Merge v6.5-rc1 into drm-misc-fixes
[platform/kernel/linux-starfive.git] / fs / f2fs / data.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/data.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/sched/mm.h>
12 #include <linux/mpage.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/blk-crypto.h>
18 #include <linux/swap.h>
19 #include <linux/prefetch.h>
20 #include <linux/uio.h>
21 #include <linux/sched/signal.h>
22 #include <linux/fiemap.h>
23 #include <linux/iomap.h>
24
25 #include "f2fs.h"
26 #include "node.h"
27 #include "segment.h"
28 #include "iostat.h"
29 #include <trace/events/f2fs.h>
30
31 #define NUM_PREALLOC_POST_READ_CTXS     128
32
33 static struct kmem_cache *bio_post_read_ctx_cache;
34 static struct kmem_cache *bio_entry_slab;
35 static mempool_t *bio_post_read_ctx_pool;
36 static struct bio_set f2fs_bioset;
37
38 #define F2FS_BIO_POOL_SIZE      NR_CURSEG_TYPE
39
40 int __init f2fs_init_bioset(void)
41 {
42         return bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
43                                         0, BIOSET_NEED_BVECS);
44 }
45
46 void f2fs_destroy_bioset(void)
47 {
48         bioset_exit(&f2fs_bioset);
49 }
50
51 static bool __is_cp_guaranteed(struct page *page)
52 {
53         struct address_space *mapping = page->mapping;
54         struct inode *inode;
55         struct f2fs_sb_info *sbi;
56
57         if (!mapping)
58                 return false;
59
60         inode = mapping->host;
61         sbi = F2FS_I_SB(inode);
62
63         if (inode->i_ino == F2FS_META_INO(sbi) ||
64                         inode->i_ino == F2FS_NODE_INO(sbi) ||
65                         S_ISDIR(inode->i_mode))
66                 return true;
67
68         if (f2fs_is_compressed_page(page))
69                 return false;
70         if ((S_ISREG(inode->i_mode) && IS_NOQUOTA(inode)) ||
71                         page_private_gcing(page))
72                 return true;
73         return false;
74 }
75
76 static enum count_type __read_io_type(struct page *page)
77 {
78         struct address_space *mapping = page_file_mapping(page);
79
80         if (mapping) {
81                 struct inode *inode = mapping->host;
82                 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
83
84                 if (inode->i_ino == F2FS_META_INO(sbi))
85                         return F2FS_RD_META;
86
87                 if (inode->i_ino == F2FS_NODE_INO(sbi))
88                         return F2FS_RD_NODE;
89         }
90         return F2FS_RD_DATA;
91 }
92
93 /* postprocessing steps for read bios */
94 enum bio_post_read_step {
95 #ifdef CONFIG_FS_ENCRYPTION
96         STEP_DECRYPT    = BIT(0),
97 #else
98         STEP_DECRYPT    = 0,    /* compile out the decryption-related code */
99 #endif
100 #ifdef CONFIG_F2FS_FS_COMPRESSION
101         STEP_DECOMPRESS = BIT(1),
102 #else
103         STEP_DECOMPRESS = 0,    /* compile out the decompression-related code */
104 #endif
105 #ifdef CONFIG_FS_VERITY
106         STEP_VERITY     = BIT(2),
107 #else
108         STEP_VERITY     = 0,    /* compile out the verity-related code */
109 #endif
110 };
111
112 struct bio_post_read_ctx {
113         struct bio *bio;
114         struct f2fs_sb_info *sbi;
115         struct work_struct work;
116         unsigned int enabled_steps;
117         /*
118          * decompression_attempted keeps track of whether
119          * f2fs_end_read_compressed_page() has been called on the pages in the
120          * bio that belong to a compressed cluster yet.
121          */
122         bool decompression_attempted;
123         block_t fs_blkaddr;
124 };
125
126 /*
127  * Update and unlock a bio's pages, and free the bio.
128  *
129  * This marks pages up-to-date only if there was no error in the bio (I/O error,
130  * decryption error, or verity error), as indicated by bio->bi_status.
131  *
132  * "Compressed pages" (pagecache pages backed by a compressed cluster on-disk)
133  * aren't marked up-to-date here, as decompression is done on a per-compression-
134  * cluster basis rather than a per-bio basis.  Instead, we only must do two
135  * things for each compressed page here: call f2fs_end_read_compressed_page()
136  * with failed=true if an error occurred before it would have normally gotten
137  * called (i.e., I/O error or decryption error, but *not* verity error), and
138  * release the bio's reference to the decompress_io_ctx of the page's cluster.
139  */
140 static void f2fs_finish_read_bio(struct bio *bio, bool in_task)
141 {
142         struct bio_vec *bv;
143         struct bvec_iter_all iter_all;
144         struct bio_post_read_ctx *ctx = bio->bi_private;
145
146         bio_for_each_segment_all(bv, bio, iter_all) {
147                 struct page *page = bv->bv_page;
148
149                 if (f2fs_is_compressed_page(page)) {
150                         if (ctx && !ctx->decompression_attempted)
151                                 f2fs_end_read_compressed_page(page, true, 0,
152                                                         in_task);
153                         f2fs_put_page_dic(page, in_task);
154                         continue;
155                 }
156
157                 if (bio->bi_status)
158                         ClearPageUptodate(page);
159                 else
160                         SetPageUptodate(page);
161                 dec_page_count(F2FS_P_SB(page), __read_io_type(page));
162                 unlock_page(page);
163         }
164
165         if (ctx)
166                 mempool_free(ctx, bio_post_read_ctx_pool);
167         bio_put(bio);
168 }
169
170 static void f2fs_verify_bio(struct work_struct *work)
171 {
172         struct bio_post_read_ctx *ctx =
173                 container_of(work, struct bio_post_read_ctx, work);
174         struct bio *bio = ctx->bio;
175         bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS);
176
177         /*
178          * fsverity_verify_bio() may call readahead() again, and while verity
179          * will be disabled for this, decryption and/or decompression may still
180          * be needed, resulting in another bio_post_read_ctx being allocated.
181          * So to prevent deadlocks we need to release the current ctx to the
182          * mempool first.  This assumes that verity is the last post-read step.
183          */
184         mempool_free(ctx, bio_post_read_ctx_pool);
185         bio->bi_private = NULL;
186
187         /*
188          * Verify the bio's pages with fs-verity.  Exclude compressed pages,
189          * as those were handled separately by f2fs_end_read_compressed_page().
190          */
191         if (may_have_compressed_pages) {
192                 struct bio_vec *bv;
193                 struct bvec_iter_all iter_all;
194
195                 bio_for_each_segment_all(bv, bio, iter_all) {
196                         struct page *page = bv->bv_page;
197
198                         if (!f2fs_is_compressed_page(page) &&
199                             !fsverity_verify_page(page)) {
200                                 bio->bi_status = BLK_STS_IOERR;
201                                 break;
202                         }
203                 }
204         } else {
205                 fsverity_verify_bio(bio);
206         }
207
208         f2fs_finish_read_bio(bio, true);
209 }
210
211 /*
212  * If the bio's data needs to be verified with fs-verity, then enqueue the
213  * verity work for the bio.  Otherwise finish the bio now.
214  *
215  * Note that to avoid deadlocks, the verity work can't be done on the
216  * decryption/decompression workqueue.  This is because verifying the data pages
217  * can involve reading verity metadata pages from the file, and these verity
218  * metadata pages may be encrypted and/or compressed.
219  */
220 static void f2fs_verify_and_finish_bio(struct bio *bio, bool in_task)
221 {
222         struct bio_post_read_ctx *ctx = bio->bi_private;
223
224         if (ctx && (ctx->enabled_steps & STEP_VERITY)) {
225                 INIT_WORK(&ctx->work, f2fs_verify_bio);
226                 fsverity_enqueue_verify_work(&ctx->work);
227         } else {
228                 f2fs_finish_read_bio(bio, in_task);
229         }
230 }
231
232 /*
233  * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last
234  * remaining page was read by @ctx->bio.
235  *
236  * Note that a bio may span clusters (even a mix of compressed and uncompressed
237  * clusters) or be for just part of a cluster.  STEP_DECOMPRESS just indicates
238  * that the bio includes at least one compressed page.  The actual decompression
239  * is done on a per-cluster basis, not a per-bio basis.
240  */
241 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx,
242                 bool in_task)
243 {
244         struct bio_vec *bv;
245         struct bvec_iter_all iter_all;
246         bool all_compressed = true;
247         block_t blkaddr = ctx->fs_blkaddr;
248
249         bio_for_each_segment_all(bv, ctx->bio, iter_all) {
250                 struct page *page = bv->bv_page;
251
252                 if (f2fs_is_compressed_page(page))
253                         f2fs_end_read_compressed_page(page, false, blkaddr,
254                                                       in_task);
255                 else
256                         all_compressed = false;
257
258                 blkaddr++;
259         }
260
261         ctx->decompression_attempted = true;
262
263         /*
264          * Optimization: if all the bio's pages are compressed, then scheduling
265          * the per-bio verity work is unnecessary, as verity will be fully
266          * handled at the compression cluster level.
267          */
268         if (all_compressed)
269                 ctx->enabled_steps &= ~STEP_VERITY;
270 }
271
272 static void f2fs_post_read_work(struct work_struct *work)
273 {
274         struct bio_post_read_ctx *ctx =
275                 container_of(work, struct bio_post_read_ctx, work);
276         struct bio *bio = ctx->bio;
277
278         if ((ctx->enabled_steps & STEP_DECRYPT) && !fscrypt_decrypt_bio(bio)) {
279                 f2fs_finish_read_bio(bio, true);
280                 return;
281         }
282
283         if (ctx->enabled_steps & STEP_DECOMPRESS)
284                 f2fs_handle_step_decompress(ctx, true);
285
286         f2fs_verify_and_finish_bio(bio, true);
287 }
288
289 static void f2fs_read_end_io(struct bio *bio)
290 {
291         struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
292         struct bio_post_read_ctx *ctx;
293         bool intask = in_task();
294
295         iostat_update_and_unbind_ctx(bio);
296         ctx = bio->bi_private;
297
298         if (time_to_inject(sbi, FAULT_READ_IO))
299                 bio->bi_status = BLK_STS_IOERR;
300
301         if (bio->bi_status) {
302                 f2fs_finish_read_bio(bio, intask);
303                 return;
304         }
305
306         if (ctx) {
307                 unsigned int enabled_steps = ctx->enabled_steps &
308                                         (STEP_DECRYPT | STEP_DECOMPRESS);
309
310                 /*
311                  * If we have only decompression step between decompression and
312                  * decrypt, we don't need post processing for this.
313                  */
314                 if (enabled_steps == STEP_DECOMPRESS &&
315                                 !f2fs_low_mem_mode(sbi)) {
316                         f2fs_handle_step_decompress(ctx, intask);
317                 } else if (enabled_steps) {
318                         INIT_WORK(&ctx->work, f2fs_post_read_work);
319                         queue_work(ctx->sbi->post_read_wq, &ctx->work);
320                         return;
321                 }
322         }
323
324         f2fs_verify_and_finish_bio(bio, intask);
325 }
326
327 static void f2fs_write_end_io(struct bio *bio)
328 {
329         struct f2fs_sb_info *sbi;
330         struct bio_vec *bvec;
331         struct bvec_iter_all iter_all;
332
333         iostat_update_and_unbind_ctx(bio);
334         sbi = bio->bi_private;
335
336         if (time_to_inject(sbi, FAULT_WRITE_IO))
337                 bio->bi_status = BLK_STS_IOERR;
338
339         bio_for_each_segment_all(bvec, bio, iter_all) {
340                 struct page *page = bvec->bv_page;
341                 enum count_type type = WB_DATA_TYPE(page);
342
343                 if (page_private_dummy(page)) {
344                         clear_page_private_dummy(page);
345                         unlock_page(page);
346                         mempool_free(page, sbi->write_io_dummy);
347
348                         if (unlikely(bio->bi_status))
349                                 f2fs_stop_checkpoint(sbi, true,
350                                                 STOP_CP_REASON_WRITE_FAIL);
351                         continue;
352                 }
353
354                 fscrypt_finalize_bounce_page(&page);
355
356 #ifdef CONFIG_F2FS_FS_COMPRESSION
357                 if (f2fs_is_compressed_page(page)) {
358                         f2fs_compress_write_end_io(bio, page);
359                         continue;
360                 }
361 #endif
362
363                 if (unlikely(bio->bi_status)) {
364                         mapping_set_error(page->mapping, -EIO);
365                         if (type == F2FS_WB_CP_DATA)
366                                 f2fs_stop_checkpoint(sbi, true,
367                                                 STOP_CP_REASON_WRITE_FAIL);
368                 }
369
370                 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
371                                         page->index != nid_of_node(page));
372
373                 dec_page_count(sbi, type);
374                 if (f2fs_in_warm_node_list(sbi, page))
375                         f2fs_del_fsync_node_entry(sbi, page);
376                 clear_page_private_gcing(page);
377                 end_page_writeback(page);
378         }
379         if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
380                                 wq_has_sleeper(&sbi->cp_wait))
381                 wake_up(&sbi->cp_wait);
382
383         bio_put(bio);
384 }
385
386 #ifdef CONFIG_BLK_DEV_ZONED
387 static void f2fs_zone_write_end_io(struct bio *bio)
388 {
389         struct f2fs_bio_info *io = (struct f2fs_bio_info *)bio->bi_private;
390
391         bio->bi_private = io->bi_private;
392         complete(&io->zone_wait);
393         f2fs_write_end_io(bio);
394 }
395 #endif
396
397 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
398                 block_t blk_addr, sector_t *sector)
399 {
400         struct block_device *bdev = sbi->sb->s_bdev;
401         int i;
402
403         if (f2fs_is_multi_device(sbi)) {
404                 for (i = 0; i < sbi->s_ndevs; i++) {
405                         if (FDEV(i).start_blk <= blk_addr &&
406                             FDEV(i).end_blk >= blk_addr) {
407                                 blk_addr -= FDEV(i).start_blk;
408                                 bdev = FDEV(i).bdev;
409                                 break;
410                         }
411                 }
412         }
413
414         if (sector)
415                 *sector = SECTOR_FROM_BLOCK(blk_addr);
416         return bdev;
417 }
418
419 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
420 {
421         int i;
422
423         if (!f2fs_is_multi_device(sbi))
424                 return 0;
425
426         for (i = 0; i < sbi->s_ndevs; i++)
427                 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
428                         return i;
429         return 0;
430 }
431
432 static blk_opf_t f2fs_io_flags(struct f2fs_io_info *fio)
433 {
434         unsigned int temp_mask = GENMASK(NR_TEMP_TYPE - 1, 0);
435         unsigned int fua_flag, meta_flag, io_flag;
436         blk_opf_t op_flags = 0;
437
438         if (fio->op != REQ_OP_WRITE)
439                 return 0;
440         if (fio->type == DATA)
441                 io_flag = fio->sbi->data_io_flag;
442         else if (fio->type == NODE)
443                 io_flag = fio->sbi->node_io_flag;
444         else
445                 return 0;
446
447         fua_flag = io_flag & temp_mask;
448         meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
449
450         /*
451          * data/node io flag bits per temp:
452          *      REQ_META     |      REQ_FUA      |
453          *    5 |    4 |   3 |    2 |    1 |   0 |
454          * Cold | Warm | Hot | Cold | Warm | Hot |
455          */
456         if (BIT(fio->temp) & meta_flag)
457                 op_flags |= REQ_META;
458         if (BIT(fio->temp) & fua_flag)
459                 op_flags |= REQ_FUA;
460         return op_flags;
461 }
462
463 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
464 {
465         struct f2fs_sb_info *sbi = fio->sbi;
466         struct block_device *bdev;
467         sector_t sector;
468         struct bio *bio;
469
470         bdev = f2fs_target_device(sbi, fio->new_blkaddr, &sector);
471         bio = bio_alloc_bioset(bdev, npages,
472                                 fio->op | fio->op_flags | f2fs_io_flags(fio),
473                                 GFP_NOIO, &f2fs_bioset);
474         bio->bi_iter.bi_sector = sector;
475         if (is_read_io(fio->op)) {
476                 bio->bi_end_io = f2fs_read_end_io;
477                 bio->bi_private = NULL;
478         } else {
479                 bio->bi_end_io = f2fs_write_end_io;
480                 bio->bi_private = sbi;
481         }
482         iostat_alloc_and_bind_ctx(sbi, bio, NULL);
483
484         if (fio->io_wbc)
485                 wbc_init_bio(fio->io_wbc, bio);
486
487         return bio;
488 }
489
490 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
491                                   pgoff_t first_idx,
492                                   const struct f2fs_io_info *fio,
493                                   gfp_t gfp_mask)
494 {
495         /*
496          * The f2fs garbage collector sets ->encrypted_page when it wants to
497          * read/write raw data without encryption.
498          */
499         if (!fio || !fio->encrypted_page)
500                 fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
501 }
502
503 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
504                                      pgoff_t next_idx,
505                                      const struct f2fs_io_info *fio)
506 {
507         /*
508          * The f2fs garbage collector sets ->encrypted_page when it wants to
509          * read/write raw data without encryption.
