fs/ntfs3: Fix an NULL dereference bug
[platform/kernel/linux-rpi.git] / fs / f2fs / data.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/data.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/sched/mm.h>
12 #include <linux/mpage.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/blk-crypto.h>
18 #include <linux/swap.h>
19 #include <linux/prefetch.h>
20 #include <linux/uio.h>
21 #include <linux/sched/signal.h>
22 #include <linux/fiemap.h>
23 #include <linux/iomap.h>
24
25 #include "f2fs.h"
26 #include "node.h"
27 #include "segment.h"
28 #include "iostat.h"
29 #include <trace/events/f2fs.h>
30
31 #define NUM_PREALLOC_POST_READ_CTXS     128
32
33 static struct kmem_cache *bio_post_read_ctx_cache;
34 static struct kmem_cache *bio_entry_slab;
35 static mempool_t *bio_post_read_ctx_pool;
36 static struct bio_set f2fs_bioset;
37
38 #define F2FS_BIO_POOL_SIZE      NR_CURSEG_TYPE
39
40 int __init f2fs_init_bioset(void)
41 {
42         return bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
43                                         0, BIOSET_NEED_BVECS);
44 }
45
46 void f2fs_destroy_bioset(void)
47 {
48         bioset_exit(&f2fs_bioset);
49 }
50
51 static bool __is_cp_guaranteed(struct page *page)
52 {
53         struct address_space *mapping = page->mapping;
54         struct inode *inode;
55         struct f2fs_sb_info *sbi;
56
57         if (!mapping)
58                 return false;
59
60         inode = mapping->host;
61         sbi = F2FS_I_SB(inode);
62
63         if (inode->i_ino == F2FS_META_INO(sbi) ||
64                         inode->i_ino == F2FS_NODE_INO(sbi) ||
65                         S_ISDIR(inode->i_mode))
66                 return true;
67
68         if (f2fs_is_compressed_page(page))
69                 return false;
70         if ((S_ISREG(inode->i_mode) && IS_NOQUOTA(inode)) ||
71                         page_private_gcing(page))
72                 return true;
73         return false;
74 }
75
76 static enum count_type __read_io_type(struct page *page)
77 {
78         struct address_space *mapping = page_file_mapping(page);
79
80         if (mapping) {
81                 struct inode *inode = mapping->host;
82                 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
83
84                 if (inode->i_ino == F2FS_META_INO(sbi))
85                         return F2FS_RD_META;
86
87                 if (inode->i_ino == F2FS_NODE_INO(sbi))
88                         return F2FS_RD_NODE;
89         }
90         return F2FS_RD_DATA;
91 }
92
93 /* postprocessing steps for read bios */
94 enum bio_post_read_step {
95 #ifdef CONFIG_FS_ENCRYPTION
96         STEP_DECRYPT    = BIT(0),
97 #else
98         STEP_DECRYPT    = 0,    /* compile out the decryption-related code */
99 #endif
100 #ifdef CONFIG_F2FS_FS_COMPRESSION
101         STEP_DECOMPRESS = BIT(1),
102 #else
103         STEP_DECOMPRESS = 0,    /* compile out the decompression-related code */
104 #endif
105 #ifdef CONFIG_FS_VERITY
106         STEP_VERITY     = BIT(2),
107 #else
108         STEP_VERITY     = 0,    /* compile out the verity-related code */
109 #endif
110 };
111
112 struct bio_post_read_ctx {
113         struct bio *bio;
114         struct f2fs_sb_info *sbi;
115         struct work_struct work;
116         unsigned int enabled_steps;
117         /*
118          * decompression_attempted keeps track of whether
119          * f2fs_end_read_compressed_page() has been called on the pages in the
120          * bio that belong to a compressed cluster yet.
121          */
122         bool decompression_attempted;
123         block_t fs_blkaddr;
124 };
125
126 /*
127  * Update and unlock a bio's pages, and free the bio.
128  *
129  * This marks pages up-to-date only if there was no error in the bio (I/O error,
130  * decryption error, or verity error), as indicated by bio->bi_status.
131  *
132  * "Compressed pages" (pagecache pages backed by a compressed cluster on-disk)
133  * aren't marked up-to-date here, as decompression is done on a per-compression-
134  * cluster basis rather than a per-bio basis.  Instead, we only must do two
135  * things for each compressed page here: call f2fs_end_read_compressed_page()
136  * with failed=true if an error occurred before it would have normally gotten
137  * called (i.e., I/O error or decryption error, but *not* verity error), and
138  * release the bio's reference to the decompress_io_ctx of the page's cluster.
139  */
140 static void f2fs_finish_read_bio(struct bio *bio, bool in_task)
141 {
142         struct bio_vec *bv;
143         struct bvec_iter_all iter_all;
144         struct bio_post_read_ctx *ctx = bio->bi_private;
145
146         bio_for_each_segment_all(bv, bio, iter_all) {
147                 struct page *page = bv->bv_page;
148
149                 if (f2fs_is_compressed_page(page)) {
150                         if (ctx && !ctx->decompression_attempted)
151                                 f2fs_end_read_compressed_page(page, true, 0,
152                                                         in_task);
153                         f2fs_put_page_dic(page, in_task);
154                         continue;
155                 }
156
157                 if (bio->bi_status)
158                         ClearPageUptodate(page);
159                 else
160                         SetPageUptodate(page);
161                 dec_page_count(F2FS_P_SB(page), __read_io_type(page));
162                 unlock_page(page);
163         }
164
165         if (ctx)
166                 mempool_free(ctx, bio_post_read_ctx_pool);
167         bio_put(bio);
168 }
169
170 static void f2fs_verify_bio(struct work_struct *work)
171 {
172         struct bio_post_read_ctx *ctx =
173                 container_of(work, struct bio_post_read_ctx, work);
174         struct bio *bio = ctx->bio;
175         bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS);
176
177         /*
178          * fsverity_verify_bio() may call readahead() again, and while verity
179          * will be disabled for this, decryption and/or decompression may still
180          * be needed, resulting in another bio_post_read_ctx being allocated.
181          * So to prevent deadlocks we need to release the current ctx to the
182          * mempool first.  This assumes that verity is the last post-read step.
183          */
184         mempool_free(ctx, bio_post_read_ctx_pool);
185         bio->bi_private = NULL;
186
187         /*
188          * Verify the bio's pages with fs-verity.  Exclude compressed pages,
189          * as those were handled separately by f2fs_end_read_compressed_page().
190          */
191         if (may_have_compressed_pages) {
192                 struct bio_vec *bv;
193                 struct bvec_iter_all iter_all;
194
195                 bio_for_each_segment_all(bv, bio, iter_all) {
196                         struct page *page = bv->bv_page;
197
198                         if (!f2fs_is_compressed_page(page) &&
199                             !fsverity_verify_page(page)) {
200                                 bio->bi_status = BLK_STS_IOERR;
201                                 break;
202                         }
203                 }
204         } else {
205                 fsverity_verify_bio(bio);
206         }
207
208         f2fs_finish_read_bio(bio, true);
209 }
210
211 /*
212  * If the bio's data needs to be verified with fs-verity, then enqueue the
213  * verity work for the bio.  Otherwise finish the bio now.
214  *
215  * Note that to avoid deadlocks, the verity work can't be done on the
216  * decryption/decompression workqueue.  This is because verifying the data pages
217  * can involve reading verity metadata pages from the file, and these verity
218  * metadata pages may be encrypted and/or compressed.
219  */
220 static void f2fs_verify_and_finish_bio(struct bio *bio, bool in_task)
221 {
222         struct bio_post_read_ctx *ctx = bio->bi_private;
223
224         if (ctx && (ctx->enabled_steps & STEP_VERITY)) {
225                 INIT_WORK(&ctx->work, f2fs_verify_bio);
226                 fsverity_enqueue_verify_work(&ctx->work);
227         } else {
228                 f2fs_finish_read_bio(bio, in_task);
229         }
230 }
231
232 /*
233  * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last
234  * remaining page was read by @ctx->bio.
235  *
236  * Note that a bio may span clusters (even a mix of compressed and uncompressed
237  * clusters) or be for just part of a cluster.  STEP_DECOMPRESS just indicates
238  * that the bio includes at least one compressed page.  The actual decompression
239  * is done on a per-cluster basis, not a per-bio basis.
240  */
241 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx,
242                 bool in_task)
243 {
244         struct bio_vec *bv;
245         struct bvec_iter_all iter_all;
246         bool all_compressed = true;
247         block_t blkaddr = ctx->fs_blkaddr;
248
249         bio_for_each_segment_all(bv, ctx->bio, iter_all) {
250                 struct page *page = bv->bv_page;
251
252                 if (f2fs_is_compressed_page(page))
253                         f2fs_end_read_compressed_page(page, false, blkaddr,
254                                                       in_task);
255                 else
256                         all_compressed = false;
257
258                 blkaddr++;
259         }
260
261         ctx->decompression_attempted = true;
262
263         /*
264          * Optimization: if all the bio's pages are compressed, then scheduling
265          * the per-bio verity work is unnecessary, as verity will be fully
266          * handled at the compression cluster level.
267          */
268         if (all_compressed)
269                 ctx->enabled_steps &= ~STEP_VERITY;
270 }
271
272 static void f2fs_post_read_work(struct work_struct *work)
273 {
274         struct bio_post_read_ctx *ctx =
275                 container_of(work, struct bio_post_read_ctx, work);
276         struct bio *bio = ctx->bio;
277
278         if ((ctx->enabled_steps & STEP_DECRYPT) && !fscrypt_decrypt_bio(bio)) {
279                 f2fs_finish_read_bio(bio, true);
280                 return;
281         }
282
283         if (ctx->enabled_steps & STEP_DECOMPRESS)
284                 f2fs_handle_step_decompress(ctx, true);
285
286         f2fs_verify_and_finish_bio(bio, true);
287 }
288
289 static void f2fs_read_end_io(struct bio *bio)
290 {
291         struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
292         struct bio_post_read_ctx *ctx;
293         bool intask = in_task();
294
295         iostat_update_and_unbind_ctx(bio);
296         ctx = bio->bi_private;
297
298         if (time_to_inject(sbi, FAULT_READ_IO))
299                 bio->bi_status = BLK_STS_IOERR;
300
301         if (bio->bi_status) {
302                 f2fs_finish_read_bio(bio, intask);
303                 return;
304         }
305
306         if (ctx) {
307                 unsigned int enabled_steps = ctx->enabled_steps &
308                                         (STEP_DECRYPT | STEP_DECOMPRESS);
309
310                 /*
311                  * If we have only decompression step between decompression and
312                  * decrypt, we don't need post processing for this.
313                  */
314                 if (enabled_steps == STEP_DECOMPRESS &&
315                                 !f2fs_low_mem_mode(sbi)) {
316                         f2fs_handle_step_decompress(ctx, intask);
317                 } else if (enabled_steps) {
318                         INIT_WORK(&ctx->work, f2fs_post_read_work);
319                         queue_work(ctx->sbi->post_read_wq, &ctx->work);
320                         return;
321                 }
322         }
323
324         f2fs_verify_and_finish_bio(bio, intask);
325 }
326
327 static void f2fs_write_end_io(struct bio *bio)
328 {
329         struct f2fs_sb_info *sbi;
330         struct bio_vec *bvec;
331         struct bvec_iter_all iter_all;
332
333         iostat_update_and_unbind_ctx(bio);
334         sbi = bio->bi_private;
335
336         if (time_to_inject(sbi, FAULT_WRITE_IO))
337                 bio->bi_status = BLK_STS_IOERR;
338
339         bio_for_each_segment_all(bvec, bio, iter_all) {
340                 struct page *page = bvec->bv_page;
341                 enum count_type type = WB_DATA_TYPE(page);
342
343                 if (page_private_dummy(page)) {
344                         clear_page_private_dummy(page);
345                         unlock_page(page);
346                         mempool_free(page, sbi->write_io_dummy);
347
348                         if (unlikely(bio->bi_status))
349                                 f2fs_stop_checkpoint(sbi, true,
350                                                 STOP_CP_REASON_WRITE_FAIL);
351                         continue;
352                 }
353
354                 fscrypt_finalize_bounce_page(&page);
355
356 #ifdef CONFIG_F2FS_FS_COMPRESSION
357                 if (f2fs_is_compressed_page(page)) {
358                         f2fs_compress_write_end_io(bio, page);
359                         continue;
360                 }
361 #endif
362
363                 if (unlikely(bio->bi_status)) {
364                         mapping_set_error(page->mapping, -EIO);
365                         if (type == F2FS_WB_CP_DATA)
366                                 f2fs_stop_checkpoint(sbi, true,
367                                                 STOP_CP_REASON_WRITE_FAIL);
368                 }
369
370                 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
371                                         page->index != nid_of_node(page));
372
373                 dec_page_count(sbi, type);
374                 if (f2fs_in_warm_node_list(sbi, page))
375                         f2fs_del_fsync_node_entry(sbi, page);
376                 clear_page_private_gcing(page);
377                 end_page_writeback(page);
378         }
379         if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
380                                 wq_has_sleeper(&sbi->cp_wait))
381                 wake_up(&sbi->cp_wait);
382
383         bio_put(bio);
384 }
385
386 #ifdef CONFIG_BLK_DEV_ZONED
387 static void f2fs_zone_write_end_io(struct bio *bio)
388 {
389         struct f2fs_bio_info *io = (struct f2fs_bio_info *)bio->bi_private;
390
391         bio->bi_private = io->bi_private;
392         complete(&io->zone_wait);
393         f2fs_write_end_io(bio);
394 }
395 #endif
396
397 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
398                 block_t blk_addr, sector_t *sector)
399 {
400         struct block_device *bdev = sbi->sb->s_bdev;
401         int i;
402
403         if (f2fs_is_multi_device(sbi)) {
404                 for (i = 0; i < sbi->s_ndevs; i++) {
405                         if (FDEV(i).start_blk <= blk_addr &&
406                             FDEV(i).end_blk >= blk_addr) {
407                                 blk_addr -= FDEV(i).start_blk;
408                                 bdev = FDEV(i).bdev;
409                                 break;
410                         }
411                 }
412         }
413
414         if (sector)
415                 *sector = SECTOR_FROM_BLOCK(blk_addr);
416         return bdev;
417 }
418
419 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
420 {
421         int i;
422
423         if (!f2fs_is_multi_device(sbi))
424                 return 0;
425
426         for (i = 0; i < sbi->s_ndevs; i++)
427                 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
428                         return i;
429         return 0;
430 }
431
432 static blk_opf_t f2fs_io_flags(struct f2fs_io_info *fio)
433 {
434         unsigned int temp_mask = GENMASK(NR_TEMP_TYPE - 1, 0);
435         unsigned int fua_flag, meta_flag, io_flag;
436         blk_opf_t op_flags = 0;
437
438         if (fio->op != REQ_OP_WRITE)
439                 return 0;
440         if (fio->type == DATA)
441                 io_flag = fio->sbi->data_io_flag;
442         else if (fio->type == NODE)
443                 io_flag = fio->sbi->node_io_flag;
444         else
445                 return 0;
446
447         fua_flag = io_flag & temp_mask;
448         meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
449
450         /*
451          * data/node io flag bits per temp:
452          *      REQ_META     |      REQ_FUA      |
453          *    5 |    4 |   3 |    2 |    1 |   0 |
454          * Cold | Warm | Hot | Cold | Warm | Hot |
455          */
456         if (BIT(fio->temp) & meta_flag)
457                 op_flags |= REQ_META;
458         if (BIT(fio->temp) & fua_flag)
459                 op_flags |= REQ_FUA;
460         return op_flags;
461 }
462
463 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
464 {
465         struct f2fs_sb_info *sbi = fio->sbi;
466         struct block_device *bdev;
467         sector_t sector;
468         struct bio *bio;
469
470         bdev = f2fs_target_device(sbi, fio->new_blkaddr, &sector);
471         bio = bio_alloc_bioset(bdev, npages,
472                                 fio->op | fio->op_flags | f2fs_io_flags(fio),
473                                 GFP_NOIO, &f2fs_bioset);
474         bio->bi_iter.bi_sector = sector;
475         if (is_read_io(fio->op)) {
476                 bio->bi_end_io = f2fs_read_end_io;
477                 bio->bi_private = NULL;
478         } else {
479                 bio->bi_end_io = f2fs_write_end_io;
480                 bio->bi_private = sbi;
481         }
482         iostat_alloc_and_bind_ctx(sbi, bio, NULL);
483
484         if (fio->io_wbc)
485                 wbc_init_bio(fio->io_wbc, bio);
486
487         return bio;
488 }
489
490 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
491                                   pgoff_t first_idx,
492                                   const struct f2fs_io_info *fio,
493                                   gfp_t gfp_mask)
494 {
495         /*
496          * The f2fs garbage collector sets ->encrypted_page when it wants to
497          * read/write raw data without encryption.
