4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
23 #include <trace/events/f2fs.h>
25 #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
27 static struct kmem_cache *nat_entry_slab;
28 static struct kmem_cache *free_nid_slab;
29 static struct kmem_cache *nat_entry_set_slab;
31 bool available_free_memory(struct f2fs_sb_info *sbi, int type)
33 struct f2fs_nm_info *nm_i = NM_I(sbi);
35 unsigned long avail_ram;
36 unsigned long mem_size = 0;
41 /* only uses low memory */
42 avail_ram = val.totalram - val.totalhigh;
45 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
47 if (type == FREE_NIDS) {
48 mem_size = (nm_i->fcnt * sizeof(struct free_nid)) >>
50 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
51 } else if (type == NAT_ENTRIES) {
52 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
54 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
55 if (excess_cached_nats(sbi))
57 if (nm_i->nat_cnt > DEF_NAT_CACHE_THRESHOLD)
59 } else if (type == DIRTY_DENTS) {
60 if (sbi->sb->s_bdi->wb.dirty_exceeded)
62 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
63 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
64 } else if (type == INO_ENTRIES) {
67 for (i = 0; i <= UPDATE_INO; i++)
68 mem_size += (sbi->im[i].ino_num *
69 sizeof(struct ino_entry)) >> PAGE_SHIFT;
70 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
71 } else if (type == EXTENT_CACHE) {
72 mem_size = (atomic_read(&sbi->total_ext_tree) *
73 sizeof(struct extent_tree) +
74 atomic_read(&sbi->total_ext_node) *
75 sizeof(struct extent_node)) >> PAGE_SHIFT;
76 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
78 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
84 static void clear_node_page_dirty(struct page *page)
86 struct address_space *mapping = page->mapping;
87 unsigned int long flags;
89 if (PageDirty(page)) {
90 spin_lock_irqsave(&mapping->tree_lock, flags);
91 radix_tree_tag_clear(&mapping->page_tree,
94 spin_unlock_irqrestore(&mapping->tree_lock, flags);
96 clear_page_dirty_for_io(page);
97 dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
99 ClearPageUptodate(page);
102 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
104 pgoff_t index = current_nat_addr(sbi, nid);
105 return get_meta_page(sbi, index);
108 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
110 struct page *src_page;
111 struct page *dst_page;
116 struct f2fs_nm_info *nm_i = NM_I(sbi);
118 src_off = current_nat_addr(sbi, nid);
119 dst_off = next_nat_addr(sbi, src_off);
121 /* get current nat block page with lock */
122 src_page = get_meta_page(sbi, src_off);
123 dst_page = grab_meta_page(sbi, dst_off);
124 f2fs_bug_on(sbi, PageDirty(src_page));
126 src_addr = page_address(src_page);
127 dst_addr = page_address(dst_page);
128 memcpy(dst_addr, src_addr, PAGE_SIZE);
129 set_page_dirty(dst_page);
130 f2fs_put_page(src_page, 1);
132 set_to_next_nat(nm_i, nid);
137 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
139 return radix_tree_lookup(&nm_i->nat_root, n);
142 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
143 nid_t start, unsigned int nr, struct nat_entry **ep)
145 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
148 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
151 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
153 kmem_cache_free(nat_entry_slab, e);
156 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
157 struct nat_entry *ne)
159 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
160 struct nat_entry_set *head;
162 if (get_nat_flag(ne, IS_DIRTY))
165 head = radix_tree_lookup(&nm_i->nat_set_root, set);
167 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
169 INIT_LIST_HEAD(&head->entry_list);
170 INIT_LIST_HEAD(&head->set_list);
173 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
175 list_move_tail(&ne->list, &head->entry_list);
176 nm_i->dirty_nat_cnt++;
178 set_nat_flag(ne, IS_DIRTY, true);
181 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
182 struct nat_entry *ne)
184 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
185 struct nat_entry_set *head;
187 head = radix_tree_lookup(&nm_i->nat_set_root, set);
189 list_move_tail(&ne->list, &nm_i->nat_entries);
190 set_nat_flag(ne, IS_DIRTY, false);
192 nm_i->dirty_nat_cnt--;
196 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
197 nid_t start, unsigned int nr, struct nat_entry_set **ep)
199 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
203 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
205 struct f2fs_nm_info *nm_i = NM_I(sbi);
209 percpu_down_read(&nm_i->nat_tree_lock);
210 e = __lookup_nat_cache(nm_i, nid);
212 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
213 !get_nat_flag(e, HAS_FSYNCED_INODE))
216 percpu_up_read(&nm_i->nat_tree_lock);
220 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
222 struct f2fs_nm_info *nm_i = NM_I(sbi);
226 percpu_down_read(&nm_i->nat_tree_lock);
227 e = __lookup_nat_cache(nm_i, nid);
228 if (e && !get_nat_flag(e, IS_CHECKPOINTED))
230 percpu_up_read(&nm_i->nat_tree_lock);
234 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
236 struct f2fs_nm_info *nm_i = NM_I(sbi);
238 bool need_update = true;
240 percpu_down_read(&nm_i->nat_tree_lock);
241 e = __lookup_nat_cache(nm_i, ino);
242 if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
243 (get_nat_flag(e, IS_CHECKPOINTED) ||
244 get_nat_flag(e, HAS_FSYNCED_INODE)))
246 percpu_up_read(&nm_i->nat_tree_lock);
250 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
252 struct nat_entry *new;
254 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_NOFS);
255 f2fs_radix_tree_insert(&nm_i->nat_root, nid, new);
256 memset(new, 0, sizeof(struct nat_entry));
257 nat_set_nid(new, nid);
259 list_add_tail(&new->list, &nm_i->nat_entries);
264 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
265 struct f2fs_nat_entry *ne)
267 struct f2fs_nm_info *nm_i = NM_I(sbi);
270 e = __lookup_nat_cache(nm_i, nid);
272 e = grab_nat_entry(nm_i, nid);
273 node_info_from_raw_nat(&e->ni, ne);
275 f2fs_bug_on(sbi, nat_get_ino(e) != ne->ino ||
276 nat_get_blkaddr(e) != ne->block_addr ||
277 nat_get_version(e) != ne->version);
281 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
282 block_t new_blkaddr, bool fsync_done)
284 struct f2fs_nm_info *nm_i = NM_I(sbi);
287 percpu_down_write(&nm_i->nat_tree_lock);
288 e = __lookup_nat_cache(nm_i, ni->nid);
290 e = grab_nat_entry(nm_i, ni->nid);
291 copy_node_info(&e->ni, ni);
292 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
293 } else if (new_blkaddr == NEW_ADDR) {
295 * when nid is reallocated,
296 * previous nat entry can be remained in nat cache.
297 * So, reinitialize it with new information.
