net: usb: smsc95xx: Fix an error code in smsc95xx_reset()
[platform/kernel/linux-starfive.git] / fs / f2fs / file.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/file.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/stat.h>
11 #include <linux/buffer_head.h>
12 #include <linux/writeback.h>
13 #include <linux/blkdev.h>
14 #include <linux/falloc.h>
15 #include <linux/types.h>
16 #include <linux/compat.h>
17 #include <linux/uaccess.h>
18 #include <linux/mount.h>
19 #include <linux/pagevec.h>
20 #include <linux/uio.h>
21 #include <linux/uuid.h>
22 #include <linux/file.h>
23 #include <linux/nls.h>
24 #include <linux/sched/signal.h>
25 #include <linux/fileattr.h>
26 #include <linux/fadvise.h>
27 #include <linux/iomap.h>
28
29 #include "f2fs.h"
30 #include "node.h"
31 #include "segment.h"
32 #include "xattr.h"
33 #include "acl.h"
34 #include "gc.h"
35 #include "iostat.h"
36 #include <trace/events/f2fs.h>
37 #include <uapi/linux/f2fs.h>
38
39 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
40 {
41         struct inode *inode = file_inode(vmf->vma->vm_file);
42         vm_fault_t ret;
43
44         ret = filemap_fault(vmf);
45         if (!ret)
46                 f2fs_update_iostat(F2FS_I_SB(inode), inode,
47                                         APP_MAPPED_READ_IO, F2FS_BLKSIZE);
48
49         trace_f2fs_filemap_fault(inode, vmf->pgoff, (unsigned long)ret);
50
51         return ret;
52 }
53
54 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
55 {
56         struct page *page = vmf->page;
57         struct inode *inode = file_inode(vmf->vma->vm_file);
58         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
59         struct dnode_of_data dn;
60         bool need_alloc = true;
61         int err = 0;
62
63         if (unlikely(IS_IMMUTABLE(inode)))
64                 return VM_FAULT_SIGBUS;
65
66         if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
67                 return VM_FAULT_SIGBUS;
68
69         if (unlikely(f2fs_cp_error(sbi))) {
70                 err = -EIO;
71                 goto err;
72         }
73
74         if (!f2fs_is_checkpoint_ready(sbi)) {
75                 err = -ENOSPC;
76                 goto err;
77         }
78
79         err = f2fs_convert_inline_inode(inode);
80         if (err)
81                 goto err;
82
83 #ifdef CONFIG_F2FS_FS_COMPRESSION
84         if (f2fs_compressed_file(inode)) {
85                 int ret = f2fs_is_compressed_cluster(inode, page->index);
86
87                 if (ret < 0) {
88                         err = ret;
89                         goto err;
90                 } else if (ret) {
91                         need_alloc = false;
92                 }
93         }
94 #endif
95         /* should do out of any locked page */
96         if (need_alloc)
97                 f2fs_balance_fs(sbi, true);
98
99         sb_start_pagefault(inode->i_sb);
100
101         f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
102
103         file_update_time(vmf->vma->vm_file);
104         filemap_invalidate_lock_shared(inode->i_mapping);
105         lock_page(page);
106         if (unlikely(page->mapping != inode->i_mapping ||
107                         page_offset(page) > i_size_read(inode) ||
108                         !PageUptodate(page))) {
109                 unlock_page(page);
110                 err = -EFAULT;
111                 goto out_sem;
112         }
113
114         if (need_alloc) {
115                 /* block allocation */
116                 set_new_dnode(&dn, inode, NULL, NULL, 0);
117                 err = f2fs_get_block_locked(&dn, page->index);
118         }
119
120 #ifdef CONFIG_F2FS_FS_COMPRESSION
121         if (!need_alloc) {
122                 set_new_dnode(&dn, inode, NULL, NULL, 0);
123                 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
124                 f2fs_put_dnode(&dn);
125         }
126 #endif
127         if (err) {
128                 unlock_page(page);
129                 goto out_sem;
130         }
131
132         f2fs_wait_on_page_writeback(page, DATA, false, true);
133
134         /* wait for GCed page writeback via META_MAPPING */
135         f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
136
137         /*
138          * check to see if the page is mapped already (no holes)
139          */
140         if (PageMappedToDisk(page))
141                 goto out_sem;
142
143         /* page is wholly or partially inside EOF */
144         if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
145                                                 i_size_read(inode)) {
146                 loff_t offset;
147
148                 offset = i_size_read(inode) & ~PAGE_MASK;
149                 zero_user_segment(page, offset, PAGE_SIZE);
150         }
151         set_page_dirty(page);
152
153         f2fs_update_iostat(sbi, inode, APP_MAPPED_IO, F2FS_BLKSIZE);
154         f2fs_update_time(sbi, REQ_TIME);
155
156         trace_f2fs_vm_page_mkwrite(page, DATA);
157 out_sem:
158         filemap_invalidate_unlock_shared(inode->i_mapping);
159
160         sb_end_pagefault(inode->i_sb);
161 err:
162         return vmf_fs_error(err);
163 }
164
165 static const struct vm_operations_struct f2fs_file_vm_ops = {
166         .fault          = f2fs_filemap_fault,
167         .map_pages      = filemap_map_pages,
168         .page_mkwrite   = f2fs_vm_page_mkwrite,
169 };
170
171 static int get_parent_ino(struct inode *inode, nid_t *pino)
172 {
173         struct dentry *dentry;
174
175         /*
176          * Make sure to get the non-deleted alias.  The alias associated with
177          * the open file descriptor being fsync()'ed may be deleted already.
178          */
179         dentry = d_find_alias(inode);
180         if (!dentry)
181                 return 0;
182
183         *pino = parent_ino(dentry);
184         dput(dentry);
185         return 1;
186 }
187
188 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
189 {
190         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
191         enum cp_reason_type cp_reason = CP_NO_NEEDED;
192
193         if (!S_ISREG(inode->i_mode))
194                 cp_reason = CP_NON_REGULAR;
195         else if (f2fs_compressed_file(inode))
196                 cp_reason = CP_COMPRESSED;
197         else if (inode->i_nlink != 1)
198                 cp_reason = CP_HARDLINK;
199         else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
200                 cp_reason = CP_SB_NEED_CP;
201         else if (file_wrong_pino(inode))
202                 cp_reason = CP_WRONG_PINO;
203         else if (!f2fs_space_for_roll_forward(sbi))
204                 cp_reason = CP_NO_SPC_ROLL;
205         else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
206                 cp_reason = CP_NODE_NEED_CP;
207         else if (test_opt(sbi, FASTBOOT))
208                 cp_reason = CP_FASTBOOT_MODE;
209         else if (F2FS_OPTION(sbi).active_logs == 2)
210                 cp_reason = CP_SPEC_LOG_NUM;
211         else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
212                 f2fs_need_dentry_mark(sbi, inode->i_ino) &&
213                 f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
214                                                         TRANS_DIR_INO))
215                 cp_reason = CP_RECOVER_DIR;
216
217         return cp_reason;
218 }
219
220 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
221 {
222         struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
223         bool ret = false;
224         /* But we need to avoid that there are some inode updates */
225         if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
226                 ret = true;
227         f2fs_put_page(i, 0);
228         return ret;
229 }
230
231 static void try_to_fix_pino(struct inode *inode)
232 {
233         struct f2fs_inode_info *fi = F2FS_I(inode);
234         nid_t pino;
235
236         f2fs_down_write(&fi->i_sem);
237         if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
238                         get_parent_ino(inode, &pino)) {
239                 f2fs_i_pino_write(inode, pino);
240                 file_got_pino(inode);
241         }
242         f2fs_up_write(&fi->i_sem);
243 }
244
245 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
246                                                 int datasync, bool atomic)
247 {
248         struct inode *inode = file->f_mapping->host;
249         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
250         nid_t ino = inode->i_ino;
251         int ret = 0;
252         enum cp_reason_type cp_reason = 0;
253         struct writeback_control wbc = {
254                 .sync_mode = WB_SYNC_ALL,
255                 .nr_to_write = LONG_MAX,
256                 .for_reclaim = 0,
257         };
258         unsigned int seq_id = 0;
259
260         if (unlikely(f2fs_readonly(inode->i_sb)))
261                 return 0;
262
263         trace_f2fs_sync_file_enter(inode);
264
265         if (S_ISDIR(inode->i_mode))
266                 goto go_write;
267
268         /* if fdatasync is triggered, let's do in-place-update */
269         if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
270                 set_inode_flag(inode, FI_NEED_IPU);
271         ret = file_write_and_wait_range(file, start, end);
272         clear_inode_flag(inode, FI_NEED_IPU);
273
274         if (ret || is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
275                 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
276                 return ret;
277         }
278
279         /* if the inode is dirty, let's recover all the time */
280         if (!f2fs_skip_inode_update(inode, datasync)) {
281                 f2fs_write_inode(inode, NULL);
282                 goto go_write;
283         }
284
285         /*
286          * if there is no written data, don't waste time to write recovery info.
287          */
288         if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
289                         !f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
290
291                 /* it may call write_inode just prior to fsync */
292                 if (need_inode_page_update(sbi, ino))
293                         goto go_write;
294
295                 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
296                                 f2fs_exist_written_data(sbi, ino, UPDATE_INO))
297                         goto flush_out;
298                 goto out;
299         } else {
300                 /*
301                  * for OPU case, during fsync(), node can be persisted before
302                  * data when lower device doesn't support write barrier, result
303                  * in data corruption after SPO.
304                  * So for strict fsync mode, force to use atomic write semantics
305                  * to keep write order in between data/node and last node to
306                  * avoid potential data corruption.
307                  */
308                 if (F2FS_OPTION(sbi).fsync_mode ==
309                                 FSYNC_MODE_STRICT && !atomic)
310                         atomic = true;
311         }
312 go_write:
313         /*
314          * Both of fdatasync() and fsync() are able to be recovered from
315          * sudden-power-off.
316          */
317         f2fs_down_read(&F2FS_I(inode)->i_sem);
318         cp_reason = need_do_checkpoint(inode);
319         f2fs_up_read(&F2FS_I(inode)->i_sem);
320
321         if (cp_reason) {
322                 /* all the dirty node pages should be flushed for POR */
323                 ret = f2fs_sync_fs(inode->i_sb, 1);
324
325                 /*
326                  * We've secured consistency through sync_fs. Following pino
327                  * will be used only for fsynced inodes after checkpoint.
328                  */
329                 try_to_fix_pino(inode);
330                 clear_inode_flag(inode, FI_APPEND_WRITE);
331                 clear_inode_flag(inode, FI_UPDATE_WRITE);
332                 goto out;
333         }
334 sync_nodes:
335         atomic_inc(&sbi->wb_sync_req[NODE]);
336         ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
337         atomic_dec(&sbi->wb_sync_req[NODE]);
338         if (ret)
339                 goto out;
340
341         /* if cp_error was enabled, we should avoid infinite loop */
342         if (unlikely(f2fs_cp_error(sbi))) {
343                 ret = -EIO;
344                 goto out;
345         }
346
347         if (f2fs_need_inode_block_update(sbi, ino)) {
348                 f2fs_mark_inode_dirty_sync(inode, true);
349                 f2fs_write_inode(inode, NULL);
350                 goto sync_nodes;
351         }
352
353         /*
354          * If it's atomic_write, it's just fine to keep write ordering. So
355          * here we don't need to wait for node write completion, since we use
356          * node chain which serializes node blocks. If one of node writes are
357          * reordered, we can see simply broken chain, resulting in stopping
358          * roll-forward recovery. It means we'll recover all or none node blocks
359          * given fsync mark.
360          */
361         if (!atomic) {
362                 ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
363                 if (ret)
364                         goto out;
365         }
366
367         /* once recovery info is written, don't need to tack this */
368         f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
369         clear_inode_flag(inode, FI_APPEND_WRITE);
370 flush_out:
371         if ((!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER) ||
372             (atomic && !test_opt(sbi, NOBARRIER) && f2fs_sb_has_blkzoned(sbi)))
373                 ret = f2fs_issue_flush(sbi, inode->i_ino);
374         if (!ret) {
375                 f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
376                 clear_inode_flag(inode, FI_UPDATE_WRITE);
377                 f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
378         }
379         f2fs_update_time(sbi, REQ_TIME);
380 out:
381         trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
382         return ret;
383 }
384
385 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
386 {
387         if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
388                 return -EIO;
389         return f2fs_do_sync_file(file, start, end, datasync, false);
390 }
391
392 static bool __found_offset(struct address_space *mapping, block_t blkaddr,
393                                 pgoff_t index, int whence)
394 {
395         switch (whence) {
396         case SEEK_DATA:
397                 if (__is_valid_data_blkaddr(blkaddr))
398                         return true;
399                 if (blkaddr == NEW_ADDR &&
400                     xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY))
401                         return true;
402                 break;
403         case SEEK_HOLE:
404                 if (blkaddr == NULL_ADDR)
405                         return true;
406                 break;
407         }
408         return false;
409 }
410
411 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
412 {
413         struct inode *inode = file->f_mapping->host;
414         loff_t maxbytes = inode->i_sb->s_maxbytes;
415         struct dnode_of_data dn;
416         pgoff_t pgofs, end_offset;
417         loff_t data_ofs = offset;
418         loff_t isize;
419         int err = 0;
420
421         inode_lock(inode);
422
423         isize = i_size_read(inode);
424         if (offset >= isize)
425                 goto fail;
426
427         /* handle inline data case */
428         if (f2fs_has_inline_data(inode)) {
429                 if (whence == SEEK_HOLE) {
430                         data_ofs = isize;
431                         goto found;
432                 } else if (whence == SEEK_DATA) {
433                         data_ofs = offset;
434                         goto found;
435                 }
436         }
437
438         pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
439
440         for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
441                 set_new_dnode(&dn, inode, NULL, NULL, 0);
442                 err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
443                 if (err && err != -ENOENT) {
444                         goto fail;
445                 } else if (err == -ENOENT) {
446                         /* direct node does not exists */
447                         if (whence == SEEK_DATA) {
448                                 pgofs = f2fs_get_next_page_offset(&dn, pgofs);
449                                 continue;
450                         } else {
451                                 goto found;
452                         }
453                 }
454
455                 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
456
457                 /* find data/hole in dnode block */
458                 for (; dn.ofs_in_node < end_offset;
459                                 dn.ofs_in_node++, pgofs++,
460                                 data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
461                         block_t blkaddr;
462
463                         blkaddr = f2fs_data_blkaddr(&dn);
464
465                         if (__is_valid_data_blkaddr(blkaddr) &&
466                                 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
467                                         blkaddr, DATA_GENERIC_ENHANCE)) {
468                                 f2fs_put_dnode(&dn);
469                                 goto fail;
470                         }
471
472                         if (__found_offset(file->f_mapping, blkaddr,
473                                                         pgofs, whence)) {
474                                 f2fs_put_dnode(&dn);
475                                 goto found;
476                         }
477                 }
478                 f2fs_put_dnode(&dn);
479         }
480
481         if (whence == SEEK_DATA)
482                 goto fail;
483 found:
484         if (whence == SEEK_HOLE && data_ofs > isize)
485                 data_ofs = isize;
486         inode_unlock(inode);
487         return vfs_setpos(file, data_ofs, maxbytes);
488 fail:
489         inode_unlock(inode);
490         return -ENXIO;
491 }
492
493 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
494 {
495         struct inode *inode = file->f_mapping->host;
496         loff_t maxbytes = inode->i_sb->s_maxbytes;
497
498         if (f2fs_compressed_file(inode))
499                 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
500
501         switch (whence) {
502         case SEEK_SET:
503         case SEEK_CUR:
504         case SEEK_END:
505                 return generic_file_llseek_size(file, offset, whence,
506                                                 maxbytes, i_size_read(inode));
507         case SEEK_DATA:
508         case SEEK_HOLE:
509                 if (offset < 0)
510                         return -ENXIO;
511                 return f2fs_seek_block(file, offset, whence);
512         }
513
514         return -EINVAL;
515 }
516
517 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
518 {
519         struct inode *inode = file_inode(file);
520
521         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
522                 return -EIO;
523
524         if (!f2fs_is_compress_backend_ready(inode))
525                 return -EOPNOTSUPP;
526
527         file_accessed(file);
528         vma->vm_ops = &f2fs_file_vm_ops;
529
530         f2fs_down_read(&F2FS_I(inode)->i_sem);
531         set_inode_flag(inode, FI_MMAP_FILE);
532         f2fs_up_read(&F2FS_I(inode)->i_sem);
533
534         return 0;
535 }
536
537 static int f2fs_file_open(struct inode *inode, struct file *filp)
538 {
539         int err = fscrypt_file_open(inode, filp);
540
541         if (err)
542                 return err;
543
544         if (!f2fs_is_compress_backend_ready(inode))
545                 return -EOPNOTSUPP;
546
547         err = fsverity_file_open(inode, filp);
548         if (err)
549                 return err;
550
551         filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
552         filp->f_mode |= FMODE_CAN_ODIRECT;
553
554         return dquot_file_open(inode, filp);
555 }
556
557 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
558 {
559         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
560         struct f2fs_node *raw_node;
561         int nr_free = 0, ofs = dn->ofs_in_node, len = count;
562         __le32 *addr;
563         int base = 0;
564         bool compressed_cluster = false;
565         int cluster_index = 0, valid_blocks = 0;
566         int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
567         bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks);
568
569         if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
570                 base = get_extra_isize(dn->inode);
571
572         raw_node = F2FS_NODE(dn->node_page);
573         addr = blkaddr_in_node(raw_node) + base + ofs;
574
575         /* Assumption: truncation starts with cluster */
576         for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) {
577                 block_t blkaddr = le32_to_cpu(*addr);
578
579                 if (f2fs_compressed_file(dn->inode) &&
580                                         !(cluster_index & (cluster_size - 1))) {
581                         if (compressed_cluster)
582                                 f2fs_i_compr_blocks_update(dn->inode,
583                                                         valid_blocks, false);
584                         compressed_cluster = (blkaddr == COMPRESS_ADDR);
585                         valid_blocks = 0;
586                 }
587
588                 if (blkaddr == NULL_ADDR)
589                         continue;
590
591                 dn->data_blkaddr = NULL_ADDR;
592                 f2fs_set_data_blkaddr(dn);
593
594                 if (__is_valid_data_blkaddr(blkaddr)) {
595                         if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
596                                         DATA_GENERIC_ENHANCE))
597                                 continue;
598                         if (compressed_cluster)
599                                 valid_blocks++;
600                 }
601
602                 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
603                         clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
604
605                 f2fs_invalidate_blocks(sbi, blkaddr);
606
607                 if (!released || blkaddr != COMPRESS_ADDR)
608                         nr_free++;
609         }
610
611         if (compressed_cluster)
612                 f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false);
613
614         if (nr_free) {
615                 pgoff_t fofs;
616                 /*
617                  * once we invalidate valid blkaddr in range [ofs, ofs + count],
618                  * we will invalidate all blkaddr in the whole range.
