4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/f2fs_fs.h>
13 #include <linux/stat.h>
14 #include <linux/buffer_head.h>
15 #include <linux/writeback.h>
16 #include <linux/blkdev.h>
17 #include <linux/falloc.h>
18 #include <linux/types.h>
19 #include <linux/compat.h>
20 #include <linux/uaccess.h>
21 #include <linux/mount.h>
22 #include <linux/pagevec.h>
23 #include <linux/uuid.h>
24 #include <linux/file.h>
33 #include <trace/events/f2fs.h>
35 static int f2fs_vm_page_mkwrite(struct vm_area_struct *vma,
38 struct page *page = vmf->page;
39 struct inode *inode = file_inode(vma->vm_file);
40 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
41 struct dnode_of_data dn;
44 sb_start_pagefault(inode->i_sb);
46 f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
48 /* block allocation */
50 set_new_dnode(&dn, inode, NULL, NULL, 0);
51 err = f2fs_reserve_block(&dn, page->index);
59 f2fs_balance_fs(sbi, dn.node_changed);
61 file_update_time(vma->vm_file);
63 if (unlikely(page->mapping != inode->i_mapping ||
64 page_offset(page) > i_size_read(inode) ||
65 !PageUptodate(page))) {
72 * check to see if the page is mapped already (no holes)
74 if (PageMappedToDisk(page))
77 /* page is wholly or partially inside EOF */
78 if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
81 offset = i_size_read(inode) & ~PAGE_MASK;
82 zero_user_segment(page, offset, PAGE_SIZE);
85 if (!PageUptodate(page))
86 SetPageUptodate(page);
88 trace_f2fs_vm_page_mkwrite(page, DATA);
91 f2fs_wait_on_page_writeback(page, DATA, false);
93 /* wait for GCed encrypted page writeback */
94 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
95 f2fs_wait_on_encrypted_page_writeback(sbi, dn.data_blkaddr);
97 /* if gced page is attached, don't write to cold segment */
98 clear_cold_data(page);
100 sb_end_pagefault(inode->i_sb);
101 f2fs_update_time(sbi, REQ_TIME);
102 return block_page_mkwrite_return(err);
105 static const struct vm_operations_struct f2fs_file_vm_ops = {
106 .fault = filemap_fault,
107 .map_pages = filemap_map_pages,
108 .page_mkwrite = f2fs_vm_page_mkwrite,
111 static int get_parent_ino(struct inode *inode, nid_t *pino)
113 struct dentry *dentry;
115 inode = igrab(inode);
116 dentry = d_find_any_alias(inode);
121 if (update_dent_inode(inode, inode, &dentry->d_name)) {
126 *pino = parent_ino(dentry);
131 static inline bool need_do_checkpoint(struct inode *inode)
133 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
134 bool need_cp = false;
136 if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
138 else if (file_enc_name(inode) && need_dentry_mark(sbi, inode->i_ino))
140 else if (file_wrong_pino(inode))
142 else if (!space_for_roll_forward(sbi))
144 else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
146 else if (F2FS_I(inode)->xattr_ver == cur_cp_version(F2FS_CKPT(sbi)))
148 else if (test_opt(sbi, FASTBOOT))
150 else if (sbi->active_logs == 2)
156 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
158 struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
160 /* But we need to avoid that there are some inode updates */
161 if ((i && PageDirty(i)) || need_inode_block_update(sbi, ino))
167 static void try_to_fix_pino(struct inode *inode)
169 struct f2fs_inode_info *fi = F2FS_I(inode);
172 down_write(&fi->i_sem);
174 if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
175 get_parent_ino(inode, &pino)) {
176 f2fs_i_pino_write(inode, pino);
177 file_got_pino(inode);
179 up_write(&fi->i_sem);
182 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
183 int datasync, bool atomic)
185 struct inode *inode = file->f_mapping->host;
186 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
187 nid_t ino = inode->i_ino;
189 bool need_cp = false;
190 struct writeback_control wbc = {
191 .sync_mode = WB_SYNC_ALL,
192 .nr_to_write = LONG_MAX,
196 if (unlikely(f2fs_readonly(inode->i_sb)))
199 trace_f2fs_sync_file_enter(inode);
201 /* if fdatasync is triggered, let's do in-place-update */
202 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
203 set_inode_flag(inode, FI_NEED_IPU);
204 ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
205 clear_inode_flag(inode, FI_NEED_IPU);
208 trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
212 /* if the inode is dirty, let's recover all the time */
213 if (!datasync && !f2fs_skip_inode_update(inode)) {
214 f2fs_write_inode(inode, NULL);
219 * if there is no written data, don't waste time to write recovery info.
221 if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
222 !exist_written_data(sbi, ino, APPEND_INO)) {
224 /* it may call write_inode just prior to fsync */
225 if (need_inode_page_update(sbi, ino))
228 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
229 exist_written_data(sbi, ino, UPDATE_INO))
235 * Both of fdatasync() and fsync() are able to be recovered from
238 down_read(&F2FS_I(inode)->i_sem);
239 need_cp = need_do_checkpoint(inode);
240 up_read(&F2FS_I(inode)->i_sem);
243 /* all the dirty node pages should be flushed for POR */
244 ret = f2fs_sync_fs(inode->i_sb, 1);
247 * We've secured consistency through sync_fs. Following pino
248 * will be used only for fsynced inodes after checkpoint.
