f2fs: fix to tag gcing flag on page during block migration
[platform/kernel/linux-starfive.git] / fs / f2fs / file.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/file.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/stat.h>
11 #include <linux/buffer_head.h>
12 #include <linux/writeback.h>
13 #include <linux/blkdev.h>
14 #include <linux/falloc.h>
15 #include <linux/types.h>
16 #include <linux/compat.h>
17 #include <linux/uaccess.h>
18 #include <linux/mount.h>
19 #include <linux/pagevec.h>
20 #include <linux/uio.h>
21 #include <linux/uuid.h>
22 #include <linux/file.h>
23 #include <linux/nls.h>
24 #include <linux/sched/signal.h>
25 #include <linux/fileattr.h>
26 #include <linux/fadvise.h>
27 #include <linux/iomap.h>
28
29 #include "f2fs.h"
30 #include "node.h"
31 #include "segment.h"
32 #include "xattr.h"
33 #include "acl.h"
34 #include "gc.h"
35 #include "iostat.h"
36 #include <trace/events/f2fs.h>
37 #include <uapi/linux/f2fs.h>
38
39 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
40 {
41         struct inode *inode = file_inode(vmf->vma->vm_file);
42         vm_fault_t ret;
43
44         ret = filemap_fault(vmf);
45         if (ret & VM_FAULT_LOCKED)
46                 f2fs_update_iostat(F2FS_I_SB(inode), inode,
47                                         APP_MAPPED_READ_IO, F2FS_BLKSIZE);
48
49         trace_f2fs_filemap_fault(inode, vmf->pgoff, (unsigned long)ret);
50
51         return ret;
52 }
53
54 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
55 {
56         struct page *page = vmf->page;
57         struct inode *inode = file_inode(vmf->vma->vm_file);
58         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
59         struct dnode_of_data dn;
60         bool need_alloc = true;
61         int err = 0;
62
63         if (unlikely(IS_IMMUTABLE(inode)))
64                 return VM_FAULT_SIGBUS;
65
66         if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
67                 return VM_FAULT_SIGBUS;
68
69         if (unlikely(f2fs_cp_error(sbi))) {
70                 err = -EIO;
71                 goto err;
72         }
73
74         if (!f2fs_is_checkpoint_ready(sbi)) {
75                 err = -ENOSPC;
76                 goto err;
77         }
78
79         err = f2fs_convert_inline_inode(inode);
80         if (err)
81                 goto err;
82
83 #ifdef CONFIG_F2FS_FS_COMPRESSION
84         if (f2fs_compressed_file(inode)) {
85                 int ret = f2fs_is_compressed_cluster(inode, page->index);
86
87                 if (ret < 0) {
88                         err = ret;
89                         goto err;
90                 } else if (ret) {
91                         need_alloc = false;
92                 }
93         }
94 #endif
95         /* should do out of any locked page */
96         if (need_alloc)
97                 f2fs_balance_fs(sbi, true);
98
99         sb_start_pagefault(inode->i_sb);
100
101         f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
102
103         file_update_time(vmf->vma->vm_file);
104         filemap_invalidate_lock_shared(inode->i_mapping);
105         lock_page(page);
106         if (unlikely(page->mapping != inode->i_mapping ||
107                         page_offset(page) > i_size_read(inode) ||
108                         !PageUptodate(page))) {
109                 unlock_page(page);
110                 err = -EFAULT;
111                 goto out_sem;
112         }
113
114         if (need_alloc) {
115                 /* block allocation */
116                 set_new_dnode(&dn, inode, NULL, NULL, 0);
117                 err = f2fs_get_block_locked(&dn, page->index);
118         }
119
120 #ifdef CONFIG_F2FS_FS_COMPRESSION
121         if (!need_alloc) {
122                 set_new_dnode(&dn, inode, NULL, NULL, 0);
123                 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
124                 f2fs_put_dnode(&dn);
125         }
126 #endif
127         if (err) {
128                 unlock_page(page);
129                 goto out_sem;
130         }
131
132         f2fs_wait_on_page_writeback(page, DATA, false, true);
133
134         /* wait for GCed page writeback via META_MAPPING */
135         f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
136
137         /*
138          * check to see if the page is mapped already (no holes)
139          */
140         if (PageMappedToDisk(page))
141                 goto out_sem;
142
143         /* page is wholly or partially inside EOF */
144         if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
145                                                 i_size_read(inode)) {
146                 loff_t offset;
147
148                 offset = i_size_read(inode) & ~PAGE_MASK;
149                 zero_user_segment(page, offset, PAGE_SIZE);
150         }
151         set_page_dirty(page);
152
153         f2fs_update_iostat(sbi, inode, APP_MAPPED_IO, F2FS_BLKSIZE);
154         f2fs_update_time(sbi, REQ_TIME);
155
156         trace_f2fs_vm_page_mkwrite(page, DATA);
157 out_sem:
158         filemap_invalidate_unlock_shared(inode->i_mapping);
159
160         sb_end_pagefault(inode->i_sb);
161 err:
162         return vmf_fs_error(err);
163 }
164
165 static const struct vm_operations_struct f2fs_file_vm_ops = {
166         .fault          = f2fs_filemap_fault,
167         .map_pages      = filemap_map_pages,
168         .page_mkwrite   = f2fs_vm_page_mkwrite,
169 };
170
171 static int get_parent_ino(struct inode *inode, nid_t *pino)
172 {
173         struct dentry *dentry;
174
175         /*
176          * Make sure to get the non-deleted alias.  The alias associated with
177          * the open file descriptor being fsync()'ed may be deleted already.
178          */
179         dentry = d_find_alias(inode);
180         if (!dentry)
181                 return 0;
182
183         *pino = parent_ino(dentry);
184         dput(dentry);
185         return 1;
186 }
187
188 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
189 {
190         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
191         enum cp_reason_type cp_reason = CP_NO_NEEDED;
192
193         if (!S_ISREG(inode->i_mode))
194                 cp_reason = CP_NON_REGULAR;
195         else if (f2fs_compressed_file(inode))
196                 cp_reason = CP_COMPRESSED;
197         else if (inode->i_nlink != 1)
198                 cp_reason = CP_HARDLINK;
199         else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
200                 cp_reason = CP_SB_NEED_CP;
201         else if (file_wrong_pino(inode))
202                 cp_reason = CP_WRONG_PINO;
203         else if (!f2fs_space_for_roll_forward(sbi))
204                 cp_reason = CP_NO_SPC_ROLL;
205         else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
206                 cp_reason = CP_NODE_NEED_CP;
207         else if (test_opt(sbi, FASTBOOT))
208                 cp_reason = CP_FASTBOOT_MODE;
209         else if (F2FS_OPTION(sbi).active_logs == 2)
210                 cp_reason = CP_SPEC_LOG_NUM;
211         else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
212                 f2fs_need_dentry_mark(sbi, inode->i_ino) &&
213                 f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
214                                                         TRANS_DIR_INO))
215                 cp_reason = CP_RECOVER_DIR;
216
217         return cp_reason;
218 }
219
220 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
221 {
222         struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
223         bool ret = false;
224         /* But we need to avoid that there are some inode updates */
225         if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
226                 ret = true;
227         f2fs_put_page(i, 0);
228         return ret;
229 }
230
231 static void try_to_fix_pino(struct inode *inode)
232 {
233         struct f2fs_inode_info *fi = F2FS_I(inode);
234         nid_t pino;
235
236         f2fs_down_write(&fi->i_sem);
237         if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
238                         get_parent_ino(inode, &pino)) {
239                 f2fs_i_pino_write(inode, pino);
240                 file_got_pino(inode);
241         }
242         f2fs_up_write(&fi->i_sem);
243 }
244
245 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
246                                                 int datasync, bool atomic)
247 {
248         struct inode *inode = file->f_mapping->host;
249         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
250         nid_t ino = inode->i_ino;
251         int ret = 0;
252         enum cp_reason_type cp_reason = 0;
253         struct writeback_control wbc = {
254                 .sync_mode = WB_SYNC_ALL,
255                 .nr_to_write = LONG_MAX,
256                 .for_reclaim = 0,
257         };
258         unsigned int seq_id = 0;
259
260         if (unlikely(f2fs_readonly(inode->i_sb)))
261                 return 0;
262
263         trace_f2fs_sync_file_enter(inode);
264
265         if (S_ISDIR(inode->i_mode))
266                 goto go_write;
267
268         /* if fdatasync is triggered, let's do in-place-update */
269         if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
270                 set_inode_flag(inode, FI_NEED_IPU);
271         ret = file_write_and_wait_range(file, start, end);
272         clear_inode_flag(inode, FI_NEED_IPU);
273
274         if (ret || is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
275                 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
276                 return ret;
277         }
278
279         /* if the inode is dirty, let's recover all the time */
280         if (!f2fs_skip_inode_update(inode, datasync)) {
281                 f2fs_write_inode(inode, NULL);
282                 goto go_write;
283         }
284
285         /*
286          * if there is no written data, don't waste time to write recovery info.
287          */
288         if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
289                         !f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
290
291                 /* it may call write_inode just prior to fsync */
292                 if (need_inode_page_update(sbi, ino))
293                         goto go_write;
294
295                 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
296                                 f2fs_exist_written_data(sbi, ino, UPDATE_INO))
297                         goto flush_out;
298                 goto out;
299         } else {
300                 /*
301                  * for OPU case, during fsync(), node can be persisted before
302                  * data when lower device doesn't support write barrier, result
303                  * in data corruption after SPO.
304                  * So for strict fsync mode, force to use atomic write semantics
305                  * to keep write order in between data/node and last node to
306                  * avoid potential data corruption.
307                  */
308                 if (F2FS_OPTION(sbi).fsync_mode ==
309                                 FSYNC_MODE_STRICT && !atomic)
310                         atomic = true;
311         }
312 go_write:
313         /*
314          * Both of fdatasync() and fsync() are able to be recovered from
315          * sudden-power-off.
316          */
317         f2fs_down_read(&F2FS_I(inode)->i_sem);
318         cp_reason = need_do_checkpoint(inode);
319         f2fs_up_read(&F2FS_I(inode)->i_sem);
320
321         if (cp_reason) {
322                 /* all the dirty node pages should be flushed for POR */
323                 ret = f2fs_sync_fs(inode->i_sb, 1);
324
325                 /*
326                  * We've secured consistency through sync_fs. Following pino
327                  * will be used only for fsynced inodes after checkpoint.
328                  */
329                 try_to_fix_pino(inode);
330                 clear_inode_flag(inode, FI_APPEND_WRITE);
331                 clear_inode_flag(inode, FI_UPDATE_WRITE);
332                 goto out;
333         }
334 sync_nodes:
335         atomic_inc(&sbi->wb_sync_req[NODE]);
336         ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
337         atomic_dec(&sbi->wb_sync_req[NODE]);
338         if (ret)
339                 goto out;
340
341         /* if cp_error was enabled, we should avoid infinite loop */
342         if (unlikely(f2fs_cp_error(sbi))) {
343                 ret = -EIO;
344                 goto out;
345         }
346
347         if (f2fs_need_inode_block_update(sbi, ino)) {
348                 f2fs_mark_inode_dirty_sync(inode, true);
349                 f2fs_write_inode(inode, NULL);
350                 goto sync_nodes;
351         }
352
353         /*
354          * If it's atomic_write, it's just fine to keep write ordering. So
355          * here we don't need to wait for node write completion, since we use
356          * node chain which serializes node blocks. If one of node writes are
357          * reordered, we can see simply broken chain, resulting in stopping
358          * roll-forward recovery. It means we'll recover all or none node blocks
359          * given fsync mark.
360          */
361         if (!atomic) {
362                 ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
363                 if (ret)
364                         goto out;
365         }
366
367         /* once recovery info is written, don't need to tack this */
368         f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
369         clear_inode_flag(inode, FI_APPEND_WRITE);
370 flush_out:
371         if ((!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER) ||
372             (atomic && !test_opt(sbi, NOBARRIER) && f2fs_sb_has_blkzoned(sbi)))
373                 ret = f2fs_issue_flush(sbi, inode->i_ino);
374         if (!ret) {
375                 f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
376                 clear_inode_flag(inode, FI_UPDATE_WRITE);
377                 f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
378         }
379         f2fs_update_time(sbi, REQ_TIME);
380 out:
381         trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
382         return ret;
383 }
384
385 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
386 {
387         if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
388                 return -EIO;
389         return f2fs_do_sync_file(file, start, end, datasync, false);
390 }
391
392 static bool __found_offset(struct address_space *mapping, block_t blkaddr,
393                                 pgoff_t index, int whence)
394 {
395         switch (whence) {
396         case SEEK_DATA:
397                 if (__is_valid_data_blkaddr(blkaddr))
398                         return true;
399                 if (blkaddr == NEW_ADDR &&
400                     xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY))
401                         return true;
402                 break;
403         case SEEK_HOLE:
404                 if (blkaddr == NULL_ADDR)
405                         return true;
406                 break;
407         }
408         return false;
409 }
410
411 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
412 {
413         struct inode *inode = file->f_mapping->host;
414         loff_t maxbytes = inode->i_sb->s_maxbytes;
415         struct dnode_of_data dn;
416         pgoff_t pgofs, end_offset;
417         loff_t data_ofs = offset;
418         loff_t isize;
419         int err = 0;
420
421         inode_lock(inode);
422
423         isize = i_size_read(inode);
424         if (offset >= isize)
425                 goto fail;
426
427         /* handle inline data case */
428         if (f2fs_has_inline_data(inode)) {
429                 if (whence == SEEK_HOLE) {
430                         data_ofs = isize;
431                         goto found;
432                 } else if (whence == SEEK_DATA) {
433                         data_ofs = offset;
434                         goto found;
435                 }
436         }
437
438         pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
439
440         for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
441                 set_new_dnode(&dn, inode, NULL, NULL, 0);
442                 err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
443                 if (err && err != -ENOENT) {
444                         goto fail;
445                 } else if (err == -ENOENT) {
446                         /* direct node does not exists */
447                         if (whence == SEEK_DATA) {
448                                 pgofs = f2fs_get_next_page_offset(&dn, pgofs);
449                                 continue;
450                         } else {
451                                 goto found;
452                         }
453                 }
454
455                 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
456
457                 /* find data/hole in dnode block */
458                 for (; dn.ofs_in_node < end_offset;
459                                 dn.ofs_in_node++, pgofs++,
460                                 data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
461                         block_t blkaddr;
462
463                         blkaddr = f2fs_data_blkaddr(&dn);
464
465                         if (__is_valid_data_blkaddr(blkaddr) &&
466                                 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
467                                         blkaddr, DATA_GENERIC_ENHANCE)) {
468                                 f2fs_put_dnode(&dn);
469                                 goto fail;
470                         }
471
472                         if (__found_offset(file->f_mapping, blkaddr,
473                                                         pgofs, whence)) {
474                                 f2fs_put_dnode(&dn);
475                                 goto found;
476                         }
477                 }
478                 f2fs_put_dnode(&dn);
479         }
480
481         if (whence == SEEK_DATA)
482                 goto fail;
483 found:
484         if (whence == SEEK_HOLE && data_ofs > isize)
485                 data_ofs = isize;
486         inode_unlock(inode);
487         return vfs_setpos(file, data_ofs, maxbytes);
488 fail:
489         inode_unlock(inode);
490         return -ENXIO;
491 }
492
493 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
494 {
495         struct inode *inode = file->f_mapping->host;
496         loff_t maxbytes = inode->i_sb->s_maxbytes;
497
498         if (f2fs_compressed_file(inode))
499                 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
500
501         switch (whence) {
502         case SEEK_SET:
503         case SEEK_CUR:
504         case SEEK_END:
505                 return generic_file_llseek_size(file, offset, whence,
506                                                 maxbytes, i_size_read(inode));
507         case SEEK_DATA:
508         case SEEK_HOLE:
509                 if (offset < 0)
510                         return -ENXIO;
511                 return f2fs_seek_block(file, offset, whence);
512         }
513
514         return -EINVAL;
515 }
516
517 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
518 {
519         struct inode *inode = file_inode(file);
520
521         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
522                 return -EIO;
523
524         if (!f2fs_is_compress_backend_ready(inode))
525                 return -EOPNOTSUPP;
526
527         file_accessed(file);
528         vma->vm_ops = &f2fs_file_vm_ops;
529
530         f2fs_down_read(&F2FS_I(inode)->i_sem);
531         set_inode_flag(inode, FI_MMAP_FILE);
532         f2fs_up_read(&F2FS_I(inode)->i_sem);
533
534         return 0;
535 }
536
537 static int f2fs_file_open(struct inode *inode, struct file *filp)
538 {
539         int err = fscrypt_file_open(inode, filp);
540
541         if (err)
542                 return err;
543
544         if (!f2fs_is_compress_backend_ready(inode))
545                 return -EOPNOTSUPP;
546
547         err = fsverity_file_open(inode, filp);
548         if (err)
549                 return err;
550
551         filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
552         filp->f_mode |= FMODE_CAN_ODIRECT;
553
554         return dquot_file_open(inode, filp);
555 }
556
557 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
558 {
559         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
560         struct f2fs_node *raw_node;
561         int nr_free = 0, ofs = dn->ofs_in_node, len = count;
562         __le32 *addr;
563         int base = 0;
564         bool compressed_cluster = false;
565         int cluster_index = 0, valid_blocks = 0;
566         int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
567         bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks);
568
569         if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
570                 base = get_extra_isize(dn->inode);
571
572         raw_node = F2FS_NODE(dn->node_page);
573         addr = blkaddr_in_node(raw_node) + base + ofs;
574
575         /* Assumption: truncation starts with cluster */
576         for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) {
577                 block_t blkaddr = le32_to_cpu(*addr);
578
579                 if (f2fs_compressed_file(dn->inode) &&
580                                         !(cluster_index & (cluster_size - 1))) {
581                         if (compressed_cluster)
582                                 f2fs_i_compr_blocks_update(dn->inode,
583                                                         valid_blocks, false);
584                         compressed_cluster = (blkaddr == COMPRESS_ADDR);
585                         valid_blocks = 0;
586                 }
587
588                 if (blkaddr == NULL_ADDR)
589                         continue;
590
591                 dn->data_blkaddr = NULL_ADDR;
592                 f2fs_set_data_blkaddr(dn);
593
594                 if (__is_valid_data_blkaddr(blkaddr)) {
595                         if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
596                                         DATA_GENERIC_ENHANCE))
597                                 continue;
598                         if (compressed_cluster)
599                                 valid_blocks++;
600                 }
601
602                 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
603                         clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
604
605                 f2fs_invalidate_blocks(sbi, blkaddr);
606
607                 if (!released || blkaddr != COMPRESS_ADDR)
608                         nr_free++;
609         }
610
611         if (compressed_cluster)
612                 f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false);
613
614         if (nr_free) {
615                 pgoff_t fofs;
616                 /*
617                  * once we invalidate valid blkaddr in range [ofs, ofs + count],
618                  * we will invalidate all blkaddr in the whole range.