299 copy_node_info(&e->ni, ni);
300 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
304 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
305 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
306 new_blkaddr == NULL_ADDR);
307 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
308 new_blkaddr == NEW_ADDR);
309 f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
310 nat_get_blkaddr(e) != NULL_ADDR &&
311 new_blkaddr == NEW_ADDR);
313 /* increment version no as node is removed */
314 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
315 unsigned char version = nat_get_version(e);
316 nat_set_version(e, inc_node_version(version));
318 /* in order to reuse the nid */
319 if (nm_i->next_scan_nid > ni->nid)
320 nm_i->next_scan_nid = ni->nid;
324 nat_set_blkaddr(e, new_blkaddr);
325 if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
326 set_nat_flag(e, IS_CHECKPOINTED, false);
327 __set_nat_cache_dirty(nm_i, e);
329 /* update fsync_mark if its inode nat entry is still alive */
330 if (ni->nid != ni->ino)
331 e = __lookup_nat_cache(nm_i, ni->ino);
333 if (fsync_done && ni->nid == ni->ino)
334 set_nat_flag(e, HAS_FSYNCED_INODE, true);
335 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
337 percpu_up_write(&nm_i->nat_tree_lock);
340 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
342 struct f2fs_nm_info *nm_i = NM_I(sbi);
345 percpu_down_write(&nm_i->nat_tree_lock);
347 while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
348 struct nat_entry *ne;
349 ne = list_first_entry(&nm_i->nat_entries,
350 struct nat_entry, list);
351 __del_from_nat_cache(nm_i, ne);
354 percpu_up_write(&nm_i->nat_tree_lock);
355 return nr - nr_shrink;
359 * This function always returns success
361 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
363 struct f2fs_nm_info *nm_i = NM_I(sbi);
364 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
365 struct f2fs_journal *journal = curseg->journal;
366 nid_t start_nid = START_NID(nid);
367 struct f2fs_nat_block *nat_blk;
368 struct page *page = NULL;
369 struct f2fs_nat_entry ne;
375 /* Check nat cache */
376 percpu_down_read(&nm_i->nat_tree_lock);
377 e = __lookup_nat_cache(nm_i, nid);
379 ni->ino = nat_get_ino(e);
380 ni->blk_addr = nat_get_blkaddr(e);
381 ni->version = nat_get_version(e);
382 percpu_up_read(&nm_i->nat_tree_lock);
386 memset(&ne, 0, sizeof(struct f2fs_nat_entry));
388 /* Check current segment summary */
389 down_read(&curseg->journal_rwsem);
390 i = lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
392 ne = nat_in_journal(journal, i);
393 node_info_from_raw_nat(ni, &ne);
395 up_read(&curseg->journal_rwsem);
399 /* Fill node_info from nat page */
400 page = get_current_nat_page(sbi, start_nid);
401 nat_blk = (struct f2fs_nat_block *)page_address(page);
402 ne = nat_blk->entries[nid - start_nid];
403 node_info_from_raw_nat(ni, &ne);
404 f2fs_put_page(page, 1);
406 percpu_up_read(&nm_i->nat_tree_lock);
407 /* cache nat entry */
408 percpu_down_write(&nm_i->nat_tree_lock);
409 cache_nat_entry(sbi, nid, &ne);
410 percpu_up_write(&nm_i->nat_tree_lock);
414 * readahead MAX_RA_NODE number of node pages.
416 static void ra_node_pages(struct page *parent, int start, int n)
418 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
419 struct blk_plug plug;
423 blk_start_plug(&plug);
425 /* Then, try readahead for siblings of the desired node */
427 end = min(end, NIDS_PER_BLOCK);
428 for (i = start; i < end; i++) {
429 nid = get_nid(parent, i, false);
430 ra_node_page(sbi, nid);
433 blk_finish_plug(&plug);
436 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
438 const long direct_index = ADDRS_PER_INODE(dn->inode);
439 const long direct_blks = ADDRS_PER_BLOCK;
440 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
441 unsigned int skipped_unit = ADDRS_PER_BLOCK;
442 int cur_level = dn->cur_level;
443 int max_level = dn->max_level;
449 while (max_level-- > cur_level)
450 skipped_unit *= NIDS_PER_BLOCK;
452 switch (dn->max_level) {
454 base += 2 * indirect_blks;
456 base += 2 * direct_blks;
458 base += direct_index;
461 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
464 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
468 * The maximum depth is four.
469 * Offset[0] will have raw inode offset.
471 static int get_node_path(struct inode *inode, long block,
472 int offset[4], unsigned int noffset[4])
474 const long direct_index = ADDRS_PER_INODE(inode);
475 const long direct_blks = ADDRS_PER_BLOCK;
476 const long dptrs_per_blk = NIDS_PER_BLOCK;
477 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
478 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
484 if (block < direct_index) {
488 block -= direct_index;
489 if (block < direct_blks) {
490 offset[n++] = NODE_DIR1_BLOCK;
496 block -= direct_blks;
497 if (block < direct_blks) {
498 offset[n++] = NODE_DIR2_BLOCK;
504 block -= direct_blks;
505 if (block < indirect_blks) {
506 offset[n++] = NODE_IND1_BLOCK;
508 offset[n++] = block / direct_blks;
509 noffset[n] = 4 + offset[n - 1];
510 offset[n] = block % direct_blks;
514 block -= indirect_blks;
515 if (block < indirect_blks) {
516 offset[n++] = NODE_IND2_BLOCK;
517 noffset[n] = 4 + dptrs_per_blk;
518 offset[n++] = block / direct_blks;
519 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
520 offset[n] = block % direct_blks;
524 block -= indirect_blks;
525 if (block < dindirect_blks) {
526 offset[n++] = NODE_DIND_BLOCK;
527 noffset[n] = 5 + (dptrs_per_blk * 2);
528 offset[n++] = block / indirect_blks;
529 noffset[n] = 6 + (dptrs_per_blk * 2) +
530 offset[n - 1] * (dptrs_per_blk + 1);
531 offset[n++] = (block / direct_blks) % dptrs_per_blk;
532 noffset[n] = 7 + (dptrs_per_blk * 2) +
533 offset[n - 2] * (dptrs_per_blk + 1) +
535 offset[n] = block % direct_blks;
546 * Caller should call f2fs_put_dnode(dn).
547 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
548 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
549 * In the case of RDONLY_NODE, we don't need to care about mutex.
