Merge tag 'for-linus-6.1-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git...
[platform/kernel/linux-starfive.git] / fs / f2fs / gc.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/gc.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/module.h>
10 #include <linux/init.h>
11 #include <linux/f2fs_fs.h>
12 #include <linux/kthread.h>
13 #include <linux/delay.h>
14 #include <linux/freezer.h>
15 #include <linux/sched/signal.h>
16 #include <linux/random.h>
17 #include <linux/sched/mm.h>
18
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include "gc.h"
23 #include "iostat.h"
24 #include <trace/events/f2fs.h>
25
26 static struct kmem_cache *victim_entry_slab;
27
28 static unsigned int count_bits(const unsigned long *addr,
29                                 unsigned int offset, unsigned int len);
30
31 static int gc_thread_func(void *data)
32 {
33         struct f2fs_sb_info *sbi = data;
34         struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
35         wait_queue_head_t *wq = &sbi->gc_thread->gc_wait_queue_head;
36         wait_queue_head_t *fggc_wq = &sbi->gc_thread->fggc_wq;
37         unsigned int wait_ms;
38         struct f2fs_gc_control gc_control = {
39                 .victim_segno = NULL_SEGNO,
40                 .should_migrate_blocks = false,
41                 .err_gc_skipped = false };
42
43         wait_ms = gc_th->min_sleep_time;
44
45         set_freezable();
46         do {
47                 bool sync_mode, foreground = false;
48
49                 wait_event_interruptible_timeout(*wq,
50                                 kthread_should_stop() || freezing(current) ||
51                                 waitqueue_active(fggc_wq) ||
52                                 gc_th->gc_wake,
53                                 msecs_to_jiffies(wait_ms));
54
55                 if (test_opt(sbi, GC_MERGE) && waitqueue_active(fggc_wq))
56                         foreground = true;
57
58                 /* give it a try one time */
59                 if (gc_th->gc_wake)
60                         gc_th->gc_wake = 0;
61
62                 if (try_to_freeze()) {
63                         stat_other_skip_bggc_count(sbi);
64                         continue;
65                 }
66                 if (kthread_should_stop())
67                         break;
68
69                 if (sbi->sb->s_writers.frozen >= SB_FREEZE_WRITE) {
70                         increase_sleep_time(gc_th, &wait_ms);
71                         stat_other_skip_bggc_count(sbi);
72                         continue;
73                 }
74
75                 if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
76                         f2fs_show_injection_info(sbi, FAULT_CHECKPOINT);
77                         f2fs_stop_checkpoint(sbi, false,
78                                         STOP_CP_REASON_FAULT_INJECT);
79                 }
80
81                 if (!sb_start_write_trylock(sbi->sb)) {
82                         stat_other_skip_bggc_count(sbi);
83                         continue;
84                 }
85
86                 /*
87                  * [GC triggering condition]
88                  * 0. GC is not conducted currently.
89                  * 1. There are enough dirty segments.
90                  * 2. IO subsystem is idle by checking the # of writeback pages.
91                  * 3. IO subsystem is idle by checking the # of requests in
92                  *    bdev's request list.
93                  *
94                  * Note) We have to avoid triggering GCs frequently.
95                  * Because it is possible that some segments can be
96                  * invalidated soon after by user update or deletion.
97                  * So, I'd like to wait some time to collect dirty segments.
98                  */
99                 if (sbi->gc_mode == GC_URGENT_HIGH) {
100                         spin_lock(&sbi->gc_urgent_high_lock);
101                         if (sbi->gc_urgent_high_remaining) {
102                                 sbi->gc_urgent_high_remaining--;
103                                 if (!sbi->gc_urgent_high_remaining)
104                                         sbi->gc_mode = GC_NORMAL;
105                         }
106                         spin_unlock(&sbi->gc_urgent_high_lock);
107                 }
108
109                 if (sbi->gc_mode == GC_URGENT_HIGH ||
110                                 sbi->gc_mode == GC_URGENT_MID) {
111                         wait_ms = gc_th->urgent_sleep_time;
112                         f2fs_down_write(&sbi->gc_lock);
113                         goto do_gc;
114                 }
115
116                 if (foreground) {
117                         f2fs_down_write(&sbi->gc_lock);
118                         goto do_gc;
119                 } else if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
120                         stat_other_skip_bggc_count(sbi);
121                         goto next;
122                 }
123
124                 if (!is_idle(sbi, GC_TIME)) {
125                         increase_sleep_time(gc_th, &wait_ms);
126                         f2fs_up_write(&sbi->gc_lock);
127                         stat_io_skip_bggc_count(sbi);
128                         goto next;
129                 }
130
131                 if (has_enough_invalid_blocks(sbi))
132                         decrease_sleep_time(gc_th, &wait_ms);
133                 else
134                         increase_sleep_time(gc_th, &wait_ms);
135 do_gc:
136                 if (!foreground)
137                         stat_inc_bggc_count(sbi->stat_info);
138
139                 sync_mode = F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC;
140
141                 /* foreground GC was been triggered via f2fs_balance_fs() */
142                 if (foreground)
143                         sync_mode = false;
144
145                 gc_control.init_gc_type = sync_mode ? FG_GC : BG_GC;
146                 gc_control.no_bg_gc = foreground;
147                 gc_control.nr_free_secs = foreground ? 1 : 0;
148
149                 /* if return value is not zero, no victim was selected */
150                 if (f2fs_gc(sbi, &gc_control)) {
151                         /* don't bother wait_ms by foreground gc */
152                         if (!foreground)
153                                 wait_ms = gc_th->no_gc_sleep_time;
154                 }
155
156                 if (foreground)
157                         wake_up_all(&gc_th->fggc_wq);
158
159                 trace_f2fs_background_gc(sbi->sb, wait_ms,
160                                 prefree_segments(sbi), free_segments(sbi));
161
162                 /* balancing f2fs's metadata periodically */
163                 f2fs_balance_fs_bg(sbi, true);
164 next:
165                 sb_end_write(sbi->sb);
166
167         } while (!kthread_should_stop());
168         return 0;
169 }
170
171 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi)
172 {
173         struct f2fs_gc_kthread *gc_th;
174         dev_t dev = sbi->sb->s_bdev->bd_dev;
175         int err = 0;
176
177         gc_th = f2fs_kmalloc(sbi, sizeof(struct f2fs_gc_kthread), GFP_KERNEL);
178         if (!gc_th) {
179                 err = -ENOMEM;
180                 goto out;
181         }
182
183         gc_th->urgent_sleep_time = DEF_GC_THREAD_URGENT_SLEEP_TIME;
184         gc_th->min_sleep_time = DEF_GC_THREAD_MIN_SLEEP_TIME;
185         gc_th->max_sleep_time = DEF_GC_THREAD_MAX_SLEEP_TIME;
186         gc_th->no_gc_sleep_time = DEF_GC_THREAD_NOGC_SLEEP_TIME;
187
188         gc_th->gc_wake = 0;
189
190         sbi->gc_thread = gc_th;
191         init_waitqueue_head(&sbi->gc_thread->gc_wait_queue_head);
192         init_waitqueue_head(&sbi->gc_thread->fggc_wq);
193         sbi->gc_thread->f2fs_gc_task = kthread_run(gc_thread_func, sbi,
194                         "f2fs_gc-%u:%u", MAJOR(dev), MINOR(dev));
195         if (IS_ERR(gc_th->f2fs_gc_task)) {
196                 err = PTR_ERR(gc_th->f2fs_gc_task);
197                 kfree(gc_th);
198                 sbi->gc_thread = NULL;
199         }
200 out:
201         return err;
202 }
203
204 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi)
205 {
206         struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
207
208         if (!gc_th)
209                 return;
210         kthread_stop(gc_th->f2fs_gc_task);
211         wake_up_all(&gc_th->fggc_wq);
212         kfree(gc_th);
213         sbi->gc_thread = NULL;
214 }
215
216 static int select_gc_type(struct f2fs_sb_info *sbi, int gc_type)
217 {
218         int gc_mode;
219
220         if (gc_type == BG_GC) {
221                 if (sbi->am.atgc_enabled)
222                         gc_mode = GC_AT;
223                 else
224                         gc_mode = GC_CB;
225         } else {
226                 gc_mode = GC_GREEDY;
227         }
228
229         switch (sbi->gc_mode) {
230         case GC_IDLE_CB:
231                 gc_mode = GC_CB;
232                 break;
233         case GC_IDLE_GREEDY:
234         case GC_URGENT_HIGH:
235                 gc_mode = GC_GREEDY;
236                 break;
237         case GC_IDLE_AT:
238                 gc_mode = GC_AT;
239                 break;
240         }
241
242         return gc_mode;
243 }
244
245 static void select_policy(struct f2fs_sb_info *sbi, int gc_type,
246                         int type, struct victim_sel_policy *p)
247 {
248         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
249
250         if (p->alloc_mode == SSR) {
251                 p->gc_mode = GC_GREEDY;
252                 p->dirty_bitmap = dirty_i->dirty_segmap[type];
253                 p->max_search = dirty_i->nr_dirty[type];
254                 p->ofs_unit = 1;
255         } else if (p->alloc_mode == AT_SSR) {
256                 p->gc_mode = GC_GREEDY;
257                 p->dirty_bitmap = dirty_i->dirty_segmap[type];
258                 p->max_search = dirty_i->nr_dirty[type];
259                 p->ofs_unit = 1;
260         } else {
261                 p->gc_mode = select_gc_type(sbi, gc_type);
262                 p->ofs_unit = sbi->segs_per_sec;
263                 if (__is_large_section(sbi)) {
264                         p->dirty_bitmap = dirty_i->dirty_secmap;
265                         p->max_search = count_bits(p->dirty_bitmap,
266                                                 0, MAIN_SECS(sbi));
267                 } else {
268                         p->dirty_bitmap = dirty_i->dirty_segmap[DIRTY];
269                         p->max_search = dirty_i->nr_dirty[DIRTY];
270                 }
271         }
272
273         /*
274          * adjust candidates range, should select all dirty segments for
275          * foreground GC and urgent GC cases.