250 try_to_fix_pino(inode);
251 clear_inode_flag(inode, FI_APPEND_WRITE);
252 clear_inode_flag(inode, FI_UPDATE_WRITE);
256 ret = fsync_node_pages(sbi, inode, &wbc, atomic);
260 /* if cp_error was enabled, we should avoid infinite loop */
261 if (unlikely(f2fs_cp_error(sbi))) {
266 if (need_inode_block_update(sbi, ino)) {
267 f2fs_mark_inode_dirty_sync(inode);
268 f2fs_write_inode(inode, NULL);
272 ret = wait_on_node_pages_writeback(sbi, ino);
276 /* once recovery info is written, don't need to tack this */
277 remove_ino_entry(sbi, ino, APPEND_INO);
278 clear_inode_flag(inode, FI_APPEND_WRITE);
280 remove_ino_entry(sbi, ino, UPDATE_INO);
281 clear_inode_flag(inode, FI_UPDATE_WRITE);
282 ret = f2fs_issue_flush(sbi);
283 f2fs_update_time(sbi, REQ_TIME);
285 trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
286 f2fs_trace_ios(NULL, 1);
290 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
292 return f2fs_do_sync_file(file, start, end, datasync, false);
295 static pgoff_t __get_first_dirty_index(struct address_space *mapping,
296 pgoff_t pgofs, int whence)
301 if (whence != SEEK_DATA)
304 /* find first dirty page index */
305 pagevec_init(&pvec, 0);
306 nr_pages = pagevec_lookup_tag(&pvec, mapping, &pgofs,
307 PAGECACHE_TAG_DIRTY, 1);
308 pgofs = nr_pages ? pvec.pages[0]->index : ULONG_MAX;
309 pagevec_release(&pvec);
313 static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
318 if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
319 (blkaddr != NEW_ADDR && blkaddr != NULL_ADDR))
323 if (blkaddr == NULL_ADDR)
330 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
332 struct inode *inode = file->f_mapping->host;
333 loff_t maxbytes = inode->i_sb->s_maxbytes;
334 struct dnode_of_data dn;
335 pgoff_t pgofs, end_offset, dirty;
336 loff_t data_ofs = offset;
342 isize = i_size_read(inode);
346 /* handle inline data case */
347 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
348 if (whence == SEEK_HOLE)
353 pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
355 dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
357 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
358 set_new_dnode(&dn, inode, NULL, NULL, 0);
359 err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
360 if (err && err != -ENOENT) {
362 } else if (err == -ENOENT) {
363 /* direct node does not exists */
364 if (whence == SEEK_DATA) {
365 pgofs = get_next_page_offset(&dn, pgofs);
372 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
374 /* find data/hole in dnode block */
375 for (; dn.ofs_in_node < end_offset;
376 dn.ofs_in_node++, pgofs++,
377 data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
379 blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
381 if (__found_offset(blkaddr, dirty, pgofs, whence)) {
389 if (whence == SEEK_DATA)
392 if (whence == SEEK_HOLE && data_ofs > isize)
395 return vfs_setpos(file, data_ofs, maxbytes);
401 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
403 struct inode *inode = file->f_mapping->host;
404 loff_t maxbytes = inode->i_sb->s_maxbytes;
410 return generic_file_llseek_size(file, offset, whence,
411 maxbytes, i_size_read(inode));
416 return f2fs_seek_block(file, offset, whence);
422 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
424 struct inode *inode = file_inode(file);
427 if (f2fs_encrypted_inode(inode)) {
428 err = fscrypt_get_encryption_info(inode);
431 if (!f2fs_encrypted_inode(inode))
435 /* we don't need to use inline_data strictly */
436 err = f2fs_convert_inline_inode(inode);
441 vma->vm_ops = &f2fs_file_vm_ops;
445 static int f2fs_file_open(struct inode *inode, struct file *filp)
447 int ret = generic_file_open(inode, filp);
450 if (!ret && f2fs_encrypted_inode(inode)) {
451 ret = fscrypt_get_encryption_info(inode);
454 if (!fscrypt_has_encryption_key(inode))
457 dir = dget_parent(file_dentry(filp));
458 if (f2fs_encrypted_inode(d_inode(dir)) &&
459 !fscrypt_has_permitted_context(d_inode(dir), inode)) {
467 int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
469 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
470 struct f2fs_node *raw_node;
471 int nr_free = 0, ofs = dn->ofs_in_node, len = count;
474 raw_node = F2FS_NODE(dn->node_page);
475 addr = blkaddr_in_node(raw_node) + ofs;
477 for (; count > 0; count--, addr++, dn->ofs_in_node++) {
478 block_t blkaddr = le32_to_cpu(*addr);
479 if (blkaddr == NULL_ADDR)
482 dn->data_blkaddr = NULL_ADDR;
483 set_data_blkaddr(dn);
484 invalidate_blocks(sbi, blkaddr);
485 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
486 clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
493 * once we invalidate valid blkaddr in range [ofs, ofs + count],
494 * we will invalidate all blkaddr in the whole range.
496 fofs = start_bidx_of_node(ofs_of_node(dn->node_page),
498 f2fs_update_extent_cache_range(dn, fofs, 0, len);
499 dec_valid_block_count(sbi, dn->inode, nr_free);
501 dn->ofs_in_node = ofs;
503 f2fs_update_time(sbi, REQ_TIME);
504 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
505 dn->ofs_in_node, nr_free);
509 void truncate_data_blocks(struct dnode_of_data *dn)
511 truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
514 static int truncate_partial_data_page(struct inode *inode, u64 from,
517 unsigned offset = from & (PAGE_SIZE - 1);
518 pgoff_t index = from >> PAGE_SHIFT;
519 struct address_space *mapping = inode->i_mapping;
522 if (!offset && !cache_only)
526 page = f2fs_grab_cache_page(mapping, index, false);
527 if (page && PageUptodate(page))
529 f2fs_put_page(page, 1);
533 page = get_lock_data_page(inode, index, true);
537 f2fs_wait_on_page_writeback(page, DATA, true);
538 zero_user(page, offset, PAGE_SIZE - offset);
539 if (!cache_only || !f2fs_encrypted_inode(inode) ||
540 !S_ISREG(inode->i_mode))