498          */
499         if (!fio || !fio->encrypted_page)
500                 fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
501 }
502
503 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
504                                      pgoff_t next_idx,
505                                      const struct f2fs_io_info *fio)
506 {
507         /*
508          * The f2fs garbage collector sets ->encrypted_page when it wants to
509          * read/write raw data without encryption.
510          */
511         if (fio && fio->encrypted_page)
512                 return !bio_has_crypt_ctx(bio);
513
514         return fscrypt_mergeable_bio(bio, inode, next_idx);
515 }
516
517 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
518                                  enum page_type type)
519 {
520         WARN_ON_ONCE(!is_read_io(bio_op(bio)));
521         trace_f2fs_submit_read_bio(sbi->sb, type, bio);
522
523         iostat_update_submit_ctx(bio, type);
524         submit_bio(bio);
525 }
526
527 static void f2fs_align_write_bio(struct f2fs_sb_info *sbi, struct bio *bio)
528 {
529         unsigned int start =
530                 (bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS) % F2FS_IO_SIZE(sbi);
531
532         if (start == 0)
533                 return;
534
535         /* fill dummy pages */
536         for (; start < F2FS_IO_SIZE(sbi); start++) {
537                 struct page *page =
538                         mempool_alloc(sbi->write_io_dummy,
539                                       GFP_NOIO | __GFP_NOFAIL);
540                 f2fs_bug_on(sbi, !page);
541
542                 lock_page(page);
543
544                 zero_user_segment(page, 0, PAGE_SIZE);
545                 set_page_private_dummy(page);
546
547                 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
548                         f2fs_bug_on(sbi, 1);
549         }
550 }
551
552 static void f2fs_submit_write_bio(struct f2fs_sb_info *sbi, struct bio *bio,
553                                   enum page_type type)
554 {
555         WARN_ON_ONCE(is_read_io(bio_op(bio)));
556
557         if (type == DATA || type == NODE) {
558                 if (f2fs_lfs_mode(sbi) && current->plug)
559                         blk_finish_plug(current->plug);
560
561                 if (F2FS_IO_ALIGNED(sbi)) {
562                         f2fs_align_write_bio(sbi, bio);
563                         /*
564                          * In the NODE case, we lose next block address chain.
565                          * So, we need to do checkpoint in f2fs_sync_file.
566                          */
567                         if (type == NODE)
568                                 set_sbi_flag(sbi, SBI_NEED_CP);
569                 }
570         }
571
572         trace_f2fs_submit_write_bio(sbi->sb, type, bio);
573         iostat_update_submit_ctx(bio, type);
574         submit_bio(bio);
575 }
576
577 static void __submit_merged_bio(struct f2fs_bio_info *io)
578 {
579         struct f2fs_io_info *fio = &io->fio;
580
581         if (!io->bio)
582                 return;
583
584         if (is_read_io(fio->op)) {
585                 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
586                 f2fs_submit_read_bio(io->sbi, io->bio, fio->type);
587         } else {
588                 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
589                 f2fs_submit_write_bio(io->sbi, io->bio, fio->type);
590         }
591         io->bio = NULL;
592 }
593
594 static bool __has_merged_page(struct bio *bio, struct inode *inode,
595                                                 struct page *page, nid_t ino)
596 {
597         struct bio_vec *bvec;
598         struct bvec_iter_all iter_all;
599
600         if (!bio)
601                 return false;
602
603         if (!inode && !page && !ino)
604                 return true;
605
606         bio_for_each_segment_all(bvec, bio, iter_all) {
607                 struct page *target = bvec->bv_page;
608
609                 if (fscrypt_is_bounce_page(target)) {
610                         target = fscrypt_pagecache_page(target);
611                         if (IS_ERR(target))
612                                 continue;
613                 }
614                 if (f2fs_is_compressed_page(target)) {
615                         target = f2fs_compress_control_page(target);
616                         if (IS_ERR(target))
617                                 continue;
618                 }
619
620                 if (inode && inode == target->mapping->host)
621                         return true;
622                 if (page && page == target)
623                         return true;
624                 if (ino && ino == ino_of_node(target))
625                         return true;
626         }
627
628         return false;
629 }
630
631 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi)
632 {
633         int i;
634
635         for (i = 0; i < NR_PAGE_TYPE; i++) {
636                 int n = (i == META) ? 1 : NR_TEMP_TYPE;
637                 int j;
638
639                 sbi->write_io[i] = f2fs_kmalloc(sbi,
640                                 array_size(n, sizeof(struct f2fs_bio_info)),
641                                 GFP_KERNEL);
642                 if (!sbi->write_io[i])
643                         return -ENOMEM;
644
645                 for (j = HOT; j < n; j++) {
646                         init_f2fs_rwsem(&sbi->write_io[i][j].io_rwsem);
647                         sbi->write_io[i][j].sbi = sbi;
648                         sbi->write_io[i][j].bio = NULL;
649                         spin_lock_init(&sbi->write_io[i][j].io_lock);
650                         INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
651                         INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list);
652                         init_f2fs_rwsem(&sbi->write_io[i][j].bio_list_lock);
653 #ifdef CONFIG_BLK_DEV_ZONED
654                         init_completion(&sbi->write_io[i][j].zone_wait);
655                         sbi->write_io[i][j].zone_pending_bio = NULL;
656                         sbi->write_io[i][j].bi_private = NULL;
657 #endif
658                 }
659         }
660
661         return 0;
662 }
663
664 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
665                                 enum page_type type, enum temp_type temp)
666 {
667         enum page_type btype = PAGE_TYPE_OF_BIO(type);
668         struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
669
670         f2fs_down_write(&io->io_rwsem);
671
672         if (!io->bio)
673                 goto unlock_out;
674
675         /* change META to META_FLUSH in the checkpoint procedure */
676         if (type >= META_FLUSH) {
677                 io->fio.type = META_FLUSH;
678                 io->bio->bi_opf |= REQ_META | REQ_PRIO | REQ_SYNC;
679                 if (!test_opt(sbi, NOBARRIER))
680                         io->bio->bi_opf |= REQ_PREFLUSH | REQ_FUA;
681         }
682         __submit_merged_bio(io);
683 unlock_out:
684         f2fs_up_write(&io->io_rwsem);
685 }
686
687 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
688                                 struct inode *inode, struct page *page,
689                                 nid_t ino, enum page_type type, bool force)
690 {
691         enum temp_type temp;
692         bool ret = true;
693
694         for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
695                 if (!force)     {
696                         enum page_type btype = PAGE_TYPE_OF_BIO(type);
697                         struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
698
699                         f2fs_down_read(&io->io_rwsem);
700                         ret = __has_merged_page(io->bio, inode, page, ino);
701                         f2fs_up_read(&io->io_rwsem);
702                 }
703                 if (ret)
704                         __f2fs_submit_merged_write(sbi, type, temp);
705
706                 /* TODO: use HOT temp only for meta pages now. */
707                 if (type >= META)
708                         break;
709         }
710 }
711
712 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
713 {
714         __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
715 }
716
717 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
718                                 struct inode *inode, struct page *page,
719                                 nid_t ino, enum page_type type)
720 {
721         __submit_merged_write_cond(sbi, inode, page, ino, type, false);
722 }
723
724 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
725 {
726         f2fs_submit_merged_write(sbi, DATA);
727         f2fs_submit_merged_write(sbi, NODE);
728         f2fs_submit_merged_write(sbi, META);
729 }
730
731 /*
732  * Fill the locked page with data located in the block address.
733  * A caller needs to unlock the page on failure.
734  */
735 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
736 {
737         struct bio *bio;
738         struct page *page = fio->encrypted_page ?
739                         fio->encrypted_page : fio->page;
740
741         if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
742                         fio->is_por ? META_POR : (__is_meta_io(fio) ?
743                         META_GENERIC : DATA_GENERIC_ENHANCE))) {
744                 f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR);
745                 return -EFSCORRUPTED;
746         }
747
748         trace_f2fs_submit_page_bio(page, fio);
749
750         /* Allocate a new bio */
751         bio = __bio_alloc(fio, 1);
752
753         f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
754                                fio->page->index, fio, GFP_NOIO);
755
756         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
757                 bio_put(bio);
758                 return -EFAULT;
759         }
760
761         if (fio->io_wbc && !is_read_io(fio->op))
762                 wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
763
764         inc_page_count(fio->sbi, is_read_io(fio->op) ?
765                         __read_io_type(page) : WB_DATA_TYPE(fio->page));
766
767         if (is_read_io(bio_op(bio)))
768                 f2fs_submit_read_bio(fio->sbi, bio, fio->type);
769         else
770                 f2fs_submit_write_bio(fio->sbi, bio, fio->type);
771         return 0;
772 }
773
774 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
775                                 block_t last_blkaddr, block_t cur_blkaddr)
776 {
777         if (unlikely(sbi->max_io_bytes &&
778                         bio->bi_iter.bi_size >= sbi->max_io_bytes))
779                 return false;
780         if (last_blkaddr + 1 != cur_blkaddr)
781                 return false;
782         return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL);
783 }
784
785 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
786                                                 struct f2fs_io_info *fio)
787 {
788         if (io->fio.op != fio->op)
789                 return false;
790         return io->fio.op_flags == fio->op_flags;
791 }
792
793 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
794                                         struct f2fs_bio_info *io,
795                                         struct f2fs_io_info *fio,
796                                         block_t last_blkaddr,
797                                         block_t cur_blkaddr)
798 {
799         if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) {
800                 unsigned int filled_blocks =
801                                 F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size);
802                 unsigned int io_size = F2FS_IO_SIZE(sbi);
803                 unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt;
804
805                 /* IOs in bio is aligned and left space of vectors is not enough */
806                 if (!(filled_blocks % io_size) && left_vecs < io_size)
807                         return false;
808         }
809         if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
810                 return false;
811         return io_type_is_mergeable(io, fio);
812 }
813
814 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
815                                 struct page *page, enum temp_type temp)
816 {
817         struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
818         struct bio_entry *be;
819
820         be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL);
821         be->bio = bio;
822         bio_get(bio);
823
824         if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
825                 f2fs_bug_on(sbi, 1);
826
827         f2fs_down_write(&io->bio_list_lock);
828         list_add_tail(&be->list, &io->bio_list);
829         f2fs_up_write(&io->bio_list_lock);
830 }
831
832 static void del_bio_entry(struct bio_entry *be)
833 {
834         list_del(&be->list);
835         kmem_cache_free(bio_entry_slab, be);
836 }
837
838 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
839                                                         struct page *page)
840 {
841         struct f2fs_sb_info *sbi = fio->sbi;
842         enum temp_type temp;
843         bool found = false;
844         int ret = -EAGAIN;
845
846         for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
847                 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
848                 struct list_head *head = &io->bio_list;
849                 struct bio_entry *be;
850
851                 f2fs_down_write(&io->bio_list_lock);
852                 list_for_each_entry(be, head, list) {
853                         if (be->bio != *bio)
854                                 continue;
855
856                         found = true;
857
858                         f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
859                                                             *fio->last_block,
860                                                             fio->new_blkaddr));
861                         if (f2fs_crypt_mergeable_bio(*bio,
862                                         fio->page->mapping->host,
863                                         fio->page->index, fio) &&
864                             bio_add_page(*bio, page, PAGE_SIZE, 0) ==
865                                         PAGE_SIZE) {
866                                 ret = 0;
867                                 break;
868                         }
869
870                         /* page can't be merged into bio; submit the bio */
871                         del_bio_entry(be);
872                         f2fs_submit_write_bio(sbi, *bio, DATA);
873                         break;
874                 }
875                 f2fs_up_write(&io->bio_list_lock);
876         }
877
878         if (ret) {
879                 bio_put(*bio);
880                 *bio = NULL;
881         }
882
883         return ret;
884 }
885
886 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
887                                         struct bio **bio, struct page *page)
888 {
889         enum temp_type temp;
890         bool found = false;
891         struct bio *target = bio ? *bio : NULL;
892
893         f2fs_bug_on(sbi, !target && !page);
894
895         for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
896                 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
897                 struct list_head *head = &io->bio_list;
898                 struct bio_entry *be;
899
900                 if (list_empty(head))
901                         continue;
902
903                 f2fs_down_read(&io->bio_list_lock);
904                 list_for_each_entry(be, head, list) {
905                         if (target)
906                                 found = (target == be->bio);
907                         else
908                                 found = __has_merged_page(be->bio, NULL,
909                                                                 page, 0);
910                         if (found)
911                                 break;
912                 }
913                 f2fs_up_read(&io->bio_list_lock);
914
915                 if (!found)
916                         continue;
917
918                 found = false;
919
920                 f2fs_down_write(&io->bio_list_lock);
921                 list_for_each_entry(be, head, list) {
922                         if (target)
923                                 found = (target == be->bio);
924                         else
925                                 found = __has_merged_page(be->bio, NULL,
926                                                                 page, 0);
927                         if (found) {
928                                 target = be->bio;
929                                 del_bio_entry(be);
930                                 break;
931                         }
932                 }
933                 f2fs_up_write(&io->bio_list_lock);
934         }
935
936         if (found)
937                 f2fs_submit_write_bio(sbi, target, DATA);
938         if (bio && *bio) {
939                 bio_put(*bio);
940                 *bio = NULL;
941         }
942 }
943
944 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
945 {
946         struct bio *bio = *fio->bio;
947         struct page *page = fio->encrypted_page ?