619                  */
620                 fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
621                                                         dn->inode) + ofs;
622                 f2fs_update_read_extent_cache_range(dn, fofs, 0, len);
623                 f2fs_update_age_extent_cache_range(dn, fofs, len);
624                 dec_valid_block_count(sbi, dn->inode, nr_free);
625         }
626         dn->ofs_in_node = ofs;
627
628         f2fs_update_time(sbi, REQ_TIME);
629         trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
630                                          dn->ofs_in_node, nr_free);
631 }
632
633 static int truncate_partial_data_page(struct inode *inode, u64 from,
634                                                                 bool cache_only)
635 {
636         loff_t offset = from & (PAGE_SIZE - 1);
637         pgoff_t index = from >> PAGE_SHIFT;
638         struct address_space *mapping = inode->i_mapping;
639         struct page *page;
640
641         if (!offset && !cache_only)
642                 return 0;
643
644         if (cache_only) {
645                 page = find_lock_page(mapping, index);
646                 if (page && PageUptodate(page))
647                         goto truncate_out;
648                 f2fs_put_page(page, 1);
649                 return 0;
650         }
651
652         page = f2fs_get_lock_data_page(inode, index, true);
653         if (IS_ERR(page))
654                 return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
655 truncate_out:
656         f2fs_wait_on_page_writeback(page, DATA, true, true);
657         zero_user(page, offset, PAGE_SIZE - offset);
658
659         /* An encrypted inode should have a key and truncate the last page. */
660         f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode));
661         if (!cache_only)
662                 set_page_dirty(page);
663         f2fs_put_page(page, 1);
664         return 0;
665 }
666
667 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock)
668 {
669         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
670         struct dnode_of_data dn;
671         pgoff_t free_from;
672         int count = 0, err = 0;
673         struct page *ipage;
674         bool truncate_page = false;
675
676         trace_f2fs_truncate_blocks_enter(inode, from);
677
678         free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
679
680         if (free_from >= max_file_blocks(inode))
681                 goto free_partial;
682
683         if (lock)
684                 f2fs_lock_op(sbi);
685
686         ipage = f2fs_get_node_page(sbi, inode->i_ino);
687         if (IS_ERR(ipage)) {
688                 err = PTR_ERR(ipage);
689                 goto out;
690         }
691
692         if (f2fs_has_inline_data(inode)) {
693                 f2fs_truncate_inline_inode(inode, ipage, from);
694                 f2fs_put_page(ipage, 1);
695                 truncate_page = true;
696                 goto out;
697         }
698
699         set_new_dnode(&dn, inode, ipage, NULL, 0);
700         err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
701         if (err) {
702                 if (err == -ENOENT)
703                         goto free_next;
704                 goto out;
705         }
706
707         count = ADDRS_PER_PAGE(dn.node_page, inode);
708
709         count -= dn.ofs_in_node;
710         f2fs_bug_on(sbi, count < 0);
711
712         if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
713                 f2fs_truncate_data_blocks_range(&dn, count);
714                 free_from += count;
715         }
716
717         f2fs_put_dnode(&dn);
718 free_next:
719         err = f2fs_truncate_inode_blocks(inode, free_from);
720 out:
721         if (lock)
722                 f2fs_unlock_op(sbi);
723 free_partial:
724         /* lastly zero out the first data page */
725         if (!err)
726                 err = truncate_partial_data_page(inode, from, truncate_page);
727
728         trace_f2fs_truncate_blocks_exit(inode, err);
729         return err;
730 }
731
732 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
733 {
734         u64 free_from = from;
735         int err;
736
737 #ifdef CONFIG_F2FS_FS_COMPRESSION
738         /*
739          * for compressed file, only support cluster size
740          * aligned truncation.
741          */
742         if (f2fs_compressed_file(inode))
743                 free_from = round_up(from,
744                                 F2FS_I(inode)->i_cluster_size << PAGE_SHIFT);
745 #endif
746
747         err = f2fs_do_truncate_blocks(inode, free_from, lock);
748         if (err)
749                 return err;
750
751 #ifdef CONFIG_F2FS_FS_COMPRESSION
752         /*
753          * For compressed file, after release compress blocks, don't allow write
754          * direct, but we should allow write direct after truncate to zero.
755          */
756         if (f2fs_compressed_file(inode) && !free_from
757                         && is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
758                 clear_inode_flag(inode, FI_COMPRESS_RELEASED);
759
760         if (from != free_from) {
761                 err = f2fs_truncate_partial_cluster(inode, from, lock);
762                 if (err)
763                         return err;
764         }
765 #endif
766
767         return 0;
768 }
769
770 int f2fs_truncate(struct inode *inode)
771 {
772         int err;
773
774         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
775                 return -EIO;
776
777         if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
778                                 S_ISLNK(inode->i_mode)))
779                 return 0;
780
781         trace_f2fs_truncate(inode);
782
783         if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE))
784                 return -EIO;
785
786         err = f2fs_dquot_initialize(inode);
787         if (err)
788                 return err;
789
790         /* we should check inline_data size */
791         if (!f2fs_may_inline_data(inode)) {
792                 err = f2fs_convert_inline_inode(inode);
793                 if (err)
794                         return err;
795         }
796
797         err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
798         if (err)
799                 return err;
800
801         inode->i_mtime = inode_set_ctime_current(inode);
802         f2fs_mark_inode_dirty_sync(inode, false);
803         return 0;
804 }
805
806 static bool f2fs_force_buffered_io(struct inode *inode, int rw)
807 {
808         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
809
810         if (!fscrypt_dio_supported(inode))
811                 return true;
812         if (fsverity_active(inode))
813                 return true;
814         if (f2fs_compressed_file(inode))
815                 return true;
816
817         /* disallow direct IO if any of devices has unaligned blksize */
818         if (f2fs_is_multi_device(sbi) && !sbi->aligned_blksize)
819                 return true;
820         /*
821          * for blkzoned device, fallback direct IO to buffered IO, so
822          * all IOs can be serialized by log-structured write.
823          */
824         if (f2fs_sb_has_blkzoned(sbi) && (rw == WRITE))
825                 return true;
826         if (f2fs_lfs_mode(sbi) && rw == WRITE && F2FS_IO_ALIGNED(sbi))
827                 return true;
828         if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
829                 return true;
830
831         return false;
832 }
833
834 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path,
835                  struct kstat *stat, u32 request_mask, unsigned int query_flags)
836 {
837         struct inode *inode = d_inode(path->dentry);
838         struct f2fs_inode_info *fi = F2FS_I(inode);
839         struct f2fs_inode *ri = NULL;
840         unsigned int flags;
841
842         if (f2fs_has_extra_attr(inode) &&
843                         f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) &&
844                         F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
845                 stat->result_mask |= STATX_BTIME;
846                 stat->btime.tv_sec = fi->i_crtime.tv_sec;
847                 stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
848         }
849
850         /*
851          * Return the DIO alignment restrictions if requested.  We only return
852          * this information when requested, since on encrypted files it might
853          * take a fair bit of work to get if the file wasn't opened recently.
854          *
855          * f2fs sometimes supports DIO reads but not DIO writes.  STATX_DIOALIGN
856          * cannot represent that, so in that case we report no DIO support.
857          */
858         if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
859                 unsigned int bsize = i_blocksize(inode);
860
861                 stat->result_mask |= STATX_DIOALIGN;
862                 if (!f2fs_force_buffered_io(inode, WRITE)) {
863                         stat->dio_mem_align = bsize;
864                         stat->dio_offset_align = bsize;
865                 }
866         }
867
868         flags = fi->i_flags;
869         if (flags & F2FS_COMPR_FL)
870                 stat->attributes |= STATX_ATTR_COMPRESSED;
871         if (flags & F2FS_APPEND_FL)
872                 stat->attributes |= STATX_ATTR_APPEND;
873         if (IS_ENCRYPTED(inode))
874                 stat->attributes |= STATX_ATTR_ENCRYPTED;
875         if (flags & F2FS_IMMUTABLE_FL)
876                 stat->attributes |= STATX_ATTR_IMMUTABLE;
877         if (flags & F2FS_NODUMP_FL)
878                 stat->attributes |= STATX_ATTR_NODUMP;
879         if (IS_VERITY(inode))
880                 stat->attributes |= STATX_ATTR_VERITY;
881
882         stat->attributes_mask |= (STATX_ATTR_COMPRESSED |
883                                   STATX_ATTR_APPEND |
884                                   STATX_ATTR_ENCRYPTED |
885                                   STATX_ATTR_IMMUTABLE |
886                                   STATX_ATTR_NODUMP |
887                                   STATX_ATTR_VERITY);
888
889         generic_fillattr(idmap, request_mask, inode, stat);
890
891         /* we need to show initial sectors used for inline_data/dentries */
892         if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
893                                         f2fs_has_inline_dentry(inode))
894                 stat->blocks += (stat->size + 511) >> 9;
895
896         return 0;
897 }
898
899 #ifdef CONFIG_F2FS_FS_POSIX_ACL
900 static void __setattr_copy(struct mnt_idmap *idmap,
901                            struct inode *inode, const struct iattr *attr)
902 {
903         unsigned int ia_valid = attr->ia_valid;
904
905         i_uid_update(idmap, attr, inode);
906         i_gid_update(idmap, attr, inode);
907         if (ia_valid & ATTR_ATIME)
908                 inode->i_atime = attr->ia_atime;
909         if (ia_valid & ATTR_MTIME)
910                 inode->i_mtime = attr->ia_mtime;
911         if (ia_valid & ATTR_CTIME)
912                 inode_set_ctime_to_ts(inode, attr->ia_ctime);
913         if (ia_valid & ATTR_MODE) {
914                 umode_t mode = attr->ia_mode;
915                 vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode);
916
917                 if (!vfsgid_in_group_p(vfsgid) &&
918                     !capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID))
919                         mode &= ~S_ISGID;
920                 set_acl_inode(inode, mode);
921         }
922 }
923 #else
924 #define __setattr_copy setattr_copy
925 #endif
926
927 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
928                  struct iattr *attr)
929 {
930         struct inode *inode = d_inode(dentry);
931         int err;
932
933         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
934                 return -EIO;
935
936         if (unlikely(IS_IMMUTABLE(inode)))
937                 return -EPERM;
938
939         if (unlikely(IS_APPEND(inode) &&
940                         (attr->ia_valid & (ATTR_MODE | ATTR_UID |
941                                   ATTR_GID | ATTR_TIMES_SET))))
942                 return -EPERM;
943
944         if ((attr->ia_valid & ATTR_SIZE) &&
945                 !f2fs_is_compress_backend_ready(inode))
946                 return -EOPNOTSUPP;
947
948         err = setattr_prepare(idmap, dentry, attr);
949         if (err)
950                 return err;
951
952         err = fscrypt_prepare_setattr(dentry, attr);
953         if (err)
954                 return err;
955
956         err = fsverity_prepare_setattr(dentry, attr);
957         if (err)
958                 return err;
959
960         if (is_quota_modification(idmap, inode, attr)) {
961                 err = f2fs_dquot_initialize(inode);
962                 if (err)
963                         return err;
964         }
965         if (i_uid_needs_update(idmap, attr, inode) ||
966             i_gid_needs_update(idmap, attr, inode)) {
967                 f2fs_lock_op(F2FS_I_SB(inode));
968                 err = dquot_transfer(idmap, inode, attr);
969                 if (err) {
970                         set_sbi_flag(F2FS_I_SB(inode),
971                                         SBI_QUOTA_NEED_REPAIR);
972                         f2fs_unlock_op(F2FS_I_SB(inode));
973                         return err;
974                 }
975                 /*
976                  * update uid/gid under lock_op(), so that dquot and inode can
977                  * be updated atomically.
978                  */
979                 i_uid_update(idmap, attr, inode);
980                 i_gid_update(idmap, attr, inode);
981                 f2fs_mark_inode_dirty_sync(inode, true);
982                 f2fs_unlock_op(F2FS_I_SB(inode));
983         }
984
985         if (attr->ia_valid & ATTR_SIZE) {
986                 loff_t old_size = i_size_read(inode);
987
988                 if (attr->ia_size > MAX_INLINE_DATA(inode)) {
989                         /*
990                          * should convert inline inode before i_size_write to
991                          * keep smaller than inline_data size with inline flag.
992                          */
993                         err = f2fs_convert_inline_inode(inode);
994                         if (err)
995                                 return err;
996                 }
997
998                 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
999                 filemap_invalidate_lock(inode->i_mapping);
1000
1001                 truncate_setsize(inode, attr->ia_size);
1002
1003                 if (attr->ia_size <= old_size)
1004                         err = f2fs_truncate(inode);
1005                 /*
1006                  * do not trim all blocks after i_size if target size is
1007                  * larger than i_size.
1008                  */
1009                 filemap_invalidate_unlock(inode->i_mapping);
1010                 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1011                 if (err)
1012                         return err;
1013
1014                 spin_lock(&F2FS_I(inode)->i_size_lock);
1015                 inode->i_mtime = inode_set_ctime_current(inode);
1016                 F2FS_I(inode)->last_disk_size = i_size_read(inode);
1017                 spin_unlock(&F2FS_I(inode)->i_size_lock);
1018         }
1019
1020         __setattr_copy(idmap, inode, attr);
1021
1022         if (attr->ia_valid & ATTR_MODE) {
1023                 err = posix_acl_chmod(idmap, dentry, f2fs_get_inode_mode(inode));
1024
1025                 if (is_inode_flag_set(inode, FI_ACL_MODE)) {
1026                         if (!err)
1027                                 inode->i_mode = F2FS_I(inode)->i_acl_mode;
1028                         clear_inode_flag(inode, FI_ACL_MODE);
1029                 }
1030         }
1031
1032         /* file size may changed here */
1033         f2fs_mark_inode_dirty_sync(inode, true);
1034
1035         /* inode change will produce dirty node pages flushed by checkpoint */
1036         f2fs_balance_fs(F2FS_I_SB(inode), true);
1037
1038         return err;
1039 }
1040
1041 const struct inode_operations f2fs_file_inode_operations = {
1042         .getattr        = f2fs_getattr,
1043         .setattr        = f2fs_setattr,
1044         .get_inode_acl  = f2fs_get_acl,
1045         .set_acl        = f2fs_set_acl,
1046         .listxattr      = f2fs_listxattr,
1047         .fiemap         = f2fs_fiemap,
1048         .fileattr_get   = f2fs_fileattr_get,
1049         .fileattr_set   = f2fs_fileattr_set,
1050 };
1051
1052 static int fill_zero(struct inode *inode, pgoff_t index,
1053                                         loff_t start, loff_t len)
1054 {
1055         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1056         struct page *page;
1057
1058         if (!len)
1059                 return 0;
1060
1061         f2fs_balance_fs(sbi, true);
1062
1063         f2fs_lock_op(sbi);
1064         page = f2fs_get_new_data_page(inode, NULL, index, false);
1065         f2fs_unlock_op(sbi);
1066
1067         if (IS_ERR(page))
1068                 return PTR_ERR(page);
1069
1070         f2fs_wait_on_page_writeback(page, DATA, true, true);
1071         zero_user(page, start, len);
1072         set_page_dirty(page);
1073         f2fs_put_page(page, 1);
1074         return 0;
1075 }
1076
1077 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
1078 {
1079         int err;
1080
1081         while (pg_start < pg_end) {
1082                 struct dnode_of_data dn;
1083                 pgoff_t end_offset, count;
1084
1085                 set_new_dnode(&dn, inode, NULL, NULL, 0);
1086                 err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
1087                 if (err) {
1088                         if (err == -ENOENT) {
1089                                 pg_start = f2fs_get_next_page_offset(&dn,
1090                                                                 pg_start);
1091                                 continue;
1092                         }
1093                         return err;
1094                 }
1095
1096                 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1097                 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
1098
1099                 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
1100
1101                 f2fs_truncate_data_blocks_range(&dn, count);
1102                 f2fs_put_dnode(&dn);
1103
1104                 pg_start += count;
1105         }
1106         return 0;
1107 }
1108
1109 static int f2fs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
1110 {
1111         pgoff_t pg_start, pg_end;
1112         loff_t off_start, off_end;
1113         int ret;
1114
1115         ret = f2fs_convert_inline_inode(inode);
1116         if (ret)
1117                 return ret;
1118
1119         pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1120         pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1121
1122         off_start = offset & (PAGE_SIZE - 1);
1123         off_end = (offset + len) & (PAGE_SIZE - 1);
1124
1125         if (pg_start == pg_end) {
1126                 ret = fill_zero(inode, pg_start, off_start,
1127                                                 off_end - off_start);
1128                 if (ret)
1129                         return ret;
1130         } else {
1131                 if (off_start) {
1132                         ret = fill_zero(inode, pg_start++, off_start,
1133                                                 PAGE_SIZE - off_start);
1134                         if (ret)
1135                                 return ret;
1136                 }
1137                 if (off_end) {
1138                         ret = fill_zero(inode, pg_end, 0, off_end);
1139                         if (ret)
1140                                 return ret;
1141                 }
1142
1143                 if (pg_start < pg_end) {
1144                         loff_t blk_start, blk_end;
1145                         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1146
1147                         f2fs_balance_fs(sbi, true);
1148
1149                         blk_start = (loff_t)pg_start << PAGE_SHIFT;
1150                         blk_end = (loff_t)pg_end << PAGE_SHIFT;
1151
1152                         f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1153                         filemap_invalidate_lock(inode->i_mapping);
1154
1155                         truncate_pagecache_range(inode, blk_start, blk_end - 1);
1156
1157                         f2fs_lock_op(sbi);
1158                         ret = f2fs_truncate_hole(inode, pg_start, pg_end);
1159                         f2fs_unlock_op(sbi);
1160
1161                         filemap_invalidate_unlock(inode->i_mapping);
1162                         f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1163                 }
1164         }
1165
1166         return ret;
1167 }
1168
1169 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
1170                                 int *do_replace, pgoff_t off, pgoff_t len)
1171 {
1172         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1173         struct dnode_of_data dn;
1174         int ret, done, i;
1175
1176 next_dnode:
1177         set_new_dnode(&dn, inode, NULL, NULL, 0);
1178         ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
1179         if (ret && ret != -ENOENT) {
1180                 return ret;
1181         } else if (ret == -ENOENT) {
1182                 if (dn.max_level == 0)
1183                         return -ENOENT;
1184                 done = min((pgoff_t)ADDRS_PER_BLOCK(inode) -
1185                                                 dn.ofs_in_node, len);
1186                 blkaddr += done;
1187                 do_replace += done;
1188                 goto next;
1189         }
1190
1191         done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
1192                                                         dn.ofs_in_node, len);
1193         for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
1194                 *blkaddr = f2fs_data_blkaddr(&dn);
1195
1196                 if (__is_valid_data_blkaddr(*blkaddr) &&
1197                         !f2fs_is_valid_blkaddr(sbi, *blkaddr,
1198                                         DATA_GENERIC_ENHANCE)) {
1199                         f2fs_put_dnode(&dn);
1200                         f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1201                         return -EFSCORRUPTED;
1202                 }
1203
1204                 if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
1205
1206                         if (f2fs_lfs_mode(sbi)) {
1207                                 f2fs_put_dnode(&dn);
1208                                 return -EOPNOTSUPP;
1209                         }
1210
1211                         /* do not invalidate this block address */
1212                         f2fs_update_data_blkaddr(&dn, NULL_ADDR);
1213                         *do_replace = 1;
1214                 }
1215         }
1216         f2fs_put_dnode(&dn);
1217 next:
1218         len -= done;
1219         off += done;
1220         if (len)
1221                 goto next_dnode;
1222         return 0;
1223 }
1224
1225 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1226                                 int *do_replace, pgoff_t off, int len)
1227 {
1228         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1229         struct dnode_of_data dn;
1230         int ret, i;
1231
1232         for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1233                 if (*do_replace == 0)
1234                         continue;
1235
1236                 set_new_dnode(&dn, inode, NULL, NULL, 0);
1237                 ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1238                 if (ret) {
1239                         dec_valid_block_count(sbi, inode, 1);
1240                         f2fs_invalidate_blocks(sbi, *blkaddr);
1241                 } else {
1242                         f2fs_update_data_blkaddr(&dn, *blkaddr);
1243                 }
1244                 f2fs_put_dnode(&dn);
1245         }
1246         return 0;
1247 }
1248
1249 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1250                         block_t *blkaddr, int *do_replace,
1251                         pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1252 {
1253         struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1254         pgoff_t i = 0;
1255         int ret;
1256
1257         while (i < len) {
1258                 if (blkaddr[i] == NULL_ADDR && !full) {
1259                         i++;
1260                         continue;
1261                 }
1262
1263                 if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1264                         struct dnode_of_data dn;
1265                         struct node_info ni;
1266                         size_t new_size;
1267                         pgoff_t ilen;
1268
1269                         set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1270                         ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1271                         if (ret)
1272                                 return ret;
1273
1274                         ret = f2fs_get_node_info(sbi, dn.nid, &ni, false);
1275                         if (ret) {
1276                                 f2fs_put_dnode(&dn);
1277                                 return ret;
1278                         }
1279
1280                         ilen = min((pgoff_t)
1281                                 ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1282                                                 dn.ofs_in_node, len - i);
1283                         do {
1284                                 dn.data_blkaddr = f2fs_data_blkaddr(&dn);
1285                                 f2fs_truncate_data_blocks_range(&dn, 1);
1286
1287                                 if (do_replace[i]) {
1288                                         f2fs_i_blocks_write(src_inode,
1289                                                         1, false, false);
1290                                         f2fs_i_blocks_write(dst_inode,
1291                                                         1, true, false);
1292                                         f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1293                                         blkaddr[i], ni.version, true, false);
1294
1295                                         do_replace[i] = 0;
1296                                 }
1297                                 dn.ofs_in_node++;
1298                                 i++;
1299                                 new_size = (loff_t)(dst + i) << PAGE_SHIFT;
1300                                 if (dst_inode->i_size < new_size)
1301                                         f2fs_i_size_write(dst_inode, new_size);
1302                         } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1303
1304                         f2fs_put_dnode(&dn);
1305                 } else {
1306                         struct page *psrc, *pdst;
1307
1308                         psrc = f2fs_get_lock_data_page(src_inode,
1309                                                         src + i, true);
1310                         if (IS_ERR(psrc))
1311                                 return PTR_ERR(psrc);
1312                         pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
1313                                                                 true);
1314                         if (IS_ERR(pdst)) {
1315                                 f2fs_put_page(psrc, 1);
1316                                 return PTR_ERR(pdst);
1317                         }
1318                         memcpy_page(pdst, 0, psrc, 0, PAGE_SIZE);
1319                         set_page_dirty(pdst);
1320                         f2fs_put_page(pdst, 1);
1321                         f2fs_put_page(psrc, 1);
1322
1323                         ret = f2fs_truncate_hole(src_inode,
1324                                                 src + i, src + i + 1);
1325                         if (ret)
1326                                 return ret;
1327                         i++;
1328                 }
1329         }
1330         return 0;
1331 }
1332
1333 static int __exchange_data_block(struct inode *src_inode,
1334                         struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1335                         pgoff_t len, bool full)
1336 {
1337         block_t *src_blkaddr;
1338         int *do_replace;
1339         pgoff_t olen;
1340         int ret;
1341
1342         while (len) {
1343                 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len);
1344
1345                 src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1346                                         array_size(olen, sizeof(block_t)),
1347                                         GFP_NOFS);
1348                 if (!src_blkaddr)
1349                         return -ENOMEM;
1350
1351                 do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1352                                         array_size(olen, sizeof(int)),
1353                                         GFP_NOFS);
1354                 if (!do_replace) {
1355                         kvfree(src_blkaddr);
1356                         return -ENOMEM;
1357                 }
1358
1359                 ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1360                                         do_replace, src, olen);
1361                 if (ret)
1362                         goto roll_back;
1363
1364                 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1365                                         do_replace, src, dst, olen, full);
1366                 if (ret)
1367                         goto roll_back;
1368
1369                 src += olen;
1370                 dst += olen;
1371                 len -= olen;
1372
1373                 kvfree(src_blkaddr);
1374                 kvfree(do_replace);
1375         }
1376         return 0;
1377
1378 roll_back:
1379         __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1380         kvfree(src_blkaddr);
1381         kvfree(do_replace);
1382         return ret;
1383 }
1384
1385 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
1386 {
1387         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1388         pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1389         pgoff_t start = offset >> PAGE_SHIFT;
1390         pgoff_t end = (offset + len) >> PAGE_SHIFT;
1391         int ret;
1392
1393         f2fs_balance_fs(sbi, true);
1394
1395         /* avoid gc operation during block exchange */
1396         f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1397         filemap_invalidate_lock(inode->i_mapping);
1398
1399         f2fs_lock_op(sbi);
1400         f2fs_drop_extent_tree(inode);
1401         truncate_pagecache(inode, offset);
1402         ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1403         f2fs_unlock_op(sbi);
1404
1405         filemap_invalidate_unlock(inode->i_mapping);
1406         f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1407         return ret;
1408 }
1409
1410 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1411 {
1412         loff_t new_size;
1413         int ret;
1414
1415         if (offset + len >= i_size_read(inode))
1416                 return -EINVAL;
1417
1418         /* collapse range should be aligned to block size of f2fs. */
1419         if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1420                 return -EINVAL;
1421
1422         ret = f2fs_convert_inline_inode(inode);
1423         if (ret)
1424                 return ret;
1425
1426         /* write out all dirty pages from offset */
1427         ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1428         if (ret)
1429                 return ret;
1430
1431         ret = f2fs_do_collapse(inode, offset, len);
1432         if (ret)
1433                 return ret;
1434
1435         /* write out all moved pages, if possible */
1436         filemap_invalidate_lock(inode->i_mapping);
1437         filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1438         truncate_pagecache(inode, offset);
1439
1440         new_size = i_size_read(inode) - len;
1441         ret = f2fs_truncate_blocks(inode, new_size, true);
1442         filemap_invalidate_unlock(inode->i_mapping);
1443         if (!ret)
1444                 f2fs_i_size_write(inode, new_size);
1445         return ret;
1446 }
1447
1448 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1449                                                                 pgoff_t end)
1450 {
1451         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1452         pgoff_t index = start;
1453         unsigned int ofs_in_node = dn->ofs_in_node;
1454         blkcnt_t count = 0;
1455         int ret;
1456
1457         for (; index < end; index++, dn->ofs_in_node++) {
1458                 if (f2fs_data_blkaddr(dn) == NULL_ADDR)
1459                         count++;
1460         }
1461
1462         dn->ofs_in_node = ofs_in_node;
1463         ret = f2fs_reserve_new_blocks(dn, count);
1464         if (ret)
1465                 return ret;
1466
1467         dn->ofs_in_node = ofs_in_node;
1468         for (index = start; index < end; index++, dn->ofs_in_node++) {
1469                 dn->data_blkaddr = f2fs_data_blkaddr(dn);
1470                 /*
1471                  * f2fs_reserve_new_blocks will not guarantee entire block
1472                  * allocation.
