 struct f2fs_nm_info *nm_i = NM_I(sbi);
3124 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3126 __u64 cp_ver = cur_cp_version(ckpt);
3127 block_t nat_bits_addr;
3129 nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3130 nm_i->nat_bits = f2fs_kvzalloc(sbi,
3131 nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
3132 if (!nm_i->nat_bits)
3135 nm_i->full_nat_bits = nm_i->nat_bits + 8;
3136 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3138 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3141 nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
3142 nm_i->nat_bits_blocks;
3143 for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3146 page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3148 return PTR_ERR(page);
3150 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
3151 page_address(page), F2FS_BLKSIZE);
3152 f2fs_put_page(page, 1);
3155 cp_ver |= (cur_cp_crc(ckpt) << 32);
3156 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3157 clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
3158 f2fs_notice(sbi, "Disable nat_bits due to incorrect cp_ver (%llu, %llu)",
3159 cp_ver, le64_to_cpu(*(__le64 *)nm_i->nat_bits));
3163 f2fs_notice(sbi, "Found nat_bits in checkpoint");
3167 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3169 struct f2fs_nm_info *nm_i = NM_I(sbi);
3171 nid_t nid, last_nid;
3173 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3176 for (i = 0; i < nm_i->nat_blocks; i++) {
3177 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3178 if (i >= nm_i->nat_blocks)
3181 __set_bit_le(i, nm_i->nat_block_bitmap);
3183 nid = i * NAT_ENTRY_PER_BLOCK;
3184 last_nid = nid + NAT_ENTRY_PER_BLOCK;
3186 spin_lock(&NM_I(sbi)->nid_list_lock);
3187 for (; nid < last_nid; nid++)
3188 update_free_nid_bitmap(sbi, nid, true, true);
3189 spin_unlock(&NM_I(sbi)->nid_list_lock);
3192 for (i = 0; i < nm_i->nat_blocks; i++) {
3193 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3194 if (i >= nm_i->nat_blocks)
3197 __set_bit_le(i, nm_i->nat_block_bitmap);
3201 static int init_node_manager(struct f2fs_sb_info *sbi)
3203 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3204 struct f2fs_nm_info *nm_i = NM_I(sbi);
3205 unsigned char *version_bitmap;
3206 unsigned int nat_segs;
3209 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3211 /* segment_count_nat includes pair segment so divide to 2. */
3212 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3213 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3214 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3216 /* not used nids: 0, node, meta, (and root counted as valid node) */
3217 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3218 F2FS_RESERVED_NODE_NUM;
3219 nm_i->nid_cnt[FREE_NID] = 0;
3220 nm_i->nid_cnt[PREALLOC_NID] = 0;
3221 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3222 nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3223 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3224 nm_i->max_rf_node_blocks = DEF_RF_NODE_BLOCKS;
3226 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3227 INIT_LIST_HEAD(&nm_i->free_nid_list);
3228 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3229 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3230 INIT_LIST_HEAD(&nm_i->nat_entries);
3231 spin_lock_init(&nm_i->nat_list_lock);
3233 mutex_init(&nm_i->build_lock);
3234 spin_lock_init(&nm_i->nid_list_lock);
3235 init_f2fs_rwsem(&nm_i->nat_tree_lock);
3237 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3238 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3239 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3240 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3242 if (!nm_i->nat_bitmap)
3245 err = __get_nat_bitmaps(sbi);
3249 #ifdef CONFIG_F2FS_CHECK_FS
3250 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3252 if (!nm_i->nat_bitmap_mir)
3259 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3261 struct f2fs_nm_info *nm_i = NM_I(sbi);