541 set_page_dirty(page);
542 f2fs_put_page(page, 1);
546 int truncate_blocks(struct inode *inode, u64 from, bool lock)
548 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
549 unsigned int blocksize = inode->i_sb->s_blocksize;
550 struct dnode_of_data dn;
552 int count = 0, err = 0;
554 bool truncate_page = false;
556 trace_f2fs_truncate_blocks_enter(inode, from);
558 free_from = (pgoff_t)F2FS_BYTES_TO_BLK(from + blocksize - 1);
560 if (free_from >= sbi->max_file_blocks)
566 ipage = get_node_page(sbi, inode->i_ino);
568 err = PTR_ERR(ipage);
572 if (f2fs_has_inline_data(inode)) {
573 if (truncate_inline_inode(ipage, from))
574 set_page_dirty(ipage);
575 f2fs_put_page(ipage, 1);
576 truncate_page = true;
580 set_new_dnode(&dn, inode, ipage, NULL, 0);
581 err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
588 count = ADDRS_PER_PAGE(dn.node_page, inode);
590 count -= dn.ofs_in_node;
591 f2fs_bug_on(sbi, count < 0);
593 if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
594 truncate_data_blocks_range(&dn, count);
600 err = truncate_inode_blocks(inode, free_from);
605 /* lastly zero out the first data page */
607 err = truncate_partial_data_page(inode, from, truncate_page);
609 trace_f2fs_truncate_blocks_exit(inode, err);
613 int f2fs_truncate(struct inode *inode)
617 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
618 S_ISLNK(inode->i_mode)))
621 trace_f2fs_truncate(inode);
623 /* we should check inline_data size */
624 if (!f2fs_may_inline_data(inode)) {
625 err = f2fs_convert_inline_inode(inode);
630 err = truncate_blocks(inode, i_size_read(inode), true);
634 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
635 f2fs_mark_inode_dirty_sync(inode);
639 int f2fs_getattr(struct vfsmount *mnt,
640 struct dentry *dentry, struct kstat *stat)
642 struct inode *inode = d_inode(dentry);
643 generic_fillattr(inode, stat);
648 #ifdef CONFIG_F2FS_FS_POSIX_ACL
649 static void __setattr_copy(struct inode *inode, const struct iattr *attr)
651 unsigned int ia_valid = attr->ia_valid;
653 if (ia_valid & ATTR_UID)
654 inode->i_uid = attr->ia_uid;
655 if (ia_valid & ATTR_GID)
656 inode->i_gid = attr->ia_gid;
657 if (ia_valid & ATTR_ATIME)
658 inode->i_atime = timespec_trunc(attr->ia_atime,
659 inode->i_sb->s_time_gran);
660 if (ia_valid & ATTR_MTIME)
661 inode->i_mtime = timespec_trunc(attr->ia_mtime,
662 inode->i_sb->s_time_gran);
663 if (ia_valid & ATTR_CTIME)
664 inode->i_ctime = timespec_trunc(attr->ia_ctime,
665 inode->i_sb->s_time_gran);
666 if (ia_valid & ATTR_MODE) {
667 umode_t mode = attr->ia_mode;
669 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
671 set_acl_inode(inode, mode);
675 #define __setattr_copy setattr_copy
678 int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
680 struct inode *inode = d_inode(dentry);
683 err = inode_change_ok(inode, attr);
687 if (attr->ia_valid & ATTR_SIZE) {
688 if (f2fs_encrypted_inode(inode) &&
689 fscrypt_get_encryption_info(inode))
692 if (attr->ia_size <= i_size_read(inode)) {
693 truncate_setsize(inode, attr->ia_size);
694 err = f2fs_truncate(inode);
697 f2fs_balance_fs(F2FS_I_SB(inode), true);
700 * do not trim all blocks after i_size if target size is
701 * larger than i_size.
703 truncate_setsize(inode, attr->ia_size);
705 /* should convert inline inode here */
706 if (!f2fs_may_inline_data(inode)) {
707 err = f2fs_convert_inline_inode(inode);
711 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
715 __setattr_copy(inode, attr);
717 if (attr->ia_valid & ATTR_MODE) {
718 err = posix_acl_chmod(inode, get_inode_mode(inode));
719 if (err || is_inode_flag_set(inode, FI_ACL_MODE)) {
720 inode->i_mode = F2FS_I(inode)->i_acl_mode;
721 clear_inode_flag(inode, FI_ACL_MODE);
725 f2fs_mark_inode_dirty_sync(inode);
729 const struct inode_operations f2fs_file_inode_operations = {
730 .getattr = f2fs_getattr,
731 .setattr = f2fs_setattr,
732 .get_acl = f2fs_get_acl,
733 .set_acl = f2fs_set_acl,
734 #ifdef CONFIG_F2FS_FS_XATTR
735 .setxattr = generic_setxattr,
736 .getxattr = generic_getxattr,
737 .listxattr = f2fs_listxattr,
738 .removexattr = generic_removexattr,
740 .fiemap = f2fs_fiemap,
743 static int fill_zero(struct inode *inode, pgoff_t index,
744 loff_t start, loff_t len)
746 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
752 f2fs_balance_fs(sbi, true);
755 page = get_new_data_page(inode, NULL, index, false);
759 return PTR_ERR(page);
761 f2fs_wait_on_page_writeback(page, DATA, true);
762 zero_user(page, start, len);
763 set_page_dirty(page);
764 f2fs_put_page(page, 1);
768 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
772 while (pg_start < pg_end) {
773 struct dnode_of_data dn;
774 pgoff_t end_offset, count;
776 set_new_dnode(&dn, inode, NULL, NULL, 0);
777 err = get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
779 if (err == -ENOENT) {
786 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
787 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
789 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
791 truncate_data_blocks_range(&dn, count);
799 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
801 pgoff_t pg_start, pg_end;
802 loff_t off_start, off_end;
805 ret = f2fs_convert_inline_inode(inode);
809 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
810 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
812 off_start = offset & (PAGE_SIZE - 1);
813 off_end = (offset + len) & (PAGE_SIZE - 1);
815 if (pg_start == pg_end) {
816 ret = fill_zero(inode, pg_start, off_start,
817 off_end - off_start);
822 ret = fill_zero(inode, pg_start++, off_start,
823 PAGE_SIZE - off_start);
828 ret = fill_zero(inode, pg_end, 0, off_end);
833 if (pg_start < pg_end) {
834 struct address_space *mapping = inode->i_mapping;
