f2fs: mark gc_thread as NULL when thread creation is failed
[platform/adaptation/renesas_rcar/renesas_kernel.git] / fs / f2fs / gc.c
1 /*
2  * fs/f2fs/gc.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/module.h>
13 #include <linux/backing-dev.h>
14 #include <linux/proc_fs.h>
15 #include <linux/init.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/kthread.h>
18 #include <linux/delay.h>
19 #include <linux/freezer.h>
20 #include <linux/blkdev.h>
21
22 #include "f2fs.h"
23 #include "node.h"
24 #include "segment.h"
25 #include "gc.h"
26
27 static struct kmem_cache *winode_slab;
28
29 static int gc_thread_func(void *data)
30 {
31         struct f2fs_sb_info *sbi = data;
32         wait_queue_head_t *wq = &sbi->gc_thread->gc_wait_queue_head;
33         long wait_ms;
34
35         wait_ms = GC_THREAD_MIN_SLEEP_TIME;
36
37         do {
38                 if (try_to_freeze())
39                         continue;
40                 else
41                         wait_event_interruptible_timeout(*wq,
42                                                 kthread_should_stop(),
43                                                 msecs_to_jiffies(wait_ms));
44                 if (kthread_should_stop())
45                         break;
46
47                 if (sbi->sb->s_writers.frozen >= SB_FREEZE_WRITE) {
48                         wait_ms = GC_THREAD_MAX_SLEEP_TIME;
49                         continue;
50                 }
51
52                 /*
53                  * [GC triggering condition]
54                  * 0. GC is not conducted currently.
55                  * 1. There are enough dirty segments.
56                  * 2. IO subsystem is idle by checking the # of writeback pages.
57                  * 3. IO subsystem is idle by checking the # of requests in
58                  *    bdev's request list.
59                  *
60                  * Note) We have to avoid triggering GCs too much frequently.
61                  * Because it is possible that some segments can be
62                  * invalidated soon after by user update or deletion.
63                  * So, I'd like to wait some time to collect dirty segments.
64                  */
65                 if (!mutex_trylock(&sbi->gc_mutex))
66                         continue;
67
68                 if (!is_idle(sbi)) {
69                         wait_ms = increase_sleep_time(wait_ms);
70                         mutex_unlock(&sbi->gc_mutex);
71                         continue;
72                 }
73
74                 if (has_enough_invalid_blocks(sbi))
75                         wait_ms = decrease_sleep_time(wait_ms);
76                 else
77                         wait_ms = increase_sleep_time(wait_ms);
78
79                 sbi->bg_gc++;
80
81                 if (f2fs_gc(sbi) == GC_NONE)
82                         wait_ms = GC_THREAD_NOGC_SLEEP_TIME;
83                 else if (wait_ms == GC_THREAD_NOGC_SLEEP_TIME)
84                         wait_ms = GC_THREAD_MAX_SLEEP_TIME;
85
86         } while (!kthread_should_stop());
87         return 0;
88 }
89
90 int start_gc_thread(struct f2fs_sb_info *sbi)
91 {
92         struct f2fs_gc_kthread *gc_th;
93         dev_t dev = sbi->sb->s_bdev->bd_dev;
94
95         if (!test_opt(sbi, BG_GC))
96                 return 0;
97         gc_th = kmalloc(sizeof(struct f2fs_gc_kthread), GFP_KERNEL);
98         if (!gc_th)
99                 return -ENOMEM;
100
101         sbi->gc_thread = gc_th;
102         init_waitqueue_head(&sbi->gc_thread->gc_wait_queue_head);
103         sbi->gc_thread->f2fs_gc_task = kthread_run(gc_thread_func, sbi,
104                         "f2fs_gc-%u:%u", MAJOR(dev), MINOR(dev));
105         if (IS_ERR(gc_th->f2fs_gc_task)) {
106                 kfree(gc_th);
107                 sbi->gc_thread = NULL;
108                 return -ENOMEM;
109         }
110         return 0;
111 }
112
113 void stop_gc_thread(struct f2fs_sb_info *sbi)
114 {
115         struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
116         if (!gc_th)
117                 return;
118         kthread_stop(gc_th->f2fs_gc_task);
119         kfree(gc_th);
120         sbi->gc_thread = NULL;