551 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
553 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
554 struct page *npage[4];
555 struct page *parent = NULL;
557 unsigned int noffset[4];
562 level = get_node_path(dn->inode, index, offset, noffset);
564 nids[0] = dn->inode->i_ino;
565 npage[0] = dn->inode_page;
568 npage[0] = get_node_page(sbi, nids[0]);
569 if (IS_ERR(npage[0]))
570 return PTR_ERR(npage[0]);
573 /* if inline_data is set, should not report any block indices */
574 if (f2fs_has_inline_data(dn->inode) && index) {
576 f2fs_put_page(npage[0], 1);
582 nids[1] = get_nid(parent, offset[0], true);
583 dn->inode_page = npage[0];
584 dn->inode_page_locked = true;
586 /* get indirect or direct nodes */
587 for (i = 1; i <= level; i++) {
590 if (!nids[i] && mode == ALLOC_NODE) {
592 if (!alloc_nid(sbi, &(nids[i]))) {
598 npage[i] = new_node_page(dn, noffset[i], NULL);
599 if (IS_ERR(npage[i])) {
600 alloc_nid_failed(sbi, nids[i]);
601 err = PTR_ERR(npage[i]);
605 set_nid(parent, offset[i - 1], nids[i], i == 1);
606 alloc_nid_done(sbi, nids[i]);
608 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
609 npage[i] = get_node_page_ra(parent, offset[i - 1]);
610 if (IS_ERR(npage[i])) {
611 err = PTR_ERR(npage[i]);
617 dn->inode_page_locked = false;
620 f2fs_put_page(parent, 1);
624 npage[i] = get_node_page(sbi, nids[i]);
625 if (IS_ERR(npage[i])) {
626 err = PTR_ERR(npage[i]);
627 f2fs_put_page(npage[0], 0);
633 nids[i + 1] = get_nid(parent, offset[i], false);
636 dn->nid = nids[level];
637 dn->ofs_in_node = offset[level];
638 dn->node_page = npage[level];
639 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
643 f2fs_put_page(parent, 1);
645 f2fs_put_page(npage[0], 0);
647 dn->inode_page = NULL;
648 dn->node_page = NULL;
649 if (err == -ENOENT) {
651 dn->max_level = level;
652 dn->ofs_in_node = offset[level];
657 static void truncate_node(struct dnode_of_data *dn)
659 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
662 get_node_info(sbi, dn->nid, &ni);
663 if (dn->inode->i_blocks == 0) {
664 f2fs_bug_on(sbi, ni.blk_addr != NULL_ADDR);
667 f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
669 /* Deallocate node address */
670 invalidate_blocks(sbi, ni.blk_addr);
671 dec_valid_node_count(sbi, dn->inode);
672 set_node_addr(sbi, &ni, NULL_ADDR, false);
674 if (dn->nid == dn->inode->i_ino) {
675 remove_orphan_inode(sbi, dn->nid);
676 dec_valid_inode_count(sbi);
677 f2fs_inode_synced(dn->inode);
680 clear_node_page_dirty(dn->node_page);
681 set_sbi_flag(sbi, SBI_IS_DIRTY);
683 f2fs_put_page(dn->node_page, 1);
685 invalidate_mapping_pages(NODE_MAPPING(sbi),
686 dn->node_page->index, dn->node_page->index);
688 dn->node_page = NULL;
689 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
692 static int truncate_dnode(struct dnode_of_data *dn)
699 /* get direct node */
700 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
701 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
703 else if (IS_ERR(page))
704 return PTR_ERR(page);
706 /* Make dnode_of_data for parameter */
707 dn->node_page = page;
709 truncate_data_blocks(dn);
714 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
717 struct dnode_of_data rdn = *dn;
719 struct f2fs_node *rn;
721 unsigned int child_nofs;
726 return NIDS_PER_BLOCK + 1;
728 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
730 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
732 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
733 return PTR_ERR(page);
736 ra_node_pages(page, ofs, NIDS_PER_BLOCK);
738 rn = F2FS_NODE(page);
740 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
741 child_nid = le32_to_cpu(rn->in.nid[i]);
745 ret = truncate_dnode(&rdn);
748 if (set_nid(page, i, 0, false))
749 dn->node_changed = true;
752 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
753 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
754 child_nid = le32_to_cpu(rn->in.nid[i]);
755 if (child_nid == 0) {
756 child_nofs += NIDS_PER_BLOCK + 1;
760 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
761 if (ret == (NIDS_PER_BLOCK + 1)) {
762 if (set_nid(page, i, 0, false))
763 dn->node_changed = true;
765 } else if (ret < 0 && ret != -ENOENT) {
773 /* remove current indirect node */
774 dn->node_page = page;
778 f2fs_put_page(page, 1);
780 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
784 f2fs_put_page(page, 1);
785 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
789 static int truncate_partial_nodes(struct dnode_of_data *dn,
790 struct f2fs_inode *ri, int *offset, int depth)
792 struct page *pages[2];
799 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
803 /* get indirect nodes in the path */
804 for (i = 0; i < idx + 1; i++) {
805 /* reference count'll be increased */
806 pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
807 if (IS_ERR(pages[i])) {
808 err = PTR_ERR(pages[i]);
812 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
815 ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
817 /* free direct nodes linked to a partial indirect node */
818 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
819 child_nid = get_nid(pages[idx], i, false);
823 err = truncate_dnode(dn);
826 if (set_nid(pages[idx], i, 0, false))
827 dn->node_changed = true;
830 if (offset[idx + 1] == 0) {
831 dn->node_page = pages[idx];
835 f2fs_put_page(pages[idx], 1);
841 for (i = idx; i >= 0; i--)
842 f2fs_put_page(pages[i], 1);
844 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
850 * All the block addresses of data and nodes should be nullified.