948                         fio->encrypted_page : fio->page;
949
950         if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
951                         __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC)) {
952                 f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR);
953                 return -EFSCORRUPTED;
954         }
955
956         trace_f2fs_submit_page_bio(page, fio);
957
958         if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
959                                                 fio->new_blkaddr))
960                 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
961 alloc_new:
962         if (!bio) {
963                 bio = __bio_alloc(fio, BIO_MAX_VECS);
964                 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
965                                        fio->page->index, fio, GFP_NOIO);
966
967                 add_bio_entry(fio->sbi, bio, page, fio->temp);
968         } else {
969                 if (add_ipu_page(fio, &bio, page))
970                         goto alloc_new;
971         }
972
973         if (fio->io_wbc)
974                 wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
975
976         inc_page_count(fio->sbi, WB_DATA_TYPE(page));
977
978         *fio->last_block = fio->new_blkaddr;
979         *fio->bio = bio;
980
981         return 0;
982 }
983
984 #ifdef CONFIG_BLK_DEV_ZONED
985 static bool is_end_zone_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr)
986 {
987         int devi = 0;
988
989         if (f2fs_is_multi_device(sbi)) {
990                 devi = f2fs_target_device_index(sbi, blkaddr);
991                 if (blkaddr < FDEV(devi).start_blk ||
992                     blkaddr > FDEV(devi).end_blk) {
993                         f2fs_err(sbi, "Invalid block %x", blkaddr);
994                         return false;
995                 }
996                 blkaddr -= FDEV(devi).start_blk;
997         }
998         return bdev_zoned_model(FDEV(devi).bdev) == BLK_ZONED_HM &&
999                 f2fs_blkz_is_seq(sbi, devi, blkaddr) &&
1000                 (blkaddr % sbi->blocks_per_blkz == sbi->blocks_per_blkz - 1);
1001 }
1002 #endif
1003
1004 void f2fs_submit_page_write(struct f2fs_io_info *fio)
1005 {
1006         struct f2fs_sb_info *sbi = fio->sbi;
1007         enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
1008         struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
1009         struct page *bio_page;
1010
1011         f2fs_bug_on(sbi, is_read_io(fio->op));
1012
1013         f2fs_down_write(&io->io_rwsem);
1014
1015 #ifdef CONFIG_BLK_DEV_ZONED
1016         if (f2fs_sb_has_blkzoned(sbi) && btype < META && io->zone_pending_bio) {
1017                 wait_for_completion_io(&io->zone_wait);
1018                 bio_put(io->zone_pending_bio);
1019                 io->zone_pending_bio = NULL;
1020                 io->bi_private = NULL;
1021         }
1022 #endif
1023
1024 next:
1025         if (fio->in_list) {
1026                 spin_lock(&io->io_lock);
1027                 if (list_empty(&io->io_list)) {
1028                         spin_unlock(&io->io_lock);
1029                         goto out;
1030                 }
1031                 fio = list_first_entry(&io->io_list,
1032                                                 struct f2fs_io_info, list);
1033                 list_del(&fio->list);
1034                 spin_unlock(&io->io_lock);
1035         }
1036
1037         verify_fio_blkaddr(fio);
1038
1039         if (fio->encrypted_page)
1040                 bio_page = fio->encrypted_page;
1041         else if (fio->compressed_page)
1042                 bio_page = fio->compressed_page;
1043         else
1044                 bio_page = fio->page;
1045
1046         /* set submitted = true as a return value */
1047         fio->submitted = 1;
1048
1049         inc_page_count(sbi, WB_DATA_TYPE(bio_page));
1050
1051         if (io->bio &&
1052             (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
1053                               fio->new_blkaddr) ||
1054              !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
1055                                        bio_page->index, fio)))
1056                 __submit_merged_bio(io);
1057 alloc_new:
1058         if (io->bio == NULL) {
1059                 if (F2FS_IO_ALIGNED(sbi) &&
1060                                 (fio->type == DATA || fio->type == NODE) &&
1061                                 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
1062                         dec_page_count(sbi, WB_DATA_TYPE(bio_page));
1063                         fio->retry = 1;
1064                         goto skip;
1065                 }
1066                 io->bio = __bio_alloc(fio, BIO_MAX_VECS);
1067                 f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
1068                                        bio_page->index, fio, GFP_NOIO);
1069                 io->fio = *fio;
1070         }
1071
1072         if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
1073                 __submit_merged_bio(io);
1074                 goto alloc_new;
1075         }
1076
1077         if (fio->io_wbc)
1078                 wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
1079
1080         io->last_block_in_bio = fio->new_blkaddr;
1081
1082         trace_f2fs_submit_page_write(fio->page, fio);
1083 skip:
1084         if (fio->in_list)
1085                 goto next;
1086 out:
1087 #ifdef CONFIG_BLK_DEV_ZONED
1088         if (f2fs_sb_has_blkzoned(sbi) && btype < META &&
1089                         is_end_zone_blkaddr(sbi, fio->new_blkaddr)) {
1090                 bio_get(io->bio);
1091                 reinit_completion(&io->zone_wait);
1092                 io->bi_private = io->bio->bi_private;
1093                 io->bio->bi_private = io;
1094                 io->bio->bi_end_io = f2fs_zone_write_end_io;
1095                 io->zone_pending_bio = io->bio;
1096                 __submit_merged_bio(io);
1097         }
1098 #endif
1099         if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1100                                 !f2fs_is_checkpoint_ready(sbi))
1101                 __submit_merged_bio(io);
1102         f2fs_up_write(&io->io_rwsem);
1103 }
1104
1105 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
1106                                       unsigned nr_pages, blk_opf_t op_flag,
1107                                       pgoff_t first_idx, bool for_write)
1108 {
1109         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1110         struct bio *bio;
1111         struct bio_post_read_ctx *ctx = NULL;
1112         unsigned int post_read_steps = 0;
1113         sector_t sector;
1114         struct block_device *bdev = f2fs_target_device(sbi, blkaddr, &sector);
1115
1116         bio = bio_alloc_bioset(bdev, bio_max_segs(nr_pages),
1117                                REQ_OP_READ | op_flag,
1118                                for_write ? GFP_NOIO : GFP_KERNEL, &f2fs_bioset);
1119         if (!bio)
1120                 return ERR_PTR(-ENOMEM);
1121         bio->bi_iter.bi_sector = sector;
1122         f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
1123         bio->bi_end_io = f2fs_read_end_io;
1124
1125         if (fscrypt_inode_uses_fs_layer_crypto(inode))
1126                 post_read_steps |= STEP_DECRYPT;
1127
1128         if (f2fs_need_verity(inode, first_idx))
1129                 post_read_steps |= STEP_VERITY;
1130
1131         /*
1132          * STEP_DECOMPRESS is handled specially, since a compressed file might
1133          * contain both compressed and uncompressed clusters.  We'll allocate a
1134          * bio_post_read_ctx if the file is compressed, but the caller is
1135          * responsible for enabling STEP_DECOMPRESS if it's actually needed.
1136          */
1137
1138         if (post_read_steps || f2fs_compressed_file(inode)) {
1139                 /* Due to the mempool, this never fails. */
1140                 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1141                 ctx->bio = bio;
1142                 ctx->sbi = sbi;
1143                 ctx->enabled_steps = post_read_steps;
1144                 ctx->fs_blkaddr = blkaddr;
1145                 ctx->decompression_attempted = false;
1146                 bio->bi_private = ctx;
1147         }
1148         iostat_alloc_and_bind_ctx(sbi, bio, ctx);
1149
1150         return bio;
1151 }
1152
1153 /* This can handle encryption stuffs */
1154 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
1155                                  block_t blkaddr, blk_opf_t op_flags,
1156                                  bool for_write)
1157 {
1158         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1159         struct bio *bio;
1160
1161         bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1162                                         page->index, for_write);
1163         if (IS_ERR(bio))
1164                 return PTR_ERR(bio);
1165
1166         /* wait for GCed page writeback via META_MAPPING */
1167         f2fs_wait_on_block_writeback(inode, blkaddr);
1168
1169         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1170                 iostat_update_and_unbind_ctx(bio);
1171                 if (bio->bi_private)
1172                         mempool_free(bio->bi_private, bio_post_read_ctx_pool);
1173                 bio_put(bio);
1174                 return -EFAULT;
1175         }
1176         inc_page_count(sbi, F2FS_RD_DATA);
1177         f2fs_update_iostat(sbi, NULL, FS_DATA_READ_IO, F2FS_BLKSIZE);
1178         f2fs_submit_read_bio(sbi, bio, DATA);
1179         return 0;
1180 }
1181
1182 static void __set_data_blkaddr(struct dnode_of_data *dn)
1183 {
1184         struct f2fs_node *rn = F2FS_NODE(dn->node_page);
1185         __le32 *addr_array;
1186         int base = 0;
1187
1188         if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
1189                 base = get_extra_isize(dn->inode);
1190
1191         /* Get physical address of data block */
1192         addr_array = blkaddr_in_node(rn);
1193         addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1194 }
1195
1196 /*
1197  * Lock ordering for the change of data block address:
1198  * ->data_page
1199  *  ->node_page
1200  *    update block addresses in the node page
1201  */
1202 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
1203 {
1204         f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1205         __set_data_blkaddr(dn);
1206         if (set_page_dirty(dn->node_page))
1207                 dn->node_changed = true;
1208 }
1209
1210 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1211 {
1212         dn->data_blkaddr = blkaddr;
1213         f2fs_set_data_blkaddr(dn);
1214         f2fs_update_read_extent_cache(dn);
1215 }
1216
1217 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
1218 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1219 {
1220         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1221         int err;
1222
1223         if (!count)
1224                 return 0;
1225
1226         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1227                 return -EPERM;
1228         if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1229                 return err;
1230
1231         trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1232                                                 dn->ofs_in_node, count);
1233
1234         f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1235
1236         for (; count > 0; dn->ofs_in_node++) {
1237                 block_t blkaddr = f2fs_data_blkaddr(dn);
1238
1239                 if (blkaddr == NULL_ADDR) {
1240                         dn->data_blkaddr = NEW_ADDR;
1241                         __set_data_blkaddr(dn);
1242                         count--;
1243                 }
1244         }
1245
1246         if (set_page_dirty(dn->node_page))
1247                 dn->node_changed = true;
1248         return 0;
1249 }
1250
1251 /* Should keep dn->ofs_in_node unchanged */
1252 int f2fs_reserve_new_block(struct dnode_of_data *dn)
1253 {
1254         unsigned int ofs_in_node = dn->ofs_in_node;
1255         int ret;
1256
1257         ret = f2fs_reserve_new_blocks(dn, 1);
1258         dn->ofs_in_node = ofs_in_node;
1259         return ret;
1260 }
1261
1262 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1263 {
1264         bool need_put = dn->inode_page ? false : true;
1265         int err;
1266
1267         err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1268         if (err)
1269                 return err;
1270
1271         if (dn->data_blkaddr == NULL_ADDR)
1272                 err = f2fs_reserve_new_block(dn);
1273         if (err || need_put)
1274                 f2fs_put_dnode(dn);
1275         return err;
1276 }
1277
1278 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1279                                      blk_opf_t op_flags, bool for_write,
1280                                      pgoff_t *next_pgofs)
1281 {
1282         struct address_space *mapping = inode->i_mapping;
1283         struct dnode_of_data dn;
1284         struct page *page;
1285         int err;
1286
1287         page = f2fs_grab_cache_page(mapping, index, for_write);
1288         if (!page)
1289                 return ERR_PTR(-ENOMEM);
1290
1291         if (f2fs_lookup_read_extent_cache_block(inode, index,
1292                                                 &dn.data_blkaddr)) {
1293                 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1294                                                 DATA_GENERIC_ENHANCE_READ)) {
1295                         err = -EFSCORRUPTED;
1296                         f2fs_handle_error(F2FS_I_SB(inode),
1297                                                 ERROR_INVALID_BLKADDR);
1298                         goto put_err;
1299                 }
1300                 goto got_it;
1301         }
1302
1303         set_new_dnode(&dn, inode, NULL, NULL, 0);
1304         err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1305         if (err) {
1306                 if (err == -ENOENT && next_pgofs)
1307                         *next_pgofs = f2fs_get_next_page_offset(&dn, index);
1308                 goto put_err;
1309         }
1310         f2fs_put_dnode(&dn);
1311
1312         if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1313                 err = -ENOENT;
1314                 if (next_pgofs)
1315                         *next_pgofs = index + 1;
1316                 goto put_err;
1317         }
1318         if (dn.data_blkaddr != NEW_ADDR &&
1319                         !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1320                                                 dn.data_blkaddr,
1321                                                 DATA_GENERIC_ENHANCE)) {
1322                 err = -EFSCORRUPTED;
1323                 f2fs_handle_error(F2FS_I_SB(inode),
1324                                         ERROR_INVALID_BLKADDR);
1325                 goto put_err;
1326         }
1327 got_it:
1328         if (PageUptodate(page)) {
1329                 unlock_page(page);
1330                 return page;
1331         }
1332
1333         /*
1334          * A new dentry page is allocated but not able to be written, since its
1335          * new inode page couldn't be allocated due to -ENOSPC.
1336          * In such the case, its blkaddr can be remained as NEW_ADDR.
1337          * see, f2fs_add_link -> f2fs_get_new_data_page ->
1338          * f2fs_init_inode_metadata.
1339          */
1340         if (dn.data_blkaddr == NEW_ADDR) {
1341                 zero_user_segment(page, 0, PAGE_SIZE);
1342                 if (!PageUptodate(page))
1343                         SetPageUptodate(page);
1344                 unlock_page(page);
1345                 return page;
1346         }
1347
1348         err = f2fs_submit_page_read(inode, page, dn.data_blkaddr,
1349                                                 op_flags, for_write);
1350         if (err)
1351                 goto put_err;
1352         return page;
1353
1354 put_err:
1355         f2fs_put_page(page, 1);
1356         return ERR_PTR(err);
1357 }
1358
1359 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index,
1360                                         pgoff_t *next_pgofs)
1361 {
1362         struct address_space *mapping = inode->i_mapping;
1363         struct page *page;
1364
1365         page = find_get_page(mapping, index);
1366         if (page && PageUptodate(page))
1367                 return page;
1368         f2fs_put_page(page, 0);
1369
1370         page = f2fs_get_read_data_page(inode, index, 0, false, next_pgofs);
1371         if (IS_ERR(page))
1372                 return page;
1373
1374         if (PageUptodate(page))
1375                 return page;
1376
1377         wait_on_page_locked(page);
1378         if (unlikely(!PageUptodate(page))) {
1379                 f2fs_put_page(page, 0);
1380                 return ERR_PTR(-EIO);
1381         }
1382         return page;
1383 }
1384
1385 /*
1386  * If it tries to access a hole, return an error.
1387  * Because, the callers, functions in dir.c and GC, should be able to know
1388  * whether this page exists or not.
1389  */
1390 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1391                                                         bool for_write)
1392 {
1393         struct address_space *mapping = inode->i_mapping;
1394         struct page *page;
1395
1396         page = f2fs_get_read_data_page(inode, index, 0, for_write, NULL);
1397         if (IS_ERR(page))
1398                 return page;
1399
1400         /* wait for read completion */
1401         lock_page(page);
1402         if (unlikely(page->mapping != mapping || !PageUptodate(page))) {
1403                 f2fs_put_page(page, 1);
1404                 return ERR_PTR(-EIO);
1405         }
1406         return page;
1407 }
1408
1409 /*
1410  * Caller ensures that this data page is never allocated.
1411  * A new zero-filled data page is allocated in the page cache.
1412  *
1413  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1414  * f2fs_unlock_op().
1415  * Note that, ipage is set only by make_empty_dir, and if any error occur,
1416  * ipage should be released by this function.
1417  */
1418 struct page *f2fs_get_new_data_page(struct inode *inode,
1419                 struct page *ipage, pgoff_t index, bool new_i_size)
1420 {
1421         struct address_space *mapping = inode->i_mapping;
1422         struct page *page;
1423         struct dnode_of_data dn;
1424         int err;
1425
1426         page = f2fs_grab_cache_page(mapping, index, true);
1427         if (!page) {
1428                 /*
1429                  * before exiting, we should make sure ipage will be released
1430                  * if any error occur.