1473                  */
1474                 if (dn->data_blkaddr == NULL_ADDR) {
1475                         ret = -ENOSPC;
1476                         break;
1477                 }
1478
1479                 if (dn->data_blkaddr == NEW_ADDR)
1480                         continue;
1481
1482                 if (!f2fs_is_valid_blkaddr(sbi, dn->data_blkaddr,
1483                                         DATA_GENERIC_ENHANCE)) {
1484                         ret = -EFSCORRUPTED;
1485                         f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1486                         break;
1487                 }
1488
1489                 f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
1490                 dn->data_blkaddr = NEW_ADDR;
1491                 f2fs_set_data_blkaddr(dn);
1492         }
1493
1494         f2fs_update_read_extent_cache_range(dn, start, 0, index - start);
1495         f2fs_update_age_extent_cache_range(dn, start, index - start);
1496
1497         return ret;
1498 }
1499
1500 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1501                                                                 int mode)
1502 {
1503         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1504         struct address_space *mapping = inode->i_mapping;
1505         pgoff_t index, pg_start, pg_end;
1506         loff_t new_size = i_size_read(inode);
1507         loff_t off_start, off_end;
1508         int ret = 0;
1509
1510         ret = inode_newsize_ok(inode, (len + offset));
1511         if (ret)
1512                 return ret;
1513
1514         ret = f2fs_convert_inline_inode(inode);
1515         if (ret)
1516                 return ret;
1517
1518         ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1519         if (ret)
1520                 return ret;
1521
1522         pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1523         pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1524
1525         off_start = offset & (PAGE_SIZE - 1);
1526         off_end = (offset + len) & (PAGE_SIZE - 1);
1527
1528         if (pg_start == pg_end) {
1529                 ret = fill_zero(inode, pg_start, off_start,
1530                                                 off_end - off_start);
1531                 if (ret)
1532                         return ret;
1533
1534                 new_size = max_t(loff_t, new_size, offset + len);
1535         } else {
1536                 if (off_start) {
1537                         ret = fill_zero(inode, pg_start++, off_start,
1538                                                 PAGE_SIZE - off_start);
1539                         if (ret)
1540                                 return ret;
1541
1542                         new_size = max_t(loff_t, new_size,
1543                                         (loff_t)pg_start << PAGE_SHIFT);
1544                 }
1545
1546                 for (index = pg_start; index < pg_end;) {
1547                         struct dnode_of_data dn;
1548                         unsigned int end_offset;
1549                         pgoff_t end;
1550
1551                         f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1552                         filemap_invalidate_lock(mapping);
1553
1554                         truncate_pagecache_range(inode,
1555                                 (loff_t)index << PAGE_SHIFT,
1556                                 ((loff_t)pg_end << PAGE_SHIFT) - 1);
1557
1558                         f2fs_lock_op(sbi);
1559
1560                         set_new_dnode(&dn, inode, NULL, NULL, 0);
1561                         ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1562                         if (ret) {
1563                                 f2fs_unlock_op(sbi);
1564                                 filemap_invalidate_unlock(mapping);
1565                                 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1566                                 goto out;
1567                         }
1568
1569                         end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1570                         end = min(pg_end, end_offset - dn.ofs_in_node + index);
1571
1572                         ret = f2fs_do_zero_range(&dn, index, end);
1573                         f2fs_put_dnode(&dn);
1574
1575                         f2fs_unlock_op(sbi);
1576                         filemap_invalidate_unlock(mapping);
1577                         f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1578
1579                         f2fs_balance_fs(sbi, dn.node_changed);
1580
1581                         if (ret)
1582                                 goto out;
1583
1584                         index = end;
1585                         new_size = max_t(loff_t, new_size,
1586                                         (loff_t)index << PAGE_SHIFT);
1587                 }
1588
1589                 if (off_end) {
1590                         ret = fill_zero(inode, pg_end, 0, off_end);
1591                         if (ret)
1592                                 goto out;
1593
1594                         new_size = max_t(loff_t, new_size, offset + len);
1595                 }
1596         }
1597
1598 out:
1599         if (new_size > i_size_read(inode)) {
1600                 if (mode & FALLOC_FL_KEEP_SIZE)
1601                         file_set_keep_isize(inode);
1602                 else
1603                         f2fs_i_size_write(inode, new_size);
1604         }
1605         return ret;
1606 }
1607
1608 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1609 {
1610         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1611         struct address_space *mapping = inode->i_mapping;
1612         pgoff_t nr, pg_start, pg_end, delta, idx;
1613         loff_t new_size;
1614         int ret = 0;
1615
1616         new_size = i_size_read(inode) + len;
1617         ret = inode_newsize_ok(inode, new_size);
1618         if (ret)
1619                 return ret;
1620
1621         if (offset >= i_size_read(inode))
1622                 return -EINVAL;
1623
1624         /* insert range should be aligned to block size of f2fs. */
1625         if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1626                 return -EINVAL;
1627
1628         ret = f2fs_convert_inline_inode(inode);
1629         if (ret)
1630                 return ret;
1631
1632         f2fs_balance_fs(sbi, true);
1633
1634         filemap_invalidate_lock(mapping);
1635         ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
1636         filemap_invalidate_unlock(mapping);
1637         if (ret)
1638                 return ret;
1639
1640         /* write out all dirty pages from offset */
1641         ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1642         if (ret)
1643                 return ret;
1644
1645         pg_start = offset >> PAGE_SHIFT;
1646         pg_end = (offset + len) >> PAGE_SHIFT;
1647         delta = pg_end - pg_start;
1648         idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1649
1650         /* avoid gc operation during block exchange */
1651         f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1652         filemap_invalidate_lock(mapping);
1653         truncate_pagecache(inode, offset);
1654
1655         while (!ret && idx > pg_start) {
1656                 nr = idx - pg_start;
1657                 if (nr > delta)
1658                         nr = delta;
1659                 idx -= nr;
1660
1661                 f2fs_lock_op(sbi);
1662                 f2fs_drop_extent_tree(inode);
1663
1664                 ret = __exchange_data_block(inode, inode, idx,
1665                                         idx + delta, nr, false);
1666                 f2fs_unlock_op(sbi);
1667         }
1668         filemap_invalidate_unlock(mapping);
1669         f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1670
1671         /* write out all moved pages, if possible */
1672         filemap_invalidate_lock(mapping);
1673         filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1674         truncate_pagecache(inode, offset);
1675         filemap_invalidate_unlock(mapping);
1676
1677         if (!ret)
1678                 f2fs_i_size_write(inode, new_size);
1679         return ret;
1680 }
1681
1682 static int f2fs_expand_inode_data(struct inode *inode, loff_t offset,
1683                                         loff_t len, int mode)
1684 {
1685         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1686         struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1687                         .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE,
1688                         .m_may_create = true };
1689         struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
1690                         .init_gc_type = FG_GC,
1691                         .should_migrate_blocks = false,
1692                         .err_gc_skipped = true,
1693                         .nr_free_secs = 0 };
1694         pgoff_t pg_start, pg_end;
1695         loff_t new_size;
1696         loff_t off_end;
1697         block_t expanded = 0;
1698         int err;
1699
1700         err = inode_newsize_ok(inode, (len + offset));
1701         if (err)
1702                 return err;
1703
1704         err = f2fs_convert_inline_inode(inode);
1705         if (err)
1706                 return err;
1707
1708         f2fs_balance_fs(sbi, true);
1709
1710         pg_start = ((unsigned long long)offset) >> PAGE_SHIFT;
1711         pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1712         off_end = (offset + len) & (PAGE_SIZE - 1);
1713
1714         map.m_lblk = pg_start;
1715         map.m_len = pg_end - pg_start;
1716         if (off_end)
1717                 map.m_len++;
1718
1719         if (!map.m_len)
1720                 return 0;
1721
1722         if (f2fs_is_pinned_file(inode)) {
1723                 block_t sec_blks = CAP_BLKS_PER_SEC(sbi);
1724                 block_t sec_len = roundup(map.m_len, sec_blks);
1725
1726                 map.m_len = sec_blks;
1727 next_alloc:
1728                 if (has_not_enough_free_secs(sbi, 0,
1729                         GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) {
1730                         f2fs_down_write(&sbi->gc_lock);
1731                         stat_inc_gc_call_count(sbi, FOREGROUND);
1732                         err = f2fs_gc(sbi, &gc_control);
1733                         if (err && err != -ENODATA)
1734                                 goto out_err;
1735                 }
1736
1737                 f2fs_down_write(&sbi->pin_sem);
1738
1739                 f2fs_lock_op(sbi);
1740                 f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
1741                 f2fs_unlock_op(sbi);
1742
1743                 map.m_seg_type = CURSEG_COLD_DATA_PINNED;
1744                 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_DIO);
1745                 file_dont_truncate(inode);
1746
1747                 f2fs_up_write(&sbi->pin_sem);
1748
1749                 expanded += map.m_len;
1750                 sec_len -= map.m_len;
1751                 map.m_lblk += map.m_len;
1752                 if (!err && sec_len)
1753                         goto next_alloc;
1754
1755                 map.m_len = expanded;
1756         } else {
1757                 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_AIO);
1758                 expanded = map.m_len;
1759         }
1760 out_err:
1761         if (err) {
1762                 pgoff_t last_off;
1763
1764                 if (!expanded)
1765                         return err;
1766
1767                 last_off = pg_start + expanded - 1;
1768
1769                 /* update new size to the failed position */
1770                 new_size = (last_off == pg_end) ? offset + len :
1771                                         (loff_t)(last_off + 1) << PAGE_SHIFT;
1772         } else {
1773                 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1774         }
1775
1776         if (new_size > i_size_read(inode)) {
1777                 if (mode & FALLOC_FL_KEEP_SIZE)
1778                         file_set_keep_isize(inode);
1779                 else
1780                         f2fs_i_size_write(inode, new_size);
1781         }
1782
1783         return err;
1784 }
1785
1786 static long f2fs_fallocate(struct file *file, int mode,
1787                                 loff_t offset, loff_t len)
1788 {
1789         struct inode *inode = file_inode(file);
1790         long ret = 0;
1791
1792         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1793                 return -EIO;
1794         if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
1795                 return -ENOSPC;
1796         if (!f2fs_is_compress_backend_ready(inode))
1797                 return -EOPNOTSUPP;
1798
1799         /* f2fs only support ->fallocate for regular file */
1800         if (!S_ISREG(inode->i_mode))
1801                 return -EINVAL;
1802
1803         if (IS_ENCRYPTED(inode) &&
1804                 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1805                 return -EOPNOTSUPP;
1806
1807         /*
1808          * Pinned file should not support partial truncation since the block
1809          * can be used by applications.
1810          */
1811         if ((f2fs_compressed_file(inode) || f2fs_is_pinned_file(inode)) &&
1812                 (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE |
1813                         FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE)))
1814                 return -EOPNOTSUPP;
1815
1816         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1817                         FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1818                         FALLOC_FL_INSERT_RANGE))
1819                 return -EOPNOTSUPP;
1820
1821         inode_lock(inode);
1822
1823         ret = file_modified(file);
1824         if (ret)
1825                 goto out;
1826
1827         if (mode & FALLOC_FL_PUNCH_HOLE) {
1828                 if (offset >= inode->i_size)
1829                         goto out;
1830
1831                 ret = f2fs_punch_hole(inode, offset, len);
1832         } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1833                 ret = f2fs_collapse_range(inode, offset, len);
1834         } else if (mode & FALLOC_FL_ZERO_RANGE) {
1835                 ret = f2fs_zero_range(inode, offset, len, mode);
1836         } else if (mode & FALLOC_FL_INSERT_RANGE) {
1837                 ret = f2fs_insert_range(inode, offset, len);
1838         } else {
1839                 ret = f2fs_expand_inode_data(inode, offset, len, mode);
1840         }
1841
1842         if (!ret) {
1843                 inode->i_mtime = inode_set_ctime_current(inode);
1844                 f2fs_mark_inode_dirty_sync(inode, false);
1845                 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1846         }
1847
1848 out:
1849         inode_unlock(inode);
1850
1851         trace_f2fs_fallocate(inode, mode, offset, len, ret);
1852         return ret;
1853 }
1854
1855 static int f2fs_release_file(struct inode *inode, struct file *filp)
1856 {
1857         /*
1858          * f2fs_release_file is called at every close calls. So we should
1859          * not drop any inmemory pages by close called by other process.
1860          */
1861         if (!(filp->f_mode & FMODE_WRITE) ||
1862                         atomic_read(&inode->i_writecount) != 1)
1863                 return 0;
1864
1865         inode_lock(inode);
1866         f2fs_abort_atomic_write(inode, true);
1867         inode_unlock(inode);
1868
1869         return 0;
1870 }
1871
1872 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1873 {
1874         struct inode *inode = file_inode(file);
1875
1876         /*
1877          * If the process doing a transaction is crashed, we should do
1878          * roll-back. Otherwise, other reader/write can see corrupted database
1879          * until all the writers close its file. Since this should be done
1880          * before dropping file lock, it needs to do in ->flush.
1881          */
1882         if (F2FS_I(inode)->atomic_write_task == current &&
1883                                 (current->flags & PF_EXITING)) {
1884                 inode_lock(inode);
1885                 f2fs_abort_atomic_write(inode, true);
1886                 inode_unlock(inode);
1887         }
1888
1889         return 0;
1890 }
1891
1892 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask)
1893 {
1894         struct f2fs_inode_info *fi = F2FS_I(inode);
1895         u32 masked_flags = fi->i_flags & mask;
1896
1897         /* mask can be shrunk by flags_valid selector */
1898         iflags &= mask;
1899
1900         /* Is it quota file? Do not allow user to mess with it */
1901         if (IS_NOQUOTA(inode))
1902                 return -EPERM;
1903
1904         if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) {
1905                 if (!f2fs_sb_has_casefold(F2FS_I_SB(inode)))
1906                         return -EOPNOTSUPP;
1907                 if (!f2fs_empty_dir(inode))
1908                         return -ENOTEMPTY;
1909         }
1910
1911         if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) {
1912                 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
1913                         return -EOPNOTSUPP;
1914                 if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL))
1915                         return -EINVAL;
1916         }
1917
1918         if ((iflags ^ masked_flags) & F2FS_COMPR_FL) {
1919                 if (masked_flags & F2FS_COMPR_FL) {
1920                         if (!f2fs_disable_compressed_file(inode))
1921                                 return -EINVAL;
1922                 } else {
1923                         /* try to convert inline_data to support compression */
1924                         int err = f2fs_convert_inline_inode(inode);
1925                         if (err)
1926                                 return err;
1927
1928                         f2fs_down_write(&F2FS_I(inode)->i_sem);
1929                         if (!f2fs_may_compress(inode) ||
1930                                         (S_ISREG(inode->i_mode) &&
1931                                         F2FS_HAS_BLOCKS(inode))) {
1932                                 f2fs_up_write(&F2FS_I(inode)->i_sem);
1933                                 return -EINVAL;
1934                         }
1935                         err = set_compress_context(inode);
1936                         f2fs_up_write(&F2FS_I(inode)->i_sem);
1937
1938                         if (err)
1939                                 return err;
1940                 }
1941         }
1942
1943         fi->i_flags = iflags | (fi->i_flags & ~mask);
1944         f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) &&
1945                                         (fi->i_flags & F2FS_NOCOMP_FL));
1946
1947         if (fi->i_flags & F2FS_PROJINHERIT_FL)
1948                 set_inode_flag(inode, FI_PROJ_INHERIT);
1949         else
1950                 clear_inode_flag(inode, FI_PROJ_INHERIT);
1951
1952         inode_set_ctime_current(inode);
1953         f2fs_set_inode_flags(inode);
1954         f2fs_mark_inode_dirty_sync(inode, true);
1955         return 0;
1956 }
1957
1958 /* FS_IOC_[GS]ETFLAGS and FS_IOC_FS[GS]ETXATTR support */
1959
1960 /*
1961  * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry
1962  * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to
1963  * F2FS_GETTABLE_FS_FL.  To also make it settable via FS_IOC_SETFLAGS, also add
1964  * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL.