276          */
277         if (gc_type != FG_GC &&
278                         (sbi->gc_mode != GC_URGENT_HIGH) &&
279                         (p->gc_mode != GC_AT && p->alloc_mode != AT_SSR) &&
280                         p->max_search > sbi->max_victim_search)
281                 p->max_search = sbi->max_victim_search;
282
283         /* let's select beginning hot/small space first in no_heap mode*/
284         if (f2fs_need_rand_seg(sbi))
285                 p->offset = prandom_u32_max(MAIN_SECS(sbi) * sbi->segs_per_sec);
286         else if (test_opt(sbi, NOHEAP) &&
287                 (type == CURSEG_HOT_DATA || IS_NODESEG(type)))
288                 p->offset = 0;
289         else
290                 p->offset = SIT_I(sbi)->last_victim[p->gc_mode];
291 }
292
293 static unsigned int get_max_cost(struct f2fs_sb_info *sbi,
294                                 struct victim_sel_policy *p)
295 {
296         /* SSR allocates in a segment unit */
297         if (p->alloc_mode == SSR)
298                 return sbi->blocks_per_seg;
299         else if (p->alloc_mode == AT_SSR)
300                 return UINT_MAX;
301
302         /* LFS */
303         if (p->gc_mode == GC_GREEDY)
304                 return 2 * sbi->blocks_per_seg * p->ofs_unit;
305         else if (p->gc_mode == GC_CB)
306                 return UINT_MAX;
307         else if (p->gc_mode == GC_AT)
308                 return UINT_MAX;
309         else /* No other gc_mode */
310                 return 0;
311 }
312
313 static unsigned int check_bg_victims(struct f2fs_sb_info *sbi)
314 {
315         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
316         unsigned int secno;
317
318         /*
319          * If the gc_type is FG_GC, we can select victim segments
320          * selected by background GC before.
321          * Those segments guarantee they have small valid blocks.
322          */
323         for_each_set_bit(secno, dirty_i->victim_secmap, MAIN_SECS(sbi)) {
324                 if (sec_usage_check(sbi, secno))
325                         continue;
326                 clear_bit(secno, dirty_i->victim_secmap);
327                 return GET_SEG_FROM_SEC(sbi, secno);
328         }
329         return NULL_SEGNO;
330 }
331
332 static unsigned int get_cb_cost(struct f2fs_sb_info *sbi, unsigned int segno)
333 {
334         struct sit_info *sit_i = SIT_I(sbi);
335         unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
336         unsigned int start = GET_SEG_FROM_SEC(sbi, secno);
337         unsigned long long mtime = 0;
338         unsigned int vblocks;
339         unsigned char age = 0;
340         unsigned char u;
341         unsigned int i;
342         unsigned int usable_segs_per_sec = f2fs_usable_segs_in_sec(sbi, segno);
343
344         for (i = 0; i < usable_segs_per_sec; i++)
345                 mtime += get_seg_entry(sbi, start + i)->mtime;
346         vblocks = get_valid_blocks(sbi, segno, true);
347
348         mtime = div_u64(mtime, usable_segs_per_sec);
349         vblocks = div_u64(vblocks, usable_segs_per_sec);
350
351         u = (vblocks * 100) >> sbi->log_blocks_per_seg;
352
353         /* Handle if the system time has changed by the user */
354         if (mtime < sit_i->min_mtime)
355                 sit_i->min_mtime = mtime;
356         if (mtime > sit_i->max_mtime)
357                 sit_i->max_mtime = mtime;
358         if (sit_i->max_mtime != sit_i->min_mtime)
359                 age = 100 - div64_u64(100 * (mtime - sit_i->min_mtime),
360                                 sit_i->max_mtime - sit_i->min_mtime);
361
362         return UINT_MAX - ((100 * (100 - u) * age) / (100 + u));
363 }
364
365 static inline unsigned int get_gc_cost(struct f2fs_sb_info *sbi,
366                         unsigned int segno, struct victim_sel_policy *p)
367 {
368         if (p->alloc_mode == SSR)
369                 return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
370
371         /* alloc_mode == LFS */
372         if (p->gc_mode == GC_GREEDY)
373                 return get_valid_blocks(sbi, segno, true);
374         else if (p->gc_mode == GC_CB)
375                 return get_cb_cost(sbi, segno);
376
377         f2fs_bug_on(sbi, 1);
378         return 0;
379 }
380
381 static unsigned int count_bits(const unsigned long *addr,
382                                 unsigned int offset, unsigned int len)
383 {
384         unsigned int end = offset + len, sum = 0;
385
386         while (offset < end) {
387                 if (test_bit(offset++, addr))
388                         ++sum;
389         }
390         return sum;
391 }
392
393 static struct victim_entry *attach_victim_entry(struct f2fs_sb_info *sbi,
394                                 unsigned long long mtime, unsigned int segno,
395                                 struct rb_node *parent, struct rb_node **p,
396                                 bool left_most)
397 {
398         struct atgc_management *am = &sbi->am;
399         struct victim_entry *ve;
400
401         ve =  f2fs_kmem_cache_alloc(victim_entry_slab,
402                                 GFP_NOFS, true, NULL);
403
404         ve->mtime = mtime;
405         ve->segno = segno;
406
407         rb_link_node(&ve->rb_node, parent, p);
408         rb_insert_color_cached(&ve->rb_node, &am->root, left_most);
409
410         list_add_tail(&ve->list, &am->victim_list);
411
412         am->victim_count++;
413
414         return ve;
415 }
416
417 static void insert_victim_entry(struct f2fs_sb_info *sbi,
418                                 unsigned long long mtime, unsigned int segno)
419 {
420         struct atgc_management *am = &sbi->am;
421         struct rb_node **p;
422         struct rb_node *parent = NULL;
423         bool left_most = true;
424
425         p = f2fs_lookup_rb_tree_ext(sbi, &am->root, &parent, mtime, &left_most);
426         attach_victim_entry(sbi, mtime, segno, parent, p, left_most);
427 }
428
429 static void add_victim_entry(struct f2fs_sb_info *sbi,
430                                 struct victim_sel_policy *p, unsigned int segno)
431 {
432         struct sit_info *sit_i = SIT_I(sbi);
433         unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
434         unsigned int start = GET_SEG_FROM_SEC(sbi, secno);
435         unsigned long long mtime = 0;
436         unsigned int i;
437
438         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
439                 if (p->gc_mode == GC_AT &&
440                         get_valid_blocks(sbi, segno, true) == 0)
441                         return;
442         }
443
444         for (i = 0; i < sbi->segs_per_sec; i++)
445                 mtime += get_seg_entry(sbi, start + i)->mtime;
446         mtime = div_u64(mtime, sbi->segs_per_sec);
447
448         /* Handle if the system time has changed by the user */
449         if (mtime < sit_i->min_mtime)
450                 sit_i->min_mtime = mtime;
451         if (mtime > sit_i->max_mtime)
452                 sit_i->max_mtime = mtime;
453         if (mtime < sit_i->dirty_min_mtime)
454                 sit_i->dirty_min_mtime = mtime;
455         if (mtime > sit_i->dirty_max_mtime)
456                 sit_i->dirty_max_mtime = mtime;
457
458         /* don't choose young section as candidate */
459         if (sit_i->dirty_max_mtime - mtime < p->age_threshold)
460                 return;
461
462         insert_victim_entry(sbi, mtime, segno);
463 }
464
465 static struct rb_node *lookup_central_victim(struct f2fs_sb_info *sbi,
466                                                 struct victim_sel_policy *p)
467 {
468         struct atgc_management *am = &sbi->am;
469         struct rb_node *parent = NULL;
470         bool left_most;
471
472         f2fs_lookup_rb_tree_ext(sbi, &am->root, &parent, p->age, &left_most);
473
474         return parent;
475 }
476
477 static void atgc_lookup_victim(struct f2fs_sb_info *sbi,
478                                                 struct victim_sel_policy *p)
479 {
480         struct sit_info *sit_i = SIT_I(sbi);
481         struct atgc_management *am = &sbi->am;
482         struct rb_root_cached *root = &am->root;
483         struct rb_node *node;
484         struct rb_entry *re;
485         struct victim_entry *ve;
486         unsigned long long total_time;
487         unsigned long long age, u, accu;
488         unsigned long long max_mtime = sit_i->dirty_max_mtime;
489         unsigned long long min_mtime = sit_i->dirty_min_mtime;
490         unsigned int sec_blocks = CAP_BLKS_PER_SEC(sbi);
491         unsigned int vblocks;
492         unsigned int dirty_threshold = max(am->max_candidate_count,
493                                         am->candidate_ratio *
494                                         am->victim_count / 100);
495         unsigned int age_weight = am->age_weight;
496         unsigned int cost;
497         unsigned int iter = 0;
498
499         if (max_mtime < min_mtime)
500                 return;
501
502         max_mtime += 1;
503         total_time = max_mtime - min_mtime;
504
505         accu = div64_u64(ULLONG_MAX, total_time);
506         accu = min_t(unsigned long long, div_u64(accu, 100),
507                                         DEFAULT_ACCURACY_CLASS);
508
509         node = rb_first_cached(root);
510 next:
511         re = rb_entry_safe(node, struct rb_entry, rb_node);
512         if (!re)
513                 return;
514
515         ve = (struct victim_entry *)re;
516
517         if (ve->mtime >= max_mtime || ve->mtime < min_mtime)
518                 goto skip;
519
520         /* age = 10000 * x% * 60 */
521         age = div64_u64(accu * (max_mtime - ve->mtime), total_time) *
522                                                                 age_weight;
523
524         vblocks = get_valid_blocks(sbi, ve->segno, true);
525         f2fs_bug_on(sbi, !vblocks || vblocks == sec_blocks);
526
527         /* u = 10000 * x% * 40 */
528         u = div64_u64(accu * (sec_blocks - vblocks), sec_blocks) *
529                                                         (100 - age_weight);
530
531         f2fs_bug_on(sbi, age + u >= UINT_MAX);
532
533         cost = UINT_MAX - (age + u);
534         iter++;
535
536         if (cost < p->min_cost ||
537                         (cost == p->min_cost && age > p->oldest_age)) {
538                 p->min_cost = cost;
539                 p->oldest_age = age;
540                 p->min_segno = ve->segno;
541         }
542 skip:
543         if (iter < dirty_threshold) {
544                 node = rb_next(node);
545                 goto next;
546         }
547 }
548
549 /*
550  * select candidates around source section in range of
551  * [target - dirty_threshold, target + dirty_threshold]
552  */
553 static void atssr_lookup_victim(struct f2fs_sb_info *sbi,
554                                                 struct victim_sel_policy *p)
555 {
556         struct sit_info *sit_i = SIT_I(sbi);
