f2fs: fix return value of releasepage for node and data
[platform/adaptation/renesas_rcar/renesas_kernel.git] / fs / f2fs / node.c
1 /*
2  * fs/f2fs/node.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
18
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22
23 static struct kmem_cache *nat_entry_slab;
24 static struct kmem_cache *free_nid_slab;
25
26 static void clear_node_page_dirty(struct page *page)
27 {
28         struct address_space *mapping = page->mapping;
29         struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
30         unsigned int long flags;
31
32         if (PageDirty(page)) {
33                 spin_lock_irqsave(&mapping->tree_lock, flags);
34                 radix_tree_tag_clear(&mapping->page_tree,
35                                 page_index(page),
36                                 PAGECACHE_TAG_DIRTY);
37                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
38
39                 clear_page_dirty_for_io(page);
40                 dec_page_count(sbi, F2FS_DIRTY_NODES);
41         }
42         ClearPageUptodate(page);
43 }
44
45 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
46 {
47         pgoff_t index = current_nat_addr(sbi, nid);
48         return get_meta_page(sbi, index);
49 }
50
51 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
52 {
53         struct page *src_page;
54         struct page *dst_page;
55         pgoff_t src_off;
56         pgoff_t dst_off;
57         void *src_addr;
58         void *dst_addr;
59         struct f2fs_nm_info *nm_i = NM_I(sbi);
60
61         src_off = current_nat_addr(sbi, nid);
62         dst_off = next_nat_addr(sbi, src_off);
63
64         /* get current nat block page with lock */
65         src_page = get_meta_page(sbi, src_off);
66
67         /* Dirty src_page means that it is already the new target NAT page. */
68         if (PageDirty(src_page))
69                 return src_page;
70
71         dst_page = grab_meta_page(sbi, dst_off);
72
73         src_addr = page_address(src_page);
74         dst_addr = page_address(dst_page);
75         memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
76         set_page_dirty(dst_page);
77         f2fs_put_page(src_page, 1);
78
79         set_to_next_nat(nm_i, nid);
80
81         return dst_page;
82 }
83
84 /*
85  * Readahead NAT pages
86  */
87 static void ra_nat_pages(struct f2fs_sb_info *sbi, int nid)
88 {
89         struct address_space *mapping = sbi->meta_inode->i_mapping;
90         struct f2fs_nm_info *nm_i = NM_I(sbi);
91         struct page *page;
92         pgoff_t index;
93         int i;
94
95         for (i = 0; i < FREE_NID_PAGES; i++, nid += NAT_ENTRY_PER_BLOCK) {
96                 if (nid >= nm_i->max_nid)
97                         nid = 0;
98                 index = current_nat_addr(sbi, nid);
99
100                 page = grab_cache_page(mapping, index);
101                 if (!page)
102                         continue;
103                 if (PageUptodate(page)) {
104                         f2fs_put_page(page, 1);
105                         continue;
106                 }
107                 if (f2fs_readpage(sbi, page, index, READ))
108                         continue;
109
110                 f2fs_put_page(page, 0);
111         }
112 }
113
114 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
115 {
116         return radix_tree_lookup(&nm_i->nat_root, n);
117 }
118
119 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
120                 nid_t start, unsigned int nr, struct nat_entry **ep)
121 {
122         return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
123 }
124
125 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
126 {
127         list_del(&e->list);
128         radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
129         nm_i->nat_cnt--;
130         kmem_cache_free(nat_entry_slab, e);
131 }
132
133 int is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
134 {
135         struct f2fs_nm_info *nm_i = NM_I(sbi);
136         struct nat_entry *e;
137         int is_cp = 1;
138
139         read_lock(&nm_i->nat_tree_lock);
140         e = __lookup_nat_cache(nm_i, nid);
141         if (e && !e->checkpointed)
142                 is_cp = 0;
143         read_unlock(&nm_i->nat_tree_lock);
144         return is_cp;
145 }
146
147 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
148 {
149         struct nat_entry *new;
150
151         new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
152         if (!new)
153                 return NULL;
154         if (radix_tree_insert(&nm_i->nat_root, nid, new)) {
155                 kmem_cache_free(nat_entry_slab, new);
156                 return NULL;
157         }
158         memset(new, 0, sizeof(struct nat_entry));
159         nat_set_nid(new, nid);
160         list_add_tail(&new->list, &nm_i->nat_entries);
161         nm_i->nat_cnt++;
162         return new;
163 }
164
165 static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
166                                                 struct f2fs_nat_entry *ne)
167 {
168         struct nat_entry *e;
169 retry:
170         write_lock(&nm_i->nat_tree_lock);
171         e = __lookup_nat_cache(nm_i, nid);
172         if (!e) {
173                 e = grab_nat_entry(nm_i, nid);
174                 if (!e) {
175                         write_unlock(&nm_i->nat_tree_lock);
176                         goto retry;
177                 }
178                 nat_set_blkaddr(e, le32_to_cpu(ne->block_addr));
179                 nat_set_ino(e, le32_to_cpu(ne->ino));
180                 nat_set_version(e, ne->version);
181                 e->checkpointed = true;
182         }
183         write_unlock(&nm_i->nat_tree_lock);
184 }
185
186 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
187                         block_t new_blkaddr)
188 {
189         struct f2fs_nm_info *nm_i = NM_I(sbi);
190         struct nat_entry *e;
191 retry:
192         write_lock(&nm_i->nat_tree_lock);
193         e = __lookup_nat_cache(nm_i, ni->nid);
194         if (!e) {
195                 e = grab_nat_entry(nm_i, ni->nid);
196                 if (!e) {
197                         write_unlock(&nm_i->nat_tree_lock);
198                         goto retry;
199                 }
200                 e->ni = *ni;
201                 e->checkpointed = true;
202                 BUG_ON(ni->blk_addr == NEW_ADDR);
203         } else if (new_blkaddr == NEW_ADDR) {
204                 /*
205                  * when nid is reallocated,
206                  * previous nat entry can be remained in nat cache.
207                  * So, reinitialize it with new information.