1965  *
1966  * Translating flags to fsx_flags value used by FS_IOC_FSGETXATTR and
1967  * FS_IOC_FSSETXATTR is done by the VFS.
1968  */
1969
1970 static const struct {
1971         u32 iflag;
1972         u32 fsflag;
1973 } f2fs_fsflags_map[] = {
1974         { F2FS_COMPR_FL,        FS_COMPR_FL },
1975         { F2FS_SYNC_FL,         FS_SYNC_FL },
1976         { F2FS_IMMUTABLE_FL,    FS_IMMUTABLE_FL },
1977         { F2FS_APPEND_FL,       FS_APPEND_FL },
1978         { F2FS_NODUMP_FL,       FS_NODUMP_FL },
1979         { F2FS_NOATIME_FL,      FS_NOATIME_FL },
1980         { F2FS_NOCOMP_FL,       FS_NOCOMP_FL },
1981         { F2FS_INDEX_FL,        FS_INDEX_FL },
1982         { F2FS_DIRSYNC_FL,      FS_DIRSYNC_FL },
1983         { F2FS_PROJINHERIT_FL,  FS_PROJINHERIT_FL },
1984         { F2FS_CASEFOLD_FL,     FS_CASEFOLD_FL },
1985 };
1986
1987 #define F2FS_GETTABLE_FS_FL (           \
1988                 FS_COMPR_FL |           \
1989                 FS_SYNC_FL |            \
1990                 FS_IMMUTABLE_FL |       \
1991                 FS_APPEND_FL |          \
1992                 FS_NODUMP_FL |          \
1993                 FS_NOATIME_FL |         \
1994                 FS_NOCOMP_FL |          \
1995                 FS_INDEX_FL |           \
1996                 FS_DIRSYNC_FL |         \
1997                 FS_PROJINHERIT_FL |     \
1998                 FS_ENCRYPT_FL |         \
1999                 FS_INLINE_DATA_FL |     \
2000                 FS_NOCOW_FL |           \
2001                 FS_VERITY_FL |          \
2002                 FS_CASEFOLD_FL)
2003
2004 #define F2FS_SETTABLE_FS_FL (           \
2005                 FS_COMPR_FL |           \
2006                 FS_SYNC_FL |            \
2007                 FS_IMMUTABLE_FL |       \
2008                 FS_APPEND_FL |          \
2009                 FS_NODUMP_FL |          \
2010                 FS_NOATIME_FL |         \
2011                 FS_NOCOMP_FL |          \
2012                 FS_DIRSYNC_FL |         \
2013                 FS_PROJINHERIT_FL |     \
2014                 FS_CASEFOLD_FL)
2015
2016 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */
2017 static inline u32 f2fs_iflags_to_fsflags(u32 iflags)
2018 {
2019         u32 fsflags = 0;
2020         int i;
2021
2022         for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2023                 if (iflags & f2fs_fsflags_map[i].iflag)
2024                         fsflags |= f2fs_fsflags_map[i].fsflag;
2025
2026         return fsflags;
2027 }
2028
2029 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */
2030 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags)
2031 {
2032         u32 iflags = 0;
2033         int i;
2034
2035         for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2036                 if (fsflags & f2fs_fsflags_map[i].fsflag)
2037                         iflags |= f2fs_fsflags_map[i].iflag;
2038
2039         return iflags;
2040 }
2041
2042 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
2043 {
2044         struct inode *inode = file_inode(filp);
2045
2046         return put_user(inode->i_generation, (int __user *)arg);
2047 }
2048
2049 static int f2fs_ioc_start_atomic_write(struct file *filp, bool truncate)
2050 {
2051         struct inode *inode = file_inode(filp);
2052         struct mnt_idmap *idmap = file_mnt_idmap(filp);
2053         struct f2fs_inode_info *fi = F2FS_I(inode);
2054         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2055         struct inode *pinode;
2056         loff_t isize;
2057         int ret;
2058
2059         if (!inode_owner_or_capable(idmap, inode))
2060                 return -EACCES;
2061
2062         if (!S_ISREG(inode->i_mode))
2063                 return -EINVAL;
2064
2065         if (filp->f_flags & O_DIRECT)
2066                 return -EINVAL;
2067
2068         ret = mnt_want_write_file(filp);
2069         if (ret)
2070                 return ret;
2071
2072         inode_lock(inode);
2073
2074         if (!f2fs_disable_compressed_file(inode)) {
2075                 ret = -EINVAL;
2076                 goto out;
2077         }
2078
2079         if (f2fs_is_atomic_file(inode))
2080                 goto out;
2081
2082         ret = f2fs_convert_inline_inode(inode);
2083         if (ret)
2084                 goto out;
2085
2086         f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
2087
2088         /*
2089          * Should wait end_io to count F2FS_WB_CP_DATA correctly by
2090          * f2fs_is_atomic_file.
2091          */
2092         if (get_dirty_pages(inode))
2093                 f2fs_warn(sbi, "Unexpected flush for atomic writes: ino=%lu, npages=%u",
2094                           inode->i_ino, get_dirty_pages(inode));
2095         ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
2096         if (ret) {
2097                 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2098                 goto out;
2099         }
2100
2101         /* Check if the inode already has a COW inode */
2102         if (fi->cow_inode == NULL) {
2103                 /* Create a COW inode for atomic write */
2104                 pinode = f2fs_iget(inode->i_sb, fi->i_pino);
2105                 if (IS_ERR(pinode)) {
2106                         f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2107                         ret = PTR_ERR(pinode);
2108                         goto out;
2109                 }
2110
2111                 ret = f2fs_get_tmpfile(idmap, pinode, &fi->cow_inode);
2112                 iput(pinode);
2113                 if (ret) {
2114                         f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2115                         goto out;
2116                 }
2117
2118                 set_inode_flag(fi->cow_inode, FI_COW_FILE);
2119                 clear_inode_flag(fi->cow_inode, FI_INLINE_DATA);
2120         } else {
2121                 /* Reuse the already created COW inode */
2122                 ret = f2fs_do_truncate_blocks(fi->cow_inode, 0, true);
2123                 if (ret) {
2124                         f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2125                         goto out;
2126                 }
2127         }
2128
2129         f2fs_write_inode(inode, NULL);
2130
2131         stat_inc_atomic_inode(inode);
2132
2133         set_inode_flag(inode, FI_ATOMIC_FILE);
2134
2135         isize = i_size_read(inode);
2136         fi->original_i_size = isize;
2137         if (truncate) {
2138                 set_inode_flag(inode, FI_ATOMIC_REPLACE);
2139                 truncate_inode_pages_final(inode->i_mapping);
2140                 f2fs_i_size_write(inode, 0);
2141                 isize = 0;
2142         }
2143         f2fs_i_size_write(fi->cow_inode, isize);
2144
2145         f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2146
2147         f2fs_update_time(sbi, REQ_TIME);
2148         fi->atomic_write_task = current;
2149         stat_update_max_atomic_write(inode);
2150         fi->atomic_write_cnt = 0;
2151 out:
2152         inode_unlock(inode);
2153         mnt_drop_write_file(filp);
2154         return ret;
2155 }
2156
2157 static int f2fs_ioc_commit_atomic_write(struct file *filp)
2158 {
2159         struct inode *inode = file_inode(filp);
2160         struct mnt_idmap *idmap = file_mnt_idmap(filp);
2161         int ret;
2162
2163         if (!inode_owner_or_capable(idmap, inode))
2164                 return -EACCES;
2165
2166         ret = mnt_want_write_file(filp);
2167         if (ret)
2168                 return ret;
2169
2170         f2fs_balance_fs(F2FS_I_SB(inode), true);
2171
2172         inode_lock(inode);
2173
2174         if (f2fs_is_atomic_file(inode)) {
2175                 ret = f2fs_commit_atomic_write(inode);
2176                 if (!ret)
2177                         ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2178
2179                 f2fs_abort_atomic_write(inode, ret);
2180         } else {
2181                 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
2182         }
2183
2184         inode_unlock(inode);
2185         mnt_drop_write_file(filp);
2186         return ret;
2187 }
2188
2189 static int f2fs_ioc_abort_atomic_write(struct file *filp)
2190 {
2191         struct inode *inode = file_inode(filp);
2192         struct mnt_idmap *idmap = file_mnt_idmap(filp);
2193         int ret;
2194
2195         if (!inode_owner_or_capable(idmap, inode))
2196                 return -EACCES;
2197
2198         ret = mnt_want_write_file(filp);
2199         if (ret)
2200                 return ret;
2201
2202         inode_lock(inode);
2203
2204         f2fs_abort_atomic_write(inode, true);
2205
2206         inode_unlock(inode);
2207
2208         mnt_drop_write_file(filp);
2209         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2210         return ret;
2211 }
2212
2213 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
2214 {
2215         struct inode *inode = file_inode(filp);
2216         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2217         struct super_block *sb = sbi->sb;
2218         __u32 in;
2219         int ret = 0;
2220
2221         if (!capable(CAP_SYS_ADMIN))
2222                 return -EPERM;
2223
2224         if (get_user(in, (__u32 __user *)arg))
2225                 return -EFAULT;
2226
2227         if (in != F2FS_GOING_DOWN_FULLSYNC) {
2228                 ret = mnt_want_write_file(filp);
2229                 if (ret) {
2230                         if (ret == -EROFS) {
2231                                 ret = 0;
2232                                 f2fs_stop_checkpoint(sbi, false,
2233                                                 STOP_CP_REASON_SHUTDOWN);
2234                                 trace_f2fs_shutdown(sbi, in, ret);
2235                         }
2236                         return ret;
2237                 }
2238         }
2239
2240         switch (in) {
2241         case F2FS_GOING_DOWN_FULLSYNC:
2242                 ret = freeze_bdev(sb->s_bdev);
2243                 if (ret)
2244                         goto out;
2245                 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2246                 thaw_bdev(sb->s_bdev);
2247                 break;
2248         case F2FS_GOING_DOWN_METASYNC:
2249                 /* do checkpoint only */
2250                 ret = f2fs_sync_fs(sb, 1);
2251                 if (ret)
2252                         goto out;
2253                 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2254                 break;
2255         case F2FS_GOING_DOWN_NOSYNC:
2256                 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2257                 break;
2258         case F2FS_GOING_DOWN_METAFLUSH:
2259                 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
2260                 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2261                 break;
2262         case F2FS_GOING_DOWN_NEED_FSCK:
2263                 set_sbi_flag(sbi, SBI_NEED_FSCK);
2264                 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
2265                 set_sbi_flag(sbi, SBI_IS_DIRTY);
2266                 /* do checkpoint only */
2267                 ret = f2fs_sync_fs(sb, 1);
2268                 goto out;
2269         default:
2270                 ret = -EINVAL;
2271                 goto out;
2272         }
2273
2274         f2fs_stop_gc_thread(sbi);
2275         f2fs_stop_discard_thread(sbi);
2276
2277         f2fs_drop_discard_cmd(sbi);
2278         clear_opt(sbi, DISCARD);
2279
2280         f2fs_update_time(sbi, REQ_TIME);
2281 out:
2282         if (in != F2FS_GOING_DOWN_FULLSYNC)
2283                 mnt_drop_write_file(filp);
2284
2285         trace_f2fs_shutdown(sbi, in, ret);
2286
2287         return ret;
2288 }
2289
2290 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
2291 {
2292         struct inode *inode = file_inode(filp);
2293         struct super_block *sb = inode->i_sb;
2294         struct fstrim_range range;
2295         int ret;
2296
2297         if (!capable(CAP_SYS_ADMIN))
2298                 return -EPERM;
2299
2300         if (!f2fs_hw_support_discard(F2FS_SB(sb)))
2301                 return -EOPNOTSUPP;
2302
2303         if (copy_from_user(&range, (struct fstrim_range __user *)arg,
2304                                 sizeof(range)))
2305                 return -EFAULT;
2306
2307         ret = mnt_want_write_file(filp);
2308         if (ret)
2309                 return ret;
2310
2311         range.minlen = max((unsigned int)range.minlen,
2312                            bdev_discard_granularity(sb->s_bdev));
2313         ret = f2fs_trim_fs(F2FS_SB(sb), &range);
2314         mnt_drop_write_file(filp);
2315         if (ret < 0)
2316                 return ret;
2317
2318         if (copy_to_user((struct fstrim_range __user *)arg, &range,
2319                                 sizeof(range)))
2320                 return -EFAULT;
2321         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2322         return 0;
2323 }
2324
2325 static bool uuid_is_nonzero(__u8 u[16])
2326 {
2327         int i;
2328
2329         for (i = 0; i < 16; i++)
2330                 if (u[i])
2331                         return true;
2332         return false;
2333 }
2334
2335 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
2336 {
2337         struct inode *inode = file_inode(filp);
2338
2339         if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode)))
2340                 return -EOPNOTSUPP;
2341
2342         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2343
2344         return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
2345 }
2346
2347 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
2348 {
2349         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2350                 return -EOPNOTSUPP;
2351         return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
2352 }
2353
2354 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
2355 {
2356         struct inode *inode = file_inode(filp);
2357         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2358         u8 encrypt_pw_salt[16];
2359         int err;
2360
2361         if (!f2fs_sb_has_encrypt(sbi))
2362                 return -EOPNOTSUPP;
2363
2364         err = mnt_want_write_file(filp);
2365         if (err)
2366                 return err;
2367
2368         f2fs_down_write(&sbi->sb_lock);
2369
2370         if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2371                 goto got_it;
2372
2373         /* update superblock with uuid */
2374         generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2375
2376         err = f2fs_commit_super(sbi, false);
2377         if (err) {
2378                 /* undo new data */
2379                 memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2380                 goto out_err;
2381         }
2382 got_it:
2383         memcpy(encrypt_pw_salt, sbi->raw_super->encrypt_pw_salt, 16);
2384 out_err:
2385         f2fs_up_write(&sbi->sb_lock);
2386         mnt_drop_write_file(filp);
2387
2388         if (!err && copy_to_user((__u8 __user *)arg, encrypt_pw_salt, 16))
2389                 err = -EFAULT;
2390
2391         return err;
2392 }
2393
2394 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp,
2395                                              unsigned long arg)
2396 {
2397         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2398                 return -EOPNOTSUPP;
2399
2400         return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg);
2401 }
2402
2403 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg)
2404 {
2405         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2406                 return -EOPNOTSUPP;
2407
2408         return fscrypt_ioctl_add_key(filp, (void __user *)arg);
2409 }
2410
2411 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg)
2412 {
2413         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2414                 return -EOPNOTSUPP;
2415
2416         return fscrypt_ioctl_remove_key(filp, (void __user *)arg);
2417 }
2418
2419 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp,
2420                                                     unsigned long arg)
2421 {
2422         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2423                 return -EOPNOTSUPP;
2424
2425         return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg);
2426 }
2427
2428 static int f2fs_ioc_get_encryption_key_status(struct file *filp,
2429                                               unsigned long arg)
2430 {
2431         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2432                 return -EOPNOTSUPP;
2433
2434         return fscrypt_ioctl_get_key_status(filp, (void __user *)arg);
2435 }
2436
2437 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg)
2438 {
2439         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2440                 return -EOPNOTSUPP;
2441
2442         return fscrypt_ioctl_get_nonce(filp, (void __user *)arg);
2443 }
2444
2445 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2446 {
2447         struct inode *inode = file_inode(filp);
2448         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2449         struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
2450                         .no_bg_gc = false,
2451                         .should_migrate_blocks = false,
2452                         .nr_free_secs = 0 };
2453         __u32 sync;
2454         int ret;
2455
2456         if (!capable(CAP_SYS_ADMIN))
2457                 return -EPERM;
2458
2459         if (get_user(sync, (__u32 __user *)arg))
2460                 return -EFAULT;
2461
2462         if (f2fs_readonly(sbi->sb))
2463                 return -EROFS;
2464
2465         ret = mnt_want_write_file(filp);
2466         if (ret)
2467                 return ret;
2468
2469         if (!sync) {
2470                 if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2471                         ret = -EBUSY;
2472                         goto out;
2473                 }
2474         } else {
2475                 f2fs_down_write(&sbi->gc_lock);
2476         }
2477
2478         gc_control.init_gc_type = sync ? FG_GC : BG_GC;
2479         gc_control.err_gc_skipped = sync;
2480         stat_inc_gc_call_count(sbi, FOREGROUND);
2481         ret = f2fs_gc(sbi, &gc_control);
2482 out:
2483         mnt_drop_write_file(filp);
2484         return ret;
2485 }
2486
2487 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range)
2488 {
2489         struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
2490         struct f2fs_gc_control gc_control = {
2491                         .init_gc_type = range->sync ? FG_GC : BG_GC,
2492                         .no_bg_gc = false,
2493                         .should_migrate_blocks = false,
2494                         .err_gc_skipped = range->sync,
2495                         .nr_free_secs = 0 };
2496         u64 end;
2497         int ret;
2498
2499         if (!capable(CAP_SYS_ADMIN))
2500                 return -EPERM;
2501         if (f2fs_readonly(sbi->sb))
2502                 return -EROFS;
2503
2504         end = range->start + range->len;
2505         if (end < range->start || range->start < MAIN_BLKADDR(sbi) ||
2506                                         end >= MAX_BLKADDR(sbi))
2507                 return -EINVAL;
2508
2509         ret = mnt_want_write_file(filp);
2510         if (ret)
2511                 return ret;
2512
2513 do_more:
2514         if (!range->sync) {
2515                 if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2516                         ret = -EBUSY;
2517                         goto out;
2518                 }
2519         } else {
2520                 f2fs_down_write(&sbi->gc_lock);
2521         }
2522
2523         gc_control.victim_segno = GET_SEGNO(sbi, range->start);
2524         stat_inc_gc_call_count(sbi, FOREGROUND);
2525         ret = f2fs_gc(sbi, &gc_control);
2526         if (ret) {
2527                 if (ret == -EBUSY)
2528                         ret = -EAGAIN;
2529                 goto out;
2530         }
2531         range->start += CAP_BLKS_PER_SEC(sbi);
2532         if (range->start <= end)
2533                 goto do_more;
2534 out:
2535         mnt_drop_write_file(filp);
2536         return ret;
2537 }
2538
2539 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2540 {
2541         struct f2fs_gc_range range;
2542
2543         if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2544                                                         sizeof(range)))
2545                 return -EFAULT;
2546         return __f2fs_ioc_gc_range(filp, &range);
2547 }
2548
2549 static int f2fs_ioc_write_checkpoint(struct file *filp)
2550 {
2551         struct inode *inode = file_inode(filp);
2552         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2553         int ret;
2554
2555         if (!capable(CAP_SYS_ADMIN))
2556                 return -EPERM;
2557
2558         if (f2fs_readonly(sbi->sb))
2559                 return -EROFS;
2560
2561         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2562                 f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled.");
2563                 return -EINVAL;
2564         }
2565
2566         ret = mnt_want_write_file(filp);
2567         if (ret)
2568                 return ret;
2569
2570         ret = f2fs_sync_fs(sbi->sb, 1);
2571
2572         mnt_drop_write_file(filp);
2573         return ret;
2574 }
2575
2576 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2577                                         struct file *filp,
2578                                         struct f2fs_defragment *range)
2579 {
2580         struct inode *inode = file_inode(filp);
2581         struct f2fs_map_blocks map = { .m_next_extent = NULL,
2582                                         .m_seg_type = NO_CHECK_TYPE,
2583                                         .m_may_create = false };
2584         struct extent_info ei = {};
2585         pgoff_t pg_start, pg_end, next_pgofs;
2586         unsigned int blk_per_seg = sbi->blocks_per_seg;
2587         unsigned int total = 0, sec_num;
2588         block_t blk_end = 0;
2589         bool fragmented = false;
2590         int err;
2591
2592         pg_start = range->start >> PAGE_SHIFT;
2593         pg_end = (range->start + range->len) >> PAGE_SHIFT;
2594
2595         f2fs_balance_fs(sbi, true);
2596
2597         inode_lock(inode);
2598
2599         if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
2600                 err = -EINVAL;
2601                 goto unlock_out;
2602         }
2603
2604         /* if in-place-update policy is enabled, don't waste time here */
2605         set_inode_flag(inode, FI_OPU_WRITE);
2606         if (f2fs_should_update_inplace(inode, NULL)) {
2607                 err = -EINVAL;
2608                 goto out;
2609         }
2610
2611         /* writeback all dirty pages in the range */
2612         err = filemap_write_and_wait_range(inode->i_mapping, range->start,
2613                                                 range->start + range->len - 1);
2614         if (err)
2615                 goto out;
2616
2617         /*
2618          * lookup mapping info in extent cache, skip defragmenting if physical
2619          * block addresses are continuous.