619                  */
620                 fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
621                                                         dn->inode) + ofs;
622                 f2fs_update_read_extent_cache_range(dn, fofs, 0, len);
623                 f2fs_update_age_extent_cache_range(dn, fofs, len);
624                 dec_valid_block_count(sbi, dn->inode, nr_free);
625         }
626         dn->ofs_in_node = ofs;
627
628         f2fs_update_time(sbi, REQ_TIME);
629         trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
630                                          dn->ofs_in_node, nr_free);
631 }
632
633 static int truncate_partial_data_page(struct inode *inode, u64 from,
634                                                                 bool cache_only)
635 {
636         loff_t offset = from & (PAGE_SIZE - 1);
637         pgoff_t index = from >> PAGE_SHIFT;
638         struct address_space *mapping = inode->i_mapping;
639         struct page *page;
640
641         if (!offset && !cache_only)
642                 return 0;
643
644         if (cache_only) {
645                 page = find_lock_page(mapping, index);
646                 if (page && PageUptodate(page))
647                         goto truncate_out;
648                 f2fs_put_page(page, 1);
649                 return 0;
650         }
651
652         page = f2fs_get_lock_data_page(inode, index, true);
653         if (IS_ERR(page))
654                 return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
655 truncate_out:
656         f2fs_wait_on_page_writeback(page, DATA, true, true);
657         zero_user(page, offset, PAGE_SIZE - offset);
658
659         /* An encrypted inode should have a key and truncate the last page. */
660         f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode));
661         if (!cache_only)
662                 set_page_dirty(page);
663         f2fs_put_page(page, 1);
664         return 0;
665 }
666
667 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock)
668 {
669         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
670         struct dnode_of_data dn;
671         pgoff_t free_from;
672         int count = 0, err = 0;
673         struct page *ipage;
674         bool truncate_page = false;
675
676         trace_f2fs_truncate_blocks_enter(inode, from);
677
678         free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
679
680         if (free_from >= max_file_blocks(inode))
681                 goto free_partial;
682
683         if (lock)
684                 f2fs_lock_op(sbi);
685
686         ipage = f2fs_get_node_page(sbi, inode->i_ino);
687         if (IS_ERR(ipage)) {
688                 err = PTR_ERR(ipage);
689                 goto out;
690         }
691
692         if (f2fs_has_inline_data(inode)) {
693                 f2fs_truncate_inline_inode(inode, ipage, from);
694                 f2fs_put_page(ipage, 1);
695                 truncate_page = true;
696                 goto out;
697         }
698
699         set_new_dnode(&dn, inode, ipage, NULL, 0);
700         err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
701         if (err) {
702                 if (err == -ENOENT)
703                         goto free_next;
704                 goto out;
705         }
706
707         count = ADDRS_PER_PAGE(dn.node_page, inode);
708
709         count -= dn.ofs_in_node;
710         f2fs_bug_on(sbi, count < 0);
711
712         if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
713                 f2fs_truncate_data_blocks_range(&dn, count);
714                 free_from += count;
715         }
716
717         f2fs_put_dnode(&dn);
718 free_next:
719         err = f2fs_truncate_inode_blocks(inode, free_from);
720 out:
721         if (lock)
722                 f2fs_unlock_op(sbi);
723 free_partial:
724         /* lastly zero out the first data page */
725         if (!err)
726                 err = truncate_partial_data_page(inode, from, truncate_page);
727
728         trace_f2fs_truncate_blocks_exit(inode, err);
729         return err;
730 }
731
732 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
733 {
734         u64 free_from = from;
735         int err;
736
737 #ifdef CONFIG_F2FS_FS_COMPRESSION
738         /*
739          * for compressed file, only support cluster size
740          * aligned truncation.
741          */
742         if (f2fs_compressed_file(inode))
743                 free_from = round_up(from,
744                                 F2FS_I(inode)->i_cluster_size << PAGE_SHIFT);
745 #endif
746
747         err = f2fs_do_truncate_blocks(inode, free_from, lock);
748         if (err)
749                 return err;
750
751 #ifdef CONFIG_F2FS_FS_COMPRESSION
752         /*
753          * For compressed file, after release compress blocks, don't allow write
754          * direct, but we should allow write direct after truncate to zero.
755          */
756         if (f2fs_compressed_file(inode) && !free_from
757                         && is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
758                 clear_inode_flag(inode, FI_COMPRESS_RELEASED);
759
760         if (from != free_from) {
761                 err = f2fs_truncate_partial_cluster(inode, from, lock);
762                 if (err)
763                         return err;
764         }
765 #endif
766
767         return 0;
768 }
769
770 int f2fs_truncate(struct inode *inode)
771 {
772         int err;
773
774         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
775                 return -EIO;
776
777         if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
778                                 S_ISLNK(inode->i_mode)))
779                 return 0;
780
781         trace_f2fs_truncate(inode);
782
783         if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE))
784                 return -EIO;
785
786         err = f2fs_dquot_initialize(inode);
787         if (err)
788                 return err;
789
790         /* we should check inline_data size */
791         if (!f2fs_may_inline_data(inode)) {
792                 err = f2fs_convert_inline_inode(inode);
793                 if (err)
794                         return err;
795         }
796
797         err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
798         if (err)
799                 return err;
800
801         inode->i_mtime = inode_set_ctime_current(inode);
802         f2fs_mark_inode_dirty_sync(inode, false);
803         return 0;
804 }
805
806 static bool f2fs_force_buffered_io(struct inode *inode, int rw)
807 {
808         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
809
810         if (!fscrypt_dio_supported(inode))
811                 return true;
812         if (fsverity_active(inode))
813                 return true;
814         if (f2fs_compressed_file(inode))
815                 return true;
816
817         /* disallow direct IO if any of devices has unaligned blksize */
818         if (f2fs_is_multi_device(sbi) && !sbi->aligned_blksize)
819                 return true;
820         /*
821          * for blkzoned device, fallback direct IO to buffered IO, so
822          * all IOs can be serialized by log-structured write.
823          */
824         if (f2fs_sb_has_blkzoned(sbi) && (rw == WRITE))
825                 return true;
826         if (f2fs_lfs_mode(sbi) && rw == WRITE && F2FS_IO_ALIGNED(sbi))
827                 return true;
828         if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
829                 return true;
830
831         return false;
832 }
833
834 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path,
835                  struct kstat *stat, u32 request_mask, unsigned int query_flags)
836 {
837         struct inode *inode = d_inode(path->dentry);
838         struct f2fs_inode_info *fi = F2FS_I(inode);
839         struct f2fs_inode *ri = NULL;
840         unsigned int flags;
841
842         if (f2fs_has_extra_attr(inode) &&
843                         f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) &&
844                         F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
845                 stat->result_mask |= STATX_BTIME;
846                 stat->btime.tv_sec = fi->i_crtime.tv_sec;
847                 stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
848         }
849
850         /*
851          * Return the DIO alignment restrictions if requested.  We only return
852          * this information when requested, since on encrypted files it might
853          * take a fair bit of work to get if the file wasn't opened recently.
854          *
855          * f2fs sometimes supports DIO reads but not DIO writes.  STATX_DIOALIGN
856          * cannot represent that, so in that case we report no DIO support.
857          */
858         if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
859                 unsigned int bsize = i_blocksize(inode);
860
861                 stat->result_mask |= STATX_DIOALIGN;
862                 if (!f2fs_force_buffered_io(inode, WRITE)) {
863                         stat->dio_mem_align = bsize;
864                         stat->dio_offset_align = bsize;
865                 }
866         }
867
868         flags = fi->i_flags;
869         if (flags & F2FS_COMPR_FL)
870                 stat->attributes |= STATX_ATTR_COMPRESSED;
871         if (flags & F2FS_APPEND_FL)
872                 stat->attributes |= STATX_ATTR_APPEND;
873         if (IS_ENCRYPTED(inode))
874                 stat->attributes |= STATX_ATTR_ENCRYPTED;
875         if (flags & F2FS_IMMUTABLE_FL)
876                 stat->attributes |= STATX_ATTR_IMMUTABLE;
877         if (flags & F2FS_NODUMP_FL)
878                 stat->attributes |= STATX_ATTR_NODUMP;
879         if (IS_VERITY(inode))
880                 stat->attributes |= STATX_ATTR_VERITY;
881
882         stat->attributes_mask |= (STATX_ATTR_COMPRESSED |
883                                   STATX_ATTR_APPEND |
884                                   STATX_ATTR_ENCRYPTED |
885                                   STATX_ATTR_IMMUTABLE |
886                                   STATX_ATTR_NODUMP |
887                                   STATX_ATTR_VERITY);
888
889         generic_fillattr(idmap, request_mask, inode, stat);
890
891         /* we need to show initial sectors used for inline_data/dentries */
892         if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
893                                         f2fs_has_inline_dentry(inode))
894                 stat->blocks += (stat->size + 511) >> 9;
895
896         return 0;
897 }
898
899 #ifdef CONFIG_F2FS_FS_POSIX_ACL
900 static void __setattr_copy(struct mnt_idmap *idmap,
901                            struct inode *inode, const struct iattr *attr)
902 {
903         unsigned int ia_valid = attr->ia_valid;
904
905         i_uid_update(idmap, attr, inode);
906         i_gid_update(idmap, attr, inode);
907         if (ia_valid & ATTR_ATIME)
908                 inode->i_atime = attr->ia_atime;
909         if (ia_valid & ATTR_MTIME)
910                 inode->i_mtime = attr->ia_mtime;
911         if (ia_valid & ATTR_CTIME)
912                 inode_set_ctime_to_ts(inode, attr->ia_ctime);
913         if (ia_valid & ATTR_MODE) {
914                 umode_t mode = attr->ia_mode;
915                 vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode);
916
917                 if (!vfsgid_in_group_p(vfsgid) &&
918                     !capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID))
919                         mode &= ~S_ISGID;
920                 set_acl_inode(inode, mode);
921         }
922 }
923 #else
924 #define __setattr_copy setattr_copy
925 #endif
926
927 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
928                  struct iattr *attr)
929 {
930         struct inode *inode = d_inode(dentry);
931         int err;
932
933         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
934                 return -EIO;
935
936         if (unlikely(IS_IMMUTABLE(inode)))
937                 return -EPERM;
938
939         if (unlikely(IS_APPEND(inode) &&
940                         (attr->ia_valid & (ATTR_MODE | ATTR_UID |
941                                   ATTR_GID | ATTR_TIMES_SET))))
942                 return -EPERM;
943
944         if ((attr->ia_valid & ATTR_SIZE) &&
945                 !f2fs_is_compress_backend_ready(inode))
946                 return -EOPNOTSUPP;
947
948         err = setattr_prepare(idmap, dentry, attr);
949         if (err)
950                 return err;
951
952         err = fscrypt_prepare_setattr(dentry, attr);
953         if (err)
954                 return err;
955
956         err = fsverity_prepare_setattr(dentry, attr);
957         if (err)
958                 return err;
959
960         if (is_quota_modification(idmap, inode, attr)) {
961                 err = f2fs_dquot_initialize(inode);
962                 if (err)
963                         return err;
964         }
965         if (i_uid_needs_update(idmap, attr, inode) ||
966             i_gid_needs_update(idmap, attr, inode)) {
967                 f2fs_lock_op(F2FS_I_SB(inode));
968                 err = dquot_transfer(idmap, inode, attr);
969                 if (err) {
970                         set_sbi_flag(F2FS_I_SB(inode),
971                                         SBI_QUOTA_NEED_REPAIR);
972                         f2fs_unlock_op(F2FS_I_SB(inode));
973                         return err;
974                 }
975                 /*
976                  * update uid/gid under lock_op(), so that dquot and inode can
977                  * be updated atomically.
978                  */
979                 i_uid_update(idmap, attr, inode);
980                 i_gid_update(idmap, attr, inode);
981                 f2fs_mark_inode_dirty_sync(inode, true);
982                 f2fs_unlock_op(F2FS_I_SB(inode));
983         }
984
985         if (attr->ia_valid & ATTR_SIZE) {
986                 loff_t old_size = i_size_read(inode);
987
988                 if (attr->ia_size > MAX_INLINE_DATA(inode)) {
989                         /*
990                          * should convert inline inode before i_size_write to
991                          * keep smaller than inline_data size with inline flag.
992                          */
993                         err = f2fs_convert_inline_inode(inode);
994                         if (err)
995                                 return err;
996                 }
997
998                 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
999                 filemap_invalidate_lock(inode->i_mapping);
1000
1001                 truncate_setsize(inode, attr->ia_size);
1002
1003                 if (attr->ia_size <= old_size)
1004                         err = f2fs_truncate(inode);
1005                 /*
1006                  * do not trim all blocks after i_size if target size is
1007                  * larger than i_size.
1008                  */
1009                 filemap_invalidate_unlock(inode->i_mapping);
1010                 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1011                 if (err)
1012                         return err;
1013
1014                 spin_lock(&F2FS_I(inode)->i_size_lock);
1015                 inode->i_mtime = inode_set_ctime_current(inode);
1016                 F2FS_I(inode)->last_disk_size = i_size_read(inode);
1017                 spin_unlock(&F2FS_I(inode)->i_size_lock);
1018         }
1019
1020         __setattr_copy(idmap, inode, attr);
1021
1022         if (attr->ia_valid & ATTR_MODE) {
1023                 err = posix_acl_chmod(idmap, dentry, f2fs_get_inode_mode(inode));
1024
1025                 if (is_inode_flag_set(inode, FI_ACL_MODE)) {
1026                         if (!err)
1027                                 inode->i_mode = F2FS_I(inode)->i_acl_mode;
1028                         clear_inode_flag(inode, FI_ACL_MODE);
1029                 }
1030         }
1031
1032         /* file size may changed here */
1033         f2fs_mark_inode_dirty_sync(inode, true);
1034
1035         /* inode change will produce dirty node pages flushed by checkpoint */
1036         f2fs_balance_fs(F2FS_I_SB(inode), true);
1037
1038         return err;
1039 }
1040
1041 const struct inode_operations f2fs_file_inode_operations = {
1042         .getattr        = f2fs_getattr,
1043         .setattr        = f2fs_setattr,
1044         .get_inode_acl  = f2fs_get_acl,
1045         .set_acl        = f2fs_set_acl,
1046         .listxattr      = f2fs_listxattr,
1047         .fiemap         = f2fs_fiemap,
1048         .fileattr_get   = f2fs_fileattr_get,
1049         .fileattr_set   = f2fs_fileattr_set,
1050 };
1051
1052 static int fill_zero(struct inode *inode, pgoff_t index,
1053                                         loff_t start, loff_t len)
1054 {
1055         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1056         struct page *page;
1057
1058         if (!len)
1059                 return 0;
1060
1061         f2fs_balance_fs(sbi, true);
1062
1063         f2fs_lock_op(sbi);
1064         page = f2fs_get_new_data_page(inode, NULL, index, false);
1065         f2fs_unlock_op(sbi);
1066
1067         if (IS_ERR(page))
1068                 return PTR_ERR(page);
1069
1070         f2fs_wait_on_page_writeback(page, DATA, true, true);
1071         zero_user(page, start, len);
1072         set_page_dirty(page);
1073         f2fs_put_page(page, 1);
1074         return 0;
1075 }
1076
1077 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
1078 {
1079         int err;
1080
1081         while (pg_start < pg_end) {
1082                 struct dnode_of_data dn;
1083                 pgoff_t end_offset, count;
1084
1085                 set_new_dnode(&dn, inode, NULL, NULL, 0);
1086                 err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
1087                 if (err) {
1088                         if (err == -ENOENT) {
1089                                 pg_start = f2fs_get_next_page_offset(&dn,
1090                                                                 pg_start);
1091                                 continue;
1092                         }
1093                         return err;
1094                 }
1095
1096                 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1097                 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
1098
1099                 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
1100
1101                 f2fs_truncate_data_blocks_range(&dn, count);
1102                 f2fs_put_dnode(&dn);
1103
1104                 pg_start += count;
1105         }
1106         return 0;
1107 }
1108
1109 static int f2fs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
1110 {
1111         pgoff_t pg_start, pg_end;
1112         loff_t off_start, off_end;
1113         int ret;
1114
1115         ret = f2fs_convert_inline_inode(inode);
1116         if (ret)
1117                 return ret;
1118
1119         pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1120         pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1121
1122         off_start = offset & (PAGE_SIZE - 1);
1123         off_end = (offset + len) & (PAGE_SIZE - 1);
1124
1125         if (pg_start == pg_end) {
1126                 ret = fill_zero(inode, pg_start, off_start,
1127                                                 off_end - off_start);
1128                 if (ret)
1129                         return ret;
1130         } else {
1131                 if (off_start) {
1132                         ret = fill_zero(inode, pg_start++, off_start,
1133                                                 PAGE_SIZE - off_start);
1134                         if (ret)
1135                                 return ret;
1136                 }
1137                 if (off_end) {
1138                         ret = fill_zero(inode, pg_end, 0, off_end);
1139                         if (ret)
1140                                 return ret;
1141                 }
1142
1143                 if (pg_start < pg_end) {
1144                         loff_t blk_start, blk_end;
1145                         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1146
1147                         f2fs_balance_fs(sbi, true);
1148
1149                         blk_start = (loff_t)pg_start << PAGE_SHIFT;
1150                         blk_end = (loff_t)pg_end << PAGE_SHIFT;
1151
1152                         f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1153                         filemap_invalidate_lock(inode->i_mapping);
1154
1155                         truncate_pagecache_range(inode, blk_start, blk_end - 1);
1156
1157                         f2fs_lock_op(sbi);
1158                         ret = f2fs_truncate_hole(inode, pg_start, pg_end);
1159                         f2fs_unlock_op(sbi);
1160
1161                         filemap_invalidate_unlock(inode->i_mapping);
1162                         f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1163                 }
1164         }
1165
1166         return ret;
1167 }
1168
1169 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
1170                                 int *do_replace, pgoff_t off, pgoff_t len)
1171 {
1172         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1173         struct dnode_of_data dn;
1174         int ret, done, i;
1175
1176 next_dnode:
1177         set_new_dnode(&dn, inode, NULL, NULL, 0);
1178         ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
1179         if (ret && ret != -ENOENT) {
1180                 return ret;
1181         } else if (ret == -ENOENT) {
1182                 if (dn.max_level == 0)
1183                         return -ENOENT;
1184                 done = min((pgoff_t)ADDRS_PER_BLOCK(inode) -
1185                                                 dn.ofs_in_node, len);
1186                 blkaddr += done;
1187                 do_replace += done;
1188                 goto next;
1189         }
1190
1191         done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
1192                                                         dn.ofs_in_node, len);
1193         for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
1194                 *blkaddr = f2fs_data_blkaddr(&dn);
1195
1196                 if (__is_valid_data_blkaddr(*blkaddr) &&
1197                         !f2fs_is_valid_blkaddr(sbi, *blkaddr,
1198                                         DATA_GENERIC_ENHANCE)) {
1199                         f2fs_put_dnode(&dn);
1200                         f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1201                         return -EFSCORRUPTED;
1202                 }
1203
1204                 if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
1205
1206                         if (f2fs_lfs_mode(sbi)) {
1207                                 f2fs_put_dnode(&dn);
1208                                 return -EOPNOTSUPP;
1209                         }
1210
1211                         /* do not invalidate this block address */
1212                         f2fs_update_data_blkaddr(&dn, NULL_ADDR);
1213                         *do_replace = 1;
1214                 }
1215         }
1216         f2fs_put_dnode(&dn);
1217 next:
1218         len -= done;
1219         off += done;
1220         if (len)
1221                 goto next_dnode;
1222         return 0;
1223 }
1224
1225 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1226                                 int *do_replace, pgoff_t off, int len)
1227 {
1228         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1229         struct dnode_of_data dn;
1230         int ret, i;
1231
1232         for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1233                 if (*do_replace == 0)
1234                         continue;
1235
1236                 set_new_dnode(&dn, inode, NULL, NULL, 0);
1237                 ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1238                 if (ret) {
1239                         dec_valid_block_count(sbi, inode, 1);
1240                         f2fs_invalidate_blocks(sbi, *blkaddr);
1241                 } else {
1242                         f2fs_update_data_blkaddr(&dn, *blkaddr);
1243                 }
1244                 f2fs_put_dnode(&dn);
1245         }
1246         return 0;
1247 }
1248
1249 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1250                         block_t *blkaddr, int *do_replace,
1251                         pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1252 {
1253         struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1254         pgoff_t i = 0;
1255         int ret;
1256
1257         while (i < len) {
1258                 if (blkaddr[i] == NULL_ADDR && !full) {
1259                         i++;
1260                         continue;
1261                 }
1262
1263                 if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1264                         struct dnode_of_data dn;
1265                         struct node_info ni;
1266                         size_t new_size;
1267                         pgoff_t ilen;
1268
1269                         set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1270                         ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1271                         if (ret)
1272                                 return ret;
1273
1274                         ret = f2fs_get_node_info(sbi, dn.nid, &ni, false);
1275                         if (ret) {
1276                                 f2fs_put_dnode(&dn);
1277                                 return ret;
1278                         }
1279
1280                         ilen = min((pgoff_t)
1281                                 ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1282                                                 dn.ofs_in_node, len - i);
1283                         do {
1284                                 dn.data_blkaddr = f2fs_data_blkaddr(&dn);
1285                                 f2fs_truncate_data_blocks_range(&dn, 1);
1286
1287                                 if (do_replace[i]) {
1288                                         f2fs_i_blocks_write(src_inode,
1289                                                         1, false, false);
1290                                         f2fs_i_blocks_write(dst_inode,
1291                                                         1, true, false);
1292                                         f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1293                                         blkaddr[i], ni.version, true, false);
1294
1295                                         do_replace[i] = 0;
1296                                 }
1297                                 dn.ofs_in_node++;
1298                                 i++;
1299                                 new_size = (loff_t)(dst + i) << PAGE_SHIFT;
1300                                 if (dst_inode->i_size < new_size)
1301                                         f2fs_i_size_write(dst_inode, new_size);
1302                         } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1303
1304                         f2fs_put_dnode(&dn);
1305                 } else {
1306                         struct page *psrc, *pdst;
1307
1308                         psrc = f2fs_get_lock_data_page(src_inode,
1309                                                         src + i, true);
1310                         if (IS_ERR(psrc))
1311                                 return PTR_ERR(psrc);
1312                         pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
1313                                                                 true);
1314                         if (IS_ERR(pdst)) {
1315                                 f2fs_put_page(psrc, 1);
1316                                 return PTR_ERR(pdst);
1317                         }
1318                         memcpy_page(pdst, 0, psrc, 0, PAGE_SIZE);
1319                         set_page_dirty(pdst);
1320                         set_page_private_gcing(pdst);
1321                         f2fs_put_page(pdst, 1);
1322                         f2fs_put_page(psrc, 1);
1323
1324                         ret = f2fs_truncate_hole(src_inode,
1325                                                 src + i, src + i + 1);
1326                         if (ret)
1327                                 return ret;
1328                         i++;
1329                 }
1330         }
1331         return 0;
1332 }
1333
1334 static int __exchange_data_block(struct inode *src_inode,
1335                         struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1336                         pgoff_t len, bool full)
1337 {
1338         block_t *src_blkaddr;
1339         int *do_replace;
1340         pgoff_t olen;
1341         int ret;
1342
1343         while (len) {
1344                 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len);
1345
1346                 src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1347                                         array_size(olen, sizeof(block_t)),
1348                                         GFP_NOFS);
1349                 if (!src_blkaddr)
1350                         return -ENOMEM;
1351
1352                 do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1353                                         array_size(olen, sizeof(int)),
1354                                         GFP_NOFS);
1355                 if (!do_replace) {
1356                         kvfree(src_blkaddr);
1357                         return -ENOMEM;
1358                 }
1359
1360                 ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1361                                         do_replace, src, olen);
1362                 if (ret)
1363                         goto roll_back;
1364
1365                 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1366                                         do_replace, src, dst, olen, full);
1367                 if (ret)
1368                         goto roll_back;
1369
1370                 src += olen;
1371                 dst += olen;
1372                 len -= olen;
1373
1374                 kvfree(src_blkaddr);
1375                 kvfree(do_replace);
1376         }
1377         return 0;
1378
1379 roll_back:
1380         __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1381         kvfree(src_blkaddr);
1382         kvfree(do_replace);
1383         return ret;
1384 }
1385
1386 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
1387 {
1388         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1389         pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1390         pgoff_t start = offset >> PAGE_SHIFT;
1391         pgoff_t end = (offset + len) >> PAGE_SHIFT;
1392         int ret;
1393
1394         f2fs_balance_fs(sbi, true);
1395
1396         /* avoid gc operation during block exchange */
1397         f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1398         filemap_invalidate_lock(inode->i_mapping);
1399
1400         f2fs_lock_op(sbi);
1401         f2fs_drop_extent_tree(inode);
1402         truncate_pagecache(inode, offset);
1403         ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1404         f2fs_unlock_op(sbi);
1405
1406         filemap_invalidate_unlock(inode->i_mapping);
1407         f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1408         return ret;
1409 }
1410
1411 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1412 {
1413         loff_t new_size;
1414         int ret;
1415
1416         if (offset + len >= i_size_read(inode))
1417                 return -EINVAL;
1418
1419         /* collapse range should be aligned to block size of f2fs. */
1420         if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1421                 return -EINVAL;
1422
1423         ret = f2fs_convert_inline_inode(inode);
1424         if (ret)
1425                 return ret;
1426
1427         /* write out all dirty pages from offset */
1428         ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1429         if (ret)
1430                 return ret;
1431
1432         ret = f2fs_do_collapse(inode, offset, len);
1433         if (ret)
1434                 return ret;
1435
1436         /* write out all moved pages, if possible */
1437         filemap_invalidate_lock(inode->i_mapping);
1438         filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1439         truncate_pagecache(inode, offset);
1440
1441         new_size = i_size_read(inode) - len;
1442         ret = f2fs_truncate_blocks(inode, new_size, true);
1443         filemap_invalidate_unlock(inode->i_mapping);
1444         if (!ret)
1445                 f2fs_i_size_write(inode, new_size);
1446         return ret;
1447 }
1448
1449 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1450                                                                 pgoff_t end)
1451 {
1452         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1453         pgoff_t index = start;
1454         unsigned int ofs_in_node = dn->ofs_in_node;
1455         blkcnt_t count = 0;
1456         int ret;
1457
1458         for (; index < end; index++, dn->ofs_in_node++) {
1459                 if (f2fs_data_blkaddr(dn) == NULL_ADDR)
1460                         count++;
1461         }
1462
1463         dn->ofs_in_node = ofs_in_node;
1464         ret = f2fs_reserve_new_blocks(dn, count);
1465         if (ret)
1466                 return ret;
1467
1468         dn->ofs_in_node = ofs_in_node;
1469         for (index = start; index < end; index++, dn->ofs_in_node++) {
1470                 dn->data_blkaddr = f2fs_data_blkaddr(dn);
1471                 /*
1472                  * f2fs_reserve_new_blocks will not guarantee entire block
1473                  * allocation.