835 loff_t blk_start, blk_end;
836 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
838 f2fs_balance_fs(sbi, true);
840 blk_start = (loff_t)pg_start << PAGE_SHIFT;
841 blk_end = (loff_t)pg_end << PAGE_SHIFT;
842 truncate_inode_pages_range(mapping, blk_start,
846 ret = truncate_hole(inode, pg_start, pg_end);
854 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
855 int *do_replace, pgoff_t off, pgoff_t len)
857 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
858 struct dnode_of_data dn;
862 set_new_dnode(&dn, inode, NULL, NULL, 0);
863 ret = get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
864 if (ret && ret != -ENOENT) {
866 } else if (ret == -ENOENT) {
867 if (dn.max_level == 0)
869 done = min((pgoff_t)ADDRS_PER_BLOCK - dn.ofs_in_node, len);
875 done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
876 dn.ofs_in_node, len);
877 for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
878 *blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
879 if (!is_checkpointed_data(sbi, *blkaddr)) {
881 if (test_opt(sbi, LFS)) {
886 /* do not invalidate this block address */
887 f2fs_update_data_blkaddr(&dn, NULL_ADDR);
900 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
901 int *do_replace, pgoff_t off, int len)
903 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
904 struct dnode_of_data dn;
907 for (i = 0; i < len; i++, do_replace++, blkaddr++) {
908 if (*do_replace == 0)
911 set_new_dnode(&dn, inode, NULL, NULL, 0);
912 ret = get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
914 dec_valid_block_count(sbi, inode, 1);
915 invalidate_blocks(sbi, *blkaddr);
917 f2fs_update_data_blkaddr(&dn, *blkaddr);
924 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
925 block_t *blkaddr, int *do_replace,
926 pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
928 struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
933 if (blkaddr[i] == NULL_ADDR && !full) {
938 if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
939 struct dnode_of_data dn;
944 set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
945 ret = get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
949 get_node_info(sbi, dn.nid, &ni);
951 ADDRS_PER_PAGE(dn.node_page, dst_inode) -
952 dn.ofs_in_node, len - i);
954 dn.data_blkaddr = datablock_addr(dn.node_page,
956 truncate_data_blocks_range(&dn, 1);
959 f2fs_i_blocks_write(src_inode,
961 f2fs_i_blocks_write(dst_inode,
963 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
964 blkaddr[i], ni.version, true, false);
970 new_size = (dst + i) << PAGE_SHIFT;
971 if (dst_inode->i_size < new_size)
972 f2fs_i_size_write(dst_inode, new_size);
973 } while ((do_replace[i] || blkaddr[i] == NULL_ADDR) && --ilen);
977 struct page *psrc, *pdst;
979 psrc = get_lock_data_page(src_inode, src + i, true);
981 return PTR_ERR(psrc);
982 pdst = get_new_data_page(dst_inode, NULL, dst + i,
985 f2fs_put_page(psrc, 1);
986 return PTR_ERR(pdst);
988 f2fs_copy_page(psrc, pdst);
989 set_page_dirty(pdst);
990 f2fs_put_page(pdst, 1);
991 f2fs_put_page(psrc, 1);
993 ret = truncate_hole(src_inode, src + i, src + i + 1);
1002 static int __exchange_data_block(struct inode *src_inode,
1003 struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1004 pgoff_t len, bool full)
1006 block_t *src_blkaddr;
1012 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK, len);
1014 src_blkaddr = f2fs_kvzalloc(sizeof(block_t) * olen, GFP_KERNEL);
1018 do_replace = f2fs_kvzalloc(sizeof(int) * olen, GFP_KERNEL);
1020 kvfree(src_blkaddr);
1024 ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1025 do_replace, src, olen);
1029 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1030 do_replace, src, dst, olen, full);
1038 kvfree(src_blkaddr);
1044 __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, len);
1045 kvfree(src_blkaddr);
1050 static int f2fs_do_collapse(struct inode *inode, pgoff_t start, pgoff_t end)
1052 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1053 pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1056 f2fs_balance_fs(sbi, true);
1059 f2fs_drop_extent_tree(inode);
1061 ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1062 f2fs_unlock_op(sbi);
1066 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1068 pgoff_t pg_start, pg_end;
1072 if (offset + len >= i_size_read(inode))
1075 /* collapse range should be aligned to block size of f2fs. */
1076 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1079 ret = f2fs_convert_inline_inode(inode);
1083 pg_start = offset >> PAGE_SHIFT;
1084 pg_end = (offset + len) >> PAGE_SHIFT;
1086 /* write out all dirty pages from offset */
1087 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1091 truncate_pagecache(inode, offset);
1093 ret = f2fs_do_collapse(inode, pg_start, pg_end);
1097 /* write out all moved pages, if possible */
1098 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1099 truncate_pagecache(inode, offset);
1101 new_size = i_size_read(inode) - len;
1102 truncate_pagecache(inode, new_size);
1104 ret = truncate_blocks(inode, new_size, true);
1106 f2fs_i_size_write(inode, new_size);
1111 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1114 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1115 pgoff_t index = start;
1116 unsigned int ofs_in_node = dn->ofs_in_node;
1120 for (; index < end; index++, dn->ofs_in_node++) {
1121 if (datablock_addr(dn->node_page, dn->ofs_in_node) == NULL_ADDR)
1125 dn->ofs_in_node = ofs_in_node;
1126 ret = reserve_new_blocks(dn, count);
1130 dn->ofs_in_node = ofs_in_node;
1131 for (index = start; index < end; index++, dn->ofs_in_node++) {
1133 datablock_addr(dn->node_page, dn->ofs_in_node);
1135 * reserve_new_blocks will not guarantee entire block
1138 if (dn->data_blkaddr == NULL_ADDR) {