208                  */
209                 e->ni = *ni;
210                 BUG_ON(ni->blk_addr != NULL_ADDR);
211         }
212
213         if (new_blkaddr == NEW_ADDR)
214                 e->checkpointed = false;
215
216         /* sanity check */
217         BUG_ON(nat_get_blkaddr(e) != ni->blk_addr);
218         BUG_ON(nat_get_blkaddr(e) == NULL_ADDR &&
219                         new_blkaddr == NULL_ADDR);
220         BUG_ON(nat_get_blkaddr(e) == NEW_ADDR &&
221                         new_blkaddr == NEW_ADDR);
222         BUG_ON(nat_get_blkaddr(e) != NEW_ADDR &&
223                         nat_get_blkaddr(e) != NULL_ADDR &&
224                         new_blkaddr == NEW_ADDR);
225
226         /* increament version no as node is removed */
227         if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
228                 unsigned char version = nat_get_version(e);
229                 nat_set_version(e, inc_node_version(version));
230         }
231
232         /* change address */
233         nat_set_blkaddr(e, new_blkaddr);
234         __set_nat_cache_dirty(nm_i, e);
235         write_unlock(&nm_i->nat_tree_lock);
236 }
237
238 static int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
239 {
240         struct f2fs_nm_info *nm_i = NM_I(sbi);
241
242         if (nm_i->nat_cnt < 2 * NM_WOUT_THRESHOLD)
243                 return 0;
244
245         write_lock(&nm_i->nat_tree_lock);
246         while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
247                 struct nat_entry *ne;
248                 ne = list_first_entry(&nm_i->nat_entries,
249                                         struct nat_entry, list);
250                 __del_from_nat_cache(nm_i, ne);
251                 nr_shrink--;
252         }
253         write_unlock(&nm_i->nat_tree_lock);
254         return nr_shrink;
255 }
256
257 /*
258  * This function returns always success
259  */
260 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
261 {
262         struct f2fs_nm_info *nm_i = NM_I(sbi);
263         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
264         struct f2fs_summary_block *sum = curseg->sum_blk;
265         nid_t start_nid = START_NID(nid);
266         struct f2fs_nat_block *nat_blk;
267         struct page *page = NULL;
268         struct f2fs_nat_entry ne;
269         struct nat_entry *e;
270         int i;
271
272         memset(&ne, 0, sizeof(struct f2fs_nat_entry));
273         ni->nid = nid;
274
275         /* Check nat cache */
276         read_lock(&nm_i->nat_tree_lock);
277         e = __lookup_nat_cache(nm_i, nid);
278         if (e) {
279                 ni->ino = nat_get_ino(e);
280                 ni->blk_addr = nat_get_blkaddr(e);
281                 ni->version = nat_get_version(e);
282         }
283         read_unlock(&nm_i->nat_tree_lock);
284         if (e)
285                 return;
286
287         /* Check current segment summary */
288         mutex_lock(&curseg->curseg_mutex);
289         i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
290         if (i >= 0) {
291                 ne = nat_in_journal(sum, i);
292                 node_info_from_raw_nat(ni, &ne);
293         }
294         mutex_unlock(&curseg->curseg_mutex);
295         if (i >= 0)
296                 goto cache;
297
298         /* Fill node_info from nat page */
299         page = get_current_nat_page(sbi, start_nid);
300         nat_blk = (struct f2fs_nat_block *)page_address(page);
301         ne = nat_blk->entries[nid - start_nid];
302         node_info_from_raw_nat(ni, &ne);
303         f2fs_put_page(page, 1);
304 cache:
305         /* cache nat entry */
306         cache_nat_entry(NM_I(sbi), nid, &ne);
307 }
308
309 /*
310  * The maximum depth is four.
311  * Offset[0] will have raw inode offset.
312  */
313 static int get_node_path(long block, int offset[4], unsigned int noffset[4])
314 {
315         const long direct_index = ADDRS_PER_INODE;
316         const long direct_blks = ADDRS_PER_BLOCK;
317         const long dptrs_per_blk = NIDS_PER_BLOCK;
318         const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
319         const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
320         int n = 0;
321         int level = 0;
322
323         noffset[0] = 0;
324
325         if (block < direct_index) {
326                 offset[n] = block;
327                 goto got;
328         }
329         block -= direct_index;
330         if (block < direct_blks) {
331                 offset[n++] = NODE_DIR1_BLOCK;
332                 noffset[n] = 1;
333                 offset[n] = block;
334                 level = 1;
335                 goto got;
336         }
337         block -= direct_blks;
338         if (block < direct_blks) {
339                 offset[n++] = NODE_DIR2_BLOCK;
340                 noffset[n] = 2;
341                 offset[n] = block;
342                 level = 1;
343                 goto got;
344         }
345         block -= direct_blks;
346         if (block < indirect_blks) {
347                 offset[n++] = NODE_IND1_BLOCK;
348                 noffset[n] = 3;
349                 offset[n++] = block / direct_blks;
350                 noffset[n] = 4 + offset[n - 1];
351                 offset[n] = block % direct_blks;
352                 level = 2;
353                 goto got;
354         }
355         block -= indirect_blks;
356         if (block < indirect_blks) {
357                 offset[n++] = NODE_IND2_BLOCK;
358                 noffset[n] = 4 + dptrs_per_blk;
359                 offset[n++] = block / direct_blks;
360                 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
361                 offset[n] = block % direct_blks;
362                 level = 2;
363                 goto got;
364         }
365         block -= indirect_blks;
366         if (block < dindirect_blks) {
367                 offset[n++] = NODE_DIND_BLOCK;
368                 noffset[n] = 5 + (dptrs_per_blk * 2);
369                 offset[n++] = block / indirect_blks;
370                 noffset[n] = 6 + (dptrs_per_blk * 2) +
371                               offset[n - 1] * (dptrs_per_blk + 1);
372                 offset[n++] = (block / direct_blks) % dptrs_per_blk;
373                 noffset[n] = 7 + (dptrs_per_blk * 2) +
374                               offset[n - 2] * (dptrs_per_blk + 1) +
375                               offset[n - 1];
376                 offset[n] = block % direct_blks;
377                 level = 3;
378                 goto got;
379         } else {
380                 BUG();
381         }
382 got:
383         return level;
384 }
385
386 /*
387  * Caller should call f2fs_put_dnode(dn).
388  */
389 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
390 {
391         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
392         struct page *npage[4];
393         struct page *parent;
394         int offset[4];
395         unsigned int noffset[4];
396         nid_t nids[4];
397         int level, i;
398         int err = 0;
399
400         level = get_node_path(index, offset, noffset);
401
402         nids[0] = dn->inode->i_ino;
403         npage[0] = get_node_page(sbi, nids[0]);
404         if (IS_ERR(npage[0]))
405                 return PTR_ERR(npage[0]);
406
407         parent = npage[0];
408         if (level != 0)
409                 nids[1] = get_nid(parent, offset[0], true);
410         dn->inode_page = npage[0];
411         dn->inode_page_locked = true;
412
413         /* get indirect or direct nodes */
414         for (i = 1; i <= level; i++) {
415                 bool done = false;
416
417                 if (!nids[i] && mode == ALLOC_NODE) {
418                         mutex_lock_op(sbi, NODE_NEW);
419
420                         /* alloc new node */
421                         if (!alloc_nid(sbi, &(nids[i]))) {
422                                 mutex_unlock_op(sbi, NODE_NEW);
423                                 err = -ENOSPC;
424                                 goto release_pages;
425                         }
426
427                         dn->nid = nids[i];
428                         npage[i] = new_node_page(dn, noffset[i]);
429                         if (IS_ERR(npage[i])) {
430                                 alloc_nid_failed(sbi, nids[i]);
431                                 mutex_unlock_op(sbi, NODE_NEW);
432                                 err = PTR_ERR(npage[i]);