852 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
854 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
855 int err = 0, cont = 1;
856 int level, offset[4], noffset[4];
857 unsigned int nofs = 0;
858 struct f2fs_inode *ri;
859 struct dnode_of_data dn;
862 trace_f2fs_truncate_inode_blocks_enter(inode, from);
864 level = get_node_path(inode, from, offset, noffset);
866 page = get_node_page(sbi, inode->i_ino);
868 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
869 return PTR_ERR(page);
872 set_new_dnode(&dn, inode, page, NULL, 0);
875 ri = F2FS_INODE(page);
883 if (!offset[level - 1])
885 err = truncate_partial_nodes(&dn, ri, offset, level);
886 if (err < 0 && err != -ENOENT)
888 nofs += 1 + NIDS_PER_BLOCK;
891 nofs = 5 + 2 * NIDS_PER_BLOCK;
892 if (!offset[level - 1])
894 err = truncate_partial_nodes(&dn, ri, offset, level);
895 if (err < 0 && err != -ENOENT)
904 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
906 case NODE_DIR1_BLOCK:
907 case NODE_DIR2_BLOCK:
908 err = truncate_dnode(&dn);
911 case NODE_IND1_BLOCK:
912 case NODE_IND2_BLOCK:
913 err = truncate_nodes(&dn, nofs, offset[1], 2);
916 case NODE_DIND_BLOCK:
917 err = truncate_nodes(&dn, nofs, offset[1], 3);
924 if (err < 0 && err != -ENOENT)
926 if (offset[1] == 0 &&
927 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
929 BUG_ON(page->mapping != NODE_MAPPING(sbi));
930 f2fs_wait_on_page_writeback(page, NODE, true);
931 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
932 set_page_dirty(page);
940 f2fs_put_page(page, 0);
941 trace_f2fs_truncate_inode_blocks_exit(inode, err);
942 return err > 0 ? 0 : err;
945 int truncate_xattr_node(struct inode *inode, struct page *page)
947 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
948 nid_t nid = F2FS_I(inode)->i_xattr_nid;
949 struct dnode_of_data dn;
955 npage = get_node_page(sbi, nid);
957 return PTR_ERR(npage);
959 f2fs_i_xnid_write(inode, 0);
961 /* need to do checkpoint during fsync */
962 F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
964 set_new_dnode(&dn, inode, page, npage, nid);
967 dn.inode_page_locked = true;
973 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
976 int remove_inode_page(struct inode *inode)
978 struct dnode_of_data dn;
981 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
982 err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
986 err = truncate_xattr_node(inode, dn.inode_page);
992 /* remove potential inline_data blocks */
993 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
994 S_ISLNK(inode->i_mode))
995 truncate_data_blocks_range(&dn, 1);
997 /* 0 is possible, after f2fs_new_inode() has failed */
998 f2fs_bug_on(F2FS_I_SB(inode),
999 inode->i_blocks != 0 && inode->i_blocks != 1);
1001 /* will put inode & node pages */
1006 struct page *new_inode_page(struct inode *inode)
1008 struct dnode_of_data dn;
1010 /* allocate inode page for new inode */
1011 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1013 /* caller should f2fs_put_page(page, 1); */
1014 return new_node_page(&dn, 0, NULL);
1017 struct page *new_node_page(struct dnode_of_data *dn,
1018 unsigned int ofs, struct page *ipage)
1020 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1021 struct node_info old_ni, new_ni;
1025 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1026 return ERR_PTR(-EPERM);
1028 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1030 return ERR_PTR(-ENOMEM);
1032 if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
1037 get_node_info(sbi, dn->nid, &old_ni);
1039 /* Reinitialize old_ni with new node page */
1040 f2fs_bug_on(sbi, old_ni.blk_addr != NULL_ADDR);
1042 new_ni.ino = dn->inode->i_ino;
1043 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1045 f2fs_wait_on_page_writeback(page, NODE, true);
1046 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1047 set_cold_node(dn->inode, page);
1048 if (!PageUptodate(page))
1049 SetPageUptodate(page);
1050 if (set_page_dirty(page))
1051 dn->node_changed = true;
1053 if (f2fs_has_xattr_block(ofs))
1054 f2fs_i_xnid_write(dn->inode, dn->nid);
1057 inc_valid_inode_count(sbi);
1061 clear_node_page_dirty(page);
1062 f2fs_put_page(page, 1);
1063 return ERR_PTR(err);
1067 * Caller should do after getting the following values.
1068 * 0: f2fs_put_page(page, 0)
1069 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1071 static int read_node_page(struct page *page, int op_flags)
1073 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1074 struct node_info ni;
1075 struct f2fs_io_info fio = {
1079 .op_flags = op_flags,
1081 .encrypted_page = NULL,
1084 if (PageUptodate(page))
1087 get_node_info(sbi, page->index, &ni);
1089 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1090 ClearPageUptodate(page);
1094 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1095 return f2fs_submit_page_bio(&fio);
1099 * Readahead a node page
1101 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1108 f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1111 apage = radix_tree_lookup(&NODE_MAPPING(sbi)->page_tree, nid);
1116 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1120 err = read_node_page(apage, REQ_RAHEAD);
1121 f2fs_put_page(apage, err ? 1 : 0);
1124 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1125 struct page *parent, int start)
1131 return ERR_PTR(-ENOENT);
1132 f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1134 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1136 return ERR_PTR(-ENOMEM);
1138 err = read_node_page(page, READ_SYNC);
1140 f2fs_put_page(page, 1);
1141 return ERR_PTR(err);
1142 } else if (err == LOCKED_PAGE) {
1147 ra_node_pages(parent, start + 1, MAX_RA_NODE);
1151 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1152 f2fs_put_page(page, 1);
1156 if (unlikely(!PageUptodate(page)))
1159 if(unlikely(nid != nid_of_node(page))) {
1160 f2fs_bug_on(sbi, 1);
1161 ClearPageUptodate(page);
1163 f2fs_put_page(page, 1);
1164 return ERR_PTR(-EIO);
1169 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1171 return __get_node_page(sbi, nid, NULL, 0);
1174 struct page *get_node_page_ra(struct page *parent, int start)
1176 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1177 nid_t nid = get_nid(parent, start, false);
1179 return __get_node_page(sbi, nid, parent, start);
1182 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1184 struct inode *inode;
1188 /* should flush inline_data before evict_inode */
1189 inode = ilookup(sbi->sb, ino);
1193 page = pagecache_get_page(inode->i_mapping, 0, FGP_LOCK|FGP_NOWAIT, 0);
1197 if (!PageUptodate(page))
1200 if (!PageDirty(page))
1203 if (!clear_page_dirty_for_io(page))
1206 ret = f2fs_write_inline_data(inode, page);
1207 inode_dec_dirty_pages(inode);
1209 set_page_dirty(page);
1211 f2fs_put_page(page, 1);