1474                  */
1475                 if (dn->data_blkaddr == NULL_ADDR) {
1476                         ret = -ENOSPC;
1477                         break;
1478                 }
1479
1480                 if (dn->data_blkaddr == NEW_ADDR)
1481                         continue;
1482
1483                 if (!f2fs_is_valid_blkaddr(sbi, dn->data_blkaddr,
1484                                         DATA_GENERIC_ENHANCE)) {
1485                         ret = -EFSCORRUPTED;
1486                         f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1487                         break;
1488                 }
1489
1490                 f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
1491                 dn->data_blkaddr = NEW_ADDR;
1492                 f2fs_set_data_blkaddr(dn);
1493         }
1494
1495         f2fs_update_read_extent_cache_range(dn, start, 0, index - start);
1496         f2fs_update_age_extent_cache_range(dn, start, index - start);
1497
1498         return ret;
1499 }
1500
1501 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1502                                                                 int mode)
1503 {
1504         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1505         struct address_space *mapping = inode->i_mapping;
1506         pgoff_t index, pg_start, pg_end;
1507         loff_t new_size = i_size_read(inode);
1508         loff_t off_start, off_end;
1509         int ret = 0;
1510
1511         ret = inode_newsize_ok(inode, (len + offset));
1512         if (ret)
1513                 return ret;
1514
1515         ret = f2fs_convert_inline_inode(inode);
1516         if (ret)
1517                 return ret;
1518
1519         ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1520         if (ret)
1521                 return ret;
1522
1523         pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1524         pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1525
1526         off_start = offset & (PAGE_SIZE - 1);
1527         off_end = (offset + len) & (PAGE_SIZE - 1);
1528
1529         if (pg_start == pg_end) {
1530                 ret = fill_zero(inode, pg_start, off_start,
1531                                                 off_end - off_start);
1532                 if (ret)
1533                         return ret;
1534
1535                 new_size = max_t(loff_t, new_size, offset + len);
1536         } else {
1537                 if (off_start) {
1538                         ret = fill_zero(inode, pg_start++, off_start,
1539                                                 PAGE_SIZE - off_start);
1540                         if (ret)
1541                                 return ret;
1542
1543                         new_size = max_t(loff_t, new_size,
1544                                         (loff_t)pg_start << PAGE_SHIFT);
1545                 }
1546
1547                 for (index = pg_start; index < pg_end;) {
1548                         struct dnode_of_data dn;
1549                         unsigned int end_offset;
1550                         pgoff_t end;
1551
1552                         f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1553                         filemap_invalidate_lock(mapping);
1554
1555                         truncate_pagecache_range(inode,
1556                                 (loff_t)index << PAGE_SHIFT,
1557                                 ((loff_t)pg_end << PAGE_SHIFT) - 1);
1558
1559                         f2fs_lock_op(sbi);
1560
1561                         set_new_dnode(&dn, inode, NULL, NULL, 0);
1562                         ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1563                         if (ret) {
1564                                 f2fs_unlock_op(sbi);
1565                                 filemap_invalidate_unlock(mapping);
1566                                 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1567                                 goto out;
1568                         }
1569
1570                         end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1571                         end = min(pg_end, end_offset - dn.ofs_in_node + index);
1572
1573                         ret = f2fs_do_zero_range(&dn, index, end);
1574                         f2fs_put_dnode(&dn);
1575
1576                         f2fs_unlock_op(sbi);
1577                         filemap_invalidate_unlock(mapping);
1578                         f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1579
1580                         f2fs_balance_fs(sbi, dn.node_changed);
1581
1582                         if (ret)
1583                                 goto out;
1584
1585                         index = end;
1586                         new_size = max_t(loff_t, new_size,
1587                                         (loff_t)index << PAGE_SHIFT);
1588                 }
1589
1590                 if (off_end) {
1591                         ret = fill_zero(inode, pg_end, 0, off_end);
1592                         if (ret)
1593                                 goto out;
1594
1595                         new_size = max_t(loff_t, new_size, offset + len);
1596                 }
1597         }
1598
1599 out:
1600         if (new_size > i_size_read(inode)) {
1601                 if (mode & FALLOC_FL_KEEP_SIZE)
1602                         file_set_keep_isize(inode);
1603                 else
1604                         f2fs_i_size_write(inode, new_size);
1605         }
1606         return ret;
1607 }
1608
1609 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1610 {
1611         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1612         struct address_space *mapping = inode->i_mapping;
1613         pgoff_t nr, pg_start, pg_end, delta, idx;
1614         loff_t new_size;
1615         int ret = 0;
1616
1617         new_size = i_size_read(inode) + len;
1618         ret = inode_newsize_ok(inode, new_size);
1619         if (ret)
1620                 return ret;
1621
1622         if (offset >= i_size_read(inode))
1623                 return -EINVAL;
1624
1625         /* insert range should be aligned to block size of f2fs. */
1626         if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1627                 return -EINVAL;
1628
1629         ret = f2fs_convert_inline_inode(inode);
1630         if (ret)
1631                 return ret;
1632
1633         f2fs_balance_fs(sbi, true);
1634
1635         filemap_invalidate_lock(mapping);
1636         ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
1637         filemap_invalidate_unlock(mapping);
1638         if (ret)
1639                 return ret;
1640
1641         /* write out all dirty pages from offset */
1642         ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1643         if (ret)
1644                 return ret;
1645
1646         pg_start = offset >> PAGE_SHIFT;
1647         pg_end = (offset + len) >> PAGE_SHIFT;
1648         delta = pg_end - pg_start;
1649         idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1650
1651         /* avoid gc operation during block exchange */
1652         f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1653         filemap_invalidate_lock(mapping);
1654         truncate_pagecache(inode, offset);
1655
1656         while (!ret && idx > pg_start) {
1657                 nr = idx - pg_start;
1658                 if (nr > delta)
1659                         nr = delta;
1660                 idx -= nr;
1661
1662                 f2fs_lock_op(sbi);
1663                 f2fs_drop_extent_tree(inode);
1664
1665                 ret = __exchange_data_block(inode, inode, idx,
1666                                         idx + delta, nr, false);
1667                 f2fs_unlock_op(sbi);
1668         }
1669         filemap_invalidate_unlock(mapping);
1670         f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1671
1672         /* write out all moved pages, if possible */
1673         filemap_invalidate_lock(mapping);
1674         filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1675         truncate_pagecache(inode, offset);
1676         filemap_invalidate_unlock(mapping);
1677
1678         if (!ret)
1679                 f2fs_i_size_write(inode, new_size);
1680         return ret;
1681 }
1682
1683 static int f2fs_expand_inode_data(struct inode *inode, loff_t offset,
1684                                         loff_t len, int mode)
1685 {
1686         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1687         struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1688                         .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE,
1689                         .m_may_create = true };
1690         struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
1691                         .init_gc_type = FG_GC,
1692                         .should_migrate_blocks = false,
1693                         .err_gc_skipped = true,
1694                         .nr_free_secs = 0 };
1695         pgoff_t pg_start, pg_end;
1696         loff_t new_size;
1697         loff_t off_end;
1698         block_t expanded = 0;
1699         int err;
1700
1701         err = inode_newsize_ok(inode, (len + offset));
1702         if (err)
1703                 return err;
1704
1705         err = f2fs_convert_inline_inode(inode);
1706         if (err)
1707                 return err;
1708
1709         f2fs_balance_fs(sbi, true);
1710
1711         pg_start = ((unsigned long long)offset) >> PAGE_SHIFT;
1712         pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1713         off_end = (offset + len) & (PAGE_SIZE - 1);
1714
1715         map.m_lblk = pg_start;
1716         map.m_len = pg_end - pg_start;
1717         if (off_end)
1718                 map.m_len++;
1719
1720         if (!map.m_len)
1721                 return 0;
1722
1723         if (f2fs_is_pinned_file(inode)) {
1724                 block_t sec_blks = CAP_BLKS_PER_SEC(sbi);
1725                 block_t sec_len = roundup(map.m_len, sec_blks);
1726
1727                 map.m_len = sec_blks;
1728 next_alloc:
1729                 if (has_not_enough_free_secs(sbi, 0,
1730                         GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) {
1731                         f2fs_down_write(&sbi->gc_lock);
1732                         stat_inc_gc_call_count(sbi, FOREGROUND);
1733                         err = f2fs_gc(sbi, &gc_control);
1734                         if (err && err != -ENODATA)
1735                                 goto out_err;
1736                 }
1737
1738                 f2fs_down_write(&sbi->pin_sem);
1739
1740                 f2fs_lock_op(sbi);
1741                 f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
1742                 f2fs_unlock_op(sbi);
1743
1744                 map.m_seg_type = CURSEG_COLD_DATA_PINNED;
1745                 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_DIO);
1746                 file_dont_truncate(inode);
1747
1748                 f2fs_up_write(&sbi->pin_sem);
1749
1750                 expanded += map.m_len;
1751                 sec_len -= map.m_len;
1752                 map.m_lblk += map.m_len;
1753                 if (!err && sec_len)
1754                         goto next_alloc;
1755
1756                 map.m_len = expanded;
1757         } else {
1758                 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_AIO);
1759                 expanded = map.m_len;
1760         }
1761 out_err:
1762         if (err) {
1763                 pgoff_t last_off;
1764
1765                 if (!expanded)
1766                         return err;
1767
1768                 last_off = pg_start + expanded - 1;
1769
1770                 /* update new size to the failed position */
1771                 new_size = (last_off == pg_end) ? offset + len :
1772                                         (loff_t)(last_off + 1) << PAGE_SHIFT;
1773         } else {
1774                 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1775         }
1776
1777         if (new_size > i_size_read(inode)) {
1778                 if (mode & FALLOC_FL_KEEP_SIZE)
1779                         file_set_keep_isize(inode);
1780                 else
1781                         f2fs_i_size_write(inode, new_size);
1782         }
1783
1784         return err;
1785 }
1786
1787 static long f2fs_fallocate(struct file *file, int mode,
1788                                 loff_t offset, loff_t len)
1789 {
1790         struct inode *inode = file_inode(file);
1791         long ret = 0;
1792
1793         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1794                 return -EIO;
1795         if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
1796                 return -ENOSPC;
1797         if (!f2fs_is_compress_backend_ready(inode))
1798                 return -EOPNOTSUPP;
1799
1800         /* f2fs only support ->fallocate for regular file */
1801         if (!S_ISREG(inode->i_mode))
1802                 return -EINVAL;
1803
1804         if (IS_ENCRYPTED(inode) &&
1805                 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1806                 return -EOPNOTSUPP;
1807
1808         /*
1809          * Pinned file should not support partial truncation since the block
1810          * can be used by applications.
1811          */
1812         if ((f2fs_compressed_file(inode) || f2fs_is_pinned_file(inode)) &&
1813                 (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE |
1814                         FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE)))
1815                 return -EOPNOTSUPP;
1816
1817         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1818                         FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1819                         FALLOC_FL_INSERT_RANGE))
1820                 return -EOPNOTSUPP;
1821
1822         inode_lock(inode);
1823
1824         ret = file_modified(file);
1825         if (ret)
1826                 goto out;
1827
1828         if (mode & FALLOC_FL_PUNCH_HOLE) {
1829                 if (offset >= inode->i_size)
1830                         goto out;
1831
1832                 ret = f2fs_punch_hole(inode, offset, len);
1833         } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1834                 ret = f2fs_collapse_range(inode, offset, len);
1835         } else if (mode & FALLOC_FL_ZERO_RANGE) {
1836                 ret = f2fs_zero_range(inode, offset, len, mode);
1837         } else if (mode & FALLOC_FL_INSERT_RANGE) {
1838                 ret = f2fs_insert_range(inode, offset, len);
1839         } else {
1840                 ret = f2fs_expand_inode_data(inode, offset, len, mode);
1841         }
1842
1843         if (!ret) {
1844                 inode->i_mtime = inode_set_ctime_current(inode);
1845                 f2fs_mark_inode_dirty_sync(inode, false);
1846                 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1847         }
1848
1849 out:
1850         inode_unlock(inode);
1851
1852         trace_f2fs_fallocate(inode, mode, offset, len, ret);
1853         return ret;
1854 }
1855
1856 static int f2fs_release_file(struct inode *inode, struct file *filp)
1857 {
1858         /*
1859          * f2fs_release_file is called at every close calls. So we should
1860          * not drop any inmemory pages by close called by other process.
1861          */
1862         if (!(filp->f_mode & FMODE_WRITE) ||
1863                         atomic_read(&inode->i_writecount) != 1)
1864                 return 0;
1865
1866         inode_lock(inode);
1867         f2fs_abort_atomic_write(inode, true);
1868         inode_unlock(inode);
1869
1870         return 0;
1871 }
1872
1873 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1874 {
1875         struct inode *inode = file_inode(file);
1876
1877         /*
1878          * If the process doing a transaction is crashed, we should do
1879          * roll-back. Otherwise, other reader/write can see corrupted database
1880          * until all the writers close its file. Since this should be done
1881          * before dropping file lock, it needs to do in ->flush.
1882          */
1883         if (F2FS_I(inode)->atomic_write_task == current &&
1884                                 (current->flags & PF_EXITING)) {
1885                 inode_lock(inode);
1886                 f2fs_abort_atomic_write(inode, true);
1887                 inode_unlock(inode);
1888         }
1889
1890         return 0;
1891 }
1892
1893 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask)
1894 {
1895         struct f2fs_inode_info *fi = F2FS_I(inode);
1896         u32 masked_flags = fi->i_flags & mask;
1897
1898         /* mask can be shrunk by flags_valid selector */
1899         iflags &= mask;
1900
1901         /* Is it quota file? Do not allow user to mess with it */
1902         if (IS_NOQUOTA(inode))
1903                 return -EPERM;
1904
1905         if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) {
1906                 if (!f2fs_sb_has_casefold(F2FS_I_SB(inode)))
1907                         return -EOPNOTSUPP;
1908                 if (!f2fs_empty_dir(inode))
1909                         return -ENOTEMPTY;
1910         }
1911
1912         if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) {
1913                 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
1914                         return -EOPNOTSUPP;
1915                 if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL))
1916                         return -EINVAL;
1917         }
1918
1919         if ((iflags ^ masked_flags) & F2FS_COMPR_FL) {
1920                 if (masked_flags & F2FS_COMPR_FL) {
1921                         if (!f2fs_disable_compressed_file(inode))
1922                                 return -EINVAL;
1923                 } else {
1924                         /* try to convert inline_data to support compression */
1925                         int err = f2fs_convert_inline_inode(inode);
1926                         if (err)
1927                                 return err;
1928
1929                         f2fs_down_write(&F2FS_I(inode)->i_sem);
1930                         if (!f2fs_may_compress(inode) ||
1931                                         (S_ISREG(inode->i_mode) &&
1932                                         F2FS_HAS_BLOCKS(inode))) {
1933                                 f2fs_up_write(&F2FS_I(inode)->i_sem);
1934                                 return -EINVAL;
1935                         }
1936                         err = set_compress_context(inode);
1937                         f2fs_up_write(&F2FS_I(inode)->i_sem);
1938
1939                         if (err)
1940                                 return err;
1941                 }
1942         }
1943
1944         fi->i_flags = iflags | (fi->i_flags & ~mask);
1945         f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) &&
1946                                         (fi->i_flags & F2FS_NOCOMP_FL));
1947
1948         if (fi->i_flags & F2FS_PROJINHERIT_FL)
1949                 set_inode_flag(inode, FI_PROJ_INHERIT);
1950         else
1951                 clear_inode_flag(inode, FI_PROJ_INHERIT);
1952
1953         inode_set_ctime_current(inode);
1954         f2fs_set_inode_flags(inode);
1955         f2fs_mark_inode_dirty_sync(inode, true);
1956         return 0;
1957 }
1958
1959 /* FS_IOC_[GS]ETFLAGS and FS_IOC_FS[GS]ETXATTR support */
1960
1961 /*
1962  * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry
1963  * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to
1964  * F2FS_GETTABLE_FS_FL.  To also make it settable via FS_IOC_SETFLAGS, also add
1965  * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL.
