Merge branch 'next' into for-linus
[platform/kernel/linux-rpi.git] / fs / f2fs / extent_cache.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * f2fs extent cache support
4  *
5  * Copyright (c) 2015 Motorola Mobility
6  * Copyright (c) 2015 Samsung Electronics
7  * Authors: Jaegeuk Kim <jaegeuk@kernel.org>
8  *          Chao Yu <chao2.yu@samsung.com>
9  *
10  * block_age-based extent cache added by:
11  * Copyright (c) 2022 xiaomi Co., Ltd.
12  *             http://www.xiaomi.com/
13  */
14
15 #include <linux/fs.h>
16 #include <linux/f2fs_fs.h>
17
18 #include "f2fs.h"
19 #include "node.h"
20 #include <trace/events/f2fs.h>
21
22 bool sanity_check_extent_cache(struct inode *inode)
23 {
24         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
25         struct f2fs_inode_info *fi = F2FS_I(inode);
26         struct extent_info *ei;
27
28         if (!fi->extent_tree[EX_READ])
29                 return true;
30
31         ei = &fi->extent_tree[EX_READ]->largest;
32
33         if (ei->len &&
34                 (!f2fs_is_valid_blkaddr(sbi, ei->blk,
35                                         DATA_GENERIC_ENHANCE) ||
36                 !f2fs_is_valid_blkaddr(sbi, ei->blk + ei->len - 1,
37                                         DATA_GENERIC_ENHANCE))) {
38                 set_sbi_flag(sbi, SBI_NEED_FSCK);
39                 f2fs_warn(sbi, "%s: inode (ino=%lx) extent info [%u, %u, %u] is incorrect, run fsck to fix",
40                           __func__, inode->i_ino,
41                           ei->blk, ei->fofs, ei->len);
42                 return false;
43         }
44         return true;
45 }
46
47 static void __set_extent_info(struct extent_info *ei,
48                                 unsigned int fofs, unsigned int len,
49                                 block_t blk, bool keep_clen,
50                                 unsigned long age, unsigned long last_blocks,
51                                 enum extent_type type)
52 {
53         ei->fofs = fofs;
54         ei->len = len;
55
56         if (type == EX_READ) {
57                 ei->blk = blk;
58                 if (keep_clen)
59                         return;
60 #ifdef CONFIG_F2FS_FS_COMPRESSION
61                 ei->c_len = 0;
62 #endif
63         } else if (type == EX_BLOCK_AGE) {
64                 ei->age = age;
65                 ei->last_blocks = last_blocks;
66         }
67 }
68
69 static bool __may_read_extent_tree(struct inode *inode)
70 {
71         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
72
73         if (!test_opt(sbi, READ_EXTENT_CACHE))
74                 return false;
75         if (is_inode_flag_set(inode, FI_NO_EXTENT))
76                 return false;
77         if (is_inode_flag_set(inode, FI_COMPRESSED_FILE) &&
78                          !f2fs_sb_has_readonly(sbi))
79                 return false;
80         return S_ISREG(inode->i_mode);
81 }
82
83 static bool __may_age_extent_tree(struct inode *inode)
84 {
85         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
86
87         if (!test_opt(sbi, AGE_EXTENT_CACHE))
88                 return false;
89         /* don't cache block age info for cold file */
90         if (is_inode_flag_set(inode, FI_COMPRESSED_FILE))
91                 return false;
92         if (file_is_cold(inode))
93                 return false;
94
95         return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
96 }
97
98 static bool __init_may_extent_tree(struct inode *inode, enum extent_type type)
99 {
100         if (type == EX_READ)
101                 return __may_read_extent_tree(inode);
102         else if (type == EX_BLOCK_AGE)
103                 return __may_age_extent_tree(inode);
104         return false;
105 }
106
107 static bool __may_extent_tree(struct inode *inode, enum extent_type type)
108 {
109         /*
110          * for recovered files during mount do not create extents
111          * if shrinker is not registered.
112          */
113         if (list_empty(&F2FS_I_SB(inode)->s_list))
114                 return false;
115
116         return __init_may_extent_tree(inode, type);
117 }
118
119 static void __try_update_largest_extent(struct extent_tree *et,
120                                                 struct extent_node *en)
121 {
122         if (et->type != EX_READ)
123                 return;
124         if (en->ei.len <= et->largest.len)
125                 return;
126
127         et->largest = en->ei;
128         et->largest_updated = true;
129 }
130
131 static bool __is_extent_mergeable(struct extent_info *back,
132                 struct extent_info *front, enum extent_type type)
133 {
134         if (type == EX_READ) {
135 #ifdef CONFIG_F2FS_FS_COMPRESSION
136                 if (back->c_len && back->len != back->c_len)
137                         return false;
138                 if (front->c_len && front->len != front->c_len)
139                         return false;
140 #endif
141                 return (back->fofs + back->len == front->fofs &&
142                                 back->blk + back->len == front->blk);
143         } else if (type == EX_BLOCK_AGE) {
144                 return (back->fofs + back->len == front->fofs &&
145                         abs(back->age - front->age) <= SAME_AGE_REGION &&
146                         abs(back->last_blocks - front->last_blocks) <=
147                                                         SAME_AGE_REGION);
148         }
149         return false;
150 }
151
152 static bool __is_back_mergeable(struct extent_info *cur,
153                 struct extent_info *back, enum extent_type type)
154 {
155         return __is_extent_mergeable(back, cur, type);
156 }
157
158 static bool __is_front_mergeable(struct extent_info *cur,
159                 struct extent_info *front, enum extent_type type)
160 {
161         return __is_extent_mergeable(cur, front, type);
162 }
163
164 static struct rb_entry *__lookup_rb_tree_fast(struct rb_entry *cached_re,
165                                                         unsigned int ofs)
166 {
167         if (cached_re) {