1431                  */
1432                 f2fs_put_page(ipage, 1);
1433                 return ERR_PTR(-ENOMEM);
1434         }
1435
1436         set_new_dnode(&dn, inode, ipage, NULL, 0);
1437         err = f2fs_reserve_block(&dn, index);
1438         if (err) {
1439                 f2fs_put_page(page, 1);
1440                 return ERR_PTR(err);
1441         }
1442         if (!ipage)
1443                 f2fs_put_dnode(&dn);
1444
1445         if (PageUptodate(page))
1446                 goto got_it;
1447
1448         if (dn.data_blkaddr == NEW_ADDR) {
1449                 zero_user_segment(page, 0, PAGE_SIZE);
1450                 if (!PageUptodate(page))
1451                         SetPageUptodate(page);
1452         } else {
1453                 f2fs_put_page(page, 1);
1454
1455                 /* if ipage exists, blkaddr should be NEW_ADDR */
1456                 f2fs_bug_on(F2FS_I_SB(inode), ipage);
1457                 page = f2fs_get_lock_data_page(inode, index, true);
1458                 if (IS_ERR(page))
1459                         return page;
1460         }
1461 got_it:
1462         if (new_i_size && i_size_read(inode) <
1463                                 ((loff_t)(index + 1) << PAGE_SHIFT))
1464                 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1465         return page;
1466 }
1467
1468 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1469 {
1470         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1471         struct f2fs_summary sum;
1472         struct node_info ni;
1473         block_t old_blkaddr;
1474         blkcnt_t count = 1;
1475         int err;
1476
1477         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1478                 return -EPERM;
1479
1480         err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
1481         if (err)
1482                 return err;
1483
1484         dn->data_blkaddr = f2fs_data_blkaddr(dn);
1485         if (dn->data_blkaddr == NULL_ADDR) {
1486                 err = inc_valid_block_count(sbi, dn->inode, &count);
1487                 if (unlikely(err))
1488                         return err;
1489         }
1490
1491         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1492         old_blkaddr = dn->data_blkaddr;
1493         f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1494                                 &sum, seg_type, NULL);
1495         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
1496                 invalidate_mapping_pages(META_MAPPING(sbi),
1497                                         old_blkaddr, old_blkaddr);
1498                 f2fs_invalidate_compress_page(sbi, old_blkaddr);
1499         }
1500         f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1501         return 0;
1502 }
1503
1504 static void f2fs_map_lock(struct f2fs_sb_info *sbi, int flag)
1505 {
1506         if (flag == F2FS_GET_BLOCK_PRE_AIO)
1507                 f2fs_down_read(&sbi->node_change);
1508         else
1509                 f2fs_lock_op(sbi);
1510 }
1511
1512 static void f2fs_map_unlock(struct f2fs_sb_info *sbi, int flag)
1513 {
1514         if (flag == F2FS_GET_BLOCK_PRE_AIO)
1515                 f2fs_up_read(&sbi->node_change);
1516         else
1517                 f2fs_unlock_op(sbi);
1518 }
1519
1520 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index)
1521 {
1522         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1523         int err = 0;
1524
1525         f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1526         if (!f2fs_lookup_read_extent_cache_block(dn->inode, index,
1527                                                 &dn->data_blkaddr))
1528                 err = f2fs_reserve_block(dn, index);
1529         f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1530
1531         return err;
1532 }
1533
1534 static int f2fs_map_no_dnode(struct inode *inode,
1535                 struct f2fs_map_blocks *map, struct dnode_of_data *dn,
1536                 pgoff_t pgoff)
1537 {
1538         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1539
1540         /*
1541          * There is one exceptional case that read_node_page() may return
1542          * -ENOENT due to filesystem has been shutdown or cp_error, return
1543          * -EIO in that case.
1544          */
1545         if (map->m_may_create &&
1546             (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || f2fs_cp_error(sbi)))
1547                 return -EIO;
1548
1549         if (map->m_next_pgofs)
1550                 *map->m_next_pgofs = f2fs_get_next_page_offset(dn, pgoff);
1551         if (map->m_next_extent)
1552                 *map->m_next_extent = f2fs_get_next_page_offset(dn, pgoff);
1553         return 0;
1554 }
1555
1556 static bool f2fs_map_blocks_cached(struct inode *inode,
1557                 struct f2fs_map_blocks *map, int flag)
1558 {
1559         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1560         unsigned int maxblocks = map->m_len;
1561         pgoff_t pgoff = (pgoff_t)map->m_lblk;
1562         struct extent_info ei = {};
1563
1564         if (!f2fs_lookup_read_extent_cache(inode, pgoff, &ei))
1565                 return false;
1566
1567         map->m_pblk = ei.blk + pgoff - ei.fofs;
1568         map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgoff);
1569         map->m_flags = F2FS_MAP_MAPPED;
1570         if (map->m_next_extent)
1571                 *map->m_next_extent = pgoff + map->m_len;
1572
1573         /* for hardware encryption, but to avoid potential issue in future */
1574         if (flag == F2FS_GET_BLOCK_DIO)
1575                 f2fs_wait_on_block_writeback_range(inode,
1576                                         map->m_pblk, map->m_len);
1577
1578         if (f2fs_allow_multi_device_dio(sbi, flag)) {
1579                 int bidx = f2fs_target_device_index(sbi, map->m_pblk);
1580                 struct f2fs_dev_info *dev = &sbi->devs[bidx];
1581
1582                 map->m_bdev = dev->bdev;
1583                 map->m_pblk -= dev->start_blk;
1584                 map->m_len = min(map->m_len, dev->end_blk + 1 - map->m_pblk);
1585         } else {
1586                 map->m_bdev = inode->i_sb->s_bdev;
1587         }
1588         return true;
1589 }
1590
1591 /*
1592  * f2fs_map_blocks() tries to find or build mapping relationship which
1593  * maps continuous logical blocks to physical blocks, and return such
1594  * info via f2fs_map_blocks structure.
1595  */
1596 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag)
1597 {
1598         unsigned int maxblocks = map->m_len;
1599         struct dnode_of_data dn;
1600         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1601         int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1602         pgoff_t pgofs, end_offset, end;
1603         int err = 0, ofs = 1;
1604         unsigned int ofs_in_node, last_ofs_in_node;
1605         blkcnt_t prealloc;
1606         block_t blkaddr;
1607         unsigned int start_pgofs;
1608         int bidx = 0;
1609         bool is_hole;
1610
1611         if (!maxblocks)
1612                 return 0;
1613
1614         if (!map->m_may_create && f2fs_map_blocks_cached(inode, map, flag))
1615                 goto out;
1616
1617         map->m_bdev = inode->i_sb->s_bdev;
1618         map->m_multidev_dio =
1619                 f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag);
1620
1621         map->m_len = 0;
1622         map->m_flags = 0;
1623
1624         /* it only supports block size == page size */
1625         pgofs = (pgoff_t)map->m_lblk;
1626         end = pgofs + maxblocks;
1627
1628 next_dnode:
1629         if (map->m_may_create)
1630                 f2fs_map_lock(sbi, flag);
1631
1632         /* When reading holes, we need its node page */
1633         set_new_dnode(&dn, inode, NULL, NULL, 0);
1634         err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1635         if (err) {
1636                 if (flag == F2FS_GET_BLOCK_BMAP)
1637                         map->m_pblk = 0;
1638                 if (err == -ENOENT)
1639                         err = f2fs_map_no_dnode(inode, map, &dn, pgofs);
1640                 goto unlock_out;
1641         }
1642
1643         start_pgofs = pgofs;
1644         prealloc = 0;
1645         last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1646         end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1647
1648 next_block:
1649         blkaddr = f2fs_data_blkaddr(&dn);
1650         is_hole = !__is_valid_data_blkaddr(blkaddr);
1651         if (!is_hole &&
1652             !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1653                 err = -EFSCORRUPTED;
1654                 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1655                 goto sync_out;
1656         }
1657
1658         /* use out-place-update for direct IO under LFS mode */
1659         if (map->m_may_create &&
1660             (is_hole || (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO))) {
1661                 if (unlikely(f2fs_cp_error(sbi))) {
1662                         err = -EIO;
1663                         goto sync_out;
1664                 }
1665
1666                 switch (flag) {
1667                 case F2FS_GET_BLOCK_PRE_AIO:
1668                         if (blkaddr == NULL_ADDR) {
1669                                 prealloc++;
1670                                 last_ofs_in_node = dn.ofs_in_node;
1671                         }
1672                         break;
1673                 case F2FS_GET_BLOCK_PRE_DIO:
1674                 case F2FS_GET_BLOCK_DIO:
1675                         err = __allocate_data_block(&dn, map->m_seg_type);
1676                         if (err)
1677                                 goto sync_out;
1678                         if (flag == F2FS_GET_BLOCK_PRE_DIO)
1679                                 file_need_truncate(inode);
1680                         set_inode_flag(inode, FI_APPEND_WRITE);
1681                         break;
1682                 default:
1683                         WARN_ON_ONCE(1);
1684                         err = -EIO;
1685                         goto sync_out;
1686                 }
1687
1688                 blkaddr = dn.data_blkaddr;
1689                 if (is_hole)
1690                         map->m_flags |= F2FS_MAP_NEW;
1691         } else if (is_hole) {
1692                 if (f2fs_compressed_file(inode) &&
1693                     f2fs_sanity_check_cluster(&dn) &&
1694                     (flag != F2FS_GET_BLOCK_FIEMAP ||
1695                      IS_ENABLED(CONFIG_F2FS_CHECK_FS))) {
1696                         err = -EFSCORRUPTED;
1697                         f2fs_handle_error(sbi,
1698                                         ERROR_CORRUPTED_CLUSTER);
1699                         goto sync_out;
1700                 }
1701
1702                 switch (flag) {
1703                 case F2FS_GET_BLOCK_PRECACHE:
1704                         goto sync_out;
1705                 case F2FS_GET_BLOCK_BMAP:
1706                         map->m_pblk = 0;
1707                         goto sync_out;
1708                 case F2FS_GET_BLOCK_FIEMAP:
1709                         if (blkaddr == NULL_ADDR) {
1710                                 if (map->m_next_pgofs)
1711                                         *map->m_next_pgofs = pgofs + 1;
1712                                 goto sync_out;
1713                         }
1714                         break;
1715                 default:
1716                         /* for defragment case */
1717                         if (map->m_next_pgofs)
1718                                 *map->m_next_pgofs = pgofs + 1;
1719                         goto sync_out;
1720                 }
1721         }
1722
1723         if (flag == F2FS_GET_BLOCK_PRE_AIO)
1724                 goto skip;
1725
1726         if (map->m_multidev_dio)
1727                 bidx = f2fs_target_device_index(sbi, blkaddr);
1728
1729         if (map->m_len == 0) {
1730                 /* reserved delalloc block should be mapped for fiemap. */
1731                 if (blkaddr == NEW_ADDR)
1732                         map->m_flags |= F2FS_MAP_DELALLOC;
1733                 map->m_flags |= F2FS_MAP_MAPPED;
1734
1735                 map->m_pblk = blkaddr;
1736                 map->m_len = 1;
1737
1738                 if (map->m_multidev_dio)
1739                         map->m_bdev = FDEV(bidx).bdev;
1740         } else if ((map->m_pblk != NEW_ADDR &&
1741                         blkaddr == (map->m_pblk + ofs)) ||
1742                         (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1743                         flag == F2FS_GET_BLOCK_PRE_DIO) {
1744                 if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev)
1745                         goto sync_out;
1746                 ofs++;
1747                 map->m_len++;
1748         } else {
1749                 goto sync_out;
1750         }
1751
1752 skip:
1753         dn.ofs_in_node++;
1754         pgofs++;
1755
1756         /* preallocate blocks in batch for one dnode page */
1757         if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1758                         (pgofs == end || dn.ofs_in_node == end_offset)) {
1759
1760                 dn.ofs_in_node = ofs_in_node;
1761                 err = f2fs_reserve_new_blocks(&dn, prealloc);
1762                 if (err)
1763                         goto sync_out;
1764
1765                 map->m_len += dn.ofs_in_node - ofs_in_node;
1766                 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1767                         err = -ENOSPC;
1768                         goto sync_out;
1769                 }
1770                 dn.ofs_in_node = end_offset;
1771         }
1772
1773         if (pgofs >= end)
1774                 goto sync_out;
1775         else if (dn.ofs_in_node < end_offset)
1776                 goto next_block;
1777
1778         if (flag == F2FS_GET_BLOCK_PRECACHE) {
1779                 if (map->m_flags & F2FS_MAP_MAPPED) {
1780                         unsigned int ofs = start_pgofs - map->m_lblk;
1781
1782                         f2fs_update_read_extent_cache_range(&dn,
1783                                 start_pgofs, map->m_pblk + ofs,
1784                                 map->m_len - ofs);
1785                 }
1786         }
1787
1788         f2fs_put_dnode(&dn);
1789
1790         if (map->m_may_create) {
1791                 f2fs_map_unlock(sbi, flag);
1792                 f2fs_balance_fs(sbi, dn.node_changed);
1793         }
1794         goto next_dnode;
1795
1796 sync_out:
1797
1798         if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) {
1799                 /*
1800                  * for hardware encryption, but to avoid potential issue
1801                  * in future
1802                  */
1803                 f2fs_wait_on_block_writeback_range(inode,
1804                                                 map->m_pblk, map->m_len);
1805
1806                 if (map->m_multidev_dio) {
1807                         block_t blk_addr = map->m_pblk;
1808
1809                         bidx = f2fs_target_device_index(sbi, map->m_pblk);
1810
1811                         map->m_bdev = FDEV(bidx).bdev;
1812                         map->m_pblk -= FDEV(bidx).start_blk;
1813
1814                         if (map->m_may_create)
1815                                 f2fs_update_device_state(sbi, inode->i_ino,
1816                                                         blk_addr, map->m_len);
1817
1818                         f2fs_bug_on(sbi, blk_addr + map->m_len >
1819                                                 FDEV(bidx).end_blk + 1);
1820                 }
1821         }
1822
1823         if (flag == F2FS_GET_BLOCK_PRECACHE) {
1824                 if (map->m_flags & F2FS_MAP_MAPPED) {
1825                         unsigned int ofs = start_pgofs - map->m_lblk;
1826
1827                         f2fs_update_read_extent_cache_range(&dn,
1828                                 start_pgofs, map->m_pblk + ofs,
1829                                 map->m_len - ofs);
1830                 }
1831                 if (map->m_next_extent)
1832                         *map->m_next_extent = pgofs + 1;
1833         }
1834         f2fs_put_dnode(&dn);
1835 unlock_out:
1836         if (map->m_may_create) {
1837                 f2fs_map_unlock(sbi, flag);
1838                 f2fs_balance_fs(sbi, dn.node_changed);
1839         }
1840 out:
1841         trace_f2fs_map_blocks(inode, map, flag, err);
1842         return err;
1843 }
1844
1845 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1846 {
1847         struct f2fs_map_blocks map;
1848         block_t last_lblk;
1849         int err;
1850
1851         if (pos + len > i_size_read(inode))
1852                 return false;
1853
1854         map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1855         map.m_next_pgofs = NULL;
1856         map.m_next_extent = NULL;
1857         map.m_seg_type = NO_CHECK_TYPE;
1858         map.m_may_create = false;
1859         last_lblk = F2FS_BLK_ALIGN(pos + len);
1860
1861         while (map.m_lblk < last_lblk) {
1862                 map.m_len = last_lblk - map.m_lblk;
1863                 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
1864                 if (err || map.m_len == 0)
1865                         return false;
1866                 map.m_lblk += map.m_len;
1867         }
1868         return true;
1869 }
1870
1871 static inline u64 bytes_to_blks(struct inode *inode, u64 bytes)
1872 {
1873         return (bytes >> inode->i_blkbits);
1874 }
1875
1876 static inline u64 blks_to_bytes(struct inode *inode, u64 blks)
1877 {
1878         return (blks << inode->i_blkbits);
1879 }
1880
1881 static int f2fs_xattr_fiemap(struct inode *inode,
1882                                 struct fiemap_extent_info *fieinfo)
1883 {
1884         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1885         struct page *page;
1886         struct node_info ni;
1887         __u64 phys = 0, len;
1888         __u32 flags;
1889         nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1890         int err = 0;
1891
1892         if (f2fs_has_inline_xattr(inode)) {
1893                 int offset;
1894
1895                 page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1896                                                 inode->i_ino, false);
1897                 if (!page)
1898                         return -ENOMEM;
1899
1900                 err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false);
1901                 if (err) {
1902                         f2fs_put_page(page, 1);
1903                         return err;
1904                 }
1905
1906                 phys = blks_to_bytes(inode, ni.blk_addr);
1907                 offset = offsetof(struct f2fs_inode, i_addr) +
1908                                         sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1909                                         get_inline_xattr_addrs(inode));
1910
1911                 phys += offset;
1912                 len = inline_xattr_size(inode);
1913
1914                 f2fs_put_page(page, 1);
1915
1916                 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1917
1918                 if (!xnid)
1919                         flags |= FIEMAP_EXTENT_LAST;
1920
1921                 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1922                 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1923                 if (err)
1924                         return err;
1925         }
1926
1927         if (xnid) {
1928                 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1929                 if (!page)
1930                         return -ENOMEM;
1931
1932                 err = f2fs_get_node_info(sbi, xnid, &ni, false);
1933                 if (err) {
1934                         f2fs_put_page(page, 1);
1935                         return err;
1936                 }
1937
1938                 phys = blks_to_bytes(inode, ni.blk_addr);
1939                 len = inode->i_sb->s_blocksize;
1940
1941                 f2fs_put_page(page, 1);
1942
1943                 flags = FIEMAP_EXTENT_LAST;
1944         }
1945
1946         if (phys) {
1947                 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1948                 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1949         }
1950
1951         return (err < 0 ? err : 0);
1952 }
1953
1954 static loff_t max_inode_blocks(struct inode *inode)
1955 {
1956         loff_t result = ADDRS_PER_INODE(inode);
1957         loff_t leaf_count = ADDRS_PER_BLOCK(inode);
1958
1959         /* two direct node blocks */
1960         result += (leaf_count * 2);
1961
1962         /* two indirect node blocks */
1963         leaf_count *= NIDS_PER_BLOCK;
1964         result += (leaf_count * 2);
1965
1966         /* one double indirect node block */
1967         leaf_count *= NIDS_PER_BLOCK;
1968         result += leaf_count;
1969
1970         return result;
1971 }
1972
1973 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1974                 u64 start, u64 len)
1975 {
1976         struct f2fs_map_blocks map;
1977         sector_t start_blk, last_blk;
1978         pgoff_t next_pgofs;
1979         u64 logical = 0, phys = 0, size = 0;
1980         u32 flags = 0;
1981         int ret = 0;
1982         bool compr_cluster = false, compr_appended;
1983         unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1984         unsigned int count_in_cluster = 0;
1985         loff_t maxbytes;
1986
1987         if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1988                 ret = f2fs_precache_extents(inode);
1989                 if (ret)
1990                         return ret;
1991         }
1992
1993         ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1994         if (ret)
1995                 return ret;
1996
1997         inode_lock(inode);
1998
1999         maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
2000         if (start > maxbytes) {
2001                 ret = -EFBIG;
2002                 goto out;
2003         }
2004
2005         if (len > maxbytes || (maxbytes - len) < start)
2006                 len = maxbytes - start;
2007
2008         if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
2009                 ret = f2fs_xattr_fiemap(inode, fieinfo);
2010                 goto out;
2011         }
2012
2013         if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
2014                 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
2015                 if (ret != -EAGAIN)
2016                         goto out;
2017         }
2018
2019         if (bytes_to_blks(inode, len) == 0)
2020                 len = blks_to_bytes(inode, 1);
2021
2022         start_blk = bytes_to_blks(inode, start);
2023         last_blk = bytes_to_blks(inode, start + len - 1);
2024
2025 next:
2026         memset(&map, 0, sizeof(map));
2027         map.m_lblk = start_blk;
2028         map.m_len = bytes_to_blks(inode, len);
2029         map.m_next_pgofs = &next_pgofs;
2030         map.m_seg_type = NO_CHECK_TYPE;
2031
2032         if (compr_cluster) {
2033                 map.m_lblk += 1;
2034                 map.m_len = cluster_size - count_in_cluster;
2035         }
2036
2037         ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
2038         if (ret)
2039                 goto out;
2040
2041         /* HOLE */
2042         if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) {
2043                 start_blk = next_pgofs;
2044
2045                 if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode,
2046                                                 max_inode_blocks(inode)))
2047                         goto prep_next;
2048
2049                 flags |= FIEMAP_EXTENT_LAST;
2050         }
2051
2052         compr_appended = false;
2053         /* In a case of compressed cluster, append this to the last extent */
2054         if (compr_cluster && ((map.m_flags & F2FS_MAP_DELALLOC) ||
2055                         !(map.m_flags & F2FS_MAP_FLAGS))) {
2056                 compr_appended = true;
2057                 goto skip_fill;
2058         }
2059
2060         if (size) {
2061                 flags |= FIEMAP_EXTENT_MERGED;
2062                 if (IS_ENCRYPTED(inode))
2063                         flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
2064
2065                 ret = fiemap_fill_next_extent(fieinfo, logical,
2066                                 phys, size, flags);
2067                 trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
2068                 if (ret)
2069                         goto out;
2070                 size = 0;
2071         }
2072
2073         if (start_blk > last_blk)
2074                 goto out;
2075
2076 skip_fill:
2077         if (map.m_pblk == COMPRESS_ADDR) {
2078                 compr_cluster = true;
2079                 count_in_cluster = 1;
2080         } else if (compr_appended) {
2081                 unsigned int appended_blks = cluster_size -
2082                                                 count_in_cluster + 1;
2083                 size += blks_to_bytes(inode, appended_blks);
2084                 start_blk += appended_blks;
2085                 compr_cluster = false;
2086         } else {
2087                 logical = blks_to_bytes(inode, start_blk);
2088                 phys = __is_valid_data_blkaddr(map.m_pblk) ?