510          */
511         if (fio && fio->encrypted_page)
512                 return !bio_has_crypt_ctx(bio);
513
514         return fscrypt_mergeable_bio(bio, inode, next_idx);
515 }
516
517 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
518                                  enum page_type type)
519 {
520         WARN_ON_ONCE(!is_read_io(bio_op(bio)));
521         trace_f2fs_submit_read_bio(sbi->sb, type, bio);
522
523         iostat_update_submit_ctx(bio, type);
524         submit_bio(bio);
525 }
526
527 static void f2fs_align_write_bio(struct f2fs_sb_info *sbi, struct bio *bio)
528 {
529         unsigned int start =
530                 (bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS) % F2FS_IO_SIZE(sbi);
531
532         if (start == 0)
533                 return;
534
535         /* fill dummy pages */
536         for (; start < F2FS_IO_SIZE(sbi); start++) {
537                 struct page *page =
538                         mempool_alloc(sbi->write_io_dummy,
539                                       GFP_NOIO | __GFP_NOFAIL);
540                 f2fs_bug_on(sbi, !page);
541
542                 lock_page(page);
543
544                 zero_user_segment(page, 0, PAGE_SIZE);
545                 set_page_private_dummy(page);
546
547                 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
548                         f2fs_bug_on(sbi, 1);
549         }
550 }
551
552 static void f2fs_submit_write_bio(struct f2fs_sb_info *sbi, struct bio *bio,
553                                   enum page_type type)
554 {
555         WARN_ON_ONCE(is_read_io(bio_op(bio)));
556
557         if (type == DATA || type == NODE) {
558                 if (f2fs_lfs_mode(sbi) && current->plug)
559                         blk_finish_plug(current->plug);
560
561                 if (F2FS_IO_ALIGNED(sbi)) {
562                         f2fs_align_write_bio(sbi, bio);
563                         /*
564                          * In the NODE case, we lose next block address chain.
565                          * So, we need to do checkpoint in f2fs_sync_file.
566                          */
567                         if (type == NODE)
568                                 set_sbi_flag(sbi, SBI_NEED_CP);
569                 }
570         }
571
572         trace_f2fs_submit_write_bio(sbi->sb, type, bio);
573         iostat_update_submit_ctx(bio, type);
574         submit_bio(bio);
575 }
576
577 static void __submit_merged_bio(struct f2fs_bio_info *io)
578 {
579         struct f2fs_io_info *fio = &io->fio;
580
581         if (!io->bio)
582                 return;
583
584         if (is_read_io(fio->op)) {
585                 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
586                 f2fs_submit_read_bio(io->sbi, io->bio, fio->type);
587         } else {
588                 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
589                 f2fs_submit_write_bio(io->sbi, io->bio, fio->type);
590         }
591         io->bio = NULL;
592 }
593
594 static bool __has_merged_page(struct bio *bio, struct inode *inode,
595                                                 struct page *page, nid_t ino)
596 {
597         struct bio_vec *bvec;
598         struct bvec_iter_all iter_all;
599
600         if (!bio)
601                 return false;
602
603         if (!inode && !page && !ino)
604                 return true;
605
606         bio_for_each_segment_all(bvec, bio, iter_all) {
607                 struct page *target = bvec->bv_page;
608
609                 if (fscrypt_is_bounce_page(target)) {
610                         target = fscrypt_pagecache_page(target);
611                         if (IS_ERR(target))
612                                 continue;
613                 }
614                 if (f2fs_is_compressed_page(target)) {
615                         target = f2fs_compress_control_page(target);
616                         if (IS_ERR(target))
617                                 continue;
618                 }
619
620                 if (inode && inode == target->mapping->host)
621                         return true;
622                 if (page && page == target)
623                         return true;
624                 if (ino && ino == ino_of_node(target))
625                         return true;
626         }
627
628         return false;
629 }
630
631 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi)
632 {
633         int i;
634
635         for (i = 0; i < NR_PAGE_TYPE; i++) {
636                 int n = (i == META) ? 1 : NR_TEMP_TYPE;
637                 int j;
638
639                 sbi->write_io[i] = f2fs_kmalloc(sbi,
640                                 array_size(n, sizeof(struct f2fs_bio_info)),
641                                 GFP_KERNEL);
642                 if (!sbi->write_io[i])
643                         return -ENOMEM;
644
645                 for (j = HOT; j < n; j++) {
646                         init_f2fs_rwsem(&sbi->write_io[i][j].io_rwsem);
647                         sbi->write_io[i][j].sbi = sbi;
648                         sbi->write_io[i][j].bio = NULL;
649                         spin_lock_init(&sbi->write_io[i][j].io_lock);
650                         INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
651                         INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list);
652                         init_f2fs_rwsem(&sbi->write_io[i][j].bio_list_lock);
653 #ifdef CONFIG_BLK_DEV_ZONED
654                         init_completion(&sbi->write_io[i][j].zone_wait);
655                         sbi->write_io[i][j].zone_pending_bio = NULL;
656                         sbi->write_io[i][j].bi_private = NULL;
657 #endif
658                 }
659         }
660
661         return 0;
662 }
663
664 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
665                                 enum page_type type, enum temp_type temp)
666 {
667         enum page_type btype = PAGE_TYPE_OF_BIO(type);
668         struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
669
670         f2fs_down_write(&io->io_rwsem);
671
672         if (!io->bio)
673                 goto unlock_out;
674
675         /* change META to META_FLUSH in the checkpoint procedure */
676         if (type >= META_FLUSH) {
677                 io->fio.type = META_FLUSH;
678                 io->bio->bi_opf |= REQ_META | REQ_PRIO | REQ_SYNC;
679                 if (!test_opt(sbi, NOBARRIER))
680                         io->bio->bi_opf |= REQ_PREFLUSH | REQ_FUA;
681         }
682         __submit_merged_bio(io);
683 unlock_out:
684         f2fs_up_write(&io->io_rwsem);
685 }
686
687 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
688                                 struct inode *inode, struct page *page,
689                                 nid_t ino, enum page_type type, bool force)
690 {
691         enum temp_type temp;
692         bool ret = true;
693
694         for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
695                 if (!force)     {
696                         enum page_type btype = PAGE_TYPE_OF_BIO(type);
697                         struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
698
699                         f2fs_down_read(&io->io_rwsem);
700                         ret = __has_merged_page(io->bio, inode, page, ino);
701                         f2fs_up_read(&io->io_rwsem);
702                 }
703                 if (ret)
704                         __f2fs_submit_merged_write(sbi, type, temp);
705
706                 /* TODO: use HOT temp only for meta pages now. */
707                 if (type >= META)
708                         break;
709         }
710 }
711
712 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
713 {
714         __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
715 }
716
717 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
718                                 struct inode *inode, struct page *page,
719                                 nid_t ino, enum page_type type)
720 {
721         __submit_merged_write_cond(sbi, inode, page, ino, type, false);
722 }
723
724 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
725 {
726         f2fs_submit_merged_write(sbi, DATA);
727         f2fs_submit_merged_write(sbi, NODE);
728         f2fs_submit_merged_write(sbi, META);
729 }
730
731 /*
732  * Fill the locked page with data located in the block address.
733  * A caller needs to unlock the page on failure.
734  */
735 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
736 {
737         struct bio *bio;
738         struct page *page = fio->encrypted_page ?
739                         fio->encrypted_page : fio->page;
740
741         if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
742                         fio->is_por ? META_POR : (__is_meta_io(fio) ?
743                         META_GENERIC : DATA_GENERIC_ENHANCE))) {
744                 f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR);
745                 return -EFSCORRUPTED;
746         }
747
748         trace_f2fs_submit_page_bio(page, fio);
749
750         /* Allocate a new bio */
751         bio = __bio_alloc(fio, 1);
752
753         f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
754                                fio->page->index, fio, GFP_NOIO);
755
756         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
757                 bio_put(bio);
758                 return -EFAULT;
759         }
760
761         if (fio->io_wbc && !is_read_io(fio->op))
762                 wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
763
764         inc_page_count(fio->sbi, is_read_io(fio->op) ?
765                         __read_io_type(page) : WB_DATA_TYPE(fio->page));
766
767         if (is_read_io(bio_op(bio)))
768                 f2fs_submit_read_bio(fio->sbi, bio, fio->type);
769         else
770                 f2fs_submit_write_bio(fio->sbi, bio, fio->type);
771         return 0;
772 }
773
774 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
775                                 block_t last_blkaddr, block_t cur_blkaddr)
776 {
777         if (unlikely(sbi->max_io_bytes &&
778                         bio->bi_iter.bi_size >= sbi->max_io_bytes))
779                 return false;
780         if (last_blkaddr + 1 != cur_blkaddr)
781                 return false;
782         return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL);
783 }
784
785 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
786                                                 struct f2fs_io_info *fio)
787 {
788         if (io->fio.op != fio->op)
789                 return false;
790         return io->fio.op_flags == fio->op_flags;
791 }
792
793 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
794                                         struct f2fs_bio_info *io,
795                                         struct f2fs_io_info *fio,
796                                         block_t last_blkaddr,
797                                         block_t cur_blkaddr)
798 {
799         if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) {
800                 unsigned int filled_blocks =
801                                 F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size);
802                 unsigned int io_size = F2FS_IO_SIZE(sbi);
803                 unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt;
804
805                 /* IOs in bio is aligned and left space of vectors is not enough */
806                 if (!(filled_blocks % io_size) && left_vecs < io_size)
807                         return false;
808         }
809         if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
810                 return false;
811         return io_type_is_mergeable(io, fio);
812 }
813
814 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
815                                 struct page *page, enum temp_type temp)
816 {
817         struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
818         struct bio_entry *be;
819
820         be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL);
821         be->bio = bio;
822         bio_get(bio);
823
824         if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
825                 f2fs_bug_on(sbi, 1);
826
827         f2fs_down_write(&io->bio_list_lock);
828         list_add_tail(&be->list, &io->bio_list);
829         f2fs_up_write(&io->bio_list_lock);
830 }
831
832 static void del_bio_entry(struct bio_entry *be)
833 {
834         list_del(&be->list);
835         kmem_cache_free(bio_entry_slab, be);
836 }
837
838 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
839                                                         struct page *page)
840 {
841         struct f2fs_sb_info *sbi = fio->sbi;
842         enum temp_type temp;
843         bool found = false;
844         int ret = -EAGAIN;
845
846         for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
847                 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
848                 struct list_head *head = &io->bio_list;
849                 struct bio_entry *be;
850
851                 f2fs_down_write(&io->bio_list_lock);
852                 list_for_each_entry(be, head, list) {
853                         if (be->bio != *bio)
854                                 continue;
855
856                         found = true;
857
858                         f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
859                                                             *fio->last_block,
860                                                             fio->new_blkaddr));
861                         if (f2fs_crypt_mergeable_bio(*bio,
862                                         fio->page->mapping->host,
863                                         fio->page->index, fio) &&
864                             bio_add_page(*bio, page, PAGE_SIZE, 0) ==
865                                         PAGE_SIZE) {
866                                 ret = 0;
867                                 break;
868                         }
869
870                         /* page can't be merged into bio; submit the bio */
871                         del_bio_entry(be);
872                         f2fs_submit_write_bio(sbi, *bio, DATA);
873                         break;
874                 }
875                 f2fs_up_write(&io->bio_list_lock);
876         }
877
878         if (ret) {
879                 bio_put(*bio);
880                 *bio = NULL;
881         }
882
883         return ret;
884 }
885
886 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
887                                         struct bio **bio, struct page *page)
888 {
889         enum temp_type temp;
890         bool found = false;
891         struct bio *target = bio ? *bio : NULL;
892
893         f2fs_bug_on(sbi, !target && !page);
894
895         for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
896                 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
897                 struct list_head *head = &io->bio_list;
898                 struct bio_entry *be;
899
900                 if (list_empty(head))
901                         continue;
902
903                 f2fs_down_read(&io->bio_list_lock);
904                 list_for_each_entry(be, head, list) {
905                         if (target)
906                                 found = (target == be->bio);
907                         else
908                                 found = __has_merged_page(be->bio, NULL,
909                                                                 page, 0);
910                         if (found)
911                                 break;
912                 }
913                 f2fs_up_read(&io->bio_list_lock);
914
915                 if (!found)
916                         continue;
917
918                 found = false;
919
920                 f2fs_down_write(&io->bio_list_lock);
921                 list_for_each_entry(be, head, list) {
922                         if (target)
923                                 found = (target == be->bio);
924                         else
925                                 found = __has_merged_page(be->bio, NULL,
926                                                                 page, 0);
927                         if (found) {
928                                 target = be->bio;
929                                 del_bio_entry(be);
930                                 break;
931                         }
932                 }
933                 f2fs_up_write(&io->bio_list_lock);
934         }
935
936         if (found)
937                 f2fs_submit_write_bio(sbi, target, DATA);
938         if (bio && *bio) {
939                 bio_put(*bio);
940                 *bio = NULL;
941         }
942 }
943
944 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
945 {
946         struct bio *bio = *fio->bio;
947         struct page *page = fio->encrypted_page ?
948                         fio->encrypted_page : fio->page;
949
950         if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
951                         __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC)) {
952                 f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR);
953                 return -EFSCORRUPTED;
954         }
955
956         trace_f2fs_submit_page_bio(page, fio);
957
958         if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
959                                                 fio->new_blkaddr))
960                 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
961 alloc_new:
962         if (!bio) {
963                 bio = __bio_alloc(fio, BIO_MAX_VECS);
964                 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
965                                        fio->page->index, fio, GFP_NOIO);
966
967                 add_bio_entry(fio->sbi, bio, page, fio->temp);
968         } else {
969                 if (add_ipu_page(fio, &bio, page))
970                         goto alloc_new;
971         }
972
973         if (fio->io_wbc)
974                 wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
975
976         inc_page_count(fio->sbi, WB_DATA_TYPE(page));
977
978         *fio->last_block = fio->new_blkaddr;
979         *fio->bio = bio;
980
981         return 0;
982 }
983
984 #ifdef CONFIG_BLK_DEV_ZONED
985 static bool is_end_zone_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr)
986 {
987         int devi = 0;
988
989         if (f2fs_is_multi_device(sbi)) {
990                 devi = f2fs_target_device_index(sbi, blkaddr);
991                 if (blkaddr < FDEV(devi).start_blk ||
992                     blkaddr > FDEV(devi).end_blk) {
993                         f2fs_err(sbi, "Invalid block %x", blkaddr);
994                         return false;
995                 }
996                 blkaddr -= FDEV(devi).start_blk;
997         }
998         return bdev_zoned_model(FDEV(devi).bdev) == BLK_ZONED_HM &&
999                 f2fs_blkz_is_seq(sbi, devi, blkaddr) &&
1000                 (blkaddr % sbi->blocks_per_blkz == sbi->blocks_per_blkz - 1);
1001 }
1002 #endif
1003
1004 void f2fs_submit_page_write(struct f2fs_io_info *fio)
1005 {
1006         struct f2fs_sb_info *sbi = fio->sbi;
1007         enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
1008         struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
1009         struct page *bio_page;
1010
1011         f2fs_bug_on(sbi, is_read_io(fio->op));
1012
1013         f2fs_down_write(&io->io_rwsem);
1014
1015 #ifdef CONFIG_BLK_DEV_ZONED
1016         if (f2fs_sb_has_blkzoned(sbi) && btype < META && io->zone_pending_bio) {
1017                 wait_for_completion_io(&io->zone_wait);
1018                 bio_put(io->zone_pending_bio);
1019                 io->zone_pending_bio = NULL;
1020                 io->bi_private = NULL;
1021         }
1022 #endif
1023
1024 next:
1025         if (fio->in_list) {
1026                 spin_lock(&io->io_lock);
1027                 if (list_empty(&io->io_list)) {
1028                         spin_unlock(&io->io_lock);
1029                         goto out;
1030                 }
1031                 fio = list_first_entry(&io->io_list,
1032                                                 struct f2fs_io_info, list);
1033                 list_del(&fio->list);
1034                 spin_unlock(&io->io_lock);
1035         }
1036
1037         verify_fio_blkaddr(fio);
1038
1039         if (fio->encrypted_page)
1040                 bio_page = fio->encrypted_page;
1041         else if (fio->compressed_page)
1042                 bio_page = fio->compressed_page;
1043         else
1044                 bio_page = fio->page;
1045
1046         /* set submitted = true as a return value */
1047         fio->submitted = 1;
1048
1049         inc_page_count(sbi, WB_DATA_TYPE(bio_page));
1050
1051         if (io->bio &&
1052             (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
1053                               fio->new_blkaddr) ||
1054              !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
1055                                        bio_page->index, fio)))
1056                 __submit_merged_bio(io);
1057 alloc_new:
1058         if (io->bio == NULL) {
1059                 if (F2FS_IO_ALIGNED(sbi) &&
1060                                 (fio->type == DATA || fio->type == NODE) &&
1061                                 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
1062                         dec_page_count(sbi, WB_DATA_TYPE(bio_page));
1063                         fio->retry = 1;
1064                         goto skip;
1065                 }
1066                 io->bio = __bio_alloc(fio, BIO_MAX_VECS);
1067                 f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
1068                                        bio_page->index, fio, GFP_NOIO);
1069                 io->fio = *fio;
1070         }
1071
1072         if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
1073                 __submit_merged_bio(io);
1074                 goto alloc_new;
1075         }
1076
1077         if (fio->io_wbc)
1078                 wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
1079
1080         io->last_block_in_bio = fio->new_blkaddr;
1081
1082         trace_f2fs_submit_page_write(fio->page, fio);
1083 skip:
1084         if (fio->in_list)
1085                 goto next;
1086 out:
1087 #ifdef CONFIG_BLK_DEV_ZONED
1088         if (f2fs_sb_has_blkzoned(sbi) && btype < META &&
1089                         is_end_zone_blkaddr(sbi, fio->new_blkaddr)) {
1090                 bio_get(io->bio);
1091                 reinit_completion(&io->zone_wait);
1092                 io->bi_private = io->bio->bi_private;
1093                 io->bio->bi_private = io;
1094                 io->bio->bi_end_io = f2fs_zone_write_end_io;
1095                 io->zone_pending_bio = io->bio;
1096                 __submit_merged_bio(io);
1097         }
1098 #endif
1099         if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1100                                 !f2fs_is_checkpoint_ready(sbi))
1101                 __submit_merged_bio(io);
1102         f2fs_up_write(&io->io_rwsem);
1103 }
1104
1105 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
1106                                       unsigned nr_pages, blk_opf_t op_flag,
1107                                       pgoff_t first_idx, bool for_write)
1108 {
1109         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1110         struct bio *bio;
1111         struct bio_post_read_ctx *ctx = NULL;
1112         unsigned int post_read_steps = 0;
1113         sector_t sector;
1114         struct block_device *bdev = f2fs_target_device(sbi, blkaddr, &sector);
1115
1116         bio = bio_alloc_bioset(bdev, bio_max_segs(nr_pages),
1117                                REQ_OP_READ | op_flag,
1118                                for_write ? GFP_NOIO : GFP_KERNEL, &f2fs_bioset);
1119         if (!bio)
1120                 return ERR_PTR(-ENOMEM);
1121         bio->bi_iter.bi_sector = sector;
1122         f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
1123         bio->bi_end_io = f2fs_read_end_io;
1124
1125         if (fscrypt_inode_uses_fs_layer_crypto(inode))
1126                 post_read_steps |= STEP_DECRYPT;
1127
1128         if (f2fs_need_verity(inode, first_idx))
1129                 post_read_steps |= STEP_VERITY;
1130
1131         /*
1132          * STEP_DECOMPRESS is handled specially, since a compressed file might
1133          * contain both compressed and uncompressed clusters.  We'll allocate a
1134          * bio_post_read_ctx if the file is compressed, but the caller is
1135          * responsible for enabling STEP_DECOMPRESS if it's actually needed.