3264 nm_i->free_nid_bitmap =
3265 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3268 if (!nm_i->free_nid_bitmap)
3271 for (i = 0; i < nm_i->nat_blocks; i++) {
3272 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3273 f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3274 if (!nm_i->free_nid_bitmap[i])
3278 nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3280 if (!nm_i->nat_block_bitmap)
3283 nm_i->free_nid_count =
3284 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3287 if (!nm_i->free_nid_count)
3292 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3296 sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3301 err = init_node_manager(sbi);
3305 err = init_free_nid_cache(sbi);
3309 /* load free nid status from nat_bits table */
3310 load_free_nid_bitmap(sbi);
3312 return f2fs_build_free_nids(sbi, true, true);
3315 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3317 struct f2fs_nm_info *nm_i = NM_I(sbi);
3318 struct free_nid *i, *next_i;
3319 struct nat_entry *natvec[NATVEC_SIZE];
3320 struct nat_entry_set *setvec[SETVEC_SIZE];
3327 /* destroy free nid list */
3328 spin_lock(&nm_i->nid_list_lock);
3329 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3330 __remove_free_nid(sbi, i, FREE_NID);
3331 spin_unlock(&nm_i->nid_list_lock);
3332 kmem_cache_free(free_nid_slab, i);
3333 spin_lock(&nm_i->nid_list_lock);
3335 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3336 f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3337 f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3338 spin_unlock(&nm_i->nid_list_lock);
3340 /* destroy nat cache */
3341 f2fs_down_write(&nm_i->nat_tree_lock);
3342 while ((found = __gang_lookup_nat_cache(nm_i,
3343 nid, NATVEC_SIZE, natvec))) {
3346 nid = nat_get_nid(natvec[found - 1]) + 1;
3347 for (idx = 0; idx < found; idx++) {
3348 spin_lock(&nm_i->nat_list_lock);
3349 list_del(&natvec[idx]->list);
3350 spin_unlock(&nm_i->nat_list_lock);
3352 __del_from_nat_cache(nm_i, natvec[idx]);
3355 f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3357 /* destroy nat set cache */
3359 while ((found = __gang_lookup_nat_set(nm_i,
3360 nid, SETVEC_SIZE, setvec))) {
3363 nid = setvec[found - 1]->set + 1;
3364 for (idx = 0; idx < found; idx++) {
3365 /* entry_cnt is not zero, when cp_error was occurred */
3366 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3367 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3368 kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3371 f2fs_up_write(&nm_i->nat_tree_lock);
3373 kvfree(nm_i->nat_block_bitmap);
3374 if (nm_i->free_nid_bitmap) {
3377 for (i = 0; i < nm_i->nat_blocks; i++)
3378 kvfree(nm_i->free_nid_bitmap[i]);
3379 kvfree(nm_i->free_nid_bitmap);
3381 kvfree(nm_i->free_nid_count);
3383 kvfree(nm_i->nat_bitmap);
3384 kvfree(nm_i->nat_bits);
3385 #ifdef CONFIG_F2FS_CHECK_FS
3386 kvfree(nm_i->nat_bitmap_mir);
3388 sbi->nm_info = NULL;
3392 int __init f2fs_create_node_manager_caches(void)
3394 nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3395 sizeof(struct nat_entry));
3396 if (!nat_entry_slab)
3399 free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3400 sizeof(struct free_nid));
3402 goto destroy_nat_entry;
3404 nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3405 sizeof(struct nat_entry_set));
3406 if (!nat_entry_set_slab)
3407 goto destroy_free_nid;
3409 fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3410 sizeof(struct fsync_node_entry));
3411 if (!fsync_node_entry_slab)
3412 goto destroy_nat_entry_set;
3415 destroy_nat_entry_set:
3416 kmem_cache_destroy(nat_entry_set_slab);
3418 kmem_cache_destroy(free_nid_slab);
3420 kmem_cache_destroy(nat_entry_slab);
3425 void f2fs_destroy_node_manager_caches(void)
3427 kmem_cache_destroy(fsync_node_entry_slab);
3428 kmem_cache_destroy(nat_entry_set_slab);
3429 kmem_cache_destroy(free_nid_slab);
3430 kmem_cache_destroy(nat_entry_slab);