1142 if (dn->data_blkaddr != NEW_ADDR) {
1143 invalidate_blocks(sbi, dn->data_blkaddr);
1144 dn->data_blkaddr = NEW_ADDR;
1145 set_data_blkaddr(dn);
1149 f2fs_update_extent_cache_range(dn, start, 0, index - start);
1154 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1157 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1158 struct address_space *mapping = inode->i_mapping;
1159 pgoff_t index, pg_start, pg_end;
1160 loff_t new_size = i_size_read(inode);
1161 loff_t off_start, off_end;
1164 ret = inode_newsize_ok(inode, (len + offset));
1168 ret = f2fs_convert_inline_inode(inode);
1172 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1176 truncate_pagecache_range(inode, offset, offset + len - 1);
1178 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1179 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1181 off_start = offset & (PAGE_SIZE - 1);
1182 off_end = (offset + len) & (PAGE_SIZE - 1);
1184 if (pg_start == pg_end) {
1185 ret = fill_zero(inode, pg_start, off_start,
1186 off_end - off_start);
1190 if (offset + len > new_size)
1191 new_size = offset + len;
1192 new_size = max_t(loff_t, new_size, offset + len);
1195 ret = fill_zero(inode, pg_start++, off_start,
1196 PAGE_SIZE - off_start);
1200 new_size = max_t(loff_t, new_size,
1201 (loff_t)pg_start << PAGE_SHIFT);
1204 for (index = pg_start; index < pg_end;) {
1205 struct dnode_of_data dn;
1206 unsigned int end_offset;
1211 set_new_dnode(&dn, inode, NULL, NULL, 0);
1212 ret = get_dnode_of_data(&dn, index, ALLOC_NODE);
1214 f2fs_unlock_op(sbi);
1218 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1219 end = min(pg_end, end_offset - dn.ofs_in_node + index);
1221 ret = f2fs_do_zero_range(&dn, index, end);
1222 f2fs_put_dnode(&dn);
1223 f2fs_unlock_op(sbi);
1228 new_size = max_t(loff_t, new_size,
1229 (loff_t)index << PAGE_SHIFT);
1233 ret = fill_zero(inode, pg_end, 0, off_end);
1237 new_size = max_t(loff_t, new_size, offset + len);
1242 if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size)
1243 f2fs_i_size_write(inode, new_size);
1248 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1250 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1251 pgoff_t nr, pg_start, pg_end, delta, idx;
1255 new_size = i_size_read(inode) + len;
1256 if (new_size > inode->i_sb->s_maxbytes)
1259 if (offset >= i_size_read(inode))
1262 /* insert range should be aligned to block size of f2fs. */
1263 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1266 ret = f2fs_convert_inline_inode(inode);
1270 f2fs_balance_fs(sbi, true);
1272 ret = truncate_blocks(inode, i_size_read(inode), true);
1276 /* write out all dirty pages from offset */
1277 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1281 truncate_pagecache(inode, offset);
1283 pg_start = offset >> PAGE_SHIFT;
1284 pg_end = (offset + len) >> PAGE_SHIFT;
1285 delta = pg_end - pg_start;
1286 idx = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1288 while (!ret && idx > pg_start) {
1289 nr = idx - pg_start;
1295 f2fs_drop_extent_tree(inode);
1297 ret = __exchange_data_block(inode, inode, idx,
1298 idx + delta, nr, false);
1299 f2fs_unlock_op(sbi);
1302 /* write out all moved pages, if possible */
1303 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1304 truncate_pagecache(inode, offset);
1307 f2fs_i_size_write(inode, new_size);
1311 static int expand_inode_data(struct inode *inode, loff_t offset,
1312 loff_t len, int mode)
1314 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1315 struct f2fs_map_blocks map = { .m_next_pgofs = NULL };
1317 loff_t new_size = i_size_read(inode);
1321 ret = inode_newsize_ok(inode, (len + offset));
1325 ret = f2fs_convert_inline_inode(inode);
1329 f2fs_balance_fs(sbi, true);
1331 pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1332 off_end = (offset + len) & (PAGE_SIZE - 1);
1334 map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT;
1335 map.m_len = pg_end - map.m_lblk;
1339 ret = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
1346 last_off = map.m_lblk + map.m_len - 1;
1348 /* update new size to the failed position */
1349 new_size = (last_off == pg_end) ? offset + len:
1350 (loff_t)(last_off + 1) << PAGE_SHIFT;
1352 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1355 if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size)
1356 f2fs_i_size_write(inode, new_size);
1361 static long f2fs_fallocate(struct file *file, int mode,
1362 loff_t offset, loff_t len)
1364 struct inode *inode = file_inode(file);
1367 /* f2fs only support ->fallocate for regular file */
1368 if (!S_ISREG(inode->i_mode))
1371 if (f2fs_encrypted_inode(inode) &&
1372 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1375 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1376 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1377 FALLOC_FL_INSERT_RANGE))
1382 if (mode & FALLOC_FL_PUNCH_HOLE) {
1383 if (offset >= inode->i_size)
1386 ret = punch_hole(inode, offset, len);
1387 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1388 ret = f2fs_collapse_range(inode, offset, len);
1389 } else if (mode & FALLOC_FL_ZERO_RANGE) {
1390 ret = f2fs_zero_range(inode, offset, len, mode);
1391 } else if (mode & FALLOC_FL_INSERT_RANGE) {
1392 ret = f2fs_insert_range(inode, offset, len);
1394 ret = expand_inode_data(inode, offset, len, mode);
1398 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1399 f2fs_mark_inode_dirty_sync(inode);
1400 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1404 inode_unlock(inode);
1406 trace_f2fs_fallocate(inode, mode, offset, len, ret);
1410 static int f2fs_release_file(struct inode *inode, struct file *filp)
1413 * f2fs_relase_file is called at every close calls. So we should
1414 * not drop any inmemory pages by close called by other process.