557         struct atgc_management *am = &sbi->am;
558         struct rb_node *node;
559         struct rb_entry *re;
560         struct victim_entry *ve;
561         unsigned long long age;
562         unsigned long long max_mtime = sit_i->dirty_max_mtime;
563         unsigned long long min_mtime = sit_i->dirty_min_mtime;
564         unsigned int seg_blocks = sbi->blocks_per_seg;
565         unsigned int vblocks;
566         unsigned int dirty_threshold = max(am->max_candidate_count,
567                                         am->candidate_ratio *
568                                         am->victim_count / 100);
569         unsigned int cost;
570         unsigned int iter = 0;
571         int stage = 0;
572
573         if (max_mtime < min_mtime)
574                 return;
575         max_mtime += 1;
576 next_stage:
577         node = lookup_central_victim(sbi, p);
578 next_node:
579         re = rb_entry_safe(node, struct rb_entry, rb_node);
580         if (!re) {
581                 if (stage == 0)
582                         goto skip_stage;
583                 return;
584         }
585
586         ve = (struct victim_entry *)re;
587
588         if (ve->mtime >= max_mtime || ve->mtime < min_mtime)
589                 goto skip_node;
590
591         age = max_mtime - ve->mtime;
592
593         vblocks = get_seg_entry(sbi, ve->segno)->ckpt_valid_blocks;
594         f2fs_bug_on(sbi, !vblocks);
595
596         /* rare case */
597         if (vblocks == seg_blocks)
598                 goto skip_node;
599
600         iter++;
601
602         age = max_mtime - abs(p->age - age);
603         cost = UINT_MAX - vblocks;
604
605         if (cost < p->min_cost ||
606                         (cost == p->min_cost && age > p->oldest_age)) {
607                 p->min_cost = cost;
608                 p->oldest_age = age;
609                 p->min_segno = ve->segno;
610         }
611 skip_node:
612         if (iter < dirty_threshold) {
613                 if (stage == 0)
614                         node = rb_prev(node);
615                 else if (stage == 1)
616                         node = rb_next(node);
617                 goto next_node;
618         }
619 skip_stage:
620         if (stage < 1) {
621                 stage++;
622                 iter = 0;
623                 goto next_stage;
624         }
625 }
626 static void lookup_victim_by_age(struct f2fs_sb_info *sbi,
627                                                 struct victim_sel_policy *p)
628 {
629         f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
630                                                 &sbi->am.root, true));
631
632         if (p->gc_mode == GC_AT)
633                 atgc_lookup_victim(sbi, p);
634         else if (p->alloc_mode == AT_SSR)
635                 atssr_lookup_victim(sbi, p);
636         else
637                 f2fs_bug_on(sbi, 1);
638 }
639
640 static void release_victim_entry(struct f2fs_sb_info *sbi)
641 {
642         struct atgc_management *am = &sbi->am;
643         struct victim_entry *ve, *tmp;
644
645         list_for_each_entry_safe(ve, tmp, &am->victim_list, list) {
646                 list_del(&ve->list);
647                 kmem_cache_free(victim_entry_slab, ve);
648                 am->victim_count--;
649         }
650
651         am->root = RB_ROOT_CACHED;
652
653         f2fs_bug_on(sbi, am->victim_count);
654         f2fs_bug_on(sbi, !list_empty(&am->victim_list));
655 }
656
657 static bool f2fs_pin_section(struct f2fs_sb_info *sbi, unsigned int segno)
658 {
659         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
660         unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
661
662         if (!dirty_i->enable_pin_section)
663                 return false;
664         if (!test_and_set_bit(secno, dirty_i->pinned_secmap))
665                 dirty_i->pinned_secmap_cnt++;
666         return true;
667 }
668
669 static bool f2fs_pinned_section_exists(struct dirty_seglist_info *dirty_i)
670 {
671         return dirty_i->pinned_secmap_cnt;
672 }
673
674 static bool f2fs_section_is_pinned(struct dirty_seglist_info *dirty_i,
675                                                 unsigned int secno)
676 {
677         return dirty_i->enable_pin_section &&
678                 f2fs_pinned_section_exists(dirty_i) &&
679                 test_bit(secno, dirty_i->pinned_secmap);
680 }
681
682 static void f2fs_unpin_all_sections(struct f2fs_sb_info *sbi, bool enable)
683 {
684         unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
685
686         if (f2fs_pinned_section_exists(DIRTY_I(sbi))) {
687                 memset(DIRTY_I(sbi)->pinned_secmap, 0, bitmap_size);
688                 DIRTY_I(sbi)->pinned_secmap_cnt = 0;
689         }
690         DIRTY_I(sbi)->enable_pin_section = enable;
691 }
692
693 static int f2fs_gc_pinned_control(struct inode *inode, int gc_type,
694                                                         unsigned int segno)
695 {
696         if (!f2fs_is_pinned_file(inode))
697                 return 0;
698         if (gc_type != FG_GC)
699                 return -EBUSY;
700         if (!f2fs_pin_section(F2FS_I_SB(inode), segno))
701                 f2fs_pin_file_control(inode, true);
702         return -EAGAIN;
703 }
704
705 /*
706  * This function is called from two paths.
707  * One is garbage collection and the other is SSR segment selection.
708  * When it is called during GC, it just gets a victim segment
709  * and it does not remove it from dirty seglist.
710  * When it is called from SSR segment selection, it finds a segment
711  * which has minimum valid blocks and removes it from dirty seglist.
712  */
713 static int get_victim_by_default(struct f2fs_sb_info *sbi,
714                         unsigned int *result, int gc_type, int type,
715                         char alloc_mode, unsigned long long age)
716 {
717         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
718         struct sit_info *sm = SIT_I(sbi);
719         struct victim_sel_policy p;
720         unsigned int secno, last_victim;
721         unsigned int last_segment;
722         unsigned int nsearched;
723         bool is_atgc;
724         int ret = 0;
725
726         mutex_lock(&dirty_i->seglist_lock);
727         last_segment = MAIN_SECS(sbi) * sbi->segs_per_sec;
728
729         p.alloc_mode = alloc_mode;
730         p.age = age;
731         p.age_threshold = sbi->am.age_threshold;
732
733 retry:
734         select_policy(sbi, gc_type, type, &p);
735         p.min_segno = NULL_SEGNO;
736         p.oldest_age = 0;
737         p.min_cost = get_max_cost(sbi, &p);
738
739         is_atgc = (p.gc_mode == GC_AT || p.alloc_mode == AT_SSR);
740         nsearched = 0;
741
742         if (is_atgc)
743                 SIT_I(sbi)->dirty_min_mtime = ULLONG_MAX;
744
745         if (*result != NULL_SEGNO) {
746                 if (!get_valid_blocks(sbi, *result, false)) {
747                         ret = -ENODATA;
748                         goto out;
749                 }
750
751                 if (sec_usage_check(sbi, GET_SEC_FROM_SEG(sbi, *result)))
752                         ret = -EBUSY;
753                 else
754                         p.min_segno = *result;
755                 goto out;
756         }
757
758         ret = -ENODATA;
759         if (p.max_search == 0)
760                 goto out;
761
762         if (__is_large_section(sbi) && p.alloc_mode == LFS) {
763                 if (sbi->next_victim_seg[BG_GC] != NULL_SEGNO) {
764                         p.min_segno = sbi->next_victim_seg[BG_GC];
765                         *result = p.min_segno;
766                         sbi->next_victim_seg[BG_GC] = NULL_SEGNO;
767                         goto got_result;
768                 }
769                 if (gc_type == FG_GC &&
770                                 sbi->next_victim_seg[FG_GC] != NULL_SEGNO) {
771                         p.min_segno = sbi->next_victim_seg[FG_GC];
772                         *result = p.min_segno;
773                         sbi->next_victim_seg[FG_GC] = NULL_SEGNO;
774                         goto got_result;
775                 }
776         }
777
778         last_victim = sm->last_victim[p.gc_mode];
779         if (p.alloc_mode == LFS && gc_type == FG_GC) {
780                 p.min_segno = check_bg_victims(sbi);
781                 if (p.min_segno != NULL_SEGNO)
782                         goto got_it;
783         }
784
785         while (1) {
786                 unsigned long cost, *dirty_bitmap;
787                 unsigned int unit_no, segno;
788
789                 dirty_bitmap = p.dirty_bitmap;
790                 unit_no = find_next_bit(dirty_bitmap,
791                                 last_segment / p.ofs_unit,
792                                 p.offset / p.ofs_unit);
793                 segno = unit_no * p.ofs_unit;
794                 if (segno >= last_segment) {
795                         if (sm->last_victim[p.gc_mode]) {
796                                 last_segment =
797                                         sm->last_victim[p.gc_mode];
798                                 sm->last_victim[p.gc_mode] = 0;
799                                 p.offset = 0;
800                                 continue;
801                         }
802                         break;
803                 }
804
805                 p.offset = segno + p.ofs_unit;
806                 nsearched++;
807
808 #ifdef CONFIG_F2FS_CHECK_FS
809                 /*
810                  * skip selecting the invalid segno (that is failed due to block
811                  * validity check failure during GC) to avoid endless GC loop in
812                  * such cases.
813                  */
814                 if (test_bit(segno, sm->invalid_segmap))
815                         goto next;
816 #endif
817
818                 secno = GET_SEC_FROM_SEG(sbi, segno);
819
820                 if (sec_usage_check(sbi, secno))
821                         goto next;
822
823                 /* Don't touch checkpointed data */
824                 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
825                         if (p.alloc_mode == LFS) {
826                                 /*
827                                  * LFS is set to find source section during GC.
828                                  * The victim should have no checkpointed data.
829                                  */
830                                 if (get_ckpt_valid_blocks(sbi, segno, true))
831                                         goto next;
832                         } else {
833                                 /*
834                                  * SSR | AT_SSR are set to find target segment
835                                  * for writes which can be full by checkpointed
836                                  * and newly written blocks.