168                 if (cached_re->ofs <= ofs &&
169                                 cached_re->ofs + cached_re->len > ofs) {
170                         return cached_re;
171                 }
172         }
173         return NULL;
174 }
175
176 static struct rb_entry *__lookup_rb_tree_slow(struct rb_root_cached *root,
177                                                         unsigned int ofs)
178 {
179         struct rb_node *node = root->rb_root.rb_node;
180         struct rb_entry *re;
181
182         while (node) {
183                 re = rb_entry(node, struct rb_entry, rb_node);
184
185                 if (ofs < re->ofs)
186                         node = node->rb_left;
187                 else if (ofs >= re->ofs + re->len)
188                         node = node->rb_right;
189                 else
190                         return re;
191         }
192         return NULL;
193 }
194
195 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
196                                 struct rb_entry *cached_re, unsigned int ofs)
197 {
198         struct rb_entry *re;
199
200         re = __lookup_rb_tree_fast(cached_re, ofs);
201         if (!re)
202                 return __lookup_rb_tree_slow(root, ofs);
203
204         return re;
205 }
206
207 struct rb_node **f2fs_lookup_rb_tree_ext(struct f2fs_sb_info *sbi,
208                                         struct rb_root_cached *root,
209                                         struct rb_node **parent,
210                                         unsigned long long key, bool *leftmost)
211 {
212         struct rb_node **p = &root->rb_root.rb_node;
213         struct rb_entry *re;
214
215         while (*p) {
216                 *parent = *p;
217                 re = rb_entry(*parent, struct rb_entry, rb_node);
218
219                 if (key < re->key) {
220                         p = &(*p)->rb_left;
221                 } else {
222                         p = &(*p)->rb_right;
223                         *leftmost = false;
224                 }
225         }
226
227         return p;
228 }
229
230 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
231                                 struct rb_root_cached *root,
232                                 struct rb_node **parent,
233                                 unsigned int ofs, bool *leftmost)
234 {
235         struct rb_node **p = &root->rb_root.rb_node;
236         struct rb_entry *re;
237
238         while (*p) {
239                 *parent = *p;
240                 re = rb_entry(*parent, struct rb_entry, rb_node);
241
242                 if (ofs < re->ofs) {
243                         p = &(*p)->rb_left;
244                 } else if (ofs >= re->ofs + re->len) {
245                         p = &(*p)->rb_right;
246                         *leftmost = false;
247                 } else {
248                         f2fs_bug_on(sbi, 1);
249                 }
250         }
251
252         return p;
253 }
254
255 /*
256  * lookup rb entry in position of @ofs in rb-tree,
257  * if hit, return the entry, otherwise, return NULL
258  * @prev_ex: extent before ofs
259  * @next_ex: extent after ofs
260  * @insert_p: insert point for new extent at ofs
261  * in order to simplify the insertion after.
262  * tree must stay unchanged between lookup and insertion.
263  */
264 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
265                                 struct rb_entry *cached_re,
266                                 unsigned int ofs,
267                                 struct rb_entry **prev_entry,
268                                 struct rb_entry **next_entry,
269                                 struct rb_node ***insert_p,
270                                 struct rb_node **insert_parent,
271                                 bool force, bool *leftmost)
272 {
273         struct rb_node **pnode = &root->rb_root.rb_node;
274         struct rb_node *parent = NULL, *tmp_node;
275         struct rb_entry *re = cached_re;
276
277         *insert_p = NULL;
278         *insert_parent = NULL;
279         *prev_entry = NULL;
280         *next_entry = NULL;
281
282         if (RB_EMPTY_ROOT(&root->rb_root))
283                 return NULL;
284
285         if (re) {
286                 if (re->ofs <= ofs && re->ofs + re->len > ofs)
287                         goto lookup_neighbors;
288         }
289
290         if (leftmost)
291                 *leftmost = true;
292
293         while (*pnode) {
294                 parent = *pnode;
295                 re = rb_entry(*pnode, struct rb_entry, rb_node);
296
297                 if (ofs < re->ofs) {
298                         pnode = &(*pnode)->rb_left;
299                 } else if (ofs >= re->ofs + re->len) {
300                         pnode = &(*pnode)->rb_right;
301                         if (leftmost)
302                                 *leftmost = false;
303                 } else {
304                         goto lookup_neighbors;
305                 }
306         }
307
308         *insert_p = pnode;
309         *insert_parent = parent;
310
311         re = rb_entry(parent, struct rb_entry, rb_node);
312         tmp_node = parent;
313         if (parent && ofs > re->ofs)
314                 tmp_node = rb_next(parent);
315         *next_entry = rb_entry_safe(tmp_node, struct rb_entry, rb_node);
316
317         tmp_node = parent;
318         if (parent && ofs < re->ofs)
319                 tmp_node = rb_prev(parent);
320         *prev_entry = rb_entry_safe(tmp_node, struct rb_entry, rb_node);
321         return NULL;
322
323 lookup_neighbors:
324         if (ofs == re->ofs || force) {
325                 /* lookup prev node for merging backward later */
326                 tmp_node = rb_prev(&re->rb_node);
327                 *prev_entry = rb_entry_safe(tmp_node, struct rb_entry, rb_node);
328         }
329         if (ofs == re->ofs + re->len - 1 || force) {
330                 /* lookup next node for merging frontward later */
331                 tmp_node = rb_next(&re->rb_node);
332                 *next_entry = rb_entry_safe(tmp_node, struct rb_entry, rb_node);