1416 if (!(filp->f_mode & FMODE_WRITE) ||
1417 atomic_read(&inode->i_writecount) != 1)
1420 /* some remained atomic pages should discarded */
1421 if (f2fs_is_atomic_file(inode))
1422 drop_inmem_pages(inode);
1423 if (f2fs_is_volatile_file(inode)) {
1424 clear_inode_flag(inode, FI_VOLATILE_FILE);
1425 set_inode_flag(inode, FI_DROP_CACHE);
1426 filemap_fdatawrite(inode->i_mapping);
1427 clear_inode_flag(inode, FI_DROP_CACHE);
1432 #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
1433 #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL)
1435 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
1439 else if (S_ISREG(mode))
1440 return flags & F2FS_REG_FLMASK;
1442 return flags & F2FS_OTHER_FLMASK;
1445 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
1447 struct inode *inode = file_inode(filp);
1448 struct f2fs_inode_info *fi = F2FS_I(inode);
1449 unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
1450 return put_user(flags, (int __user *)arg);
1453 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
1455 struct inode *inode = file_inode(filp);
1456 struct f2fs_inode_info *fi = F2FS_I(inode);
1457 unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
1458 unsigned int oldflags;
1461 if (!inode_owner_or_capable(inode))
1464 if (get_user(flags, (int __user *)arg))
1467 ret = mnt_want_write_file(filp);
1471 flags = f2fs_mask_flags(inode->i_mode, flags);
1475 oldflags = fi->i_flags;
1477 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
1478 if (!capable(CAP_LINUX_IMMUTABLE)) {
1479 inode_unlock(inode);
1485 flags = flags & FS_FL_USER_MODIFIABLE;
1486 flags |= oldflags & ~FS_FL_USER_MODIFIABLE;
1487 fi->i_flags = flags;
1488 inode_unlock(inode);
1490 inode->i_ctime = CURRENT_TIME;
1491 f2fs_set_inode_flags(inode);
1493 mnt_drop_write_file(filp);
1497 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
1499 struct inode *inode = file_inode(filp);
1501 return put_user(inode->i_generation, (int __user *)arg);
1504 static int f2fs_ioc_start_atomic_write(struct file *filp)
1506 struct inode *inode = file_inode(filp);
1509 if (!inode_owner_or_capable(inode))
1512 ret = mnt_want_write_file(filp);
1518 if (f2fs_is_atomic_file(inode))
1521 ret = f2fs_convert_inline_inode(inode);
1525 set_inode_flag(inode, FI_ATOMIC_FILE);
1526 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1528 if (!get_dirty_pages(inode))
1531 f2fs_msg(F2FS_I_SB(inode)->sb, KERN_WARNING,
1532 "Unexpected flush for atomic writes: ino=%lu, npages=%lld",
1533 inode->i_ino, get_dirty_pages(inode));
1534 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
1536 clear_inode_flag(inode, FI_ATOMIC_FILE);
1538 inode_unlock(inode);
1539 mnt_drop_write_file(filp);
1543 static int f2fs_ioc_commit_atomic_write(struct file *filp)
1545 struct inode *inode = file_inode(filp);
1548 if (!inode_owner_or_capable(inode))
1551 ret = mnt_want_write_file(filp);
1557 if (f2fs_is_volatile_file(inode))
1560 if (f2fs_is_atomic_file(inode)) {
1561 clear_inode_flag(inode, FI_ATOMIC_FILE);
1562 ret = commit_inmem_pages(inode);
1564 set_inode_flag(inode, FI_ATOMIC_FILE);
1569 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1571 inode_unlock(inode);
1572 mnt_drop_write_file(filp);
1576 static int f2fs_ioc_start_volatile_write(struct file *filp)
1578 struct inode *inode = file_inode(filp);
1581 if (!inode_owner_or_capable(inode))
1584 ret = mnt_want_write_file(filp);
1590 if (f2fs_is_volatile_file(inode))
1593 ret = f2fs_convert_inline_inode(inode);
1597 set_inode_flag(inode, FI_VOLATILE_FILE);
1598 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1600 inode_unlock(inode);
1601 mnt_drop_write_file(filp);
1605 static int f2fs_ioc_release_volatile_write(struct file *filp)
1607 struct inode *inode = file_inode(filp);
1610 if (!inode_owner_or_capable(inode))
1613 ret = mnt_want_write_file(filp);
1619 if (!f2fs_is_volatile_file(inode))
1622 if (!f2fs_is_first_block_written(inode)) {
1623 ret = truncate_partial_data_page(inode, 0, true);
1627 ret = punch_hole(inode, 0, F2FS_BLKSIZE);
1629 inode_unlock(inode);
1630 mnt_drop_write_file(filp);
1634 static int f2fs_ioc_abort_volatile_write(struct file *filp)
1636 struct inode *inode = file_inode(filp);
1639 if (!inode_owner_or_capable(inode))
1642 ret = mnt_want_write_file(filp);
1648 if (f2fs_is_atomic_file(inode))
1649 drop_inmem_pages(inode);
1650 if (f2fs_is_volatile_file(inode)) {
1651 clear_inode_flag(inode, FI_VOLATILE_FILE);
1652 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1655 inode_unlock(inode);
1657 mnt_drop_write_file(filp);
1658 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1662 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
1664 struct inode *inode = file_inode(filp);
1665 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1666 struct super_block *sb = sbi->sb;
1670 if (!capable(CAP_SYS_ADMIN))
1673 if (get_user(in, (__u32 __user *)arg))
1676 ret = mnt_want_write_file(filp);
1681 case F2FS_GOING_DOWN_FULLSYNC:
1682 sb = freeze_bdev(sb->s_bdev);
1683 if (sb && !IS_ERR(sb)) {
1684 f2fs_stop_checkpoint(sbi, false);
1685 thaw_bdev(sb->s_bdev, sb);
1688 case F2FS_GOING_DOWN_METASYNC:
1689 /* do checkpoint only */
1690 f2fs_sync_fs(sb, 1);
1691 f2fs_stop_checkpoint(sbi, false);
1693 case F2FS_GOING_DOWN_NOSYNC:
1694 f2fs_stop_checkpoint(sbi, false);
1696 case F2FS_GOING_DOWN_METAFLUSH:
1697 sync_meta_pages(sbi, META, LONG_MAX);
1698 f2fs_stop_checkpoint(sbi, false);
1704 f2fs_update_time(sbi, REQ_TIME);
1706 mnt_drop_write_file(filp);
1710 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
1712 struct inode *inode = file_inode(filp);
1713 struct super_block *sb = inode->i_sb;
1714 struct request_queue *q = bdev_get_queue(sb->s_bdev);
1715 struct fstrim_range range;
1718 if (!capable(CAP_SYS_ADMIN))
1721 if (!blk_queue_discard(q))