2620          */
2621         if (f2fs_lookup_read_extent_cache(inode, pg_start, &ei)) {
2622                 if (ei.fofs + ei.len >= pg_end)
2623                         goto out;
2624         }
2625
2626         map.m_lblk = pg_start;
2627         map.m_next_pgofs = &next_pgofs;
2628
2629         /*
2630          * lookup mapping info in dnode page cache, skip defragmenting if all
2631          * physical block addresses are continuous even if there are hole(s)
2632          * in logical blocks.
2633          */
2634         while (map.m_lblk < pg_end) {
2635                 map.m_len = pg_end - map.m_lblk;
2636                 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2637                 if (err)
2638                         goto out;
2639
2640                 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2641                         map.m_lblk = next_pgofs;
2642                         continue;
2643                 }
2644
2645                 if (blk_end && blk_end != map.m_pblk)
2646                         fragmented = true;
2647
2648                 /* record total count of block that we're going to move */
2649                 total += map.m_len;
2650
2651                 blk_end = map.m_pblk + map.m_len;
2652
2653                 map.m_lblk += map.m_len;
2654         }
2655
2656         if (!fragmented) {
2657                 total = 0;
2658                 goto out;
2659         }
2660
2661         sec_num = DIV_ROUND_UP(total, CAP_BLKS_PER_SEC(sbi));
2662
2663         /*
2664          * make sure there are enough free section for LFS allocation, this can
2665          * avoid defragment running in SSR mode when free section are allocated
2666          * intensively
2667          */
2668         if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2669                 err = -EAGAIN;
2670                 goto out;
2671         }
2672
2673         map.m_lblk = pg_start;
2674         map.m_len = pg_end - pg_start;
2675         total = 0;
2676
2677         while (map.m_lblk < pg_end) {
2678                 pgoff_t idx;
2679                 int cnt = 0;
2680
2681 do_map:
2682                 map.m_len = pg_end - map.m_lblk;
2683                 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2684                 if (err)
2685                         goto clear_out;
2686
2687                 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2688                         map.m_lblk = next_pgofs;
2689                         goto check;
2690                 }
2691
2692                 set_inode_flag(inode, FI_SKIP_WRITES);
2693
2694                 idx = map.m_lblk;
2695                 while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
2696                         struct page *page;
2697
2698                         page = f2fs_get_lock_data_page(inode, idx, true);
2699                         if (IS_ERR(page)) {
2700                                 err = PTR_ERR(page);
2701                                 goto clear_out;
2702                         }
2703
2704                         set_page_dirty(page);
2705                         set_page_private_gcing(page);
2706                         f2fs_put_page(page, 1);
2707
2708                         idx++;
2709                         cnt++;
2710                         total++;
2711                 }
2712
2713                 map.m_lblk = idx;
2714 check:
2715                 if (map.m_lblk < pg_end && cnt < blk_per_seg)
2716                         goto do_map;
2717
2718                 clear_inode_flag(inode, FI_SKIP_WRITES);
2719
2720                 err = filemap_fdatawrite(inode->i_mapping);
2721                 if (err)
2722                         goto out;
2723         }
2724 clear_out:
2725         clear_inode_flag(inode, FI_SKIP_WRITES);
2726 out:
2727         clear_inode_flag(inode, FI_OPU_WRITE);
2728 unlock_out:
2729         inode_unlock(inode);
2730         if (!err)
2731                 range->len = (u64)total << PAGE_SHIFT;
2732         return err;
2733 }
2734
2735 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2736 {
2737         struct inode *inode = file_inode(filp);
2738         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2739         struct f2fs_defragment range;
2740         int err;
2741
2742         if (!capable(CAP_SYS_ADMIN))
2743                 return -EPERM;
2744
2745         if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2746                 return -EINVAL;
2747
2748         if (f2fs_readonly(sbi->sb))
2749                 return -EROFS;
2750
2751         if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2752                                                         sizeof(range)))
2753                 return -EFAULT;
2754
2755         /* verify alignment of offset & size */
2756         if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2757                 return -EINVAL;
2758
2759         if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2760                                         max_file_blocks(inode)))
2761                 return -EINVAL;
2762
2763         err = mnt_want_write_file(filp);
2764         if (err)
2765                 return err;
2766
2767         err = f2fs_defragment_range(sbi, filp, &range);
2768         mnt_drop_write_file(filp);
2769
2770         f2fs_update_time(sbi, REQ_TIME);
2771         if (err < 0)
2772                 return err;
2773
2774         if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2775                                                         sizeof(range)))
2776                 return -EFAULT;
2777
2778         return 0;
2779 }
2780
2781 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2782                         struct file *file_out, loff_t pos_out, size_t len)
2783 {
2784         struct inode *src = file_inode(file_in);
2785         struct inode *dst = file_inode(file_out);
2786         struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2787         size_t olen = len, dst_max_i_size = 0;
2788         size_t dst_osize;
2789         int ret;
2790
2791         if (file_in->f_path.mnt != file_out->f_path.mnt ||
2792                                 src->i_sb != dst->i_sb)
2793                 return -EXDEV;
2794
2795         if (unlikely(f2fs_readonly(src->i_sb)))
2796                 return -EROFS;
2797
2798         if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2799                 return -EINVAL;
2800
2801         if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst))
2802                 return -EOPNOTSUPP;
2803
2804         if (pos_out < 0 || pos_in < 0)
2805                 return -EINVAL;
2806
2807         if (src == dst) {
2808                 if (pos_in == pos_out)
2809                         return 0;
2810                 if (pos_out > pos_in && pos_out < pos_in + len)
2811                         return -EINVAL;
2812         }
2813
2814         inode_lock(src);
2815         if (src != dst) {
2816                 ret = -EBUSY;
2817                 if (!inode_trylock(dst))
2818                         goto out;
2819         }
2820
2821         ret = -EINVAL;
2822         if (pos_in + len > src->i_size || pos_in + len < pos_in)
2823                 goto out_unlock;
2824         if (len == 0)
2825                 olen = len = src->i_size - pos_in;
2826         if (pos_in + len == src->i_size)
2827                 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2828         if (len == 0) {
2829                 ret = 0;
2830                 goto out_unlock;
2831         }
2832
2833         dst_osize = dst->i_size;
2834         if (pos_out + olen > dst->i_size)
2835                 dst_max_i_size = pos_out + olen;
2836
2837         /* verify the end result is block aligned */
2838         if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2839                         !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2840                         !IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2841                 goto out_unlock;
2842
2843         ret = f2fs_convert_inline_inode(src);
2844         if (ret)
2845                 goto out_unlock;
2846
2847         ret = f2fs_convert_inline_inode(dst);
2848         if (ret)
2849                 goto out_unlock;
2850
2851         /* write out all dirty pages from offset */
2852         ret = filemap_write_and_wait_range(src->i_mapping,
2853                                         pos_in, pos_in + len);
2854         if (ret)
2855                 goto out_unlock;
2856
2857         ret = filemap_write_and_wait_range(dst->i_mapping,
2858                                         pos_out, pos_out + len);
2859         if (ret)
2860                 goto out_unlock;
2861
2862         f2fs_balance_fs(sbi, true);
2863
2864         f2fs_down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2865         if (src != dst) {
2866                 ret = -EBUSY;
2867                 if (!f2fs_down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
2868                         goto out_src;
2869         }
2870
2871         f2fs_lock_op(sbi);
2872         ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2873                                 pos_out >> F2FS_BLKSIZE_BITS,
2874                                 len >> F2FS_BLKSIZE_BITS, false);
2875
2876         if (!ret) {
2877                 if (dst_max_i_size)
2878                         f2fs_i_size_write(dst, dst_max_i_size);
2879                 else if (dst_osize != dst->i_size)
2880                         f2fs_i_size_write(dst, dst_osize);
2881         }
2882         f2fs_unlock_op(sbi);
2883
2884         if (src != dst)
2885                 f2fs_up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
2886 out_src:
2887         f2fs_up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2888         if (ret)
2889                 goto out_unlock;
2890
2891         src->i_mtime = inode_set_ctime_current(src);
2892         f2fs_mark_inode_dirty_sync(src, false);
2893         if (src != dst) {
2894                 dst->i_mtime = inode_set_ctime_current(dst);
2895                 f2fs_mark_inode_dirty_sync(dst, false);
2896         }
2897         f2fs_update_time(sbi, REQ_TIME);
2898
2899 out_unlock:
2900         if (src != dst)
2901                 inode_unlock(dst);
2902 out:
2903         inode_unlock(src);
2904         return ret;
2905 }
2906
2907 static int __f2fs_ioc_move_range(struct file *filp,
2908                                 struct f2fs_move_range *range)
2909 {
2910         struct fd dst;
2911         int err;
2912
2913         if (!(filp->f_mode & FMODE_READ) ||
2914                         !(filp->f_mode & FMODE_WRITE))
2915                 return -EBADF;
2916
2917         dst = fdget(range->dst_fd);
2918         if (!dst.file)
2919                 return -EBADF;
2920
2921         if (!(dst.file->f_mode & FMODE_WRITE)) {
2922                 err = -EBADF;
2923                 goto err_out;
2924         }
2925
2926         err = mnt_want_write_file(filp);
2927         if (err)
2928                 goto err_out;
2929
2930         err = f2fs_move_file_range(filp, range->pos_in, dst.file,
2931                                         range->pos_out, range->len);
2932
2933         mnt_drop_write_file(filp);
2934 err_out:
2935         fdput(dst);
2936         return err;
2937 }
2938
2939 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2940 {
2941         struct f2fs_move_range range;
2942
2943         if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2944                                                         sizeof(range)))
2945                 return -EFAULT;
2946         return __f2fs_ioc_move_range(filp, &range);
2947 }
2948
2949 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
2950 {
2951         struct inode *inode = file_inode(filp);
2952         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2953         struct sit_info *sm = SIT_I(sbi);
2954         unsigned int start_segno = 0, end_segno = 0;
2955         unsigned int dev_start_segno = 0, dev_end_segno = 0;
2956         struct f2fs_flush_device range;
2957         struct f2fs_gc_control gc_control = {
2958                         .init_gc_type = FG_GC,
2959                         .should_migrate_blocks = true,
2960                         .err_gc_skipped = true,
2961                         .nr_free_secs = 0 };
2962         int ret;
2963
2964         if (!capable(CAP_SYS_ADMIN))
2965                 return -EPERM;
2966
2967         if (f2fs_readonly(sbi->sb))
2968                 return -EROFS;
2969
2970         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2971                 return -EINVAL;
2972
2973         if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
2974                                                         sizeof(range)))
2975                 return -EFAULT;
2976
2977         if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num ||
2978                         __is_large_section(sbi)) {
2979                 f2fs_warn(sbi, "Can't flush %u in %d for segs_per_sec %u != 1",
2980                           range.dev_num, sbi->s_ndevs, sbi->segs_per_sec);
2981                 return -EINVAL;
2982         }
2983
2984         ret = mnt_want_write_file(filp);
2985         if (ret)
2986                 return ret;
2987
2988         if (range.dev_num != 0)
2989                 dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
2990         dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
2991
2992         start_segno = sm->last_victim[FLUSH_DEVICE];
2993         if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
2994                 start_segno = dev_start_segno;
2995         end_segno = min(start_segno + range.segments, dev_end_segno);
2996
2997         while (start_segno < end_segno) {
2998                 if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2999                         ret = -EBUSY;
3000                         goto out;
3001                 }
3002                 sm->last_victim[GC_CB] = end_segno + 1;
3003                 sm->last_victim[GC_GREEDY] = end_segno + 1;
3004                 sm->last_victim[ALLOC_NEXT] = end_segno + 1;
3005
3006                 gc_control.victim_segno = start_segno;
3007                 stat_inc_gc_call_count(sbi, FOREGROUND);
3008                 ret = f2fs_gc(sbi, &gc_control);
3009                 if (ret == -EAGAIN)
3010                         ret = 0;
3011                 else if (ret < 0)
3012                         break;
3013                 start_segno++;
3014         }
3015 out:
3016         mnt_drop_write_file(filp);
3017         return ret;
3018 }
3019
3020 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
3021 {
3022         struct inode *inode = file_inode(filp);
3023         u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
3024
3025         /* Must validate to set it with SQLite behavior in Android. */
3026         sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
3027
3028         return put_user(sb_feature, (u32 __user *)arg);
3029 }
3030
3031 #ifdef CONFIG_QUOTA
3032 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3033 {
3034         struct dquot *transfer_to[MAXQUOTAS] = {};
3035         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3036         struct super_block *sb = sbi->sb;
3037         int err;
3038
3039         transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
3040         if (IS_ERR(transfer_to[PRJQUOTA]))
3041                 return PTR_ERR(transfer_to[PRJQUOTA]);
3042
3043         err = __dquot_transfer(inode, transfer_to);
3044         if (err)
3045                 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3046         dqput(transfer_to[PRJQUOTA]);
3047         return err;
3048 }
3049
3050 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3051 {
3052         struct f2fs_inode_info *fi = F2FS_I(inode);
3053         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3054         struct f2fs_inode *ri = NULL;
3055         kprojid_t kprojid;
3056         int err;
3057
3058         if (!f2fs_sb_has_project_quota(sbi)) {
3059                 if (projid != F2FS_DEF_PROJID)
3060                         return -EOPNOTSUPP;
3061                 else
3062                         return 0;
3063         }
3064
3065         if (!f2fs_has_extra_attr(inode))
3066                 return -EOPNOTSUPP;
3067
3068         kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
3069
3070         if (projid_eq(kprojid, fi->i_projid))
3071                 return 0;
3072
3073         err = -EPERM;
3074         /* Is it quota file? Do not allow user to mess with it */
3075         if (IS_NOQUOTA(inode))
3076                 return err;
3077
3078         if (!F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_projid))
3079                 return -EOVERFLOW;
3080
3081         err = f2fs_dquot_initialize(inode);
3082         if (err)
3083                 return err;
3084
3085         f2fs_lock_op(sbi);
3086         err = f2fs_transfer_project_quota(inode, kprojid);
3087         if (err)
3088                 goto out_unlock;
3089
3090         fi->i_projid = kprojid;
3091         inode_set_ctime_current(inode);
3092         f2fs_mark_inode_dirty_sync(inode, true);
3093 out_unlock:
3094         f2fs_unlock_op(sbi);
3095         return err;
3096 }
3097 #else
3098 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3099 {
3100         return 0;
3101 }
3102
3103 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3104 {
3105         if (projid != F2FS_DEF_PROJID)
3106                 return -EOPNOTSUPP;
3107         return 0;
3108 }
3109 #endif
3110
3111 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3112 {
3113         struct inode *inode = d_inode(dentry);
3114         struct f2fs_inode_info *fi = F2FS_I(inode);
3115         u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
3116
3117         if (IS_ENCRYPTED(inode))
3118                 fsflags |= FS_ENCRYPT_FL;
3119         if (IS_VERITY(inode))
3120                 fsflags |= FS_VERITY_FL;
3121         if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
3122                 fsflags |= FS_INLINE_DATA_FL;
3123         if (is_inode_flag_set(inode, FI_PIN_FILE))
3124                 fsflags |= FS_NOCOW_FL;
3125
3126         fileattr_fill_flags(fa, fsflags & F2FS_GETTABLE_FS_FL);
3127
3128         if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)))
3129                 fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid);
3130
3131         return 0;
3132 }
3133
3134 int f2fs_fileattr_set(struct mnt_idmap *idmap,
3135                       struct dentry *dentry, struct fileattr *fa)
3136 {
3137         struct inode *inode = d_inode(dentry);
3138         u32 fsflags = fa->flags, mask = F2FS_SETTABLE_FS_FL;
3139         u32 iflags;
3140         int err;
3141
3142         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
3143                 return -EIO;
3144         if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
3145                 return -ENOSPC;
3146         if (fsflags & ~F2FS_GETTABLE_FS_FL)
3147                 return -EOPNOTSUPP;
3148         fsflags &= F2FS_SETTABLE_FS_FL;
3149         if (!fa->flags_valid)
3150                 mask &= FS_COMMON_FL;
3151
3152         iflags = f2fs_fsflags_to_iflags(fsflags);
3153         if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
3154                 return -EOPNOTSUPP;
3155
3156         err = f2fs_setflags_common(inode, iflags, f2fs_fsflags_to_iflags(mask));
3157         if (!err)
3158                 err = f2fs_ioc_setproject(inode, fa->fsx_projid);
3159
3160         return err;
3161 }
3162
3163 int f2fs_pin_file_control(struct inode *inode, bool inc)
3164 {
3165         struct f2fs_inode_info *fi = F2FS_I(inode);
3166         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3167
3168         /* Use i_gc_failures for normal file as a risk signal. */
3169         if (inc)
3170                 f2fs_i_gc_failures_write(inode,
3171                                 fi->i_gc_failures[GC_FAILURE_PIN] + 1);
3172
3173         if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) {
3174                 f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials",
3175                           __func__, inode->i_ino,
3176                           fi->i_gc_failures[GC_FAILURE_PIN]);
3177                 clear_inode_flag(inode, FI_PIN_FILE);
3178                 return -EAGAIN;
3179         }
3180         return 0;
3181 }
3182
3183 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
3184 {
3185         struct inode *inode = file_inode(filp);
3186         __u32 pin;
3187         int ret = 0;
3188
3189         if (get_user(pin, (__u32 __user *)arg))
3190                 return -EFAULT;
3191
3192         if (!S_ISREG(inode->i_mode))
3193                 return -EINVAL;
3194
3195         if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3196                 return -EROFS;
3197
3198         ret = mnt_want_write_file(filp);
3199         if (ret)
3200                 return ret;
3201
3202         inode_lock(inode);
3203
3204         if (!pin) {
3205                 clear_inode_flag(inode, FI_PIN_FILE);
3206                 f2fs_i_gc_failures_write(inode, 0);
3207                 goto done;
3208         }
3209
3210         if (f2fs_should_update_outplace(inode, NULL)) {
3211                 ret = -EINVAL;
3212                 goto out;
3213         }
3214
3215         if (f2fs_pin_file_control(inode, false)) {
3216                 ret = -EAGAIN;
3217                 goto out;
3218         }
3219
3220         ret = f2fs_convert_inline_inode(inode);
3221         if (ret)
3222                 goto out;
3223
3224         if (!f2fs_disable_compressed_file(inode)) {
3225                 ret = -EOPNOTSUPP;
3226                 goto out;
3227         }
3228
3229         set_inode_flag(inode, FI_PIN_FILE);