333         }
334         return re;
335 }
336
337 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
338                                 struct rb_root_cached *root, bool check_key)
339 {
340 #ifdef CONFIG_F2FS_CHECK_FS
341         struct rb_node *cur = rb_first_cached(root), *next;
342         struct rb_entry *cur_re, *next_re;
343
344         if (!cur)
345                 return true;
346
347         while (cur) {
348                 next = rb_next(cur);
349                 if (!next)
350                         return true;
351
352                 cur_re = rb_entry(cur, struct rb_entry, rb_node);
353                 next_re = rb_entry(next, struct rb_entry, rb_node);
354
355                 if (check_key) {
356                         if (cur_re->key > next_re->key) {
357                                 f2fs_info(sbi, "inconsistent rbtree, "
358                                         "cur(%llu) next(%llu)",
359                                         cur_re->key, next_re->key);
360                                 return false;
361                         }
362                         goto next;
363                 }
364
365                 if (cur_re->ofs + cur_re->len > next_re->ofs) {
366                         f2fs_info(sbi, "inconsistent rbtree, cur(%u, %u) next(%u, %u)",
367                                   cur_re->ofs, cur_re->len,
368                                   next_re->ofs, next_re->len);
369                         return false;
370                 }
371 next:
372                 cur = next;
373         }
374 #endif
375         return true;
376 }
377
378 static struct kmem_cache *extent_tree_slab;
379 static struct kmem_cache *extent_node_slab;
380
381 static struct extent_node *__attach_extent_node(struct f2fs_sb_info *sbi,
382                                 struct extent_tree *et, struct extent_info *ei,
383                                 struct rb_node *parent, struct rb_node **p,
384                                 bool leftmost)
385 {
386         struct extent_tree_info *eti = &sbi->extent_tree[et->type];
387         struct extent_node *en;
388
389         en = f2fs_kmem_cache_alloc(extent_node_slab, GFP_ATOMIC, false, sbi);
390         if (!en)
391                 return NULL;
392
393         en->ei = *ei;
394         INIT_LIST_HEAD(&en->list);
395         en->et = et;
396
397         rb_link_node(&en->rb_node, parent, p);
398         rb_insert_color_cached(&en->rb_node, &et->root, leftmost);
399         atomic_inc(&et->node_cnt);
400         atomic_inc(&eti->total_ext_node);
401         return en;
402 }
403
404 static void __detach_extent_node(struct f2fs_sb_info *sbi,
405                                 struct extent_tree *et, struct extent_node *en)
406 {
407         struct extent_tree_info *eti = &sbi->extent_tree[et->type];
408
409         rb_erase_cached(&en->rb_node, &et->root);
410         atomic_dec(&et->node_cnt);
411         atomic_dec(&eti->total_ext_node);
412
413         if (et->cached_en == en)
414                 et->cached_en = NULL;
415         kmem_cache_free(extent_node_slab, en);
416 }
417
418 /*
419  * Flow to release an extent_node:
420  * 1. list_del_init
421  * 2. __detach_extent_node
422  * 3. kmem_cache_free.
423  */
424 static void __release_extent_node(struct f2fs_sb_info *sbi,
425                         struct extent_tree *et, struct extent_node *en)
426 {
427         struct extent_tree_info *eti = &sbi->extent_tree[et->type];
428
429         spin_lock(&eti->extent_lock);
430         f2fs_bug_on(sbi, list_empty(&en->list));
431         list_del_init(&en->list);
432         spin_unlock(&eti->extent_lock);
433
434         __detach_extent_node(sbi, et, en);
435 }
436
437 static struct extent_tree *__grab_extent_tree(struct inode *inode,
438                                                 enum extent_type type)
439 {
440         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
441         struct extent_tree_info *eti = &sbi->extent_tree[type];
442         struct extent_tree *et;
443         nid_t ino = inode->i_ino;
444
445         mutex_lock(&eti->extent_tree_lock);
446         et = radix_tree_lookup(&eti->extent_tree_root, ino);
447         if (!et) {
448                 et = f2fs_kmem_cache_alloc(extent_tree_slab,
449                                         GFP_NOFS, true, NULL);
450                 f2fs_radix_tree_insert(&eti->extent_tree_root, ino, et);
451                 memset(et, 0, sizeof(struct extent_tree));
452                 et->ino = ino;
453                 et->type = type;
454                 et->root = RB_ROOT_CACHED;
455                 et->cached_en = NULL;
456                 rwlock_init(&et->lock);
457                 INIT_LIST_HEAD(&et->list);
458                 atomic_set(&et->node_cnt, 0);
459                 atomic_inc(&eti->total_ext_tree);
460         } else {
461                 atomic_dec(&eti->total_zombie_tree);
462                 list_del_init(&et->list);
463         }
464         mutex_unlock(&eti->extent_tree_lock);
465
466         /* never died until evict_inode */
467         F2FS_I(inode)->extent_tree[type] = et;
468
469         return et;
470 }
471
472 static unsigned int __free_extent_tree(struct f2fs_sb_info *sbi,
473                                         struct extent_tree *et)
474 {
475         struct rb_node *node, *next;
476         struct extent_node *en;
477         unsigned int count = atomic_read(&et->node_cnt);
478
479         node = rb_first_cached(&et->root);
480         while (node) {
481                 next = rb_next(node);
482                 en = rb_entry(node, struct extent_node, rb_node);
483                 __release_extent_node(sbi, et, en);
484                 node = next;
485         }
486
487         return count - atomic_read(&et->node_cnt);
488 }
489
490 static void __drop_largest_extent(struct extent_tree *et,
491                                         pgoff_t fofs, unsigned int len)
492 {
493         if (fofs < et->largest.fofs + et->largest.len &&
494                         fofs + len > et->largest.fofs) {