1724 if (copy_from_user(&range, (struct fstrim_range __user *)arg,
1728 ret = mnt_want_write_file(filp);
1732 range.minlen = max((unsigned int)range.minlen,
1733 q->limits.discard_granularity);
1734 ret = f2fs_trim_fs(F2FS_SB(sb), &range);
1735 mnt_drop_write_file(filp);
1739 if (copy_to_user((struct fstrim_range __user *)arg, &range,
1742 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1746 static bool uuid_is_nonzero(__u8 u[16])
1750 for (i = 0; i < 16; i++)
1756 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
1758 struct fscrypt_policy policy;
1759 struct inode *inode = file_inode(filp);
1762 if (copy_from_user(&policy, (struct fscrypt_policy __user *)arg,
1766 ret = mnt_want_write_file(filp);
1770 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1771 ret = fscrypt_process_policy(inode, &policy);
1773 mnt_drop_write_file(filp);
1777 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
1779 struct fscrypt_policy policy;
1780 struct inode *inode = file_inode(filp);
1783 err = fscrypt_get_policy(inode, &policy);
1787 if (copy_to_user((struct fscrypt_policy __user *)arg, &policy, sizeof(policy)))
1792 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
1794 struct inode *inode = file_inode(filp);
1795 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1798 if (!f2fs_sb_has_crypto(inode->i_sb))
1801 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
1804 err = mnt_want_write_file(filp);
1808 /* update superblock with uuid */
1809 generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
1811 err = f2fs_commit_super(sbi, false);
1814 memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
1815 mnt_drop_write_file(filp);
1818 mnt_drop_write_file(filp);
1820 if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
1826 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
1828 struct inode *inode = file_inode(filp);
1829 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1833 if (!capable(CAP_SYS_ADMIN))
1836 if (get_user(sync, (__u32 __user *)arg))
1839 if (f2fs_readonly(sbi->sb))
1842 ret = mnt_want_write_file(filp);
1847 if (!mutex_trylock(&sbi->gc_mutex)) {
1852 mutex_lock(&sbi->gc_mutex);
1855 ret = f2fs_gc(sbi, sync);
1857 mnt_drop_write_file(filp);
1861 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
1863 struct inode *inode = file_inode(filp);
1864 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1867 if (!capable(CAP_SYS_ADMIN))
1870 if (f2fs_readonly(sbi->sb))
1873 ret = mnt_want_write_file(filp);
1877 ret = f2fs_sync_fs(sbi->sb, 1);
1879 mnt_drop_write_file(filp);
1883 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
1885 struct f2fs_defragment *range)
1887 struct inode *inode = file_inode(filp);
1888 struct f2fs_map_blocks map = { .m_next_pgofs = NULL };
1889 struct extent_info ei;
1890 pgoff_t pg_start, pg_end;
1891 unsigned int blk_per_seg = sbi->blocks_per_seg;
1892 unsigned int total = 0, sec_num;
1893 unsigned int pages_per_sec = sbi->segs_per_sec * blk_per_seg;
1894 block_t blk_end = 0;
1895 bool fragmented = false;
1898 /* if in-place-update policy is enabled, don't waste time here */
1899 if (need_inplace_update(inode))
1902 pg_start = range->start >> PAGE_SHIFT;
1903 pg_end = (range->start + range->len) >> PAGE_SHIFT;
1905 f2fs_balance_fs(sbi, true);
1909 /* writeback all dirty pages in the range */
1910 err = filemap_write_and_wait_range(inode->i_mapping, range->start,
1911 range->start + range->len - 1);
1916 * lookup mapping info in extent cache, skip defragmenting if physical
1917 * block addresses are continuous.
1919 if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
1920 if (ei.fofs + ei.len >= pg_end)
1924 map.m_lblk = pg_start;
1927 * lookup mapping info in dnode page cache, skip defragmenting if all
1928 * physical block addresses are continuous even if there are hole(s)
1929 * in logical blocks.
1931 while (map.m_lblk < pg_end) {
1932 map.m_len = pg_end - map.m_lblk;
1933 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ);
1937 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
1942 if (blk_end && blk_end != map.m_pblk) {
1946 blk_end = map.m_pblk + map.m_len;
1948 map.m_lblk += map.m_len;
1954 map.m_lblk = pg_start;
1955 map.m_len = pg_end - pg_start;
1957 sec_num = (map.m_len + pages_per_sec - 1) / pages_per_sec;
1960 * make sure there are enough free section for LFS allocation, this can
1961 * avoid defragment running in SSR mode when free section are allocated
1964 if (has_not_enough_free_secs(sbi, sec_num)) {
1969 while (map.m_lblk < pg_end) {
1974 map.m_len = pg_end - map.m_lblk;
1975 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ);
1979 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
1984 set_inode_flag(inode, FI_DO_DEFRAG);
1987 while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
1990 page = get_lock_data_page(inode, idx, true);
1992 err = PTR_ERR(page);
1996 set_page_dirty(page);
1997 f2fs_put_page(page, 1);
2006 if (idx < pg_end && cnt < blk_per_seg)
2009 clear_inode_flag(inode, FI_DO_DEFRAG);
2011 err = filemap_fdatawrite(inode->i_mapping);
2016 clear_inode_flag(inode, FI_DO_DEFRAG);
2018 inode_unlock(inode);
2020 range->len = (u64)total << PAGE_SHIFT;
2024 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2026 struct inode *inode = file_inode(filp);
2027 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2028 struct f2fs_defragment range;
2031 if (!capable(CAP_SYS_ADMIN))
2034 if (!S_ISREG(inode->i_mode))
2037 err = mnt_want_write_file(filp);
2041 if (f2fs_readonly(sbi->sb)) {
2046 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2052 /* verify alignment of offset & size */
2053 if (range.start & (F2FS_BLKSIZE - 1) ||
2054 range.len & (F2FS_BLKSIZE - 1)) {
2059 err = f2fs_defragment_range(sbi, filp, &range);
2060 f2fs_update_time(sbi, REQ_TIME);