1966  *
1967  * Translating flags to fsx_flags value used by FS_IOC_FSGETXATTR and
1968  * FS_IOC_FSSETXATTR is done by the VFS.
1969  */
1970
1971 static const struct {
1972         u32 iflag;
1973         u32 fsflag;
1974 } f2fs_fsflags_map[] = {
1975         { F2FS_COMPR_FL,        FS_COMPR_FL },
1976         { F2FS_SYNC_FL,         FS_SYNC_FL },
1977         { F2FS_IMMUTABLE_FL,    FS_IMMUTABLE_FL },
1978         { F2FS_APPEND_FL,       FS_APPEND_FL },
1979         { F2FS_NODUMP_FL,       FS_NODUMP_FL },
1980         { F2FS_NOATIME_FL,      FS_NOATIME_FL },
1981         { F2FS_NOCOMP_FL,       FS_NOCOMP_FL },
1982         { F2FS_INDEX_FL,        FS_INDEX_FL },
1983         { F2FS_DIRSYNC_FL,      FS_DIRSYNC_FL },
1984         { F2FS_PROJINHERIT_FL,  FS_PROJINHERIT_FL },
1985         { F2FS_CASEFOLD_FL,     FS_CASEFOLD_FL },
1986 };
1987
1988 #define F2FS_GETTABLE_FS_FL (           \
1989                 FS_COMPR_FL |           \
1990                 FS_SYNC_FL |            \
1991                 FS_IMMUTABLE_FL |       \
1992                 FS_APPEND_FL |          \
1993                 FS_NODUMP_FL |          \
1994                 FS_NOATIME_FL |         \
1995                 FS_NOCOMP_FL |          \
1996                 FS_INDEX_FL |           \
1997                 FS_DIRSYNC_FL |         \
1998                 FS_PROJINHERIT_FL |     \
1999                 FS_ENCRYPT_FL |         \
2000                 FS_INLINE_DATA_FL |     \
2001                 FS_NOCOW_FL |           \
2002                 FS_VERITY_FL |          \
2003                 FS_CASEFOLD_FL)
2004
2005 #define F2FS_SETTABLE_FS_FL (           \
2006                 FS_COMPR_FL |           \
2007                 FS_SYNC_FL |            \
2008                 FS_IMMUTABLE_FL |       \
2009                 FS_APPEND_FL |          \
2010                 FS_NODUMP_FL |          \
2011                 FS_NOATIME_FL |         \
2012                 FS_NOCOMP_FL |          \
2013                 FS_DIRSYNC_FL |         \
2014                 FS_PROJINHERIT_FL |     \
2015                 FS_CASEFOLD_FL)
2016
2017 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */
2018 static inline u32 f2fs_iflags_to_fsflags(u32 iflags)
2019 {
2020         u32 fsflags = 0;
2021         int i;
2022
2023         for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2024                 if (iflags & f2fs_fsflags_map[i].iflag)
2025                         fsflags |= f2fs_fsflags_map[i].fsflag;
2026
2027         return fsflags;
2028 }
2029
2030 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */
2031 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags)
2032 {
2033         u32 iflags = 0;
2034         int i;
2035
2036         for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2037                 if (fsflags & f2fs_fsflags_map[i].fsflag)
2038                         iflags |= f2fs_fsflags_map[i].iflag;
2039
2040         return iflags;
2041 }
2042
2043 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
2044 {
2045         struct inode *inode = file_inode(filp);
2046
2047         return put_user(inode->i_generation, (int __user *)arg);
2048 }
2049
2050 static int f2fs_ioc_start_atomic_write(struct file *filp, bool truncate)
2051 {
2052         struct inode *inode = file_inode(filp);
2053         struct mnt_idmap *idmap = file_mnt_idmap(filp);
2054         struct f2fs_inode_info *fi = F2FS_I(inode);
2055         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2056         struct inode *pinode;
2057         loff_t isize;
2058         int ret;
2059
2060         if (!inode_owner_or_capable(idmap, inode))
2061                 return -EACCES;
2062
2063         if (!S_ISREG(inode->i_mode))
2064                 return -EINVAL;
2065
2066         if (filp->f_flags & O_DIRECT)
2067                 return -EINVAL;
2068
2069         ret = mnt_want_write_file(filp);
2070         if (ret)
2071                 return ret;
2072
2073         inode_lock(inode);
2074
2075         if (!f2fs_disable_compressed_file(inode)) {
2076                 ret = -EINVAL;
2077                 goto out;
2078         }
2079
2080         if (f2fs_is_atomic_file(inode))
2081                 goto out;
2082
2083         ret = f2fs_convert_inline_inode(inode);
2084         if (ret)
2085                 goto out;
2086
2087         f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
2088
2089         /*
2090          * Should wait end_io to count F2FS_WB_CP_DATA correctly by
2091          * f2fs_is_atomic_file.
2092          */
2093         if (get_dirty_pages(inode))
2094                 f2fs_warn(sbi, "Unexpected flush for atomic writes: ino=%lu, npages=%u",
2095                           inode->i_ino, get_dirty_pages(inode));
2096         ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
2097         if (ret) {
2098                 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2099                 goto out;
2100         }
2101
2102         /* Check if the inode already has a COW inode */
2103         if (fi->cow_inode == NULL) {
2104                 /* Create a COW inode for atomic write */
2105                 pinode = f2fs_iget(inode->i_sb, fi->i_pino);
2106                 if (IS_ERR(pinode)) {
2107                         f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2108                         ret = PTR_ERR(pinode);
2109                         goto out;
2110                 }
2111
2112                 ret = f2fs_get_tmpfile(idmap, pinode, &fi->cow_inode);
2113                 iput(pinode);
2114                 if (ret) {
2115                         f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2116                         goto out;
2117                 }
2118
2119                 set_inode_flag(fi->cow_inode, FI_COW_FILE);
2120                 clear_inode_flag(fi->cow_inode, FI_INLINE_DATA);
2121         } else {
2122                 /* Reuse the already created COW inode */
2123                 ret = f2fs_do_truncate_blocks(fi->cow_inode, 0, true);
2124                 if (ret) {
2125                         f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2126                         goto out;
2127                 }
2128         }
2129
2130         f2fs_write_inode(inode, NULL);
2131
2132         stat_inc_atomic_inode(inode);
2133
2134         set_inode_flag(inode, FI_ATOMIC_FILE);
2135
2136         isize = i_size_read(inode);
2137         fi->original_i_size = isize;
2138         if (truncate) {
2139                 set_inode_flag(inode, FI_ATOMIC_REPLACE);
2140                 truncate_inode_pages_final(inode->i_mapping);
2141                 f2fs_i_size_write(inode, 0);
2142                 isize = 0;
2143         }
2144         f2fs_i_size_write(fi->cow_inode, isize);
2145
2146         f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2147
2148         f2fs_update_time(sbi, REQ_TIME);
2149         fi->atomic_write_task = current;
2150         stat_update_max_atomic_write(inode);
2151         fi->atomic_write_cnt = 0;
2152 out:
2153         inode_unlock(inode);
2154         mnt_drop_write_file(filp);
2155         return ret;
2156 }
2157
2158 static int f2fs_ioc_commit_atomic_write(struct file *filp)
2159 {
2160         struct inode *inode = file_inode(filp);
2161         struct mnt_idmap *idmap = file_mnt_idmap(filp);
2162         int ret;
2163
2164         if (!inode_owner_or_capable(idmap, inode))
2165                 return -EACCES;
2166
2167         ret = mnt_want_write_file(filp);
2168         if (ret)
2169                 return ret;
2170
2171         f2fs_balance_fs(F2FS_I_SB(inode), true);
2172
2173         inode_lock(inode);
2174
2175         if (f2fs_is_atomic_file(inode)) {
2176                 ret = f2fs_commit_atomic_write(inode);
2177                 if (!ret)
2178                         ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2179
2180                 f2fs_abort_atomic_write(inode, ret);
2181         } else {
2182                 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
2183         }
2184
2185         inode_unlock(inode);
2186         mnt_drop_write_file(filp);
2187         return ret;
2188 }
2189
2190 static int f2fs_ioc_abort_atomic_write(struct file *filp)
2191 {
2192         struct inode *inode = file_inode(filp);
2193         struct mnt_idmap *idmap = file_mnt_idmap(filp);
2194         int ret;
2195
2196         if (!inode_owner_or_capable(idmap, inode))
2197                 return -EACCES;
2198
2199         ret = mnt_want_write_file(filp);
2200         if (ret)
2201                 return ret;
2202
2203         inode_lock(inode);
2204
2205         f2fs_abort_atomic_write(inode, true);
2206
2207         inode_unlock(inode);
2208
2209         mnt_drop_write_file(filp);
2210         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2211         return ret;
2212 }
2213
2214 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
2215 {
2216         struct inode *inode = file_inode(filp);
2217         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2218         struct super_block *sb = sbi->sb;
2219         __u32 in;
2220         int ret = 0;
2221
2222         if (!capable(CAP_SYS_ADMIN))
2223                 return -EPERM;
2224
2225         if (get_user(in, (__u32 __user *)arg))
2226                 return -EFAULT;
2227
2228         if (in != F2FS_GOING_DOWN_FULLSYNC) {
2229                 ret = mnt_want_write_file(filp);
2230                 if (ret) {
2231                         if (ret == -EROFS) {
2232                                 ret = 0;
2233                                 f2fs_stop_checkpoint(sbi, false,
2234                                                 STOP_CP_REASON_SHUTDOWN);
2235                                 trace_f2fs_shutdown(sbi, in, ret);
2236                         }
2237                         return ret;
2238                 }
2239         }
2240
2241         switch (in) {
2242         case F2FS_GOING_DOWN_FULLSYNC:
2243                 ret = freeze_bdev(sb->s_bdev);
2244                 if (ret)
2245                         goto out;
2246                 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2247                 thaw_bdev(sb->s_bdev);
2248                 break;
2249         case F2FS_GOING_DOWN_METASYNC:
2250                 /* do checkpoint only */
2251                 ret = f2fs_sync_fs(sb, 1);
2252                 if (ret)
2253                         goto out;
2254                 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2255                 break;
2256         case F2FS_GOING_DOWN_NOSYNC:
2257                 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2258                 break;
2259         case F2FS_GOING_DOWN_METAFLUSH:
2260                 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
2261                 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2262                 break;
2263         case F2FS_GOING_DOWN_NEED_FSCK:
2264                 set_sbi_flag(sbi, SBI_NEED_FSCK);
2265                 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
2266                 set_sbi_flag(sbi, SBI_IS_DIRTY);
2267                 /* do checkpoint only */
2268                 ret = f2fs_sync_fs(sb, 1);
2269                 goto out;
2270         default:
2271                 ret = -EINVAL;
2272                 goto out;
2273         }
2274
2275         f2fs_stop_gc_thread(sbi);
2276         f2fs_stop_discard_thread(sbi);
2277
2278         f2fs_drop_discard_cmd(sbi);
2279         clear_opt(sbi, DISCARD);
2280
2281         f2fs_update_time(sbi, REQ_TIME);
2282 out:
2283         if (in != F2FS_GOING_DOWN_FULLSYNC)
2284                 mnt_drop_write_file(filp);
2285
2286         trace_f2fs_shutdown(sbi, in, ret);
2287
2288         return ret;
2289 }
2290
2291 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
2292 {
2293         struct inode *inode = file_inode(filp);
2294         struct super_block *sb = inode->i_sb;
2295         struct fstrim_range range;
2296         int ret;
2297
2298         if (!capable(CAP_SYS_ADMIN))
2299                 return -EPERM;
2300
2301         if (!f2fs_hw_support_discard(F2FS_SB(sb)))
2302                 return -EOPNOTSUPP;
2303
2304         if (copy_from_user(&range, (struct fstrim_range __user *)arg,
2305                                 sizeof(range)))
2306                 return -EFAULT;
2307
2308         ret = mnt_want_write_file(filp);
2309         if (ret)
2310                 return ret;
2311
2312         range.minlen = max((unsigned int)range.minlen,
2313                            bdev_discard_granularity(sb->s_bdev));
2314         ret = f2fs_trim_fs(F2FS_SB(sb), &range);
2315         mnt_drop_write_file(filp);
2316         if (ret < 0)
2317                 return ret;
2318
2319         if (copy_to_user((struct fstrim_range __user *)arg, &range,
2320                                 sizeof(range)))
2321                 return -EFAULT;
2322         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2323         return 0;
2324 }
2325
2326 static bool uuid_is_nonzero(__u8 u[16])
2327 {
2328         int i;
2329
2330         for (i = 0; i < 16; i++)
2331                 if (u[i])
2332                         return true;
2333         return false;
2334 }
2335
2336 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
2337 {
2338         struct inode *inode = file_inode(filp);
2339
2340         if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode)))
2341                 return -EOPNOTSUPP;
2342
2343         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2344
2345         return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
2346 }
2347
2348 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
2349 {
2350         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2351                 return -EOPNOTSUPP;
2352         return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
2353 }
2354
2355 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
2356 {
2357         struct inode *inode = file_inode(filp);
2358         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2359         u8 encrypt_pw_salt[16];
2360         int err;
2361
2362         if (!f2fs_sb_has_encrypt(sbi))
2363                 return -EOPNOTSUPP;
2364
2365         err = mnt_want_write_file(filp);
2366         if (err)
2367                 return err;
2368
2369         f2fs_down_write(&sbi->sb_lock);
2370
2371         if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2372                 goto got_it;
2373
2374         /* update superblock with uuid */
2375         generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2376
2377         err = f2fs_commit_super(sbi, false);
2378         if (err) {
2379                 /* undo new data */
2380                 memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2381                 goto out_err;
2382         }
2383 got_it:
2384         memcpy(encrypt_pw_salt, sbi->raw_super->encrypt_pw_salt, 16);
2385 out_err:
2386         f2fs_up_write(&sbi->sb_lock);
2387         mnt_drop_write_file(filp);
2388
2389         if (!err && copy_to_user((__u8 __user *)arg, encrypt_pw_salt, 16))
2390                 err = -EFAULT;
2391
2392         return err;
2393 }
2394
2395 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp,
2396                                              unsigned long arg)
2397 {
2398         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2399                 return -EOPNOTSUPP;
2400
2401         return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg);
2402 }
2403
2404 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg)
2405 {
2406         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2407                 return -EOPNOTSUPP;
2408
2409         return fscrypt_ioctl_add_key(filp, (void __user *)arg);
2410 }
2411
2412 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg)
2413 {
2414         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2415                 return -EOPNOTSUPP;
2416
2417         return fscrypt_ioctl_remove_key(filp, (void __user *)arg);
2418 }
2419
2420 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp,
2421                                                     unsigned long arg)
2422 {
2423         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2424                 return -EOPNOTSUPP;
2425
2426         return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg);
2427 }
2428
2429 static int f2fs_ioc_get_encryption_key_status(struct file *filp,
2430                                               unsigned long arg)
2431 {
2432         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2433                 return -EOPNOTSUPP;
2434
2435         return fscrypt_ioctl_get_key_status(filp, (void __user *)arg);
2436 }
2437
2438 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg)
2439 {
2440         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2441                 return -EOPNOTSUPP;
2442
2443         return fscrypt_ioctl_get_nonce(filp, (void __user *)arg);
2444 }
2445
2446 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2447 {
2448         struct inode *inode = file_inode(filp);
2449         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2450         struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
2451                         .no_bg_gc = false,
2452                         .should_migrate_blocks = false,
2453                         .nr_free_secs = 0 };
2454         __u32 sync;
2455         int ret;
2456
2457         if (!capable(CAP_SYS_ADMIN))
2458                 return -EPERM;
2459
2460         if (get_user(sync, (__u32 __user *)arg))
2461                 return -EFAULT;
2462
2463         if (f2fs_readonly(sbi->sb))
2464                 return -EROFS;
2465
2466         ret = mnt_want_write_file(filp);
2467         if (ret)
2468                 return ret;
2469
2470         if (!sync) {
2471                 if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2472                         ret = -EBUSY;
2473                         goto out;
2474                 }
2475         } else {
2476                 f2fs_down_write(&sbi->gc_lock);
2477         }
2478
2479         gc_control.init_gc_type = sync ? FG_GC : BG_GC;
2480         gc_control.err_gc_skipped = sync;
2481         stat_inc_gc_call_count(sbi, FOREGROUND);
2482         ret = f2fs_gc(sbi, &gc_control);
2483 out:
2484         mnt_drop_write_file(filp);
2485         return ret;
2486 }
2487
2488 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range)
2489 {
2490         struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
2491         struct f2fs_gc_control gc_control = {
2492                         .init_gc_type = range->sync ? FG_GC : BG_GC,
2493                         .no_bg_gc = false,
2494                         .should_migrate_blocks = false,
2495                         .err_gc_skipped = range->sync,
2496                         .nr_free_secs = 0 };
2497         u64 end;
2498         int ret;
2499
2500         if (!capable(CAP_SYS_ADMIN))
2501                 return -EPERM;
2502         if (f2fs_readonly(sbi->sb))
2503                 return -EROFS;
2504
2505         end = range->start + range->len;
2506         if (end < range->start || range->start < MAIN_BLKADDR(sbi) ||
2507                                         end >= MAX_BLKADDR(sbi))
2508                 return -EINVAL;
2509
2510         ret = mnt_want_write_file(filp);
2511         if (ret)
2512                 return ret;
2513
2514 do_more:
2515         if (!range->sync) {
2516                 if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2517                         ret = -EBUSY;
2518                         goto out;
2519                 }
2520         } else {
2521                 f2fs_down_write(&sbi->gc_lock);
2522         }
2523
2524         gc_control.victim_segno = GET_SEGNO(sbi, range->start);
2525         stat_inc_gc_call_count(sbi, FOREGROUND);
2526         ret = f2fs_gc(sbi, &gc_control);
2527         if (ret) {
2528                 if (ret == -EBUSY)
2529                         ret = -EAGAIN;
2530                 goto out;
2531         }
2532         range->start += CAP_BLKS_PER_SEC(sbi);
2533         if (range->start <= end)
2534                 goto do_more;
2535 out:
2536         mnt_drop_write_file(filp);
2537         return ret;
2538 }
2539
2540 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2541 {
2542         struct f2fs_gc_range range;
2543
2544         if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2545                                                         sizeof(range)))
2546                 return -EFAULT;
2547         return __f2fs_ioc_gc_range(filp, &range);
2548 }
2549
2550 static int f2fs_ioc_write_checkpoint(struct file *filp)
2551 {
2552         struct inode *inode = file_inode(filp);
2553         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2554         int ret;
2555
2556         if (!capable(CAP_SYS_ADMIN))
2557                 return -EPERM;
2558
2559         if (f2fs_readonly(sbi->sb))
2560                 return -EROFS;
2561
2562         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2563                 f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled.");
2564                 return -EINVAL;
2565         }
2566
2567         ret = mnt_want_write_file(filp);
2568         if (ret)
2569                 return ret;
2570
2571         ret = f2fs_sync_fs(sbi->sb, 1);
2572
2573         mnt_drop_write_file(filp);
2574         return ret;
2575 }
2576
2577 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2578                                         struct file *filp,
2579                                         struct f2fs_defragment *range)
2580 {
2581         struct inode *inode = file_inode(filp);
2582         struct f2fs_map_blocks map = { .m_next_extent = NULL,
2583                                         .m_seg_type = NO_CHECK_TYPE,
2584                                         .m_may_create = false };
2585         struct extent_info ei = {};
2586         pgoff_t pg_start, pg_end, next_pgofs;
2587         unsigned int blk_per_seg = sbi->blocks_per_seg;
2588         unsigned int total = 0, sec_num;
2589         block_t blk_end = 0;
2590         bool fragmented = false;
2591         int err;
2592
2593         pg_start = range->start >> PAGE_SHIFT;
2594         pg_end = (range->start + range->len) >> PAGE_SHIFT;
2595
2596         f2fs_balance_fs(sbi, true);
2597
2598         inode_lock(inode);
2599
2600         if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
2601                 err = -EINVAL;
2602                 goto unlock_out;
2603         }
2604
2605         /* if in-place-update policy is enabled, don't waste time here */
2606         set_inode_flag(inode, FI_OPU_WRITE);
2607         if (f2fs_should_update_inplace(inode, NULL)) {
2608                 err = -EINVAL;
2609                 goto out;
2610         }
2611
2612         /* writeback all dirty pages in the range */
2613         err = filemap_write_and_wait_range(inode->i_mapping, range->start,
2614                                                 range->start + range->len - 1);
2615         if (err)
2616                 goto out;
2617
2618         /*
2619          * lookup mapping info in extent cache, skip defragmenting if physical
2620          * block addresses are continuous.