433                                 goto release_pages;
434                         }
435
436                         set_nid(parent, offset[i - 1], nids[i], i == 1);
437                         alloc_nid_done(sbi, nids[i]);
438                         mutex_unlock_op(sbi, NODE_NEW);
439                         done = true;
440                 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
441                         npage[i] = get_node_page_ra(parent, offset[i - 1]);
442                         if (IS_ERR(npage[i])) {
443                                 err = PTR_ERR(npage[i]);
444                                 goto release_pages;
445                         }
446                         done = true;
447                 }
448                 if (i == 1) {
449                         dn->inode_page_locked = false;
450                         unlock_page(parent);
451                 } else {
452                         f2fs_put_page(parent, 1);
453                 }
454
455                 if (!done) {
456                         npage[i] = get_node_page(sbi, nids[i]);
457                         if (IS_ERR(npage[i])) {
458                                 err = PTR_ERR(npage[i]);
459                                 f2fs_put_page(npage[0], 0);
460                                 goto release_out;
461                         }
462                 }
463                 if (i < level) {
464                         parent = npage[i];
465                         nids[i + 1] = get_nid(parent, offset[i], false);
466                 }
467         }
468         dn->nid = nids[level];
469         dn->ofs_in_node = offset[level];
470         dn->node_page = npage[level];
471         dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
472         return 0;
473
474 release_pages:
475         f2fs_put_page(parent, 1);
476         if (i > 1)
477                 f2fs_put_page(npage[0], 0);
478 release_out:
479         dn->inode_page = NULL;
480         dn->node_page = NULL;
481         return err;
482 }
483
484 static void truncate_node(struct dnode_of_data *dn)
485 {
486         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
487         struct node_info ni;
488
489         get_node_info(sbi, dn->nid, &ni);
490         if (dn->inode->i_blocks == 0) {
491                 BUG_ON(ni.blk_addr != NULL_ADDR);
492                 goto invalidate;
493         }
494         BUG_ON(ni.blk_addr == NULL_ADDR);
495
496         /* Deallocate node address */
497         invalidate_blocks(sbi, ni.blk_addr);
498         dec_valid_node_count(sbi, dn->inode, 1);
499         set_node_addr(sbi, &ni, NULL_ADDR);
500
501         if (dn->nid == dn->inode->i_ino) {
502                 remove_orphan_inode(sbi, dn->nid);
503                 dec_valid_inode_count(sbi);
504         } else {
505                 sync_inode_page(dn);
506         }
507 invalidate:
508         clear_node_page_dirty(dn->node_page);
509         F2FS_SET_SB_DIRT(sbi);
510
511         f2fs_put_page(dn->node_page, 1);
512         dn->node_page = NULL;
513 }
514
515 static int truncate_dnode(struct dnode_of_data *dn)
516 {
517         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
518         struct page *page;
519
520         if (dn->nid == 0)
521                 return 1;
522
523         /* get direct node */
524         page = get_node_page(sbi, dn->nid);
525         if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
526                 return 1;
527         else if (IS_ERR(page))
528                 return PTR_ERR(page);
529
530         /* Make dnode_of_data for parameter */
531         dn->node_page = page;
532         dn->ofs_in_node = 0;
533         truncate_data_blocks(dn);
534         truncate_node(dn);
535         return 1;
536 }
537
538 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
539                                                 int ofs, int depth)
540 {
541         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
542         struct dnode_of_data rdn = *dn;
543         struct page *page;
544         struct f2fs_node *rn;
545         nid_t child_nid;
546         unsigned int child_nofs;
547         int freed = 0;
548         int i, ret;
549
550         if (dn->nid == 0)
551                 return NIDS_PER_BLOCK + 1;
552
553         page = get_node_page(sbi, dn->nid);
554         if (IS_ERR(page))
555                 return PTR_ERR(page);
556
557         rn = (struct f2fs_node *)page_address(page);
558         if (depth < 3) {
559                 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
560                         child_nid = le32_to_cpu(rn->in.nid[i]);
561                         if (child_nid == 0)
562                                 continue;
563                         rdn.nid = child_nid;
564                         ret = truncate_dnode(&rdn);
565                         if (ret < 0)
566                                 goto out_err;
567                         set_nid(page, i, 0, false);
568                 }
569         } else {
570                 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
571                 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
572                         child_nid = le32_to_cpu(rn->in.nid[i]);
573                         if (child_nid == 0) {
574                                 child_nofs += NIDS_PER_BLOCK + 1;
575                                 continue;
576                         }
577                         rdn.nid = child_nid;
578                         ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
579                         if (ret == (NIDS_PER_BLOCK + 1)) {
580                                 set_nid(page, i, 0, false);
581                                 child_nofs += ret;
582                         } else if (ret < 0 && ret != -ENOENT) {
583                                 goto out_err;
584                         }
585                 }
586                 freed = child_nofs;
587         }
588
589         if (!ofs) {
590                 /* remove current indirect node */
591                 dn->node_page = page;
592                 truncate_node(dn);
593                 freed++;
594         } else {
595                 f2fs_put_page(page, 1);
596         }
597         return freed;
598
599 out_err:
600         f2fs_put_page(page, 1);
601         return ret;
602 }
603
604 static int truncate_partial_nodes(struct dnode_of_data *dn,
605                         struct f2fs_inode *ri, int *offset, int depth)
606 {
607         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
608         struct page *pages[2];
609         nid_t nid[3];
610         nid_t child_nid;
611         int err = 0;
612         int i;
613         int idx = depth - 2;
614
615         nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
616         if (!nid[0])
617                 return 0;
618
619         /* get indirect nodes in the path */
620         for (i = 0; i < depth - 1; i++) {
621                 /* refernece count'll be increased */
622                 pages[i] = get_node_page(sbi, nid[i]);
623                 if (IS_ERR(pages[i])) {
624                         depth = i + 1;
625                         err = PTR_ERR(pages[i]);
626                         goto fail;
627                 }
628                 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
629         }
630
631         /* free direct nodes linked to a partial indirect node */
632         for (i = offset[depth - 1]; i < NIDS_PER_BLOCK; i++) {
633                 child_nid = get_nid(pages[idx], i, false);
634                 if (!child_nid)
635                         continue;
636                 dn->nid = child_nid;
637                 err = truncate_dnode(dn);
638                 if (err < 0)
639                         goto fail;
640                 set_nid(pages[idx], i, 0, false);
641         }
642
643         if (offset[depth - 1] == 0) {
644                 dn->node_page = pages[idx];
645                 dn->nid = nid[idx];
646                 truncate_node(dn);
647         } else {
648                 f2fs_put_page(pages[idx], 1);
649         }
650         offset[idx]++;
651         offset[depth - 1] = 0;
652 fail:
653         for (i = depth - 3; i >= 0; i--)
654                 f2fs_put_page(pages[i], 1);
655         return err;
656 }
657
658 /*
659  * All the block addresses of data and nodes should be nullified.