2089                         blks_to_bytes(inode, map.m_pblk) : 0;
2090                 size = blks_to_bytes(inode, map.m_len);
2091                 flags = 0;
2092
2093                 if (compr_cluster) {
2094                         flags = FIEMAP_EXTENT_ENCODED;
2095                         count_in_cluster += map.m_len;
2096                         if (count_in_cluster == cluster_size) {
2097                                 compr_cluster = false;
2098                                 size += blks_to_bytes(inode, 1);
2099                         }
2100                 } else if (map.m_flags & F2FS_MAP_DELALLOC) {
2101                         flags = FIEMAP_EXTENT_UNWRITTEN;
2102                 }
2103
2104                 start_blk += bytes_to_blks(inode, size);
2105         }
2106
2107 prep_next:
2108         cond_resched();
2109         if (fatal_signal_pending(current))
2110                 ret = -EINTR;
2111         else
2112                 goto next;
2113 out:
2114         if (ret == 1)
2115                 ret = 0;
2116
2117         inode_unlock(inode);
2118         return ret;
2119 }
2120
2121 static inline loff_t f2fs_readpage_limit(struct inode *inode)
2122 {
2123         if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2124                 return inode->i_sb->s_maxbytes;
2125
2126         return i_size_read(inode);
2127 }
2128
2129 static int f2fs_read_single_page(struct inode *inode, struct page *page,
2130                                         unsigned nr_pages,
2131                                         struct f2fs_map_blocks *map,
2132                                         struct bio **bio_ret,
2133                                         sector_t *last_block_in_bio,
2134                                         bool is_readahead)
2135 {
2136         struct bio *bio = *bio_ret;
2137         const unsigned blocksize = blks_to_bytes(inode, 1);
2138         sector_t block_in_file;
2139         sector_t last_block;
2140         sector_t last_block_in_file;
2141         sector_t block_nr;
2142         int ret = 0;
2143
2144         block_in_file = (sector_t)page_index(page);
2145         last_block = block_in_file + nr_pages;
2146         last_block_in_file = bytes_to_blks(inode,
2147                         f2fs_readpage_limit(inode) + blocksize - 1);
2148         if (last_block > last_block_in_file)
2149                 last_block = last_block_in_file;
2150
2151         /* just zeroing out page which is beyond EOF */
2152         if (block_in_file >= last_block)
2153                 goto zero_out;
2154         /*
2155          * Map blocks using the previous result first.
2156          */
2157         if ((map->m_flags & F2FS_MAP_MAPPED) &&
2158                         block_in_file > map->m_lblk &&
2159                         block_in_file < (map->m_lblk + map->m_len))
2160                 goto got_it;
2161
2162         /*
2163          * Then do more f2fs_map_blocks() calls until we are
2164          * done with this page.
2165          */
2166         map->m_lblk = block_in_file;
2167         map->m_len = last_block - block_in_file;
2168
2169         ret = f2fs_map_blocks(inode, map, F2FS_GET_BLOCK_DEFAULT);
2170         if (ret)
2171                 goto out;
2172 got_it:
2173         if ((map->m_flags & F2FS_MAP_MAPPED)) {
2174                 block_nr = map->m_pblk + block_in_file - map->m_lblk;
2175                 SetPageMappedToDisk(page);
2176
2177                 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2178                                                 DATA_GENERIC_ENHANCE_READ)) {
2179                         ret = -EFSCORRUPTED;
2180                         f2fs_handle_error(F2FS_I_SB(inode),
2181                                                 ERROR_INVALID_BLKADDR);
2182                         goto out;
2183                 }
2184         } else {
2185 zero_out:
2186                 zero_user_segment(page, 0, PAGE_SIZE);
2187                 if (f2fs_need_verity(inode, page->index) &&
2188                     !fsverity_verify_page(page)) {
2189                         ret = -EIO;
2190                         goto out;
2191                 }
2192                 if (!PageUptodate(page))
2193                         SetPageUptodate(page);
2194                 unlock_page(page);
2195                 goto out;
2196         }
2197
2198         /*
2199          * This page will go to BIO.  Do we need to send this
2200          * BIO off first?
2201          */
2202         if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2203                                        *last_block_in_bio, block_nr) ||
2204                     !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2205 submit_and_realloc:
2206                 f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2207                 bio = NULL;
2208         }
2209         if (bio == NULL) {
2210                 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2211                                 is_readahead ? REQ_RAHEAD : 0, page->index,
2212                                 false);
2213                 if (IS_ERR(bio)) {
2214                         ret = PTR_ERR(bio);
2215                         bio = NULL;
2216                         goto out;
2217                 }
2218         }
2219
2220         /*
2221          * If the page is under writeback, we need to wait for
2222          * its completion to see the correct decrypted data.
2223          */
2224         f2fs_wait_on_block_writeback(inode, block_nr);
2225
2226         if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2227                 goto submit_and_realloc;
2228
2229         inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2230         f2fs_update_iostat(F2FS_I_SB(inode), NULL, FS_DATA_READ_IO,
2231                                                         F2FS_BLKSIZE);
2232         *last_block_in_bio = block_nr;
2233 out:
2234         *bio_ret = bio;
2235         return ret;
2236 }
2237
2238 #ifdef CONFIG_F2FS_FS_COMPRESSION
2239 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2240                                 unsigned nr_pages, sector_t *last_block_in_bio,
2241                                 bool is_readahead, bool for_write)
2242 {
2243         struct dnode_of_data dn;
2244         struct inode *inode = cc->inode;
2245         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2246         struct bio *bio = *bio_ret;
2247         unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2248         sector_t last_block_in_file;
2249         const unsigned blocksize = blks_to_bytes(inode, 1);
2250         struct decompress_io_ctx *dic = NULL;
2251         struct extent_info ei = {};
2252         bool from_dnode = true;
2253         int i;
2254         int ret = 0;
2255
2256         f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2257
2258         last_block_in_file = bytes_to_blks(inode,
2259                         f2fs_readpage_limit(inode) + blocksize - 1);
2260
2261         /* get rid of pages beyond EOF */
2262         for (i = 0; i < cc->cluster_size; i++) {
2263                 struct page *page = cc->rpages[i];
2264
2265                 if (!page)
2266                         continue;
2267                 if ((sector_t)page->index >= last_block_in_file) {
2268                         zero_user_segment(page, 0, PAGE_SIZE);
2269                         if (!PageUptodate(page))
2270                                 SetPageUptodate(page);
2271                 } else if (!PageUptodate(page)) {
2272                         continue;
2273                 }
2274                 unlock_page(page);
2275                 if (for_write)
2276                         put_page(page);
2277                 cc->rpages[i] = NULL;
2278                 cc->nr_rpages--;
2279         }
2280
2281         /* we are done since all pages are beyond EOF */
2282         if (f2fs_cluster_is_empty(cc))
2283                 goto out;
2284
2285         if (f2fs_lookup_read_extent_cache(inode, start_idx, &ei))
2286                 from_dnode = false;
2287
2288         if (!from_dnode)
2289                 goto skip_reading_dnode;
2290
2291         set_new_dnode(&dn, inode, NULL, NULL, 0);
2292         ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2293         if (ret)
2294                 goto out;
2295
2296         if (unlikely(f2fs_cp_error(sbi))) {
2297                 ret = -EIO;
2298                 goto out_put_dnode;
2299         }
2300         f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2301
2302 skip_reading_dnode:
2303         for (i = 1; i < cc->cluster_size; i++) {
2304                 block_t blkaddr;
2305
2306                 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2307                                         dn.ofs_in_node + i) :
2308                                         ei.blk + i - 1;
2309
2310                 if (!__is_valid_data_blkaddr(blkaddr))
2311                         break;
2312
2313                 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2314                         ret = -EFAULT;
2315                         goto out_put_dnode;
2316                 }
2317                 cc->nr_cpages++;
2318
2319                 if (!from_dnode && i >= ei.c_len)
2320                         break;
2321         }
2322
2323         /* nothing to decompress */
2324         if (cc->nr_cpages == 0) {
2325                 ret = 0;
2326                 goto out_put_dnode;
2327         }
2328
2329         dic = f2fs_alloc_dic(cc);
2330         if (IS_ERR(dic)) {
2331                 ret = PTR_ERR(dic);
2332                 goto out_put_dnode;
2333         }
2334
2335         for (i = 0; i < cc->nr_cpages; i++) {
2336                 struct page *page = dic->cpages[i];
2337                 block_t blkaddr;
2338                 struct bio_post_read_ctx *ctx;
2339
2340                 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2341                                         dn.ofs_in_node + i + 1) :
2342                                         ei.blk + i;
2343
2344                 f2fs_wait_on_block_writeback(inode, blkaddr);
2345
2346                 if (f2fs_load_compressed_page(sbi, page, blkaddr)) {
2347                         if (atomic_dec_and_test(&dic->remaining_pages)) {
2348                                 f2fs_decompress_cluster(dic, true);
2349                                 break;
2350                         }
2351                         continue;
2352                 }
2353
2354                 if (bio && (!page_is_mergeable(sbi, bio,
2355                                         *last_block_in_bio, blkaddr) ||
2356                     !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2357 submit_and_realloc:
2358                         f2fs_submit_read_bio(sbi, bio, DATA);
2359                         bio = NULL;
2360                 }
2361
2362                 if (!bio) {
2363                         bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2364                                         is_readahead ? REQ_RAHEAD : 0,
2365                                         page->index, for_write);
2366                         if (IS_ERR(bio)) {
2367                                 ret = PTR_ERR(bio);
2368                                 f2fs_decompress_end_io(dic, ret, true);
2369                                 f2fs_put_dnode(&dn);
2370                                 *bio_ret = NULL;
2371                                 return ret;
2372                         }
2373                 }
2374
2375                 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2376                         goto submit_and_realloc;
2377
2378                 ctx = get_post_read_ctx(bio);
2379                 ctx->enabled_steps |= STEP_DECOMPRESS;
2380                 refcount_inc(&dic->refcnt);
2381
2382                 inc_page_count(sbi, F2FS_RD_DATA);
2383                 f2fs_update_iostat(sbi, inode, FS_DATA_READ_IO, F2FS_BLKSIZE);
2384                 *last_block_in_bio = blkaddr;
2385         }
2386
2387         if (from_dnode)
2388                 f2fs_put_dnode(&dn);
2389
2390         *bio_ret = bio;
2391         return 0;
2392
2393 out_put_dnode:
2394         if (from_dnode)
2395                 f2fs_put_dnode(&dn);
2396 out:
2397         for (i = 0; i < cc->cluster_size; i++) {
2398                 if (cc->rpages[i]) {
2399                         ClearPageUptodate(cc->rpages[i]);
2400                         unlock_page(cc->rpages[i]);
2401                 }
2402         }
2403         *bio_ret = bio;
2404         return ret;
2405 }
2406 #endif
2407
2408 /*
2409  * This function was originally taken from fs/mpage.c, and customized for f2fs.
2410  * Major change was from block_size == page_size in f2fs by default.