2064 if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2068 mnt_drop_write_file(filp);
2072 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2073 struct file *file_out, loff_t pos_out, size_t len)
2075 struct inode *src = file_inode(file_in);
2076 struct inode *dst = file_inode(file_out);
2077 struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2078 size_t olen = len, dst_max_i_size = 0;
2082 if (file_in->f_path.mnt != file_out->f_path.mnt ||
2083 src->i_sb != dst->i_sb)
2086 if (unlikely(f2fs_readonly(src->i_sb)))
2089 if (S_ISDIR(src->i_mode) || S_ISDIR(dst->i_mode))
2092 if (f2fs_encrypted_inode(src) || f2fs_encrypted_inode(dst))
2100 if (pos_in + len > src->i_size || pos_in + len < pos_in)
2103 olen = len = src->i_size - pos_in;
2104 if (pos_in + len == src->i_size)
2105 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2111 dst_osize = dst->i_size;
2112 if (pos_out + olen > dst->i_size)
2113 dst_max_i_size = pos_out + olen;
2115 /* verify the end result is block aligned */
2116 if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2117 !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2118 !IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2121 ret = f2fs_convert_inline_inode(src);
2125 ret = f2fs_convert_inline_inode(dst);
2129 /* write out all dirty pages from offset */
2130 ret = filemap_write_and_wait_range(src->i_mapping,
2131 pos_in, pos_in + len);
2135 ret = filemap_write_and_wait_range(dst->i_mapping,
2136 pos_out, pos_out + len);
2140 f2fs_balance_fs(sbi, true);
2142 ret = __exchange_data_block(src, dst, pos_in,
2143 pos_out, len >> F2FS_BLKSIZE_BITS, false);
2147 f2fs_i_size_write(dst, dst_max_i_size);
2148 else if (dst_osize != dst->i_size)
2149 f2fs_i_size_write(dst, dst_osize);
2151 f2fs_unlock_op(sbi);
2159 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2161 struct f2fs_move_range range;
2165 if (!(filp->f_mode & FMODE_READ) ||
2166 !(filp->f_mode & FMODE_WRITE))
2169 if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2173 dst = fdget(range.dst_fd);
2177 if (!(dst.file->f_mode & FMODE_WRITE)) {
2182 err = mnt_want_write_file(filp);
2186 err = f2fs_move_file_range(filp, range.pos_in, dst.file,
2187 range.pos_out, range.len);
2189 mnt_drop_write_file(filp);
2191 if (copy_to_user((struct f2fs_move_range __user *)arg,
2192 &range, sizeof(range)))
2199 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
2202 case F2FS_IOC_GETFLAGS:
2203 return f2fs_ioc_getflags(filp, arg);
2204 case F2FS_IOC_SETFLAGS:
2205 return f2fs_ioc_setflags(filp, arg);
2206 case F2FS_IOC_GETVERSION:
2207 return f2fs_ioc_getversion(filp, arg);
2208 case F2FS_IOC_START_ATOMIC_WRITE:
2209 return f2fs_ioc_start_atomic_write(filp);
2210 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
2211 return f2fs_ioc_commit_atomic_write(filp);
2212 case F2FS_IOC_START_VOLATILE_WRITE:
2213 return f2fs_ioc_start_volatile_write(filp);
2214 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
2215 return f2fs_ioc_release_volatile_write(filp);
2216 case F2FS_IOC_ABORT_VOLATILE_WRITE:
2217 return f2fs_ioc_abort_volatile_write(filp);
2218 case F2FS_IOC_SHUTDOWN:
2219 return f2fs_ioc_shutdown(filp, arg);
2221 return f2fs_ioc_fitrim(filp, arg);
2222 case F2FS_IOC_SET_ENCRYPTION_POLICY:
2223 return f2fs_ioc_set_encryption_policy(filp, arg);
2224 case F2FS_IOC_GET_ENCRYPTION_POLICY:
2225 return f2fs_ioc_get_encryption_policy(filp, arg);
2226 case F2FS_IOC_GET_ENCRYPTION_PWSALT:
2227 return f2fs_ioc_get_encryption_pwsalt(filp, arg);
2228 case F2FS_IOC_GARBAGE_COLLECT:
2229 return f2fs_ioc_gc(filp, arg);
2230 case F2FS_IOC_WRITE_CHECKPOINT:
2231 return f2fs_ioc_write_checkpoint(filp, arg);
2232 case F2FS_IOC_DEFRAGMENT:
2233 return f2fs_ioc_defragment(filp, arg);
2234 case F2FS_IOC_MOVE_RANGE:
2235 return f2fs_ioc_move_range(filp, arg);
2241 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2243 struct file *file = iocb->ki_filp;
2244 struct inode *inode = file_inode(file);
2245 struct blk_plug plug;
2248 if (f2fs_encrypted_inode(inode) &&
2249 !fscrypt_has_encryption_key(inode) &&
2250 fscrypt_get_encryption_info(inode))
2254 ret = generic_write_checks(iocb, from);
2256 ret = f2fs_preallocate_blocks(iocb, from);
2258 blk_start_plug(&plug);
2259 ret = __generic_file_write_iter(iocb, from);
2260 blk_finish_plug(&plug);
2263 inode_unlock(inode);
2266 ret = generic_write_sync(iocb, ret);
2270 #ifdef CONFIG_COMPAT
2271 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2274 case F2FS_IOC32_GETFLAGS:
2275 cmd = F2FS_IOC_GETFLAGS;
2277 case F2FS_IOC32_SETFLAGS:
2278 cmd = F2FS_IOC_SETFLAGS;
2280 case F2FS_IOC32_GETVERSION:
2281 cmd = F2FS_IOC_GETVERSION;
2283 case F2FS_IOC_START_ATOMIC_WRITE:
2284 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
2285 case F2FS_IOC_START_VOLATILE_WRITE:
2286 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
2287 case F2FS_IOC_ABORT_VOLATILE_WRITE:
2288 case F2FS_IOC_SHUTDOWN:
2289 case F2FS_IOC_SET_ENCRYPTION_POLICY:
2290 case F2FS_IOC_GET_ENCRYPTION_PWSALT:
2291 case F2FS_IOC_GET_ENCRYPTION_POLICY:
2292 case F2FS_IOC_GARBAGE_COLLECT:
2293 case F2FS_IOC_WRITE_CHECKPOINT:
2294 case F2FS_IOC_DEFRAGMENT:
2296 case F2FS_IOC_MOVE_RANGE:
2299 return -ENOIOCTLCMD;
2301 return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
2305 const struct file_operations f2fs_file_operations = {
2306 .llseek = f2fs_llseek,
2307 .read_iter = generic_file_read_iter,
2308 .write_iter = f2fs_file_write_iter,
2309 .open = f2fs_file_open,
2310 .release = f2fs_release_file,
2311 .mmap = f2fs_file_mmap,
2312 .fsync = f2fs_sync_file,
2313 .fallocate = f2fs_fallocate,
2314 .unlocked_ioctl = f2fs_ioctl,
2315 #ifdef CONFIG_COMPAT
2316 .compat_ioctl = f2fs_compat_ioctl,
2318 .splice_read = generic_file_splice_read,
2319 .splice_write = iter_file_splice_write,