660  */
661 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
662 {
663         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
664         int err = 0, cont = 1;
665         int level, offset[4], noffset[4];
666         unsigned int nofs = 0;
667         struct f2fs_node *rn;
668         struct dnode_of_data dn;
669         struct page *page;
670
671         level = get_node_path(from, offset, noffset);
672
673         page = get_node_page(sbi, inode->i_ino);
674         if (IS_ERR(page))
675                 return PTR_ERR(page);
676
677         set_new_dnode(&dn, inode, page, NULL, 0);
678         unlock_page(page);
679
680         rn = page_address(page);
681         switch (level) {
682         case 0:
683         case 1:
684                 nofs = noffset[1];
685                 break;
686         case 2:
687                 nofs = noffset[1];
688                 if (!offset[level - 1])
689                         goto skip_partial;
690                 err = truncate_partial_nodes(&dn, &rn->i, offset, level);
691                 if (err < 0 && err != -ENOENT)
692                         goto fail;
693                 nofs += 1 + NIDS_PER_BLOCK;
694                 break;
695         case 3:
696                 nofs = 5 + 2 * NIDS_PER_BLOCK;
697                 if (!offset[level - 1])
698                         goto skip_partial;
699                 err = truncate_partial_nodes(&dn, &rn->i, offset, level);
700                 if (err < 0 && err != -ENOENT)
701                         goto fail;
702                 break;
703         default:
704                 BUG();
705         }
706
707 skip_partial:
708         while (cont) {
709                 dn.nid = le32_to_cpu(rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]);
710                 switch (offset[0]) {
711                 case NODE_DIR1_BLOCK:
712                 case NODE_DIR2_BLOCK:
713                         err = truncate_dnode(&dn);
714                         break;
715
716                 case NODE_IND1_BLOCK:
717                 case NODE_IND2_BLOCK:
718                         err = truncate_nodes(&dn, nofs, offset[1], 2);
719                         break;
720
721                 case NODE_DIND_BLOCK:
722                         err = truncate_nodes(&dn, nofs, offset[1], 3);
723                         cont = 0;
724                         break;
725
726                 default:
727                         BUG();
728                 }
729                 if (err < 0 && err != -ENOENT)
730                         goto fail;
731                 if (offset[1] == 0 &&
732                                 rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]) {
733                         lock_page(page);
734                         wait_on_page_writeback(page);
735                         rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
736                         set_page_dirty(page);
737                         unlock_page(page);
738                 }
739                 offset[1] = 0;
740                 offset[0]++;
741                 nofs += err;
742         }
743 fail:
744         f2fs_put_page(page, 0);
745         return err > 0 ? 0 : err;
746 }
747
748 int remove_inode_page(struct inode *inode)
749 {
750         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
751         struct page *page;
752         nid_t ino = inode->i_ino;
753         struct dnode_of_data dn;
754
755         mutex_lock_op(sbi, NODE_TRUNC);
756         page = get_node_page(sbi, ino);
757         if (IS_ERR(page)) {
758                 mutex_unlock_op(sbi, NODE_TRUNC);
759                 return PTR_ERR(page);
760         }
761
762         if (F2FS_I(inode)->i_xattr_nid) {
763                 nid_t nid = F2FS_I(inode)->i_xattr_nid;
764                 struct page *npage = get_node_page(sbi, nid);
765
766                 if (IS_ERR(npage)) {
767                         mutex_unlock_op(sbi, NODE_TRUNC);
768                         return PTR_ERR(npage);
769                 }
770
771                 F2FS_I(inode)->i_xattr_nid = 0;
772                 set_new_dnode(&dn, inode, page, npage, nid);
773                 dn.inode_page_locked = 1;
774                 truncate_node(&dn);
775         }
776
777         /* 0 is possible, after f2fs_new_inode() is failed */
778         BUG_ON(inode->i_blocks != 0 && inode->i_blocks != 1);
779         set_new_dnode(&dn, inode, page, page, ino);
780         truncate_node(&dn);
781
782         mutex_unlock_op(sbi, NODE_TRUNC);
783         return 0;
784 }
785
786 int new_inode_page(struct inode *inode, const struct qstr *name)
787 {
788         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
789         struct page *page;
790         struct dnode_of_data dn;
791
792         /* allocate inode page for new inode */
793         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
794         mutex_lock_op(sbi, NODE_NEW);
795         page = new_node_page(&dn, 0);
796         init_dent_inode(name, page);
797         mutex_unlock_op(sbi, NODE_NEW);
798         if (IS_ERR(page))
799                 return PTR_ERR(page);
800         f2fs_put_page(page, 1);
801         return 0;
802 }
803
804 struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs)
805 {
806         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
807         struct address_space *mapping = sbi->node_inode->i_mapping;
808         struct node_info old_ni, new_ni;
809         struct page *page;
810         int err;
811
812         if (is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC))
813                 return ERR_PTR(-EPERM);
814
815         page = grab_cache_page(mapping, dn->nid);
816         if (!page)
817                 return ERR_PTR(-ENOMEM);
818
819         get_node_info(sbi, dn->nid, &old_ni);
820
821         SetPageUptodate(page);
822         fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
823
824         /* Reinitialize old_ni with new node page */
825         BUG_ON(old_ni.blk_addr != NULL_ADDR);
826         new_ni = old_ni;
827         new_ni.ino = dn->inode->i_ino;
828
829         if (!inc_valid_node_count(sbi, dn->inode, 1)) {
830                 err = -ENOSPC;
831                 goto fail;
832         }
833         set_node_addr(sbi, &new_ni, NEW_ADDR);
834         set_cold_node(dn->inode, page);
835
836         dn->node_page = page;
837         sync_inode_page(dn);
838         set_page_dirty(page);
839         if (ofs == 0)
840                 inc_valid_inode_count(sbi);
841
842         return page;
843
844 fail:
845         clear_node_page_dirty(page);
846         f2fs_put_page(page, 1);
847         return ERR_PTR(err);
848 }
849
850 static int read_node_page(struct page *page, int type)
851 {
852         struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
853         struct node_info ni;
854
855         get_node_info(sbi, page->index, &ni);
856
857         if (ni.blk_addr == NULL_ADDR) {
858                 f2fs_put_page(page, 1);
859                 return -ENOENT;
860         }
861
862         if (PageUptodate(page)) {
863                 unlock_page(page);
864                 return 0;
865         }
866
867         return f2fs_readpage(sbi, page, ni.blk_addr, type);
868 }
869
870 /*
871  * Readahead a node page
872  */
873 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
874 {
875         struct address_space *mapping = sbi->node_inode->i_mapping;
876         struct page *apage;
877
878         apage = find_get_page(mapping, nid);
879         if (apage && PageUptodate(apage)) {
880                 f2fs_put_page(apage, 0);
881                 return;
882         }
883         f2fs_put_page(apage, 0);
884
885         apage = grab_cache_page(mapping, nid);
886         if (!apage)
887                 return;
888
889         if (read_node_page(apage, READA) == 0)
890                 f2fs_put_page(apage, 0);
891         return;
892 }
893
894 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
895 {
896         int err;
897         struct page *page;
898         struct address_space *mapping = sbi->node_inode->i_mapping;
899
900         page = grab_cache_page(mapping, nid);
901         if (!page)
902                 return ERR_PTR(-ENOMEM);
903
904         err = read_node_page(page, READ_SYNC);
905         if (err)
906                 return ERR_PTR(err);
907
908         lock_page(page);
909         if (!PageUptodate(page)) {
910                 f2fs_put_page(page, 1);
911                 return ERR_PTR(-EIO);
912         }
913         BUG_ON(nid != nid_of_node(page));
914         mark_page_accessed(page);
915         return page;
916 }
917
918 /*
919  * Return a locked page for the desired node page.
920  * And, readahead MAX_RA_NODE number of node pages.