1216 void move_node_page(struct page *node_page, int gc_type)
1218 if (gc_type == FG_GC) {
1219 struct f2fs_sb_info *sbi = F2FS_P_SB(node_page);
1220 struct writeback_control wbc = {
1221 .sync_mode = WB_SYNC_ALL,
1226 set_page_dirty(node_page);
1227 f2fs_wait_on_page_writeback(node_page, NODE, true);
1229 f2fs_bug_on(sbi, PageWriteback(node_page));
1230 if (!clear_page_dirty_for_io(node_page))
1233 if (NODE_MAPPING(sbi)->a_ops->writepage(node_page, &wbc))
1234 unlock_page(node_page);
1237 /* set page dirty and write it */
1238 if (!PageWriteback(node_page))
1239 set_page_dirty(node_page);
1242 unlock_page(node_page);
1244 f2fs_put_page(node_page, 0);
1247 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1250 struct pagevec pvec;
1251 struct page *last_page = NULL;
1253 pagevec_init(&pvec, 0);
1257 while (index <= end) {
1259 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1260 PAGECACHE_TAG_DIRTY,
1261 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1265 for (i = 0; i < nr_pages; i++) {
1266 struct page *page = pvec.pages[i];
1268 if (unlikely(f2fs_cp_error(sbi))) {
1269 f2fs_put_page(last_page, 0);
1270 pagevec_release(&pvec);
1271 return ERR_PTR(-EIO);
1274 if (!IS_DNODE(page) || !is_cold_node(page))
1276 if (ino_of_node(page) != ino)
1281 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1286 if (ino_of_node(page) != ino)
1287 goto continue_unlock;
1289 if (!PageDirty(page)) {
1290 /* someone wrote it for us */
1291 goto continue_unlock;
1295 f2fs_put_page(last_page, 0);
1301 pagevec_release(&pvec);
1307 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1308 struct writeback_control *wbc, bool atomic)
1311 struct pagevec pvec;
1313 struct page *last_page = NULL;
1314 bool marked = false;
1315 nid_t ino = inode->i_ino;
1318 last_page = last_fsync_dnode(sbi, ino);
1319 if (IS_ERR_OR_NULL(last_page))
1320 return PTR_ERR_OR_ZERO(last_page);
1323 pagevec_init(&pvec, 0);
1327 while (index <= end) {
1329 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1330 PAGECACHE_TAG_DIRTY,
1331 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1335 for (i = 0; i < nr_pages; i++) {
1336 struct page *page = pvec.pages[i];
1338 if (unlikely(f2fs_cp_error(sbi))) {
1339 f2fs_put_page(last_page, 0);
1340 pagevec_release(&pvec);
1344 if (!IS_DNODE(page) || !is_cold_node(page))
1346 if (ino_of_node(page) != ino)
1351 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1356 if (ino_of_node(page) != ino)
1357 goto continue_unlock;
1359 if (!PageDirty(page) && page != last_page) {
1360 /* someone wrote it for us */
1361 goto continue_unlock;
1364 f2fs_wait_on_page_writeback(page, NODE, true);
1365 BUG_ON(PageWriteback(page));
1367 if (!atomic || page == last_page) {
1368 set_fsync_mark(page, 1);
1369 if (IS_INODE(page)) {
1370 if (is_inode_flag_set(inode,
1372 update_inode(inode, page);
1373 set_dentry_mark(page,
1374 need_dentry_mark(sbi, ino));
1376 /* may be written by other thread */
1377 if (!PageDirty(page))
1378 set_page_dirty(page);
1381 if (!clear_page_dirty_for_io(page))
1382 goto continue_unlock;
1384 ret = NODE_MAPPING(sbi)->a_ops->writepage(page, wbc);
1387 f2fs_put_page(last_page, 0);
1390 if (page == last_page) {
1391 f2fs_put_page(page, 0);
1396 pagevec_release(&pvec);
1402 if (!ret && atomic && !marked) {
1403 f2fs_msg(sbi->sb, KERN_DEBUG,
1404 "Retry to write fsync mark: ino=%u, idx=%lx",
1405 ino, last_page->index);
1406 lock_page(last_page);
1407 set_page_dirty(last_page);
1408 unlock_page(last_page);
1411 return ret ? -EIO: 0;
1414 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc)
1417 struct pagevec pvec;
1421 pagevec_init(&pvec, 0);
1427 while (index <= end) {
1429 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1430 PAGECACHE_TAG_DIRTY,
1431 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1435 for (i = 0; i < nr_pages; i++) {
1436 struct page *page = pvec.pages[i];
1438 if (unlikely(f2fs_cp_error(sbi))) {
1439 pagevec_release(&pvec);
1444 * flushing sequence with step:
1449 if (step == 0 && IS_DNODE(page))
1451 if (step == 1 && (!IS_DNODE(page) ||
1452 is_cold_node(page)))
1454 if (step == 2 && (!IS_DNODE(page) ||
1455 !is_cold_node(page)))
1458 if (!trylock_page(page))
1461 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1467 if (!PageDirty(page)) {
1468 /* someone wrote it for us */
1469 goto continue_unlock;
1472 /* flush inline_data */
1473 if (is_inline_node(page)) {
1474 clear_inline_node(page);
1476 flush_inline_data(sbi, ino_of_node(page));
1480 f2fs_wait_on_page_writeback(page, NODE, true);
1482 BUG_ON(PageWriteback(page));
1483 if (!clear_page_dirty_for_io(page))
1484 goto continue_unlock;
1486 set_fsync_mark(page, 0);
1487 set_dentry_mark(page, 0);
1489 if (NODE_MAPPING(sbi)->a_ops->writepage(page, wbc))
1492 if (--wbc->nr_to_write == 0)
1495 pagevec_release(&pvec);
1498 if (wbc->nr_to_write == 0) {
1511 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1513 pgoff_t index = 0, end = ULONG_MAX;
1514 struct pagevec pvec;
1515 int ret2 = 0, ret = 0;
1517 pagevec_init(&pvec, 0);
1519 while (index <= end) {
1521 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1522 PAGECACHE_TAG_WRITEBACK,
1523 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1527 for (i = 0; i < nr_pages; i++) {
1528 struct page *page = pvec.pages[i];
1530 /* until radix tree lookup accepts end_index */
1531 if (unlikely(page->index > end))
1534 if (ino && ino_of_node(page) == ino) {
1535 f2fs_wait_on_page_writeback(page, NODE, true);
1536 if (TestClearPageError(page))
1540 pagevec_release(&pvec);
1544 if (unlikely(test_and_clear_bit(AS_ENOSPC, &NODE_MAPPING(sbi)->flags)))
1546 if (unlikely(test_and_clear_bit(AS_EIO, &NODE_MAPPING(sbi)->flags)))
1553 static int f2fs_write_node_page(struct page *page,
1554 struct writeback_control *wbc)
1556 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1558 struct node_info ni;
1559 struct f2fs_io_info fio = {
1563 .op_flags = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : 0,
1565 .encrypted_page = NULL,
1568 trace_f2fs_writepage(page, NODE);
1570 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1572 if (unlikely(f2fs_cp_error(sbi)))
1575 /* get old block addr of this node page */
1576 nid = nid_of_node(page);
1577 f2fs_bug_on(sbi, page->index != nid);
1579 if (wbc->for_reclaim) {
1580 if (!down_read_trylock(&sbi->node_write))
1583 down_read(&sbi->node_write);
1586 get_node_info(sbi, nid, &ni);
1588 /* This page is already truncated */
1589 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1590 ClearPageUptodate(page);
1591 dec_page_count(sbi, F2FS_DIRTY_NODES);
1592 up_read(&sbi->node_write);
1597 set_page_writeback(page);
1598 fio.old_blkaddr = ni.blk_addr;
1599 write_node_page(nid, &fio);
1600 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1601 dec_page_count(sbi, F2FS_DIRTY_NODES);