121 }
122
123 static int select_gc_type(int gc_type)
124 {
125         return (gc_type == BG_GC) ? GC_CB : GC_GREEDY;
126 }
127
128 static void select_policy(struct f2fs_sb_info *sbi, int gc_type,
129                         int type, struct victim_sel_policy *p)
130 {
131         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
132
133         if (p->alloc_mode) {
134                 p->gc_mode = GC_GREEDY;
135                 p->dirty_segmap = dirty_i->dirty_segmap[type];
136                 p->ofs_unit = 1;
137         } else {
138                 p->gc_mode = select_gc_type(gc_type);
139                 p->dirty_segmap = dirty_i->dirty_segmap[DIRTY];
140                 p->ofs_unit = sbi->segs_per_sec;
141         }
142         p->offset = sbi->last_victim[p->gc_mode];
143 }
144
145 static unsigned int get_max_cost(struct f2fs_sb_info *sbi,
146                                 struct victim_sel_policy *p)
147 {
148         if (p->gc_mode == GC_GREEDY)
149                 return (1 << sbi->log_blocks_per_seg) * p->ofs_unit;
150         else if (p->gc_mode == GC_CB)
151                 return UINT_MAX;
152         else /* No other gc_mode */
153                 return 0;
154 }
155
156 static unsigned int check_bg_victims(struct f2fs_sb_info *sbi)
157 {
158         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
159         unsigned int segno;
160
161         /*
162          * If the gc_type is FG_GC, we can select victim segments
163          * selected by background GC before.
164          * Those segments guarantee they have small valid blocks.
165          */
166         segno = find_next_bit(dirty_i->victim_segmap[BG_GC],
167                                                 TOTAL_SEGS(sbi), 0);
168         if (segno < TOTAL_SEGS(sbi)) {
169                 clear_bit(segno, dirty_i->victim_segmap[BG_GC]);
170                 return segno;
171         }
172         return NULL_SEGNO;
173 }
174
175 static unsigned int get_cb_cost(struct f2fs_sb_info *sbi, unsigned int segno)
176 {
177         struct sit_info *sit_i = SIT_I(sbi);
178         unsigned int secno = GET_SECNO(sbi, segno);
179         unsigned int start = secno * sbi->segs_per_sec;
180         unsigned long long mtime = 0;
181         unsigned int vblocks;
182         unsigned char age = 0;
183         unsigned char u;
184         unsigned int i;
185
186         for (i = 0; i < sbi->segs_per_sec; i++)
187                 mtime += get_seg_entry(sbi, start + i)->mtime;
188         vblocks = get_valid_blocks(sbi, segno, sbi->segs_per_sec);
189
190         mtime = div_u64(mtime, sbi->segs_per_sec);
191         vblocks = div_u64(vblocks, sbi->segs_per_sec);
192
193         u = (vblocks * 100) >> sbi->log_blocks_per_seg;
194
195         /* Handle if the system time is changed by user */
196         if (mtime < sit_i->min_mtime)
197                 sit_i->min_mtime = mtime;
198         if (mtime > sit_i->max_mtime)
199                 sit_i->max_mtime = mtime;
200         if (sit_i->max_mtime != sit_i->min_mtime)
201                 age = 100 - div64_u64(100 * (mtime - sit_i->min_mtime),
202                                 sit_i->max_mtime - sit_i->min_mtime);
203
204         return UINT_MAX - ((100 * (100 - u) * age) / (100 + u));
205 }
206
207 static unsigned int get_gc_cost(struct f2fs_sb_info *sbi, unsigned int segno,
208                                         struct victim_sel_policy *p)
209 {
210         if (p->alloc_mode == SSR)
211                 return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
212
213         /* alloc_mode == LFS */
214         if (p->gc_mode == GC_GREEDY)
215                 return get_valid_blocks(sbi, segno, sbi->segs_per_sec);
216         else
217                 return get_cb_cost(sbi, segno);
218 }
219
220 /*
221  * This function is called from two pathes.
222  * One is garbage collection and the other is SSR segment selection.
223  * When it is called during GC, it just gets a victim segment
224  * and it does not remove it from dirty seglist.
225  * When it is called from SSR segment selection, it finds a segment
226  * which has minimum valid blocks and removes it from dirty seglist.