837                                  */
838                                 if (!f2fs_segment_has_free_slot(sbi, segno))
839                                         goto next;
840                         }
841                 }
842
843                 if (gc_type == BG_GC && test_bit(secno, dirty_i->victim_secmap))
844                         goto next;
845
846                 if (gc_type == FG_GC && f2fs_section_is_pinned(dirty_i, secno))
847                         goto next;
848
849                 if (is_atgc) {
850                         add_victim_entry(sbi, &p, segno);
851                         goto next;
852                 }
853
854                 cost = get_gc_cost(sbi, segno, &p);
855
856                 if (p.min_cost > cost) {
857                         p.min_segno = segno;
858                         p.min_cost = cost;
859                 }
860 next:
861                 if (nsearched >= p.max_search) {
862                         if (!sm->last_victim[p.gc_mode] && segno <= last_victim)
863                                 sm->last_victim[p.gc_mode] =
864                                         last_victim + p.ofs_unit;
865                         else
866                                 sm->last_victim[p.gc_mode] = segno + p.ofs_unit;
867                         sm->last_victim[p.gc_mode] %=
868                                 (MAIN_SECS(sbi) * sbi->segs_per_sec);
869                         break;
870                 }
871         }
872
873         /* get victim for GC_AT/AT_SSR */
874         if (is_atgc) {
875                 lookup_victim_by_age(sbi, &p);
876                 release_victim_entry(sbi);
877         }
878
879         if (is_atgc && p.min_segno == NULL_SEGNO &&
880                         sm->elapsed_time < p.age_threshold) {
881                 p.age_threshold = 0;
882                 goto retry;
883         }
884
885         if (p.min_segno != NULL_SEGNO) {
886 got_it:
887                 *result = (p.min_segno / p.ofs_unit) * p.ofs_unit;
888 got_result:
889                 if (p.alloc_mode == LFS) {
890                         secno = GET_SEC_FROM_SEG(sbi, p.min_segno);
891                         if (gc_type == FG_GC)
892                                 sbi->cur_victim_sec = secno;
893                         else
894                                 set_bit(secno, dirty_i->victim_secmap);
895                 }
896                 ret = 0;
897
898         }
899 out:
900         if (p.min_segno != NULL_SEGNO)
901                 trace_f2fs_get_victim(sbi->sb, type, gc_type, &p,
902                                 sbi->cur_victim_sec,
903                                 prefree_segments(sbi), free_segments(sbi));
904         mutex_unlock(&dirty_i->seglist_lock);
905
906         return ret;
907 }
908
909 static const struct victim_selection default_v_ops = {
910         .get_victim = get_victim_by_default,
911 };
912
913 static struct inode *find_gc_inode(struct gc_inode_list *gc_list, nid_t ino)
914 {
915         struct inode_entry *ie;
916
917         ie = radix_tree_lookup(&gc_list->iroot, ino);
918         if (ie)
919                 return ie->inode;
920         return NULL;
921 }
922
923 static void add_gc_inode(struct gc_inode_list *gc_list, struct inode *inode)
924 {
925         struct inode_entry *new_ie;
926
927         if (inode == find_gc_inode(gc_list, inode->i_ino)) {
928                 iput(inode);
929                 return;
930         }
931         new_ie = f2fs_kmem_cache_alloc(f2fs_inode_entry_slab,
932                                         GFP_NOFS, true, NULL);
933         new_ie->inode = inode;
934
935         f2fs_radix_tree_insert(&gc_list->iroot, inode->i_ino, new_ie);
936         list_add_tail(&new_ie->list, &gc_list->ilist);
937 }
938
939 static void put_gc_inode(struct gc_inode_list *gc_list)
940 {
941         struct inode_entry *ie, *next_ie;
942
943         list_for_each_entry_safe(ie, next_ie, &gc_list->ilist, list) {
944                 radix_tree_delete(&gc_list->iroot, ie->inode->i_ino);
945                 iput(ie->inode);
946                 list_del(&ie->list);
947                 kmem_cache_free(f2fs_inode_entry_slab, ie);
948         }
949 }
950
951 static int check_valid_map(struct f2fs_sb_info *sbi,
952                                 unsigned int segno, int offset)
953 {
954         struct sit_info *sit_i = SIT_I(sbi);
955         struct seg_entry *sentry;
956         int ret;
957
958         down_read(&sit_i->sentry_lock);
959         sentry = get_seg_entry(sbi, segno);
960         ret = f2fs_test_bit(offset, sentry->cur_valid_map);
961         up_read(&sit_i->sentry_lock);
962         return ret;
963 }
964
965 /*
966  * This function compares node address got in summary with that in NAT.
967  * On validity, copy that node with cold status, otherwise (invalid node)
968  * ignore that.
969  */
970 static int gc_node_segment(struct f2fs_sb_info *sbi,
971                 struct f2fs_summary *sum, unsigned int segno, int gc_type)
972 {
973         struct f2fs_summary *entry;
974         block_t start_addr;
975         int off;
976         int phase = 0;
977         bool fggc = (gc_type == FG_GC);
978         int submitted = 0;
979         unsigned int usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
980
981         start_addr = START_BLOCK(sbi, segno);
982
983 next_step:
984         entry = sum;
985
986         if (fggc && phase == 2)
987                 atomic_inc(&sbi->wb_sync_req[NODE]);
988
989         for (off = 0; off < usable_blks_in_seg; off++, entry++) {
990                 nid_t nid = le32_to_cpu(entry->nid);
991                 struct page *node_page;
992                 struct node_info ni;
993                 int err;
994
995                 /* stop BG_GC if there is not enough free sections. */
996                 if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0))
997                         return submitted;
998
999                 if (check_valid_map(sbi, segno, off) == 0)
1000                         continue;
1001
1002                 if (phase == 0) {
1003                         f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1,
1004                                                         META_NAT, true);
1005                         continue;
1006                 }
1007
1008                 if (phase == 1) {
1009                         f2fs_ra_node_page(sbi, nid);
1010                         continue;
1011                 }
1012
1013                 /* phase == 2 */
1014                 node_page = f2fs_get_node_page(sbi, nid);
1015                 if (IS_ERR(node_page))
1016                         continue;
1017
1018                 /* block may become invalid during f2fs_get_node_page */
1019                 if (check_valid_map(sbi, segno, off) == 0) {
1020                         f2fs_put_page(node_page, 1);
1021                         continue;
1022                 }
1023
1024                 if (f2fs_get_node_info(sbi, nid, &ni, false)) {
1025                         f2fs_put_page(node_page, 1);
1026                         continue;
1027                 }
1028
1029                 if (ni.blk_addr != start_addr + off) {
1030                         f2fs_put_page(node_page, 1);
1031                         continue;
1032                 }
1033
1034                 err = f2fs_move_node_page(node_page, gc_type);
1035                 if (!err && gc_type == FG_GC)
1036                         submitted++;
1037                 stat_inc_node_blk_count(sbi, 1, gc_type);
1038         }
1039
1040         if (++phase < 3)
1041                 goto next_step;
1042
1043         if (fggc)
1044                 atomic_dec(&sbi->wb_sync_req[NODE]);
1045         return submitted;
1046 }
1047
1048 /*
1049  * Calculate start block index indicating the given node offset.
1050  * Be careful, caller should give this node offset only indicating direct node
1051  * blocks. If any node offsets, which point the other types of node blocks such
1052  * as indirect or double indirect node blocks, are given, it must be a caller's
1053  * bug.
1054  */
1055 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode)
1056 {
1057         unsigned int indirect_blks = 2 * NIDS_PER_BLOCK + 4;
1058         unsigned int bidx;
1059
1060         if (node_ofs == 0)
1061                 return 0;
1062
1063         if (node_ofs <= 2) {
1064                 bidx = node_ofs - 1;
1065         } else if (node_ofs <= indirect_blks) {
1066                 int dec = (node_ofs - 4) / (NIDS_PER_BLOCK + 1);
1067
1068                 bidx = node_ofs - 2 - dec;
1069         } else {
1070                 int dec = (node_ofs - indirect_blks - 3) / (NIDS_PER_BLOCK + 1);
1071
1072                 bidx = node_ofs - 5 - dec;
1073         }
1074         return bidx * ADDRS_PER_BLOCK(inode) + ADDRS_PER_INODE(inode);
1075 }
1076
1077 static bool is_alive(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
1078                 struct node_info *dni, block_t blkaddr, unsigned int *nofs)
1079 {
1080         struct page *node_page;
1081         nid_t nid;
1082         unsigned int ofs_in_node, max_addrs;
1083         block_t source_blkaddr;
1084
1085         nid = le32_to_cpu(sum->nid);
1086         ofs_in_node = le16_to_cpu(sum->ofs_in_node);
1087
1088         node_page = f2fs_get_node_page(sbi, nid);
1089         if (IS_ERR(node_page))
1090                 return false;
1091
1092         if (f2fs_get_node_info(sbi, nid, dni, false)) {
1093                 f2fs_put_page(node_page, 1);
1094                 return false;
1095         }
1096
1097         if (sum->version != dni->version) {
1098                 f2fs_warn(sbi, "%s: valid data with mismatched node version.",
1099                           __func__);
1100                 set_sbi_flag(sbi, SBI_NEED_FSCK);
1101         }
1102
1103         if (f2fs_check_nid_range(sbi, dni->ino)) {
1104                 f2fs_put_page(node_page, 1);
1105                 return false;
1106         }
1107
1108         max_addrs = IS_INODE(node_page) ? DEF_ADDRS_PER_INODE :
1109                                                 DEF_ADDRS_PER_BLOCK;
1110         if (ofs_in_node >= max_addrs) {
1111                 f2fs_err(sbi, "Inconsistent ofs_in_node:%u in summary, ino:%u, nid:%u, max:%u",
1112                         ofs_in_node, dni->ino, dni->nid, max_addrs);
1113                 return false;
1114         }
1115
1116         *nofs = ofs_of_node(node_page);
1117         source_blkaddr = data_blkaddr(NULL, node_page, ofs_in_node);
1118         f2fs_put_page(node_page, 1);
1119
1120         if (source_blkaddr != blkaddr) {
1121 #ifdef CONFIG_F2FS_CHECK_FS
1122                 unsigned int segno = GET_SEGNO(sbi, blkaddr);
1123                 unsigned long offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
1124
1125                 if (unlikely(check_valid_map(sbi, segno, offset))) {
1126                         if (!test_and_set_bit(segno, SIT_I(sbi)->invalid_segmap)) {
1127                                 f2fs_err(sbi, "mismatched blkaddr %u (source_blkaddr %u) in seg %u",
1128                                          blkaddr, source_blkaddr, segno);
1129                                 set_sbi_flag(sbi, SBI_NEED_FSCK);
1130                         }
1131                 }
1132 #endif
1133                 return false;
1134         }
1135         return true;
1136 }
1137
1138 static int ra_data_block(struct inode *inode, pgoff_t index)
1139 {
1140         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1141         struct address_space *mapping = inode->i_mapping;
1142         struct dnode_of_data dn;
1143         struct page *page;
1144         struct extent_info ei = {0, 0, 0};
1145         struct f2fs_io_info fio = {
1146                 .sbi = sbi,
1147                 .ino = inode->i_ino,
1148                 .type = DATA,
1149                 .temp = COLD,
1150                 .op = REQ_OP_READ,
1151                 .op_flags = 0,
1152                 .encrypted_page = NULL,
1153                 .in_list = false,
1154                 .retry = false,
1155         };
1156         int err;
1157
1158         page = f2fs_grab_cache_page(mapping, index, true);
1159         if (!page)
1160                 return -ENOMEM;
1161
1162         if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1163                 dn.data_blkaddr = ei.blk + index - ei.fofs;
1164                 if (unlikely(!f2fs_is_valid_blkaddr(sbi, dn.data_blkaddr,
1165                                                 DATA_GENERIC_ENHANCE_READ))) {
1166                         err = -EFSCORRUPTED;
1167                         f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1168                         goto put_page;
1169                 }
1170                 goto got_it;
1171         }
1172
1173         set_new_dnode(&dn, inode, NULL, NULL, 0);
1174         err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1175         if (err)
1176                 goto put_page;
1177         f2fs_put_dnode(&dn);
1178
1179         if (!__is_valid_data_blkaddr(dn.data_blkaddr)) {
1180                 err = -ENOENT;
1181                 goto put_page;
1182         }
1183         if (unlikely(!f2fs_is_valid_blkaddr(sbi, dn.data_blkaddr,
1184                                                 DATA_GENERIC_ENHANCE))) {
1185                 err = -EFSCORRUPTED;
1186                 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1187                 goto put_page;
1188         }
1189 got_it:
1190         /* read page */
1191         fio.page = page;
1192         fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
1193
1194         /*
1195          * don't cache encrypted data into meta inode until previous dirty
1196          * data were writebacked to avoid racing between GC and flush.