3230         ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3231 done:
3232         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3233 out:
3234         inode_unlock(inode);
3235         mnt_drop_write_file(filp);
3236         return ret;
3237 }
3238
3239 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
3240 {
3241         struct inode *inode = file_inode(filp);
3242         __u32 pin = 0;
3243
3244         if (is_inode_flag_set(inode, FI_PIN_FILE))
3245                 pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3246         return put_user(pin, (u32 __user *)arg);
3247 }
3248
3249 int f2fs_precache_extents(struct inode *inode)
3250 {
3251         struct f2fs_inode_info *fi = F2FS_I(inode);
3252         struct f2fs_map_blocks map;
3253         pgoff_t m_next_extent;
3254         loff_t end;
3255         int err;
3256
3257         if (is_inode_flag_set(inode, FI_NO_EXTENT))
3258                 return -EOPNOTSUPP;
3259
3260         map.m_lblk = 0;
3261         map.m_next_pgofs = NULL;
3262         map.m_next_extent = &m_next_extent;
3263         map.m_seg_type = NO_CHECK_TYPE;
3264         map.m_may_create = false;
3265         end = max_file_blocks(inode);
3266
3267         while (map.m_lblk < end) {
3268                 map.m_len = end - map.m_lblk;
3269
3270                 f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
3271                 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRECACHE);
3272                 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
3273                 if (err)
3274                         return err;
3275
3276                 map.m_lblk = m_next_extent;
3277         }
3278
3279         return 0;
3280 }
3281
3282 static int f2fs_ioc_precache_extents(struct file *filp)
3283 {
3284         return f2fs_precache_extents(file_inode(filp));
3285 }
3286
3287 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg)
3288 {
3289         struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
3290         __u64 block_count;
3291
3292         if (!capable(CAP_SYS_ADMIN))
3293                 return -EPERM;
3294
3295         if (f2fs_readonly(sbi->sb))
3296                 return -EROFS;
3297
3298         if (copy_from_user(&block_count, (void __user *)arg,
3299                            sizeof(block_count)))
3300                 return -EFAULT;
3301
3302         return f2fs_resize_fs(filp, block_count);
3303 }
3304
3305 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg)
3306 {
3307         struct inode *inode = file_inode(filp);
3308
3309         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3310
3311         if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) {
3312                 f2fs_warn(F2FS_I_SB(inode),
3313                           "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem",
3314                           inode->i_ino);
3315                 return -EOPNOTSUPP;
3316         }
3317
3318         return fsverity_ioctl_enable(filp, (const void __user *)arg);
3319 }
3320
3321 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg)
3322 {
3323         if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3324                 return -EOPNOTSUPP;
3325
3326         return fsverity_ioctl_measure(filp, (void __user *)arg);
3327 }
3328
3329 static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg)
3330 {
3331         if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3332                 return -EOPNOTSUPP;
3333
3334         return fsverity_ioctl_read_metadata(filp, (const void __user *)arg);
3335 }
3336
3337 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg)
3338 {
3339         struct inode *inode = file_inode(filp);
3340         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3341         char *vbuf;
3342         int count;
3343         int err = 0;
3344
3345         vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL);
3346         if (!vbuf)
3347                 return -ENOMEM;
3348
3349         f2fs_down_read(&sbi->sb_lock);
3350         count = utf16s_to_utf8s(sbi->raw_super->volume_name,
3351                         ARRAY_SIZE(sbi->raw_super->volume_name),
3352                         UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME);
3353         f2fs_up_read(&sbi->sb_lock);
3354
3355         if (copy_to_user((char __user *)arg, vbuf,
3356                                 min(FSLABEL_MAX, count)))
3357                 err = -EFAULT;
3358
3359         kfree(vbuf);
3360         return err;
3361 }
3362
3363 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg)
3364 {
3365         struct inode *inode = file_inode(filp);
3366         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3367         char *vbuf;
3368         int err = 0;
3369
3370         if (!capable(CAP_SYS_ADMIN))
3371                 return -EPERM;
3372
3373         vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX);
3374         if (IS_ERR(vbuf))
3375                 return PTR_ERR(vbuf);
3376
3377         err = mnt_want_write_file(filp);
3378         if (err)
3379                 goto out;
3380
3381         f2fs_down_write(&sbi->sb_lock);
3382
3383         memset(sbi->raw_super->volume_name, 0,
3384                         sizeof(sbi->raw_super->volume_name));
3385         utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN,
3386                         sbi->raw_super->volume_name,
3387                         ARRAY_SIZE(sbi->raw_super->volume_name));
3388
3389         err = f2fs_commit_super(sbi, false);
3390
3391         f2fs_up_write(&sbi->sb_lock);
3392
3393         mnt_drop_write_file(filp);
3394 out:
3395         kfree(vbuf);
3396         return err;
3397 }
3398
3399 static int f2fs_get_compress_blocks(struct inode *inode, __u64 *blocks)
3400 {
3401         if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3402                 return -EOPNOTSUPP;
3403
3404         if (!f2fs_compressed_file(inode))
3405                 return -EINVAL;
3406
3407         *blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks);
3408
3409         return 0;
3410 }
3411
3412 static int f2fs_ioc_get_compress_blocks(struct file *filp, unsigned long arg)
3413 {
3414         struct inode *inode = file_inode(filp);
3415         __u64 blocks;
3416         int ret;
3417
3418         ret = f2fs_get_compress_blocks(inode, &blocks);
3419         if (ret < 0)
3420                 return ret;
3421
3422         return put_user(blocks, (u64 __user *)arg);
3423 }
3424
3425 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3426 {
3427         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3428         unsigned int released_blocks = 0;
3429         int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3430         block_t blkaddr;
3431         int i;
3432
3433         for (i = 0; i < count; i++) {
3434                 blkaddr = data_blkaddr(dn->inode, dn->node_page,
3435                                                 dn->ofs_in_node + i);
3436
3437                 if (!__is_valid_data_blkaddr(blkaddr))
3438                         continue;
3439                 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3440                                         DATA_GENERIC_ENHANCE))) {
3441                         f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
3442                         return -EFSCORRUPTED;
3443                 }
3444         }
3445
3446         while (count) {
3447                 int compr_blocks = 0;
3448
3449                 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3450                         blkaddr = f2fs_data_blkaddr(dn);
3451
3452                         if (i == 0) {
3453                                 if (blkaddr == COMPRESS_ADDR)
3454                                         continue;
3455                                 dn->ofs_in_node += cluster_size;
3456                                 goto next;
3457                         }
3458
3459                         if (__is_valid_data_blkaddr(blkaddr))
3460                                 compr_blocks++;
3461
3462                         if (blkaddr != NEW_ADDR)
3463                                 continue;
3464
3465                         dn->data_blkaddr = NULL_ADDR;
3466                         f2fs_set_data_blkaddr(dn);
3467                 }
3468
3469                 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false);
3470                 dec_valid_block_count(sbi, dn->inode,
3471                                         cluster_size - compr_blocks);
3472
3473                 released_blocks += cluster_size - compr_blocks;
3474 next:
3475                 count -= cluster_size;
3476         }
3477
3478         return released_blocks;
3479 }
3480
3481 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg)
3482 {
3483         struct inode *inode = file_inode(filp);
3484         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3485         pgoff_t page_idx = 0, last_idx;
3486         unsigned int released_blocks = 0;
3487         int ret;
3488         int writecount;
3489
3490         if (!f2fs_sb_has_compression(sbi))
3491                 return -EOPNOTSUPP;
3492
3493         if (!f2fs_compressed_file(inode))
3494                 return -EINVAL;
3495
3496         if (f2fs_readonly(sbi->sb))
3497                 return -EROFS;
3498
3499         ret = mnt_want_write_file(filp);
3500         if (ret)
3501                 return ret;
3502
3503         f2fs_balance_fs(sbi, true);
3504
3505         inode_lock(inode);
3506
3507         writecount = atomic_read(&inode->i_writecount);
3508         if ((filp->f_mode & FMODE_WRITE && writecount != 1) ||
3509                         (!(filp->f_mode & FMODE_WRITE) && writecount)) {
3510                 ret = -EBUSY;
3511                 goto out;
3512         }
3513
3514         if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3515                 ret = -EINVAL;
3516                 goto out;
3517         }
3518
3519         ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
3520         if (ret)
3521                 goto out;
3522
3523         if (!atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3524                 ret = -EPERM;
3525                 goto out;
3526         }
3527
3528         set_inode_flag(inode, FI_COMPRESS_RELEASED);
3529         inode_set_ctime_current(inode);
3530         f2fs_mark_inode_dirty_sync(inode, true);
3531
3532         f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3533         filemap_invalidate_lock(inode->i_mapping);
3534
3535         last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3536
3537         while (page_idx < last_idx) {
3538                 struct dnode_of_data dn;
3539                 pgoff_t end_offset, count;
3540
3541                 set_new_dnode(&dn, inode, NULL, NULL, 0);
3542                 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3543                 if (ret) {
3544                         if (ret == -ENOENT) {
3545                                 page_idx = f2fs_get_next_page_offset(&dn,
3546                                                                 page_idx);
3547                                 ret = 0;
3548                                 continue;
3549                         }
3550                         break;
3551                 }
3552
3553                 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3554                 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3555                 count = round_up(count, F2FS_I(inode)->i_cluster_size);
3556
3557                 ret = release_compress_blocks(&dn, count);
3558
3559                 f2fs_put_dnode(&dn);
3560
3561                 if (ret < 0)
3562                         break;
3563
3564                 page_idx += count;
3565                 released_blocks += ret;
3566         }
3567
3568         filemap_invalidate_unlock(inode->i_mapping);
3569         f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3570 out:
3571         inode_unlock(inode);
3572
3573         mnt_drop_write_file(filp);
3574
3575         if (ret >= 0) {
3576                 ret = put_user(released_blocks, (u64 __user *)arg);
3577         } else if (released_blocks &&
3578                         atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3579                 set_sbi_flag(sbi, SBI_NEED_FSCK);
3580                 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3581                         "iblocks=%llu, released=%u, compr_blocks=%u, "
3582                         "run fsck to fix.",
3583                         __func__, inode->i_ino, inode->i_blocks,
3584                         released_blocks,
3585                         atomic_read(&F2FS_I(inode)->i_compr_blocks));
3586         }
3587
3588         return ret;
3589 }
3590
3591 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3592 {
3593         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3594         unsigned int reserved_blocks = 0;
3595         int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3596         block_t blkaddr;
3597         int i;
3598
3599         for (i = 0; i < count; i++) {
3600                 blkaddr = data_blkaddr(dn->inode, dn->node_page,
3601                                                 dn->ofs_in_node + i);
3602
3603                 if (!__is_valid_data_blkaddr(blkaddr))
3604                         continue;
3605                 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3606                                         DATA_GENERIC_ENHANCE))) {
3607                         f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
3608                         return -EFSCORRUPTED;
3609                 }
3610         }
3611
3612         while (count) {
3613                 int compr_blocks = 0;
3614                 blkcnt_t reserved;
3615                 int ret;
3616
3617                 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3618                         blkaddr = f2fs_data_blkaddr(dn);
3619
3620                         if (i == 0) {
3621                                 if (blkaddr == COMPRESS_ADDR)
3622                                         continue;
3623                                 dn->ofs_in_node += cluster_size;
3624                                 goto next;
3625                         }
3626
3627                         if (__is_valid_data_blkaddr(blkaddr)) {
3628                                 compr_blocks++;
3629                                 continue;
3630                         }
3631
3632                         dn->data_blkaddr = NEW_ADDR;
3633                         f2fs_set_data_blkaddr(dn);
3634                 }
3635
3636                 reserved = cluster_size - compr_blocks;
3637                 ret = inc_valid_block_count(sbi, dn->inode, &reserved);
3638                 if (ret)
3639                         return ret;
3640
3641                 if (reserved != cluster_size - compr_blocks)
3642                         return -ENOSPC;
3643
3644                 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true);
3645
3646                 reserved_blocks += reserved;
3647 next:
3648                 count -= cluster_size;
3649         }
3650
3651         return reserved_blocks;
3652 }
3653
3654 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg)
3655 {
3656         struct inode *inode = file_inode(filp);
3657         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3658         pgoff_t page_idx = 0, last_idx;
3659         unsigned int reserved_blocks = 0;
3660         int ret;
3661
3662         if (!f2fs_sb_has_compression(sbi))
3663                 return -EOPNOTSUPP;
3664
3665         if (!f2fs_compressed_file(inode))
3666                 return -EINVAL;
3667
3668         if (f2fs_readonly(sbi->sb))
3669                 return -EROFS;
3670
3671         ret = mnt_want_write_file(filp);
3672         if (ret)
3673                 return ret;
3674
3675         if (atomic_read(&F2FS_I(inode)->i_compr_blocks))
3676                 goto out;
3677
3678         f2fs_balance_fs(sbi, true);
3679
3680         inode_lock(inode);
3681
3682         if (!is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3683                 ret = -EINVAL;
3684                 goto unlock_inode;
3685         }
3686
3687         f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3688         filemap_invalidate_lock(inode->i_mapping);
3689
3690         last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3691
3692         while (page_idx < last_idx) {
3693                 struct dnode_of_data dn;
3694                 pgoff_t end_offset, count;
3695
3696                 set_new_dnode(&dn, inode, NULL, NULL, 0);
3697                 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3698                 if (ret) {
3699                         if (ret == -ENOENT) {
3700                                 page_idx = f2fs_get_next_page_offset(&dn,
3701                                                                 page_idx);
3702                                 ret = 0;
3703                                 continue;
3704                         }
3705                         break;
3706                 }
3707
3708                 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3709                 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3710                 count = round_up(count, F2FS_I(inode)->i_cluster_size);
3711
3712                 ret = reserve_compress_blocks(&dn, count);
3713
3714                 f2fs_put_dnode(&dn);
3715
3716                 if (ret < 0)
3717                         break;
3718
3719                 page_idx += count;
3720                 reserved_blocks += ret;
3721         }
3722
3723         filemap_invalidate_unlock(inode->i_mapping);
3724         f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3725
3726         if (ret >= 0) {
3727                 clear_inode_flag(inode, FI_COMPRESS_RELEASED);
3728                 inode_set_ctime_current(inode);
3729                 f2fs_mark_inode_dirty_sync(inode, true);
3730         }
3731 unlock_inode:
3732         inode_unlock(inode);
3733 out:
3734         mnt_drop_write_file(filp);
3735
3736         if (ret >= 0) {
3737                 ret = put_user(reserved_blocks, (u64 __user *)arg);
3738         } else if (reserved_blocks &&
3739                         atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3740                 set_sbi_flag(sbi, SBI_NEED_FSCK);
3741                 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3742                         "iblocks=%llu, reserved=%u, compr_blocks=%u, "
3743                         "run fsck to fix.",
3744                         __func__, inode->i_ino, inode->i_blocks,
3745                         reserved_blocks,
3746                         atomic_read(&F2FS_I(inode)->i_compr_blocks));
3747         }
3748
3749         return ret;
3750 }
3751
3752 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode,
3753                 pgoff_t off, block_t block, block_t len, u32 flags)
3754 {
3755         sector_t sector = SECTOR_FROM_BLOCK(block);
3756         sector_t nr_sects = SECTOR_FROM_BLOCK(len);
3757         int ret = 0;
3758
3759         if (flags & F2FS_TRIM_FILE_DISCARD) {
3760                 if (bdev_max_secure_erase_sectors(bdev))
3761                         ret = blkdev_issue_secure_erase(bdev, sector, nr_sects,
3762                                         GFP_NOFS);
3763                 else
3764                         ret = blkdev_issue_discard(bdev, sector, nr_sects,
3765                                         GFP_NOFS);
3766         }
3767
3768         if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) {
3769                 if (IS_ENCRYPTED(inode))
3770                         ret = fscrypt_zeroout_range(inode, off, block, len);
3771                 else
3772                         ret = blkdev_issue_zeroout(bdev, sector, nr_sects,
3773                                         GFP_NOFS, 0);
3774         }
3775
3776         return ret;
3777 }
3778
3779 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg)
3780 {
3781         struct inode *inode = file_inode(filp);
3782         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3783         struct address_space *mapping = inode->i_mapping;
3784         struct block_device *prev_bdev = NULL;
3785         struct f2fs_sectrim_range range;
3786         pgoff_t index, pg_end, prev_index = 0;
3787         block_t prev_block = 0, len = 0;
3788         loff_t end_addr;
3789         bool to_end = false;
3790         int ret = 0;
3791
3792         if (!(filp->f_mode & FMODE_WRITE))
3793                 return -EBADF;
3794
3795         if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg,
3796                                 sizeof(range)))
3797                 return -EFAULT;
3798
3799         if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) ||
3800                         !S_ISREG(inode->i_mode))
3801                 return -EINVAL;
3802
3803         if (((range.flags & F2FS_TRIM_FILE_DISCARD) &&
3804                         !f2fs_hw_support_discard(sbi)) ||
3805                         ((range.flags & F2FS_TRIM_FILE_ZEROOUT) &&
3806                          IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi)))
3807                 return -EOPNOTSUPP;
3808
3809         file_start_write(filp);
3810         inode_lock(inode);
3811
3812         if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) ||
3813                         range.start >= inode->i_size) {
3814                 ret = -EINVAL;
3815                 goto err;
3816         }
3817
3818         if (range.len == 0)
3819                 goto err;
3820
3821         if (inode->i_size - range.start > range.len) {
3822                 end_addr = range.start + range.len;
3823         } else {
3824                 end_addr = range.len == (u64)-1 ?