227  */
228 static int get_victim_by_default(struct f2fs_sb_info *sbi,
229                 unsigned int *result, int gc_type, int type, char alloc_mode)
230 {
231         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
232         struct victim_sel_policy p;
233         unsigned int segno;
234         int nsearched = 0;
235
236         p.alloc_mode = alloc_mode;
237         select_policy(sbi, gc_type, type, &p);
238
239         p.min_segno = NULL_SEGNO;
240         p.min_cost = get_max_cost(sbi, &p);
241
242         mutex_lock(&dirty_i->seglist_lock);
243
244         if (p.alloc_mode == LFS && gc_type == FG_GC) {
245                 p.min_segno = check_bg_victims(sbi);
246                 if (p.min_segno != NULL_SEGNO)
247                         goto got_it;
248         }
249
250         while (1) {
251                 unsigned long cost;
252
253                 segno = find_next_bit(p.dirty_segmap,
254                                                 TOTAL_SEGS(sbi), p.offset);
255                 if (segno >= TOTAL_SEGS(sbi)) {
256                         if (sbi->last_victim[p.gc_mode]) {
257                                 sbi->last_victim[p.gc_mode] = 0;
258                                 p.offset = 0;
259                                 continue;
260                         }
261                         break;
262                 }
263                 p.offset = ((segno / p.ofs_unit) * p.ofs_unit) + p.ofs_unit;
264
265                 if (test_bit(segno, dirty_i->victim_segmap[FG_GC]))
266                         continue;
267                 if (gc_type == BG_GC &&
268                                 test_bit(segno, dirty_i->victim_segmap[BG_GC]))
269                         continue;
270                 if (IS_CURSEC(sbi, GET_SECNO(sbi, segno)))
271                         continue;
272
273                 cost = get_gc_cost(sbi, segno, &p);
274
275                 if (p.min_cost > cost) {
276                         p.min_segno = segno;
277                         p.min_cost = cost;
278                 }
279
280                 if (cost == get_max_cost(sbi, &p))
281                         continue;
282
283                 if (nsearched++ >= MAX_VICTIM_SEARCH) {
284                         sbi->last_victim[p.gc_mode] = segno;
285                         break;
286                 }
287         }
288 got_it:
289         if (p.min_segno != NULL_SEGNO) {
290                 *result = (p.min_segno / p.ofs_unit) * p.ofs_unit;
291                 if (p.alloc_mode == LFS) {
292                         int i;
293                         for (i = 0; i < p.ofs_unit; i++)
294                                 set_bit(*result + i,
295                                         dirty_i->victim_segmap[gc_type]);
296                 }
297         }
298         mutex_unlock(&dirty_i->seglist_lock);
299
300         return (p.min_segno == NULL_SEGNO) ? 0 : 1;
301 }
302
303 static const struct victim_selection default_v_ops = {
304         .get_victim = get_victim_by_default,
305 };
306
307 static struct inode *find_gc_inode(nid_t ino, struct list_head *ilist)
308 {
309         struct list_head *this;
310         struct inode_entry *ie;
311
312         list_for_each(this, ilist) {
313                 ie = list_entry(this, struct inode_entry, list);
314                 if (ie->inode->i_ino == ino)
315                         return ie->inode;
316         }
317         return NULL;
318 }
319
320 static void add_gc_inode(struct inode *inode, struct list_head *ilist)
321 {
322         struct list_head *this;
323         struct inode_entry *new_ie, *ie;
324
325         list_for_each(this, ilist) {
326                 ie = list_entry(this, struct inode_entry, list);
327                 if (ie->inode == inode) {
328                         iput(inode);
329                         return;
330                 }
331         }
332 repeat:
333         new_ie = kmem_cache_alloc(winode_slab, GFP_NOFS);
334         if (!new_ie) {
335                 cond_resched();
336                 goto repeat;
337         }
338         new_ie->inode = inode;
339         list_add_tail(&new_ie->list, ilist);
340 }
341
342 static void put_gc_inode(struct list_head *ilist)
343 {
344         struct inode_entry *ie, *next_ie;
345         list_for_each_entry_safe(ie, next_ie, ilist, list) {
346                 iput(ie->inode);
347                 list_del(&ie->list);
348                 kmem_cache_free(winode_slab, ie);
349         }
350 }
351
352 static int check_valid_map(struct f2fs_sb_info *sbi,
353                                 unsigned int segno, int offset)
354 {
355         struct sit_info *sit_i = SIT_I(sbi);
356         struct seg_entry *sentry;
357         int ret;
358
359         mutex_lock(&sit_i->sentry_lock);
360         sentry = get_seg_entry(sbi, segno);
361         ret = f2fs_test_bit(offset, sentry->cur_valid_map);
362         mutex_unlock(&sit_i->sentry_lock);
363         return ret ? GC_OK : GC_NEXT;
364 }
365
366 /*
367  * This function compares node address got in summary with that in NAT.