1136          */
1137
1138         if (post_read_steps || f2fs_compressed_file(inode)) {
1139                 /* Due to the mempool, this never fails. */
1140                 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1141                 ctx->bio = bio;
1142                 ctx->sbi = sbi;
1143                 ctx->enabled_steps = post_read_steps;
1144                 ctx->fs_blkaddr = blkaddr;
1145                 ctx->decompression_attempted = false;
1146                 bio->bi_private = ctx;
1147         }
1148         iostat_alloc_and_bind_ctx(sbi, bio, ctx);
1149
1150         return bio;
1151 }
1152
1153 /* This can handle encryption stuffs */
1154 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
1155                                  block_t blkaddr, blk_opf_t op_flags,
1156                                  bool for_write)
1157 {
1158         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1159         struct bio *bio;
1160
1161         bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1162                                         page->index, for_write);
1163         if (IS_ERR(bio))
1164                 return PTR_ERR(bio);
1165
1166         /* wait for GCed page writeback via META_MAPPING */
1167         f2fs_wait_on_block_writeback(inode, blkaddr);
1168
1169         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1170                 bio_put(bio);
1171                 return -EFAULT;
1172         }
1173         inc_page_count(sbi, F2FS_RD_DATA);
1174         f2fs_update_iostat(sbi, NULL, FS_DATA_READ_IO, F2FS_BLKSIZE);
1175         f2fs_submit_read_bio(sbi, bio, DATA);
1176         return 0;
1177 }
1178
1179 static void __set_data_blkaddr(struct dnode_of_data *dn)
1180 {
1181         struct f2fs_node *rn = F2FS_NODE(dn->node_page);
1182         __le32 *addr_array;
1183         int base = 0;
1184
1185         if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
1186                 base = get_extra_isize(dn->inode);
1187
1188         /* Get physical address of data block */
1189         addr_array = blkaddr_in_node(rn);
1190         addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1191 }
1192
1193 /*
1194  * Lock ordering for the change of data block address:
1195  * ->data_page
1196  *  ->node_page
1197  *    update block addresses in the node page
1198  */
1199 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
1200 {
1201         f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1202         __set_data_blkaddr(dn);
1203         if (set_page_dirty(dn->node_page))
1204                 dn->node_changed = true;
1205 }
1206
1207 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1208 {
1209         dn->data_blkaddr = blkaddr;
1210         f2fs_set_data_blkaddr(dn);
1211         f2fs_update_read_extent_cache(dn);
1212 }
1213
1214 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
1215 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1216 {
1217         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1218         int err;
1219
1220         if (!count)
1221                 return 0;
1222
1223         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1224                 return -EPERM;
1225         if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1226                 return err;
1227
1228         trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1229                                                 dn->ofs_in_node, count);
1230
1231         f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1232
1233         for (; count > 0; dn->ofs_in_node++) {
1234                 block_t blkaddr = f2fs_data_blkaddr(dn);
1235
1236                 if (blkaddr == NULL_ADDR) {
1237                         dn->data_blkaddr = NEW_ADDR;
1238                         __set_data_blkaddr(dn);
1239                         count--;
1240                 }
1241         }
1242
1243         if (set_page_dirty(dn->node_page))
1244                 dn->node_changed = true;
1245         return 0;
1246 }
1247
1248 /* Should keep dn->ofs_in_node unchanged */
1249 int f2fs_reserve_new_block(struct dnode_of_data *dn)
1250 {
1251         unsigned int ofs_in_node = dn->ofs_in_node;
1252         int ret;
1253
1254         ret = f2fs_reserve_new_blocks(dn, 1);
1255         dn->ofs_in_node = ofs_in_node;
1256         return ret;
1257 }
1258
1259 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1260 {
1261         bool need_put = dn->inode_page ? false : true;
1262         int err;
1263
1264         err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1265         if (err)
1266                 return err;
1267
1268         if (dn->data_blkaddr == NULL_ADDR)
1269                 err = f2fs_reserve_new_block(dn);
1270         if (err || need_put)
1271                 f2fs_put_dnode(dn);
1272         return err;
1273 }
1274
1275 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1276                                      blk_opf_t op_flags, bool for_write,
1277                                      pgoff_t *next_pgofs)
1278 {
1279         struct address_space *mapping = inode->i_mapping;
1280         struct dnode_of_data dn;
1281         struct page *page;
1282         int err;
1283
1284         page = f2fs_grab_cache_page(mapping, index, for_write);
1285         if (!page)
1286                 return ERR_PTR(-ENOMEM);
1287
1288         if (f2fs_lookup_read_extent_cache_block(inode, index,
1289                                                 &dn.data_blkaddr)) {
1290                 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1291                                                 DATA_GENERIC_ENHANCE_READ)) {
1292                         err = -EFSCORRUPTED;
1293                         f2fs_handle_error(F2FS_I_SB(inode),
1294                                                 ERROR_INVALID_BLKADDR);
1295                         goto put_err;
1296                 }
1297                 goto got_it;
1298         }
1299
1300         set_new_dnode(&dn, inode, NULL, NULL, 0);
1301         err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1302         if (err) {
1303                 if (err == -ENOENT && next_pgofs)
1304                         *next_pgofs = f2fs_get_next_page_offset(&dn, index);
1305                 goto put_err;
1306         }
1307         f2fs_put_dnode(&dn);
1308
1309         if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1310                 err = -ENOENT;
1311                 if (next_pgofs)
1312                         *next_pgofs = index + 1;
1313                 goto put_err;
1314         }
1315         if (dn.data_blkaddr != NEW_ADDR &&
1316                         !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1317                                                 dn.data_blkaddr,
1318                                                 DATA_GENERIC_ENHANCE)) {
1319                 err = -EFSCORRUPTED;
1320                 f2fs_handle_error(F2FS_I_SB(inode),
1321                                         ERROR_INVALID_BLKADDR);
1322                 goto put_err;
1323         }
1324 got_it:
1325         if (PageUptodate(page)) {
1326                 unlock_page(page);
1327                 return page;
1328         }
1329
1330         /*
1331          * A new dentry page is allocated but not able to be written, since its
1332          * new inode page couldn't be allocated due to -ENOSPC.
1333          * In such the case, its blkaddr can be remained as NEW_ADDR.
1334          * see, f2fs_add_link -> f2fs_get_new_data_page ->
1335          * f2fs_init_inode_metadata.
1336          */
1337         if (dn.data_blkaddr == NEW_ADDR) {
1338                 zero_user_segment(page, 0, PAGE_SIZE);
1339                 if (!PageUptodate(page))
1340                         SetPageUptodate(page);
1341                 unlock_page(page);
1342                 return page;
1343         }
1344
1345         err = f2fs_submit_page_read(inode, page, dn.data_blkaddr,
1346                                                 op_flags, for_write);
1347         if (err)
1348                 goto put_err;
1349         return page;
1350
1351 put_err:
1352         f2fs_put_page(page, 1);
1353         return ERR_PTR(err);
1354 }
1355
1356 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index,
1357                                         pgoff_t *next_pgofs)
1358 {
1359         struct address_space *mapping = inode->i_mapping;
1360         struct page *page;
1361
1362         page = find_get_page(mapping, index);
1363         if (page && PageUptodate(page))
1364                 return page;
1365         f2fs_put_page(page, 0);
1366
1367         page = f2fs_get_read_data_page(inode, index, 0, false, next_pgofs);
1368         if (IS_ERR(page))
1369                 return page;
1370
1371         if (PageUptodate(page))
1372                 return page;
1373
1374         wait_on_page_locked(page);
1375         if (unlikely(!PageUptodate(page))) {
1376                 f2fs_put_page(page, 0);
1377                 return ERR_PTR(-EIO);
1378         }
1379         return page;
1380 }
1381
1382 /*
1383  * If it tries to access a hole, return an error.
1384  * Because, the callers, functions in dir.c and GC, should be able to know
1385  * whether this page exists or not.
1386  */
1387 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1388                                                         bool for_write)
1389 {
1390         struct address_space *mapping = inode->i_mapping;
1391         struct page *page;
1392 repeat:
1393         page = f2fs_get_read_data_page(inode, index, 0, for_write, NULL);
1394         if (IS_ERR(page))
1395                 return page;
1396
1397         /* wait for read completion */
1398         lock_page(page);
1399         if (unlikely(page->mapping != mapping)) {
1400                 f2fs_put_page(page, 1);
1401                 goto repeat;
1402         }
1403         if (unlikely(!PageUptodate(page))) {
1404                 f2fs_put_page(page, 1);
1405                 return ERR_PTR(-EIO);
1406         }
1407         return page;
1408 }
1409
1410 /*
1411  * Caller ensures that this data page is never allocated.
1412  * A new zero-filled data page is allocated in the page cache.
1413  *
1414  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1415  * f2fs_unlock_op().
1416  * Note that, ipage is set only by make_empty_dir, and if any error occur,
1417  * ipage should be released by this function.
1418  */
1419 struct page *f2fs_get_new_data_page(struct inode *inode,
1420                 struct page *ipage, pgoff_t index, bool new_i_size)
1421 {
1422         struct address_space *mapping = inode->i_mapping;
1423         struct page *page;
1424         struct dnode_of_data dn;
1425         int err;
1426
1427         page = f2fs_grab_cache_page(mapping, index, true);
1428         if (!page) {
1429                 /*
1430                  * before exiting, we should make sure ipage will be released
1431                  * if any error occur.
1432                  */
1433                 f2fs_put_page(ipage, 1);
1434                 return ERR_PTR(-ENOMEM);
1435         }
1436
1437         set_new_dnode(&dn, inode, ipage, NULL, 0);
1438         err = f2fs_reserve_block(&dn, index);
1439         if (err) {
1440                 f2fs_put_page(page, 1);
1441                 return ERR_PTR(err);
1442         }
1443         if (!ipage)
1444                 f2fs_put_dnode(&dn);
1445
1446         if (PageUptodate(page))
1447                 goto got_it;
1448
1449         if (dn.data_blkaddr == NEW_ADDR) {
1450                 zero_user_segment(page, 0, PAGE_SIZE);
1451                 if (!PageUptodate(page))
1452                         SetPageUptodate(page);
1453         } else {
1454                 f2fs_put_page(page, 1);
1455
1456                 /* if ipage exists, blkaddr should be NEW_ADDR */
1457                 f2fs_bug_on(F2FS_I_SB(inode), ipage);
1458                 page = f2fs_get_lock_data_page(inode, index, true);
1459                 if (IS_ERR(page))
1460                         return page;
1461         }
1462 got_it:
1463         if (new_i_size && i_size_read(inode) <
1464                                 ((loff_t)(index + 1) << PAGE_SHIFT))
1465                 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1466         return page;
1467 }
1468
1469 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1470 {
1471         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1472         struct f2fs_summary sum;
1473         struct node_info ni;
1474         block_t old_blkaddr;
1475         blkcnt_t count = 1;
1476         int err;
1477
1478         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1479                 return -EPERM;
1480
1481         err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
1482         if (err)
1483                 return err;
1484
1485         dn->data_blkaddr = f2fs_data_blkaddr(dn);
1486         if (dn->data_blkaddr == NULL_ADDR) {
1487                 err = inc_valid_block_count(sbi, dn->inode, &count);
1488                 if (unlikely(err))
1489                         return err;
1490         }
1491
1492         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1493         old_blkaddr = dn->data_blkaddr;
1494         f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1495                                 &sum, seg_type, NULL);
1496         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
1497                 invalidate_mapping_pages(META_MAPPING(sbi),
1498                                         old_blkaddr, old_blkaddr);
1499                 f2fs_invalidate_compress_page(sbi, old_blkaddr);
1500         }
1501         f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1502         return 0;
1503 }
1504
1505 static void f2fs_map_lock(struct f2fs_sb_info *sbi, int flag)
1506 {
1507         if (flag == F2FS_GET_BLOCK_PRE_AIO)
1508                 f2fs_down_read(&sbi->node_change);
1509         else
1510                 f2fs_lock_op(sbi);
1511 }
1512
1513 static void f2fs_map_unlock(struct f2fs_sb_info *sbi, int flag)
1514 {
1515         if (flag == F2FS_GET_BLOCK_PRE_AIO)
1516                 f2fs_up_read(&sbi->node_change);
1517         else
1518                 f2fs_unlock_op(sbi);
1519 }
1520
1521 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index)
1522 {
1523         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1524         int err = 0;
1525
1526         f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1527         if (!f2fs_lookup_read_extent_cache_block(dn->inode, index,
1528                                                 &dn->data_blkaddr))
1529                 err = f2fs_reserve_block(dn, index);
1530         f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1531
1532         return err;
1533 }
1534
1535 static int f2fs_map_no_dnode(struct inode *inode,
1536                 struct f2fs_map_blocks *map, struct dnode_of_data *dn,
1537                 pgoff_t pgoff)
1538 {
1539         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1540
1541         /*
1542          * There is one exceptional case that read_node_page() may return
1543          * -ENOENT due to filesystem has been shutdown or cp_error, return
1544          * -EIO in that case.
1545          */
1546         if (map->m_may_create &&
1547             (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || f2fs_cp_error(sbi)))
1548                 return -EIO;
1549
1550         if (map->m_next_pgofs)
1551                 *map->m_next_pgofs = f2fs_get_next_page_offset(dn, pgoff);
1552         if (map->m_next_extent)
1553                 *map->m_next_extent = f2fs_get_next_page_offset(dn, pgoff);
1554         return 0;
1555 }
1556
1557 static bool f2fs_map_blocks_cached(struct inode *inode,
1558                 struct f2fs_map_blocks *map, int flag)
1559 {
1560         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1561         unsigned int maxblocks = map->m_len;
1562         pgoff_t pgoff = (pgoff_t)map->m_lblk;
1563         struct extent_info ei = {};
1564
1565         if (!f2fs_lookup_read_extent_cache(inode, pgoff, &ei))
1566                 return false;
1567
1568         map->m_pblk = ei.blk + pgoff - ei.fofs;
1569         map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgoff);
1570         map->m_flags = F2FS_MAP_MAPPED;
1571         if (map->m_next_extent)
1572                 *map->m_next_extent = pgoff + map->m_len;
1573
1574         /* for hardware encryption, but to avoid potential issue in future */
1575         if (flag == F2FS_GET_BLOCK_DIO)
1576                 f2fs_wait_on_block_writeback_range(inode,
1577                                         map->m_pblk, map->m_len);
1578
1579         if (f2fs_allow_multi_device_dio(sbi, flag)) {
1580                 int bidx = f2fs_target_device_index(sbi, map->m_pblk);
1581                 struct f2fs_dev_info *dev = &sbi->devs[bidx];
1582
1583                 map->m_bdev = dev->bdev;
1584                 map->m_pblk -= dev->start_blk;
1585                 map->m_len = min(map->m_len, dev->end_blk + 1 - map->m_pblk);
1586         } else {
1587                 map->m_bdev = inode->i_sb->s_bdev;
1588         }
1589         return true;
1590 }
1591
1592 /*
1593  * f2fs_map_blocks() tries to find or build mapping relationship which
1594  * maps continuous logical blocks to physical blocks, and return such
1595  * info via f2fs_map_blocks structure.