2411  */
2412 static int f2fs_mpage_readpages(struct inode *inode,
2413                 struct readahead_control *rac, struct page *page)
2414 {
2415         struct bio *bio = NULL;
2416         sector_t last_block_in_bio = 0;
2417         struct f2fs_map_blocks map;
2418 #ifdef CONFIG_F2FS_FS_COMPRESSION
2419         struct compress_ctx cc = {
2420                 .inode = inode,
2421                 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2422                 .cluster_size = F2FS_I(inode)->i_cluster_size,
2423                 .cluster_idx = NULL_CLUSTER,
2424                 .rpages = NULL,
2425                 .cpages = NULL,
2426                 .nr_rpages = 0,
2427                 .nr_cpages = 0,
2428         };
2429         pgoff_t nc_cluster_idx = NULL_CLUSTER;
2430 #endif
2431         unsigned nr_pages = rac ? readahead_count(rac) : 1;
2432         unsigned max_nr_pages = nr_pages;
2433         int ret = 0;
2434
2435         map.m_pblk = 0;
2436         map.m_lblk = 0;
2437         map.m_len = 0;
2438         map.m_flags = 0;
2439         map.m_next_pgofs = NULL;
2440         map.m_next_extent = NULL;
2441         map.m_seg_type = NO_CHECK_TYPE;
2442         map.m_may_create = false;
2443
2444         for (; nr_pages; nr_pages--) {
2445                 if (rac) {
2446                         page = readahead_page(rac);
2447                         prefetchw(&page->flags);
2448                 }
2449
2450 #ifdef CONFIG_F2FS_FS_COMPRESSION
2451                 if (f2fs_compressed_file(inode)) {
2452                         /* there are remained compressed pages, submit them */
2453                         if (!f2fs_cluster_can_merge_page(&cc, page->index)) {
2454                                 ret = f2fs_read_multi_pages(&cc, &bio,
2455                                                         max_nr_pages,
2456                                                         &last_block_in_bio,
2457                                                         rac != NULL, false);
2458                                 f2fs_destroy_compress_ctx(&cc, false);
2459                                 if (ret)
2460                                         goto set_error_page;
2461                         }
2462                         if (cc.cluster_idx == NULL_CLUSTER) {
2463                                 if (nc_cluster_idx ==
2464                                         page->index >> cc.log_cluster_size) {
2465                                         goto read_single_page;
2466                                 }
2467
2468                                 ret = f2fs_is_compressed_cluster(inode, page->index);
2469                                 if (ret < 0)
2470                                         goto set_error_page;
2471                                 else if (!ret) {
2472                                         nc_cluster_idx =
2473                                                 page->index >> cc.log_cluster_size;
2474                                         goto read_single_page;
2475                                 }
2476
2477                                 nc_cluster_idx = NULL_CLUSTER;
2478                         }
2479                         ret = f2fs_init_compress_ctx(&cc);
2480                         if (ret)
2481                                 goto set_error_page;
2482
2483                         f2fs_compress_ctx_add_page(&cc, page);
2484
2485                         goto next_page;
2486                 }
2487 read_single_page:
2488 #endif
2489
2490                 ret = f2fs_read_single_page(inode, page, max_nr_pages, &map,
2491                                         &bio, &last_block_in_bio, rac);
2492                 if (ret) {
2493 #ifdef CONFIG_F2FS_FS_COMPRESSION
2494 set_error_page:
2495 #endif
2496                         zero_user_segment(page, 0, PAGE_SIZE);
2497                         unlock_page(page);
2498                 }
2499 #ifdef CONFIG_F2FS_FS_COMPRESSION
2500 next_page:
2501 #endif
2502                 if (rac)
2503                         put_page(page);
2504
2505 #ifdef CONFIG_F2FS_FS_COMPRESSION
2506                 if (f2fs_compressed_file(inode)) {
2507                         /* last page */
2508                         if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2509                                 ret = f2fs_read_multi_pages(&cc, &bio,
2510                                                         max_nr_pages,
2511                                                         &last_block_in_bio,
2512                                                         rac != NULL, false);
2513                                 f2fs_destroy_compress_ctx(&cc, false);
2514                         }
2515                 }
2516 #endif
2517         }
2518         if (bio)
2519                 f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2520         return ret;
2521 }
2522
2523 static int f2fs_read_data_folio(struct file *file, struct folio *folio)
2524 {
2525         struct page *page = &folio->page;
2526         struct inode *inode = page_file_mapping(page)->host;
2527         int ret = -EAGAIN;
2528
2529         trace_f2fs_readpage(page, DATA);
2530
2531         if (!f2fs_is_compress_backend_ready(inode)) {
2532                 unlock_page(page);
2533                 return -EOPNOTSUPP;
2534         }
2535
2536         /* If the file has inline data, try to read it directly */
2537         if (f2fs_has_inline_data(inode))
2538                 ret = f2fs_read_inline_data(inode, page);
2539         if (ret == -EAGAIN)
2540                 ret = f2fs_mpage_readpages(inode, NULL, page);
2541         return ret;
2542 }
2543
2544 static void f2fs_readahead(struct readahead_control *rac)
2545 {
2546         struct inode *inode = rac->mapping->host;
2547
2548         trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2549
2550         if (!f2fs_is_compress_backend_ready(inode))
2551                 return;
2552
2553         /* If the file has inline data, skip readahead */
2554         if (f2fs_has_inline_data(inode))
2555                 return;
2556
2557         f2fs_mpage_readpages(inode, rac, NULL);
2558 }
2559
2560 int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2561 {
2562         struct inode *inode = fio->page->mapping->host;
2563         struct page *mpage, *page;
2564         gfp_t gfp_flags = GFP_NOFS;
2565
2566         if (!f2fs_encrypted_file(inode))
2567                 return 0;
2568
2569         page = fio->compressed_page ? fio->compressed_page : fio->page;
2570
2571         if (fscrypt_inode_uses_inline_crypto(inode))
2572                 return 0;
2573
2574 retry_encrypt:
2575         fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2576                                         PAGE_SIZE, 0, gfp_flags);
2577         if (IS_ERR(fio->encrypted_page)) {
2578                 /* flush pending IOs and wait for a while in the ENOMEM case */
2579                 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2580                         f2fs_flush_merged_writes(fio->sbi);
2581                         memalloc_retry_wait(GFP_NOFS);
2582                         gfp_flags |= __GFP_NOFAIL;
2583                         goto retry_encrypt;
2584                 }
2585                 return PTR_ERR(fio->encrypted_page);
2586         }
2587
2588         mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2589         if (mpage) {
2590                 if (PageUptodate(mpage))
2591                         memcpy(page_address(mpage),
2592                                 page_address(fio->encrypted_page), PAGE_SIZE);
2593                 f2fs_put_page(mpage, 1);
2594         }
2595         return 0;
2596 }
2597
2598 static inline bool check_inplace_update_policy(struct inode *inode,
2599                                 struct f2fs_io_info *fio)
2600 {
2601         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2602
2603         if (IS_F2FS_IPU_HONOR_OPU_WRITE(sbi) &&
2604             is_inode_flag_set(inode, FI_OPU_WRITE))
2605                 return false;
2606         if (IS_F2FS_IPU_FORCE(sbi))
2607                 return true;
2608         if (IS_F2FS_IPU_SSR(sbi) && f2fs_need_SSR(sbi))
2609                 return true;
2610         if (IS_F2FS_IPU_UTIL(sbi) && utilization(sbi) > SM_I(sbi)->min_ipu_util)
2611                 return true;
2612         if (IS_F2FS_IPU_SSR_UTIL(sbi) && f2fs_need_SSR(sbi) &&
2613             utilization(sbi) > SM_I(sbi)->min_ipu_util)
2614                 return true;
2615
2616         /*
2617          * IPU for rewrite async pages
2618          */
2619         if (IS_F2FS_IPU_ASYNC(sbi) && fio && fio->op == REQ_OP_WRITE &&
2620             !(fio->op_flags & REQ_SYNC) && !IS_ENCRYPTED(inode))
2621                 return true;
2622
2623         /* this is only set during fdatasync */
2624         if (IS_F2FS_IPU_FSYNC(sbi) && is_inode_flag_set(inode, FI_NEED_IPU))
2625                 return true;
2626
2627         if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2628                         !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2629                 return true;
2630
2631         return false;
2632 }
2633
2634 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2635 {
2636         /* swap file is migrating in aligned write mode */
2637         if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2638                 return false;
2639
2640         if (f2fs_is_pinned_file(inode))
2641                 return true;
2642
2643         /* if this is cold file, we should overwrite to avoid fragmentation */
2644         if (file_is_cold(inode) && !is_inode_flag_set(inode, FI_OPU_WRITE))
2645                 return true;
2646
2647         return check_inplace_update_policy(inode, fio);
2648 }
2649
2650 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2651 {
2652         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2653
2654         /* The below cases were checked when setting it. */
2655         if (f2fs_is_pinned_file(inode))
2656                 return false;
2657         if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK))
2658                 return true;
2659         if (f2fs_lfs_mode(sbi))
2660                 return true;
2661         if (S_ISDIR(inode->i_mode))
2662                 return true;
2663         if (IS_NOQUOTA(inode))
2664                 return true;
2665         if (f2fs_is_atomic_file(inode))
2666                 return true;
2667
2668         /* swap file is migrating in aligned write mode */
2669         if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2670                 return true;
2671
2672         if (is_inode_flag_set(inode, FI_OPU_WRITE))
2673                 return true;
2674
2675         if (fio) {
2676                 if (page_private_gcing(fio->page))
2677                         return true;
2678                 if (page_private_dummy(fio->page))
2679                         return true;
2680                 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2681                         f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2682                         return true;
2683         }
2684         return false;
2685 }
2686
2687 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2688 {
2689         struct inode *inode = fio->page->mapping->host;
2690
2691         if (f2fs_should_update_outplace(inode, fio))
2692                 return false;
2693
2694         return f2fs_should_update_inplace(inode, fio);
2695 }
2696
2697 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2698 {
2699         struct page *page = fio->page;
2700         struct inode *inode = page->mapping->host;
2701         struct dnode_of_data dn;
2702         struct node_info ni;
2703         bool ipu_force = false;
2704         int err = 0;
2705
2706         /* Use COW inode to make dnode_of_data for atomic write */
2707         if (f2fs_is_atomic_file(inode))
2708                 set_new_dnode(&dn, F2FS_I(inode)->cow_inode, NULL, NULL, 0);
2709         else
2710                 set_new_dnode(&dn, inode, NULL, NULL, 0);
2711
2712         if (need_inplace_update(fio) &&
2713             f2fs_lookup_read_extent_cache_block(inode, page->index,
2714                                                 &fio->old_blkaddr)) {
2715                 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2716                                                 DATA_GENERIC_ENHANCE)) {
2717                         f2fs_handle_error(fio->sbi,
2718                                                 ERROR_INVALID_BLKADDR);
2719                         return -EFSCORRUPTED;
2720                 }
2721
2722                 ipu_force = true;
2723                 fio->need_lock = LOCK_DONE;
2724                 goto got_it;
2725         }
2726
2727         /* Deadlock due to between page->lock and f2fs_lock_op */
2728         if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2729                 return -EAGAIN;
2730
2731         err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2732         if (err)
2733                 goto out;
2734
2735         fio->old_blkaddr = dn.data_blkaddr;
2736
2737         /* This page is already truncated */
2738         if (fio->old_blkaddr == NULL_ADDR) {
2739                 ClearPageUptodate(page);
2740                 clear_page_private_gcing(page);
2741                 goto out_writepage;
2742         }
2743 got_it:
2744         if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2745                 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2746                                                 DATA_GENERIC_ENHANCE)) {
2747                 err = -EFSCORRUPTED;
2748                 f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR);
2749                 goto out_writepage;
2750         }
2751
2752         /* wait for GCed page writeback via META_MAPPING */
2753         if (fio->post_read)
2754                 f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2755
2756         /*
2757          * If current allocation needs SSR,
2758          * it had better in-place writes for updated data.
2759          */
2760         if (ipu_force ||
2761                 (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2762                                         need_inplace_update(fio))) {
2763                 err = f2fs_encrypt_one_page(fio);
2764                 if (err)
2765                         goto out_writepage;
2766
2767                 set_page_writeback(page);
2768                 f2fs_put_dnode(&dn);
2769                 if (fio->need_lock == LOCK_REQ)
2770                         f2fs_unlock_op(fio->sbi);
2771                 err = f2fs_inplace_write_data(fio);
2772                 if (err) {
2773                         if (fscrypt_inode_uses_fs_layer_crypto(inode))
2774                                 fscrypt_finalize_bounce_page(&fio->encrypted_page);
2775                         if (PageWriteback(page))
2776                                 end_page_writeback(page);
2777                 } else {
2778                         set_inode_flag(inode, FI_UPDATE_WRITE);
2779                 }
2780                 trace_f2fs_do_write_data_page(fio->page, IPU);
2781                 return err;
2782         }
2783
2784         if (fio->need_lock == LOCK_RETRY) {
2785                 if (!f2fs_trylock_op(fio->sbi)) {
2786                         err = -EAGAIN;
2787                         goto out_writepage;
2788                 }
2789                 fio->need_lock = LOCK_REQ;
2790         }
2791
2792         err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false);
2793         if (err)
2794                 goto out_writepage;
2795
2796         fio->version = ni.version;
2797
2798         err = f2fs_encrypt_one_page(fio);
2799         if (err)
2800                 goto out_writepage;
2801
2802         set_page_writeback(page);
2803
2804         if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2805                 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2806
2807         /* LFS mode write path */
2808         f2fs_outplace_write_data(&dn, fio);
2809         trace_f2fs_do_write_data_page(page, OPU);
2810         set_inode_flag(inode, FI_APPEND_WRITE);
2811         if (page->index == 0)
2812                 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
2813 out_writepage:
2814         f2fs_put_dnode(&dn);
2815 out:
2816         if (fio->need_lock == LOCK_REQ)
2817                 f2fs_unlock_op(fio->sbi);
2818         return err;
2819 }
2820
2821 int f2fs_write_single_data_page(struct page *page, int *submitted,
2822                                 struct bio **bio,
2823                                 sector_t *last_block,
2824                                 struct writeback_control *wbc,
2825                                 enum iostat_type io_type,
2826                                 int compr_blocks,
2827                                 bool allow_balance)
2828 {
2829         struct inode *inode = page->mapping->host;
2830         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2831         loff_t i_size = i_size_read(inode);
2832         const pgoff_t end_index = ((unsigned long long)i_size)
2833                                                         >> PAGE_SHIFT;
2834         loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2835         unsigned offset = 0;
2836         bool need_balance_fs = false;
2837         bool quota_inode = IS_NOQUOTA(inode);
2838         int err = 0;
2839         struct f2fs_io_info fio = {
2840                 .sbi = sbi,
2841                 .ino = inode->i_ino,
2842                 .type = DATA,
2843                 .op = REQ_OP_WRITE,
2844                 .op_flags = wbc_to_write_flags(wbc),
2845                 .old_blkaddr = NULL_ADDR,
2846                 .page = page,
2847                 .encrypted_page = NULL,
2848                 .submitted = 0,
2849                 .compr_blocks = compr_blocks,
2850                 .need_lock = LOCK_RETRY,
2851                 .post_read = f2fs_post_read_required(inode) ? 1 : 0,
2852                 .io_type = io_type,
2853                 .io_wbc = wbc,
2854                 .bio = bio,
2855                 .last_block = last_block,
2856         };
2857
2858         trace_f2fs_writepage(page, DATA);
2859
2860         /* we should bypass data pages to proceed the kworker jobs */
2861         if (unlikely(f2fs_cp_error(sbi))) {
2862                 mapping_set_error(page->mapping, -EIO);
2863                 /*
2864                  * don't drop any dirty dentry pages for keeping lastest
2865                  * directory structure.
2866                  */
2867                 if (S_ISDIR(inode->i_mode) &&
2868                                 !is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2869                         goto redirty_out;
2870
2871                 /* keep data pages in remount-ro mode */
2872                 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY)
2873                         goto redirty_out;
2874                 goto out;
2875         }
2876
2877         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2878                 goto redirty_out;
2879
2880         if (page->index < end_index ||
2881                         f2fs_verity_in_progress(inode) ||
2882                         compr_blocks)
2883                 goto write;
2884
2885         /*
2886          * If the offset is out-of-range of file size,
2887          * this page does not have to be written to disk.
2888          */
2889         offset = i_size & (PAGE_SIZE - 1);
2890         if ((page->index >= end_index + 1) || !offset)
2891                 goto out;
2892
2893         zero_user_segment(page, offset, PAGE_SIZE);
2894 write:
2895         if (f2fs_is_drop_cache(inode))
2896                 goto out;
2897
2898         /* Dentry/quota blocks are controlled by checkpoint */
2899         if (S_ISDIR(inode->i_mode) || quota_inode) {
2900                 /*
2901                  * We need to wait for node_write to avoid block allocation during
2902                  * checkpoint. This can only happen to quota writes which can cause
2903                  * the below discard race condition.