2621          */
2622         if (f2fs_lookup_read_extent_cache(inode, pg_start, &ei)) {
2623                 if (ei.fofs + ei.len >= pg_end)
2624                         goto out;
2625         }
2626
2627         map.m_lblk = pg_start;
2628         map.m_next_pgofs = &next_pgofs;
2629
2630         /*
2631          * lookup mapping info in dnode page cache, skip defragmenting if all
2632          * physical block addresses are continuous even if there are hole(s)
2633          * in logical blocks.
2634          */
2635         while (map.m_lblk < pg_end) {
2636                 map.m_len = pg_end - map.m_lblk;
2637                 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2638                 if (err)
2639                         goto out;
2640
2641                 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2642                         map.m_lblk = next_pgofs;
2643                         continue;
2644                 }
2645
2646                 if (blk_end && blk_end != map.m_pblk)
2647                         fragmented = true;
2648
2649                 /* record total count of block that we're going to move */
2650                 total += map.m_len;
2651
2652                 blk_end = map.m_pblk + map.m_len;
2653
2654                 map.m_lblk += map.m_len;
2655         }
2656
2657         if (!fragmented) {
2658                 total = 0;
2659                 goto out;
2660         }
2661
2662         sec_num = DIV_ROUND_UP(total, CAP_BLKS_PER_SEC(sbi));
2663
2664         /*
2665          * make sure there are enough free section for LFS allocation, this can
2666          * avoid defragment running in SSR mode when free section are allocated
2667          * intensively
2668          */
2669         if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2670                 err = -EAGAIN;
2671                 goto out;
2672         }
2673
2674         map.m_lblk = pg_start;
2675         map.m_len = pg_end - pg_start;
2676         total = 0;
2677
2678         while (map.m_lblk < pg_end) {
2679                 pgoff_t idx;
2680                 int cnt = 0;
2681
2682 do_map:
2683                 map.m_len = pg_end - map.m_lblk;
2684                 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2685                 if (err)
2686                         goto clear_out;
2687
2688                 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2689                         map.m_lblk = next_pgofs;
2690                         goto check;
2691                 }
2692
2693                 set_inode_flag(inode, FI_SKIP_WRITES);
2694
2695                 idx = map.m_lblk;
2696                 while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
2697                         struct page *page;
2698
2699                         page = f2fs_get_lock_data_page(inode, idx, true);
2700                         if (IS_ERR(page)) {
2701                                 err = PTR_ERR(page);
2702                                 goto clear_out;
2703                         }
2704
2705                         set_page_dirty(page);
2706                         set_page_private_gcing(page);
2707                         f2fs_put_page(page, 1);
2708
2709                         idx++;
2710                         cnt++;
2711                         total++;
2712                 }
2713
2714                 map.m_lblk = idx;
2715 check:
2716                 if (map.m_lblk < pg_end && cnt < blk_per_seg)
2717                         goto do_map;
2718
2719                 clear_inode_flag(inode, FI_SKIP_WRITES);
2720
2721                 err = filemap_fdatawrite(inode->i_mapping);
2722                 if (err)
2723                         goto out;
2724         }
2725 clear_out:
2726         clear_inode_flag(inode, FI_SKIP_WRITES);
2727 out:
2728         clear_inode_flag(inode, FI_OPU_WRITE);
2729 unlock_out:
2730         inode_unlock(inode);
2731         if (!err)
2732                 range->len = (u64)total << PAGE_SHIFT;
2733         return err;
2734 }
2735
2736 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2737 {
2738         struct inode *inode = file_inode(filp);
2739         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2740         struct f2fs_defragment range;
2741         int err;
2742
2743         if (!capable(CAP_SYS_ADMIN))
2744                 return -EPERM;
2745
2746         if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2747                 return -EINVAL;
2748
2749         if (f2fs_readonly(sbi->sb))
2750                 return -EROFS;
2751
2752         if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2753                                                         sizeof(range)))
2754                 return -EFAULT;
2755
2756         /* verify alignment of offset & size */
2757         if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2758                 return -EINVAL;
2759
2760         if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2761                                         max_file_blocks(inode)))
2762                 return -EINVAL;
2763
2764         err = mnt_want_write_file(filp);
2765         if (err)
2766                 return err;
2767
2768         err = f2fs_defragment_range(sbi, filp, &range);
2769         mnt_drop_write_file(filp);
2770
2771         f2fs_update_time(sbi, REQ_TIME);
2772         if (err < 0)
2773                 return err;
2774
2775         if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2776                                                         sizeof(range)))
2777                 return -EFAULT;
2778
2779         return 0;
2780 }
2781
2782 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2783                         struct file *file_out, loff_t pos_out, size_t len)
2784 {
2785         struct inode *src = file_inode(file_in);
2786         struct inode *dst = file_inode(file_out);
2787         struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2788         size_t olen = len, dst_max_i_size = 0;
2789         size_t dst_osize;
2790         int ret;
2791
2792         if (file_in->f_path.mnt != file_out->f_path.mnt ||
2793                                 src->i_sb != dst->i_sb)
2794                 return -EXDEV;
2795
2796         if (unlikely(f2fs_readonly(src->i_sb)))
2797                 return -EROFS;
2798
2799         if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2800                 return -EINVAL;
2801
2802         if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst))
2803                 return -EOPNOTSUPP;
2804
2805         if (pos_out < 0 || pos_in < 0)
2806                 return -EINVAL;
2807
2808         if (src == dst) {
2809                 if (pos_in == pos_out)
2810                         return 0;
2811                 if (pos_out > pos_in && pos_out < pos_in + len)
2812                         return -EINVAL;
2813         }
2814
2815         inode_lock(src);
2816         if (src != dst) {
2817                 ret = -EBUSY;
2818                 if (!inode_trylock(dst))
2819                         goto out;
2820         }
2821
2822         if (f2fs_compressed_file(src) || f2fs_compressed_file(dst)) {
2823                 ret = -EOPNOTSUPP;
2824                 goto out_unlock;
2825         }
2826
2827         ret = -EINVAL;
2828         if (pos_in + len > src->i_size || pos_in + len < pos_in)
2829                 goto out_unlock;
2830         if (len == 0)
2831                 olen = len = src->i_size - pos_in;
2832         if (pos_in + len == src->i_size)
2833                 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2834         if (len == 0) {
2835                 ret = 0;
2836                 goto out_unlock;
2837         }
2838
2839         dst_osize = dst->i_size;
2840         if (pos_out + olen > dst->i_size)
2841                 dst_max_i_size = pos_out + olen;
2842
2843         /* verify the end result is block aligned */
2844         if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2845                         !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2846                         !IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2847                 goto out_unlock;
2848
2849         ret = f2fs_convert_inline_inode(src);
2850         if (ret)
2851                 goto out_unlock;
2852
2853         ret = f2fs_convert_inline_inode(dst);
2854         if (ret)
2855                 goto out_unlock;
2856
2857         /* write out all dirty pages from offset */
2858         ret = filemap_write_and_wait_range(src->i_mapping,
2859                                         pos_in, pos_in + len);
2860         if (ret)
2861                 goto out_unlock;
2862
2863         ret = filemap_write_and_wait_range(dst->i_mapping,
2864                                         pos_out, pos_out + len);
2865         if (ret)
2866                 goto out_unlock;
2867
2868         f2fs_balance_fs(sbi, true);
2869
2870         f2fs_down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2871         if (src != dst) {
2872                 ret = -EBUSY;
2873                 if (!f2fs_down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
2874                         goto out_src;
2875         }
2876
2877         f2fs_lock_op(sbi);
2878         ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2879                                 pos_out >> F2FS_BLKSIZE_BITS,
2880                                 len >> F2FS_BLKSIZE_BITS, false);
2881
2882         if (!ret) {
2883                 if (dst_max_i_size)
2884                         f2fs_i_size_write(dst, dst_max_i_size);
2885                 else if (dst_osize != dst->i_size)
2886                         f2fs_i_size_write(dst, dst_osize);
2887         }
2888         f2fs_unlock_op(sbi);
2889
2890         if (src != dst)
2891                 f2fs_up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
2892 out_src:
2893         f2fs_up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2894         if (ret)
2895                 goto out_unlock;
2896
2897         src->i_mtime = inode_set_ctime_current(src);
2898         f2fs_mark_inode_dirty_sync(src, false);
2899         if (src != dst) {
2900                 dst->i_mtime = inode_set_ctime_current(dst);
2901                 f2fs_mark_inode_dirty_sync(dst, false);
2902         }
2903         f2fs_update_time(sbi, REQ_TIME);
2904
2905 out_unlock:
2906         if (src != dst)
2907                 inode_unlock(dst);
2908 out:
2909         inode_unlock(src);
2910         return ret;
2911 }
2912
2913 static int __f2fs_ioc_move_range(struct file *filp,
2914                                 struct f2fs_move_range *range)
2915 {
2916         struct fd dst;
2917         int err;
2918
2919         if (!(filp->f_mode & FMODE_READ) ||
2920                         !(filp->f_mode & FMODE_WRITE))
2921                 return -EBADF;
2922
2923         dst = fdget(range->dst_fd);
2924         if (!dst.file)
2925                 return -EBADF;
2926
2927         if (!(dst.file->f_mode & FMODE_WRITE)) {
2928                 err = -EBADF;
2929                 goto err_out;
2930         }
2931
2932         err = mnt_want_write_file(filp);
2933         if (err)
2934                 goto err_out;
2935
2936         err = f2fs_move_file_range(filp, range->pos_in, dst.file,
2937                                         range->pos_out, range->len);
2938
2939         mnt_drop_write_file(filp);
2940 err_out:
2941         fdput(dst);
2942         return err;
2943 }
2944
2945 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2946 {
2947         struct f2fs_move_range range;
2948
2949         if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2950                                                         sizeof(range)))
2951                 return -EFAULT;
2952         return __f2fs_ioc_move_range(filp, &range);
2953 }
2954
2955 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
2956 {
2957         struct inode *inode = file_inode(filp);
2958         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2959         struct sit_info *sm = SIT_I(sbi);
2960         unsigned int start_segno = 0, end_segno = 0;
2961         unsigned int dev_start_segno = 0, dev_end_segno = 0;
2962         struct f2fs_flush_device range;
2963         struct f2fs_gc_control gc_control = {
2964                         .init_gc_type = FG_GC,
2965                         .should_migrate_blocks = true,
2966                         .err_gc_skipped = true,
2967                         .nr_free_secs = 0 };
2968         int ret;
2969
2970         if (!capable(CAP_SYS_ADMIN))
2971                 return -EPERM;
2972
2973         if (f2fs_readonly(sbi->sb))
2974                 return -EROFS;
2975
2976         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2977                 return -EINVAL;
2978
2979         if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
2980                                                         sizeof(range)))
2981                 return -EFAULT;
2982
2983         if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num ||
2984                         __is_large_section(sbi)) {
2985                 f2fs_warn(sbi, "Can't flush %u in %d for segs_per_sec %u != 1",
2986                           range.dev_num, sbi->s_ndevs, sbi->segs_per_sec);
2987                 return -EINVAL;
2988         }
2989
2990         ret = mnt_want_write_file(filp);
2991         if (ret)
2992                 return ret;
2993
2994         if (range.dev_num != 0)
2995                 dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
2996         dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
2997
2998         start_segno = sm->last_victim[FLUSH_DEVICE];
2999         if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
3000                 start_segno = dev_start_segno;
3001         end_segno = min(start_segno + range.segments, dev_end_segno);
3002
3003         while (start_segno < end_segno) {
3004                 if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
3005                         ret = -EBUSY;
3006                         goto out;
3007                 }
3008                 sm->last_victim[GC_CB] = end_segno + 1;
3009                 sm->last_victim[GC_GREEDY] = end_segno + 1;
3010                 sm->last_victim[ALLOC_NEXT] = end_segno + 1;
3011
3012                 gc_control.victim_segno = start_segno;
3013                 stat_inc_gc_call_count(sbi, FOREGROUND);
3014                 ret = f2fs_gc(sbi, &gc_control);
3015                 if (ret == -EAGAIN)
3016                         ret = 0;
3017                 else if (ret < 0)
3018                         break;
3019                 start_segno++;
3020         }
3021 out:
3022         mnt_drop_write_file(filp);
3023         return ret;
3024 }
3025
3026 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
3027 {
3028         struct inode *inode = file_inode(filp);
3029         u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
3030
3031         /* Must validate to set it with SQLite behavior in Android. */
3032         sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
3033
3034         return put_user(sb_feature, (u32 __user *)arg);
3035 }
3036
3037 #ifdef CONFIG_QUOTA
3038 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3039 {
3040         struct dquot *transfer_to[MAXQUOTAS] = {};
3041         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3042         struct super_block *sb = sbi->sb;
3043         int err;
3044
3045         transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
3046         if (IS_ERR(transfer_to[PRJQUOTA]))
3047                 return PTR_ERR(transfer_to[PRJQUOTA]);
3048
3049         err = __dquot_transfer(inode, transfer_to);
3050         if (err)
3051                 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3052         dqput(transfer_to[PRJQUOTA]);
3053         return err;
3054 }
3055
3056 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3057 {
3058         struct f2fs_inode_info *fi = F2FS_I(inode);
3059         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3060         struct f2fs_inode *ri = NULL;
3061         kprojid_t kprojid;
3062         int err;
3063
3064         if (!f2fs_sb_has_project_quota(sbi)) {
3065                 if (projid != F2FS_DEF_PROJID)
3066                         return -EOPNOTSUPP;
3067                 else
3068                         return 0;
3069         }
3070
3071         if (!f2fs_has_extra_attr(inode))
3072                 return -EOPNOTSUPP;
3073
3074         kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
3075
3076         if (projid_eq(kprojid, fi->i_projid))
3077                 return 0;
3078
3079         err = -EPERM;
3080         /* Is it quota file? Do not allow user to mess with it */
3081         if (IS_NOQUOTA(inode))
3082                 return err;
3083
3084         if (!F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_projid))
3085                 return -EOVERFLOW;
3086
3087         err = f2fs_dquot_initialize(inode);
3088         if (err)
3089                 return err;
3090
3091         f2fs_lock_op(sbi);
3092         err = f2fs_transfer_project_quota(inode, kprojid);
3093         if (err)
3094                 goto out_unlock;
3095
3096         fi->i_projid = kprojid;
3097         inode_set_ctime_current(inode);
3098         f2fs_mark_inode_dirty_sync(inode, true);
3099 out_unlock:
3100         f2fs_unlock_op(sbi);
3101         return err;
3102 }
3103 #else
3104 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3105 {
3106         return 0;
3107 }
3108
3109 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3110 {
3111         if (projid != F2FS_DEF_PROJID)
3112                 return -EOPNOTSUPP;
3113         return 0;
3114 }
3115 #endif
3116
3117 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3118 {
3119         struct inode *inode = d_inode(dentry);
3120         struct f2fs_inode_info *fi = F2FS_I(inode);
3121         u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
3122
3123         if (IS_ENCRYPTED(inode))
3124                 fsflags |= FS_ENCRYPT_FL;
3125         if (IS_VERITY(inode))
3126                 fsflags |= FS_VERITY_FL;
3127         if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
3128                 fsflags |= FS_INLINE_DATA_FL;
3129         if (is_inode_flag_set(inode, FI_PIN_FILE))
3130                 fsflags |= FS_NOCOW_FL;
3131
3132         fileattr_fill_flags(fa, fsflags & F2FS_GETTABLE_FS_FL);
3133
3134         if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)))
3135                 fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid);
3136
3137         return 0;
3138 }
3139
3140 int f2fs_fileattr_set(struct mnt_idmap *idmap,
3141                       struct dentry *dentry, struct fileattr *fa)
3142 {
3143         struct inode *inode = d_inode(dentry);
3144         u32 fsflags = fa->flags, mask = F2FS_SETTABLE_FS_FL;
3145         u32 iflags;
3146         int err;
3147
3148         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
3149                 return -EIO;
3150         if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
3151                 return -ENOSPC;
3152         if (fsflags & ~F2FS_GETTABLE_FS_FL)
3153                 return -EOPNOTSUPP;
3154         fsflags &= F2FS_SETTABLE_FS_FL;
3155         if (!fa->flags_valid)
3156                 mask &= FS_COMMON_FL;
3157
3158         iflags = f2fs_fsflags_to_iflags(fsflags);
3159         if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
3160                 return -EOPNOTSUPP;
3161
3162         err = f2fs_setflags_common(inode, iflags, f2fs_fsflags_to_iflags(mask));
3163         if (!err)
3164                 err = f2fs_ioc_setproject(inode, fa->fsx_projid);
3165
3166         return err;
3167 }
3168
3169 int f2fs_pin_file_control(struct inode *inode, bool inc)
3170 {
3171         struct f2fs_inode_info *fi = F2FS_I(inode);
3172         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3173
3174         /* Use i_gc_failures for normal file as a risk signal. */
3175         if (inc)
3176                 f2fs_i_gc_failures_write(inode,
3177                                 fi->i_gc_failures[GC_FAILURE_PIN] + 1);
3178
3179         if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) {
3180                 f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials",
3181                           __func__, inode->i_ino,
3182                           fi->i_gc_failures[GC_FAILURE_PIN]);
3183                 clear_inode_flag(inode, FI_PIN_FILE);
3184                 return -EAGAIN;
3185         }
3186         return 0;
3187 }
3188
3189 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
3190 {
3191         struct inode *inode = file_inode(filp);
3192         __u32 pin;
3193         int ret = 0;
3194
3195         if (get_user(pin, (__u32 __user *)arg))
3196                 return -EFAULT;
3197
3198         if (!S_ISREG(inode->i_mode))
3199                 return -EINVAL;
3200
3201         if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3202                 return -EROFS;
3203
3204         ret = mnt_want_write_file(filp);
3205         if (ret)
3206                 return ret;
3207
3208         inode_lock(inode);
3209
3210         if (!pin) {
3211                 clear_inode_flag(inode, FI_PIN_FILE);
3212                 f2fs_i_gc_failures_write(inode, 0);
3213                 goto done;
3214         }
3215
3216         if (f2fs_should_update_outplace(inode, NULL)) {
3217                 ret = -EINVAL;
3218                 goto out;
3219         }
3220
3221         if (f2fs_pin_file_control(inode, false)) {
3222                 ret = -EAGAIN;
3223                 goto out;
3224         }
3225
3226         ret = f2fs_convert_inline_inode(inode);
3227         if (ret)
3228                 goto out;
3229
3230         if (!f2fs_disable_compressed_file(inode)) {
3231                 ret = -EOPNOTSUPP;
3232                 goto out;