495                 et->largest.len = 0;
496                 et->largest_updated = true;
497         }
498 }
499
500 void f2fs_init_read_extent_tree(struct inode *inode, struct page *ipage)
501 {
502         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
503         struct extent_tree_info *eti = &sbi->extent_tree[EX_READ];
504         struct f2fs_extent *i_ext = &F2FS_INODE(ipage)->i_ext;
505         struct extent_tree *et;
506         struct extent_node *en;
507         struct extent_info ei;
508
509         if (!__may_extent_tree(inode, EX_READ)) {
510                 /* drop largest read extent */
511                 if (i_ext && i_ext->len) {
512                         f2fs_wait_on_page_writeback(ipage, NODE, true, true);
513                         i_ext->len = 0;
514                         set_page_dirty(ipage);
515                 }
516                 goto out;
517         }
518
519         et = __grab_extent_tree(inode, EX_READ);
520
521         if (!i_ext || !i_ext->len)
522                 goto out;
523
524         get_read_extent_info(&ei, i_ext);
525
526         write_lock(&et->lock);
527         if (atomic_read(&et->node_cnt))
528                 goto unlock_out;
529
530         en = __attach_extent_node(sbi, et, &ei, NULL,
531                                 &et->root.rb_root.rb_node, true);
532         if (en) {
533                 et->largest = en->ei;
534                 et->cached_en = en;
535
536                 spin_lock(&eti->extent_lock);
537                 list_add_tail(&en->list, &eti->extent_list);
538                 spin_unlock(&eti->extent_lock);
539         }
540 unlock_out:
541         write_unlock(&et->lock);
542 out:
543         if (!F2FS_I(inode)->extent_tree[EX_READ])
544                 set_inode_flag(inode, FI_NO_EXTENT);
545 }
546
547 void f2fs_init_age_extent_tree(struct inode *inode)
548 {
549         if (!__init_may_extent_tree(inode, EX_BLOCK_AGE))
550                 return;
551         __grab_extent_tree(inode, EX_BLOCK_AGE);
552 }
553
554 void f2fs_init_extent_tree(struct inode *inode)
555 {
556         /* initialize read cache */
557         if (__init_may_extent_tree(inode, EX_READ))
558                 __grab_extent_tree(inode, EX_READ);
559
560         /* initialize block age cache */
561         if (__init_may_extent_tree(inode, EX_BLOCK_AGE))
562                 __grab_extent_tree(inode, EX_BLOCK_AGE);
563 }
564
565 static bool __lookup_extent_tree(struct inode *inode, pgoff_t pgofs,
566                         struct extent_info *ei, enum extent_type type)
567 {
568         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
569         struct extent_tree_info *eti = &sbi->extent_tree[type];
570         struct extent_tree *et = F2FS_I(inode)->extent_tree[type];
571         struct extent_node *en;
572         bool ret = false;
573
574         if (!et)
575                 return false;
576
577         trace_f2fs_lookup_extent_tree_start(inode, pgofs, type);
578
579         read_lock(&et->lock);
580
581         if (type == EX_READ &&
582                         et->largest.fofs <= pgofs &&
583                         et->largest.fofs + et->largest.len > pgofs) {
584                 *ei = et->largest;
585                 ret = true;
586                 stat_inc_largest_node_hit(sbi);
587                 goto out;
588         }
589
590         en = (struct extent_node *)f2fs_lookup_rb_tree(&et->root,
591                                 (struct rb_entry *)et->cached_en, pgofs);
592         if (!en)
593                 goto out;
594
595         if (en == et->cached_en)
596                 stat_inc_cached_node_hit(sbi, type);
597         else
598                 stat_inc_rbtree_node_hit(sbi, type);
599
600         *ei = en->ei;
601         spin_lock(&eti->extent_lock);
602         if (!list_empty(&en->list)) {
603                 list_move_tail(&en->list, &eti->extent_list);
604                 et->cached_en = en;
605         }
606         spin_unlock(&eti->extent_lock);
607         ret = true;
608 out:
609         stat_inc_total_hit(sbi, type);
610         read_unlock(&et->lock);
611
612         if (type == EX_READ)
613                 trace_f2fs_lookup_read_extent_tree_end(inode, pgofs, ei);
614         else if (type == EX_BLOCK_AGE)
615                 trace_f2fs_lookup_age_extent_tree_end(inode, pgofs, ei);
616         return ret;
617 }
618
619 static struct extent_node *__try_merge_extent_node(struct f2fs_sb_info *sbi,
620                                 struct extent_tree *et, struct extent_info *ei,
621                                 struct extent_node *prev_ex,
622                                 struct extent_node *next_ex)
623 {
624         struct extent_tree_info *eti = &sbi->extent_tree[et->type];
625         struct extent_node *en = NULL;
626
627         if (prev_ex && __is_back_mergeable(ei, &prev_ex->ei, et->type)) {
628                 prev_ex->ei.len += ei->len;
629                 ei = &prev_ex->ei;
630                 en = prev_ex;
631         }
632
633         if (next_ex && __is_front_mergeable(ei, &next_ex->ei, et->type)) {
634                 next_ex->ei.fofs = ei->fofs;
635                 next_ex->ei.len += ei->len;
636                 if (et->type == EX_READ)
637                         next_ex->ei.blk = ei->blk;
638                 if (en)
639                         __release_extent_node(sbi, et, prev_ex);
640
641                 en = next_ex;
642         }
643
644         if (!en)
645                 return NULL;
646
647         __try_update_largest_extent(et, en);
648
649         spin_lock(&eti->extent_lock);
650         if (!list_empty(&en->list)) {
651                 list_move_tail(&en->list, &eti->extent_list);
652                 et->cached_en = en;
653         }
654         spin_unlock(&eti->extent_lock);
655         return en;
656 }
657
658 static struct extent_node *__insert_extent_tree(struct f2fs_sb_info *sbi,
659                                 struct extent_tree *et, struct extent_info *ei,
660                                 struct rb_node **insert_p,