2904                  */
2905                 if (quota_inode)
2906                         f2fs_down_read(&sbi->node_write);
2907
2908                 fio.need_lock = LOCK_DONE;
2909                 err = f2fs_do_write_data_page(&fio);
2910
2911                 if (quota_inode)
2912                         f2fs_up_read(&sbi->node_write);
2913
2914                 goto done;
2915         }
2916
2917         if (!wbc->for_reclaim)
2918                 need_balance_fs = true;
2919         else if (has_not_enough_free_secs(sbi, 0, 0))
2920                 goto redirty_out;
2921         else
2922                 set_inode_flag(inode, FI_HOT_DATA);
2923
2924         err = -EAGAIN;
2925         if (f2fs_has_inline_data(inode)) {
2926                 err = f2fs_write_inline_data(inode, page);
2927                 if (!err)
2928                         goto out;
2929         }
2930
2931         if (err == -EAGAIN) {
2932                 err = f2fs_do_write_data_page(&fio);
2933                 if (err == -EAGAIN) {
2934                         fio.need_lock = LOCK_REQ;
2935                         err = f2fs_do_write_data_page(&fio);
2936                 }
2937         }
2938
2939         if (err) {
2940                 file_set_keep_isize(inode);
2941         } else {
2942                 spin_lock(&F2FS_I(inode)->i_size_lock);
2943                 if (F2FS_I(inode)->last_disk_size < psize)
2944                         F2FS_I(inode)->last_disk_size = psize;
2945                 spin_unlock(&F2FS_I(inode)->i_size_lock);
2946         }
2947
2948 done:
2949         if (err && err != -ENOENT)
2950                 goto redirty_out;
2951
2952 out:
2953         inode_dec_dirty_pages(inode);
2954         if (err) {
2955                 ClearPageUptodate(page);
2956                 clear_page_private_gcing(page);
2957         }
2958
2959         if (wbc->for_reclaim) {
2960                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2961                 clear_inode_flag(inode, FI_HOT_DATA);
2962                 f2fs_remove_dirty_inode(inode);
2963                 submitted = NULL;
2964         }
2965         unlock_page(page);
2966         if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2967                         !F2FS_I(inode)->wb_task && allow_balance)
2968                 f2fs_balance_fs(sbi, need_balance_fs);
2969
2970         if (unlikely(f2fs_cp_error(sbi))) {
2971                 f2fs_submit_merged_write(sbi, DATA);
2972                 if (bio && *bio)
2973                         f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2974                 submitted = NULL;
2975         }
2976
2977         if (submitted)
2978                 *submitted = fio.submitted;
2979
2980         return 0;
2981
2982 redirty_out:
2983         redirty_page_for_writepage(wbc, page);
2984         /*
2985          * pageout() in MM translates EAGAIN, so calls handle_write_error()
2986          * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2987          * file_write_and_wait_range() will see EIO error, which is critical
2988          * to return value of fsync() followed by atomic_write failure to user.
2989          */
2990         if (!err || wbc->for_reclaim)
2991                 return AOP_WRITEPAGE_ACTIVATE;
2992         unlock_page(page);
2993         return err;
2994 }
2995
2996 static int f2fs_write_data_page(struct page *page,
2997                                         struct writeback_control *wbc)
2998 {
2999 #ifdef CONFIG_F2FS_FS_COMPRESSION
3000         struct inode *inode = page->mapping->host;
3001
3002         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
3003                 goto out;
3004
3005         if (f2fs_compressed_file(inode)) {
3006                 if (f2fs_is_compressed_cluster(inode, page->index)) {
3007                         redirty_page_for_writepage(wbc, page);
3008                         return AOP_WRITEPAGE_ACTIVATE;
3009                 }
3010         }
3011 out:
3012 #endif
3013
3014         return f2fs_write_single_data_page(page, NULL, NULL, NULL,
3015                                                 wbc, FS_DATA_IO, 0, true);
3016 }
3017
3018 /*
3019  * This function was copied from write_cache_pages from mm/page-writeback.c.
3020  * The major change is making write step of cold data page separately from
3021  * warm/hot data page.
3022  */
3023 static int f2fs_write_cache_pages(struct address_space *mapping,
3024                                         struct writeback_control *wbc,
3025                                         enum iostat_type io_type)
3026 {
3027         int ret = 0;
3028         int done = 0, retry = 0;
3029         struct page *pages_local[F2FS_ONSTACK_PAGES];
3030         struct page **pages = pages_local;
3031         struct folio_batch fbatch;
3032         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
3033         struct bio *bio = NULL;
3034         sector_t last_block;
3035 #ifdef CONFIG_F2FS_FS_COMPRESSION
3036         struct inode *inode = mapping->host;
3037         struct compress_ctx cc = {
3038                 .inode = inode,
3039                 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
3040                 .cluster_size = F2FS_I(inode)->i_cluster_size,
3041                 .cluster_idx = NULL_CLUSTER,
3042                 .rpages = NULL,
3043                 .nr_rpages = 0,
3044                 .cpages = NULL,
3045                 .valid_nr_cpages = 0,
3046                 .rbuf = NULL,
3047                 .cbuf = NULL,
3048                 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
3049                 .private = NULL,
3050         };
3051 #endif
3052         int nr_folios, p, idx;
3053         int nr_pages;
3054         unsigned int max_pages = F2FS_ONSTACK_PAGES;
3055         pgoff_t index;
3056         pgoff_t end;            /* Inclusive */
3057         pgoff_t done_index;
3058         int range_whole = 0;
3059         xa_mark_t tag;
3060         int nwritten = 0;
3061         int submitted = 0;
3062         int i;
3063
3064 #ifdef CONFIG_F2FS_FS_COMPRESSION
3065         if (f2fs_compressed_file(inode) &&
3066                 1 << cc.log_cluster_size > F2FS_ONSTACK_PAGES) {
3067                 pages = f2fs_kzalloc(sbi, sizeof(struct page *) <<
3068                                 cc.log_cluster_size, GFP_NOFS | __GFP_NOFAIL);
3069                 max_pages = 1 << cc.log_cluster_size;
3070         }
3071 #endif
3072
3073         folio_batch_init(&fbatch);
3074
3075         if (get_dirty_pages(mapping->host) <=
3076                                 SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
3077                 set_inode_flag(mapping->host, FI_HOT_DATA);
3078         else
3079                 clear_inode_flag(mapping->host, FI_HOT_DATA);
3080
3081         if (wbc->range_cyclic) {
3082                 index = mapping->writeback_index; /* prev offset */
3083                 end = -1;
3084         } else {
3085                 index = wbc->range_start >> PAGE_SHIFT;
3086                 end = wbc->range_end >> PAGE_SHIFT;
3087                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3088                         range_whole = 1;
3089         }
3090         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3091                 tag = PAGECACHE_TAG_TOWRITE;
3092         else
3093                 tag = PAGECACHE_TAG_DIRTY;
3094 retry:
3095         retry = 0;
3096         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3097                 tag_pages_for_writeback(mapping, index, end);
3098         done_index = index;
3099         while (!done && !retry && (index <= end)) {
3100                 nr_pages = 0;
3101 again:
3102                 nr_folios = filemap_get_folios_tag(mapping, &index, end,
3103                                 tag, &fbatch);
3104                 if (nr_folios == 0) {
3105                         if (nr_pages)
3106                                 goto write;
3107                         break;
3108                 }
3109
3110                 for (i = 0; i < nr_folios; i++) {
3111                         struct folio *folio = fbatch.folios[i];
3112
3113                         idx = 0;
3114                         p = folio_nr_pages(folio);
3115 add_more:
3116                         pages[nr_pages] = folio_page(folio, idx);
3117                         folio_get(folio);
3118                         if (++nr_pages == max_pages) {
3119                                 index = folio->index + idx + 1;
3120                                 folio_batch_release(&fbatch);
3121                                 goto write;
3122                         }
3123                         if (++idx < p)
3124                                 goto add_more;
3125                 }
3126                 folio_batch_release(&fbatch);
3127                 goto again;
3128 write:
3129                 for (i = 0; i < nr_pages; i++) {
3130                         struct page *page = pages[i];
3131                         struct folio *folio = page_folio(page);
3132                         bool need_readd;
3133 readd:
3134                         need_readd = false;
3135 #ifdef CONFIG_F2FS_FS_COMPRESSION
3136                         if (f2fs_compressed_file(inode)) {
3137                                 void *fsdata = NULL;
3138                                 struct page *pagep;
3139                                 int ret2;
3140
3141                                 ret = f2fs_init_compress_ctx(&cc);
3142                                 if (ret) {
3143                                         done = 1;
3144                                         break;
3145                                 }
3146
3147                                 if (!f2fs_cluster_can_merge_page(&cc,
3148                                                                 folio->index)) {
3149                                         ret = f2fs_write_multi_pages(&cc,
3150                                                 &submitted, wbc, io_type);
3151                                         if (!ret)
3152                                                 need_readd = true;
3153                                         goto result;
3154                                 }
3155
3156                                 if (unlikely(f2fs_cp_error(sbi)))
3157                                         goto lock_folio;
3158
3159                                 if (!f2fs_cluster_is_empty(&cc))
3160                                         goto lock_folio;
3161
3162                                 if (f2fs_all_cluster_page_ready(&cc,
3163                                         pages, i, nr_pages, true))
3164                                         goto lock_folio;
3165
3166                                 ret2 = f2fs_prepare_compress_overwrite(
3167                                                         inode, &pagep,
3168                                                         folio->index, &fsdata);
3169                                 if (ret2 < 0) {
3170                                         ret = ret2;
3171                                         done = 1;
3172                                         break;
3173                                 } else if (ret2 &&
3174                                         (!f2fs_compress_write_end(inode,
3175                                                 fsdata, folio->index, 1) ||
3176                                          !f2fs_all_cluster_page_ready(&cc,
3177                                                 pages, i, nr_pages,
3178                                                 false))) {
3179                                         retry = 1;
3180                                         break;
3181                                 }
3182                         }
3183 #endif
3184                         /* give a priority to WB_SYNC threads */
3185                         if (atomic_read(&sbi->wb_sync_req[DATA]) &&
3186                                         wbc->sync_mode == WB_SYNC_NONE) {
3187                                 done = 1;
3188                                 break;
3189                         }
3190 #ifdef CONFIG_F2FS_FS_COMPRESSION
3191 lock_folio:
3192 #endif
3193                         done_index = folio->index;
3194 retry_write:
3195                         folio_lock(folio);
3196
3197                         if (unlikely(folio->mapping != mapping)) {
3198 continue_unlock:
3199                                 folio_unlock(folio);
3200                                 continue;
3201                         }
3202
3203                         if (!folio_test_dirty(folio)) {
3204                                 /* someone wrote it for us */
3205                                 goto continue_unlock;
3206                         }
3207
3208                         if (folio_test_writeback(folio)) {
3209                                 if (wbc->sync_mode == WB_SYNC_NONE)
3210                                         goto continue_unlock;
3211                                 f2fs_wait_on_page_writeback(&folio->page, DATA, true, true);
3212                         }
3213
3214                         if (!folio_clear_dirty_for_io(folio))
3215                                 goto continue_unlock;
3216
3217 #ifdef CONFIG_F2FS_FS_COMPRESSION
3218                         if (f2fs_compressed_file(inode)) {
3219                                 folio_get(folio);
3220                                 f2fs_compress_ctx_add_page(&cc, &folio->page);
3221                                 continue;
3222                         }
3223 #endif
3224                         ret = f2fs_write_single_data_page(&folio->page,
3225                                         &submitted, &bio, &last_block,
3226                                         wbc, io_type, 0, true);
3227                         if (ret == AOP_WRITEPAGE_ACTIVATE)
3228                                 folio_unlock(folio);
3229 #ifdef CONFIG_F2FS_FS_COMPRESSION
3230 result:
3231 #endif
3232                         nwritten += submitted;
3233                         wbc->nr_to_write -= submitted;
3234
3235                         if (unlikely(ret)) {
3236                                 /*
3237                                  * keep nr_to_write, since vfs uses this to
3238                                  * get # of written pages.
3239                                  */
3240                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
3241                                         ret = 0;
3242                                         goto next;
3243                                 } else if (ret == -EAGAIN) {
3244                                         ret = 0;
3245                                         if (wbc->sync_mode == WB_SYNC_ALL) {
3246                                                 f2fs_io_schedule_timeout(
3247                                                         DEFAULT_IO_TIMEOUT);
3248                                                 goto retry_write;
3249                                         }
3250                                         goto next;
3251                                 }
3252                                 done_index = folio_next_index(folio);
3253                                 done = 1;
3254                                 break;
3255                         }
3256
3257                         if (wbc->nr_to_write <= 0 &&
3258                                         wbc->sync_mode == WB_SYNC_NONE) {
3259                                 done = 1;
3260                                 break;
3261                         }
3262 next:
3263                         if (need_readd)
3264                                 goto readd;
3265                 }
3266                 release_pages(pages, nr_pages);
3267                 cond_resched();
3268         }
3269 #ifdef CONFIG_F2FS_FS_COMPRESSION
3270         /* flush remained pages in compress cluster */
3271         if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3272                 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3273                 nwritten += submitted;
3274                 wbc->nr_to_write -= submitted;
3275                 if (ret) {
3276                         done = 1;
3277                         retry = 0;
3278                 }
3279         }
3280         if (f2fs_compressed_file(inode))
3281                 f2fs_destroy_compress_ctx(&cc, false);
3282 #endif
3283         if (retry) {
3284                 index = 0;
3285                 end = -1;
3286                 goto retry;
3287         }
3288         if (wbc->range_cyclic && !done)
3289                 done_index = 0;
3290         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3291                 mapping->writeback_index = done_index;
3292
3293         if (nwritten)
3294                 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3295                                                                 NULL, 0, DATA);
3296         /* submit cached bio of IPU write */
3297         if (bio)
3298                 f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3299
3300 #ifdef CONFIG_F2FS_FS_COMPRESSION
3301         if (pages != pages_local)
3302                 kfree(pages);
3303 #endif
3304
3305         return ret;
3306 }
3307
3308 static inline bool __should_serialize_io(struct inode *inode,
3309                                         struct writeback_control *wbc)
3310 {
3311         /* to avoid deadlock in path of data flush */
3312         if (F2FS_I(inode)->wb_task)
3313                 return false;
3314
3315         if (!S_ISREG(inode->i_mode))
3316                 return false;
3317         if (IS_NOQUOTA(inode))
3318                 return false;
3319
3320         if (f2fs_need_compress_data(inode))
3321                 return true;
3322         if (wbc->sync_mode != WB_SYNC_ALL)
3323                 return true;
3324         if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3325                 return true;
3326         return false;
3327 }
3328
3329 static int __f2fs_write_data_pages(struct address_space *mapping,
3330                                                 struct writeback_control *wbc,
3331                                                 enum iostat_type io_type)
3332 {
3333         struct inode *inode = mapping->host;
3334         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3335         struct blk_plug plug;
3336         int ret;
3337         bool locked = false;
3338
3339         /* deal with chardevs and other special file */
3340         if (!mapping->a_ops->writepage)
3341                 return 0;
3342
3343         /* skip writing if there is no dirty page in this inode */
3344         if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3345                 return 0;
3346
3347         /* during POR, we don't need to trigger writepage at all. */
3348         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3349                 goto skip_write;
3350
3351         if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3352                         wbc->sync_mode == WB_SYNC_NONE &&
3353                         get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3354                         f2fs_available_free_memory(sbi, DIRTY_DENTS))
3355                 goto skip_write;
3356
3357         /* skip writing in file defragment preparing stage */
3358         if (is_inode_flag_set(inode, FI_SKIP_WRITES))
3359                 goto skip_write;
3360
3361         trace_f2fs_writepages(mapping->host, wbc, DATA);
3362
3363         /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3364         if (wbc->sync_mode == WB_SYNC_ALL)
3365                 atomic_inc(&sbi->wb_sync_req[DATA]);
3366         else if (atomic_read(&sbi->wb_sync_req[DATA])) {
3367                 /* to avoid potential deadlock */
3368                 if (current->plug)
3369                         blk_finish_plug(current->plug);
3370                 goto skip_write;
3371         }
3372
3373         if (__should_serialize_io(inode, wbc)) {
3374                 mutex_lock(&sbi->writepages);
3375                 locked = true;
3376         }
3377
3378         blk_start_plug(&plug);
3379         ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3380         blk_finish_plug(&plug);
3381
3382         if (locked)
3383                 mutex_unlock(&sbi->writepages);
3384
3385         if (wbc->sync_mode == WB_SYNC_ALL)
3386                 atomic_dec(&sbi->wb_sync_req[DATA]);
3387         /*
3388          * if some pages were truncated, we cannot guarantee its mapping->host
3389          * to detect pending bios.