1596  */
1597 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag)
1598 {
1599         unsigned int maxblocks = map->m_len;
1600         struct dnode_of_data dn;
1601         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1602         int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1603         pgoff_t pgofs, end_offset, end;
1604         int err = 0, ofs = 1;
1605         unsigned int ofs_in_node, last_ofs_in_node;
1606         blkcnt_t prealloc;
1607         block_t blkaddr;
1608         unsigned int start_pgofs;
1609         int bidx = 0;
1610         bool is_hole;
1611
1612         if (!maxblocks)
1613                 return 0;
1614
1615         if (!map->m_may_create && f2fs_map_blocks_cached(inode, map, flag))
1616                 goto out;
1617
1618         map->m_bdev = inode->i_sb->s_bdev;
1619         map->m_multidev_dio =
1620                 f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag);
1621
1622         map->m_len = 0;
1623         map->m_flags = 0;
1624
1625         /* it only supports block size == page size */
1626         pgofs = (pgoff_t)map->m_lblk;
1627         end = pgofs + maxblocks;
1628
1629 next_dnode:
1630         if (map->m_may_create)
1631                 f2fs_map_lock(sbi, flag);
1632
1633         /* When reading holes, we need its node page */
1634         set_new_dnode(&dn, inode, NULL, NULL, 0);
1635         err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1636         if (err) {
1637                 if (flag == F2FS_GET_BLOCK_BMAP)
1638                         map->m_pblk = 0;
1639                 if (err == -ENOENT)
1640                         err = f2fs_map_no_dnode(inode, map, &dn, pgofs);
1641                 goto unlock_out;
1642         }
1643
1644         start_pgofs = pgofs;
1645         prealloc = 0;
1646         last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1647         end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1648
1649 next_block:
1650         blkaddr = f2fs_data_blkaddr(&dn);
1651         is_hole = !__is_valid_data_blkaddr(blkaddr);
1652         if (!is_hole &&
1653             !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1654                 err = -EFSCORRUPTED;
1655                 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1656                 goto sync_out;
1657         }
1658
1659         /* use out-place-update for direct IO under LFS mode */
1660         if (map->m_may_create &&
1661             (is_hole || (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO))) {
1662                 if (unlikely(f2fs_cp_error(sbi))) {
1663                         err = -EIO;
1664                         goto sync_out;
1665                 }
1666
1667                 switch (flag) {
1668                 case F2FS_GET_BLOCK_PRE_AIO:
1669                         if (blkaddr == NULL_ADDR) {
1670                                 prealloc++;
1671                                 last_ofs_in_node = dn.ofs_in_node;
1672                         }
1673                         break;
1674                 case F2FS_GET_BLOCK_PRE_DIO:
1675                 case F2FS_GET_BLOCK_DIO:
1676                         err = __allocate_data_block(&dn, map->m_seg_type);
1677                         if (err)
1678                                 goto sync_out;
1679                         if (flag == F2FS_GET_BLOCK_PRE_DIO)
1680                                 file_need_truncate(inode);
1681                         set_inode_flag(inode, FI_APPEND_WRITE);
1682                         break;
1683                 default:
1684                         WARN_ON_ONCE(1);
1685                         err = -EIO;
1686                         goto sync_out;
1687                 }
1688
1689                 blkaddr = dn.data_blkaddr;
1690                 if (is_hole)
1691                         map->m_flags |= F2FS_MAP_NEW;
1692         } else if (is_hole) {
1693                 if (f2fs_compressed_file(inode) &&
1694                     f2fs_sanity_check_cluster(&dn) &&
1695                     (flag != F2FS_GET_BLOCK_FIEMAP ||
1696                      IS_ENABLED(CONFIG_F2FS_CHECK_FS))) {
1697                         err = -EFSCORRUPTED;
1698                         f2fs_handle_error(sbi,
1699                                         ERROR_CORRUPTED_CLUSTER);
1700                         goto sync_out;
1701                 }
1702
1703                 switch (flag) {
1704                 case F2FS_GET_BLOCK_PRECACHE:
1705                         goto sync_out;
1706                 case F2FS_GET_BLOCK_BMAP:
1707                         map->m_pblk = 0;
1708                         goto sync_out;
1709                 case F2FS_GET_BLOCK_FIEMAP:
1710                         if (blkaddr == NULL_ADDR) {
1711                                 if (map->m_next_pgofs)
1712                                         *map->m_next_pgofs = pgofs + 1;
1713                                 goto sync_out;
1714                         }
1715                         break;
1716                 default:
1717                         /* for defragment case */
1718                         if (map->m_next_pgofs)
1719                                 *map->m_next_pgofs = pgofs + 1;
1720                         goto sync_out;
1721                 }
1722         }
1723
1724         if (flag == F2FS_GET_BLOCK_PRE_AIO)
1725                 goto skip;
1726
1727         if (map->m_multidev_dio)
1728                 bidx = f2fs_target_device_index(sbi, blkaddr);
1729
1730         if (map->m_len == 0) {
1731                 /* reserved delalloc block should be mapped for fiemap. */
1732                 if (blkaddr == NEW_ADDR)
1733                         map->m_flags |= F2FS_MAP_DELALLOC;
1734                 map->m_flags |= F2FS_MAP_MAPPED;
1735
1736                 map->m_pblk = blkaddr;
1737                 map->m_len = 1;
1738
1739                 if (map->m_multidev_dio)
1740                         map->m_bdev = FDEV(bidx).bdev;
1741         } else if ((map->m_pblk != NEW_ADDR &&
1742                         blkaddr == (map->m_pblk + ofs)) ||
1743                         (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1744                         flag == F2FS_GET_BLOCK_PRE_DIO) {
1745                 if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev)
1746                         goto sync_out;
1747                 ofs++;
1748                 map->m_len++;
1749         } else {
1750                 goto sync_out;
1751         }
1752
1753 skip:
1754         dn.ofs_in_node++;
1755         pgofs++;
1756
1757         /* preallocate blocks in batch for one dnode page */
1758         if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1759                         (pgofs == end || dn.ofs_in_node == end_offset)) {
1760
1761                 dn.ofs_in_node = ofs_in_node;
1762                 err = f2fs_reserve_new_blocks(&dn, prealloc);
1763                 if (err)
1764                         goto sync_out;
1765
1766                 map->m_len += dn.ofs_in_node - ofs_in_node;
1767                 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1768                         err = -ENOSPC;
1769                         goto sync_out;
1770                 }
1771                 dn.ofs_in_node = end_offset;
1772         }
1773
1774         if (pgofs >= end)
1775                 goto sync_out;
1776         else if (dn.ofs_in_node < end_offset)
1777                 goto next_block;
1778
1779         if (flag == F2FS_GET_BLOCK_PRECACHE) {
1780                 if (map->m_flags & F2FS_MAP_MAPPED) {
1781                         unsigned int ofs = start_pgofs - map->m_lblk;
1782
1783                         f2fs_update_read_extent_cache_range(&dn,
1784                                 start_pgofs, map->m_pblk + ofs,
1785                                 map->m_len - ofs);
1786                 }
1787         }
1788
1789         f2fs_put_dnode(&dn);
1790
1791         if (map->m_may_create) {
1792                 f2fs_map_unlock(sbi, flag);
1793                 f2fs_balance_fs(sbi, dn.node_changed);
1794         }
1795         goto next_dnode;
1796
1797 sync_out:
1798
1799         if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) {
1800                 /*
1801                  * for hardware encryption, but to avoid potential issue
1802                  * in future
1803                  */
1804                 f2fs_wait_on_block_writeback_range(inode,
1805                                                 map->m_pblk, map->m_len);
1806
1807                 if (map->m_multidev_dio) {
1808                         block_t blk_addr = map->m_pblk;
1809
1810                         bidx = f2fs_target_device_index(sbi, map->m_pblk);
1811
1812                         map->m_bdev = FDEV(bidx).bdev;
1813                         map->m_pblk -= FDEV(bidx).start_blk;
1814
1815                         if (map->m_may_create)
1816                                 f2fs_update_device_state(sbi, inode->i_ino,
1817                                                         blk_addr, map->m_len);
1818
1819                         f2fs_bug_on(sbi, blk_addr + map->m_len >
1820                                                 FDEV(bidx).end_blk + 1);
1821                 }
1822         }
1823
1824         if (flag == F2FS_GET_BLOCK_PRECACHE) {
1825                 if (map->m_flags & F2FS_MAP_MAPPED) {
1826                         unsigned int ofs = start_pgofs - map->m_lblk;
1827
1828                         f2fs_update_read_extent_cache_range(&dn,
1829                                 start_pgofs, map->m_pblk + ofs,
1830                                 map->m_len - ofs);
1831                 }
1832                 if (map->m_next_extent)
1833                         *map->m_next_extent = pgofs + 1;
1834         }
1835         f2fs_put_dnode(&dn);
1836 unlock_out:
1837         if (map->m_may_create) {
1838                 f2fs_map_unlock(sbi, flag);
1839                 f2fs_balance_fs(sbi, dn.node_changed);
1840         }
1841 out:
1842         trace_f2fs_map_blocks(inode, map, flag, err);
1843         return err;
1844 }
1845
1846 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1847 {
1848         struct f2fs_map_blocks map;
1849         block_t last_lblk;
1850         int err;
1851
1852         if (pos + len > i_size_read(inode))
1853                 return false;
1854
1855         map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1856         map.m_next_pgofs = NULL;
1857         map.m_next_extent = NULL;
1858         map.m_seg_type = NO_CHECK_TYPE;
1859         map.m_may_create = false;
1860         last_lblk = F2FS_BLK_ALIGN(pos + len);
1861
1862         while (map.m_lblk < last_lblk) {
1863                 map.m_len = last_lblk - map.m_lblk;
1864                 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
1865                 if (err || map.m_len == 0)
1866                         return false;
1867                 map.m_lblk += map.m_len;
1868         }
1869         return true;
1870 }
1871
1872 static inline u64 bytes_to_blks(struct inode *inode, u64 bytes)
1873 {
1874         return (bytes >> inode->i_blkbits);
1875 }
1876
1877 static inline u64 blks_to_bytes(struct inode *inode, u64 blks)
1878 {
1879         return (blks << inode->i_blkbits);
1880 }
1881
1882 static int f2fs_xattr_fiemap(struct inode *inode,
1883                                 struct fiemap_extent_info *fieinfo)
1884 {
1885         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1886         struct page *page;
1887         struct node_info ni;
1888         __u64 phys = 0, len;
1889         __u32 flags;
1890         nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1891         int err = 0;
1892
1893         if (f2fs_has_inline_xattr(inode)) {
1894                 int offset;
1895
1896                 page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1897                                                 inode->i_ino, false);
1898                 if (!page)
1899                         return -ENOMEM;
1900
1901                 err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false);
1902                 if (err) {
1903                         f2fs_put_page(page, 1);
1904                         return err;
1905                 }
1906
1907                 phys = blks_to_bytes(inode, ni.blk_addr);
1908                 offset = offsetof(struct f2fs_inode, i_addr) +
1909                                         sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1910                                         get_inline_xattr_addrs(inode));
1911
1912                 phys += offset;
1913                 len = inline_xattr_size(inode);
1914
1915                 f2fs_put_page(page, 1);
1916
1917                 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1918
1919                 if (!xnid)
1920                         flags |= FIEMAP_EXTENT_LAST;
1921
1922                 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1923                 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1924                 if (err)
1925                         return err;
1926         }
1927
1928         if (xnid) {
1929                 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1930                 if (!page)
1931                         return -ENOMEM;
1932
1933                 err = f2fs_get_node_info(sbi, xnid, &ni, false);
1934                 if (err) {
1935                         f2fs_put_page(page, 1);
1936                         return err;
1937                 }
1938
1939                 phys = blks_to_bytes(inode, ni.blk_addr);
1940                 len = inode->i_sb->s_blocksize;
1941
1942                 f2fs_put_page(page, 1);
1943
1944                 flags = FIEMAP_EXTENT_LAST;
1945         }
1946
1947         if (phys) {
1948                 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1949                 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1950         }
1951
1952         return (err < 0 ? err : 0);
1953 }
1954
1955 static loff_t max_inode_blocks(struct inode *inode)
1956 {
1957         loff_t result = ADDRS_PER_INODE(inode);
1958         loff_t leaf_count = ADDRS_PER_BLOCK(inode);
1959
1960         /* two direct node blocks */
1961         result += (leaf_count * 2);
1962
1963         /* two indirect node blocks */
1964         leaf_count *= NIDS_PER_BLOCK;
1965         result += (leaf_count * 2);
1966
1967         /* one double indirect node block */
1968         leaf_count *= NIDS_PER_BLOCK;
1969         result += leaf_count;
1970
1971         return result;
1972 }
1973
1974 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1975                 u64 start, u64 len)
1976 {
1977         struct f2fs_map_blocks map;
1978         sector_t start_blk, last_blk;
1979         pgoff_t next_pgofs;
1980         u64 logical = 0, phys = 0, size = 0;
1981         u32 flags = 0;
1982         int ret = 0;
1983         bool compr_cluster = false, compr_appended;
1984         unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1985         unsigned int count_in_cluster = 0;
1986         loff_t maxbytes;
1987
1988         if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1989                 ret = f2fs_precache_extents(inode);
1990                 if (ret)
1991                         return ret;
1992         }
1993
1994         ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1995         if (ret)
1996                 return ret;
1997
1998         inode_lock(inode);
1999
2000         maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
2001         if (start > maxbytes) {
2002                 ret = -EFBIG;
2003                 goto out;
2004         }
2005
2006         if (len > maxbytes || (maxbytes - len) < start)
2007                 len = maxbytes - start;
2008
2009         if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
2010                 ret = f2fs_xattr_fiemap(inode, fieinfo);
2011                 goto out;
2012         }
2013
2014         if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
2015                 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
2016                 if (ret != -EAGAIN)
2017                         goto out;
2018         }
2019
2020         if (bytes_to_blks(inode, len) == 0)
2021                 len = blks_to_bytes(inode, 1);
2022
2023         start_blk = bytes_to_blks(inode, start);
2024         last_blk = bytes_to_blks(inode, start + len - 1);
2025
2026 next:
2027         memset(&map, 0, sizeof(map));
2028         map.m_lblk = start_blk;
2029         map.m_len = bytes_to_blks(inode, len);
2030         map.m_next_pgofs = &next_pgofs;
2031         map.m_seg_type = NO_CHECK_TYPE;
2032
2033         if (compr_cluster) {
2034                 map.m_lblk += 1;
2035                 map.m_len = cluster_size - count_in_cluster;
2036         }
2037
2038         ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
2039         if (ret)
2040                 goto out;
2041
2042         /* HOLE */
2043         if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) {
2044                 start_blk = next_pgofs;
2045
2046                 if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode,
2047                                                 max_inode_blocks(inode)))
2048                         goto prep_next;
2049
2050                 flags |= FIEMAP_EXTENT_LAST;
2051         }
2052
2053         compr_appended = false;
2054         /* In a case of compressed cluster, append this to the last extent */
2055         if (compr_cluster && ((map.m_flags & F2FS_MAP_DELALLOC) ||
2056                         !(map.m_flags & F2FS_MAP_FLAGS))) {
2057                 compr_appended = true;
2058                 goto skip_fill;
2059         }
2060
2061         if (size) {
2062                 flags |= FIEMAP_EXTENT_MERGED;
2063                 if (IS_ENCRYPTED(inode))
2064                         flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
2065
2066                 ret = fiemap_fill_next_extent(fieinfo, logical,
2067                                 phys, size, flags);
2068                 trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
2069                 if (ret)
2070                         goto out;
2071                 size = 0;
2072         }
2073
2074         if (start_blk > last_blk)
2075                 goto out;
2076
2077 skip_fill:
2078         if (map.m_pblk == COMPRESS_ADDR) {
2079                 compr_cluster = true;
2080                 count_in_cluster = 1;
2081         } else if (compr_appended) {
2082                 unsigned int appended_blks = cluster_size -
2083                                                 count_in_cluster + 1;
2084                 size += blks_to_bytes(inode, appended_blks);
2085                 start_blk += appended_blks;
2086                 compr_cluster = false;
2087         } else {
2088                 logical = blks_to_bytes(inode, start_blk);
2089                 phys = __is_valid_data_blkaddr(map.m_pblk) ?
2090                         blks_to_bytes(inode, map.m_pblk) : 0;
2091                 size = blks_to_bytes(inode, map.m_len);
2092                 flags = 0;
2093
2094                 if (compr_cluster) {
2095                         flags = FIEMAP_EXTENT_ENCODED;
2096                         count_in_cluster += map.m_len;
2097                         if (count_in_cluster == cluster_size) {
2098                                 compr_cluster = false;
2099                                 size += blks_to_bytes(inode, 1);
2100                         }
2101                 } else if (map.m_flags & F2FS_MAP_DELALLOC) {
2102                         flags = FIEMAP_EXTENT_UNWRITTEN;
2103                 }
2104
2105                 start_blk += bytes_to_blks(inode, size);
2106         }
2107
2108 prep_next:
2109         cond_resched();
2110         if (fatal_signal_pending(current))
2111                 ret = -EINTR;
2112         else
2113                 goto next;
2114 out:
2115         if (ret == 1)
2116                 ret = 0;
2117
2118         inode_unlock(inode);
2119         return ret;
2120 }
2121
2122 static inline loff_t f2fs_readpage_limit(struct inode *inode)
2123 {
2124         if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2125                 return inode->i_sb->s_maxbytes;
2126
2127         return i_size_read(inode);
2128 }
2129
2130 static int f2fs_read_single_page(struct inode *inode, struct page *page,
2131                                         unsigned nr_pages,
2132                                         struct f2fs_map_blocks *map,
2133                                         struct bio **bio_ret,
2134                                         sector_t *last_block_in_bio,
2135                                         bool is_readahead)
2136 {
2137         struct bio *bio = *bio_ret;
2138         const unsigned blocksize = blks_to_bytes(inode, 1);
2139         sector_t block_in_file;
2140         sector_t last_block;
2141         sector_t last_block_in_file;
2142         sector_t block_nr;
2143         int ret = 0;
2144
2145         block_in_file = (sector_t)page_index(page);
2146         last_block = block_in_file + nr_pages;
2147         last_block_in_file = bytes_to_blks(inode,
2148                         f2fs_readpage_limit(inode) + blocksize - 1);
2149         if (last_block > last_block_in_file)
2150                 last_block = last_block_in_file;
2151
2152         /* just zeroing out page which is beyond EOF */
2153         if (block_in_file >= last_block)
2154                 goto zero_out;
2155         /*
2156          * Map blocks using the previous result first.
2157          */
2158         if ((map->m_flags & F2FS_MAP_MAPPED) &&
2159                         block_in_file > map->m_lblk &&
2160                         block_in_file < (map->m_lblk + map->m_len))
2161                 goto got_it;
2162
2163         /*
2164          * Then do more f2fs_map_blocks() calls until we are
2165          * done with this page.