661                                 struct rb_node *insert_parent,
662                                 bool leftmost)
663 {
664         struct extent_tree_info *eti = &sbi->extent_tree[et->type];
665         struct rb_node **p;
666         struct rb_node *parent = NULL;
667         struct extent_node *en = NULL;
668
669         if (insert_p && insert_parent) {
670                 parent = insert_parent;
671                 p = insert_p;
672                 goto do_insert;
673         }
674
675         leftmost = true;
676
677         p = f2fs_lookup_rb_tree_for_insert(sbi, &et->root, &parent,
678                                                 ei->fofs, &leftmost);
679 do_insert:
680         en = __attach_extent_node(sbi, et, ei, parent, p, leftmost);
681         if (!en)
682                 return NULL;
683
684         __try_update_largest_extent(et, en);
685
686         /* update in global extent list */
687         spin_lock(&eti->extent_lock);
688         list_add_tail(&en->list, &eti->extent_list);
689         et->cached_en = en;
690         spin_unlock(&eti->extent_lock);
691         return en;
692 }
693
694 static void __update_extent_tree_range(struct inode *inode,
695                         struct extent_info *tei, enum extent_type type)
696 {
697         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
698         struct extent_tree *et = F2FS_I(inode)->extent_tree[type];
699         struct extent_node *en = NULL, *en1 = NULL;
700         struct extent_node *prev_en = NULL, *next_en = NULL;
701         struct extent_info ei, dei, prev;
702         struct rb_node **insert_p = NULL, *insert_parent = NULL;
703         unsigned int fofs = tei->fofs, len = tei->len;
704         unsigned int end = fofs + len;
705         bool updated = false;
706         bool leftmost = false;
707
708         if (!et)
709                 return;
710
711         if (type == EX_READ)
712                 trace_f2fs_update_read_extent_tree_range(inode, fofs, len,
713                                                 tei->blk, 0);
714         else if (type == EX_BLOCK_AGE)
715                 trace_f2fs_update_age_extent_tree_range(inode, fofs, len,
716                                                 tei->age, tei->last_blocks);
717
718         write_lock(&et->lock);
719
720         if (type == EX_READ) {
721                 if (is_inode_flag_set(inode, FI_NO_EXTENT)) {
722                         write_unlock(&et->lock);
723                         return;
724                 }
725
726                 prev = et->largest;
727                 dei.len = 0;
728
729                 /*
730                  * drop largest extent before lookup, in case it's already
731                  * been shrunk from extent tree
732                  */
733                 __drop_largest_extent(et, fofs, len);
734         }
735
736         /* 1. lookup first extent node in range [fofs, fofs + len - 1] */
737         en = (struct extent_node *)f2fs_lookup_rb_tree_ret(&et->root,
738                                         (struct rb_entry *)et->cached_en, fofs,
739                                         (struct rb_entry **)&prev_en,
740                                         (struct rb_entry **)&next_en,
741                                         &insert_p, &insert_parent, false,
742                                         &leftmost);
743         if (!en)
744                 en = next_en;
745
746         /* 2. invalidate all extent nodes in range [fofs, fofs + len - 1] */
747         while (en && en->ei.fofs < end) {
748                 unsigned int org_end;
749                 int parts = 0;  /* # of parts current extent split into */
750
751                 next_en = en1 = NULL;
752
753                 dei = en->ei;
754                 org_end = dei.fofs + dei.len;
755                 f2fs_bug_on(sbi, fofs >= org_end);
756
757                 if (fofs > dei.fofs && (type != EX_READ ||
758                                 fofs - dei.fofs >= F2FS_MIN_EXTENT_LEN)) {
759                         en->ei.len = fofs - en->ei.fofs;
760                         prev_en = en;
761                         parts = 1;
762                 }
763
764                 if (end < org_end && (type != EX_READ ||
765                                 org_end - end >= F2FS_MIN_EXTENT_LEN)) {
766                         if (parts) {
767                                 __set_extent_info(&ei,
768                                         end, org_end - end,
769                                         end - dei.fofs + dei.blk, false,
770                                         dei.age, dei.last_blocks,
771                                         type);
772                                 en1 = __insert_extent_tree(sbi, et, &ei,
773                                                         NULL, NULL, true);
774                                 next_en = en1;
775                         } else {
776                                 __set_extent_info(&en->ei,
777                                         end, en->ei.len - (end - dei.fofs),
778                                         en->ei.blk + (end - dei.fofs), true,
779                                         dei.age, dei.last_blocks,
780                                         type);
781                                 next_en = en;
782                         }
783                         parts++;
784                 }
785
786                 if (!next_en) {
787                         struct rb_node *node = rb_next(&en->rb_node);
788
789                         next_en = rb_entry_safe(node, struct extent_node,
790                                                 rb_node);
791                 }
792
793                 if (parts)
794                         __try_update_largest_extent(et, en);
795                 else
796                         __release_extent_node(sbi, et, en);
797
798                 /*
799                  * if original extent is split into zero or two parts, extent
800                  * tree has been altered by deletion or insertion, therefore
801                  * invalidate pointers regard to tree.