368  * On validity, copy that node with cold status, otherwise (invalid node)
369  * ignore that.
370  */
371 static int gc_node_segment(struct f2fs_sb_info *sbi,
372                 struct f2fs_summary *sum, unsigned int segno, int gc_type)
373 {
374         bool initial = true;
375         struct f2fs_summary *entry;
376         int off;
377
378 next_step:
379         entry = sum;
380         for (off = 0; off < sbi->blocks_per_seg; off++, entry++) {
381                 nid_t nid = le32_to_cpu(entry->nid);
382                 struct page *node_page;
383                 int err;
384
385                 /*
386                  * It makes sure that free segments are able to write
387                  * all the dirty node pages before CP after this CP.
388                  * So let's check the space of dirty node pages.
389                  */
390                 if (should_do_checkpoint(sbi)) {
391                         mutex_lock(&sbi->cp_mutex);
392                         block_operations(sbi);
393                         return GC_BLOCKED;
394                 }
395
396                 err = check_valid_map(sbi, segno, off);
397                 if (err == GC_NEXT)
398                         continue;
399
400                 if (initial) {
401                         ra_node_page(sbi, nid);
402                         continue;
403                 }
404                 node_page = get_node_page(sbi, nid);
405                 if (IS_ERR(node_page))
406                         continue;
407
408                 /* set page dirty and write it */
409                 if (!PageWriteback(node_page))
410                         set_page_dirty(node_page);
411                 f2fs_put_page(node_page, 1);
412                 stat_inc_node_blk_count(sbi, 1);
413         }
414         if (initial) {
415                 initial = false;
416                 goto next_step;
417         }
418
419         if (gc_type == FG_GC) {
420                 struct writeback_control wbc = {
421                         .sync_mode = WB_SYNC_ALL,
422                         .nr_to_write = LONG_MAX,
423                         .for_reclaim = 0,
424                 };
425                 sync_node_pages(sbi, 0, &wbc);
426         }
427         return GC_DONE;
428 }
429
430 /*
431  * Calculate start block index indicating the given node offset.
432  * Be careful, caller should give this node offset only indicating direct node
433  * blocks. If any node offsets, which point the other types of node blocks such
434  * as indirect or double indirect node blocks, are given, it must be a caller's
435  * bug.
436  */
437 block_t start_bidx_of_node(unsigned int node_ofs)
438 {
439         unsigned int indirect_blks = 2 * NIDS_PER_BLOCK + 4;
440         unsigned int bidx;
441
442         if (node_ofs == 0)
443                 return 0;
444
445         if (node_ofs <= 2) {
446                 bidx = node_ofs - 1;
447         } else if (node_ofs <= indirect_blks) {
448                 int dec = (node_ofs - 4) / (NIDS_PER_BLOCK + 1);
449                 bidx = node_ofs - 2 - dec;
450         } else {
451                 int dec = (node_ofs - indirect_blks - 3) / (NIDS_PER_BLOCK + 1);
452                 bidx = node_ofs - 5 - dec;
453         }
454         return bidx * ADDRS_PER_BLOCK + ADDRS_PER_INODE;
455 }
456
457 static int check_dnode(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
458                 struct node_info *dni, block_t blkaddr, unsigned int *nofs)
459 {
460         struct page *node_page;
461         nid_t nid;
462         unsigned int ofs_in_node;
463         block_t source_blkaddr;
464
465         nid = le32_to_cpu(sum->nid);
466         ofs_in_node = le16_to_cpu(sum->ofs_in_node);
467
468         node_page = get_node_page(sbi, nid);
469         if (IS_ERR(node_page))
470                 return GC_NEXT;
471
472         get_node_info(sbi, nid, dni);
473
474         if (sum->version != dni->version) {
475                 f2fs_put_page(node_page, 1);
476                 return GC_NEXT;
477         }
478
479         *nofs = ofs_of_node(node_page);
480         source_blkaddr = datablock_addr(node_page, ofs_in_node);
481         f2fs_put_page(node_page, 1);
482
483         if (source_blkaddr != blkaddr)
484                 return GC_NEXT;
485         return GC_OK;
486 }
487