921  */
922 struct page *get_node_page_ra(struct page *parent, int start)
923 {
924         struct f2fs_sb_info *sbi = F2FS_SB(parent->mapping->host->i_sb);
925         struct address_space *mapping = sbi->node_inode->i_mapping;
926         int i, end;
927         int err = 0;
928         nid_t nid;
929         struct page *page;
930
931         /* First, try getting the desired direct node. */
932         nid = get_nid(parent, start, false);
933         if (!nid)
934                 return ERR_PTR(-ENOENT);
935
936         page = grab_cache_page(mapping, nid);
937         if (!page)
938                 return ERR_PTR(-ENOMEM);
939         else if (PageUptodate(page))
940                 goto page_hit;
941
942         err = read_node_page(page, READ_SYNC);
943         if (err)
944                 return ERR_PTR(err);
945
946         /* Then, try readahead for siblings of the desired node */
947         end = start + MAX_RA_NODE;
948         end = min(end, NIDS_PER_BLOCK);
949         for (i = start + 1; i < end; i++) {
950                 nid = get_nid(parent, i, false);
951                 if (!nid)
952                         continue;
953                 ra_node_page(sbi, nid);
954         }
955
956         lock_page(page);
957
958 page_hit:
959         if (PageError(page)) {
960                 f2fs_put_page(page, 1);
961                 return ERR_PTR(-EIO);
962         }
963         mark_page_accessed(page);
964         return page;
965 }
966
967 void sync_inode_page(struct dnode_of_data *dn)
968 {
969         if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
970                 update_inode(dn->inode, dn->node_page);
971         } else if (dn->inode_page) {
972                 if (!dn->inode_page_locked)
973                         lock_page(dn->inode_page);
974                 update_inode(dn->inode, dn->inode_page);
975                 if (!dn->inode_page_locked)
976                         unlock_page(dn->inode_page);
977         } else {
978                 f2fs_write_inode(dn->inode, NULL);
979         }
980 }
981
982 int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
983                                         struct writeback_control *wbc)
984 {
985         struct address_space *mapping = sbi->node_inode->i_mapping;
986         pgoff_t index, end;
987         struct pagevec pvec;
988         int step = ino ? 2 : 0;
989         int nwritten = 0, wrote = 0;
990
991         pagevec_init(&pvec, 0);
992
993 next_step:
994         index = 0;
995         end = LONG_MAX;
996
997         while (index <= end) {
998                 int i, nr_pages;
999                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1000                                 PAGECACHE_TAG_DIRTY,
1001                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1002                 if (nr_pages == 0)
1003                         break;
1004
1005                 for (i = 0; i < nr_pages; i++) {
1006                         struct page *page = pvec.pages[i];
1007
1008                         /*
1009                          * flushing sequence with step:
1010                          * 0. indirect nodes
1011                          * 1. dentry dnodes
1012                          * 2. file dnodes
1013                          */
1014                         if (step == 0 && IS_DNODE(page))
1015                                 continue;
1016                         if (step == 1 && (!IS_DNODE(page) ||
1017                                                 is_cold_node(page)))
1018                                 continue;
1019                         if (step == 2 && (!IS_DNODE(page) ||
1020                                                 !is_cold_node(page)))
1021                                 continue;
1022
1023                         /*
1024                          * If an fsync mode,
1025                          * we should not skip writing node pages.
1026                          */
1027                         if (ino && ino_of_node(page) == ino)
1028                                 lock_page(page);
1029                         else if (!trylock_page(page))
1030                                 continue;
1031
1032                         if (unlikely(page->mapping != mapping)) {
1033 continue_unlock:
1034                                 unlock_page(page);
1035                                 continue;
1036                         }
1037                         if (ino && ino_of_node(page) != ino)
1038                                 goto continue_unlock;
1039
1040                         if (!PageDirty(page)) {
1041                                 /* someone wrote it for us */
1042                                 goto continue_unlock;
1043                         }
1044
1045                         if (!clear_page_dirty_for_io(page))
1046                                 goto continue_unlock;
1047
1048                         /* called by fsync() */
1049                         if (ino && IS_DNODE(page)) {
1050                                 int mark = !is_checkpointed_node(sbi, ino);
1051                                 set_fsync_mark(page, 1);
1052                                 if (IS_INODE(page))
1053                                         set_dentry_mark(page, mark);
1054                                 nwritten++;
1055                         } else {
1056                                 set_fsync_mark(page, 0);
1057                                 set_dentry_mark(page, 0);
1058                         }
1059                         mapping->a_ops->writepage(page, wbc);
1060                         wrote++;
1061
1062                         if (--wbc->nr_to_write == 0)
1063                                 break;
1064                 }
1065                 pagevec_release(&pvec);
1066                 cond_resched();
1067
1068                 if (wbc->nr_to_write == 0) {
1069                         step = 2;
1070                         break;
1071                 }
1072         }
1073
1074         if (step < 2) {
1075                 step++;
1076                 goto next_step;
1077         }
1078
1079         if (wrote)
1080                 f2fs_submit_bio(sbi, NODE, wbc->sync_mode == WB_SYNC_ALL);
1081
1082         return nwritten;
1083 }
1084
1085 static int f2fs_write_node_page(struct page *page,
1086                                 struct writeback_control *wbc)
1087 {
1088         struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
1089         nid_t nid;
1090         block_t new_addr;
1091         struct node_info ni;
1092
1093         wait_on_page_writeback(page);
1094
1095         mutex_lock_op(sbi, NODE_WRITE);
1096
1097         /* get old block addr of this node page */
1098         nid = nid_of_node(page);
1099         BUG_ON(page->index != nid);
1100
1101         get_node_info(sbi, nid, &ni);
1102
1103         /* This page is already truncated */
1104         if (ni.blk_addr == NULL_ADDR)
1105                 goto out;
1106
1107         if (wbc->for_reclaim) {
1108                 dec_page_count(sbi, F2FS_DIRTY_NODES);
1109                 wbc->pages_skipped++;
1110                 set_page_dirty(page);
1111                 mutex_unlock_op(sbi, NODE_WRITE);
1112                 return AOP_WRITEPAGE_ACTIVATE;
1113         }
1114
1115         set_page_writeback(page);
1116
1117         /* insert node offset */
1118         write_node_page(sbi, page, nid, ni.blk_addr, &new_addr);
1119         set_node_addr(sbi, &ni, new_addr);
1120 out:
1121         dec_page_count(sbi, F2FS_DIRTY_NODES);
1122         mutex_unlock_op(sbi, NODE_WRITE);
1123         unlock_page(page);
1124         return 0;
1125 }
1126
1127 /*
1128  * It is very important to gather dirty pages and write at once, so that we can
1129  * submit a big bio without interfering other data writes.
1130  * Be default, 512 pages (2MB), a segment size, is quite reasonable.