802                  */
803                 if (parts != 1) {
804                         insert_p = NULL;
805                         insert_parent = NULL;
806                 }
807                 en = next_en;
808         }
809
810         if (type == EX_BLOCK_AGE)
811                 goto update_age_extent_cache;
812
813         /* 3. update extent in read extent cache */
814         BUG_ON(type != EX_READ);
815
816         if (tei->blk) {
817                 __set_extent_info(&ei, fofs, len, tei->blk, false,
818                                   0, 0, EX_READ);
819                 if (!__try_merge_extent_node(sbi, et, &ei, prev_en, next_en))
820                         __insert_extent_tree(sbi, et, &ei,
821                                         insert_p, insert_parent, leftmost);
822
823                 /* give up extent_cache, if split and small updates happen */
824                 if (dei.len >= 1 &&
825                                 prev.len < F2FS_MIN_EXTENT_LEN &&
826                                 et->largest.len < F2FS_MIN_EXTENT_LEN) {
827                         et->largest.len = 0;
828                         et->largest_updated = true;
829                         set_inode_flag(inode, FI_NO_EXTENT);
830                 }
831         }
832
833         if (is_inode_flag_set(inode, FI_NO_EXTENT))
834                 __free_extent_tree(sbi, et);
835
836         if (et->largest_updated) {
837                 et->largest_updated = false;
838                 updated = true;
839         }
840         goto out_read_extent_cache;
841 update_age_extent_cache:
842         if (!tei->last_blocks)
843                 goto out_read_extent_cache;
844
845         __set_extent_info(&ei, fofs, len, 0, false,
846                         tei->age, tei->last_blocks, EX_BLOCK_AGE);
847         if (!__try_merge_extent_node(sbi, et, &ei, prev_en, next_en))
848                 __insert_extent_tree(sbi, et, &ei,
849                                         insert_p, insert_parent, leftmost);
850 out_read_extent_cache:
851         write_unlock(&et->lock);
852
853         if (updated)
854                 f2fs_mark_inode_dirty_sync(inode, true);
855 }
856
857 #ifdef CONFIG_F2FS_FS_COMPRESSION
858 void f2fs_update_read_extent_tree_range_compressed(struct inode *inode,
859                                 pgoff_t fofs, block_t blkaddr, unsigned int llen,
860                                 unsigned int c_len)
861 {
862         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
863         struct extent_tree *et = F2FS_I(inode)->extent_tree[EX_READ];
864         struct extent_node *en = NULL;
865         struct extent_node *prev_en = NULL, *next_en = NULL;
866         struct extent_info ei;
867         struct rb_node **insert_p = NULL, *insert_parent = NULL;
868         bool leftmost = false;
869
870         trace_f2fs_update_read_extent_tree_range(inode, fofs, llen,
871                                                 blkaddr, c_len);
872
873         /* it is safe here to check FI_NO_EXTENT w/o et->lock in ro image */
874         if (is_inode_flag_set(inode, FI_NO_EXTENT))
875                 return;
876
877         write_lock(&et->lock);
878
879         en = (struct extent_node *)f2fs_lookup_rb_tree_ret(&et->root,
880                                 (struct rb_entry *)et->cached_en, fofs,
881                                 (struct rb_entry **)&prev_en,
882                                 (struct rb_entry **)&next_en,
883                                 &insert_p, &insert_parent, false,
884                                 &leftmost);
885         if (en)
886                 goto unlock_out;
887
888         __set_extent_info(&ei, fofs, llen, blkaddr, true, 0, 0, EX_READ);
889         ei.c_len = c_len;
890
891         if (!__try_merge_extent_node(sbi, et, &ei, prev_en, next_en))
892                 __insert_extent_tree(sbi, et, &ei,
893                                 insert_p, insert_parent, leftmost);
894 unlock_out:
895         write_unlock(&et->lock);
896 }
897 #endif
898
899 static unsigned long long __calculate_block_age(struct f2fs_sb_info *sbi,
900                                                 unsigned long long new,
901                                                 unsigned long long old)
902 {
903         unsigned int rem_old, rem_new;
904         unsigned long long res;
905         unsigned int weight = sbi->last_age_weight;
906
907         res = div_u64_rem(new, 100, &rem_new) * (100 - weight)
908                 + div_u64_rem(old, 100, &rem_old) * weight;
909
910         if (rem_new)
911                 res += rem_new * (100 - weight) / 100;
912         if (rem_old)
913                 res += rem_old * weight / 100;
914
915         return res;
916 }
917
918 /* This returns a new age and allocated blocks in ei */
919 static int __get_new_block_age(struct inode *inode, struct extent_info *ei,
920                                                 block_t blkaddr)
921 {
922         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
923         loff_t f_size = i_size_read(inode);
924         unsigned long long cur_blocks =
925                                 atomic64_read(&sbi->allocated_data_blocks);
926         struct extent_info tei = *ei;   /* only fofs and len are valid */
927
928         /*
929          * When I/O is not aligned to a PAGE_SIZE, update will happen to the last
930          * file block even in seq write. So don't record age for newly last file
931          * block here.
932          */
933         if ((f_size >> PAGE_SHIFT) == ei->fofs && f_size & (PAGE_SIZE - 1) &&
934                         blkaddr == NEW_ADDR)
935                 return -EINVAL;
936
937         if (__lookup_extent_tree(inode, ei->fofs, &tei, EX_BLOCK_AGE)) {
938                 unsigned long long cur_age;
939
940                 if (cur_blocks >= tei.last_blocks)
941                         cur_age = cur_blocks - tei.last_blocks;
942                 else
943                         /* allocated_data_blocks overflow */
944                         cur_age = ULLONG_MAX - tei.last_blocks + cur_blocks;
945
946                 if (tei.age)
947                         ei->age = __calculate_block_age(sbi, cur_age, tei.age);
948                 else
949                         ei->age = cur_age;
950                 ei->last_blocks = cur_blocks;
951                 WARN_ON(ei->age > cur_blocks);