1602 up_read(&sbi->node_write);
1604 if (wbc->for_reclaim)
1605 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, NODE, WRITE);
1609 if (unlikely(f2fs_cp_error(sbi)))
1610 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1615 redirty_page_for_writepage(wbc, page);
1616 return AOP_WRITEPAGE_ACTIVATE;
1619 static int f2fs_write_node_pages(struct address_space *mapping,
1620 struct writeback_control *wbc)
1622 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1623 struct blk_plug plug;
1626 /* balancing f2fs's metadata in background */
1627 f2fs_balance_fs_bg(sbi);
1629 /* collect a number of dirty node pages and write together */
1630 if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1633 trace_f2fs_writepages(mapping->host, wbc, NODE);
1635 diff = nr_pages_to_write(sbi, NODE, wbc);
1636 wbc->sync_mode = WB_SYNC_NONE;
1637 blk_start_plug(&plug);
1638 sync_node_pages(sbi, wbc);
1639 blk_finish_plug(&plug);
1640 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1644 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1645 trace_f2fs_writepages(mapping->host, wbc, NODE);
1649 static int f2fs_set_node_page_dirty(struct page *page)
1651 trace_f2fs_set_page_dirty(page, NODE);
1653 if (!PageUptodate(page))
1654 SetPageUptodate(page);
1655 if (!PageDirty(page)) {
1656 f2fs_set_page_dirty_nobuffers(page);
1657 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1658 SetPagePrivate(page);
1659 f2fs_trace_pid(page);
1666 * Structure of the f2fs node operations
1668 const struct address_space_operations f2fs_node_aops = {
1669 .writepage = f2fs_write_node_page,
1670 .writepages = f2fs_write_node_pages,
1671 .set_page_dirty = f2fs_set_node_page_dirty,
1672 .invalidatepage = f2fs_invalidate_page,
1673 .releasepage = f2fs_release_page,
1676 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1679 return radix_tree_lookup(&nm_i->free_nid_root, n);
1682 static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i,
1686 radix_tree_delete(&nm_i->free_nid_root, i->nid);
1689 static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
1691 struct f2fs_nm_info *nm_i = NM_I(sbi);
1693 struct nat_entry *ne;
1695 if (!available_free_memory(sbi, FREE_NIDS))
1698 /* 0 nid should not be used */
1699 if (unlikely(nid == 0))
1703 /* do not add allocated nids */
1704 ne = __lookup_nat_cache(nm_i, nid);
1705 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
1706 nat_get_blkaddr(ne) != NULL_ADDR))
1710 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1714 if (radix_tree_preload(GFP_NOFS)) {
1715 kmem_cache_free(free_nid_slab, i);
1719 spin_lock(&nm_i->free_nid_list_lock);
1720 if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) {
1721 spin_unlock(&nm_i->free_nid_list_lock);
1722 radix_tree_preload_end();
1723 kmem_cache_free(free_nid_slab, i);
1726 list_add_tail(&i->list, &nm_i->free_nid_list);
1728 spin_unlock(&nm_i->free_nid_list_lock);
1729 radix_tree_preload_end();
1733 static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1736 bool need_free = false;
1738 spin_lock(&nm_i->free_nid_list_lock);
1739 i = __lookup_free_nid_list(nm_i, nid);
1740 if (i && i->state == NID_NEW) {
1741 __del_from_free_nid_list(nm_i, i);
1745 spin_unlock(&nm_i->free_nid_list_lock);
1748 kmem_cache_free(free_nid_slab, i);
1751 static void scan_nat_page(struct f2fs_sb_info *sbi,
1752 struct page *nat_page, nid_t start_nid)
1754 struct f2fs_nm_info *nm_i = NM_I(sbi);
1755 struct f2fs_nat_block *nat_blk = page_address(nat_page);
1759 i = start_nid % NAT_ENTRY_PER_BLOCK;
1761 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1763 if (unlikely(start_nid >= nm_i->max_nid))
1766 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1767 f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
1768 if (blk_addr == NULL_ADDR) {
1769 if (add_free_nid(sbi, start_nid, true) < 0)
1775 void build_free_nids(struct f2fs_sb_info *sbi)
1777 struct f2fs_nm_info *nm_i = NM_I(sbi);
1778 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1779 struct f2fs_journal *journal = curseg->journal;
1781 nid_t nid = nm_i->next_scan_nid;
1783 /* Enough entries */
1784 if (nm_i->fcnt >= NAT_ENTRY_PER_BLOCK)
1787 /* readahead nat pages to be scanned */
1788 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
1791 percpu_down_read(&nm_i->nat_tree_lock);
1794 struct page *page = get_current_nat_page(sbi, nid);
1796 scan_nat_page(sbi, page, nid);
1797 f2fs_put_page(page, 1);
1799 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1800 if (unlikely(nid >= nm_i->max_nid))
1803 if (++i >= FREE_NID_PAGES)
1807 /* go to the next free nat pages to find free nids abundantly */
1808 nm_i->next_scan_nid = nid;
1810 /* find free nids from current sum_pages */
1811 down_read(&curseg->journal_rwsem);
1812 for (i = 0; i < nats_in_cursum(journal); i++) {
1815 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
1816 nid = le32_to_cpu(nid_in_journal(journal, i));
1817 if (addr == NULL_ADDR)
1818 add_free_nid(sbi, nid, true);
1820 remove_free_nid(nm_i, nid);
1822 up_read(&curseg->journal_rwsem);
1823 percpu_up_read(&nm_i->nat_tree_lock);
1825 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
1826 nm_i->ra_nid_pages, META_NAT, false);
1830 * If this function returns success, caller can obtain a new nid
1831 * from second parameter of this function.
1832 * The returned nid could be used ino as well as nid when inode is created.
1834 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1836 struct f2fs_nm_info *nm_i = NM_I(sbi);
1837 struct free_nid *i = NULL;
1839 #ifdef CONFIG_F2FS_FAULT_INJECTION
1840 if (time_to_inject(FAULT_ALLOC_NID))
1843 if (unlikely(sbi->total_valid_node_count + 1 > nm_i->available_nids))
1846 spin_lock(&nm_i->free_nid_list_lock);
1848 /* We should not use stale free nids created by build_free_nids */
1849 if (nm_i->fcnt && !on_build_free_nids(nm_i)) {
1850 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
1851 list_for_each_entry(i, &nm_i->free_nid_list, list)
1852 if (i->state == NID_NEW)
1855 f2fs_bug_on(sbi, i->state != NID_NEW);
1857 i->state = NID_ALLOC;
1859 spin_unlock(&nm_i->free_nid_list_lock);
1862 spin_unlock(&nm_i->free_nid_list_lock);
1864 /* Let's scan nat pages and its caches to get free nids */
1865 mutex_lock(&nm_i->build_lock);
1866 build_free_nids(sbi);
1867 mutex_unlock(&nm_i->build_lock);
1872 * alloc_nid() should be called prior to this function.
1874 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1876 struct f2fs_nm_info *nm_i = NM_I(sbi);
1879 spin_lock(&nm_i->free_nid_list_lock);
1880 i = __lookup_free_nid_list(nm_i, nid);
1881 f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
1882 __del_from_free_nid_list(nm_i, i);
1883 spin_unlock(&nm_i->free_nid_list_lock);
1885 kmem_cache_free(free_nid_slab, i);
1889 * alloc_nid() should be called prior to this function.