3233         }
3234
3235         set_inode_flag(inode, FI_PIN_FILE);
3236         ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3237 done:
3238         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3239 out:
3240         inode_unlock(inode);
3241         mnt_drop_write_file(filp);
3242         return ret;
3243 }
3244
3245 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
3246 {
3247         struct inode *inode = file_inode(filp);
3248         __u32 pin = 0;
3249
3250         if (is_inode_flag_set(inode, FI_PIN_FILE))
3251                 pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3252         return put_user(pin, (u32 __user *)arg);
3253 }
3254
3255 int f2fs_precache_extents(struct inode *inode)
3256 {
3257         struct f2fs_inode_info *fi = F2FS_I(inode);
3258         struct f2fs_map_blocks map;
3259         pgoff_t m_next_extent;
3260         loff_t end;
3261         int err;
3262
3263         if (is_inode_flag_set(inode, FI_NO_EXTENT))
3264                 return -EOPNOTSUPP;
3265
3266         map.m_lblk = 0;
3267         map.m_pblk = 0;
3268         map.m_next_pgofs = NULL;
3269         map.m_next_extent = &m_next_extent;
3270         map.m_seg_type = NO_CHECK_TYPE;
3271         map.m_may_create = false;
3272         end = max_file_blocks(inode);
3273
3274         while (map.m_lblk < end) {
3275                 map.m_len = end - map.m_lblk;
3276
3277                 f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
3278                 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRECACHE);
3279                 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
3280                 if (err)
3281                         return err;
3282
3283                 map.m_lblk = m_next_extent;
3284         }
3285
3286         return 0;
3287 }
3288
3289 static int f2fs_ioc_precache_extents(struct file *filp)
3290 {
3291         return f2fs_precache_extents(file_inode(filp));
3292 }
3293
3294 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg)
3295 {
3296         struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
3297         __u64 block_count;
3298
3299         if (!capable(CAP_SYS_ADMIN))
3300                 return -EPERM;
3301
3302         if (f2fs_readonly(sbi->sb))
3303                 return -EROFS;
3304
3305         if (copy_from_user(&block_count, (void __user *)arg,
3306                            sizeof(block_count)))
3307                 return -EFAULT;
3308
3309         return f2fs_resize_fs(filp, block_count);
3310 }
3311
3312 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg)
3313 {
3314         struct inode *inode = file_inode(filp);
3315
3316         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3317
3318         if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) {
3319                 f2fs_warn(F2FS_I_SB(inode),
3320                           "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem",
3321                           inode->i_ino);
3322                 return -EOPNOTSUPP;
3323         }
3324
3325         return fsverity_ioctl_enable(filp, (const void __user *)arg);
3326 }
3327
3328 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg)
3329 {
3330         if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3331                 return -EOPNOTSUPP;
3332
3333         return fsverity_ioctl_measure(filp, (void __user *)arg);
3334 }
3335
3336 static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg)
3337 {
3338         if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3339                 return -EOPNOTSUPP;
3340
3341         return fsverity_ioctl_read_metadata(filp, (const void __user *)arg);
3342 }
3343
3344 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg)
3345 {
3346         struct inode *inode = file_inode(filp);
3347         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3348         char *vbuf;
3349         int count;
3350         int err = 0;
3351
3352         vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL);
3353         if (!vbuf)
3354                 return -ENOMEM;
3355
3356         f2fs_down_read(&sbi->sb_lock);
3357         count = utf16s_to_utf8s(sbi->raw_super->volume_name,
3358                         ARRAY_SIZE(sbi->raw_super->volume_name),
3359                         UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME);
3360         f2fs_up_read(&sbi->sb_lock);
3361
3362         if (copy_to_user((char __user *)arg, vbuf,
3363                                 min(FSLABEL_MAX, count)))
3364                 err = -EFAULT;
3365
3366         kfree(vbuf);
3367         return err;
3368 }
3369
3370 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg)
3371 {
3372         struct inode *inode = file_inode(filp);
3373         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3374         char *vbuf;
3375         int err = 0;
3376
3377         if (!capable(CAP_SYS_ADMIN))
3378                 return -EPERM;
3379
3380         vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX);
3381         if (IS_ERR(vbuf))
3382                 return PTR_ERR(vbuf);
3383
3384         err = mnt_want_write_file(filp);
3385         if (err)
3386                 goto out;
3387
3388         f2fs_down_write(&sbi->sb_lock);
3389
3390         memset(sbi->raw_super->volume_name, 0,
3391                         sizeof(sbi->raw_super->volume_name));
3392         utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN,
3393                         sbi->raw_super->volume_name,
3394                         ARRAY_SIZE(sbi->raw_super->volume_name));
3395
3396         err = f2fs_commit_super(sbi, false);
3397
3398         f2fs_up_write(&sbi->sb_lock);
3399
3400         mnt_drop_write_file(filp);
3401 out:
3402         kfree(vbuf);
3403         return err;
3404 }
3405
3406 static int f2fs_get_compress_blocks(struct inode *inode, __u64 *blocks)
3407 {
3408         if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3409                 return -EOPNOTSUPP;
3410
3411         if (!f2fs_compressed_file(inode))
3412                 return -EINVAL;
3413
3414         *blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks);
3415
3416         return 0;
3417 }
3418
3419 static int f2fs_ioc_get_compress_blocks(struct file *filp, unsigned long arg)
3420 {
3421         struct inode *inode = file_inode(filp);
3422         __u64 blocks;
3423         int ret;
3424
3425         ret = f2fs_get_compress_blocks(inode, &blocks);
3426         if (ret < 0)
3427                 return ret;
3428
3429         return put_user(blocks, (u64 __user *)arg);
3430 }
3431
3432 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3433 {
3434         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3435         unsigned int released_blocks = 0;
3436         int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3437         block_t blkaddr;
3438         int i;
3439
3440         for (i = 0; i < count; i++) {
3441                 blkaddr = data_blkaddr(dn->inode, dn->node_page,
3442                                                 dn->ofs_in_node + i);
3443
3444                 if (!__is_valid_data_blkaddr(blkaddr))
3445                         continue;
3446                 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3447                                         DATA_GENERIC_ENHANCE))) {
3448                         f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
3449                         return -EFSCORRUPTED;
3450                 }
3451         }
3452
3453         while (count) {
3454                 int compr_blocks = 0;
3455
3456                 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3457                         blkaddr = f2fs_data_blkaddr(dn);
3458
3459                         if (i == 0) {
3460                                 if (blkaddr == COMPRESS_ADDR)
3461                                         continue;
3462                                 dn->ofs_in_node += cluster_size;
3463                                 goto next;
3464                         }
3465
3466                         if (__is_valid_data_blkaddr(blkaddr))
3467                                 compr_blocks++;
3468
3469                         if (blkaddr != NEW_ADDR)
3470                                 continue;
3471
3472                         dn->data_blkaddr = NULL_ADDR;
3473                         f2fs_set_data_blkaddr(dn);
3474                 }
3475
3476                 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false);
3477                 dec_valid_block_count(sbi, dn->inode,
3478                                         cluster_size - compr_blocks);
3479
3480                 released_blocks += cluster_size - compr_blocks;
3481 next:
3482                 count -= cluster_size;
3483         }
3484
3485         return released_blocks;
3486 }
3487
3488 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg)
3489 {
3490         struct inode *inode = file_inode(filp);
3491         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3492         pgoff_t page_idx = 0, last_idx;
3493         unsigned int released_blocks = 0;
3494         int ret;
3495         int writecount;
3496
3497         if (!f2fs_sb_has_compression(sbi))
3498                 return -EOPNOTSUPP;
3499
3500         if (!f2fs_compressed_file(inode))
3501                 return -EINVAL;
3502
3503         if (f2fs_readonly(sbi->sb))
3504                 return -EROFS;
3505
3506         ret = mnt_want_write_file(filp);
3507         if (ret)
3508                 return ret;
3509
3510         f2fs_balance_fs(sbi, true);
3511
3512         inode_lock(inode);
3513
3514         writecount = atomic_read(&inode->i_writecount);
3515         if ((filp->f_mode & FMODE_WRITE && writecount != 1) ||
3516                         (!(filp->f_mode & FMODE_WRITE) && writecount)) {
3517                 ret = -EBUSY;
3518                 goto out;
3519         }
3520
3521         if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3522                 ret = -EINVAL;
3523                 goto out;
3524         }
3525
3526         ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
3527         if (ret)
3528                 goto out;
3529
3530         if (!atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3531                 ret = -EPERM;
3532                 goto out;
3533         }
3534
3535         set_inode_flag(inode, FI_COMPRESS_RELEASED);
3536         inode_set_ctime_current(inode);
3537         f2fs_mark_inode_dirty_sync(inode, true);
3538
3539         f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3540         filemap_invalidate_lock(inode->i_mapping);
3541
3542         last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3543
3544         while (page_idx < last_idx) {
3545                 struct dnode_of_data dn;
3546                 pgoff_t end_offset, count;
3547
3548                 set_new_dnode(&dn, inode, NULL, NULL, 0);
3549                 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3550                 if (ret) {
3551                         if (ret == -ENOENT) {
3552                                 page_idx = f2fs_get_next_page_offset(&dn,
3553                                                                 page_idx);
3554                                 ret = 0;
3555                                 continue;
3556                         }
3557                         break;
3558                 }
3559
3560                 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3561                 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3562                 count = round_up(count, F2FS_I(inode)->i_cluster_size);
3563
3564                 ret = release_compress_blocks(&dn, count);
3565
3566                 f2fs_put_dnode(&dn);
3567
3568                 if (ret < 0)
3569                         break;
3570
3571                 page_idx += count;
3572                 released_blocks += ret;
3573         }
3574
3575         filemap_invalidate_unlock(inode->i_mapping);
3576         f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3577 out:
3578         inode_unlock(inode);
3579
3580         mnt_drop_write_file(filp);
3581
3582         if (ret >= 0) {
3583                 ret = put_user(released_blocks, (u64 __user *)arg);
3584         } else if (released_blocks &&
3585                         atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3586                 set_sbi_flag(sbi, SBI_NEED_FSCK);
3587                 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3588                         "iblocks=%llu, released=%u, compr_blocks=%u, "
3589                         "run fsck to fix.",
3590                         __func__, inode->i_ino, inode->i_blocks,
3591                         released_blocks,
3592                         atomic_read(&F2FS_I(inode)->i_compr_blocks));
3593         }
3594
3595         return ret;
3596 }
3597
3598 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3599 {
3600         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3601         unsigned int reserved_blocks = 0;
3602         int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3603         block_t blkaddr;
3604         int i;
3605
3606         for (i = 0; i < count; i++) {
3607                 blkaddr = data_blkaddr(dn->inode, dn->node_page,
3608                                                 dn->ofs_in_node + i);
3609
3610                 if (!__is_valid_data_blkaddr(blkaddr))
3611                         continue;
3612                 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3613                                         DATA_GENERIC_ENHANCE))) {
3614                         f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
3615                         return -EFSCORRUPTED;
3616                 }
3617         }
3618
3619         while (count) {
3620                 int compr_blocks = 0;
3621                 blkcnt_t reserved;
3622                 int ret;
3623
3624                 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3625                         blkaddr = f2fs_data_blkaddr(dn);
3626
3627                         if (i == 0) {
3628                                 if (blkaddr == COMPRESS_ADDR)
3629                                         continue;
3630                                 dn->ofs_in_node += cluster_size;
3631                                 goto next;
3632                         }
3633
3634                         if (__is_valid_data_blkaddr(blkaddr)) {
3635                                 compr_blocks++;
3636                                 continue;
3637                         }
3638
3639                         dn->data_blkaddr = NEW_ADDR;
3640                         f2fs_set_data_blkaddr(dn);
3641                 }
3642
3643                 reserved = cluster_size - compr_blocks;
3644                 ret = inc_valid_block_count(sbi, dn->inode, &reserved);
3645                 if (ret)
3646                         return ret;
3647
3648                 if (reserved != cluster_size - compr_blocks)
3649                         return -ENOSPC;
3650
3651                 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true);
3652
3653                 reserved_blocks += reserved;
3654 next:
3655                 count -= cluster_size;
3656         }
3657
3658         return reserved_blocks;
3659 }
3660
3661 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg)
3662 {
3663         struct inode *inode = file_inode(filp);
3664         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3665         pgoff_t page_idx = 0, last_idx;
3666         unsigned int reserved_blocks = 0;
3667         int ret;
3668
3669         if (!f2fs_sb_has_compression(sbi))
3670                 return -EOPNOTSUPP;
3671
3672         if (!f2fs_compressed_file(inode))
3673                 return -EINVAL;
3674
3675         if (f2fs_readonly(sbi->sb))
3676                 return -EROFS;
3677
3678         ret = mnt_want_write_file(filp);
3679         if (ret)
3680                 return ret;
3681
3682         if (atomic_read(&F2FS_I(inode)->i_compr_blocks))
3683                 goto out;
3684
3685         f2fs_balance_fs(sbi, true);
3686
3687         inode_lock(inode);
3688
3689         if (!is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3690                 ret = -EINVAL;
3691                 goto unlock_inode;
3692         }
3693
3694         f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3695         filemap_invalidate_lock(inode->i_mapping);
3696
3697         last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3698
3699         while (page_idx < last_idx) {
3700                 struct dnode_of_data dn;
3701                 pgoff_t end_offset, count;
3702
3703                 set_new_dnode(&dn, inode, NULL, NULL, 0);
3704                 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3705                 if (ret) {
3706                         if (ret == -ENOENT) {
3707                                 page_idx = f2fs_get_next_page_offset(&dn,
3708                                                                 page_idx);
3709                                 ret = 0;
3710                                 continue;
3711                         }
3712                         break;
3713                 }
3714
3715                 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3716                 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3717                 count = round_up(count, F2FS_I(inode)->i_cluster_size);
3718
3719                 ret = reserve_compress_blocks(&dn, count);
3720
3721                 f2fs_put_dnode(&dn);
3722
3723                 if (ret < 0)
3724                         break;
3725
3726                 page_idx += count;
3727                 reserved_blocks += ret;
3728         }
3729
3730         filemap_invalidate_unlock(inode->i_mapping);
3731         f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3732
3733         if (ret >= 0) {
3734                 clear_inode_flag(inode, FI_COMPRESS_RELEASED);
3735                 inode_set_ctime_current(inode);
3736                 f2fs_mark_inode_dirty_sync(inode, true);
3737         }
3738 unlock_inode:
3739         inode_unlock(inode);
3740 out:
3741         mnt_drop_write_file(filp);
3742
3743         if (ret >= 0) {
3744                 ret = put_user(reserved_blocks, (u64 __user *)arg);
3745         } else if (reserved_blocks &&
3746                         atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3747                 set_sbi_flag(sbi, SBI_NEED_FSCK);
3748                 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3749                         "iblocks=%llu, reserved=%u, compr_blocks=%u, "
3750                         "run fsck to fix.",
3751                         __func__, inode->i_ino, inode->i_blocks,
3752                         reserved_blocks,
3753                         atomic_read(&F2FS_I(inode)->i_compr_blocks));
3754         }
3755
3756         return ret;
3757 }
3758
3759 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode,
3760                 pgoff_t off, block_t block, block_t len, u32 flags)
3761 {
3762         sector_t sector = SECTOR_FROM_BLOCK(block);
3763         sector_t nr_sects = SECTOR_FROM_BLOCK(len);
3764         int ret = 0;
3765
3766         if (flags & F2FS_TRIM_FILE_DISCARD) {
3767                 if (bdev_max_secure_erase_sectors(bdev))
3768                         ret = blkdev_issue_secure_erase(bdev, sector, nr_sects,
3769                                         GFP_NOFS);
3770                 else
3771                         ret = blkdev_issue_discard(bdev, sector, nr_sects,
3772                                         GFP_NOFS);
3773         }
3774
3775         if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) {
3776                 if (IS_ENCRYPTED(inode))
3777                         ret = fscrypt_zeroout_range(inode, off, block, len);
3778                 else
3779                         ret = blkdev_issue_zeroout(bdev, sector, nr_sects,
3780                                         GFP_NOFS, 0);
3781         }
3782
3783         return ret;
3784 }
3785
3786 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg)
3787 {
3788         struct inode *inode = file_inode(filp);
3789         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3790         struct address_space *mapping = inode->i_mapping;
3791         struct block_device *prev_bdev = NULL;
3792         struct f2fs_sectrim_range range;
3793         pgoff_t index, pg_end, prev_index = 0;
3794         block_t prev_block = 0, len = 0;
3795         loff_t end_addr;
3796         bool to_end = false;
3797         int ret = 0;
3798
3799         if (!(filp->f_mode & FMODE_WRITE))
3800                 return -EBADF;
3801
3802         if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg,
3803                                 sizeof(range)))
3804                 return -EFAULT;
3805
3806         if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) ||
3807                         !S_ISREG(inode->i_mode))
3808                 return -EINVAL;
3809
3810         if (((range.flags & F2FS_TRIM_FILE_DISCARD) &&
3811                         !f2fs_hw_support_discard(sbi)) ||
3812                         ((range.flags & F2FS_TRIM_FILE_ZEROOUT) &&
3813                          IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi)))
3814                 return -EOPNOTSUPP;
3815
3816         file_start_write(filp);
3817         inode_lock(inode);
3818
3819         if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) ||
3820                         range.start >= inode->i_size) {
3821                 ret = -EINVAL;
3822                 goto err;
3823         }
3824
3825         if (range.len == 0)
3826                 goto err;
3827
3828         if (inode->i_size - range.start > range.len) {
3829                 end_addr = range.start + range.len;
3830         } else {
3831                 end_addr = range.len == (u64)-1 ?