2166          */
2167         map->m_lblk = block_in_file;
2168         map->m_len = last_block - block_in_file;
2169
2170         ret = f2fs_map_blocks(inode, map, F2FS_GET_BLOCK_DEFAULT);
2171         if (ret)
2172                 goto out;
2173 got_it:
2174         if ((map->m_flags & F2FS_MAP_MAPPED)) {
2175                 block_nr = map->m_pblk + block_in_file - map->m_lblk;
2176                 SetPageMappedToDisk(page);
2177
2178                 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2179                                                 DATA_GENERIC_ENHANCE_READ)) {
2180                         ret = -EFSCORRUPTED;
2181                         f2fs_handle_error(F2FS_I_SB(inode),
2182                                                 ERROR_INVALID_BLKADDR);
2183                         goto out;
2184                 }
2185         } else {
2186 zero_out:
2187                 zero_user_segment(page, 0, PAGE_SIZE);
2188                 if (f2fs_need_verity(inode, page->index) &&
2189                     !fsverity_verify_page(page)) {
2190                         ret = -EIO;
2191                         goto out;
2192                 }
2193                 if (!PageUptodate(page))
2194                         SetPageUptodate(page);
2195                 unlock_page(page);
2196                 goto out;
2197         }
2198
2199         /*
2200          * This page will go to BIO.  Do we need to send this
2201          * BIO off first?
2202          */
2203         if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2204                                        *last_block_in_bio, block_nr) ||
2205                     !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2206 submit_and_realloc:
2207                 f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2208                 bio = NULL;
2209         }
2210         if (bio == NULL) {
2211                 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2212                                 is_readahead ? REQ_RAHEAD : 0, page->index,
2213                                 false);
2214                 if (IS_ERR(bio)) {
2215                         ret = PTR_ERR(bio);
2216                         bio = NULL;
2217                         goto out;
2218                 }
2219         }
2220
2221         /*
2222          * If the page is under writeback, we need to wait for
2223          * its completion to see the correct decrypted data.
2224          */
2225         f2fs_wait_on_block_writeback(inode, block_nr);
2226
2227         if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2228                 goto submit_and_realloc;
2229
2230         inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2231         f2fs_update_iostat(F2FS_I_SB(inode), NULL, FS_DATA_READ_IO,
2232                                                         F2FS_BLKSIZE);
2233         *last_block_in_bio = block_nr;
2234 out:
2235         *bio_ret = bio;
2236         return ret;
2237 }
2238
2239 #ifdef CONFIG_F2FS_FS_COMPRESSION
2240 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2241                                 unsigned nr_pages, sector_t *last_block_in_bio,
2242                                 bool is_readahead, bool for_write)
2243 {
2244         struct dnode_of_data dn;
2245         struct inode *inode = cc->inode;
2246         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2247         struct bio *bio = *bio_ret;
2248         unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2249         sector_t last_block_in_file;
2250         const unsigned blocksize = blks_to_bytes(inode, 1);
2251         struct decompress_io_ctx *dic = NULL;
2252         struct extent_info ei = {};
2253         bool from_dnode = true;
2254         int i;
2255         int ret = 0;
2256
2257         f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2258
2259         last_block_in_file = bytes_to_blks(inode,
2260                         f2fs_readpage_limit(inode) + blocksize - 1);
2261
2262         /* get rid of pages beyond EOF */
2263         for (i = 0; i < cc->cluster_size; i++) {
2264                 struct page *page = cc->rpages[i];
2265
2266                 if (!page)
2267                         continue;
2268                 if ((sector_t)page->index >= last_block_in_file) {
2269                         zero_user_segment(page, 0, PAGE_SIZE);
2270                         if (!PageUptodate(page))
2271                                 SetPageUptodate(page);
2272                 } else if (!PageUptodate(page)) {
2273                         continue;
2274                 }
2275                 unlock_page(page);
2276                 if (for_write)
2277                         put_page(page);
2278                 cc->rpages[i] = NULL;
2279                 cc->nr_rpages--;
2280         }
2281
2282         /* we are done since all pages are beyond EOF */
2283         if (f2fs_cluster_is_empty(cc))
2284                 goto out;
2285
2286         if (f2fs_lookup_read_extent_cache(inode, start_idx, &ei))
2287                 from_dnode = false;
2288
2289         if (!from_dnode)
2290                 goto skip_reading_dnode;
2291
2292         set_new_dnode(&dn, inode, NULL, NULL, 0);
2293         ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2294         if (ret)
2295                 goto out;
2296
2297         if (unlikely(f2fs_cp_error(sbi))) {
2298                 ret = -EIO;
2299                 goto out_put_dnode;
2300         }
2301         f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2302
2303 skip_reading_dnode:
2304         for (i = 1; i < cc->cluster_size; i++) {
2305                 block_t blkaddr;
2306
2307                 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2308                                         dn.ofs_in_node + i) :
2309                                         ei.blk + i - 1;
2310
2311                 if (!__is_valid_data_blkaddr(blkaddr))
2312                         break;
2313
2314                 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2315                         ret = -EFAULT;
2316                         goto out_put_dnode;
2317                 }
2318                 cc->nr_cpages++;
2319
2320                 if (!from_dnode && i >= ei.c_len)
2321                         break;
2322         }
2323
2324         /* nothing to decompress */
2325         if (cc->nr_cpages == 0) {
2326                 ret = 0;
2327                 goto out_put_dnode;
2328         }
2329
2330         dic = f2fs_alloc_dic(cc);
2331         if (IS_ERR(dic)) {
2332                 ret = PTR_ERR(dic);
2333                 goto out_put_dnode;
2334         }
2335
2336         for (i = 0; i < cc->nr_cpages; i++) {
2337                 struct page *page = dic->cpages[i];
2338                 block_t blkaddr;
2339                 struct bio_post_read_ctx *ctx;
2340
2341                 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2342                                         dn.ofs_in_node + i + 1) :
2343                                         ei.blk + i;
2344
2345                 f2fs_wait_on_block_writeback(inode, blkaddr);
2346
2347                 if (f2fs_load_compressed_page(sbi, page, blkaddr)) {
2348                         if (atomic_dec_and_test(&dic->remaining_pages))
2349                                 f2fs_decompress_cluster(dic, true);
2350                         continue;
2351                 }
2352
2353                 if (bio && (!page_is_mergeable(sbi, bio,
2354                                         *last_block_in_bio, blkaddr) ||
2355                     !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2356 submit_and_realloc:
2357                         f2fs_submit_read_bio(sbi, bio, DATA);
2358                         bio = NULL;
2359                 }
2360
2361                 if (!bio) {
2362                         bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2363                                         is_readahead ? REQ_RAHEAD : 0,
2364                                         page->index, for_write);
2365                         if (IS_ERR(bio)) {
2366                                 ret = PTR_ERR(bio);
2367                                 f2fs_decompress_end_io(dic, ret, true);
2368                                 f2fs_put_dnode(&dn);
2369                                 *bio_ret = NULL;
2370                                 return ret;
2371                         }
2372                 }
2373
2374                 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2375                         goto submit_and_realloc;
2376
2377                 ctx = get_post_read_ctx(bio);
2378                 ctx->enabled_steps |= STEP_DECOMPRESS;
2379                 refcount_inc(&dic->refcnt);
2380
2381                 inc_page_count(sbi, F2FS_RD_DATA);
2382                 f2fs_update_iostat(sbi, inode, FS_DATA_READ_IO, F2FS_BLKSIZE);
2383                 *last_block_in_bio = blkaddr;
2384         }
2385
2386         if (from_dnode)
2387                 f2fs_put_dnode(&dn);
2388
2389         *bio_ret = bio;
2390         return 0;
2391
2392 out_put_dnode:
2393         if (from_dnode)
2394                 f2fs_put_dnode(&dn);
2395 out:
2396         for (i = 0; i < cc->cluster_size; i++) {
2397                 if (cc->rpages[i]) {
2398                         ClearPageUptodate(cc->rpages[i]);
2399                         unlock_page(cc->rpages[i]);
2400                 }
2401         }
2402         *bio_ret = bio;
2403         return ret;
2404 }
2405 #endif
2406
2407 /*
2408  * This function was originally taken from fs/mpage.c, and customized for f2fs.
2409  * Major change was from block_size == page_size in f2fs by default.
2410  */
2411 static int f2fs_mpage_readpages(struct inode *inode,
2412                 struct readahead_control *rac, struct page *page)
2413 {
2414         struct bio *bio = NULL;
2415         sector_t last_block_in_bio = 0;
2416         struct f2fs_map_blocks map;
2417 #ifdef CONFIG_F2FS_FS_COMPRESSION
2418         struct compress_ctx cc = {
2419                 .inode = inode,
2420                 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2421                 .cluster_size = F2FS_I(inode)->i_cluster_size,
2422                 .cluster_idx = NULL_CLUSTER,
2423                 .rpages = NULL,
2424                 .cpages = NULL,
2425                 .nr_rpages = 0,
2426                 .nr_cpages = 0,
2427         };
2428         pgoff_t nc_cluster_idx = NULL_CLUSTER;
2429 #endif
2430         unsigned nr_pages = rac ? readahead_count(rac) : 1;
2431         unsigned max_nr_pages = nr_pages;
2432         int ret = 0;
2433
2434         map.m_pblk = 0;
2435         map.m_lblk = 0;
2436         map.m_len = 0;
2437         map.m_flags = 0;
2438         map.m_next_pgofs = NULL;
2439         map.m_next_extent = NULL;
2440         map.m_seg_type = NO_CHECK_TYPE;
2441         map.m_may_create = false;
2442
2443         for (; nr_pages; nr_pages--) {
2444                 if (rac) {
2445                         page = readahead_page(rac);
2446                         prefetchw(&page->flags);
2447                 }
2448
2449 #ifdef CONFIG_F2FS_FS_COMPRESSION
2450                 if (f2fs_compressed_file(inode)) {
2451                         /* there are remained compressed pages, submit them */
2452                         if (!f2fs_cluster_can_merge_page(&cc, page->index)) {
2453                                 ret = f2fs_read_multi_pages(&cc, &bio,
2454                                                         max_nr_pages,
2455                                                         &last_block_in_bio,
2456                                                         rac != NULL, false);
2457                                 f2fs_destroy_compress_ctx(&cc, false);
2458                                 if (ret)
2459                                         goto set_error_page;
2460                         }
2461                         if (cc.cluster_idx == NULL_CLUSTER) {
2462                                 if (nc_cluster_idx ==
2463                                         page->index >> cc.log_cluster_size) {
2464                                         goto read_single_page;
2465                                 }
2466
2467                                 ret = f2fs_is_compressed_cluster(inode, page->index);
2468                                 if (ret < 0)
2469                                         goto set_error_page;
2470                                 else if (!ret) {
2471                                         nc_cluster_idx =
2472                                                 page->index >> cc.log_cluster_size;
2473                                         goto read_single_page;
2474                                 }
2475
2476                                 nc_cluster_idx = NULL_CLUSTER;
2477                         }
2478                         ret = f2fs_init_compress_ctx(&cc);
2479                         if (ret)
2480                                 goto set_error_page;
2481
2482                         f2fs_compress_ctx_add_page(&cc, page);
2483
2484                         goto next_page;
2485                 }
2486 read_single_page:
2487 #endif
2488
2489                 ret = f2fs_read_single_page(inode, page, max_nr_pages, &map,
2490                                         &bio, &last_block_in_bio, rac);
2491                 if (ret) {
2492 #ifdef CONFIG_F2FS_FS_COMPRESSION
2493 set_error_page:
2494 #endif
2495                         zero_user_segment(page, 0, PAGE_SIZE);
2496                         unlock_page(page);
2497                 }
2498 #ifdef CONFIG_F2FS_FS_COMPRESSION
2499 next_page:
2500 #endif
2501                 if (rac)
2502                         put_page(page);
2503
2504 #ifdef CONFIG_F2FS_FS_COMPRESSION
2505                 if (f2fs_compressed_file(inode)) {
2506                         /* last page */
2507                         if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2508                                 ret = f2fs_read_multi_pages(&cc, &bio,
2509                                                         max_nr_pages,
2510                                                         &last_block_in_bio,
2511                                                         rac != NULL, false);
2512                                 f2fs_destroy_compress_ctx(&cc, false);
2513                         }
2514                 }
2515 #endif
2516         }
2517         if (bio)
2518                 f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2519         return ret;
2520 }
2521
2522 static int f2fs_read_data_folio(struct file *file, struct folio *folio)
2523 {
2524         struct page *page = &folio->page;
2525         struct inode *inode = page_file_mapping(page)->host;
2526         int ret = -EAGAIN;
2527
2528         trace_f2fs_readpage(page, DATA);
2529
2530         if (!f2fs_is_compress_backend_ready(inode)) {
2531                 unlock_page(page);
2532                 return -EOPNOTSUPP;
2533         }
2534
2535         /* If the file has inline data, try to read it directly */
2536         if (f2fs_has_inline_data(inode))
2537                 ret = f2fs_read_inline_data(inode, page);
2538         if (ret == -EAGAIN)
2539                 ret = f2fs_mpage_readpages(inode, NULL, page);
2540         return ret;
2541 }
2542
2543 static void f2fs_readahead(struct readahead_control *rac)
2544 {
2545         struct inode *inode = rac->mapping->host;
2546
2547         trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2548
2549         if (!f2fs_is_compress_backend_ready(inode))
2550                 return;
2551
2552         /* If the file has inline data, skip readahead */
2553         if (f2fs_has_inline_data(inode))
2554                 return;
2555
2556         f2fs_mpage_readpages(inode, rac, NULL);
2557 }
2558
2559 int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2560 {
2561         struct inode *inode = fio->page->mapping->host;
2562         struct page *mpage, *page;
2563         gfp_t gfp_flags = GFP_NOFS;
2564
2565         if (!f2fs_encrypted_file(inode))
2566                 return 0;
2567
2568         page = fio->compressed_page ? fio->compressed_page : fio->page;
2569
2570         /* wait for GCed page writeback via META_MAPPING */
2571         f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2572
2573         if (fscrypt_inode_uses_inline_crypto(inode))
2574                 return 0;
2575
2576 retry_encrypt:
2577         fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2578                                         PAGE_SIZE, 0, gfp_flags);
2579         if (IS_ERR(fio->encrypted_page)) {
2580                 /* flush pending IOs and wait for a while in the ENOMEM case */
2581                 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2582                         f2fs_flush_merged_writes(fio->sbi);
2583                         memalloc_retry_wait(GFP_NOFS);
2584                         gfp_flags |= __GFP_NOFAIL;
2585                         goto retry_encrypt;
2586                 }
2587                 return PTR_ERR(fio->encrypted_page);
2588         }
2589
2590         mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2591         if (mpage) {
2592                 if (PageUptodate(mpage))
2593                         memcpy(page_address(mpage),
2594                                 page_address(fio->encrypted_page), PAGE_SIZE);
2595                 f2fs_put_page(mpage, 1);
2596         }
2597         return 0;
2598 }
2599
2600 static inline bool check_inplace_update_policy(struct inode *inode,
2601                                 struct f2fs_io_info *fio)
2602 {
2603         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2604
2605         if (IS_F2FS_IPU_HONOR_OPU_WRITE(sbi) &&
2606             is_inode_flag_set(inode, FI_OPU_WRITE))
2607                 return false;
2608         if (IS_F2FS_IPU_FORCE(sbi))
2609                 return true;
2610         if (IS_F2FS_IPU_SSR(sbi) && f2fs_need_SSR(sbi))
2611                 return true;
2612         if (IS_F2FS_IPU_UTIL(sbi) && utilization(sbi) > SM_I(sbi)->min_ipu_util)
2613                 return true;
2614         if (IS_F2FS_IPU_SSR_UTIL(sbi) && f2fs_need_SSR(sbi) &&
2615             utilization(sbi) > SM_I(sbi)->min_ipu_util)
2616                 return true;
2617
2618         /*
2619          * IPU for rewrite async pages
2620          */
2621         if (IS_F2FS_IPU_ASYNC(sbi) && fio && fio->op == REQ_OP_WRITE &&
2622             !(fio->op_flags & REQ_SYNC) && !IS_ENCRYPTED(inode))
2623                 return true;
2624
2625         /* this is only set during fdatasync */
2626         if (IS_F2FS_IPU_FSYNC(sbi) && is_inode_flag_set(inode, FI_NEED_IPU))
2627                 return true;
2628
2629         if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2630                         !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2631                 return true;
2632
2633         return false;
2634 }
2635
2636 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2637 {
2638         /* swap file is migrating in aligned write mode */
2639         if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2640                 return false;
2641
2642         if (f2fs_is_pinned_file(inode))
2643                 return true;
2644
2645         /* if this is cold file, we should overwrite to avoid fragmentation */
2646         if (file_is_cold(inode) && !is_inode_flag_set(inode, FI_OPU_WRITE))
2647                 return true;
2648
2649         return check_inplace_update_policy(inode, fio);
2650 }
2651
2652 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2653 {
2654         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2655
2656         /* The below cases were checked when setting it. */
2657         if (f2fs_is_pinned_file(inode))
2658                 return false;
2659         if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK))
2660                 return true;
2661         if (f2fs_lfs_mode(sbi))
2662                 return true;
2663         if (S_ISDIR(inode->i_mode))
2664                 return true;
2665         if (IS_NOQUOTA(inode))
2666                 return true;
2667         if (f2fs_is_atomic_file(inode))
2668                 return true;
2669
2670         /* swap file is migrating in aligned write mode */
2671         if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2672                 return true;
2673
2674         if (is_inode_flag_set(inode, FI_OPU_WRITE))
2675                 return true;
2676
2677         if (fio) {
2678                 if (page_private_gcing(fio->page))
2679                         return true;
2680                 if (page_private_dummy(fio->page))
2681                         return true;
2682                 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2683                         f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2684                         return true;
2685         }
2686         return false;
2687 }
2688
2689 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2690 {
2691         struct inode *inode = fio->page->mapping->host;
2692
2693         if (f2fs_should_update_outplace(inode, fio))
2694                 return false;
2695
2696         return f2fs_should_update_inplace(inode, fio);
2697 }
2698
2699 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2700 {
2701         struct page *page = fio->page;
2702         struct inode *inode = page->mapping->host;
2703         struct dnode_of_data dn;
2704         struct node_info ni;
2705         bool ipu_force = false;
2706         int err = 0;
2707
2708         /* Use COW inode to make dnode_of_data for atomic write */
2709         if (f2fs_is_atomic_file(inode))
2710                 set_new_dnode(&dn, F2FS_I(inode)->cow_inode, NULL, NULL, 0);
2711         else
2712                 set_new_dnode(&dn, inode, NULL, NULL, 0);
2713
2714         if (need_inplace_update(fio) &&
2715             f2fs_lookup_read_extent_cache_block(inode, page->index,
2716                                                 &fio->old_blkaddr)) {
2717                 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2718                                                 DATA_GENERIC_ENHANCE)) {
2719                         f2fs_handle_error(fio->sbi,
2720                                                 ERROR_INVALID_BLKADDR);
2721                         return -EFSCORRUPTED;
2722                 }
2723
2724                 ipu_force = true;
2725                 fio->need_lock = LOCK_DONE;
2726                 goto got_it;
2727         }
2728
2729         /* Deadlock due to between page->lock and f2fs_lock_op */
2730         if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2731                 return -EAGAIN;
2732
2733         err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2734         if (err)
2735                 goto out;
2736
2737         fio->old_blkaddr = dn.data_blkaddr;
2738
2739         /* This page is already truncated */
2740         if (fio->old_blkaddr == NULL_ADDR) {
2741                 ClearPageUptodate(page);
2742                 clear_page_private_gcing(page);
2743                 goto out_writepage;
2744         }
2745 got_it:
2746         if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2747                 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2748                                                 DATA_GENERIC_ENHANCE)) {
2749                 err = -EFSCORRUPTED;
2750                 f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR);
2751                 goto out_writepage;
2752         }
2753
2754         /*
2755          * If current allocation needs SSR,
2756          * it had better in-place writes for updated data.