1891 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1893 struct f2fs_nm_info *nm_i = NM_I(sbi);
1895 bool need_free = false;
1900 spin_lock(&nm_i->free_nid_list_lock);
1901 i = __lookup_free_nid_list(nm_i, nid);
1902 f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
1903 if (!available_free_memory(sbi, FREE_NIDS)) {
1904 __del_from_free_nid_list(nm_i, i);
1910 spin_unlock(&nm_i->free_nid_list_lock);
1913 kmem_cache_free(free_nid_slab, i);
1916 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
1918 struct f2fs_nm_info *nm_i = NM_I(sbi);
1919 struct free_nid *i, *next;
1922 if (nm_i->fcnt <= MAX_FREE_NIDS)
1925 if (!mutex_trylock(&nm_i->build_lock))
1928 spin_lock(&nm_i->free_nid_list_lock);
1929 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
1930 if (nr_shrink <= 0 || nm_i->fcnt <= MAX_FREE_NIDS)
1932 if (i->state == NID_ALLOC)
1934 __del_from_free_nid_list(nm_i, i);
1935 kmem_cache_free(free_nid_slab, i);
1939 spin_unlock(&nm_i->free_nid_list_lock);
1940 mutex_unlock(&nm_i->build_lock);
1942 return nr - nr_shrink;
1945 void recover_inline_xattr(struct inode *inode, struct page *page)
1947 void *src_addr, *dst_addr;
1950 struct f2fs_inode *ri;
1952 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
1953 f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
1955 ri = F2FS_INODE(page);
1956 if (!(ri->i_inline & F2FS_INLINE_XATTR)) {
1957 clear_inode_flag(inode, FI_INLINE_XATTR);
1961 dst_addr = inline_xattr_addr(ipage);
1962 src_addr = inline_xattr_addr(page);
1963 inline_size = inline_xattr_size(inode);
1965 f2fs_wait_on_page_writeback(ipage, NODE, true);
1966 memcpy(dst_addr, src_addr, inline_size);
1968 update_inode(inode, ipage);
1969 f2fs_put_page(ipage, 1);
1972 void recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
1974 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1975 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
1976 nid_t new_xnid = nid_of_node(page);
1977 struct node_info ni;
1979 /* 1: invalidate the previous xattr nid */
1983 /* Deallocate node address */
1984 get_node_info(sbi, prev_xnid, &ni);
1985 f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
1986 invalidate_blocks(sbi, ni.blk_addr);
1987 dec_valid_node_count(sbi, inode);
1988 set_node_addr(sbi, &ni, NULL_ADDR, false);
1991 /* 2: allocate new xattr nid */
1992 if (unlikely(!inc_valid_node_count(sbi, inode)))
1993 f2fs_bug_on(sbi, 1);
1995 remove_free_nid(NM_I(sbi), new_xnid);
1996 get_node_info(sbi, new_xnid, &ni);
1997 ni.ino = inode->i_ino;
1998 set_node_addr(sbi, &ni, NEW_ADDR, false);
1999 f2fs_i_xnid_write(inode, new_xnid);
2001 /* 3: update xattr blkaddr */
2002 refresh_sit_entry(sbi, NEW_ADDR, blkaddr);
2003 set_node_addr(sbi, &ni, blkaddr, false);
2006 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2008 struct f2fs_inode *src, *dst;
2009 nid_t ino = ino_of_node(page);
2010 struct node_info old_ni, new_ni;
2013 get_node_info(sbi, ino, &old_ni);
2015 if (unlikely(old_ni.blk_addr != NULL_ADDR))
2018 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2022 /* Should not use this inode from free nid list */
2023 remove_free_nid(NM_I(sbi), ino);
2025 if (!PageUptodate(ipage))
2026 SetPageUptodate(ipage);
2027 fill_node_footer(ipage, ino, ino, 0, true);
2029 src = F2FS_INODE(page);
2030 dst = F2FS_INODE(ipage);
2032 memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2034 dst->i_blocks = cpu_to_le64(1);
2035 dst->i_links = cpu_to_le32(1);
2036 dst->i_xattr_nid = 0;
2037 dst->i_inline = src->i_inline & F2FS_INLINE_XATTR;
2042 if (unlikely(!inc_valid_node_count(sbi, NULL)))
2044 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2045 inc_valid_inode_count(sbi);
2046 set_page_dirty(ipage);
2047 f2fs_put_page(ipage, 1);
2051 int restore_node_summary(struct f2fs_sb_info *sbi,
2052 unsigned int segno, struct f2fs_summary_block *sum)
2054 struct f2fs_node *rn;
2055 struct f2fs_summary *sum_entry;
2057 int bio_blocks = MAX_BIO_BLOCKS(sbi);
2058 int i, idx, last_offset, nrpages;
2060 /* scan the node segment */
2061 last_offset = sbi->blocks_per_seg;
2062 addr = START_BLOCK(sbi, segno);
2063 sum_entry = &sum->entries[0];
2065 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2066 nrpages = min(last_offset - i, bio_blocks);
2068 /* readahead node pages */
2069 ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2071 for (idx = addr; idx < addr + nrpages; idx++) {
2072 struct page *page = get_tmp_page(sbi, idx);
2074 rn = F2FS_NODE(page);
2075 sum_entry->nid = rn->footer.nid;
2076 sum_entry->version = 0;
2077 sum_entry->ofs_in_node = 0;
2079 f2fs_put_page(page, 1);
2082 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2088 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2090 struct f2fs_nm_info *nm_i = NM_I(sbi);
2091 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2092 struct f2fs_journal *journal = curseg->journal;
2095 down_write(&curseg->journal_rwsem);
2096 for (i = 0; i < nats_in_cursum(journal); i++) {
2097 struct nat_entry *ne;
2098 struct f2fs_nat_entry raw_ne;
2099 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2101 raw_ne = nat_in_journal(journal, i);
2103 ne = __lookup_nat_cache(nm_i, nid);
2105 ne = grab_nat_entry(nm_i, nid);
2106 node_info_from_raw_nat(&ne->ni, &raw_ne);
2108 __set_nat_cache_dirty(nm_i, ne);
2110 update_nats_in_cursum(journal, -i);
2111 up_write(&curseg->journal_rwsem);
2114 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2115 struct list_head *head, int max)
2117 struct nat_entry_set *cur;
2119 if (nes->entry_cnt >= max)
2122 list_for_each_entry(cur, head, set_list) {
2123 if (cur->entry_cnt >= nes->entry_cnt) {
2124 list_add(&nes->set_list, cur->set_list.prev);
2129 list_add_tail(&nes->set_list, head);
2132 static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2133 struct nat_entry_set *set)
2135 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2136 struct f2fs_journal *journal = curseg->journal;
2137 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2138 bool to_journal = true;
2139 struct f2fs_nat_block *nat_blk;
2140 struct nat_entry *ne, *cur;
2141 struct page *page = NULL;
2144 * there are two steps to flush nat entries:
2145 * #1, flush nat entries to journal in current hot data summary block.
2146 * #2, flush nat entries to nat page.