1131  */
1132 #define COLLECT_DIRTY_NODES     512
1133 static int f2fs_write_node_pages(struct address_space *mapping,
1134                             struct writeback_control *wbc)
1135 {
1136         struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1137         struct block_device *bdev = sbi->sb->s_bdev;
1138         long nr_to_write = wbc->nr_to_write;
1139
1140         /* First check balancing cached NAT entries */
1141         if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK)) {
1142                 write_checkpoint(sbi, false);
1143                 return 0;
1144         }
1145
1146         /* collect a number of dirty node pages and write together */
1147         if (get_pages(sbi, F2FS_DIRTY_NODES) < COLLECT_DIRTY_NODES)
1148                 return 0;
1149
1150         /* if mounting is failed, skip writing node pages */
1151         wbc->nr_to_write = bio_get_nr_vecs(bdev);
1152         sync_node_pages(sbi, 0, wbc);
1153         wbc->nr_to_write = nr_to_write -
1154                 (bio_get_nr_vecs(bdev) - wbc->nr_to_write);
1155         return 0;
1156 }
1157
1158 static int f2fs_set_node_page_dirty(struct page *page)
1159 {
1160         struct address_space *mapping = page->mapping;
1161         struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1162
1163         SetPageUptodate(page);
1164         if (!PageDirty(page)) {
1165                 __set_page_dirty_nobuffers(page);
1166                 inc_page_count(sbi, F2FS_DIRTY_NODES);
1167                 SetPagePrivate(page);
1168                 return 1;
1169         }
1170         return 0;
1171 }
1172
1173 static void f2fs_invalidate_node_page(struct page *page, unsigned long offset)
1174 {
1175         struct inode *inode = page->mapping->host;
1176         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1177         if (PageDirty(page))
1178                 dec_page_count(sbi, F2FS_DIRTY_NODES);
1179         ClearPagePrivate(page);
1180 }
1181
1182 static int f2fs_release_node_page(struct page *page, gfp_t wait)
1183 {
1184         ClearPagePrivate(page);
1185         return 1;
1186 }
1187
1188 /*
1189  * Structure of the f2fs node operations
1190  */
1191 const struct address_space_operations f2fs_node_aops = {
1192         .writepage      = f2fs_write_node_page,
1193         .writepages     = f2fs_write_node_pages,
1194         .set_page_dirty = f2fs_set_node_page_dirty,
1195         .invalidatepage = f2fs_invalidate_node_page,
1196         .releasepage    = f2fs_release_node_page,
1197 };
1198
1199 static struct free_nid *__lookup_free_nid_list(nid_t n, struct list_head *head)
1200 {
1201         struct list_head *this;
1202         struct free_nid *i;
1203         list_for_each(this, head) {
1204                 i = list_entry(this, struct free_nid, list);
1205                 if (i->nid == n)
1206                         return i;
1207         }
1208         return NULL;
1209 }
1210
1211 static void __del_from_free_nid_list(struct free_nid *i)
1212 {
1213         list_del(&i->list);
1214         kmem_cache_free(free_nid_slab, i);
1215 }
1216
1217 static int add_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1218 {
1219         struct free_nid *i;
1220
1221         if (nm_i->fcnt > 2 * MAX_FREE_NIDS)
1222                 return 0;
1223 retry:
1224         i = kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1225         if (!i) {
1226                 cond_resched();
1227                 goto retry;
1228         }
1229         i->nid = nid;
1230         i->state = NID_NEW;
1231
1232         spin_lock(&nm_i->free_nid_list_lock);
1233         if (__lookup_free_nid_list(nid, &nm_i->free_nid_list)) {
1234                 spin_unlock(&nm_i->free_nid_list_lock);
1235                 kmem_cache_free(free_nid_slab, i);
1236                 return 0;
1237         }
1238         list_add_tail(&i->list, &nm_i->free_nid_list);
1239         nm_i->fcnt++;
1240         spin_unlock(&nm_i->free_nid_list_lock);
1241         return 1;
1242 }
1243
1244 static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1245 {
1246         struct free_nid *i;
1247         spin_lock(&nm_i->free_nid_list_lock);
1248         i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
1249         if (i && i->state == NID_NEW) {
1250                 __del_from_free_nid_list(i);
1251                 nm_i->fcnt--;
1252         }
1253         spin_unlock(&nm_i->free_nid_list_lock);
1254 }
1255
1256 static int scan_nat_page(struct f2fs_nm_info *nm_i,
1257                         struct page *nat_page, nid_t start_nid)
1258 {
1259         struct f2fs_nat_block *nat_blk = page_address(nat_page);
1260         block_t blk_addr;
1261         int fcnt = 0;
1262         int i;
1263
1264         /* 0 nid should not be used */
1265         if (start_nid == 0)
1266                 ++start_nid;
1267
1268         i = start_nid % NAT_ENTRY_PER_BLOCK;
1269
1270         for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1271                 blk_addr  = le32_to_cpu(nat_blk->entries[i].block_addr);
1272                 BUG_ON(blk_addr == NEW_ADDR);
1273                 if (blk_addr == NULL_ADDR)
1274                         fcnt += add_free_nid(nm_i, start_nid);
1275         }
1276         return fcnt;
1277 }
1278
1279 static void build_free_nids(struct f2fs_sb_info *sbi)
1280 {
1281         struct free_nid *fnid, *next_fnid;
1282         struct f2fs_nm_info *nm_i = NM_I(sbi);
1283         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1284         struct f2fs_summary_block *sum = curseg->sum_blk;
1285         nid_t nid = 0;
1286         bool is_cycled = false;
1287         int fcnt = 0;
1288         int i;
1289
1290         nid = nm_i->next_scan_nid;
1291         nm_i->init_scan_nid = nid;
1292
1293         ra_nat_pages(sbi, nid);
1294
1295         while (1) {
1296                 struct page *page = get_current_nat_page(sbi, nid);
1297
1298                 fcnt += scan_nat_page(nm_i, page, nid);
1299                 f2fs_put_page(page, 1);
1300
1301                 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1302
1303                 if (nid >= nm_i->max_nid) {
1304                         nid = 0;
1305                         is_cycled = true;
1306                 }
1307                 if (fcnt > MAX_FREE_NIDS)
1308                         break;
1309                 if (is_cycled && nm_i->init_scan_nid <= nid)
1310                         break;
1311         }
1312
1313         /* go to the next nat page in order to reuse free nids first */
1314         nm_i->next_scan_nid = nm_i->init_scan_nid + NAT_ENTRY_PER_BLOCK;
1315
1316         /* find free nids from current sum_pages */
1317         mutex_lock(&curseg->curseg_mutex);
1318         for (i = 0; i < nats_in_cursum(sum); i++) {
1319                 block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
1320                 nid = le32_to_cpu(nid_in_journal(sum, i));
1321                 if (addr == NULL_ADDR)
1322                         add_free_nid(nm_i, nid);
1323                 else
1324                         remove_free_nid(nm_i, nid);
1325         }
1326         mutex_unlock(&curseg->curseg_mutex);
1327
1328         /* remove the free nids from current allocated nids */
1329         list_for_each_entry_safe(fnid, next_fnid, &nm_i->free_nid_list, list) {
1330                 struct nat_entry *ne;
1331
1332                 read_lock(&nm_i->nat_tree_lock);
1333                 ne = __lookup_nat_cache(nm_i, fnid->nid);
1334                 if (ne && nat_get_blkaddr(ne) != NULL_ADDR)
1335                         remove_free_nid(nm_i, fnid->nid);
1336                 read_unlock(&nm_i->nat_tree_lock);
1337         }
1338 }
1339
1340 /*
1341  * If this function returns success, caller can obtain a new nid
1342  * from second parameter of this function.
1343  * The returned nid could be used ino as well as nid when inode is created.
1344  */
1345 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1346 {
1347         struct f2fs_nm_info *nm_i = NM_I(sbi);
1348         struct free_nid *i = NULL;
1349         struct list_head *this;
1350 retry:
1351         mutex_lock(&nm_i->build_lock);
1352         if (!nm_i->fcnt) {
1353                 /* scan NAT in order to build free nid list */
1354                 build_free_nids(sbi);
1355                 if (!nm_i->fcnt) {
1356                         mutex_unlock(&nm_i->build_lock);
1357                         return false;
1358                 }
1359         }
1360         mutex_unlock(&nm_i->build_lock);
1361
1362         /*
1363          * We check fcnt again since previous check is racy as
1364          * we didn't hold free_nid_list_lock. So other thread
1365          * could consume all of free nids.