3832                         sbi->sb->s_maxbytes : inode->i_size;
3833                 to_end = true;
3834         }
3835
3836         if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) ||
3837                         (!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) {
3838                 ret = -EINVAL;
3839                 goto err;
3840         }
3841
3842         index = F2FS_BYTES_TO_BLK(range.start);
3843         pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE);
3844
3845         ret = f2fs_convert_inline_inode(inode);
3846         if (ret)
3847                 goto err;
3848
3849         f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3850         filemap_invalidate_lock(mapping);
3851
3852         ret = filemap_write_and_wait_range(mapping, range.start,
3853                         to_end ? LLONG_MAX : end_addr - 1);
3854         if (ret)
3855                 goto out;
3856
3857         truncate_inode_pages_range(mapping, range.start,
3858                         to_end ? -1 : end_addr - 1);
3859
3860         while (index < pg_end) {
3861                 struct dnode_of_data dn;
3862                 pgoff_t end_offset, count;
3863                 int i;
3864
3865                 set_new_dnode(&dn, inode, NULL, NULL, 0);
3866                 ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3867                 if (ret) {
3868                         if (ret == -ENOENT) {
3869                                 index = f2fs_get_next_page_offset(&dn, index);
3870                                 continue;
3871                         }
3872                         goto out;
3873                 }
3874
3875                 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3876                 count = min(end_offset - dn.ofs_in_node, pg_end - index);
3877                 for (i = 0; i < count; i++, index++, dn.ofs_in_node++) {
3878                         struct block_device *cur_bdev;
3879                         block_t blkaddr = f2fs_data_blkaddr(&dn);
3880
3881                         if (!__is_valid_data_blkaddr(blkaddr))
3882                                 continue;
3883
3884                         if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3885                                                 DATA_GENERIC_ENHANCE)) {
3886                                 ret = -EFSCORRUPTED;
3887                                 f2fs_put_dnode(&dn);
3888                                 f2fs_handle_error(sbi,
3889                                                 ERROR_INVALID_BLKADDR);
3890                                 goto out;
3891                         }
3892
3893                         cur_bdev = f2fs_target_device(sbi, blkaddr, NULL);
3894                         if (f2fs_is_multi_device(sbi)) {
3895                                 int di = f2fs_target_device_index(sbi, blkaddr);
3896
3897                                 blkaddr -= FDEV(di).start_blk;
3898                         }
3899
3900                         if (len) {
3901                                 if (prev_bdev == cur_bdev &&
3902                                                 index == prev_index + len &&
3903                                                 blkaddr == prev_block + len) {
3904                                         len++;
3905                                 } else {
3906                                         ret = f2fs_secure_erase(prev_bdev,
3907                                                 inode, prev_index, prev_block,
3908                                                 len, range.flags);
3909                                         if (ret) {
3910                                                 f2fs_put_dnode(&dn);
3911                                                 goto out;
3912                                         }
3913
3914                                         len = 0;
3915                                 }
3916                         }
3917
3918                         if (!len) {
3919                                 prev_bdev = cur_bdev;
3920                                 prev_index = index;
3921                                 prev_block = blkaddr;
3922                                 len = 1;
3923                         }
3924                 }
3925
3926                 f2fs_put_dnode(&dn);
3927
3928                 if (fatal_signal_pending(current)) {
3929                         ret = -EINTR;
3930                         goto out;
3931                 }
3932                 cond_resched();
3933         }
3934
3935         if (len)
3936                 ret = f2fs_secure_erase(prev_bdev, inode, prev_index,
3937                                 prev_block, len, range.flags);
3938 out:
3939         filemap_invalidate_unlock(mapping);
3940         f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3941 err:
3942         inode_unlock(inode);
3943         file_end_write(filp);
3944
3945         return ret;
3946 }
3947
3948 static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg)
3949 {
3950         struct inode *inode = file_inode(filp);
3951         struct f2fs_comp_option option;
3952
3953         if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3954                 return -EOPNOTSUPP;
3955
3956         inode_lock_shared(inode);
3957
3958         if (!f2fs_compressed_file(inode)) {
3959                 inode_unlock_shared(inode);
3960                 return -ENODATA;
3961         }
3962
3963         option.algorithm = F2FS_I(inode)->i_compress_algorithm;
3964         option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
3965
3966         inode_unlock_shared(inode);
3967
3968         if (copy_to_user((struct f2fs_comp_option __user *)arg, &option,
3969                                 sizeof(option)))
3970                 return -EFAULT;
3971
3972         return 0;
3973 }
3974
3975 static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg)
3976 {
3977         struct inode *inode = file_inode(filp);
3978         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3979         struct f2fs_comp_option option;
3980         int ret = 0;
3981
3982         if (!f2fs_sb_has_compression(sbi))
3983                 return -EOPNOTSUPP;
3984
3985         if (!(filp->f_mode & FMODE_WRITE))
3986                 return -EBADF;
3987
3988         if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg,
3989                                 sizeof(option)))
3990                 return -EFAULT;
3991
3992         if (!f2fs_compressed_file(inode) ||
3993                         option.log_cluster_size < MIN_COMPRESS_LOG_SIZE ||
3994                         option.log_cluster_size > MAX_COMPRESS_LOG_SIZE ||
3995                         option.algorithm >= COMPRESS_MAX)
3996                 return -EINVAL;
3997
3998         file_start_write(filp);
3999         inode_lock(inode);
4000
4001         f2fs_down_write(&F2FS_I(inode)->i_sem);
4002         if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) {
4003                 ret = -EBUSY;
4004                 goto out;
4005         }
4006
4007         if (F2FS_HAS_BLOCKS(inode)) {
4008                 ret = -EFBIG;
4009                 goto out;
4010         }
4011
4012         F2FS_I(inode)->i_compress_algorithm = option.algorithm;
4013         F2FS_I(inode)->i_log_cluster_size = option.log_cluster_size;
4014         F2FS_I(inode)->i_cluster_size = BIT(option.log_cluster_size);
4015         /* Set default level */
4016         if (F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD)
4017                 F2FS_I(inode)->i_compress_level = F2FS_ZSTD_DEFAULT_CLEVEL;
4018         else
4019                 F2FS_I(inode)->i_compress_level = 0;
4020         /* Adjust mount option level */
4021         if (option.algorithm == F2FS_OPTION(sbi).compress_algorithm &&
4022             F2FS_OPTION(sbi).compress_level)
4023                 F2FS_I(inode)->i_compress_level = F2FS_OPTION(sbi).compress_level;
4024         f2fs_mark_inode_dirty_sync(inode, true);
4025
4026         if (!f2fs_is_compress_backend_ready(inode))
4027                 f2fs_warn(sbi, "compression algorithm is successfully set, "
4028                         "but current kernel doesn't support this algorithm.");
4029 out:
4030         f2fs_up_write(&F2FS_I(inode)->i_sem);
4031         inode_unlock(inode);
4032         file_end_write(filp);
4033
4034         return ret;
4035 }
4036
4037 static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len)
4038 {
4039         DEFINE_READAHEAD(ractl, NULL, NULL, inode->i_mapping, page_idx);
4040         struct address_space *mapping = inode->i_mapping;
4041         struct page *page;
4042         pgoff_t redirty_idx = page_idx;
4043         int i, page_len = 0, ret = 0;
4044
4045         page_cache_ra_unbounded(&ractl, len, 0);
4046
4047         for (i = 0; i < len; i++, page_idx++) {
4048                 page = read_cache_page(mapping, page_idx, NULL, NULL);
4049                 if (IS_ERR(page)) {
4050                         ret = PTR_ERR(page);
4051                         break;
4052                 }
4053                 page_len++;
4054         }
4055
4056         for (i = 0; i < page_len; i++, redirty_idx++) {
4057                 page = find_lock_page(mapping, redirty_idx);
4058
4059                 /* It will never fail, when page has pinned above */
4060                 f2fs_bug_on(F2FS_I_SB(inode), !page);
4061
4062                 set_page_dirty(page);
4063                 set_page_private_gcing(page);
4064                 f2fs_put_page(page, 1);
4065                 f2fs_put_page(page, 0);
4066         }
4067
4068         return ret;
4069 }
4070
4071 static int f2fs_ioc_decompress_file(struct file *filp)
4072 {
4073         struct inode *inode = file_inode(filp);
4074         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4075         struct f2fs_inode_info *fi = F2FS_I(inode);
4076         pgoff_t page_idx = 0, last_idx;
4077         unsigned int blk_per_seg = sbi->blocks_per_seg;
4078         int cluster_size = fi->i_cluster_size;
4079         int count, ret;
4080
4081         if (!f2fs_sb_has_compression(sbi) ||
4082                         F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4083                 return -EOPNOTSUPP;
4084
4085         if (!(filp->f_mode & FMODE_WRITE))
4086                 return -EBADF;
4087
4088         if (!f2fs_compressed_file(inode))
4089                 return -EINVAL;
4090
4091         f2fs_balance_fs(sbi, true);
4092
4093         file_start_write(filp);
4094         inode_lock(inode);
4095
4096         if (!f2fs_is_compress_backend_ready(inode)) {
4097                 ret = -EOPNOTSUPP;
4098                 goto out;
4099         }
4100
4101         if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4102                 ret = -EINVAL;
4103                 goto out;
4104         }
4105
4106         ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4107         if (ret)
4108                 goto out;
4109
4110         if (!atomic_read(&fi->i_compr_blocks))
4111                 goto out;
4112
4113         last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4114
4115         count = last_idx - page_idx;
4116         while (count && count >= cluster_size) {
4117                 ret = redirty_blocks(inode, page_idx, cluster_size);
4118                 if (ret < 0)
4119                         break;
4120
4121                 if (get_dirty_pages(inode) >= blk_per_seg) {
4122                         ret = filemap_fdatawrite(inode->i_mapping);
4123                         if (ret < 0)
4124                                 break;
4125                 }
4126
4127                 count -= cluster_size;
4128                 page_idx += cluster_size;
4129
4130                 cond_resched();
4131                 if (fatal_signal_pending(current)) {
4132                         ret = -EINTR;
4133                         break;
4134                 }
4135         }
4136
4137         if (!ret)
4138                 ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4139                                                         LLONG_MAX);
4140
4141         if (ret)
4142                 f2fs_warn(sbi, "%s: The file might be partially decompressed (errno=%d). Please delete the file.",
4143                           __func__, ret);
4144 out:
4145         inode_unlock(inode);
4146         file_end_write(filp);
4147
4148         return ret;
4149 }
4150
4151 static int f2fs_ioc_compress_file(struct file *filp)
4152 {
4153         struct inode *inode = file_inode(filp);
4154         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4155         pgoff_t page_idx = 0, last_idx;
4156         unsigned int blk_per_seg = sbi->blocks_per_seg;
4157         int cluster_size = F2FS_I(inode)->i_cluster_size;
4158         int count, ret;
4159
4160         if (!f2fs_sb_has_compression(sbi) ||
4161                         F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4162                 return -EOPNOTSUPP;
4163
4164         if (!(filp->f_mode & FMODE_WRITE))
4165                 return -EBADF;
4166
4167         if (!f2fs_compressed_file(inode))
4168                 return -EINVAL;
4169
4170         f2fs_balance_fs(sbi, true);
4171
4172         file_start_write(filp);
4173         inode_lock(inode);
4174
4175         if (!f2fs_is_compress_backend_ready(inode)) {
4176                 ret = -EOPNOTSUPP;
4177                 goto out;
4178         }
4179
4180         if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4181                 ret = -EINVAL;
4182                 goto out;
4183         }
4184
4185         ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4186         if (ret)
4187                 goto out;
4188
4189         set_inode_flag(inode, FI_ENABLE_COMPRESS);
4190
4191         last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4192
4193         count = last_idx - page_idx;
4194         while (count && count >= cluster_size) {
4195                 ret = redirty_blocks(inode, page_idx, cluster_size);
4196                 if (ret < 0)
4197                         break;
4198
4199                 if (get_dirty_pages(inode) >= blk_per_seg) {
4200                         ret = filemap_fdatawrite(inode->i_mapping);
4201                         if (ret < 0)
4202                                 break;
4203                 }
4204
4205                 count -= cluster_size;
4206                 page_idx += cluster_size;
4207
4208                 cond_resched();
4209                 if (fatal_signal_pending(current)) {
4210                         ret = -EINTR;
4211                         break;
4212                 }
4213         }
4214
4215         if (!ret)
4216                 ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4217                                                         LLONG_MAX);
4218
4219         clear_inode_flag(inode, FI_ENABLE_COMPRESS);
4220
4221         if (ret)
4222                 f2fs_warn(sbi, "%s: The file might be partially compressed (errno=%d). Please delete the file.",
4223                           __func__, ret);
4224 out:
4225         inode_unlock(inode);
4226         file_end_write(filp);
4227
4228         return ret;
4229 }
4230
4231 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4232 {
4233         switch (cmd) {
4234         case FS_IOC_GETVERSION:
4235                 return f2fs_ioc_getversion(filp, arg);
4236         case F2FS_IOC_START_ATOMIC_WRITE:
4237                 return f2fs_ioc_start_atomic_write(filp, false);
4238         case F2FS_IOC_START_ATOMIC_REPLACE:
4239                 return f2fs_ioc_start_atomic_write(filp, true);
4240         case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4241                 return f2fs_ioc_commit_atomic_write(filp);
4242         case F2FS_IOC_ABORT_ATOMIC_WRITE:
4243                 return f2fs_ioc_abort_atomic_write(filp);
4244         case F2FS_IOC_START_VOLATILE_WRITE:
4245         case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4246                 return -EOPNOTSUPP;
4247         case F2FS_IOC_SHUTDOWN:
4248                 return f2fs_ioc_shutdown(filp, arg);
4249         case FITRIM:
4250                 return f2fs_ioc_fitrim(filp, arg);
4251         case FS_IOC_SET_ENCRYPTION_POLICY:
4252                 return f2fs_ioc_set_encryption_policy(filp, arg);
4253         case FS_IOC_GET_ENCRYPTION_POLICY:
4254                 return f2fs_ioc_get_encryption_policy(filp, arg);
4255         case FS_IOC_GET_ENCRYPTION_PWSALT:
4256                 return f2fs_ioc_get_encryption_pwsalt(filp, arg);
4257         case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4258                 return f2fs_ioc_get_encryption_policy_ex(filp, arg);
4259         case FS_IOC_ADD_ENCRYPTION_KEY:
4260                 return f2fs_ioc_add_encryption_key(filp, arg);
4261         case FS_IOC_REMOVE_ENCRYPTION_KEY:
4262                 return f2fs_ioc_remove_encryption_key(filp, arg);
4263         case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4264                 return f2fs_ioc_remove_encryption_key_all_users(filp, arg);
4265         case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4266                 return f2fs_ioc_get_encryption_key_status(filp, arg);
4267         case FS_IOC_GET_ENCRYPTION_NONCE:
4268                 return f2fs_ioc_get_encryption_nonce(filp, arg);
4269         case F2FS_IOC_GARBAGE_COLLECT:
4270                 return f2fs_ioc_gc(filp, arg);
4271         case F2FS_IOC_GARBAGE_COLLECT_RANGE:
4272                 return f2fs_ioc_gc_range(filp, arg);
4273         case F2FS_IOC_WRITE_CHECKPOINT:
4274                 return f2fs_ioc_write_checkpoint(filp);
4275         case F2FS_IOC_DEFRAGMENT:
4276                 return f2fs_ioc_defragment(filp, arg);
4277         case F2FS_IOC_MOVE_RANGE:
4278                 return f2fs_ioc_move_range(filp, arg);
4279         case F2FS_IOC_FLUSH_DEVICE:
4280                 return f2fs_ioc_flush_device(filp, arg);
4281         case F2FS_IOC_GET_FEATURES:
4282                 return f2fs_ioc_get_features(filp, arg);
4283         case F2FS_IOC_GET_PIN_FILE:
4284                 return f2fs_ioc_get_pin_file(filp, arg);
4285         case F2FS_IOC_SET_PIN_FILE:
4286                 return f2fs_ioc_set_pin_file(filp, arg);
4287         case F2FS_IOC_PRECACHE_EXTENTS:
4288                 return f2fs_ioc_precache_extents(filp);
4289         case F2FS_IOC_RESIZE_FS:
4290                 return f2fs_ioc_resize_fs(filp, arg);
4291         case FS_IOC_ENABLE_VERITY:
4292                 return f2fs_ioc_enable_verity(filp, arg);
4293         case FS_IOC_MEASURE_VERITY:
4294                 return f2fs_ioc_measure_verity(filp, arg);
4295         case FS_IOC_READ_VERITY_METADATA:
4296                 return f2fs_ioc_read_verity_metadata(filp, arg);
4297         case FS_IOC_GETFSLABEL:
4298                 return f2fs_ioc_getfslabel(filp, arg);
4299         case FS_IOC_SETFSLABEL:
4300                 return f2fs_ioc_setfslabel(filp, arg);
4301         case F2FS_IOC_GET_COMPRESS_BLOCKS:
4302                 return f2fs_ioc_get_compress_blocks(filp, arg);
4303         case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4304                 return f2fs_release_compress_blocks(filp, arg);
4305         case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4306                 return f2fs_reserve_compress_blocks(filp, arg);
4307         case F2FS_IOC_SEC_TRIM_FILE:
4308                 return f2fs_sec_trim_file(filp, arg);
4309         case F2FS_IOC_GET_COMPRESS_OPTION:
4310                 return f2fs_ioc_get_compress_option(filp, arg);
4311         case F2FS_IOC_SET_COMPRESS_OPTION:
4312                 return f2fs_ioc_set_compress_option(filp, arg);
4313         case F2FS_IOC_DECOMPRESS_FILE:
4314                 return f2fs_ioc_decompress_file(filp);
4315         case F2FS_IOC_COMPRESS_FILE:
4316                 return f2fs_ioc_compress_file(filp);
4317         default:
4318                 return -ENOTTY;
4319         }
4320 }
4321
4322 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4323 {
4324         if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
4325                 return -EIO;
4326         if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp))))
4327                 return -ENOSPC;
4328
4329         return __f2fs_ioctl(filp, cmd, arg);
4330 }
4331
4332 /*
4333  * Return %true if the given read or write request should use direct I/O, or
4334  * %false if it should use buffered I/O.
4335  */
4336 static bool f2fs_should_use_dio(struct inode *inode, struct kiocb *iocb,
4337                                 struct iov_iter *iter)
4338 {
4339         unsigned int align;
4340
4341         if (!(iocb->ki_flags & IOCB_DIRECT))
4342                 return false;
4343
4344         if (f2fs_force_buffered_io(inode, iov_iter_rw(iter)))
4345                 return false;
4346
4347         /*
4348          * Direct I/O not aligned to the disk's logical_block_size will be
4349          * attempted, but will fail with -EINVAL.
4350          *
4351          * f2fs additionally requires that direct I/O be aligned to the
4352          * filesystem block size, which is often a stricter requirement.
4353          * However, f2fs traditionally falls back to buffered I/O on requests
4354          * that are logical_block_size-aligned but not fs-block aligned.
4355          *
4356          * The below logic implements this behavior.
4357          */
4358         align = iocb->ki_pos | iov_iter_alignment(iter);
4359         if (!IS_ALIGNED(align, i_blocksize(inode)) &&
4360             IS_ALIGNED(align, bdev_logical_block_size(inode->i_sb->s_bdev)))
4361                 return false;
4362
4363         return true;
4364 }
4365
4366 static int f2fs_dio_read_end_io(struct kiocb *iocb, ssize_t size, int error,
4367                                 unsigned int flags)
4368 {
4369         struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4370
4371         dec_page_count(sbi, F2FS_DIO_READ);
4372         if (error)
4373                 return error;
4374         f2fs_update_iostat(sbi, NULL, APP_DIRECT_READ_IO, size);
4375         return 0;
4376 }
4377
4378 static const struct iomap_dio_ops f2fs_iomap_dio_read_ops = {
4379         .end_io = f2fs_dio_read_end_io,
4380 };
4381
4382 static ssize_t f2fs_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
4383 {
4384         struct file *file = iocb->ki_filp;
4385         struct inode *inode = file_inode(file);
4386         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4387         struct f2fs_inode_info *fi = F2FS_I(inode);
4388         const loff_t pos = iocb->ki_pos;
4389         const size_t count = iov_iter_count(to);
4390         struct iomap_dio *dio;
4391         ssize_t ret;
4392
4393         if (count == 0)
4394                 return 0; /* skip atime update */
4395
4396         trace_f2fs_direct_IO_enter(inode, iocb, count, READ);
4397
4398         if (iocb->ki_flags & IOCB_NOWAIT) {
4399                 if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4400                         ret = -EAGAIN;
4401                         goto out;
4402                 }
4403         } else {
4404                 f2fs_down_read(&fi->i_gc_rwsem[READ]);
4405         }
4406
4407         /*
4408          * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4409          * the higher-level function iomap_dio_rw() in order to ensure that the
4410          * F2FS_DIO_READ counter will be decremented correctly in all cases.
4411          */
4412         inc_page_count(sbi, F2FS_DIO_READ);
4413         dio = __iomap_dio_rw(iocb, to, &f2fs_iomap_ops,
4414                              &f2fs_iomap_dio_read_ops, 0, NULL, 0);
4415         if (IS_ERR_OR_NULL(dio)) {
4416                 ret = PTR_ERR_OR_ZERO(dio);
4417                 if (ret != -EIOCBQUEUED)
4418                         dec_page_count(sbi, F2FS_DIO_READ);
4419         } else {
4420                 ret = iomap_dio_complete(dio);
4421         }
4422
4423         f2fs_up_read(&fi->i_gc_rwsem[READ]);
4424
4425         file_accessed(file);
4426 out:
4427         trace_f2fs_direct_IO_exit(inode, pos, count, READ, ret);
4428         return ret;
4429 }
4430
4431 static void f2fs_trace_rw_file_path(struct file *file, loff_t pos, size_t count,
4432                                     int rw)
4433 {
4434         struct inode *inode = file_inode(file);
4435         char *buf, *path;
4436
4437         buf = f2fs_getname(F2FS_I_SB(inode));
4438         if (!buf)
4439                 return;
4440         path = dentry_path_raw(file_dentry(file), buf, PATH_MAX);
4441         if (IS_ERR(path))
4442                 goto free_buf;
4443         if (rw == WRITE)
4444                 trace_f2fs_datawrite_start(inode, pos, count,
4445                                 current->pid, path, current->comm);
4446         else
4447                 trace_f2fs_dataread_start(inode, pos, count,
4448                                 current->pid, path, current->comm);
4449 free_buf:
4450         f2fs_putname(buf);
4451 }
4452
4453 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
4454 {
4455         struct inode *inode = file_inode(iocb->ki_filp);
4456         const loff_t pos = iocb->ki_pos;
4457         ssize_t ret;
4458
4459         if (!f2fs_is_compress_backend_ready(inode))
4460                 return -EOPNOTSUPP;
4461
4462         if (trace_f2fs_dataread_start_enabled())
4463                 f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos,
4464                                         iov_iter_count(to), READ);
4465
4466         if (f2fs_should_use_dio(inode, iocb, to)) {
4467                 ret = f2fs_dio_read_iter(iocb, to);
4468         } else {
4469                 ret = filemap_read(iocb, to, 0);
4470                 if (ret > 0)
4471                         f2fs_update_iostat(F2FS_I_SB(inode), inode,
4472                                                 APP_BUFFERED_READ_IO, ret);
4473         }
4474         if (trace_f2fs_dataread_end_enabled())
4475                 trace_f2fs_dataread_end(inode, pos, ret);
4476         return ret;
4477 }
4478
4479 static ssize_t f2fs_file_splice_read(struct file *in, loff_t *ppos,
4480                                      struct pipe_inode_info *pipe,
4481                                      size_t len, unsigned int flags)
4482 {
4483         struct inode *inode = file_inode(in);
4484         const loff_t pos = *ppos;
4485         ssize_t ret;
4486
4487         if (!f2fs_is_compress_backend_ready(inode))
4488                 return -EOPNOTSUPP;
4489
4490         if (trace_f2fs_dataread_start_enabled())
4491                 f2fs_trace_rw_file_path(in, pos, len, READ);
4492
4493         ret = filemap_splice_read(in, ppos, pipe, len, flags);
4494         if (ret > 0)
4495                 f2fs_update_iostat(F2FS_I_SB(inode), inode,
4496                                    APP_BUFFERED_READ_IO, ret);
4497
4498         if (trace_f2fs_dataread_end_enabled())
4499                 trace_f2fs_dataread_end(inode, pos, ret);
4500         return ret;
4501 }
4502
4503 static ssize_t f2fs_write_checks(struct kiocb *iocb, struct iov_iter *from)
4504 {
4505         struct file *file = iocb->ki_filp;
4506         struct inode *inode = file_inode(file);
4507         ssize_t count;
4508         int err;
4509
4510         if (IS_IMMUTABLE(inode))
4511                 return -EPERM;
4512
4513         if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
4514                 return -EPERM;
4515
4516         count = generic_write_checks(iocb, from);
4517         if (count <= 0)
4518                 return count;
4519
4520         err = file_modified(file);
4521         if (err)
4522                 return err;
4523         return count;
4524 }
4525
4526 /*
4527  * Preallocate blocks for a write request, if it is possible and helpful to do
4528  * so.  Returns a positive number if blocks may have been preallocated, 0 if no
4529  * blocks were preallocated, or a negative errno value if something went
4530  * seriously wrong.  Also sets FI_PREALLOCATED_ALL on the inode if *all* the
4531  * requested blocks (not just some of them) have been allocated.