488 static void move_data_page(struct inode *inode, struct page *page, int gc_type)
489 {
490         if (page->mapping != inode->i_mapping)
491                 goto out;
492
493         if (inode != page->mapping->host)
494                 goto out;
495
496         if (PageWriteback(page))
497                 goto out;
498
499         if (gc_type == BG_GC) {
500                 set_page_dirty(page);
501                 set_cold_data(page);
502         } else {
503                 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
504                 mutex_lock_op(sbi, DATA_WRITE);
505                 if (clear_page_dirty_for_io(page) &&
506                         S_ISDIR(inode->i_mode)) {
507                         dec_page_count(sbi, F2FS_DIRTY_DENTS);
508                         inode_dec_dirty_dents(inode);
509                 }
510                 set_cold_data(page);
511                 do_write_data_page(page);
512                 mutex_unlock_op(sbi, DATA_WRITE);
513                 clear_cold_data(page);
514         }
515 out:
516         f2fs_put_page(page, 1);
517 }
518
519 /*
520  * This function tries to get parent node of victim data block, and identifies
521  * data block validity. If the block is valid, copy that with cold status and
522  * modify parent node.
523  * If the parent node is not valid or the data block address is different,
524  * the victim data block is ignored.
525  */
526 static int gc_data_segment(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
527                 struct list_head *ilist, unsigned int segno, int gc_type)
528 {
529         struct super_block *sb = sbi->sb;
530         struct f2fs_summary *entry;
531         block_t start_addr;
532         int err, off;
533         int phase = 0;
534
535         start_addr = START_BLOCK(sbi, segno);
536
537 next_step:
538         entry = sum;
539         for (off = 0; off < sbi->blocks_per_seg; off++, entry++) {
540                 struct page *data_page;
541                 struct inode *inode;
542                 struct node_info dni; /* dnode info for the data */
543                 unsigned int ofs_in_node, nofs;
544                 block_t start_bidx;
545
546                 /*
547                  * It makes sure that free segments are able to write
548                  * all the dirty node pages before CP after this CP.
549                  * So let's check the space of dirty node pages.
550                  */
551                 if (should_do_checkpoint(sbi)) {
552                         mutex_lock(&sbi->cp_mutex);
553                         block_operations(sbi);
554                         err = GC_BLOCKED;
555                         goto stop;
556                 }
557
558                 err = check_valid_map(sbi, segno, off);
559                 if (err == GC_NEXT)
560                         continue;
561
562                 if (phase == 0) {
563                         ra_node_page(sbi, le32_to_cpu(entry->nid));
564                         continue;
565                 }
566
567                 /* Get an inode by ino with checking validity */
568                 err = check_dnode(sbi, entry, &dni, start_addr + off, &nofs);
569                 if (err == GC_NEXT)
570                         continue;
571
572                 if (phase == 1) {
573                         ra_node_page(sbi, dni.ino);
574                         continue;
575                 }
576
577                 start_bidx = start_bidx_of_node(nofs);
578                 ofs_in_node = le16_to_cpu(entry->ofs_in_node);
579
580                 if (phase == 2) {
581                         inode = f2fs_iget(sb, dni.ino);
582                         if (IS_ERR(inode))
583                                 continue;
584
585                         data_page = find_data_page(inode,
586                                         start_bidx + ofs_in_node);
587                         if (IS_ERR(data_page))
588                                 goto next_iput;
589
590                         f2fs_put_page(data_page, 0);
591                         add_gc_inode(inode, ilist);
592                 } else {
593                         inode = find_gc_inode(dni.ino, ilist);
594                         if (inode) {
595                                 data_page = get_lock_data_page(inode,
596                                                 start_bidx + ofs_in_node);