1366          */
1367         spin_lock(&nm_i->free_nid_list_lock);
1368         if (!nm_i->fcnt) {
1369                 spin_unlock(&nm_i->free_nid_list_lock);
1370                 goto retry;
1371         }
1372
1373         BUG_ON(list_empty(&nm_i->free_nid_list));
1374         list_for_each(this, &nm_i->free_nid_list) {
1375                 i = list_entry(this, struct free_nid, list);
1376                 if (i->state == NID_NEW)
1377                         break;
1378         }
1379
1380         BUG_ON(i->state != NID_NEW);
1381         *nid = i->nid;
1382         i->state = NID_ALLOC;
1383         nm_i->fcnt--;
1384         spin_unlock(&nm_i->free_nid_list_lock);
1385         return true;
1386 }
1387
1388 /*
1389  * alloc_nid() should be called prior to this function.
1390  */
1391 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1392 {
1393         struct f2fs_nm_info *nm_i = NM_I(sbi);
1394         struct free_nid *i;
1395
1396         spin_lock(&nm_i->free_nid_list_lock);
1397         i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
1398         if (i) {
1399                 BUG_ON(i->state != NID_ALLOC);
1400                 __del_from_free_nid_list(i);
1401         }
1402         spin_unlock(&nm_i->free_nid_list_lock);
1403 }
1404
1405 /*
1406  * alloc_nid() should be called prior to this function.
1407  */
1408 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1409 {
1410         alloc_nid_done(sbi, nid);
1411         add_free_nid(NM_I(sbi), nid);
1412 }
1413
1414 void recover_node_page(struct f2fs_sb_info *sbi, struct page *page,
1415                 struct f2fs_summary *sum, struct node_info *ni,
1416                 block_t new_blkaddr)
1417 {
1418         rewrite_node_page(sbi, page, sum, ni->blk_addr, new_blkaddr);
1419         set_node_addr(sbi, ni, new_blkaddr);
1420         clear_node_page_dirty(page);
1421 }
1422
1423 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
1424 {
1425         struct address_space *mapping = sbi->node_inode->i_mapping;
1426         struct f2fs_node *src, *dst;
1427         nid_t ino = ino_of_node(page);
1428         struct node_info old_ni, new_ni;
1429         struct page *ipage;
1430
1431         ipage = grab_cache_page(mapping, ino);
1432         if (!ipage)
1433                 return -ENOMEM;
1434
1435         /* Should not use this inode  from free nid list */
1436         remove_free_nid(NM_I(sbi), ino);
1437
1438         get_node_info(sbi, ino, &old_ni);
1439         SetPageUptodate(ipage);
1440         fill_node_footer(ipage, ino, ino, 0, true);
1441
1442         src = (struct f2fs_node *)page_address(page);
1443         dst = (struct f2fs_node *)page_address(ipage);
1444
1445         memcpy(dst, src, (unsigned long)&src->i.i_ext - (unsigned long)&src->i);
1446         dst->i.i_size = 0;
1447         dst->i.i_blocks = cpu_to_le64(1);
1448         dst->i.i_links = cpu_to_le32(1);
1449         dst->i.i_xattr_nid = 0;
1450
1451         new_ni = old_ni;
1452         new_ni.ino = ino;
1453
1454         set_node_addr(sbi, &new_ni, NEW_ADDR);
1455         inc_valid_inode_count(sbi);
1456
1457         f2fs_put_page(ipage, 1);
1458         return 0;
1459 }
1460
1461 int restore_node_summary(struct f2fs_sb_info *sbi,
1462                         unsigned int segno, struct f2fs_summary_block *sum)
1463 {
1464         struct f2fs_node *rn;
1465         struct f2fs_summary *sum_entry;
1466         struct page *page;
1467         block_t addr;
1468         int i, last_offset;
1469
1470         /* alloc temporal page for read node */
1471         page = alloc_page(GFP_NOFS | __GFP_ZERO);
1472         if (IS_ERR(page))
1473                 return PTR_ERR(page);
1474         lock_page(page);
1475
1476         /* scan the node segment */
1477         last_offset = sbi->blocks_per_seg;
1478         addr = START_BLOCK(sbi, segno);
1479         sum_entry = &sum->entries[0];
1480
1481         for (i = 0; i < last_offset; i++, sum_entry++) {
1482                 /*
1483                  * In order to read next node page,
1484                  * we must clear PageUptodate flag.
1485                  */
1486                 ClearPageUptodate(page);
1487
1488                 if (f2fs_readpage(sbi, page, addr, READ_SYNC))
1489                         goto out;
1490
1491                 lock_page(page);
1492                 rn = (struct f2fs_node *)page_address(page);
1493                 sum_entry->nid = rn->footer.nid;
1494                 sum_entry->version = 0;
1495                 sum_entry->ofs_in_node = 0;
1496                 addr++;
1497         }
1498         unlock_page(page);
1499 out:
1500         __free_pages(page, 0);
1501         return 0;
1502 }
1503
1504 static bool flush_nats_in_journal(struct f2fs_sb_info *sbi)
1505 {
1506         struct f2fs_nm_info *nm_i = NM_I(sbi);
1507         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1508         struct f2fs_summary_block *sum = curseg->sum_blk;
1509         int i;
1510
1511         mutex_lock(&curseg->curseg_mutex);
1512
1513         if (nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) {
1514                 mutex_unlock(&curseg->curseg_mutex);
1515                 return false;
1516         }
1517
1518         for (i = 0; i < nats_in_cursum(sum); i++) {
1519                 struct nat_entry *ne;
1520                 struct f2fs_nat_entry raw_ne;
1521                 nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
1522
1523                 raw_ne = nat_in_journal(sum, i);
1524 retry:
1525                 write_lock(&nm_i->nat_tree_lock);
1526                 ne = __lookup_nat_cache(nm_i, nid);
1527                 if (ne) {
1528                         __set_nat_cache_dirty(nm_i, ne);
1529                         write_unlock(&nm_i->nat_tree_lock);
1530                         continue;
1531                 }
1532                 ne = grab_nat_entry(nm_i, nid);
1533                 if (!ne) {
1534                         write_unlock(&nm_i->nat_tree_lock);
1535                         goto retry;
1536                 }
1537                 nat_set_blkaddr(ne, le32_to_cpu(raw_ne.block_addr));
1538                 nat_set_ino(ne, le32_to_cpu(raw_ne.ino));
1539                 nat_set_version(ne, raw_ne.version);
1540                 __set_nat_cache_dirty(nm_i, ne);
1541                 write_unlock(&nm_i->nat_tree_lock);
1542         }
1543         update_nats_in_cursum(sum, -i);
1544         mutex_unlock(&curseg->curseg_mutex);
1545         return true;
1546 }
1547
1548 /*
1549  * This function is called during the checkpointing process.