952                 return 0;
953         }
954
955         f2fs_bug_on(sbi, blkaddr == NULL_ADDR);
956
957         /* the data block was allocated for the first time */
958         if (blkaddr == NEW_ADDR)
959                 goto out;
960
961         if (__is_valid_data_blkaddr(blkaddr) &&
962             !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
963                 f2fs_bug_on(sbi, 1);
964                 return -EINVAL;
965         }
966 out:
967         /*
968          * init block age with zero, this can happen when the block age extent
969          * was reclaimed due to memory constraint or system reboot
970          */
971         ei->age = 0;
972         ei->last_blocks = cur_blocks;
973         return 0;
974 }
975
976 static void __update_extent_cache(struct dnode_of_data *dn, enum extent_type type)
977 {
978         struct extent_info ei = {};
979
980         if (!__may_extent_tree(dn->inode, type))
981                 return;
982
983         ei.fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) +
984                                                                 dn->ofs_in_node;
985         ei.len = 1;
986
987         if (type == EX_READ) {
988                 if (dn->data_blkaddr == NEW_ADDR)
989                         ei.blk = NULL_ADDR;
990                 else
991                         ei.blk = dn->data_blkaddr;
992         } else if (type == EX_BLOCK_AGE) {
993                 if (__get_new_block_age(dn->inode, &ei, dn->data_blkaddr))
994                         return;
995         }
996         __update_extent_tree_range(dn->inode, &ei, type);
997 }
998
999 static unsigned int __shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink,
1000                                         enum extent_type type)
1001 {
1002         struct extent_tree_info *eti = &sbi->extent_tree[type];
1003         struct extent_tree *et, *next;
1004         struct extent_node *en;
1005         unsigned int node_cnt = 0, tree_cnt = 0;
1006         int remained;
1007
1008         if (!atomic_read(&eti->total_zombie_tree))
1009                 goto free_node;
1010
1011         if (!mutex_trylock(&eti->extent_tree_lock))
1012                 goto out;
1013
1014         /* 1. remove unreferenced extent tree */
1015         list_for_each_entry_safe(et, next, &eti->zombie_list, list) {
1016                 if (atomic_read(&et->node_cnt)) {
1017                         write_lock(&et->lock);
1018                         node_cnt += __free_extent_tree(sbi, et);
1019                         write_unlock(&et->lock);
1020                 }
1021                 f2fs_bug_on(sbi, atomic_read(&et->node_cnt));
1022                 list_del_init(&et->list);
1023                 radix_tree_delete(&eti->extent_tree_root, et->ino);
1024                 kmem_cache_free(extent_tree_slab, et);
1025                 atomic_dec(&eti->total_ext_tree);
1026                 atomic_dec(&eti->total_zombie_tree);
1027                 tree_cnt++;
1028
1029                 if (node_cnt + tree_cnt >= nr_shrink)
1030                         goto unlock_out;
1031                 cond_resched();
1032         }
1033         mutex_unlock(&eti->extent_tree_lock);
1034
1035 free_node:
1036         /* 2. remove LRU extent entries */
1037         if (!mutex_trylock(&eti->extent_tree_lock))
1038                 goto out;
1039
1040         remained = nr_shrink - (node_cnt + tree_cnt);
1041
1042         spin_lock(&eti->extent_lock);
1043         for (; remained > 0; remained--) {
1044                 if (list_empty(&eti->extent_list))
1045                         break;
1046                 en = list_first_entry(&eti->extent_list,
1047                                         struct extent_node, list);
1048                 et = en->et;
1049                 if (!write_trylock(&et->lock)) {
1050                         /* refresh this extent node's position in extent list */
1051                         list_move_tail(&en->list, &eti->extent_list);
1052                         continue;
1053                 }
1054
1055                 list_del_init(&en->list);
1056                 spin_unlock(&eti->extent_lock);
1057
1058                 __detach_extent_node(sbi, et, en);
1059
1060                 write_unlock(&et->lock);
1061                 node_cnt++;
1062                 spin_lock(&eti->extent_lock);
1063         }
1064         spin_unlock(&eti->extent_lock);
1065
1066 unlock_out:
1067         mutex_unlock(&eti->extent_tree_lock);
1068 out:
1069         trace_f2fs_shrink_extent_tree(sbi, node_cnt, tree_cnt, type);
1070
1071         return node_cnt + tree_cnt;
1072 }
1073
1074 /* read extent cache operations */
1075 bool f2fs_lookup_read_extent_cache(struct inode *inode, pgoff_t pgofs,
1076                                 struct extent_info *ei)
1077 {
1078         if (!__may_extent_tree(inode, EX_READ))
1079                 return false;
1080
1081         return __lookup_extent_tree(inode, pgofs, ei, EX_READ);
1082 }
1083
1084 bool f2fs_lookup_read_extent_cache_block(struct inode *inode, pgoff_t index,
1085                                 block_t *blkaddr)
1086 {
1087         struct extent_info ei = {};
1088
1089         if (!f2fs_lookup_read_extent_cache(inode, index, &ei))
1090                 return false;
1091         *blkaddr = ei.blk + index - ei.fofs;
1092         return true;
1093 }
1094
1095 void f2fs_update_read_extent_cache(struct dnode_of_data *dn)
1096 {
1097         return __update_extent_cache(dn, EX_READ);
1098 }
1099
1100 void f2fs_update_read_extent_cache_range(struct dnode_of_data *dn,
1101                                 pgoff_t fofs, block_t blkaddr, unsigned int len)
1102 {
1103         struct extent_info ei = {
1104                 .fofs = fofs,
1105                 .len = len,
1106                 .blk = blkaddr,
1107         };
1108
1109         if (!__may_extent_tree(dn->inode, EX_READ))
1110                 return;
1111
1112         __update_extent_tree_range(dn->inode, &ei, EX_READ);
1113 }
1114
1115 unsigned int f2fs_shrink_read_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink)
1116 {
1117         if (!test_opt(sbi, READ_EXTENT_CACHE))
1118                 return 0;
1119
1120         return __shrink_extent_tree(sbi, nr_shrink, EX_READ);
1121 }
1122
1123 /* block age extent cache operations */