1197          */
1198         f2fs_wait_on_page_writeback(page, DATA, true, true);
1199
1200         f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
1201
1202         fio.encrypted_page = f2fs_pagecache_get_page(META_MAPPING(sbi),
1203                                         dn.data_blkaddr,
1204                                         FGP_LOCK | FGP_CREAT, GFP_NOFS);
1205         if (!fio.encrypted_page) {
1206                 err = -ENOMEM;
1207                 goto put_page;
1208         }
1209
1210         err = f2fs_submit_page_bio(&fio);
1211         if (err)
1212                 goto put_encrypted_page;
1213         f2fs_put_page(fio.encrypted_page, 0);
1214         f2fs_put_page(page, 1);
1215
1216         f2fs_update_iostat(sbi, inode, FS_DATA_READ_IO, F2FS_BLKSIZE);
1217         f2fs_update_iostat(sbi, NULL, FS_GDATA_READ_IO, F2FS_BLKSIZE);
1218
1219         return 0;
1220 put_encrypted_page:
1221         f2fs_put_page(fio.encrypted_page, 1);
1222 put_page:
1223         f2fs_put_page(page, 1);
1224         return err;
1225 }
1226
1227 /*
1228  * Move data block via META_MAPPING while keeping locked data page.
1229  * This can be used to move blocks, aka LBAs, directly on disk.
1230  */
1231 static int move_data_block(struct inode *inode, block_t bidx,
1232                                 int gc_type, unsigned int segno, int off)
1233 {
1234         struct f2fs_io_info fio = {
1235                 .sbi = F2FS_I_SB(inode),
1236                 .ino = inode->i_ino,
1237                 .type = DATA,
1238                 .temp = COLD,
1239                 .op = REQ_OP_READ,
1240                 .op_flags = 0,
1241                 .encrypted_page = NULL,
1242                 .in_list = false,
1243                 .retry = false,
1244         };
1245         struct dnode_of_data dn;
1246         struct f2fs_summary sum;
1247         struct node_info ni;
1248         struct page *page, *mpage;
1249         block_t newaddr;
1250         int err = 0;
1251         bool lfs_mode = f2fs_lfs_mode(fio.sbi);
1252         int type = fio.sbi->am.atgc_enabled && (gc_type == BG_GC) &&
1253                                 (fio.sbi->gc_mode != GC_URGENT_HIGH) ?
1254                                 CURSEG_ALL_DATA_ATGC : CURSEG_COLD_DATA;
1255
1256         /* do not read out */
1257         page = f2fs_grab_cache_page(inode->i_mapping, bidx, false);
1258         if (!page)
1259                 return -ENOMEM;
1260
1261         if (!check_valid_map(F2FS_I_SB(inode), segno, off)) {
1262                 err = -ENOENT;
1263                 goto out;
1264         }
1265
1266         err = f2fs_gc_pinned_control(inode, gc_type, segno);
1267         if (err)
1268                 goto out;
1269
1270         set_new_dnode(&dn, inode, NULL, NULL, 0);
1271         err = f2fs_get_dnode_of_data(&dn, bidx, LOOKUP_NODE);
1272         if (err)
1273                 goto out;
1274
1275         if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1276                 ClearPageUptodate(page);
1277                 err = -ENOENT;
1278                 goto put_out;
1279         }
1280
1281         /*
1282          * don't cache encrypted data into meta inode until previous dirty
1283          * data were writebacked to avoid racing between GC and flush.
1284          */
1285         f2fs_wait_on_page_writeback(page, DATA, true, true);
1286
1287         f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
1288
1289         err = f2fs_get_node_info(fio.sbi, dn.nid, &ni, false);
1290         if (err)
1291                 goto put_out;
1292
1293         /* read page */
1294         fio.page = page;
1295         fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
1296
1297         if (lfs_mode)
1298                 f2fs_down_write(&fio.sbi->io_order_lock);
1299
1300         mpage = f2fs_grab_cache_page(META_MAPPING(fio.sbi),
1301                                         fio.old_blkaddr, false);
1302         if (!mpage) {
1303                 err = -ENOMEM;
1304                 goto up_out;
1305         }
1306
1307         fio.encrypted_page = mpage;
1308
1309         /* read source block in mpage */
1310         if (!PageUptodate(mpage)) {
1311                 err = f2fs_submit_page_bio(&fio);
1312                 if (err) {
1313                         f2fs_put_page(mpage, 1);
1314                         goto up_out;
1315                 }
1316
1317                 f2fs_update_iostat(fio.sbi, inode, FS_DATA_READ_IO,
1318                                                         F2FS_BLKSIZE);
1319                 f2fs_update_iostat(fio.sbi, NULL, FS_GDATA_READ_IO,
1320                                                         F2FS_BLKSIZE);
1321
1322                 lock_page(mpage);
1323                 if (unlikely(mpage->mapping != META_MAPPING(fio.sbi) ||
1324                                                 !PageUptodate(mpage))) {
1325                         err = -EIO;
1326                         f2fs_put_page(mpage, 1);
1327                         goto up_out;
1328                 }
1329         }
1330
1331         set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version);
1332
1333         /* allocate block address */
1334         f2fs_allocate_data_block(fio.sbi, NULL, fio.old_blkaddr, &newaddr,
1335                                 &sum, type, NULL);
1336
1337         fio.encrypted_page = f2fs_pagecache_get_page(META_MAPPING(fio.sbi),
1338                                 newaddr, FGP_LOCK | FGP_CREAT, GFP_NOFS);
1339         if (!fio.encrypted_page) {
1340                 err = -ENOMEM;
1341                 f2fs_put_page(mpage, 1);
1342                 goto recover_block;
1343         }
1344
1345         /* write target block */
1346         f2fs_wait_on_page_writeback(fio.encrypted_page, DATA, true, true);
1347         memcpy(page_address(fio.encrypted_page),
1348                                 page_address(mpage), PAGE_SIZE);
1349         f2fs_put_page(mpage, 1);
1350         invalidate_mapping_pages(META_MAPPING(fio.sbi),
1351                                 fio.old_blkaddr, fio.old_blkaddr);
1352         f2fs_invalidate_compress_page(fio.sbi, fio.old_blkaddr);
1353
1354         set_page_dirty(fio.encrypted_page);
1355         if (clear_page_dirty_for_io(fio.encrypted_page))
1356                 dec_page_count(fio.sbi, F2FS_DIRTY_META);
1357
1358         set_page_writeback(fio.encrypted_page);
1359         ClearPageError(page);
1360
1361         fio.op = REQ_OP_WRITE;
1362         fio.op_flags = REQ_SYNC;
1363         fio.new_blkaddr = newaddr;
1364         f2fs_submit_page_write(&fio);
1365         if (fio.retry) {
1366                 err = -EAGAIN;
1367                 if (PageWriteback(fio.encrypted_page))
1368                         end_page_writeback(fio.encrypted_page);
1369                 goto put_page_out;
1370         }
1371
1372         f2fs_update_iostat(fio.sbi, NULL, FS_GC_DATA_IO, F2FS_BLKSIZE);
1373
1374         f2fs_update_data_blkaddr(&dn, newaddr);
1375         set_inode_flag(inode, FI_APPEND_WRITE);
1376         if (page->index == 0)
1377                 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1378 put_page_out:
1379         f2fs_put_page(fio.encrypted_page, 1);
1380 recover_block:
1381         if (err)
1382                 f2fs_do_replace_block(fio.sbi, &sum, newaddr, fio.old_blkaddr,
1383                                                         true, true, true);
1384 up_out:
1385         if (lfs_mode)
1386                 f2fs_up_write(&fio.sbi->io_order_lock);
1387 put_out:
1388         f2fs_put_dnode(&dn);
1389 out:
1390         f2fs_put_page(page, 1);
1391         return err;
1392 }
1393
1394 static int move_data_page(struct inode *inode, block_t bidx, int gc_type,
1395                                                         unsigned int segno, int off)
1396 {
1397         struct page *page;
1398         int err = 0;
1399
1400         page = f2fs_get_lock_data_page(inode, bidx, true);
1401         if (IS_ERR(page))
1402                 return PTR_ERR(page);
1403
1404         if (!check_valid_map(F2FS_I_SB(inode), segno, off)) {
1405                 err = -ENOENT;
1406                 goto out;
1407         }
1408
1409         err = f2fs_gc_pinned_control(inode, gc_type, segno);
1410         if (err)
1411                 goto out;
1412
1413         if (gc_type == BG_GC) {
1414                 if (PageWriteback(page)) {
1415                         err = -EAGAIN;
1416                         goto out;
1417                 }
1418                 set_page_dirty(page);
1419                 set_page_private_gcing(page);
1420         } else {
1421                 struct f2fs_io_info fio = {
1422                         .sbi = F2FS_I_SB(inode),
1423                         .ino = inode->i_ino,
1424                         .type = DATA,
1425                         .temp = COLD,
1426                         .op = REQ_OP_WRITE,
1427                         .op_flags = REQ_SYNC,
1428                         .old_blkaddr = NULL_ADDR,
1429                         .page = page,
1430                         .encrypted_page = NULL,
1431                         .need_lock = LOCK_REQ,
1432                         .io_type = FS_GC_DATA_IO,
1433                 };
1434                 bool is_dirty = PageDirty(page);
1435
1436 retry:
1437                 f2fs_wait_on_page_writeback(page, DATA, true, true);
1438
1439                 set_page_dirty(page);
1440                 if (clear_page_dirty_for_io(page)) {
1441                         inode_dec_dirty_pages(inode);
1442                         f2fs_remove_dirty_inode(inode);
1443                 }
1444
1445                 set_page_private_gcing(page);
1446
1447                 err = f2fs_do_write_data_page(&fio);
1448                 if (err) {
1449                         clear_page_private_gcing(page);
1450                         if (err == -ENOMEM) {
1451                                 memalloc_retry_wait(GFP_NOFS);
1452                                 goto retry;
1453                         }
1454                         if (is_dirty)
1455                                 set_page_dirty(page);
1456                 }
1457         }
1458 out:
1459         f2fs_put_page(page, 1);
1460         return err;
1461 }
1462
1463 /*
1464  * This function tries to get parent node of victim data block, and identifies
1465  * data block validity. If the block is valid, copy that with cold status and
1466  * modify parent node.