2757          */
2758         if (ipu_force ||
2759                 (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2760                                         need_inplace_update(fio))) {
2761                 err = f2fs_encrypt_one_page(fio);
2762                 if (err)
2763                         goto out_writepage;
2764
2765                 set_page_writeback(page);
2766                 f2fs_put_dnode(&dn);
2767                 if (fio->need_lock == LOCK_REQ)
2768                         f2fs_unlock_op(fio->sbi);
2769                 err = f2fs_inplace_write_data(fio);
2770                 if (err) {
2771                         if (fscrypt_inode_uses_fs_layer_crypto(inode))
2772                                 fscrypt_finalize_bounce_page(&fio->encrypted_page);
2773                         if (PageWriteback(page))
2774                                 end_page_writeback(page);
2775                 } else {
2776                         set_inode_flag(inode, FI_UPDATE_WRITE);
2777                 }
2778                 trace_f2fs_do_write_data_page(fio->page, IPU);
2779                 return err;
2780         }
2781
2782         if (fio->need_lock == LOCK_RETRY) {
2783                 if (!f2fs_trylock_op(fio->sbi)) {
2784                         err = -EAGAIN;
2785                         goto out_writepage;
2786                 }
2787                 fio->need_lock = LOCK_REQ;
2788         }
2789
2790         err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false);
2791         if (err)
2792                 goto out_writepage;
2793
2794         fio->version = ni.version;
2795
2796         err = f2fs_encrypt_one_page(fio);
2797         if (err)
2798                 goto out_writepage;
2799
2800         set_page_writeback(page);
2801
2802         if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2803                 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2804
2805         /* LFS mode write path */
2806         f2fs_outplace_write_data(&dn, fio);
2807         trace_f2fs_do_write_data_page(page, OPU);
2808         set_inode_flag(inode, FI_APPEND_WRITE);
2809         if (page->index == 0)
2810                 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
2811 out_writepage:
2812         f2fs_put_dnode(&dn);
2813 out:
2814         if (fio->need_lock == LOCK_REQ)
2815                 f2fs_unlock_op(fio->sbi);
2816         return err;
2817 }
2818
2819 int f2fs_write_single_data_page(struct page *page, int *submitted,
2820                                 struct bio **bio,
2821                                 sector_t *last_block,
2822                                 struct writeback_control *wbc,
2823                                 enum iostat_type io_type,
2824                                 int compr_blocks,
2825                                 bool allow_balance)
2826 {
2827         struct inode *inode = page->mapping->host;
2828         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2829         loff_t i_size = i_size_read(inode);
2830         const pgoff_t end_index = ((unsigned long long)i_size)
2831                                                         >> PAGE_SHIFT;
2832         loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2833         unsigned offset = 0;
2834         bool need_balance_fs = false;
2835         bool quota_inode = IS_NOQUOTA(inode);
2836         int err = 0;
2837         struct f2fs_io_info fio = {
2838                 .sbi = sbi,
2839                 .ino = inode->i_ino,
2840                 .type = DATA,
2841                 .op = REQ_OP_WRITE,
2842                 .op_flags = wbc_to_write_flags(wbc),
2843                 .old_blkaddr = NULL_ADDR,
2844                 .page = page,
2845                 .encrypted_page = NULL,
2846                 .submitted = 0,
2847                 .compr_blocks = compr_blocks,
2848                 .need_lock = LOCK_RETRY,
2849                 .post_read = f2fs_post_read_required(inode) ? 1 : 0,
2850                 .io_type = io_type,
2851                 .io_wbc = wbc,
2852                 .bio = bio,
2853                 .last_block = last_block,
2854         };
2855
2856         trace_f2fs_writepage(page, DATA);
2857
2858         /* we should bypass data pages to proceed the kworker jobs */
2859         if (unlikely(f2fs_cp_error(sbi))) {
2860                 mapping_set_error(page->mapping, -EIO);
2861                 /*
2862                  * don't drop any dirty dentry pages for keeping lastest
2863                  * directory structure.
2864                  */
2865                 if (S_ISDIR(inode->i_mode) &&
2866                                 !is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2867                         goto redirty_out;
2868
2869                 /* keep data pages in remount-ro mode */
2870                 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY)
2871                         goto redirty_out;
2872                 goto out;
2873         }
2874
2875         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2876                 goto redirty_out;
2877
2878         if (page->index < end_index ||
2879                         f2fs_verity_in_progress(inode) ||
2880                         compr_blocks)
2881                 goto write;
2882
2883         /*
2884          * If the offset is out-of-range of file size,
2885          * this page does not have to be written to disk.
2886          */
2887         offset = i_size & (PAGE_SIZE - 1);
2888         if ((page->index >= end_index + 1) || !offset)
2889                 goto out;
2890
2891         zero_user_segment(page, offset, PAGE_SIZE);
2892 write:
2893         if (f2fs_is_drop_cache(inode))
2894                 goto out;
2895
2896         /* Dentry/quota blocks are controlled by checkpoint */
2897         if (S_ISDIR(inode->i_mode) || quota_inode) {
2898                 /*
2899                  * We need to wait for node_write to avoid block allocation during
2900                  * checkpoint. This can only happen to quota writes which can cause
2901                  * the below discard race condition.
2902                  */
2903                 if (quota_inode)
2904                         f2fs_down_read(&sbi->node_write);
2905
2906                 fio.need_lock = LOCK_DONE;
2907                 err = f2fs_do_write_data_page(&fio);
2908
2909                 if (quota_inode)
2910                         f2fs_up_read(&sbi->node_write);
2911
2912                 goto done;
2913         }
2914
2915         if (!wbc->for_reclaim)
2916                 need_balance_fs = true;
2917         else if (has_not_enough_free_secs(sbi, 0, 0))
2918                 goto redirty_out;
2919         else
2920                 set_inode_flag(inode, FI_HOT_DATA);
2921
2922         err = -EAGAIN;
2923         if (f2fs_has_inline_data(inode)) {
2924                 err = f2fs_write_inline_data(inode, page);
2925                 if (!err)
2926                         goto out;
2927         }
2928
2929         if (err == -EAGAIN) {
2930                 err = f2fs_do_write_data_page(&fio);
2931                 if (err == -EAGAIN) {
2932                         fio.need_lock = LOCK_REQ;
2933                         err = f2fs_do_write_data_page(&fio);
2934                 }
2935         }
2936
2937         if (err) {
2938                 file_set_keep_isize(inode);
2939         } else {
2940                 spin_lock(&F2FS_I(inode)->i_size_lock);
2941                 if (F2FS_I(inode)->last_disk_size < psize)
2942                         F2FS_I(inode)->last_disk_size = psize;
2943                 spin_unlock(&F2FS_I(inode)->i_size_lock);
2944         }
2945
2946 done:
2947         if (err && err != -ENOENT)
2948                 goto redirty_out;
2949
2950 out:
2951         inode_dec_dirty_pages(inode);
2952         if (err) {
2953                 ClearPageUptodate(page);
2954                 clear_page_private_gcing(page);
2955         }
2956
2957         if (wbc->for_reclaim) {
2958                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2959                 clear_inode_flag(inode, FI_HOT_DATA);
2960                 f2fs_remove_dirty_inode(inode);
2961                 submitted = NULL;
2962         }
2963         unlock_page(page);
2964         if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2965                         !F2FS_I(inode)->wb_task && allow_balance)
2966                 f2fs_balance_fs(sbi, need_balance_fs);
2967
2968         if (unlikely(f2fs_cp_error(sbi))) {
2969                 f2fs_submit_merged_write(sbi, DATA);
2970                 if (bio && *bio)
2971                         f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2972                 submitted = NULL;
2973         }
2974
2975         if (submitted)
2976                 *submitted = fio.submitted;
2977
2978         return 0;
2979
2980 redirty_out:
2981         redirty_page_for_writepage(wbc, page);
2982         /*
2983          * pageout() in MM translates EAGAIN, so calls handle_write_error()
2984          * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2985          * file_write_and_wait_range() will see EIO error, which is critical
2986          * to return value of fsync() followed by atomic_write failure to user.
2987          */
2988         if (!err || wbc->for_reclaim)
2989                 return AOP_WRITEPAGE_ACTIVATE;
2990         unlock_page(page);
2991         return err;
2992 }
2993
2994 static int f2fs_write_data_page(struct page *page,
2995                                         struct writeback_control *wbc)
2996 {
2997 #ifdef CONFIG_F2FS_FS_COMPRESSION
2998         struct inode *inode = page->mapping->host;
2999
3000         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
3001                 goto out;
3002
3003         if (f2fs_compressed_file(inode)) {
3004                 if (f2fs_is_compressed_cluster(inode, page->index)) {
3005                         redirty_page_for_writepage(wbc, page);
3006                         return AOP_WRITEPAGE_ACTIVATE;
3007                 }
3008         }
3009 out:
3010 #endif
3011
3012         return f2fs_write_single_data_page(page, NULL, NULL, NULL,
3013                                                 wbc, FS_DATA_IO, 0, true);
3014 }
3015
3016 /*
3017  * This function was copied from write_cache_pages from mm/page-writeback.c.
3018  * The major change is making write step of cold data page separately from
3019  * warm/hot data page.
3020  */
3021 static int f2fs_write_cache_pages(struct address_space *mapping,
3022                                         struct writeback_control *wbc,
3023                                         enum iostat_type io_type)
3024 {
3025         int ret = 0;
3026         int done = 0, retry = 0;
3027         struct page *pages[F2FS_ONSTACK_PAGES];
3028         struct folio_batch fbatch;
3029         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
3030         struct bio *bio = NULL;
3031         sector_t last_block;
3032 #ifdef CONFIG_F2FS_FS_COMPRESSION
3033         struct inode *inode = mapping->host;
3034         struct compress_ctx cc = {
3035                 .inode = inode,
3036                 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
3037                 .cluster_size = F2FS_I(inode)->i_cluster_size,
3038                 .cluster_idx = NULL_CLUSTER,
3039                 .rpages = NULL,
3040                 .nr_rpages = 0,
3041                 .cpages = NULL,
3042                 .valid_nr_cpages = 0,
3043                 .rbuf = NULL,
3044                 .cbuf = NULL,
3045                 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
3046                 .private = NULL,
3047         };
3048 #endif
3049         int nr_folios, p, idx;
3050         int nr_pages;
3051         pgoff_t index;
3052         pgoff_t end;            /* Inclusive */
3053         pgoff_t done_index;
3054         int range_whole = 0;
3055         xa_mark_t tag;
3056         int nwritten = 0;
3057         int submitted = 0;
3058         int i;
3059
3060         folio_batch_init(&fbatch);
3061
3062         if (get_dirty_pages(mapping->host) <=
3063                                 SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
3064                 set_inode_flag(mapping->host, FI_HOT_DATA);
3065         else
3066                 clear_inode_flag(mapping->host, FI_HOT_DATA);
3067
3068         if (wbc->range_cyclic) {
3069                 index = mapping->writeback_index; /* prev offset */
3070                 end = -1;
3071         } else {
3072                 index = wbc->range_start >> PAGE_SHIFT;
3073                 end = wbc->range_end >> PAGE_SHIFT;
3074                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3075                         range_whole = 1;
3076         }
3077         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3078                 tag = PAGECACHE_TAG_TOWRITE;
3079         else
3080                 tag = PAGECACHE_TAG_DIRTY;
3081 retry:
3082         retry = 0;
3083         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3084                 tag_pages_for_writeback(mapping, index, end);
3085         done_index = index;
3086         while (!done && !retry && (index <= end)) {
3087                 nr_pages = 0;
3088 again:
3089                 nr_folios = filemap_get_folios_tag(mapping, &index, end,
3090                                 tag, &fbatch);
3091                 if (nr_folios == 0) {
3092                         if (nr_pages)
3093                                 goto write;
3094                         break;
3095                 }
3096
3097                 for (i = 0; i < nr_folios; i++) {
3098                         struct folio *folio = fbatch.folios[i];
3099
3100                         idx = 0;
3101                         p = folio_nr_pages(folio);
3102 add_more:
3103                         pages[nr_pages] = folio_page(folio, idx);
3104                         folio_get(folio);
3105                         if (++nr_pages == F2FS_ONSTACK_PAGES) {
3106                                 index = folio->index + idx + 1;
3107                                 folio_batch_release(&fbatch);
3108                                 goto write;
3109                         }
3110                         if (++idx < p)
3111                                 goto add_more;
3112                 }
3113                 folio_batch_release(&fbatch);
3114                 goto again;
3115 write:
3116                 for (i = 0; i < nr_pages; i++) {
3117                         struct page *page = pages[i];
3118                         struct folio *folio = page_folio(page);
3119                         bool need_readd;
3120 readd:
3121                         need_readd = false;
3122 #ifdef CONFIG_F2FS_FS_COMPRESSION
3123                         if (f2fs_compressed_file(inode)) {
3124                                 void *fsdata = NULL;
3125                                 struct page *pagep;
3126                                 int ret2;
3127
3128                                 ret = f2fs_init_compress_ctx(&cc);
3129                                 if (ret) {
3130                                         done = 1;
3131                                         break;
3132                                 }
3133
3134                                 if (!f2fs_cluster_can_merge_page(&cc,
3135                                                                 folio->index)) {
3136                                         ret = f2fs_write_multi_pages(&cc,
3137                                                 &submitted, wbc, io_type);
3138                                         if (!ret)
3139                                                 need_readd = true;
3140                                         goto result;
3141                                 }
3142
3143                                 if (unlikely(f2fs_cp_error(sbi)))
3144                                         goto lock_folio;
3145
3146                                 if (!f2fs_cluster_is_empty(&cc))
3147                                         goto lock_folio;
3148
3149                                 if (f2fs_all_cluster_page_ready(&cc,
3150                                         pages, i, nr_pages, true))
3151                                         goto lock_folio;
3152
3153                                 ret2 = f2fs_prepare_compress_overwrite(
3154                                                         inode, &pagep,
3155                                                         folio->index, &fsdata);
3156                                 if (ret2 < 0) {
3157                                         ret = ret2;
3158                                         done = 1;
3159                                         break;
3160                                 } else if (ret2 &&
3161                                         (!f2fs_compress_write_end(inode,
3162                                                 fsdata, folio->index, 1) ||
3163                                          !f2fs_all_cluster_page_ready(&cc,
3164                                                 pages, i, nr_pages,
3165                                                 false))) {
3166                                         retry = 1;
3167                                         break;
3168                                 }
3169                         }
3170 #endif
3171                         /* give a priority to WB_SYNC threads */
3172                         if (atomic_read(&sbi->wb_sync_req[DATA]) &&
3173                                         wbc->sync_mode == WB_SYNC_NONE) {
3174                                 done = 1;
3175                                 break;
3176                         }
3177 #ifdef CONFIG_F2FS_FS_COMPRESSION
3178 lock_folio:
3179 #endif
3180                         done_index = folio->index;
3181 retry_write:
3182                         folio_lock(folio);
3183
3184                         if (unlikely(folio->mapping != mapping)) {
3185 continue_unlock:
3186                                 folio_unlock(folio);
3187                                 continue;
3188                         }
3189
3190                         if (!folio_test_dirty(folio)) {
3191                                 /* someone wrote it for us */
3192                                 goto continue_unlock;
3193                         }
3194
3195                         if (folio_test_writeback(folio)) {
3196                                 if (wbc->sync_mode == WB_SYNC_NONE)
3197                                         goto continue_unlock;
3198                                 f2fs_wait_on_page_writeback(&folio->page, DATA, true, true);
3199                         }
3200
3201                         if (!folio_clear_dirty_for_io(folio))
3202                                 goto continue_unlock;
3203
3204 #ifdef CONFIG_F2FS_FS_COMPRESSION
3205                         if (f2fs_compressed_file(inode)) {
3206                                 folio_get(folio);
3207                                 f2fs_compress_ctx_add_page(&cc, &folio->page);
3208                                 continue;
3209                         }
3210 #endif
3211                         ret = f2fs_write_single_data_page(&folio->page,
3212                                         &submitted, &bio, &last_block,
3213                                         wbc, io_type, 0, true);
3214                         if (ret == AOP_WRITEPAGE_ACTIVATE)
3215                                 folio_unlock(folio);
3216 #ifdef CONFIG_F2FS_FS_COMPRESSION
3217 result:
3218 #endif
3219                         nwritten += submitted;
3220                         wbc->nr_to_write -= submitted;
3221
3222                         if (unlikely(ret)) {
3223                                 /*
3224                                  * keep nr_to_write, since vfs uses this to
3225                                  * get # of written pages.