1124 bool f2fs_lookup_age_extent_cache(struct inode *inode, pgoff_t pgofs,
1125                                 struct extent_info *ei)
1126 {
1127         if (!__may_extent_tree(inode, EX_BLOCK_AGE))
1128                 return false;
1129
1130         return __lookup_extent_tree(inode, pgofs, ei, EX_BLOCK_AGE);
1131 }
1132
1133 void f2fs_update_age_extent_cache(struct dnode_of_data *dn)
1134 {
1135         return __update_extent_cache(dn, EX_BLOCK_AGE);
1136 }
1137
1138 void f2fs_update_age_extent_cache_range(struct dnode_of_data *dn,
1139                                 pgoff_t fofs, unsigned int len)
1140 {
1141         struct extent_info ei = {
1142                 .fofs = fofs,
1143                 .len = len,
1144         };
1145
1146         if (!__may_extent_tree(dn->inode, EX_BLOCK_AGE))
1147                 return;
1148
1149         __update_extent_tree_range(dn->inode, &ei, EX_BLOCK_AGE);
1150 }
1151
1152 unsigned int f2fs_shrink_age_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink)
1153 {
1154         if (!test_opt(sbi, AGE_EXTENT_CACHE))
1155                 return 0;
1156
1157         return __shrink_extent_tree(sbi, nr_shrink, EX_BLOCK_AGE);
1158 }
1159
1160 static unsigned int __destroy_extent_node(struct inode *inode,
1161                                         enum extent_type type)
1162 {
1163         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1164         struct extent_tree *et = F2FS_I(inode)->extent_tree[type];
1165         unsigned int node_cnt = 0;
1166
1167         if (!et || !atomic_read(&et->node_cnt))
1168                 return 0;
1169
1170         write_lock(&et->lock);
1171         node_cnt = __free_extent_tree(sbi, et);
1172         write_unlock(&et->lock);
1173
1174         return node_cnt;
1175 }
1176
1177 void f2fs_destroy_extent_node(struct inode *inode)
1178 {
1179         __destroy_extent_node(inode, EX_READ);
1180         __destroy_extent_node(inode, EX_BLOCK_AGE);
1181 }
1182
1183 static void __drop_extent_tree(struct inode *inode, enum extent_type type)
1184 {
1185         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1186         struct extent_tree *et = F2FS_I(inode)->extent_tree[type];
1187         bool updated = false;
1188
1189         if (!__may_extent_tree(inode, type))
1190                 return;
1191
1192         write_lock(&et->lock);
1193         __free_extent_tree(sbi, et);
1194         if (type == EX_READ) {
1195                 set_inode_flag(inode, FI_NO_EXTENT);
1196                 if (et->largest.len) {
1197                         et->largest.len = 0;
1198                         updated = true;
1199                 }
1200         }
1201         write_unlock(&et->lock);
1202         if (updated)
1203                 f2fs_mark_inode_dirty_sync(inode, true);
1204 }
1205
1206 void f2fs_drop_extent_tree(struct inode *inode)
1207 {
1208         __drop_extent_tree(inode, EX_READ);
1209         __drop_extent_tree(inode, EX_BLOCK_AGE);
1210 }
1211
1212 static void __destroy_extent_tree(struct inode *inode, enum extent_type type)
1213 {
1214         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1215         struct extent_tree_info *eti = &sbi->extent_tree[type];
1216         struct extent_tree *et = F2FS_I(inode)->extent_tree[type];
1217         unsigned int node_cnt = 0;
1218
1219         if (!et)
1220                 return;
1221
1222         if (inode->i_nlink && !is_bad_inode(inode) &&
1223                                         atomic_read(&et->node_cnt)) {
1224                 mutex_lock(&eti->extent_tree_lock);
1225                 list_add_tail(&et->list, &eti->zombie_list);
1226                 atomic_inc(&eti->total_zombie_tree);
1227                 mutex_unlock(&eti->extent_tree_lock);
1228                 return;
1229         }
1230
1231         /* free all extent info belong to this extent tree */
1232         node_cnt = __destroy_extent_node(inode, type);
1233
1234         /* delete extent tree entry in radix tree */
1235         mutex_lock(&eti->extent_tree_lock);
1236         f2fs_bug_on(sbi, atomic_read(&et->node_cnt));
1237         radix_tree_delete(&eti->extent_tree_root, inode->i_ino);
1238         kmem_cache_free(extent_tree_slab, et);
1239         atomic_dec(&eti->total_ext_tree);
1240         mutex_unlock(&eti->extent_tree_lock);
1241
1242         F2FS_I(inode)->extent_tree[type] = NULL;
1243
1244         trace_f2fs_destroy_extent_tree(inode, node_cnt, type);
1245 }
1246
1247 void f2fs_destroy_extent_tree(struct inode *inode)
1248 {
1249         __destroy_extent_tree(inode, EX_READ);
1250         __destroy_extent_tree(inode, EX_BLOCK_AGE);
1251 }
1252
1253 static void __init_extent_tree_info(struct extent_tree_info *eti)
1254 {
1255         INIT_RADIX_TREE(&eti->extent_tree_root, GFP_NOIO);
1256         mutex_init(&eti->extent_tree_lock);
1257         INIT_LIST_HEAD(&eti->extent_list);
1258         spin_lock_init(&eti->extent_lock);
1259         atomic_set(&eti->total_ext_tree, 0);
1260         INIT_LIST_HEAD(&eti->zombie_list);
1261         atomic_set(&eti->total_zombie_tree, 0);
1262         atomic_set(&eti->total_ext_node, 0);
1263 }
1264
1265 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi)
1266 {
1267         __init_extent_tree_info(&sbi->extent_tree[EX_READ]);
1268         __init_extent_tree_info(&sbi->extent_tree[EX_BLOCK_AGE]);
1269
1270         /* initialize for block age extents */
1271         atomic64_set(&sbi->allocated_data_blocks, 0);
1272         sbi->hot_data_age_threshold = DEF_HOT_DATA_AGE_THRESHOLD;
1273         sbi->warm_data_age_threshold = DEF_WARM_DATA_AGE_THRESHOLD;
1274         sbi->last_age_weight = LAST_AGE_WEIGHT;
1275 }
1276
1277 int __init f2fs_create_extent_cache(void)
1278 {
1279         extent_tree_slab = f2fs_kmem_cache_create("f2fs_extent_tree",
1280                         sizeof(struct extent_tree));
1281         if (!extent_tree_slab)
1282                 return -ENOMEM;
1283         extent_node_slab = f2fs_kmem_cache_create("f2fs_extent_node",
1284                         sizeof(struct extent_node));
1285         if (!extent_node_slab) {
1286                 kmem_cache_destroy(extent_tree_slab);
1287                 return -ENOMEM;
1288         }
1289         return 0;
1290 }
1291
1292 void f2fs_destroy_extent_cache(void)
1293 {
1294         kmem_cache_destroy(extent_node_slab);
1295         kmem_cache_destroy(extent_tree_slab);
1296 }