1467  * If the parent node is not valid or the data block address is different,
1468  * the victim data block is ignored.
1469  */
1470 static int gc_data_segment(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
1471                 struct gc_inode_list *gc_list, unsigned int segno, int gc_type,
1472                 bool force_migrate)
1473 {
1474         struct super_block *sb = sbi->sb;
1475         struct f2fs_summary *entry;
1476         block_t start_addr;
1477         int off;
1478         int phase = 0;
1479         int submitted = 0;
1480         unsigned int usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
1481
1482         start_addr = START_BLOCK(sbi, segno);
1483
1484 next_step:
1485         entry = sum;
1486
1487         for (off = 0; off < usable_blks_in_seg; off++, entry++) {
1488                 struct page *data_page;
1489                 struct inode *inode;
1490                 struct node_info dni; /* dnode info for the data */
1491                 unsigned int ofs_in_node, nofs;
1492                 block_t start_bidx;
1493                 nid_t nid = le32_to_cpu(entry->nid);
1494
1495                 /*
1496                  * stop BG_GC if there is not enough free sections.
1497                  * Or, stop GC if the segment becomes fully valid caused by
1498                  * race condition along with SSR block allocation.
1499                  */
1500                 if ((gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) ||
1501                         (!force_migrate && get_valid_blocks(sbi, segno, true) ==
1502                                                         CAP_BLKS_PER_SEC(sbi)))
1503                         return submitted;
1504
1505                 if (check_valid_map(sbi, segno, off) == 0)
1506                         continue;
1507
1508                 if (phase == 0) {
1509                         f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1,
1510                                                         META_NAT, true);
1511                         continue;
1512                 }
1513
1514                 if (phase == 1) {
1515                         f2fs_ra_node_page(sbi, nid);
1516                         continue;
1517                 }
1518
1519                 /* Get an inode by ino with checking validity */
1520                 if (!is_alive(sbi, entry, &dni, start_addr + off, &nofs))
1521                         continue;
1522
1523                 if (phase == 2) {
1524                         f2fs_ra_node_page(sbi, dni.ino);
1525                         continue;
1526                 }
1527
1528                 ofs_in_node = le16_to_cpu(entry->ofs_in_node);
1529
1530                 if (phase == 3) {
1531                         int err;
1532
1533                         inode = f2fs_iget(sb, dni.ino);
1534                         if (IS_ERR(inode) || is_bad_inode(inode) ||
1535                                         special_file(inode->i_mode))
1536                                 continue;
1537
1538                         err = f2fs_gc_pinned_control(inode, gc_type, segno);
1539                         if (err == -EAGAIN) {
1540                                 iput(inode);
1541                                 return submitted;
1542                         }
1543
1544                         if (!f2fs_down_write_trylock(
1545                                 &F2FS_I(inode)->i_gc_rwsem[WRITE])) {
1546                                 iput(inode);
1547                                 sbi->skipped_gc_rwsem++;
1548                                 continue;
1549                         }
1550
1551                         start_bidx = f2fs_start_bidx_of_node(nofs, inode) +
1552                                                                 ofs_in_node;
1553
1554                         if (f2fs_post_read_required(inode)) {
1555                                 int err = ra_data_block(inode, start_bidx);
1556
1557                                 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1558                                 if (err) {
1559                                         iput(inode);
1560                                         continue;
1561                                 }
1562                                 add_gc_inode(gc_list, inode);
1563                                 continue;
1564                         }
1565
1566                         data_page = f2fs_get_read_data_page(inode,
1567                                                 start_bidx, REQ_RAHEAD, true);
1568                         f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1569                         if (IS_ERR(data_page)) {
1570                                 iput(inode);
1571                                 continue;
1572                         }
1573
1574                         f2fs_put_page(data_page, 0);
1575                         add_gc_inode(gc_list, inode);
1576                         continue;
1577                 }
1578
1579                 /* phase 4 */
1580                 inode = find_gc_inode(gc_list, dni.ino);
1581                 if (inode) {
1582                         struct f2fs_inode_info *fi = F2FS_I(inode);
1583                         bool locked = false;
1584                         int err;
1585
1586                         if (S_ISREG(inode->i_mode)) {
1587                                 if (!f2fs_down_write_trylock(&fi->i_gc_rwsem[READ])) {
1588                                         sbi->skipped_gc_rwsem++;
1589                                         continue;
1590                                 }
1591                                 if (!f2fs_down_write_trylock(
1592                                                 &fi->i_gc_rwsem[WRITE])) {
1593                                         sbi->skipped_gc_rwsem++;
1594                                         f2fs_up_write(&fi->i_gc_rwsem[READ]);
1595                                         continue;
1596                                 }
1597                                 locked = true;
1598
1599                                 /* wait for all inflight aio data */
1600                                 inode_dio_wait(inode);
1601                         }
1602
1603                         start_bidx = f2fs_start_bidx_of_node(nofs, inode)
1604                                                                 + ofs_in_node;
1605                         if (f2fs_post_read_required(inode))
1606                                 err = move_data_block(inode, start_bidx,
1607                                                         gc_type, segno, off);
1608                         else
1609                                 err = move_data_page(inode, start_bidx, gc_type,
1610                                                                 segno, off);
1611
1612                         if (!err && (gc_type == FG_GC ||
1613                                         f2fs_post_read_required(inode)))
1614                                 submitted++;
1615
1616                         if (locked) {
1617                                 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
1618                                 f2fs_up_write(&fi->i_gc_rwsem[READ]);
1619                         }
1620
1621                         stat_inc_data_blk_count(sbi, 1, gc_type);
1622                 }
1623         }
1624
1625         if (++phase < 5)
1626                 goto next_step;
1627
1628         return submitted;
1629 }
1630
1631 static int __get_victim(struct f2fs_sb_info *sbi, unsigned int *victim,
1632                         int gc_type)
1633 {
1634         struct sit_info *sit_i = SIT_I(sbi);
1635         int ret;
1636
1637         down_write(&sit_i->sentry_lock);
1638         ret = DIRTY_I(sbi)->v_ops->get_victim(sbi, victim, gc_type,
1639                                               NO_CHECK_TYPE, LFS, 0);
1640         up_write(&sit_i->sentry_lock);
1641         return ret;
1642 }
1643
1644 static int do_garbage_collect(struct f2fs_sb_info *sbi,
1645                                 unsigned int start_segno,
1646                                 struct gc_inode_list *gc_list, int gc_type,
1647                                 bool force_migrate)
1648 {
1649         struct page *sum_page;
1650         struct f2fs_summary_block *sum;
1651         struct blk_plug plug;
1652         unsigned int segno = start_segno;
1653         unsigned int end_segno = start_segno + sbi->segs_per_sec;
1654         int seg_freed = 0, migrated = 0;
1655         unsigned char type = IS_DATASEG(get_seg_entry(sbi, segno)->type) ?