3226                                  */
3227                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
3228                                         ret = 0;
3229                                         goto next;
3230                                 } else if (ret == -EAGAIN) {
3231                                         ret = 0;
3232                                         if (wbc->sync_mode == WB_SYNC_ALL) {
3233                                                 f2fs_io_schedule_timeout(
3234                                                         DEFAULT_IO_TIMEOUT);
3235                                                 goto retry_write;
3236                                         }
3237                                         goto next;
3238                                 }
3239                                 done_index = folio->index +
3240                                         folio_nr_pages(folio);
3241                                 done = 1;
3242                                 break;
3243                         }
3244
3245                         if (wbc->nr_to_write <= 0 &&
3246                                         wbc->sync_mode == WB_SYNC_NONE) {
3247                                 done = 1;
3248                                 break;
3249                         }
3250 next:
3251                         if (need_readd)
3252                                 goto readd;
3253                 }
3254                 release_pages(pages, nr_pages);
3255                 cond_resched();
3256         }
3257 #ifdef CONFIG_F2FS_FS_COMPRESSION
3258         /* flush remained pages in compress cluster */
3259         if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3260                 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3261                 nwritten += submitted;
3262                 wbc->nr_to_write -= submitted;
3263                 if (ret) {
3264                         done = 1;
3265                         retry = 0;
3266                 }
3267         }
3268         if (f2fs_compressed_file(inode))
3269                 f2fs_destroy_compress_ctx(&cc, false);
3270 #endif
3271         if (retry) {
3272                 index = 0;
3273                 end = -1;
3274                 goto retry;
3275         }
3276         if (wbc->range_cyclic && !done)
3277                 done_index = 0;
3278         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3279                 mapping->writeback_index = done_index;
3280
3281         if (nwritten)
3282                 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3283                                                                 NULL, 0, DATA);
3284         /* submit cached bio of IPU write */
3285         if (bio)
3286                 f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3287
3288         return ret;
3289 }
3290
3291 static inline bool __should_serialize_io(struct inode *inode,
3292                                         struct writeback_control *wbc)
3293 {
3294         /* to avoid deadlock in path of data flush */
3295         if (F2FS_I(inode)->wb_task)
3296                 return false;
3297
3298         if (!S_ISREG(inode->i_mode))
3299                 return false;
3300         if (IS_NOQUOTA(inode))
3301                 return false;
3302
3303         if (f2fs_need_compress_data(inode))
3304                 return true;
3305         if (wbc->sync_mode != WB_SYNC_ALL)
3306                 return true;
3307         if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3308                 return true;
3309         return false;
3310 }
3311
3312 static int __f2fs_write_data_pages(struct address_space *mapping,
3313                                                 struct writeback_control *wbc,
3314                                                 enum iostat_type io_type)
3315 {
3316         struct inode *inode = mapping->host;
3317         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3318         struct blk_plug plug;
3319         int ret;
3320         bool locked = false;
3321
3322         /* deal with chardevs and other special file */
3323         if (!mapping->a_ops->writepage)
3324                 return 0;
3325
3326         /* skip writing if there is no dirty page in this inode */
3327         if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3328                 return 0;
3329
3330         /* during POR, we don't need to trigger writepage at all. */
3331         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3332                 goto skip_write;
3333
3334         if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3335                         wbc->sync_mode == WB_SYNC_NONE &&
3336                         get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3337                         f2fs_available_free_memory(sbi, DIRTY_DENTS))
3338                 goto skip_write;
3339
3340         /* skip writing in file defragment preparing stage */
3341         if (is_inode_flag_set(inode, FI_SKIP_WRITES))
3342                 goto skip_write;
3343
3344         trace_f2fs_writepages(mapping->host, wbc, DATA);
3345
3346         /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3347         if (wbc->sync_mode == WB_SYNC_ALL)
3348                 atomic_inc(&sbi->wb_sync_req[DATA]);
3349         else if (atomic_read(&sbi->wb_sync_req[DATA])) {
3350                 /* to avoid potential deadlock */
3351                 if (current->plug)
3352                         blk_finish_plug(current->plug);
3353                 goto skip_write;
3354         }
3355
3356         if (__should_serialize_io(inode, wbc)) {
3357                 mutex_lock(&sbi->writepages);
3358                 locked = true;
3359         }
3360
3361         blk_start_plug(&plug);
3362         ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3363         blk_finish_plug(&plug);
3364
3365         if (locked)
3366                 mutex_unlock(&sbi->writepages);
3367
3368         if (wbc->sync_mode == WB_SYNC_ALL)
3369                 atomic_dec(&sbi->wb_sync_req[DATA]);
3370         /*
3371          * if some pages were truncated, we cannot guarantee its mapping->host
3372          * to detect pending bios.
3373          */
3374
3375         f2fs_remove_dirty_inode(inode);
3376         return ret;
3377
3378 skip_write:
3379         wbc->pages_skipped += get_dirty_pages(inode);
3380         trace_f2fs_writepages(mapping->host, wbc, DATA);
3381         return 0;
3382 }
3383
3384 static int f2fs_write_data_pages(struct address_space *mapping,
3385                             struct writeback_control *wbc)
3386 {
3387         struct inode *inode = mapping->host;
3388
3389         return __f2fs_write_data_pages(mapping, wbc,
3390                         F2FS_I(inode)->cp_task == current ?
3391                         FS_CP_DATA_IO : FS_DATA_IO);
3392 }
3393
3394 void f2fs_write_failed(struct inode *inode, loff_t to)
3395 {
3396         loff_t i_size = i_size_read(inode);
3397
3398         if (IS_NOQUOTA(inode))
3399                 return;
3400
3401         /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3402         if (to > i_size && !f2fs_verity_in_progress(inode)) {
3403                 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3404                 filemap_invalidate_lock(inode->i_mapping);
3405
3406                 truncate_pagecache(inode, i_size);
3407                 f2fs_truncate_blocks(inode, i_size, true);
3408
3409                 filemap_invalidate_unlock(inode->i_mapping);
3410                 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3411         }
3412 }
3413
3414 static int prepare_write_begin(struct f2fs_sb_info *sbi,
3415                         struct page *page, loff_t pos, unsigned len,
3416                         block_t *blk_addr, bool *node_changed)
3417 {
3418         struct inode *inode = page->mapping->host;
3419         pgoff_t index = page->index;
3420         struct dnode_of_data dn;
3421         struct page *ipage;
3422         bool locked = false;
3423         int flag = F2FS_GET_BLOCK_PRE_AIO;
3424         int err = 0;
3425
3426         /*
3427          * If a whole page is being written and we already preallocated all the
3428          * blocks, then there is no need to get a block address now.
3429          */
3430         if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL))
3431                 return 0;
3432
3433         /* f2fs_lock_op avoids race between write CP and convert_inline_page */
3434         if (f2fs_has_inline_data(inode)) {
3435                 if (pos + len > MAX_INLINE_DATA(inode))
3436                         flag = F2FS_GET_BLOCK_DEFAULT;
3437                 f2fs_map_lock(sbi, flag);
3438                 locked = true;
3439         } else if ((pos & PAGE_MASK) >= i_size_read(inode)) {
3440                 f2fs_map_lock(sbi, flag);
3441                 locked = true;
3442         }
3443
3444 restart:
3445         /* check inline_data */
3446         ipage = f2fs_get_node_page(sbi, inode->i_ino);
3447         if (IS_ERR(ipage)) {
3448                 err = PTR_ERR(ipage);
3449                 goto unlock_out;
3450         }
3451
3452         set_new_dnode(&dn, inode, ipage, ipage, 0);
3453
3454         if (f2fs_has_inline_data(inode)) {
3455                 if (pos + len <= MAX_INLINE_DATA(inode)) {
3456                         f2fs_do_read_inline_data(page, ipage);
3457                         set_inode_flag(inode, FI_DATA_EXIST);
3458                         if (inode->i_nlink)
3459                                 set_page_private_inline(ipage);
3460                         goto out;
3461                 }
3462                 err = f2fs_convert_inline_page(&dn, page);
3463                 if (err || dn.data_blkaddr != NULL_ADDR)
3464                         goto out;
3465         }
3466
3467         if (!f2fs_lookup_read_extent_cache_block(inode, index,
3468                                                  &dn.data_blkaddr)) {
3469                 if (locked) {
3470                         err = f2fs_reserve_block(&dn, index);
3471                         goto out;
3472                 }
3473
3474                 /* hole case */
3475                 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3476                 if (!err && dn.data_blkaddr != NULL_ADDR)
3477                         goto out;
3478                 f2fs_put_dnode(&dn);
3479                 f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3480                 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3481                 locked = true;
3482                 goto restart;
3483         }
3484 out:
3485         if (!err) {
3486                 /* convert_inline_page can make node_changed */
3487                 *blk_addr = dn.data_blkaddr;
3488                 *node_changed = dn.node_changed;
3489         }
3490         f2fs_put_dnode(&dn);
3491 unlock_out:
3492         if (locked)
3493                 f2fs_map_unlock(sbi, flag);
3494         return err;
3495 }
3496
3497 static int __find_data_block(struct inode *inode, pgoff_t index,
3498                                 block_t *blk_addr)
3499 {
3500         struct dnode_of_data dn;
3501         struct page *ipage;
3502         int err = 0;
3503
3504         ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
3505         if (IS_ERR(ipage))
3506                 return PTR_ERR(ipage);
3507
3508         set_new_dnode(&dn, inode, ipage, ipage, 0);
3509
3510         if (!f2fs_lookup_read_extent_cache_block(inode, index,
3511                                                  &dn.data_blkaddr)) {
3512                 /* hole case */
3513                 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3514                 if (err) {
3515                         dn.data_blkaddr = NULL_ADDR;
3516                         err = 0;
3517                 }
3518         }
3519         *blk_addr = dn.data_blkaddr;
3520         f2fs_put_dnode(&dn);
3521         return err;
3522 }
3523
3524 static int __reserve_data_block(struct inode *inode, pgoff_t index,
3525                                 block_t *blk_addr, bool *node_changed)
3526 {
3527         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3528         struct dnode_of_data dn;
3529         struct page *ipage;
3530         int err = 0;
3531
3532         f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3533
3534         ipage = f2fs_get_node_page(sbi, inode->i_ino);
3535         if (IS_ERR(ipage)) {
3536                 err = PTR_ERR(ipage);
3537                 goto unlock_out;
3538         }
3539         set_new_dnode(&dn, inode, ipage, ipage, 0);
3540
3541         if (!f2fs_lookup_read_extent_cache_block(dn.inode, index,
3542                                                 &dn.data_blkaddr))
3543                 err = f2fs_reserve_block(&dn, index);
3544
3545         *blk_addr = dn.data_blkaddr;
3546         *node_changed = dn.node_changed;
3547         f2fs_put_dnode(&dn);
3548
3549 unlock_out:
3550         f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3551         return err;
3552 }
3553
3554 static int prepare_atomic_write_begin(struct f2fs_sb_info *sbi,
3555                         struct page *page, loff_t pos, unsigned int len,
3556                         block_t *blk_addr, bool *node_changed, bool *use_cow)
3557 {
3558         struct inode *inode = page->mapping->host;
3559         struct inode *cow_inode = F2FS_I(inode)->cow_inode;
3560         pgoff_t index = page->index;
3561         int err = 0;
3562         block_t ori_blk_addr = NULL_ADDR;
3563
3564         /* If pos is beyond the end of file, reserve a new block in COW inode */
3565         if ((pos & PAGE_MASK) >= i_size_read(inode))
3566                 goto reserve_block;
3567
3568         /* Look for the block in COW inode first */
3569         err = __find_data_block(cow_inode, index, blk_addr);
3570         if (err) {
3571                 return err;
3572         } else if (*blk_addr != NULL_ADDR) {
3573                 *use_cow = true;
3574                 return 0;
3575         }
3576
3577         if (is_inode_flag_set(inode, FI_ATOMIC_REPLACE))
3578                 goto reserve_block;
3579
3580         /* Look for the block in the original inode */
3581         err = __find_data_block(inode, index, &ori_blk_addr);
3582         if (err)
3583                 return err;
3584
3585 reserve_block:
3586         /* Finally, we should reserve a new block in COW inode for the update */
3587         err = __reserve_data_block(cow_inode, index, blk_addr, node_changed);
3588         if (err)
3589                 return err;
3590         inc_atomic_write_cnt(inode);
3591
3592         if (ori_blk_addr != NULL_ADDR)
3593                 *blk_addr = ori_blk_addr;
3594         return 0;
3595 }
3596
3597 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3598                 loff_t pos, unsigned len, struct page **pagep, void **fsdata)
3599 {
3600         struct inode *inode = mapping->host;
3601         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3602         struct page *page = NULL;
3603         pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
3604         bool need_balance = false;
3605         bool use_cow = false;
3606         block_t blkaddr = NULL_ADDR;
3607         int err = 0;
3608
3609         trace_f2fs_write_begin(inode, pos, len);
3610
3611         if (!f2fs_is_checkpoint_ready(sbi)) {
3612                 err = -ENOSPC;
3613                 goto fail;
3614         }
3615
3616         /*
3617          * We should check this at this moment to avoid deadlock on inode page
3618          * and #0 page. The locking rule for inline_data conversion should be:
3619          * lock_page(page #0) -> lock_page(inode_page)
3620          */
3621         if (index != 0) {
3622                 err = f2fs_convert_inline_inode(inode);
3623                 if (err)
3624                         goto fail;
3625         }
3626
3627 #ifdef CONFIG_F2FS_FS_COMPRESSION
3628         if (f2fs_compressed_file(inode)) {
3629                 int ret;
3630
3631                 *fsdata = NULL;
3632
3633                 if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode)))
3634                         goto repeat;
3635
3636                 ret = f2fs_prepare_compress_overwrite(inode, pagep,
3637                                                         index, fsdata);
3638                 if (ret < 0) {
3639                         err = ret;
3640                         goto fail;
3641                 } else if (ret) {
3642                         return 0;
3643                 }
3644         }
3645 #endif
3646
3647 repeat:
3648         /*
3649          * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3650          * wait_for_stable_page. Will wait that below with our IO control.
3651          */
3652         page = f2fs_pagecache_get_page(mapping, index,
3653                                 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3654         if (!page) {
3655                 err = -ENOMEM;
3656                 goto fail;
3657         }
3658
3659         /* TODO: cluster can be compressed due to race with .writepage */
3660
3661         *pagep = page;
3662
3663         if (f2fs_is_atomic_file(inode))
3664                 err = prepare_atomic_write_begin(sbi, page, pos, len,
3665                                         &blkaddr, &need_balance, &use_cow);
3666         else
3667                 err = prepare_write_begin(sbi, page, pos, len,
3668                                         &blkaddr, &need_balance);
3669         if (err)
3670                 goto fail;
3671
3672         if (need_balance && !IS_NOQUOTA(inode) &&
3673                         has_not_enough_free_secs(sbi, 0, 0)) {
3674                 unlock_page(page);
3675                 f2fs_balance_fs(sbi, true);
3676                 lock_page(page);
3677                 if (page->mapping != mapping) {
3678                         /* The page got truncated from under us */
3679                         f2fs_put_page(page, 1);
3680                         goto repeat;
3681                 }
3682         }
3683
3684         f2fs_wait_on_page_writeback(page, DATA, false, true);
3685
3686         if (len == PAGE_SIZE || PageUptodate(page))
3687                 return 0;
3688
3689         if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3690             !f2fs_verity_in_progress(inode)) {
3691                 zero_user_segment(page, len, PAGE_SIZE);
3692                 return 0;
3693         }
3694
3695         if (blkaddr == NEW_ADDR) {
3696                 zero_user_segment(page, 0, PAGE_SIZE);
3697                 SetPageUptodate(page);
3698         } else {
3699                 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3700                                 DATA_GENERIC_ENHANCE_READ)) {
3701                         err = -EFSCORRUPTED;
3702                         f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
3703                         goto fail;
3704                 }
3705                 err = f2fs_submit_page_read(use_cow ?
3706                                 F2FS_I(inode)->cow_inode : inode, page,
3707                                 blkaddr, 0, true);
3708                 if (err)
3709                         goto fail;
3710
3711                 lock_page(page);
3712                 if (unlikely(page->mapping != mapping)) {
3713                         f2fs_put_page(page, 1);
3714                         goto repeat;
3715                 }
3716                 if (unlikely(!PageUptodate(page))) {
3717                         err = -EIO;
3718                         goto fail;
3719                 }
3720         }
3721         return 0;
3722
3723 fail:
3724         f2fs_put_page(page, 1);
3725         f2fs_write_failed(inode, pos + len);
3726         return err;
3727 }
3728
3729 static int f2fs_write_end(struct file *file,
3730                         struct address_space *mapping,
3731                         loff_t pos, unsigned len, unsigned copied,
3732                         struct page *page, void *fsdata)
3733 {
3734         struct inode *inode = page->mapping->host;
3735
3736         trace_f2fs_write_end(inode, pos, len, copied);
3737
3738         /*
3739          * This should be come from len == PAGE_SIZE, and we expect copied
3740          * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3741          * let generic_perform_write() try to copy data again through copied=0.