3825                         sbi->sb->s_maxbytes : inode->i_size;
3826                 to_end = true;
3827         }
3828
3829         if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) ||
3830                         (!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) {
3831                 ret = -EINVAL;
3832                 goto err;
3833         }
3834
3835         index = F2FS_BYTES_TO_BLK(range.start);
3836         pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE);
3837
3838         ret = f2fs_convert_inline_inode(inode);
3839         if (ret)
3840                 goto err;
3841
3842         f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3843         filemap_invalidate_lock(mapping);
3844
3845         ret = filemap_write_and_wait_range(mapping, range.start,
3846                         to_end ? LLONG_MAX : end_addr - 1);
3847         if (ret)
3848                 goto out;
3849
3850         truncate_inode_pages_range(mapping, range.start,
3851                         to_end ? -1 : end_addr - 1);
3852
3853         while (index < pg_end) {
3854                 struct dnode_of_data dn;
3855                 pgoff_t end_offset, count;
3856                 int i;
3857
3858                 set_new_dnode(&dn, inode, NULL, NULL, 0);
3859                 ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3860                 if (ret) {
3861                         if (ret == -ENOENT) {
3862                                 index = f2fs_get_next_page_offset(&dn, index);
3863                                 continue;
3864                         }
3865                         goto out;
3866                 }
3867
3868                 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3869                 count = min(end_offset - dn.ofs_in_node, pg_end - index);
3870                 for (i = 0; i < count; i++, index++, dn.ofs_in_node++) {
3871                         struct block_device *cur_bdev;
3872                         block_t blkaddr = f2fs_data_blkaddr(&dn);
3873
3874                         if (!__is_valid_data_blkaddr(blkaddr))
3875                                 continue;
3876
3877                         if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3878                                                 DATA_GENERIC_ENHANCE)) {
3879                                 ret = -EFSCORRUPTED;
3880                                 f2fs_put_dnode(&dn);
3881                                 f2fs_handle_error(sbi,
3882                                                 ERROR_INVALID_BLKADDR);
3883                                 goto out;
3884                         }
3885
3886                         cur_bdev = f2fs_target_device(sbi, blkaddr, NULL);
3887                         if (f2fs_is_multi_device(sbi)) {
3888                                 int di = f2fs_target_device_index(sbi, blkaddr);
3889
3890                                 blkaddr -= FDEV(di).start_blk;
3891                         }
3892
3893                         if (len) {
3894                                 if (prev_bdev == cur_bdev &&
3895                                                 index == prev_index + len &&
3896                                                 blkaddr == prev_block + len) {
3897                                         len++;
3898                                 } else {
3899                                         ret = f2fs_secure_erase(prev_bdev,
3900                                                 inode, prev_index, prev_block,
3901                                                 len, range.flags);
3902                                         if (ret) {
3903                                                 f2fs_put_dnode(&dn);
3904                                                 goto out;
3905                                         }
3906
3907                                         len = 0;
3908                                 }
3909                         }
3910
3911                         if (!len) {
3912                                 prev_bdev = cur_bdev;
3913                                 prev_index = index;
3914                                 prev_block = blkaddr;
3915                                 len = 1;
3916                         }
3917                 }
3918
3919                 f2fs_put_dnode(&dn);
3920
3921                 if (fatal_signal_pending(current)) {
3922                         ret = -EINTR;
3923                         goto out;
3924                 }
3925                 cond_resched();
3926         }
3927
3928         if (len)
3929                 ret = f2fs_secure_erase(prev_bdev, inode, prev_index,
3930                                 prev_block, len, range.flags);
3931 out:
3932         filemap_invalidate_unlock(mapping);
3933         f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3934 err:
3935         inode_unlock(inode);
3936         file_end_write(filp);
3937
3938         return ret;
3939 }
3940
3941 static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg)
3942 {
3943         struct inode *inode = file_inode(filp);
3944         struct f2fs_comp_option option;
3945
3946         if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3947                 return -EOPNOTSUPP;
3948
3949         inode_lock_shared(inode);
3950
3951         if (!f2fs_compressed_file(inode)) {
3952                 inode_unlock_shared(inode);
3953                 return -ENODATA;
3954         }
3955
3956         option.algorithm = F2FS_I(inode)->i_compress_algorithm;
3957         option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
3958
3959         inode_unlock_shared(inode);
3960
3961         if (copy_to_user((struct f2fs_comp_option __user *)arg, &option,
3962                                 sizeof(option)))
3963                 return -EFAULT;
3964
3965         return 0;
3966 }
3967
3968 static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg)
3969 {
3970         struct inode *inode = file_inode(filp);
3971         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3972         struct f2fs_comp_option option;
3973         int ret = 0;
3974
3975         if (!f2fs_sb_has_compression(sbi))
3976                 return -EOPNOTSUPP;
3977
3978         if (!(filp->f_mode & FMODE_WRITE))
3979                 return -EBADF;
3980
3981         if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg,
3982                                 sizeof(option)))
3983                 return -EFAULT;
3984
3985         if (!f2fs_compressed_file(inode) ||
3986                         option.log_cluster_size < MIN_COMPRESS_LOG_SIZE ||
3987                         option.log_cluster_size > MAX_COMPRESS_LOG_SIZE ||
3988                         option.algorithm >= COMPRESS_MAX)
3989                 return -EINVAL;
3990
3991         file_start_write(filp);
3992         inode_lock(inode);
3993
3994         f2fs_down_write(&F2FS_I(inode)->i_sem);
3995         if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) {
3996                 ret = -EBUSY;
3997                 goto out;
3998         }
3999
4000         if (F2FS_HAS_BLOCKS(inode)) {
4001                 ret = -EFBIG;
4002                 goto out;
4003         }
4004
4005         F2FS_I(inode)->i_compress_algorithm = option.algorithm;
4006         F2FS_I(inode)->i_log_cluster_size = option.log_cluster_size;
4007         F2FS_I(inode)->i_cluster_size = BIT(option.log_cluster_size);
4008         f2fs_mark_inode_dirty_sync(inode, true);
4009
4010         if (!f2fs_is_compress_backend_ready(inode))
4011                 f2fs_warn(sbi, "compression algorithm is successfully set, "
4012                         "but current kernel doesn't support this algorithm.");
4013 out:
4014         f2fs_up_write(&F2FS_I(inode)->i_sem);
4015         inode_unlock(inode);
4016         file_end_write(filp);
4017
4018         return ret;
4019 }
4020
4021 static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len)
4022 {
4023         DEFINE_READAHEAD(ractl, NULL, NULL, inode->i_mapping, page_idx);
4024         struct address_space *mapping = inode->i_mapping;
4025         struct page *page;
4026         pgoff_t redirty_idx = page_idx;
4027         int i, page_len = 0, ret = 0;
4028
4029         page_cache_ra_unbounded(&ractl, len, 0);
4030
4031         for (i = 0; i < len; i++, page_idx++) {
4032                 page = read_cache_page(mapping, page_idx, NULL, NULL);
4033                 if (IS_ERR(page)) {
4034                         ret = PTR_ERR(page);
4035                         break;
4036                 }
4037                 page_len++;
4038         }
4039
4040         for (i = 0; i < page_len; i++, redirty_idx++) {
4041                 page = find_lock_page(mapping, redirty_idx);
4042
4043                 /* It will never fail, when page has pinned above */
4044                 f2fs_bug_on(F2FS_I_SB(inode), !page);
4045
4046                 set_page_dirty(page);
4047                 f2fs_put_page(page, 1);
4048                 f2fs_put_page(page, 0);
4049         }
4050
4051         return ret;
4052 }
4053
4054 static int f2fs_ioc_decompress_file(struct file *filp)
4055 {
4056         struct inode *inode = file_inode(filp);
4057         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4058         struct f2fs_inode_info *fi = F2FS_I(inode);
4059         pgoff_t page_idx = 0, last_idx;
4060         unsigned int blk_per_seg = sbi->blocks_per_seg;
4061         int cluster_size = fi->i_cluster_size;
4062         int count, ret;
4063
4064         if (!f2fs_sb_has_compression(sbi) ||
4065                         F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4066                 return -EOPNOTSUPP;
4067
4068         if (!(filp->f_mode & FMODE_WRITE))
4069                 return -EBADF;
4070
4071         if (!f2fs_compressed_file(inode))
4072                 return -EINVAL;
4073
4074         f2fs_balance_fs(sbi, true);
4075
4076         file_start_write(filp);
4077         inode_lock(inode);
4078
4079         if (!f2fs_is_compress_backend_ready(inode)) {
4080                 ret = -EOPNOTSUPP;
4081                 goto out;
4082         }
4083
4084         if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4085                 ret = -EINVAL;
4086                 goto out;
4087         }
4088
4089         ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4090         if (ret)
4091                 goto out;
4092
4093         if (!atomic_read(&fi->i_compr_blocks))
4094                 goto out;
4095
4096         last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4097
4098         count = last_idx - page_idx;
4099         while (count && count >= cluster_size) {
4100                 ret = redirty_blocks(inode, page_idx, cluster_size);
4101                 if (ret < 0)
4102                         break;
4103
4104                 if (get_dirty_pages(inode) >= blk_per_seg) {
4105                         ret = filemap_fdatawrite(inode->i_mapping);
4106                         if (ret < 0)
4107                                 break;
4108                 }
4109
4110                 count -= cluster_size;
4111                 page_idx += cluster_size;
4112
4113                 cond_resched();
4114                 if (fatal_signal_pending(current)) {
4115                         ret = -EINTR;
4116                         break;
4117                 }
4118         }
4119
4120         if (!ret)
4121                 ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4122                                                         LLONG_MAX);
4123
4124         if (ret)
4125                 f2fs_warn(sbi, "%s: The file might be partially decompressed (errno=%d). Please delete the file.",
4126                           __func__, ret);
4127 out:
4128         inode_unlock(inode);
4129         file_end_write(filp);
4130
4131         return ret;
4132 }
4133
4134 static int f2fs_ioc_compress_file(struct file *filp)
4135 {
4136         struct inode *inode = file_inode(filp);
4137         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4138         pgoff_t page_idx = 0, last_idx;
4139         unsigned int blk_per_seg = sbi->blocks_per_seg;
4140         int cluster_size = F2FS_I(inode)->i_cluster_size;
4141         int count, ret;
4142
4143         if (!f2fs_sb_has_compression(sbi) ||
4144                         F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4145                 return -EOPNOTSUPP;
4146
4147         if (!(filp->f_mode & FMODE_WRITE))
4148                 return -EBADF;
4149
4150         if (!f2fs_compressed_file(inode))
4151                 return -EINVAL;
4152
4153         f2fs_balance_fs(sbi, true);
4154
4155         file_start_write(filp);
4156         inode_lock(inode);
4157
4158         if (!f2fs_is_compress_backend_ready(inode)) {
4159                 ret = -EOPNOTSUPP;
4160                 goto out;
4161         }
4162
4163         if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4164                 ret = -EINVAL;
4165                 goto out;
4166         }
4167
4168         ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4169         if (ret)
4170                 goto out;
4171
4172         set_inode_flag(inode, FI_ENABLE_COMPRESS);
4173
4174         last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4175
4176         count = last_idx - page_idx;
4177         while (count && count >= cluster_size) {
4178                 ret = redirty_blocks(inode, page_idx, cluster_size);
4179                 if (ret < 0)
4180                         break;
4181
4182                 if (get_dirty_pages(inode) >= blk_per_seg) {
4183                         ret = filemap_fdatawrite(inode->i_mapping);
4184                         if (ret < 0)
4185                                 break;
4186                 }
4187
4188                 count -= cluster_size;
4189                 page_idx += cluster_size;
4190
4191                 cond_resched();
4192                 if (fatal_signal_pending(current)) {
4193                         ret = -EINTR;
4194                         break;
4195                 }
4196         }
4197
4198         if (!ret)
4199                 ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4200                                                         LLONG_MAX);
4201
4202         clear_inode_flag(inode, FI_ENABLE_COMPRESS);
4203
4204         if (ret)
4205                 f2fs_warn(sbi, "%s: The file might be partially compressed (errno=%d). Please delete the file.",
4206                           __func__, ret);
4207 out:
4208         inode_unlock(inode);
4209         file_end_write(filp);
4210
4211         return ret;
4212 }
4213
4214 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4215 {
4216         switch (cmd) {
4217         case FS_IOC_GETVERSION:
4218                 return f2fs_ioc_getversion(filp, arg);
4219         case F2FS_IOC_START_ATOMIC_WRITE:
4220                 return f2fs_ioc_start_atomic_write(filp, false);
4221         case F2FS_IOC_START_ATOMIC_REPLACE:
4222                 return f2fs_ioc_start_atomic_write(filp, true);
4223         case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4224                 return f2fs_ioc_commit_atomic_write(filp);
4225         case F2FS_IOC_ABORT_ATOMIC_WRITE:
4226                 return f2fs_ioc_abort_atomic_write(filp);
4227         case F2FS_IOC_START_VOLATILE_WRITE:
4228         case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4229                 return -EOPNOTSUPP;
4230         case F2FS_IOC_SHUTDOWN:
4231                 return f2fs_ioc_shutdown(filp, arg);
4232         case FITRIM:
4233                 return f2fs_ioc_fitrim(filp, arg);
4234         case FS_IOC_SET_ENCRYPTION_POLICY:
4235                 return f2fs_ioc_set_encryption_policy(filp, arg);
4236         case FS_IOC_GET_ENCRYPTION_POLICY:
4237                 return f2fs_ioc_get_encryption_policy(filp, arg);
4238         case FS_IOC_GET_ENCRYPTION_PWSALT:
4239                 return f2fs_ioc_get_encryption_pwsalt(filp, arg);
4240         case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4241                 return f2fs_ioc_get_encryption_policy_ex(filp, arg);
4242         case FS_IOC_ADD_ENCRYPTION_KEY:
4243                 return f2fs_ioc_add_encryption_key(filp, arg);
4244         case FS_IOC_REMOVE_ENCRYPTION_KEY:
4245                 return f2fs_ioc_remove_encryption_key(filp, arg);
4246         case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4247                 return f2fs_ioc_remove_encryption_key_all_users(filp, arg);
4248         case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4249                 return f2fs_ioc_get_encryption_key_status(filp, arg);
4250         case FS_IOC_GET_ENCRYPTION_NONCE:
4251                 return f2fs_ioc_get_encryption_nonce(filp, arg);
4252         case F2FS_IOC_GARBAGE_COLLECT:
4253                 return f2fs_ioc_gc(filp, arg);
4254         case F2FS_IOC_GARBAGE_COLLECT_RANGE:
4255                 return f2fs_ioc_gc_range(filp, arg);
4256         case F2FS_IOC_WRITE_CHECKPOINT:
4257                 return f2fs_ioc_write_checkpoint(filp);
4258         case F2FS_IOC_DEFRAGMENT:
4259                 return f2fs_ioc_defragment(filp, arg);
4260         case F2FS_IOC_MOVE_RANGE:
4261                 return f2fs_ioc_move_range(filp, arg);
4262         case F2FS_IOC_FLUSH_DEVICE:
4263                 return f2fs_ioc_flush_device(filp, arg);
4264         case F2FS_IOC_GET_FEATURES:
4265                 return f2fs_ioc_get_features(filp, arg);
4266         case F2FS_IOC_GET_PIN_FILE:
4267                 return f2fs_ioc_get_pin_file(filp, arg);
4268         case F2FS_IOC_SET_PIN_FILE:
4269                 return f2fs_ioc_set_pin_file(filp, arg);
4270         case F2FS_IOC_PRECACHE_EXTENTS:
4271                 return f2fs_ioc_precache_extents(filp);
4272         case F2FS_IOC_RESIZE_FS:
4273                 return f2fs_ioc_resize_fs(filp, arg);
4274         case FS_IOC_ENABLE_VERITY:
4275                 return f2fs_ioc_enable_verity(filp, arg);
4276         case FS_IOC_MEASURE_VERITY:
4277                 return f2fs_ioc_measure_verity(filp, arg);
4278         case FS_IOC_READ_VERITY_METADATA:
4279                 return f2fs_ioc_read_verity_metadata(filp, arg);
4280         case FS_IOC_GETFSLABEL:
4281                 return f2fs_ioc_getfslabel(filp, arg);
4282         case FS_IOC_SETFSLABEL:
4283                 return f2fs_ioc_setfslabel(filp, arg);
4284         case F2FS_IOC_GET_COMPRESS_BLOCKS:
4285                 return f2fs_ioc_get_compress_blocks(filp, arg);
4286         case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4287                 return f2fs_release_compress_blocks(filp, arg);
4288         case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4289                 return f2fs_reserve_compress_blocks(filp, arg);
4290         case F2FS_IOC_SEC_TRIM_FILE:
4291                 return f2fs_sec_trim_file(filp, arg);
4292         case F2FS_IOC_GET_COMPRESS_OPTION:
4293                 return f2fs_ioc_get_compress_option(filp, arg);
4294         case F2FS_IOC_SET_COMPRESS_OPTION:
4295                 return f2fs_ioc_set_compress_option(filp, arg);
4296         case F2FS_IOC_DECOMPRESS_FILE:
4297                 return f2fs_ioc_decompress_file(filp);
4298         case F2FS_IOC_COMPRESS_FILE:
4299                 return f2fs_ioc_compress_file(filp);
4300         default:
4301                 return -ENOTTY;
4302         }
4303 }
4304
4305 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4306 {
4307         if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
4308                 return -EIO;
4309         if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp))))
4310                 return -ENOSPC;
4311
4312         return __f2fs_ioctl(filp, cmd, arg);
4313 }
4314
4315 /*
4316  * Return %true if the given read or write request should use direct I/O, or
4317  * %false if it should use buffered I/O.
4318  */
4319 static bool f2fs_should_use_dio(struct inode *inode, struct kiocb *iocb,
4320                                 struct iov_iter *iter)
4321 {
4322         unsigned int align;
4323
4324         if (!(iocb->ki_flags & IOCB_DIRECT))
4325                 return false;
4326
4327         if (f2fs_force_buffered_io(inode, iov_iter_rw(iter)))
4328                 return false;
4329
4330         /*
4331          * Direct I/O not aligned to the disk's logical_block_size will be
4332          * attempted, but will fail with -EINVAL.
4333          *
4334          * f2fs additionally requires that direct I/O be aligned to the
4335          * filesystem block size, which is often a stricter requirement.
4336          * However, f2fs traditionally falls back to buffered I/O on requests
4337          * that are logical_block_size-aligned but not fs-block aligned.
4338          *
4339          * The below logic implements this behavior.
4340          */
4341         align = iocb->ki_pos | iov_iter_alignment(iter);
4342         if (!IS_ALIGNED(align, i_blocksize(inode)) &&
4343             IS_ALIGNED(align, bdev_logical_block_size(inode->i_sb->s_bdev)))
4344                 return false;
4345
4346         return true;
4347 }
4348
4349 static int f2fs_dio_read_end_io(struct kiocb *iocb, ssize_t size, int error,
4350                                 unsigned int flags)
4351 {
4352         struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4353
4354         dec_page_count(sbi, F2FS_DIO_READ);
4355         if (error)
4356                 return error;
4357         f2fs_update_iostat(sbi, NULL, APP_DIRECT_READ_IO, size);
4358         return 0;
4359 }
4360
4361 static const struct iomap_dio_ops f2fs_iomap_dio_read_ops = {
4362         .end_io = f2fs_dio_read_end_io,
4363 };
4364
4365 static ssize_t f2fs_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
4366 {
4367         struct file *file = iocb->ki_filp;
4368         struct inode *inode = file_inode(file);
4369         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4370         struct f2fs_inode_info *fi = F2FS_I(inode);
4371         const loff_t pos = iocb->ki_pos;
4372         const size_t count = iov_iter_count(to);
4373         struct iomap_dio *dio;
4374         ssize_t ret;
4375
4376         if (count == 0)
4377                 return 0; /* skip atime update */
4378
4379         trace_f2fs_direct_IO_enter(inode, iocb, count, READ);
4380
4381         if (iocb->ki_flags & IOCB_NOWAIT) {
4382                 if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4383                         ret = -EAGAIN;
4384                         goto out;
4385                 }
4386         } else {
4387                 f2fs_down_read(&fi->i_gc_rwsem[READ]);
4388         }
4389
4390         /*
4391          * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4392          * the higher-level function iomap_dio_rw() in order to ensure that the
4393          * F2FS_DIO_READ counter will be decremented correctly in all cases.
4394          */
4395         inc_page_count(sbi, F2FS_DIO_READ);
4396         dio = __iomap_dio_rw(iocb, to, &f2fs_iomap_ops,
4397                              &f2fs_iomap_dio_read_ops, 0, NULL, 0);
4398         if (IS_ERR_OR_NULL(dio)) {
4399                 ret = PTR_ERR_OR_ZERO(dio);
4400                 if (ret != -EIOCBQUEUED)
4401                         dec_page_count(sbi, F2FS_DIO_READ);
4402         } else {
4403                 ret = iomap_dio_complete(dio);
4404         }
4405
4406         f2fs_up_read(&fi->i_gc_rwsem[READ]);
4407
4408         file_accessed(file);
4409 out:
4410         trace_f2fs_direct_IO_exit(inode, pos, count, READ, ret);
4411         return ret;
4412 }
4413
4414 static void f2fs_trace_rw_file_path(struct file *file, loff_t pos, size_t count,
4415                                     int rw)
4416 {
4417         struct inode *inode = file_inode(file);
4418         char *buf, *path;
4419
4420         buf = f2fs_getname(F2FS_I_SB(inode));
4421         if (!buf)
4422                 return;
4423         path = dentry_path_raw(file_dentry(file), buf, PATH_MAX);
4424         if (IS_ERR(path))
4425                 goto free_buf;
4426         if (rw == WRITE)
4427                 trace_f2fs_datawrite_start(inode, pos, count,
4428                                 current->pid, path, current->comm);
4429         else
4430                 trace_f2fs_dataread_start(inode, pos, count,
4431                                 current->pid, path, current->comm);
4432 free_buf:
4433         f2fs_putname(buf);
4434 }
4435
4436 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
4437 {
4438         struct inode *inode = file_inode(iocb->ki_filp);
4439         const loff_t pos = iocb->ki_pos;
4440         ssize_t ret;
4441
4442         if (!f2fs_is_compress_backend_ready(inode))
4443                 return -EOPNOTSUPP;
4444
4445         if (trace_f2fs_dataread_start_enabled())
4446                 f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos,
4447                                         iov_iter_count(to), READ);
4448
4449         if (f2fs_should_use_dio(inode, iocb, to)) {
4450                 ret = f2fs_dio_read_iter(iocb, to);
4451         } else {
4452                 ret = filemap_read(iocb, to, 0);
4453                 if (ret > 0)
4454                         f2fs_update_iostat(F2FS_I_SB(inode), inode,
4455                                                 APP_BUFFERED_READ_IO, ret);
4456         }
4457         if (trace_f2fs_dataread_end_enabled())
4458                 trace_f2fs_dataread_end(inode, pos, ret);
4459         return ret;
4460 }
4461
4462 static ssize_t f2fs_file_splice_read(struct file *in, loff_t *ppos,
4463                                      struct pipe_inode_info *pipe,
4464                                      size_t len, unsigned int flags)
4465 {
4466         struct inode *inode = file_inode(in);
4467         const loff_t pos = *ppos;
4468         ssize_t ret;
4469
4470         if (!f2fs_is_compress_backend_ready(inode))
4471                 return -EOPNOTSUPP;
4472
4473         if (trace_f2fs_dataread_start_enabled())
4474                 f2fs_trace_rw_file_path(in, pos, len, READ);
4475
4476         ret = filemap_splice_read(in, ppos, pipe, len, flags);
4477         if (ret > 0)
4478                 f2fs_update_iostat(F2FS_I_SB(inode), inode,
4479                                    APP_BUFFERED_READ_IO, ret);
4480
4481         if (trace_f2fs_dataread_end_enabled())
4482                 trace_f2fs_dataread_end(inode, pos, ret);
4483         return ret;
4484 }
4485
4486 static ssize_t f2fs_write_checks(struct kiocb *iocb, struct iov_iter *from)
4487 {
4488         struct file *file = iocb->ki_filp;
4489         struct inode *inode = file_inode(file);
4490         ssize_t count;
4491         int err;
4492
4493         if (IS_IMMUTABLE(inode))
4494                 return -EPERM;
4495
4496         if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
4497                 return -EPERM;
4498
4499         count = generic_write_checks(iocb, from);
4500         if (count <= 0)
4501                 return count;
4502
4503         err = file_modified(file);
4504         if (err)
4505                 return err;
4506         return count;
4507 }
4508
4509 /*
4510  * Preallocate blocks for a write request, if it is possible and helpful to do
4511  * so.  Returns a positive number if blocks may have been preallocated, 0 if no
4512  * blocks were preallocated, or a negative errno value if something went
4513  * seriously wrong.  Also sets FI_PREALLOCATED_ALL on the inode if *all* the
4514  * requested blocks (not just some of them) have been allocated.