1656                                                 SUM_TYPE_DATA : SUM_TYPE_NODE;
1657         int submitted = 0;
1658
1659         if (__is_large_section(sbi))
1660                 end_segno = rounddown(end_segno, sbi->segs_per_sec);
1661
1662         /*
1663          * zone-capacity can be less than zone-size in zoned devices,
1664          * resulting in less than expected usable segments in the zone,
1665          * calculate the end segno in the zone which can be garbage collected
1666          */
1667         if (f2fs_sb_has_blkzoned(sbi))
1668                 end_segno -= sbi->segs_per_sec -
1669                                         f2fs_usable_segs_in_sec(sbi, segno);
1670
1671         sanity_check_seg_type(sbi, get_seg_entry(sbi, segno)->type);
1672
1673         /* readahead multi ssa blocks those have contiguous address */
1674         if (__is_large_section(sbi))
1675                 f2fs_ra_meta_pages(sbi, GET_SUM_BLOCK(sbi, segno),
1676                                         end_segno - segno, META_SSA, true);
1677
1678         /* reference all summary page */
1679         while (segno < end_segno) {
1680                 sum_page = f2fs_get_sum_page(sbi, segno++);
1681                 if (IS_ERR(sum_page)) {
1682                         int err = PTR_ERR(sum_page);
1683
1684                         end_segno = segno - 1;
1685                         for (segno = start_segno; segno < end_segno; segno++) {
1686                                 sum_page = find_get_page(META_MAPPING(sbi),
1687                                                 GET_SUM_BLOCK(sbi, segno));
1688                                 f2fs_put_page(sum_page, 0);
1689                                 f2fs_put_page(sum_page, 0);
1690                         }
1691                         return err;
1692                 }
1693                 unlock_page(sum_page);
1694         }
1695
1696         blk_start_plug(&plug);
1697
1698         for (segno = start_segno; segno < end_segno; segno++) {
1699
1700                 /* find segment summary of victim */
1701                 sum_page = find_get_page(META_MAPPING(sbi),
1702                                         GET_SUM_BLOCK(sbi, segno));
1703                 f2fs_put_page(sum_page, 0);
1704
1705                 if (get_valid_blocks(sbi, segno, false) == 0)
1706                         goto freed;
1707                 if (gc_type == BG_GC && __is_large_section(sbi) &&
1708                                 migrated >= sbi->migration_granularity)
1709                         goto skip;
1710                 if (!PageUptodate(sum_page) || unlikely(f2fs_cp_error(sbi)))
1711                         goto skip;
1712
1713                 sum = page_address(sum_page);
1714                 if (type != GET_SUM_TYPE((&sum->footer))) {
1715                         f2fs_err(sbi, "Inconsistent segment (%u) type [%d, %d] in SSA and SIT",
1716                                  segno, type, GET_SUM_TYPE((&sum->footer)));
1717                         set_sbi_flag(sbi, SBI_NEED_FSCK);
1718                         f2fs_stop_checkpoint(sbi, false,
1719                                 STOP_CP_REASON_CORRUPTED_SUMMARY);
1720                         goto skip;
1721                 }
1722
1723                 /*
1724                  * this is to avoid deadlock:
1725                  * - lock_page(sum_page)         - f2fs_replace_block
1726                  *  - check_valid_map()            - down_write(sentry_lock)
1727                  *   - down_read(sentry_lock)     - change_curseg()
1728                  *                                  - lock_page(sum_page)
1729                  */
1730                 if (type == SUM_TYPE_NODE)
1731                         submitted += gc_node_segment(sbi, sum->entries, segno,
1732                                                                 gc_type);
1733                 else
1734                         submitted += gc_data_segment(sbi, sum->entries, gc_list,
1735                                                         segno, gc_type,
1736                                                         force_migrate);
1737
1738                 stat_inc_seg_count(sbi, type, gc_type);
1739                 sbi->gc_reclaimed_segs[sbi->gc_mode]++;
1740                 migrated++;
1741
1742 freed:
1743                 if (gc_type == FG_GC &&
1744                                 get_valid_blocks(sbi, segno, false) == 0)
1745                         seg_freed++;
1746
1747                 if (__is_large_section(sbi) && segno + 1 < end_segno)
1748                         sbi->next_victim_seg[gc_type] = segno + 1;
1749 skip:
1750                 f2fs_put_page(sum_page, 0);
1751         }
1752
1753         if (submitted)
1754                 f2fs_submit_merged_write(sbi,
1755                                 (type == SUM_TYPE_NODE) ? NODE : DATA);
1756
1757         blk_finish_plug(&plug);
1758
1759         stat_inc_call_count(sbi->stat_info);
1760
1761         return seg_freed;
1762 }
1763
1764 int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control)
1765 {
1766         int gc_type = gc_control->init_gc_type;
1767         unsigned int segno = gc_control->victim_segno;
1768         int sec_freed = 0, seg_freed = 0, total_freed = 0;
1769         int ret = 0;
1770         struct cp_control cpc;
1771         struct gc_inode_list gc_list = {
1772                 .ilist = LIST_HEAD_INIT(gc_list.ilist),
1773                 .iroot = RADIX_TREE_INIT(gc_list.iroot, GFP_NOFS),
1774         };
1775         unsigned int skipped_round = 0, round = 0;
1776
1777         trace_f2fs_gc_begin(sbi->sb, gc_type, gc_control->no_bg_gc,
1778                                 gc_control->nr_free_secs,
1779                                 get_pages(sbi, F2FS_DIRTY_NODES),
1780                                 get_pages(sbi, F2FS_DIRTY_DENTS),
1781                                 get_pages(sbi, F2FS_DIRTY_IMETA),
1782                                 free_sections(sbi),
1783                                 free_segments(sbi),
1784                                 reserved_segments(sbi),
1785                                 prefree_segments(sbi));
1786
1787         cpc.reason = __get_cp_reason(sbi);
1788         sbi->skipped_gc_rwsem = 0;
1789 gc_more:
1790         if (unlikely(!(sbi->sb->s_flags & SB_ACTIVE))) {
1791                 ret = -EINVAL;
1792                 goto stop;
1793         }
1794         if (unlikely(f2fs_cp_error(sbi))) {
1795                 ret = -EIO;
1796                 goto stop;
1797         }
1798
1799         if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) {
1800                 /*
1801                  * For example, if there are many prefree_segments below given
1802                  * threshold, we can make them free by checkpoint. Then, we
1803                  * secure free segments which doesn't need fggc any more.
1804                  */
1805                 if (prefree_segments(sbi)) {
1806                         ret = f2fs_write_checkpoint(sbi, &cpc);
1807                         if (ret)
1808                                 goto stop;
1809                 }
1810                 if (has_not_enough_free_secs(sbi, 0, 0))
1811                         gc_type = FG_GC;
1812         }
1813
1814         /* f2fs_balance_fs doesn't need to do BG_GC in critical path. */
1815         if (gc_type == BG_GC && gc_control->no_bg_gc) {
1816                 ret = -EINVAL;
1817                 goto stop;
1818         }
1819 retry:
1820         ret = __get_victim(sbi, &segno, gc_type);
1821         if (ret) {
1822                 /* allow to search victim from sections has pinned data */
1823                 if (ret == -ENODATA && gc_type == FG_GC &&
1824                                 f2fs_pinned_section_exists(DIRTY_I(sbi))) {
1825                         f2fs_unpin_all_sections(sbi, false);
1826                         goto retry;
1827                 }
1828                 goto stop;
1829         }
1830
1831         seg_freed = do_garbage_collect(sbi, segno, &gc_list, gc_type,
1832                                 gc_control->should_migrate_blocks);
1833         total_freed += seg_freed;
1834
1835         if (seg_freed == f2fs_usable_segs_in_sec(sbi, segno))
1836                 sec_freed++;
1837
1838         if (gc_type == FG_GC)
1839                 sbi->cur_victim_sec = NULL_SEGNO;
1840
1841         if (gc_control->init_gc_type == FG_GC ||
1842             !has_not_enough_free_secs(sbi,
1843                                 (gc_type == FG_GC) ? sec_freed : 0, 0)) {
1844                 if (gc_type == FG_GC && sec_freed < gc_control->nr_free_secs)
1845                         goto go_gc_more;
1846                 goto stop;
1847         }
1848
1849         /* FG_GC stops GC by skip_count */
1850         if (gc_type == FG_GC) {
1851                 if (sbi->skipped_gc_rwsem)
1852                         skipped_round++;
1853                 round++;
1854                 if (skipped_round > MAX_SKIP_GC_COUNT &&
1855                                 skipped_round * 2 >= round) {
1856                         ret = f2fs_write_checkpoint(sbi, &cpc);
1857                         goto stop;
1858                 }
1859         }
1860
1861         /* Write checkpoint to reclaim prefree segments */
1862         if (free_sections(sbi) < NR_CURSEG_PERSIST_TYPE &&
1863                                 prefree_segments(sbi)) {
1864                 ret = f2fs_write_checkpoint(sbi, &cpc);
1865                 if (ret)
1866                         goto stop;
1867         }
1868 go_gc_more:
1869         segno = NULL_SEGNO;
1870         goto gc_more;
1871
1872 stop:
1873         SIT_I(sbi)->last_victim[ALLOC_NEXT] = 0;
1874         SIT_I(sbi)->last_victim[FLUSH_DEVICE] = gc_control->victim_segno;
1875
1876         if (gc_type == FG_GC)
1877                 f2fs_unpin_all_sections(sbi, true);
1878
1879         trace_f2fs_gc_end(sbi->sb, ret, total_freed, sec_freed,
1880                                 get_pages(sbi, F2FS_DIRTY_NODES),
1881                                 get_pages(sbi, F2FS_DIRTY_DENTS),
1882                                 get_pages(sbi, F2FS_DIRTY_IMETA),
1883                                 free_sections(sbi),
1884                                 free_segments(sbi),
1885                                 reserved_segments(sbi),
1886                                 prefree_segments(sbi));
1887
1888         f2fs_up_write(&sbi->gc_lock);
1889
1890         put_gc_inode(&gc_list);
1891
1892         if (gc_control->err_gc_skipped && !ret)
1893                 ret = sec_freed ? 0 : -EAGAIN;
1894         return ret;
1895 }
1896
1897 int __init f2fs_create_garbage_collection_cache(void)
1898 {
1899         victim_entry_slab = f2fs_kmem_cache_create("f2fs_victim_entry",
1900                                         sizeof(struct victim_entry));
1901         if (!victim_entry_slab)
1902                 return -ENOMEM;
1903         return 0;
1904 }
1905
1906 void f2fs_destroy_garbage_collection_cache(void)
1907 {
1908         kmem_cache_destroy(victim_entry_slab);
1909 }
1910
1911 static void init_atgc_management(struct f2fs_sb_info *sbi)