3742          */
3743         if (!PageUptodate(page)) {
3744                 if (unlikely(copied != len))
3745                         copied = 0;
3746                 else
3747                         SetPageUptodate(page);
3748         }
3749
3750 #ifdef CONFIG_F2FS_FS_COMPRESSION
3751         /* overwrite compressed file */
3752         if (f2fs_compressed_file(inode) && fsdata) {
3753                 f2fs_compress_write_end(inode, fsdata, page->index, copied);
3754                 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3755
3756                 if (pos + copied > i_size_read(inode) &&
3757                                 !f2fs_verity_in_progress(inode))
3758                         f2fs_i_size_write(inode, pos + copied);
3759                 return copied;
3760         }
3761 #endif
3762
3763         if (!copied)
3764                 goto unlock_out;
3765
3766         set_page_dirty(page);
3767
3768         if (pos + copied > i_size_read(inode) &&
3769             !f2fs_verity_in_progress(inode)) {
3770                 f2fs_i_size_write(inode, pos + copied);
3771                 if (f2fs_is_atomic_file(inode))
3772                         f2fs_i_size_write(F2FS_I(inode)->cow_inode,
3773                                         pos + copied);
3774         }
3775 unlock_out:
3776         f2fs_put_page(page, 1);
3777         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3778         return copied;
3779 }
3780
3781 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length)
3782 {
3783         struct inode *inode = folio->mapping->host;
3784         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3785
3786         if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3787                                 (offset || length != folio_size(folio)))
3788                 return;
3789
3790         if (folio_test_dirty(folio)) {
3791                 if (inode->i_ino == F2FS_META_INO(sbi)) {
3792                         dec_page_count(sbi, F2FS_DIRTY_META);
3793                 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3794                         dec_page_count(sbi, F2FS_DIRTY_NODES);
3795                 } else {
3796                         inode_dec_dirty_pages(inode);
3797                         f2fs_remove_dirty_inode(inode);
3798                 }
3799         }
3800         clear_page_private_all(&folio->page);
3801 }
3802
3803 bool f2fs_release_folio(struct folio *folio, gfp_t wait)
3804 {
3805         /* If this is dirty folio, keep private data */
3806         if (folio_test_dirty(folio))
3807                 return false;
3808
3809         clear_page_private_all(&folio->page);
3810         return true;
3811 }
3812
3813 static bool f2fs_dirty_data_folio(struct address_space *mapping,
3814                 struct folio *folio)
3815 {
3816         struct inode *inode = mapping->host;
3817
3818         trace_f2fs_set_page_dirty(&folio->page, DATA);
3819
3820         if (!folio_test_uptodate(folio))
3821                 folio_mark_uptodate(folio);
3822         BUG_ON(folio_test_swapcache(folio));
3823
3824         if (filemap_dirty_folio(mapping, folio)) {
3825                 f2fs_update_dirty_folio(inode, folio);
3826                 return true;
3827         }
3828         return false;
3829 }
3830
3831
3832 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3833 {
3834 #ifdef CONFIG_F2FS_FS_COMPRESSION
3835         struct dnode_of_data dn;
3836         sector_t start_idx, blknr = 0;
3837         int ret;
3838
3839         start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3840
3841         set_new_dnode(&dn, inode, NULL, NULL, 0);
3842         ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3843         if (ret)
3844                 return 0;
3845
3846         if (dn.data_blkaddr != COMPRESS_ADDR) {
3847                 dn.ofs_in_node += block - start_idx;
3848                 blknr = f2fs_data_blkaddr(&dn);
3849                 if (!__is_valid_data_blkaddr(blknr))
3850                         blknr = 0;
3851         }
3852
3853         f2fs_put_dnode(&dn);
3854         return blknr;
3855 #else
3856         return 0;
3857 #endif
3858 }
3859
3860
3861 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3862 {
3863         struct inode *inode = mapping->host;
3864         sector_t blknr = 0;
3865
3866         if (f2fs_has_inline_data(inode))
3867                 goto out;
3868
3869         /* make sure allocating whole blocks */
3870         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3871                 filemap_write_and_wait(mapping);
3872
3873         /* Block number less than F2FS MAX BLOCKS */
3874         if (unlikely(block >= max_file_blocks(inode)))
3875                 goto out;
3876
3877         if (f2fs_compressed_file(inode)) {
3878                 blknr = f2fs_bmap_compress(inode, block);
3879         } else {
3880                 struct f2fs_map_blocks map;
3881
3882                 memset(&map, 0, sizeof(map));
3883                 map.m_lblk = block;
3884                 map.m_len = 1;
3885                 map.m_next_pgofs = NULL;
3886                 map.m_seg_type = NO_CHECK_TYPE;
3887
3888                 if (!f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_BMAP))
3889                         blknr = map.m_pblk;
3890         }
3891 out:
3892         trace_f2fs_bmap(inode, block, blknr);
3893         return blknr;
3894 }
3895
3896 #ifdef CONFIG_SWAP
3897 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk,
3898                                                         unsigned int blkcnt)
3899 {
3900         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3901         unsigned int blkofs;
3902         unsigned int blk_per_sec = BLKS_PER_SEC(sbi);
3903         unsigned int secidx = start_blk / blk_per_sec;
3904         unsigned int end_sec = secidx + blkcnt / blk_per_sec;
3905         int ret = 0;
3906
3907         f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3908         filemap_invalidate_lock(inode->i_mapping);
3909
3910         set_inode_flag(inode, FI_ALIGNED_WRITE);
3911         set_inode_flag(inode, FI_OPU_WRITE);
3912
3913         for (; secidx < end_sec; secidx++) {
3914                 f2fs_down_write(&sbi->pin_sem);
3915
3916                 f2fs_lock_op(sbi);
3917                 f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
3918                 f2fs_unlock_op(sbi);
3919
3920                 set_inode_flag(inode, FI_SKIP_WRITES);
3921
3922                 for (blkofs = 0; blkofs < blk_per_sec; blkofs++) {
3923                         struct page *page;
3924                         unsigned int blkidx = secidx * blk_per_sec + blkofs;
3925
3926                         page = f2fs_get_lock_data_page(inode, blkidx, true);
3927                         if (IS_ERR(page)) {
3928                                 f2fs_up_write(&sbi->pin_sem);
3929                                 ret = PTR_ERR(page);
3930                                 goto done;
3931                         }
3932
3933                         set_page_dirty(page);
3934                         f2fs_put_page(page, 1);
3935                 }
3936
3937                 clear_inode_flag(inode, FI_SKIP_WRITES);
3938
3939                 ret = filemap_fdatawrite(inode->i_mapping);
3940
3941                 f2fs_up_write(&sbi->pin_sem);
3942
3943                 if (ret)
3944                         break;
3945         }
3946
3947 done:
3948         clear_inode_flag(inode, FI_SKIP_WRITES);
3949         clear_inode_flag(inode, FI_OPU_WRITE);
3950         clear_inode_flag(inode, FI_ALIGNED_WRITE);
3951
3952         filemap_invalidate_unlock(inode->i_mapping);
3953         f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3954
3955         return ret;
3956 }
3957
3958 static int check_swap_activate(struct swap_info_struct *sis,
3959                                 struct file *swap_file, sector_t *span)
3960 {
3961         struct address_space *mapping = swap_file->f_mapping;
3962         struct inode *inode = mapping->host;
3963         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3964         sector_t cur_lblock;
3965         sector_t last_lblock;
3966         sector_t pblock;
3967         sector_t lowest_pblock = -1;
3968         sector_t highest_pblock = 0;
3969         int nr_extents = 0;
3970         unsigned long nr_pblocks;
3971         unsigned int blks_per_sec = BLKS_PER_SEC(sbi);
3972         unsigned int sec_blks_mask = BLKS_PER_SEC(sbi) - 1;
3973         unsigned int not_aligned = 0;
3974         int ret = 0;
3975
3976         /*
3977          * Map all the blocks into the extent list.  This code doesn't try
3978          * to be very smart.
3979          */
3980         cur_lblock = 0;
3981         last_lblock = bytes_to_blks(inode, i_size_read(inode));
3982
3983         while (cur_lblock < last_lblock && cur_lblock < sis->max) {
3984                 struct f2fs_map_blocks map;
3985 retry:
3986                 cond_resched();
3987
3988                 memset(&map, 0, sizeof(map));
3989                 map.m_lblk = cur_lblock;
3990                 map.m_len = last_lblock - cur_lblock;
3991                 map.m_next_pgofs = NULL;
3992                 map.m_next_extent = NULL;
3993                 map.m_seg_type = NO_CHECK_TYPE;
3994                 map.m_may_create = false;
3995
3996                 ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
3997                 if (ret)
3998                         goto out;
3999
4000                 /* hole */
4001                 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
4002                         f2fs_err(sbi, "Swapfile has holes");
4003                         ret = -EINVAL;
4004                         goto out;
4005                 }
4006
4007                 pblock = map.m_pblk;
4008                 nr_pblocks = map.m_len;
4009
4010                 if ((pblock - SM_I(sbi)->main_blkaddr) & sec_blks_mask ||
4011                                 nr_pblocks & sec_blks_mask) {
4012                         not_aligned++;
4013
4014                         nr_pblocks = roundup(nr_pblocks, blks_per_sec);
4015                         if (cur_lblock + nr_pblocks > sis->max)
4016                                 nr_pblocks -= blks_per_sec;
4017
4018                         if (!nr_pblocks) {
4019                                 /* this extent is last one */
4020                                 nr_pblocks = map.m_len;
4021                                 f2fs_warn(sbi, "Swapfile: last extent is not aligned to section");
4022                                 goto next;
4023                         }
4024
4025                         ret = f2fs_migrate_blocks(inode, cur_lblock,
4026                                                         nr_pblocks);
4027                         if (ret)
4028                                 goto out;
4029                         goto retry;
4030                 }
4031 next:
4032                 if (cur_lblock + nr_pblocks >= sis->max)
4033                         nr_pblocks = sis->max - cur_lblock;
4034
4035                 if (cur_lblock) {       /* exclude the header page */
4036                         if (pblock < lowest_pblock)
4037                                 lowest_pblock = pblock;
4038                         if (pblock + nr_pblocks - 1 > highest_pblock)
4039                                 highest_pblock = pblock + nr_pblocks - 1;
4040                 }
4041
4042                 /*
4043                  * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
4044                  */
4045                 ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
4046                 if (ret < 0)
4047                         goto out;
4048                 nr_extents += ret;
4049                 cur_lblock += nr_pblocks;
4050         }
4051         ret = nr_extents;
4052         *span = 1 + highest_pblock - lowest_pblock;
4053         if (cur_lblock == 0)
4054                 cur_lblock = 1; /* force Empty message */
4055         sis->max = cur_lblock;
4056         sis->pages = cur_lblock - 1;
4057         sis->highest_bit = cur_lblock - 1;
4058 out:
4059         if (not_aligned)
4060                 f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%u * N)",
4061                           not_aligned, blks_per_sec * F2FS_BLKSIZE);
4062         return ret;
4063 }
4064
4065 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4066                                 sector_t *span)
4067 {
4068         struct inode *inode = file_inode(file);
4069         int ret;
4070
4071         if (!S_ISREG(inode->i_mode))
4072                 return -EINVAL;
4073
4074         if (f2fs_readonly(F2FS_I_SB(inode)->sb))
4075                 return -EROFS;
4076
4077         if (f2fs_lfs_mode(F2FS_I_SB(inode))) {
4078                 f2fs_err(F2FS_I_SB(inode),
4079                         "Swapfile not supported in LFS mode");
4080                 return -EINVAL;
4081         }
4082
4083         ret = f2fs_convert_inline_inode(inode);
4084         if (ret)
4085                 return ret;
4086
4087         if (!f2fs_disable_compressed_file(inode))
4088                 return -EINVAL;
4089
4090         f2fs_precache_extents(inode);
4091
4092         ret = check_swap_activate(sis, file, span);
4093         if (ret < 0)
4094                 return ret;
4095
4096         stat_inc_swapfile_inode(inode);
4097         set_inode_flag(inode, FI_PIN_FILE);
4098         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
4099         return ret;
4100 }
4101
4102 static void f2fs_swap_deactivate(struct file *file)
4103 {
4104         struct inode *inode = file_inode(file);
4105
4106         stat_dec_swapfile_inode(inode);
4107         clear_inode_flag(inode, FI_PIN_FILE);
4108 }
4109 #else
4110 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4111                                 sector_t *span)
4112 {
4113         return -EOPNOTSUPP;
4114 }
4115
4116 static void f2fs_swap_deactivate(struct file *file)
4117 {
4118 }
4119 #endif
4120
4121 const struct address_space_operations f2fs_dblock_aops = {
4122         .read_folio     = f2fs_read_data_folio,
4123         .readahead      = f2fs_readahead,
4124         .writepage      = f2fs_write_data_page,
4125         .writepages     = f2fs_write_data_pages,
4126         .write_begin    = f2fs_write_begin,
4127         .write_end      = f2fs_write_end,
4128         .dirty_folio    = f2fs_dirty_data_folio,
4129         .migrate_folio  = filemap_migrate_folio,
4130         .invalidate_folio = f2fs_invalidate_folio,
4131         .release_folio  = f2fs_release_folio,
4132         .bmap           = f2fs_bmap,
4133         .swap_activate  = f2fs_swap_activate,
4134         .swap_deactivate = f2fs_swap_deactivate,
4135 };
4136
4137 void f2fs_clear_page_cache_dirty_tag(struct page *page)
4138 {
4139         struct address_space *mapping = page_mapping(page);
4140         unsigned long flags;
4141
4142         xa_lock_irqsave(&mapping->i_pages, flags);
4143         __xa_clear_mark(&mapping->i_pages, page_index(page),
4144                                                 PAGECACHE_TAG_DIRTY);
4145         xa_unlock_irqrestore(&mapping->i_pages, flags);
4146 }
4147
4148 int __init f2fs_init_post_read_processing(void)
4149 {
4150         bio_post_read_ctx_cache =
4151                 kmem_cache_create("f2fs_bio_post_read_ctx",
4152                                   sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4153         if (!bio_post_read_ctx_cache)
4154                 goto fail;
4155         bio_post_read_ctx_pool =
4156                 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4157                                          bio_post_read_ctx_cache);
4158         if (!bio_post_read_ctx_pool)
4159                 goto fail_free_cache;
4160         return 0;
4161
4162 fail_free_cache:
4163         kmem_cache_destroy(bio_post_read_ctx_cache);
4164 fail:
4165         return -ENOMEM;
4166 }
4167
4168 void f2fs_destroy_post_read_processing(void)
4169 {
4170         mempool_destroy(bio_post_read_ctx_pool);
4171         kmem_cache_destroy(bio_post_read_ctx_cache);
4172 }
4173
4174 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4175 {
4176         if (!f2fs_sb_has_encrypt(sbi) &&
4177                 !f2fs_sb_has_verity(sbi) &&
4178                 !f2fs_sb_has_compression(sbi))
4179                 return 0;
4180
4181         sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4182                                                  WQ_UNBOUND | WQ_HIGHPRI,
4183                                                  num_online_cpus());
4184         return sbi->post_read_wq ? 0 : -ENOMEM;
4185 }
4186
4187 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4188 {
4189         if (sbi->post_read_wq)
4190                 destroy_workqueue(sbi->post_read_wq);
4191 }
4192
4193 int __init f2fs_init_bio_entry_cache(void)
4194 {
4195         bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4196                         sizeof(struct bio_entry));
4197         return bio_entry_slab ? 0 : -ENOMEM;
4198 }
4199
4200 void f2fs_destroy_bio_entry_cache(void)
4201 {
4202         kmem_cache_destroy(bio_entry_slab);
4203 }
4204
4205 static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
4206                             unsigned int flags, struct iomap *iomap,
4207                             struct iomap *srcmap)
4208 {
4209         struct f2fs_map_blocks map = {};
4210         pgoff_t next_pgofs = 0;
4211         int err;
4212
4213         map.m_lblk = bytes_to_blks(inode, offset);
4214         map.m_len = bytes_to_blks(inode, offset + length - 1) - map.m_lblk + 1;
4215         map.m_next_pgofs = &next_pgofs;
4216         map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint);
4217         if (flags & IOMAP_WRITE)
4218                 map.m_may_create = true;
4219
4220         err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DIO);
4221         if (err)
4222                 return err;
4223
4224         iomap->offset = blks_to_bytes(inode, map.m_lblk);
4225
4226         /*
4227          * When inline encryption is enabled, sometimes I/O to an encrypted file
4228          * has to be broken up to guarantee DUN contiguity.  Handle this by
4229          * limiting the length of the mapping returned.
4230          */
4231         map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
4232
4233         /*
4234          * We should never see delalloc or compressed extents here based on
4235          * prior flushing and checks.
4236          */
4237         if (WARN_ON_ONCE(map.m_pblk == NEW_ADDR))
4238                 return -EINVAL;
4239         if (WARN_ON_ONCE(map.m_pblk == COMPRESS_ADDR))
4240                 return -EINVAL;
4241
4242         if (map.m_pblk != NULL_ADDR) {
4243                 iomap->length = blks_to_bytes(inode, map.m_len);
4244                 iomap->type = IOMAP_MAPPED;
4245                 iomap->flags |= IOMAP_F_MERGED;
4246                 iomap->bdev = map.m_bdev;
4247                 iomap->addr = blks_to_bytes(inode, map.m_pblk);
4248         } else {
4249                 if (flags & IOMAP_WRITE)
4250                         return -ENOTBLK;
4251                 iomap->length = blks_to_bytes(inode, next_pgofs) -
4252                                 iomap->offset;
4253                 iomap->type = IOMAP_HOLE;
4254                 iomap->addr = IOMAP_NULL_ADDR;
4255         }
4256
4257         if (map.m_flags & F2FS_MAP_NEW)
4258                 iomap->flags |= IOMAP_F_NEW;
4259         if ((inode->i_state & I_DIRTY_DATASYNC) ||
4260             offset + length > i_size_read(inode))
4261                 iomap->flags |= IOMAP_F_DIRTY;
4262
4263         return 0;
4264 }
4265
4266 const struct iomap_ops f2fs_iomap_ops = {
4267         .iomap_begin    = f2fs_iomap_begin,
4268 };