4515  */
4516 static int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *iter,
4517                                    bool dio)
4518 {
4519         struct inode *inode = file_inode(iocb->ki_filp);
4520         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4521         const loff_t pos = iocb->ki_pos;
4522         const size_t count = iov_iter_count(iter);
4523         struct f2fs_map_blocks map = {};
4524         int flag;
4525         int ret;
4526
4527         /* If it will be an out-of-place direct write, don't bother. */
4528         if (dio && f2fs_lfs_mode(sbi))
4529                 return 0;
4530         /*
4531          * Don't preallocate holes aligned to DIO_SKIP_HOLES which turns into
4532          * buffered IO, if DIO meets any holes.
4533          */
4534         if (dio && i_size_read(inode) &&
4535                 (F2FS_BYTES_TO_BLK(pos) < F2FS_BLK_ALIGN(i_size_read(inode))))
4536                 return 0;
4537
4538         /* No-wait I/O can't allocate blocks. */
4539         if (iocb->ki_flags & IOCB_NOWAIT)
4540                 return 0;
4541
4542         /* If it will be a short write, don't bother. */
4543         if (fault_in_iov_iter_readable(iter, count))
4544                 return 0;
4545
4546         if (f2fs_has_inline_data(inode)) {
4547                 /* If the data will fit inline, don't bother. */
4548                 if (pos + count <= MAX_INLINE_DATA(inode))
4549                         return 0;
4550                 ret = f2fs_convert_inline_inode(inode);
4551                 if (ret)
4552                         return ret;
4553         }
4554
4555         /* Do not preallocate blocks that will be written partially in 4KB. */
4556         map.m_lblk = F2FS_BLK_ALIGN(pos);
4557         map.m_len = F2FS_BYTES_TO_BLK(pos + count);
4558         if (map.m_len > map.m_lblk)
4559                 map.m_len -= map.m_lblk;
4560         else
4561                 map.m_len = 0;
4562         map.m_may_create = true;
4563         if (dio) {
4564                 map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint);
4565                 flag = F2FS_GET_BLOCK_PRE_DIO;
4566         } else {
4567                 map.m_seg_type = NO_CHECK_TYPE;
4568                 flag = F2FS_GET_BLOCK_PRE_AIO;
4569         }
4570
4571         ret = f2fs_map_blocks(inode, &map, flag);
4572         /* -ENOSPC|-EDQUOT are fine to report the number of allocated blocks. */
4573         if (ret < 0 && !((ret == -ENOSPC || ret == -EDQUOT) && map.m_len > 0))
4574                 return ret;
4575         if (ret == 0)
4576                 set_inode_flag(inode, FI_PREALLOCATED_ALL);
4577         return map.m_len;
4578 }
4579
4580 static ssize_t f2fs_buffered_write_iter(struct kiocb *iocb,
4581                                         struct iov_iter *from)
4582 {
4583         struct file *file = iocb->ki_filp;
4584         struct inode *inode = file_inode(file);
4585         ssize_t ret;
4586
4587         if (iocb->ki_flags & IOCB_NOWAIT)
4588                 return -EOPNOTSUPP;
4589
4590         ret = generic_perform_write(iocb, from);
4591
4592         if (ret > 0) {
4593                 f2fs_update_iostat(F2FS_I_SB(inode), inode,
4594                                                 APP_BUFFERED_IO, ret);
4595         }
4596         return ret;
4597 }
4598
4599 static int f2fs_dio_write_end_io(struct kiocb *iocb, ssize_t size, int error,
4600                                  unsigned int flags)
4601 {
4602         struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4603
4604         dec_page_count(sbi, F2FS_DIO_WRITE);
4605         if (error)
4606                 return error;
4607         f2fs_update_time(sbi, REQ_TIME);
4608         f2fs_update_iostat(sbi, NULL, APP_DIRECT_IO, size);
4609         return 0;
4610 }
4611
4612 static const struct iomap_dio_ops f2fs_iomap_dio_write_ops = {
4613         .end_io = f2fs_dio_write_end_io,
4614 };
4615
4616 static void f2fs_flush_buffered_write(struct address_space *mapping,
4617                                       loff_t start_pos, loff_t end_pos)
4618 {
4619         int ret;
4620
4621         ret = filemap_write_and_wait_range(mapping, start_pos, end_pos);
4622         if (ret < 0)
4623                 return;
4624         invalidate_mapping_pages(mapping,
4625                                  start_pos >> PAGE_SHIFT,
4626                                  end_pos >> PAGE_SHIFT);
4627 }
4628
4629 static ssize_t f2fs_dio_write_iter(struct kiocb *iocb, struct iov_iter *from,
4630                                    bool *may_need_sync)
4631 {
4632         struct file *file = iocb->ki_filp;
4633         struct inode *inode = file_inode(file);
4634         struct f2fs_inode_info *fi = F2FS_I(inode);
4635         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4636         const bool do_opu = f2fs_lfs_mode(sbi);
4637         const loff_t pos = iocb->ki_pos;
4638         const ssize_t count = iov_iter_count(from);
4639         unsigned int dio_flags;
4640         struct iomap_dio *dio;
4641         ssize_t ret;
4642
4643         trace_f2fs_direct_IO_enter(inode, iocb, count, WRITE);
4644
4645         if (iocb->ki_flags & IOCB_NOWAIT) {
4646                 /* f2fs_convert_inline_inode() and block allocation can block */
4647                 if (f2fs_has_inline_data(inode) ||
4648                     !f2fs_overwrite_io(inode, pos, count)) {
4649                         ret = -EAGAIN;
4650                         goto out;
4651                 }
4652
4653                 if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[WRITE])) {
4654                         ret = -EAGAIN;
4655                         goto out;
4656                 }
4657                 if (do_opu && !f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4658                         f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4659                         ret = -EAGAIN;
4660                         goto out;
4661                 }
4662         } else {
4663                 ret = f2fs_convert_inline_inode(inode);
4664                 if (ret)
4665                         goto out;
4666
4667                 f2fs_down_read(&fi->i_gc_rwsem[WRITE]);
4668                 if (do_opu)
4669                         f2fs_down_read(&fi->i_gc_rwsem[READ]);
4670         }
4671
4672         /*
4673          * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4674          * the higher-level function iomap_dio_rw() in order to ensure that the
4675          * F2FS_DIO_WRITE counter will be decremented correctly in all cases.
4676          */
4677         inc_page_count(sbi, F2FS_DIO_WRITE);
4678         dio_flags = 0;
4679         if (pos + count > inode->i_size)
4680                 dio_flags |= IOMAP_DIO_FORCE_WAIT;
4681         dio = __iomap_dio_rw(iocb, from, &f2fs_iomap_ops,
4682                              &f2fs_iomap_dio_write_ops, dio_flags, NULL, 0);
4683         if (IS_ERR_OR_NULL(dio)) {
4684                 ret = PTR_ERR_OR_ZERO(dio);
4685                 if (ret == -ENOTBLK)
4686                         ret = 0;
4687                 if (ret != -EIOCBQUEUED)
4688                         dec_page_count(sbi, F2FS_DIO_WRITE);
4689         } else {
4690                 ret = iomap_dio_complete(dio);
4691         }
4692
4693         if (do_opu)
4694                 f2fs_up_read(&fi->i_gc_rwsem[READ]);
4695         f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4696
4697         if (ret < 0)
4698                 goto out;
4699         if (pos + ret > inode->i_size)
4700                 f2fs_i_size_write(inode, pos + ret);
4701         if (!do_opu)
4702                 set_inode_flag(inode, FI_UPDATE_WRITE);
4703
4704         if (iov_iter_count(from)) {
4705                 ssize_t ret2;
4706                 loff_t bufio_start_pos = iocb->ki_pos;
4707
4708                 /*
4709                  * The direct write was partial, so we need to fall back to a
4710                  * buffered write for the remainder.
4711                  */
4712
4713                 ret2 = f2fs_buffered_write_iter(iocb, from);
4714                 if (iov_iter_count(from))
4715                         f2fs_write_failed(inode, iocb->ki_pos);
4716                 if (ret2 < 0)
4717                         goto out;
4718
4719                 /*
4720                  * Ensure that the pagecache pages are written to disk and
4721                  * invalidated to preserve the expected O_DIRECT semantics.
4722                  */
4723                 if (ret2 > 0) {
4724                         loff_t bufio_end_pos = bufio_start_pos + ret2 - 1;
4725
4726                         ret += ret2;
4727
4728                         f2fs_flush_buffered_write(file->f_mapping,
4729                                                   bufio_start_pos,
4730                                                   bufio_end_pos);
4731                 }
4732         } else {
4733                 /* iomap_dio_rw() already handled the generic_write_sync(). */
4734                 *may_need_sync = false;
4735         }
4736 out:
4737         trace_f2fs_direct_IO_exit(inode, pos, count, WRITE, ret);
4738         return ret;
4739 }
4740
4741 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4742 {
4743         struct inode *inode = file_inode(iocb->ki_filp);
4744         const loff_t orig_pos = iocb->ki_pos;
4745         const size_t orig_count = iov_iter_count(from);
4746         loff_t target_size;
4747         bool dio;
4748         bool may_need_sync = true;
4749         int preallocated;
4750         ssize_t ret;
4751
4752         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
4753                 ret = -EIO;
4754                 goto out;
4755         }
4756
4757         if (!f2fs_is_compress_backend_ready(inode)) {
4758                 ret = -EOPNOTSUPP;
4759                 goto out;
4760         }
4761
4762         if (iocb->ki_flags & IOCB_NOWAIT) {
4763                 if (!inode_trylock(inode)) {
4764                         ret = -EAGAIN;
4765                         goto out;
4766                 }
4767         } else {
4768                 inode_lock(inode);
4769         }
4770
4771         ret = f2fs_write_checks(iocb, from);
4772         if (ret <= 0)
4773                 goto out_unlock;
4774
4775         /* Determine whether we will do a direct write or a buffered write. */
4776         dio = f2fs_should_use_dio(inode, iocb, from);
4777
4778         /* Possibly preallocate the blocks for the write. */
4779         target_size = iocb->ki_pos + iov_iter_count(from);
4780         preallocated = f2fs_preallocate_blocks(iocb, from, dio);
4781         if (preallocated < 0) {
4782                 ret = preallocated;
4783         } else {
4784                 if (trace_f2fs_datawrite_start_enabled())
4785                         f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos,
4786                                                 orig_count, WRITE);
4787
4788                 /* Do the actual write. */
4789                 ret = dio ?
4790                         f2fs_dio_write_iter(iocb, from, &may_need_sync) :
4791                         f2fs_buffered_write_iter(iocb, from);
4792
4793                 if (trace_f2fs_datawrite_end_enabled())
4794                         trace_f2fs_datawrite_end(inode, orig_pos, ret);
4795         }
4796
4797         /* Don't leave any preallocated blocks around past i_size. */
4798         if (preallocated && i_size_read(inode) < target_size) {
4799                 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4800                 filemap_invalidate_lock(inode->i_mapping);
4801                 if (!f2fs_truncate(inode))
4802                         file_dont_truncate(inode);
4803                 filemap_invalidate_unlock(inode->i_mapping);
4804                 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4805         } else {
4806                 file_dont_truncate(inode);
4807         }
4808
4809         clear_inode_flag(inode, FI_PREALLOCATED_ALL);
4810 out_unlock:
4811         inode_unlock(inode);
4812 out:
4813         trace_f2fs_file_write_iter(inode, orig_pos, orig_count, ret);
4814
4815         if (ret > 0 && may_need_sync)
4816                 ret = generic_write_sync(iocb, ret);
4817
4818         /* If buffered IO was forced, flush and drop the data from
4819          * the page cache to preserve O_DIRECT semantics
4820          */
4821         if (ret > 0 && !dio && (iocb->ki_flags & IOCB_DIRECT))
4822                 f2fs_flush_buffered_write(iocb->ki_filp->f_mapping,
4823                                           orig_pos,
4824                                           orig_pos + ret - 1);
4825
4826         return ret;
4827 }
4828
4829 static int f2fs_file_fadvise(struct file *filp, loff_t offset, loff_t len,
4830                 int advice)
4831 {
4832         struct address_space *mapping;
4833         struct backing_dev_info *bdi;
4834         struct inode *inode = file_inode(filp);
4835         int err;
4836
4837         if (advice == POSIX_FADV_SEQUENTIAL) {
4838                 if (S_ISFIFO(inode->i_mode))
4839                         return -ESPIPE;
4840
4841                 mapping = filp->f_mapping;
4842                 if (!mapping || len < 0)
4843                         return -EINVAL;
4844
4845                 bdi = inode_to_bdi(mapping->host);
4846                 filp->f_ra.ra_pages = bdi->ra_pages *
4847                         F2FS_I_SB(inode)->seq_file_ra_mul;
4848                 spin_lock(&filp->f_lock);
4849                 filp->f_mode &= ~FMODE_RANDOM;
4850                 spin_unlock(&filp->f_lock);
4851                 return 0;
4852         }
4853
4854         err = generic_fadvise(filp, offset, len, advice);
4855         if (!err && advice == POSIX_FADV_DONTNEED &&
4856                 test_opt(F2FS_I_SB(inode), COMPRESS_CACHE) &&
4857                 f2fs_compressed_file(inode))
4858                 f2fs_invalidate_compress_pages(F2FS_I_SB(inode), inode->i_ino);
4859
4860         return err;
4861 }
4862
4863 #ifdef CONFIG_COMPAT
4864 struct compat_f2fs_gc_range {
4865         u32 sync;
4866         compat_u64 start;
4867         compat_u64 len;
4868 };
4869 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE        _IOW(F2FS_IOCTL_MAGIC, 11,\
4870                                                 struct compat_f2fs_gc_range)
4871
4872 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg)
4873 {
4874         struct compat_f2fs_gc_range __user *urange;
4875         struct f2fs_gc_range range;
4876         int err;
4877
4878         urange = compat_ptr(arg);
4879         err = get_user(range.sync, &urange->sync);
4880         err |= get_user(range.start, &urange->start);
4881         err |= get_user(range.len, &urange->len);
4882         if (err)
4883                 return -EFAULT;
4884
4885         return __f2fs_ioc_gc_range(file, &range);
4886 }
4887
4888 struct compat_f2fs_move_range {
4889         u32 dst_fd;
4890         compat_u64 pos_in;
4891         compat_u64 pos_out;
4892         compat_u64 len;
4893 };
4894 #define F2FS_IOC32_MOVE_RANGE           _IOWR(F2FS_IOCTL_MAGIC, 9,      \
4895                                         struct compat_f2fs_move_range)
4896
4897 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg)
4898 {
4899         struct compat_f2fs_move_range __user *urange;
4900         struct f2fs_move_range range;
4901         int err;
4902
4903         urange = compat_ptr(arg);
4904         err = get_user(range.dst_fd, &urange->dst_fd);
4905         err |= get_user(range.pos_in, &urange->pos_in);
4906         err |= get_user(range.pos_out, &urange->pos_out);
4907         err |= get_user(range.len, &urange->len);
4908         if (err)
4909                 return -EFAULT;
4910
4911         return __f2fs_ioc_move_range(file, &range);
4912 }
4913
4914 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4915 {
4916         if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
4917                 return -EIO;
4918         if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file))))
4919                 return -ENOSPC;
4920
4921         switch (cmd) {
4922         case FS_IOC32_GETVERSION:
4923                 cmd = FS_IOC_GETVERSION;
4924                 break;
4925         case F2FS_IOC32_GARBAGE_COLLECT_RANGE:
4926                 return f2fs_compat_ioc_gc_range(file, arg);
4927         case F2FS_IOC32_MOVE_RANGE:
4928                 return f2fs_compat_ioc_move_range(file, arg);
4929         case F2FS_IOC_START_ATOMIC_WRITE:
4930         case F2FS_IOC_START_ATOMIC_REPLACE:
4931         case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4932         case F2FS_IOC_START_VOLATILE_WRITE:
4933         case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4934         case F2FS_IOC_ABORT_ATOMIC_WRITE:
4935         case F2FS_IOC_SHUTDOWN:
4936         case FITRIM:
4937         case FS_IOC_SET_ENCRYPTION_POLICY:
4938         case FS_IOC_GET_ENCRYPTION_PWSALT:
4939         case FS_IOC_GET_ENCRYPTION_POLICY:
4940         case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4941         case FS_IOC_ADD_ENCRYPTION_KEY:
4942         case FS_IOC_REMOVE_ENCRYPTION_KEY:
4943         case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4944         case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4945         case FS_IOC_GET_ENCRYPTION_NONCE:
4946         case F2FS_IOC_GARBAGE_COLLECT:
4947         case F2FS_IOC_WRITE_CHECKPOINT:
4948         case F2FS_IOC_DEFRAGMENT:
4949         case F2FS_IOC_FLUSH_DEVICE:
4950         case F2FS_IOC_GET_FEATURES:
4951         case F2FS_IOC_GET_PIN_FILE:
4952         case F2FS_IOC_SET_PIN_FILE:
4953         case F2FS_IOC_PRECACHE_EXTENTS:
4954         case F2FS_IOC_RESIZE_FS:
4955         case FS_IOC_ENABLE_VERITY:
4956         case FS_IOC_MEASURE_VERITY:
4957         case FS_IOC_READ_VERITY_METADATA:
4958         case FS_IOC_GETFSLABEL:
4959         case FS_IOC_SETFSLABEL:
4960         case F2FS_IOC_GET_COMPRESS_BLOCKS:
4961         case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4962         case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4963         case F2FS_IOC_SEC_TRIM_FILE:
4964         case F2FS_IOC_GET_COMPRESS_OPTION:
4965         case F2FS_IOC_SET_COMPRESS_OPTION:
4966         case F2FS_IOC_DECOMPRESS_FILE:
4967         case F2FS_IOC_COMPRESS_FILE:
4968                 break;
4969         default:
4970                 return -ENOIOCTLCMD;
4971         }
4972         return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
4973 }
4974 #endif
4975
4976 const struct file_operations f2fs_file_operations = {
4977         .llseek         = f2fs_llseek,
4978         .read_iter      = f2fs_file_read_iter,
4979         .write_iter     = f2fs_file_write_iter,
4980         .iopoll         = iocb_bio_iopoll,
4981         .open           = f2fs_file_open,
4982         .release        = f2fs_release_file,
4983         .mmap           = f2fs_file_mmap,
4984         .flush          = f2fs_file_flush,
4985         .fsync          = f2fs_sync_file,
4986         .fallocate      = f2fs_fallocate,
4987         .unlocked_ioctl = f2fs_ioctl,
4988 #ifdef CONFIG_COMPAT
4989         .compat_ioctl   = f2fs_compat_ioctl,
4990 #endif
4991         .splice_read    = f2fs_file_splice_read,
4992         .splice_write   = iter_file_splice_write,
4993         .fadvise        = f2fs_file_fadvise,
4994 };