2148 if (!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2152 down_write(&curseg->journal_rwsem);
2154 page = get_next_nat_page(sbi, start_nid);
2155 nat_blk = page_address(page);
2156 f2fs_bug_on(sbi, !nat_blk);
2159 /* flush dirty nats in nat entry set */
2160 list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2161 struct f2fs_nat_entry *raw_ne;
2162 nid_t nid = nat_get_nid(ne);
2165 if (nat_get_blkaddr(ne) == NEW_ADDR)
2169 offset = lookup_journal_in_cursum(journal,
2170 NAT_JOURNAL, nid, 1);
2171 f2fs_bug_on(sbi, offset < 0);
2172 raw_ne = &nat_in_journal(journal, offset);
2173 nid_in_journal(journal, offset) = cpu_to_le32(nid);
2175 raw_ne = &nat_blk->entries[nid - start_nid];
2177 raw_nat_from_node_info(raw_ne, &ne->ni);
2179 __clear_nat_cache_dirty(NM_I(sbi), ne);
2180 if (nat_get_blkaddr(ne) == NULL_ADDR)
2181 add_free_nid(sbi, nid, false);
2185 up_write(&curseg->journal_rwsem);
2187 f2fs_put_page(page, 1);
2189 f2fs_bug_on(sbi, set->entry_cnt);
2191 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2192 kmem_cache_free(nat_entry_set_slab, set);
2196 * This function is called during the checkpointing process.
2198 void flush_nat_entries(struct f2fs_sb_info *sbi)
2200 struct f2fs_nm_info *nm_i = NM_I(sbi);
2201 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2202 struct f2fs_journal *journal = curseg->journal;
2203 struct nat_entry_set *setvec[SETVEC_SIZE];
2204 struct nat_entry_set *set, *tmp;
2209 if (!nm_i->dirty_nat_cnt)
2212 percpu_down_write(&nm_i->nat_tree_lock);
2215 * if there are no enough space in journal to store dirty nat
2216 * entries, remove all entries from journal and merge them
2217 * into nat entry set.
2219 if (!__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2220 remove_nats_in_journal(sbi);
2222 while ((found = __gang_lookup_nat_set(nm_i,
2223 set_idx, SETVEC_SIZE, setvec))) {
2225 set_idx = setvec[found - 1]->set + 1;
2226 for (idx = 0; idx < found; idx++)
2227 __adjust_nat_entry_set(setvec[idx], &sets,
2228 MAX_NAT_JENTRIES(journal));
2231 /* flush dirty nats in nat entry set */
2232 list_for_each_entry_safe(set, tmp, &sets, set_list)
2233 __flush_nat_entry_set(sbi, set);
2235 percpu_up_write(&nm_i->nat_tree_lock);
2237 f2fs_bug_on(sbi, nm_i->dirty_nat_cnt);
2240 static int init_node_manager(struct f2fs_sb_info *sbi)
2242 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
2243 struct f2fs_nm_info *nm_i = NM_I(sbi);
2244 unsigned char *version_bitmap;
2245 unsigned int nat_segs, nat_blocks;
2247 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
2249 /* segment_count_nat includes pair segment so divide to 2. */
2250 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
2251 nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
2253 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
2255 /* not used nids: 0, node, meta, (and root counted as valid node) */
2256 nm_i->available_nids = nm_i->max_nid - F2FS_RESERVED_NODE_NUM;
2259 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
2260 nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
2261 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
2263 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
2264 INIT_LIST_HEAD(&nm_i->free_nid_list);
2265 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
2266 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
2267 INIT_LIST_HEAD(&nm_i->nat_entries);
2269 mutex_init(&nm_i->build_lock);
2270 spin_lock_init(&nm_i->free_nid_list_lock);
2271 if (percpu_init_rwsem(&nm_i->nat_tree_lock))
2274 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
2275 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
2276 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
2277 if (!version_bitmap)
2280 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
2282 if (!nm_i->nat_bitmap)
2287 int build_node_manager(struct f2fs_sb_info *sbi)
2291 sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
2295 err = init_node_manager(sbi);
2299 build_free_nids(sbi);
2303 void destroy_node_manager(struct f2fs_sb_info *sbi)
2305 struct f2fs_nm_info *nm_i = NM_I(sbi);
2306 struct free_nid *i, *next_i;
2307 struct nat_entry *natvec[NATVEC_SIZE];
2308 struct nat_entry_set *setvec[SETVEC_SIZE];
2315 /* destroy free nid list */
2316 spin_lock(&nm_i->free_nid_list_lock);
2317 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
2318 f2fs_bug_on(sbi, i->state == NID_ALLOC);
2319 __del_from_free_nid_list(nm_i, i);
2321 spin_unlock(&nm_i->free_nid_list_lock);
2322 kmem_cache_free(free_nid_slab, i);
2323 spin_lock(&nm_i->free_nid_list_lock);
2325 f2fs_bug_on(sbi, nm_i->fcnt);
2326 spin_unlock(&nm_i->free_nid_list_lock);
2328 /* destroy nat cache */
2329 percpu_down_write(&nm_i->nat_tree_lock);
2330 while ((found = __gang_lookup_nat_cache(nm_i,
2331 nid, NATVEC_SIZE, natvec))) {
2334 nid = nat_get_nid(natvec[found - 1]) + 1;
2335 for (idx = 0; idx < found; idx++)
2336 __del_from_nat_cache(nm_i, natvec[idx]);
2338 f2fs_bug_on(sbi, nm_i->nat_cnt);
2340 /* destroy nat set cache */
2342 while ((found = __gang_lookup_nat_set(nm_i,
2343 nid, SETVEC_SIZE, setvec))) {
2346 nid = setvec[found - 1]->set + 1;
2347 for (idx = 0; idx < found; idx++) {
2348 /* entry_cnt is not zero, when cp_error was occurred */
2349 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
2350 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
2351 kmem_cache_free(nat_entry_set_slab, setvec[idx]);
2354 percpu_up_write(&nm_i->nat_tree_lock);
2356 percpu_free_rwsem(&nm_i->nat_tree_lock);
2357 kfree(nm_i->nat_bitmap);
2358 sbi->nm_info = NULL;
2362 int __init create_node_manager_caches(void)
2364 nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
2365 sizeof(struct nat_entry));
2366 if (!nat_entry_slab)
2369 free_nid_slab = f2fs_kmem_cache_create("free_nid",
2370 sizeof(struct free_nid));
2372 goto destroy_nat_entry;
2374 nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
2375 sizeof(struct nat_entry_set));
2376 if (!nat_entry_set_slab)
2377 goto destroy_free_nid;
2381 kmem_cache_destroy(free_nid_slab);
2383 kmem_cache_destroy(nat_entry_slab);
2388 void destroy_node_manager_caches(void)
2390 kmem_cache_destroy(nat_entry_set_slab);
2391 kmem_cache_destroy(free_nid_slab);
2392 kmem_cache_destroy(nat_entry_slab);