1550  */
1551 void flush_nat_entries(struct f2fs_sb_info *sbi)
1552 {
1553         struct f2fs_nm_info *nm_i = NM_I(sbi);
1554         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1555         struct f2fs_summary_block *sum = curseg->sum_blk;
1556         struct list_head *cur, *n;
1557         struct page *page = NULL;
1558         struct f2fs_nat_block *nat_blk = NULL;
1559         nid_t start_nid = 0, end_nid = 0;
1560         bool flushed;
1561
1562         flushed = flush_nats_in_journal(sbi);
1563
1564         if (!flushed)
1565                 mutex_lock(&curseg->curseg_mutex);
1566
1567         /* 1) flush dirty nat caches */
1568         list_for_each_safe(cur, n, &nm_i->dirty_nat_entries) {
1569                 struct nat_entry *ne;
1570                 nid_t nid;
1571                 struct f2fs_nat_entry raw_ne;
1572                 int offset = -1;
1573                 block_t new_blkaddr;
1574
1575                 ne = list_entry(cur, struct nat_entry, list);
1576                 nid = nat_get_nid(ne);
1577
1578                 if (nat_get_blkaddr(ne) == NEW_ADDR)
1579                         continue;
1580                 if (flushed)
1581                         goto to_nat_page;
1582
1583                 /* if there is room for nat enries in curseg->sumpage */
1584                 offset = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 1);
1585                 if (offset >= 0) {
1586                         raw_ne = nat_in_journal(sum, offset);
1587                         goto flush_now;
1588                 }
1589 to_nat_page:
1590                 if (!page || (start_nid > nid || nid > end_nid)) {
1591                         if (page) {
1592                                 f2fs_put_page(page, 1);
1593                                 page = NULL;
1594                         }
1595                         start_nid = START_NID(nid);
1596                         end_nid = start_nid + NAT_ENTRY_PER_BLOCK - 1;
1597
1598                         /*
1599                          * get nat block with dirty flag, increased reference
1600                          * count, mapped and lock
1601                          */
1602                         page = get_next_nat_page(sbi, start_nid);
1603                         nat_blk = page_address(page);
1604                 }
1605
1606                 BUG_ON(!nat_blk);
1607                 raw_ne = nat_blk->entries[nid - start_nid];
1608 flush_now:
1609                 new_blkaddr = nat_get_blkaddr(ne);
1610
1611                 raw_ne.ino = cpu_to_le32(nat_get_ino(ne));
1612                 raw_ne.block_addr = cpu_to_le32(new_blkaddr);
1613                 raw_ne.version = nat_get_version(ne);
1614
1615                 if (offset < 0) {
1616                         nat_blk->entries[nid - start_nid] = raw_ne;
1617                 } else {
1618                         nat_in_journal(sum, offset) = raw_ne;
1619                         nid_in_journal(sum, offset) = cpu_to_le32(nid);
1620                 }
1621
1622                 if (nat_get_blkaddr(ne) == NULL_ADDR) {
1623                         write_lock(&nm_i->nat_tree_lock);
1624                         __del_from_nat_cache(nm_i, ne);
1625                         write_unlock(&nm_i->nat_tree_lock);
1626                         add_free_nid(NM_I(sbi), nid);
1627                 } else {
1628                         write_lock(&nm_i->nat_tree_lock);
1629                         __clear_nat_cache_dirty(nm_i, ne);
1630                         ne->checkpointed = true;
1631                         write_unlock(&nm_i->nat_tree_lock);
1632                 }
1633         }
1634         if (!flushed)
1635                 mutex_unlock(&curseg->curseg_mutex);
1636         f2fs_put_page(page, 1);
1637
1638         /* 2) shrink nat caches if necessary */
1639         try_to_free_nats(sbi, nm_i->nat_cnt - NM_WOUT_THRESHOLD);
1640 }
1641
1642 static int init_node_manager(struct f2fs_sb_info *sbi)
1643 {
1644         struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
1645         struct f2fs_nm_info *nm_i = NM_I(sbi);
1646         unsigned char *version_bitmap;
1647         unsigned int nat_segs, nat_blocks;
1648
1649         nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
1650
1651         /* segment_count_nat includes pair segment so divide to 2. */
1652         nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
1653         nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
1654         nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
1655         nm_i->fcnt = 0;
1656         nm_i->nat_cnt = 0;
1657
1658         INIT_LIST_HEAD(&nm_i->free_nid_list);
1659         INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC);
1660         INIT_LIST_HEAD(&nm_i->nat_entries);
1661         INIT_LIST_HEAD(&nm_i->dirty_nat_entries);
1662
1663         mutex_init(&nm_i->build_lock);
1664         spin_lock_init(&nm_i->free_nid_list_lock);
1665         rwlock_init(&nm_i->nat_tree_lock);
1666
1667         nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
1668         nm_i->init_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
1669         nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
1670
1671         nm_i->nat_bitmap = kzalloc(nm_i->bitmap_size, GFP_KERNEL);
1672         if (!nm_i->nat_bitmap)
1673                 return -ENOMEM;
1674         version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
1675         if (!version_bitmap)
1676                 return -EFAULT;
1677
1678         /* copy version bitmap */
1679         memcpy(nm_i->nat_bitmap, version_bitmap, nm_i->bitmap_size);
1680         return 0;
1681 }
1682
1683 int build_node_manager(struct f2fs_sb_info *sbi)
1684 {
1685         int err;
1686
1687         sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
1688         if (!sbi->nm_info)
1689                 return -ENOMEM;
1690
1691         err = init_node_manager(sbi);
1692         if (err)
1693                 return err;
1694
1695         build_free_nids(sbi);
1696         return 0;
1697 }
1698
1699 void destroy_node_manager(struct f2fs_sb_info *sbi)
1700 {
1701         struct f2fs_nm_info *nm_i = NM_I(sbi);
1702         struct free_nid *i, *next_i;
1703         struct nat_entry *natvec[NATVEC_SIZE];
1704         nid_t nid = 0;
1705         unsigned int found;
1706
1707         if (!nm_i)
1708                 return;
1709
1710         /* destroy free nid list */
1711         spin_lock(&nm_i->free_nid_list_lock);
1712         list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
1713                 BUG_ON(i->state == NID_ALLOC);
1714                 __del_from_free_nid_list(i);
1715                 nm_i->fcnt--;
1716         }
1717         BUG_ON(nm_i->fcnt);
1718         spin_unlock(&nm_i->free_nid_list_lock);
1719
1720         /* destroy nat cache */
1721         write_lock(&nm_i->nat_tree_lock);
1722         while ((found = __gang_lookup_nat_cache(nm_i,
1723                                         nid, NATVEC_SIZE, natvec))) {
1724                 unsigned idx;
1725                 for (idx = 0; idx < found; idx++) {
1726                         struct nat_entry *e = natvec[idx];
1727                         nid = nat_get_nid(e) + 1;
1728                         __del_from_nat_cache(nm_i, e);
1729                 }
1730         }
1731         BUG_ON(nm_i->nat_cnt);
1732         write_unlock(&nm_i->nat_tree_lock);
1733
1734         kfree(nm_i->nat_bitmap);
1735         sbi->nm_info = NULL;
1736         kfree(nm_i);
1737 }
1738
1739 int __init create_node_manager_caches(void)
1740 {
1741         nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
1742                         sizeof(struct nat_entry), NULL);
1743         if (!nat_entry_slab)
1744                 return -ENOMEM;
1745
1746         free_nid_slab = f2fs_kmem_cache_create("free_nid",
1747                         sizeof(struct free_nid), NULL);
1748         if (!free_nid_slab) {
1749                 kmem_cache_destroy(nat_entry_slab);
1750                 return -ENOMEM;
1751         }
1752         return 0;
1753 }
1754
1755 void destroy_node_manager_caches(void)
1756 {
1757         kmem_cache_destroy(free_nid_slab);
1758         kmem_cache_destroy(nat_entry_slab);
1759 }