4532  */
4533 static int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *iter,
4534                                    bool dio)
4535 {
4536         struct inode *inode = file_inode(iocb->ki_filp);
4537         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4538         const loff_t pos = iocb->ki_pos;
4539         const size_t count = iov_iter_count(iter);
4540         struct f2fs_map_blocks map = {};
4541         int flag;
4542         int ret;
4543
4544         /* If it will be an out-of-place direct write, don't bother. */
4545         if (dio && f2fs_lfs_mode(sbi))
4546                 return 0;
4547         /*
4548          * Don't preallocate holes aligned to DIO_SKIP_HOLES which turns into
4549          * buffered IO, if DIO meets any holes.
4550          */
4551         if (dio && i_size_read(inode) &&
4552                 (F2FS_BYTES_TO_BLK(pos) < F2FS_BLK_ALIGN(i_size_read(inode))))
4553                 return 0;
4554
4555         /* No-wait I/O can't allocate blocks. */
4556         if (iocb->ki_flags & IOCB_NOWAIT)
4557                 return 0;
4558
4559         /* If it will be a short write, don't bother. */
4560         if (fault_in_iov_iter_readable(iter, count))
4561                 return 0;
4562
4563         if (f2fs_has_inline_data(inode)) {
4564                 /* If the data will fit inline, don't bother. */
4565                 if (pos + count <= MAX_INLINE_DATA(inode))
4566                         return 0;
4567                 ret = f2fs_convert_inline_inode(inode);
4568                 if (ret)
4569                         return ret;
4570         }
4571
4572         /* Do not preallocate blocks that will be written partially in 4KB. */
4573         map.m_lblk = F2FS_BLK_ALIGN(pos);
4574         map.m_len = F2FS_BYTES_TO_BLK(pos + count);
4575         if (map.m_len > map.m_lblk)
4576                 map.m_len -= map.m_lblk;
4577         else
4578                 map.m_len = 0;
4579         map.m_may_create = true;
4580         if (dio) {
4581                 map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint);
4582                 flag = F2FS_GET_BLOCK_PRE_DIO;
4583         } else {
4584                 map.m_seg_type = NO_CHECK_TYPE;
4585                 flag = F2FS_GET_BLOCK_PRE_AIO;
4586         }
4587
4588         ret = f2fs_map_blocks(inode, &map, flag);
4589         /* -ENOSPC|-EDQUOT are fine to report the number of allocated blocks. */
4590         if (ret < 0 && !((ret == -ENOSPC || ret == -EDQUOT) && map.m_len > 0))
4591                 return ret;
4592         if (ret == 0)
4593                 set_inode_flag(inode, FI_PREALLOCATED_ALL);
4594         return map.m_len;
4595 }
4596
4597 static ssize_t f2fs_buffered_write_iter(struct kiocb *iocb,
4598                                         struct iov_iter *from)
4599 {
4600         struct file *file = iocb->ki_filp;
4601         struct inode *inode = file_inode(file);
4602         ssize_t ret;
4603
4604         if (iocb->ki_flags & IOCB_NOWAIT)
4605                 return -EOPNOTSUPP;
4606
4607         ret = generic_perform_write(iocb, from);
4608
4609         if (ret > 0) {
4610                 f2fs_update_iostat(F2FS_I_SB(inode), inode,
4611                                                 APP_BUFFERED_IO, ret);
4612         }
4613         return ret;
4614 }
4615
4616 static int f2fs_dio_write_end_io(struct kiocb *iocb, ssize_t size, int error,
4617                                  unsigned int flags)
4618 {
4619         struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4620
4621         dec_page_count(sbi, F2FS_DIO_WRITE);
4622         if (error)
4623                 return error;
4624         f2fs_update_time(sbi, REQ_TIME);
4625         f2fs_update_iostat(sbi, NULL, APP_DIRECT_IO, size);
4626         return 0;
4627 }
4628
4629 static const struct iomap_dio_ops f2fs_iomap_dio_write_ops = {
4630         .end_io = f2fs_dio_write_end_io,
4631 };
4632
4633 static void f2fs_flush_buffered_write(struct address_space *mapping,
4634                                       loff_t start_pos, loff_t end_pos)
4635 {
4636         int ret;
4637
4638         ret = filemap_write_and_wait_range(mapping, start_pos, end_pos);
4639         if (ret < 0)
4640                 return;
4641         invalidate_mapping_pages(mapping,
4642                                  start_pos >> PAGE_SHIFT,
4643                                  end_pos >> PAGE_SHIFT);
4644 }
4645
4646 static ssize_t f2fs_dio_write_iter(struct kiocb *iocb, struct iov_iter *from,
4647                                    bool *may_need_sync)
4648 {
4649         struct file *file = iocb->ki_filp;
4650         struct inode *inode = file_inode(file);
4651         struct f2fs_inode_info *fi = F2FS_I(inode);
4652         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4653         const bool do_opu = f2fs_lfs_mode(sbi);
4654         const loff_t pos = iocb->ki_pos;
4655         const ssize_t count = iov_iter_count(from);
4656         unsigned int dio_flags;
4657         struct iomap_dio *dio;
4658         ssize_t ret;
4659
4660         trace_f2fs_direct_IO_enter(inode, iocb, count, WRITE);
4661
4662         if (iocb->ki_flags & IOCB_NOWAIT) {
4663                 /* f2fs_convert_inline_inode() and block allocation can block */
4664                 if (f2fs_has_inline_data(inode) ||
4665                     !f2fs_overwrite_io(inode, pos, count)) {
4666                         ret = -EAGAIN;
4667                         goto out;
4668                 }
4669
4670                 if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[WRITE])) {
4671                         ret = -EAGAIN;
4672                         goto out;
4673                 }
4674                 if (do_opu && !f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4675                         f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4676                         ret = -EAGAIN;
4677                         goto out;
4678                 }
4679         } else {
4680                 ret = f2fs_convert_inline_inode(inode);
4681                 if (ret)
4682                         goto out;
4683
4684                 f2fs_down_read(&fi->i_gc_rwsem[WRITE]);
4685                 if (do_opu)
4686                         f2fs_down_read(&fi->i_gc_rwsem[READ]);
4687         }
4688
4689         /*
4690          * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4691          * the higher-level function iomap_dio_rw() in order to ensure that the
4692          * F2FS_DIO_WRITE counter will be decremented correctly in all cases.
4693          */
4694         inc_page_count(sbi, F2FS_DIO_WRITE);
4695         dio_flags = 0;
4696         if (pos + count > inode->i_size)
4697                 dio_flags |= IOMAP_DIO_FORCE_WAIT;
4698         dio = __iomap_dio_rw(iocb, from, &f2fs_iomap_ops,
4699                              &f2fs_iomap_dio_write_ops, dio_flags, NULL, 0);
4700         if (IS_ERR_OR_NULL(dio)) {
4701                 ret = PTR_ERR_OR_ZERO(dio);
4702                 if (ret == -ENOTBLK)
4703                         ret = 0;
4704                 if (ret != -EIOCBQUEUED)
4705                         dec_page_count(sbi, F2FS_DIO_WRITE);
4706         } else {
4707                 ret = iomap_dio_complete(dio);
4708         }
4709
4710         if (do_opu)
4711                 f2fs_up_read(&fi->i_gc_rwsem[READ]);
4712         f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4713
4714         if (ret < 0)
4715                 goto out;
4716         if (pos + ret > inode->i_size)
4717                 f2fs_i_size_write(inode, pos + ret);
4718         if (!do_opu)
4719                 set_inode_flag(inode, FI_UPDATE_WRITE);
4720
4721         if (iov_iter_count(from)) {
4722                 ssize_t ret2;
4723                 loff_t bufio_start_pos = iocb->ki_pos;
4724
4725                 /*
4726                  * The direct write was partial, so we need to fall back to a
4727                  * buffered write for the remainder.
4728                  */
4729
4730                 ret2 = f2fs_buffered_write_iter(iocb, from);
4731                 if (iov_iter_count(from))
4732                         f2fs_write_failed(inode, iocb->ki_pos);
4733                 if (ret2 < 0)
4734                         goto out;
4735
4736                 /*
4737                  * Ensure that the pagecache pages are written to disk and
4738                  * invalidated to preserve the expected O_DIRECT semantics.
4739                  */
4740                 if (ret2 > 0) {
4741                         loff_t bufio_end_pos = bufio_start_pos + ret2 - 1;
4742
4743                         ret += ret2;
4744
4745                         f2fs_flush_buffered_write(file->f_mapping,
4746                                                   bufio_start_pos,
4747                                                   bufio_end_pos);
4748                 }
4749         } else {
4750                 /* iomap_dio_rw() already handled the generic_write_sync(). */
4751                 *may_need_sync = false;
4752         }
4753 out:
4754         trace_f2fs_direct_IO_exit(inode, pos, count, WRITE, ret);
4755         return ret;
4756 }
4757
4758 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4759 {
4760         struct inode *inode = file_inode(iocb->ki_filp);
4761         const loff_t orig_pos = iocb->ki_pos;
4762         const size_t orig_count = iov_iter_count(from);
4763         loff_t target_size;
4764         bool dio;
4765         bool may_need_sync = true;
4766         int preallocated;
4767         ssize_t ret;
4768
4769         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
4770                 ret = -EIO;
4771                 goto out;
4772         }
4773
4774         if (!f2fs_is_compress_backend_ready(inode)) {
4775                 ret = -EOPNOTSUPP;
4776                 goto out;
4777         }
4778
4779         if (iocb->ki_flags & IOCB_NOWAIT) {
4780                 if (!inode_trylock(inode)) {
4781                         ret = -EAGAIN;
4782                         goto out;
4783                 }
4784         } else {
4785                 inode_lock(inode);
4786         }
4787
4788         ret = f2fs_write_checks(iocb, from);
4789         if (ret <= 0)
4790                 goto out_unlock;
4791
4792         /* Determine whether we will do a direct write or a buffered write. */
4793         dio = f2fs_should_use_dio(inode, iocb, from);
4794
4795         /* Possibly preallocate the blocks for the write. */
4796         target_size = iocb->ki_pos + iov_iter_count(from);
4797         preallocated = f2fs_preallocate_blocks(iocb, from, dio);
4798         if (preallocated < 0) {
4799                 ret = preallocated;
4800         } else {
4801                 if (trace_f2fs_datawrite_start_enabled())
4802                         f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos,
4803                                                 orig_count, WRITE);
4804
4805                 /* Do the actual write. */
4806                 ret = dio ?
4807                         f2fs_dio_write_iter(iocb, from, &may_need_sync) :
4808                         f2fs_buffered_write_iter(iocb, from);
4809
4810                 if (trace_f2fs_datawrite_end_enabled())
4811                         trace_f2fs_datawrite_end(inode, orig_pos, ret);
4812         }
4813
4814         /* Don't leave any preallocated blocks around past i_size. */
4815         if (preallocated && i_size_read(inode) < target_size) {
4816                 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4817                 filemap_invalidate_lock(inode->i_mapping);
4818                 if (!f2fs_truncate(inode))
4819                         file_dont_truncate(inode);
4820                 filemap_invalidate_unlock(inode->i_mapping);
4821                 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4822         } else {
4823                 file_dont_truncate(inode);
4824         }
4825
4826         clear_inode_flag(inode, FI_PREALLOCATED_ALL);
4827 out_unlock:
4828         inode_unlock(inode);
4829 out:
4830         trace_f2fs_file_write_iter(inode, orig_pos, orig_count, ret);
4831
4832         if (ret > 0 && may_need_sync)
4833                 ret = generic_write_sync(iocb, ret);
4834
4835         /* If buffered IO was forced, flush and drop the data from
4836          * the page cache to preserve O_DIRECT semantics
4837          */
4838         if (ret > 0 && !dio && (iocb->ki_flags & IOCB_DIRECT))
4839                 f2fs_flush_buffered_write(iocb->ki_filp->f_mapping,
4840                                           orig_pos,
4841                                           orig_pos + ret - 1);
4842
4843         return ret;
4844 }
4845
4846 static int f2fs_file_fadvise(struct file *filp, loff_t offset, loff_t len,
4847                 int advice)
4848 {
4849         struct address_space *mapping;
4850         struct backing_dev_info *bdi;
4851         struct inode *inode = file_inode(filp);
4852         int err;
4853
4854         if (advice == POSIX_FADV_SEQUENTIAL) {
4855                 if (S_ISFIFO(inode->i_mode))
4856                         return -ESPIPE;
4857
4858                 mapping = filp->f_mapping;
4859                 if (!mapping || len < 0)
4860                         return -EINVAL;
4861
4862                 bdi = inode_to_bdi(mapping->host);
4863                 filp->f_ra.ra_pages = bdi->ra_pages *
4864                         F2FS_I_SB(inode)->seq_file_ra_mul;
4865                 spin_lock(&filp->f_lock);
4866                 filp->f_mode &= ~FMODE_RANDOM;
4867                 spin_unlock(&filp->f_lock);
4868                 return 0;
4869         }
4870
4871         err = generic_fadvise(filp, offset, len, advice);
4872         if (!err && advice == POSIX_FADV_DONTNEED &&
4873                 test_opt(F2FS_I_SB(inode), COMPRESS_CACHE) &&
4874                 f2fs_compressed_file(inode))
4875                 f2fs_invalidate_compress_pages(F2FS_I_SB(inode), inode->i_ino);
4876
4877         return err;
4878 }
4879
4880 #ifdef CONFIG_COMPAT
4881 struct compat_f2fs_gc_range {
4882         u32 sync;
4883         compat_u64 start;
4884         compat_u64 len;
4885 };
4886 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE        _IOW(F2FS_IOCTL_MAGIC, 11,\
4887                                                 struct compat_f2fs_gc_range)
4888
4889 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg)
4890 {
4891         struct compat_f2fs_gc_range __user *urange;
4892         struct f2fs_gc_range range;
4893         int err;
4894
4895         urange = compat_ptr(arg);
4896         err = get_user(range.sync, &urange->sync);
4897         err |= get_user(range.start, &urange->start);
4898         err |= get_user(range.len, &urange->len);
4899         if (err)
4900                 return -EFAULT;
4901
4902         return __f2fs_ioc_gc_range(file, &range);
4903 }
4904
4905 struct compat_f2fs_move_range {
4906         u32 dst_fd;
4907         compat_u64 pos_in;
4908         compat_u64 pos_out;
4909         compat_u64 len;
4910 };
4911 #define F2FS_IOC32_MOVE_RANGE           _IOWR(F2FS_IOCTL_MAGIC, 9,      \
4912                                         struct compat_f2fs_move_range)
4913
4914 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg)
4915 {
4916         struct compat_f2fs_move_range __user *urange;
4917         struct f2fs_move_range range;
4918         int err;
4919
4920         urange = compat_ptr(arg);
4921         err = get_user(range.dst_fd, &urange->dst_fd);
4922         err |= get_user(range.pos_in, &urange->pos_in);
4923         err |= get_user(range.pos_out, &urange->pos_out);
4924         err |= get_user(range.len, &urange->len);
4925         if (err)
4926                 return -EFAULT;
4927
4928         return __f2fs_ioc_move_range(file, &range);
4929 }
4930
4931 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4932 {
4933         if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
4934                 return -EIO;
4935         if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file))))
4936                 return -ENOSPC;
4937
4938         switch (cmd) {
4939         case FS_IOC32_GETVERSION:
4940                 cmd = FS_IOC_GETVERSION;
4941                 break;
4942         case F2FS_IOC32_GARBAGE_COLLECT_RANGE:
4943                 return f2fs_compat_ioc_gc_range(file, arg);
4944         case F2FS_IOC32_MOVE_RANGE:
4945                 return f2fs_compat_ioc_move_range(file, arg);
4946         case F2FS_IOC_START_ATOMIC_WRITE:
4947         case F2FS_IOC_START_ATOMIC_REPLACE:
4948         case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4949         case F2FS_IOC_START_VOLATILE_WRITE:
4950         case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4951         case F2FS_IOC_ABORT_ATOMIC_WRITE:
4952         case F2FS_IOC_SHUTDOWN:
4953         case FITRIM:
4954         case FS_IOC_SET_ENCRYPTION_POLICY:
4955         case FS_IOC_GET_ENCRYPTION_PWSALT:
4956         case FS_IOC_GET_ENCRYPTION_POLICY:
4957         case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4958         case FS_IOC_ADD_ENCRYPTION_KEY:
4959         case FS_IOC_REMOVE_ENCRYPTION_KEY:
4960         case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4961         case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4962         case FS_IOC_GET_ENCRYPTION_NONCE:
4963         case F2FS_IOC_GARBAGE_COLLECT:
4964         case F2FS_IOC_WRITE_CHECKPOINT:
4965         case F2FS_IOC_DEFRAGMENT:
4966         case F2FS_IOC_FLUSH_DEVICE:
4967         case F2FS_IOC_GET_FEATURES:
4968         case F2FS_IOC_GET_PIN_FILE:
4969         case F2FS_IOC_SET_PIN_FILE:
4970         case F2FS_IOC_PRECACHE_EXTENTS:
4971         case F2FS_IOC_RESIZE_FS:
4972         case FS_IOC_ENABLE_VERITY:
4973         case FS_IOC_MEASURE_VERITY:
4974         case FS_IOC_READ_VERITY_METADATA:
4975         case FS_IOC_GETFSLABEL:
4976         case FS_IOC_SETFSLABEL:
4977         case F2FS_IOC_GET_COMPRESS_BLOCKS:
4978         case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4979         case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4980         case F2FS_IOC_SEC_TRIM_FILE:
4981         case F2FS_IOC_GET_COMPRESS_OPTION:
4982         case F2FS_IOC_SET_COMPRESS_OPTION:
4983         case F2FS_IOC_DECOMPRESS_FILE:
4984         case F2FS_IOC_COMPRESS_FILE:
4985                 break;
4986         default:
4987                 return -ENOIOCTLCMD;
4988         }
4989         return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
4990 }
4991 #endif
4992
4993 const struct file_operations f2fs_file_operations = {
4994         .llseek         = f2fs_llseek,
4995         .read_iter      = f2fs_file_read_iter,
4996         .write_iter     = f2fs_file_write_iter,
4997         .iopoll         = iocb_bio_iopoll,
4998         .open           = f2fs_file_open,
4999         .release        = f2fs_release_file,
5000         .mmap           = f2fs_file_mmap,
5001         .flush          = f2fs_file_flush,
5002         .fsync          = f2fs_sync_file,
5003         .fallocate      = f2fs_fallocate,
5004         .unlocked_ioctl = f2fs_ioctl,
5005 #ifdef CONFIG_COMPAT
5006         .compat_ioctl   = f2fs_compat_ioctl,
5007 #endif
5008         .splice_read    = f2fs_file_splice_read,
5009         .splice_write   = iter_file_splice_write,
5010         .fadvise        = f2fs_file_fadvise,
5011 };