597                                 if (IS_ERR(data_page))
598                                         continue;
599                                 move_data_page(inode, data_page, gc_type);
600                                 stat_inc_data_blk_count(sbi, 1);
601                         }
602                 }
603                 continue;
604 next_iput:
605                 iput(inode);
606         }
607         if (++phase < 4)
608                 goto next_step;
609         err = GC_DONE;
610 stop:
611         if (gc_type == FG_GC)
612                 f2fs_submit_bio(sbi, DATA, true);
613         return err;
614 }
615
616 static int __get_victim(struct f2fs_sb_info *sbi, unsigned int *victim,
617                                                 int gc_type, int type)
618 {
619         struct sit_info *sit_i = SIT_I(sbi);
620         int ret;
621         mutex_lock(&sit_i->sentry_lock);
622         ret = DIRTY_I(sbi)->v_ops->get_victim(sbi, victim, gc_type, type, LFS);
623         mutex_unlock(&sit_i->sentry_lock);
624         return ret;
625 }
626
627 static int do_garbage_collect(struct f2fs_sb_info *sbi, unsigned int segno,
628                                 struct list_head *ilist, int gc_type)
629 {
630         struct page *sum_page;
631         struct f2fs_summary_block *sum;
632         int ret = GC_DONE;
633
634         /* read segment summary of victim */
635         sum_page = get_sum_page(sbi, segno);
636         if (IS_ERR(sum_page))
637                 return GC_ERROR;
638
639         /*
640          * CP needs to lock sum_page. In this time, we don't need
641          * to lock this page, because this summary page is not gone anywhere.
642          * Also, this page is not gonna be updated before GC is done.
643          */
644         unlock_page(sum_page);
645         sum = page_address(sum_page);
646
647         switch (GET_SUM_TYPE((&sum->footer))) {
648         case SUM_TYPE_NODE:
649                 ret = gc_node_segment(sbi, sum->entries, segno, gc_type);
650                 break;
651         case SUM_TYPE_DATA:
652                 ret = gc_data_segment(sbi, sum->entries, ilist, segno, gc_type);
653                 break;
654         }
655         stat_inc_seg_count(sbi, GET_SUM_TYPE((&sum->footer)));
656         stat_inc_call_count(sbi->stat_info);
657
658         f2fs_put_page(sum_page, 0);
659         return ret;
660 }
661
662 int f2fs_gc(struct f2fs_sb_info *sbi)
663 {
664         struct list_head ilist;
665         unsigned int segno, i;
666         int gc_type = BG_GC;
667         int gc_status = GC_NONE;
668
669         INIT_LIST_HEAD(&ilist);
670 gc_more:
671         if (!(sbi->sb->s_flags & MS_ACTIVE))
672                 goto stop;
673
674         if (gc_type == BG_GC && has_not_enough_free_secs(sbi))
675                 gc_type = FG_GC;
676
677         if (!__get_victim(sbi, &segno, gc_type, NO_CHECK_TYPE))
678                 goto stop;
679
680         for (i = 0; i < sbi->segs_per_sec; i++) {
681                 /*
682                  * do_garbage_collect will give us three gc_status:
683                  * GC_ERROR, GC_DONE, and GC_BLOCKED.
684                  * If GC is finished uncleanly, we have to return
685                  * the victim to dirty segment list.
686                  */
687                 gc_status = do_garbage_collect(sbi, segno + i, &ilist, gc_type);
688                 if (gc_status != GC_DONE)
689                         break;
690         }
691         if (has_not_enough_free_secs(sbi)) {
692                 write_checkpoint(sbi, (gc_status == GC_BLOCKED), false);
693                 if (has_not_enough_free_secs(sbi))
694                         goto gc_more;
695         }
696 stop:
697         mutex_unlock(&sbi->gc_mutex);
698
699         put_gc_inode(&ilist);
700         return gc_status;
701 }
702
703 void build_gc_manager(struct f2fs_sb_info *sbi)
704 {
705         DIRTY_I(sbi)->v_ops = &default_v_ops;
706 }
707
708 int __init create_gc_caches(void)
709 {
710         winode_slab = f2fs_kmem_cache_create("f2fs_gc_inodes",
711                         sizeof(struct inode_entry), NULL);
712         if (!winode_slab)
713                 return -ENOMEM;
714         return 0;
715 }
716
717 void destroy_gc_caches(void)
718 {
719         kmem_cache_destroy(winode_slab);
720 }