1912 {
1913         struct atgc_management *am = &sbi->am;
1914
1915         if (test_opt(sbi, ATGC) &&
1916                 SIT_I(sbi)->elapsed_time >= DEF_GC_THREAD_AGE_THRESHOLD)
1917                 am->atgc_enabled = true;
1918
1919         am->root = RB_ROOT_CACHED;
1920         INIT_LIST_HEAD(&am->victim_list);
1921         am->victim_count = 0;
1922
1923         am->candidate_ratio = DEF_GC_THREAD_CANDIDATE_RATIO;
1924         am->max_candidate_count = DEF_GC_THREAD_MAX_CANDIDATE_COUNT;
1925         am->age_weight = DEF_GC_THREAD_AGE_WEIGHT;
1926         am->age_threshold = DEF_GC_THREAD_AGE_THRESHOLD;
1927 }
1928
1929 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi)
1930 {
1931         DIRTY_I(sbi)->v_ops = &default_v_ops;
1932
1933         sbi->gc_pin_file_threshold = DEF_GC_FAILED_PINNED_FILES;
1934
1935         /* give warm/cold data area from slower device */
1936         if (f2fs_is_multi_device(sbi) && !__is_large_section(sbi))
1937                 SIT_I(sbi)->last_victim[ALLOC_NEXT] =
1938                                 GET_SEGNO(sbi, FDEV(0).end_blk) + 1;
1939
1940         init_atgc_management(sbi);
1941 }
1942
1943 static int free_segment_range(struct f2fs_sb_info *sbi,
1944                                 unsigned int secs, bool gc_only)
1945 {
1946         unsigned int segno, next_inuse, start, end;
1947         struct cp_control cpc = { CP_RESIZE, 0, 0, 0 };
1948         int gc_mode, gc_type;
1949         int err = 0;
1950         int type;
1951
1952         /* Force block allocation for GC */
1953         MAIN_SECS(sbi) -= secs;
1954         start = MAIN_SECS(sbi) * sbi->segs_per_sec;
1955         end = MAIN_SEGS(sbi) - 1;
1956
1957         mutex_lock(&DIRTY_I(sbi)->seglist_lock);
1958         for (gc_mode = 0; gc_mode < MAX_GC_POLICY; gc_mode++)
1959                 if (SIT_I(sbi)->last_victim[gc_mode] >= start)
1960                         SIT_I(sbi)->last_victim[gc_mode] = 0;
1961
1962         for (gc_type = BG_GC; gc_type <= FG_GC; gc_type++)
1963                 if (sbi->next_victim_seg[gc_type] >= start)
1964                         sbi->next_victim_seg[gc_type] = NULL_SEGNO;
1965         mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
1966
1967         /* Move out cursegs from the target range */
1968         for (type = CURSEG_HOT_DATA; type < NR_CURSEG_PERSIST_TYPE; type++)
1969                 f2fs_allocate_segment_for_resize(sbi, type, start, end);
1970
1971         /* do GC to move out valid blocks in the range */
1972         for (segno = start; segno <= end; segno += sbi->segs_per_sec) {
1973                 struct gc_inode_list gc_list = {
1974                         .ilist = LIST_HEAD_INIT(gc_list.ilist),
1975                         .iroot = RADIX_TREE_INIT(gc_list.iroot, GFP_NOFS),
1976                 };
1977
1978                 do_garbage_collect(sbi, segno, &gc_list, FG_GC, true);
1979                 put_gc_inode(&gc_list);
1980
1981                 if (!gc_only && get_valid_blocks(sbi, segno, true)) {
1982                         err = -EAGAIN;
1983                         goto out;
1984                 }
1985                 if (fatal_signal_pending(current)) {
1986                         err = -ERESTARTSYS;
1987                         goto out;
1988                 }
1989         }
1990         if (gc_only)
1991                 goto out;
1992
1993         err = f2fs_write_checkpoint(sbi, &cpc);
1994         if (err)
1995                 goto out;
1996
1997         next_inuse = find_next_inuse(FREE_I(sbi), end + 1, start);
1998         if (next_inuse <= end) {
1999                 f2fs_err(sbi, "segno %u should be free but still inuse!",
2000                          next_inuse);
2001                 f2fs_bug_on(sbi, 1);
2002         }
2003 out:
2004         MAIN_SECS(sbi) += secs;
2005         return err;
2006 }
2007
2008 static void update_sb_metadata(struct f2fs_sb_info *sbi, int secs)
2009 {
2010         struct f2fs_super_block *raw_sb = F2FS_RAW_SUPER(sbi);
2011         int section_count;
2012         int segment_count;
2013         int segment_count_main;
2014         long long block_count;
2015         int segs = secs * sbi->segs_per_sec;
2016
2017         f2fs_down_write(&sbi->sb_lock);
2018
2019         section_count = le32_to_cpu(raw_sb->section_count);
2020         segment_count = le32_to_cpu(raw_sb->segment_count);
2021         segment_count_main = le32_to_cpu(raw_sb->segment_count_main);
2022         block_count = le64_to_cpu(raw_sb->block_count);
2023
2024         raw_sb->section_count = cpu_to_le32(section_count + secs);
2025         raw_sb->segment_count = cpu_to_le32(segment_count + segs);
2026         raw_sb->segment_count_main = cpu_to_le32(segment_count_main + segs);
2027         raw_sb->block_count = cpu_to_le64(block_count +
2028                                         (long long)segs * sbi->blocks_per_seg);
2029         if (f2fs_is_multi_device(sbi)) {
2030                 int last_dev = sbi->s_ndevs - 1;
2031                 int dev_segs =
2032                         le32_to_cpu(raw_sb->devs[last_dev].total_segments);
2033
2034                 raw_sb->devs[last_dev].total_segments =
2035                                                 cpu_to_le32(dev_segs + segs);
2036         }
2037
2038         f2fs_up_write(&sbi->sb_lock);
2039 }
2040
2041 static void update_fs_metadata(struct f2fs_sb_info *sbi, int secs)
2042 {
2043         int segs = secs * sbi->segs_per_sec;
2044         long long blks = (long long)segs * sbi->blocks_per_seg;
2045         long long user_block_count =
2046                                 le64_to_cpu(F2FS_CKPT(sbi)->user_block_count);
2047
2048         SM_I(sbi)->segment_count = (int)SM_I(sbi)->segment_count + segs;
2049         MAIN_SEGS(sbi) = (int)MAIN_SEGS(sbi) + segs;
2050         MAIN_SECS(sbi) += secs;
2051         FREE_I(sbi)->free_sections = (int)FREE_I(sbi)->free_sections + secs;
2052         FREE_I(sbi)->free_segments = (int)FREE_I(sbi)->free_segments + segs;
2053         F2FS_CKPT(sbi)->user_block_count = cpu_to_le64(user_block_count + blks);
2054
2055         if (f2fs_is_multi_device(sbi)) {
2056                 int last_dev = sbi->s_ndevs - 1;
2057
2058                 FDEV(last_dev).total_segments =
2059                                 (int)FDEV(last_dev).total_segments + segs;
2060                 FDEV(last_dev).end_blk =
2061                                 (long long)FDEV(last_dev).end_blk + blks;
2062 #ifdef CONFIG_BLK_DEV_ZONED
2063                 FDEV(last_dev).nr_blkz = (int)FDEV(last_dev).nr_blkz +
2064                                         (int)(blks >> sbi->log_blocks_per_blkz);
2065 #endif
2066         }
2067 }
2068
2069 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count)
2070 {
2071         __u64 old_block_count, shrunk_blocks;
2072         struct cp_control cpc = { CP_RESIZE, 0, 0, 0 };
2073         unsigned int secs;
2074         int err = 0;
2075         __u32 rem;
2076
2077         old_block_count = le64_to_cpu(F2FS_RAW_SUPER(sbi)->block_count);
2078         if (block_count > old_block_count)
2079                 return -EINVAL;
2080
2081         if (f2fs_is_multi_device(sbi)) {
2082                 int last_dev = sbi->s_ndevs - 1;
2083                 __u64 last_segs = FDEV(last_dev).total_segments;
2084
2085                 if (block_count + last_segs * sbi->blocks_per_seg <=
2086                                                                 old_block_count)
2087                         return -EINVAL;
2088         }
2089
2090         /* new fs size should align to section size */
2091         div_u64_rem(block_count, BLKS_PER_SEC(sbi), &rem);
2092         if (rem)
2093                 return -EINVAL;
2094
2095         if (block_count == old_block_count)
2096                 return 0;
2097
2098         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
2099                 f2fs_err(sbi, "Should run fsck to repair first.");
2100                 return -EFSCORRUPTED;
2101         }
2102
2103         if (test_opt(sbi, DISABLE_CHECKPOINT)) {
2104                 f2fs_err(sbi, "Checkpoint should be enabled.");
2105                 return -EINVAL;
2106         }
2107
2108         shrunk_blocks = old_block_count - block_count;
2109         secs = div_u64(shrunk_blocks, BLKS_PER_SEC(sbi));
2110
2111         /* stop other GC */
2112         if (!f2fs_down_write_trylock(&sbi->gc_lock))
2113                 return -EAGAIN;
2114
2115         /* stop CP to protect MAIN_SEC in free_segment_range */
2116         f2fs_lock_op(sbi);
2117
2118         spin_lock(&sbi->stat_lock);
2119         if (shrunk_blocks + valid_user_blocks(sbi) +
2120                 sbi->current_reserved_blocks + sbi->unusable_block_count +
2121                 F2FS_OPTION(sbi).root_reserved_blocks > sbi->user_block_count)
2122                 err = -ENOSPC;
2123         spin_unlock(&sbi->stat_lock);
2124
2125         if (err)
2126                 goto out_unlock;
2127
2128         err = free_segment_range(sbi, secs, true);
2129
2130 out_unlock:
2131         f2fs_unlock_op(sbi);
2132         f2fs_up_write(&sbi->gc_lock);
2133         if (err)
2134                 return err;
2135
2136         set_sbi_flag(sbi, SBI_IS_RESIZEFS);
2137
2138         freeze_super(sbi->sb);
2139         f2fs_down_write(&sbi->gc_lock);
2140         f2fs_down_write(&sbi->cp_global_sem);
2141
2142         spin_lock(&sbi->stat_lock);
2143         if (shrunk_blocks + valid_user_blocks(sbi) +
2144                 sbi->current_reserved_blocks + sbi->unusable_block_count +
2145                 F2FS_OPTION(sbi).root_reserved_blocks > sbi->user_block_count)
2146                 err = -ENOSPC;
2147         else
2148                 sbi->user_block_count -= shrunk_blocks;
2149         spin_unlock(&sbi->stat_lock);
2150         if (err)
2151                 goto out_err;
2152
2153         err = free_segment_range(sbi, secs, false);
2154         if (err)
2155                 goto recover_out;
2156
2157         update_sb_metadata(sbi, -secs);
2158
2159         err = f2fs_commit_super(sbi, false);
2160         if (err) {
2161                 update_sb_metadata(sbi, secs);
2162                 goto recover_out;
2163         }
2164
2165         update_fs_metadata(sbi, -secs);
2166         clear_sbi_flag(sbi, SBI_IS_RESIZEFS);
2167         set_sbi_flag(sbi, SBI_IS_DIRTY);
2168
2169         err = f2fs_write_checkpoint(sbi, &cpc);
2170         if (err) {
2171                 update_fs_metadata(sbi, secs);
2172                 update_sb_metadata(sbi, secs);
2173                 f2fs_commit_super(sbi, false);
2174         }
2175 recover_out:
2176         if (err) {
2177                 set_sbi_flag(sbi, SBI_NEED_FSCK);
2178                 f2fs_err(sbi, "resize_fs failed, should run fsck to repair!");
2179
2180                 spin_lock(&sbi->stat_lock);
2181                 sbi->user_block_count += shrunk_blocks;
2182                 spin_unlock(&sbi->stat_lock);
2183         }
2184 out_err:
2185         f2fs_up_write(&sbi->cp_global_sem);
2186         f2fs_up_write(&sbi->gc_lock);
2187         thaw_super(sbi->sb);
2188         clear_sbi_flag(sbi, SBI_IS_RESIZEFS);
2189         return err;
2190 }