3390          */
3391
3392         f2fs_remove_dirty_inode(inode);
3393         return ret;
3394
3395 skip_write:
3396         wbc->pages_skipped += get_dirty_pages(inode);
3397         trace_f2fs_writepages(mapping->host, wbc, DATA);
3398         return 0;
3399 }
3400
3401 static int f2fs_write_data_pages(struct address_space *mapping,
3402                             struct writeback_control *wbc)
3403 {
3404         struct inode *inode = mapping->host;
3405
3406         return __f2fs_write_data_pages(mapping, wbc,
3407                         F2FS_I(inode)->cp_task == current ?
3408                         FS_CP_DATA_IO : FS_DATA_IO);
3409 }
3410
3411 void f2fs_write_failed(struct inode *inode, loff_t to)
3412 {
3413         loff_t i_size = i_size_read(inode);
3414
3415         if (IS_NOQUOTA(inode))
3416                 return;
3417
3418         /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3419         if (to > i_size && !f2fs_verity_in_progress(inode)) {
3420                 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3421                 filemap_invalidate_lock(inode->i_mapping);
3422
3423                 truncate_pagecache(inode, i_size);
3424                 f2fs_truncate_blocks(inode, i_size, true);
3425
3426                 filemap_invalidate_unlock(inode->i_mapping);
3427                 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3428         }
3429 }
3430
3431 static int prepare_write_begin(struct f2fs_sb_info *sbi,
3432                         struct page *page, loff_t pos, unsigned len,
3433                         block_t *blk_addr, bool *node_changed)
3434 {
3435         struct inode *inode = page->mapping->host;
3436         pgoff_t index = page->index;
3437         struct dnode_of_data dn;
3438         struct page *ipage;
3439         bool locked = false;
3440         int flag = F2FS_GET_BLOCK_PRE_AIO;
3441         int err = 0;
3442
3443         /*
3444          * If a whole page is being written and we already preallocated all the
3445          * blocks, then there is no need to get a block address now.
3446          */
3447         if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL))
3448                 return 0;
3449
3450         /* f2fs_lock_op avoids race between write CP and convert_inline_page */
3451         if (f2fs_has_inline_data(inode)) {
3452                 if (pos + len > MAX_INLINE_DATA(inode))
3453                         flag = F2FS_GET_BLOCK_DEFAULT;
3454                 f2fs_map_lock(sbi, flag);
3455                 locked = true;
3456         } else if ((pos & PAGE_MASK) >= i_size_read(inode)) {
3457                 f2fs_map_lock(sbi, flag);
3458                 locked = true;
3459         }
3460
3461 restart:
3462         /* check inline_data */
3463         ipage = f2fs_get_node_page(sbi, inode->i_ino);
3464         if (IS_ERR(ipage)) {
3465                 err = PTR_ERR(ipage);
3466                 goto unlock_out;
3467         }
3468
3469         set_new_dnode(&dn, inode, ipage, ipage, 0);
3470
3471         if (f2fs_has_inline_data(inode)) {
3472                 if (pos + len <= MAX_INLINE_DATA(inode)) {
3473                         f2fs_do_read_inline_data(page, ipage);
3474                         set_inode_flag(inode, FI_DATA_EXIST);
3475                         if (inode->i_nlink)
3476                                 set_page_private_inline(ipage);
3477                         goto out;
3478                 }
3479                 err = f2fs_convert_inline_page(&dn, page);
3480                 if (err || dn.data_blkaddr != NULL_ADDR)
3481                         goto out;
3482         }
3483
3484         if (!f2fs_lookup_read_extent_cache_block(inode, index,
3485                                                  &dn.data_blkaddr)) {
3486                 if (locked) {
3487                         err = f2fs_reserve_block(&dn, index);
3488                         goto out;
3489                 }
3490
3491                 /* hole case */
3492                 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3493                 if (!err && dn.data_blkaddr != NULL_ADDR)
3494                         goto out;
3495                 f2fs_put_dnode(&dn);
3496                 f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3497                 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3498                 locked = true;
3499                 goto restart;
3500         }
3501 out:
3502         if (!err) {
3503                 /* convert_inline_page can make node_changed */
3504                 *blk_addr = dn.data_blkaddr;
3505                 *node_changed = dn.node_changed;
3506         }
3507         f2fs_put_dnode(&dn);
3508 unlock_out:
3509         if (locked)
3510                 f2fs_map_unlock(sbi, flag);
3511         return err;
3512 }
3513
3514 static int __find_data_block(struct inode *inode, pgoff_t index,
3515                                 block_t *blk_addr)
3516 {
3517         struct dnode_of_data dn;
3518         struct page *ipage;
3519         int err = 0;
3520
3521         ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
3522         if (IS_ERR(ipage))
3523                 return PTR_ERR(ipage);
3524
3525         set_new_dnode(&dn, inode, ipage, ipage, 0);
3526
3527         if (!f2fs_lookup_read_extent_cache_block(inode, index,
3528                                                  &dn.data_blkaddr)) {
3529                 /* hole case */
3530                 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3531                 if (err) {
3532                         dn.data_blkaddr = NULL_ADDR;
3533                         err = 0;
3534                 }
3535         }
3536         *blk_addr = dn.data_blkaddr;
3537         f2fs_put_dnode(&dn);
3538         return err;
3539 }
3540
3541 static int __reserve_data_block(struct inode *inode, pgoff_t index,
3542                                 block_t *blk_addr, bool *node_changed)
3543 {
3544         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3545         struct dnode_of_data dn;
3546         struct page *ipage;
3547         int err = 0;
3548
3549         f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3550
3551         ipage = f2fs_get_node_page(sbi, inode->i_ino);
3552         if (IS_ERR(ipage)) {
3553                 err = PTR_ERR(ipage);
3554                 goto unlock_out;
3555         }
3556         set_new_dnode(&dn, inode, ipage, ipage, 0);
3557
3558         if (!f2fs_lookup_read_extent_cache_block(dn.inode, index,
3559                                                 &dn.data_blkaddr))
3560                 err = f2fs_reserve_block(&dn, index);
3561
3562         *blk_addr = dn.data_blkaddr;
3563         *node_changed = dn.node_changed;
3564         f2fs_put_dnode(&dn);
3565
3566 unlock_out:
3567         f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3568         return err;
3569 }
3570
3571 static int prepare_atomic_write_begin(struct f2fs_sb_info *sbi,
3572                         struct page *page, loff_t pos, unsigned int len,
3573                         block_t *blk_addr, bool *node_changed, bool *use_cow)
3574 {
3575         struct inode *inode = page->mapping->host;
3576         struct inode *cow_inode = F2FS_I(inode)->cow_inode;
3577         pgoff_t index = page->index;
3578         int err = 0;
3579         block_t ori_blk_addr = NULL_ADDR;
3580
3581         /* If pos is beyond the end of file, reserve a new block in COW inode */
3582         if ((pos & PAGE_MASK) >= i_size_read(inode))
3583                 goto reserve_block;
3584
3585         /* Look for the block in COW inode first */
3586         err = __find_data_block(cow_inode, index, blk_addr);
3587         if (err) {
3588                 return err;
3589         } else if (*blk_addr != NULL_ADDR) {
3590                 *use_cow = true;
3591                 return 0;
3592         }
3593
3594         if (is_inode_flag_set(inode, FI_ATOMIC_REPLACE))
3595                 goto reserve_block;
3596
3597         /* Look for the block in the original inode */
3598         err = __find_data_block(inode, index, &ori_blk_addr);
3599         if (err)
3600                 return err;
3601
3602 reserve_block:
3603         /* Finally, we should reserve a new block in COW inode for the update */
3604         err = __reserve_data_block(cow_inode, index, blk_addr, node_changed);
3605         if (err)
3606                 return err;
3607         inc_atomic_write_cnt(inode);
3608
3609         if (ori_blk_addr != NULL_ADDR)
3610                 *blk_addr = ori_blk_addr;
3611         return 0;
3612 }
3613
3614 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3615                 loff_t pos, unsigned len, struct page **pagep, void **fsdata)
3616 {
3617         struct inode *inode = mapping->host;
3618         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3619         struct page *page = NULL;
3620         pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
3621         bool need_balance = false;
3622         bool use_cow = false;
3623         block_t blkaddr = NULL_ADDR;
3624         int err = 0;
3625
3626         trace_f2fs_write_begin(inode, pos, len);
3627
3628         if (!f2fs_is_checkpoint_ready(sbi)) {
3629                 err = -ENOSPC;
3630                 goto fail;
3631         }
3632
3633         /*
3634          * We should check this at this moment to avoid deadlock on inode page
3635          * and #0 page. The locking rule for inline_data conversion should be:
3636          * lock_page(page #0) -> lock_page(inode_page)
3637          */
3638         if (index != 0) {
3639                 err = f2fs_convert_inline_inode(inode);
3640                 if (err)
3641                         goto fail;
3642         }
3643
3644 #ifdef CONFIG_F2FS_FS_COMPRESSION
3645         if (f2fs_compressed_file(inode)) {
3646                 int ret;
3647
3648                 *fsdata = NULL;
3649
3650                 if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode)))
3651                         goto repeat;
3652
3653                 ret = f2fs_prepare_compress_overwrite(inode, pagep,
3654                                                         index, fsdata);
3655                 if (ret < 0) {
3656                         err = ret;
3657                         goto fail;
3658                 } else if (ret) {
3659                         return 0;
3660                 }
3661         }
3662 #endif
3663
3664 repeat:
3665         /*
3666          * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3667          * wait_for_stable_page. Will wait that below with our IO control.
3668          */
3669         page = f2fs_pagecache_get_page(mapping, index,
3670                                 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3671         if (!page) {
3672                 err = -ENOMEM;
3673                 goto fail;
3674         }
3675
3676         /* TODO: cluster can be compressed due to race with .writepage */
3677
3678         *pagep = page;
3679
3680         if (f2fs_is_atomic_file(inode))
3681                 err = prepare_atomic_write_begin(sbi, page, pos, len,
3682                                         &blkaddr, &need_balance, &use_cow);
3683         else
3684                 err = prepare_write_begin(sbi, page, pos, len,
3685                                         &blkaddr, &need_balance);
3686         if (err)
3687                 goto fail;
3688
3689         if (need_balance && !IS_NOQUOTA(inode) &&
3690                         has_not_enough_free_secs(sbi, 0, 0)) {
3691                 unlock_page(page);
3692                 f2fs_balance_fs(sbi, true);
3693                 lock_page(page);
3694                 if (page->mapping != mapping) {
3695                         /* The page got truncated from under us */
3696                         f2fs_put_page(page, 1);
3697                         goto repeat;
3698                 }
3699         }
3700
3701         f2fs_wait_on_page_writeback(page, DATA, false, true);
3702
3703         if (len == PAGE_SIZE || PageUptodate(page))
3704                 return 0;
3705
3706         if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3707             !f2fs_verity_in_progress(inode)) {
3708                 zero_user_segment(page, len, PAGE_SIZE);
3709                 return 0;
3710         }
3711
3712         if (blkaddr == NEW_ADDR) {
3713                 zero_user_segment(page, 0, PAGE_SIZE);
3714                 SetPageUptodate(page);
3715         } else {
3716                 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3717                                 DATA_GENERIC_ENHANCE_READ)) {
3718                         err = -EFSCORRUPTED;
3719                         f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
3720                         goto fail;
3721                 }
3722                 err = f2fs_submit_page_read(use_cow ?
3723                                 F2FS_I(inode)->cow_inode : inode, page,
3724                                 blkaddr, 0, true);
3725                 if (err)
3726                         goto fail;
3727
3728                 lock_page(page);
3729                 if (unlikely(page->mapping != mapping)) {
3730                         f2fs_put_page(page, 1);
3731                         goto repeat;
3732                 }
3733                 if (unlikely(!PageUptodate(page))) {
3734                         err = -EIO;
3735                         goto fail;
3736                 }
3737         }
3738         return 0;
3739
3740 fail:
3741         f2fs_put_page(page, 1);
3742         f2fs_write_failed(inode, pos + len);
3743         return err;
3744 }
3745
3746 static int f2fs_write_end(struct file *file,
3747                         struct address_space *mapping,
3748                         loff_t pos, unsigned len, unsigned copied,
3749                         struct page *page, void *fsdata)
3750 {
3751         struct inode *inode = page->mapping->host;
3752
3753         trace_f2fs_write_end(inode, pos, len, copied);
3754
3755         /*
3756          * This should be come from len == PAGE_SIZE, and we expect copied
3757          * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3758          * let generic_perform_write() try to copy data again through copied=0.
3759          */
3760         if (!PageUptodate(page)) {
3761                 if (unlikely(copied != len))
3762                         copied = 0;
3763                 else
3764                         SetPageUptodate(page);
3765         }
3766
3767 #ifdef CONFIG_F2FS_FS_COMPRESSION
3768         /* overwrite compressed file */
3769         if (f2fs_compressed_file(inode) && fsdata) {
3770                 f2fs_compress_write_end(inode, fsdata, page->index, copied);
3771                 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3772
3773                 if (pos + copied > i_size_read(inode) &&
3774                                 !f2fs_verity_in_progress(inode))
3775                         f2fs_i_size_write(inode, pos + copied);
3776                 return copied;
3777         }
3778 #endif
3779
3780         if (!copied)
3781                 goto unlock_out;
3782
3783         set_page_dirty(page);
3784
3785         if (pos + copied > i_size_read(inode) &&
3786             !f2fs_verity_in_progress(inode)) {
3787                 f2fs_i_size_write(inode, pos + copied);
3788                 if (f2fs_is_atomic_file(inode))
3789                         f2fs_i_size_write(F2FS_I(inode)->cow_inode,
3790                                         pos + copied);
3791         }
3792 unlock_out:
3793         f2fs_put_page(page, 1);
3794         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3795         return copied;
3796 }
3797
3798 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length)
3799 {
3800         struct inode *inode = folio->mapping->host;
3801         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3802
3803         if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3804                                 (offset || length != folio_size(folio)))
3805                 return;
3806
3807         if (folio_test_dirty(folio)) {
3808                 if (inode->i_ino == F2FS_META_INO(sbi)) {
3809                         dec_page_count(sbi, F2FS_DIRTY_META);
3810                 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3811                         dec_page_count(sbi, F2FS_DIRTY_NODES);
3812                 } else {
3813                         inode_dec_dirty_pages(inode);
3814                         f2fs_remove_dirty_inode(inode);
3815                 }
3816         }
3817         clear_page_private_all(&folio->page);
3818 }
3819
3820 bool f2fs_release_folio(struct folio *folio, gfp_t wait)
3821 {
3822         /* If this is dirty folio, keep private data */
3823         if (folio_test_dirty(folio))
3824                 return false;
3825
3826         clear_page_private_all(&folio->page);
3827         return true;
3828 }
3829
3830 static bool f2fs_dirty_data_folio(struct address_space *mapping,
3831                 struct folio *folio)
3832 {
3833         struct inode *inode = mapping->host;
3834
3835         trace_f2fs_set_page_dirty(&folio->page, DATA);
3836
3837         if (!folio_test_uptodate(folio))
3838                 folio_mark_uptodate(folio);
3839         BUG_ON(folio_test_swapcache(folio));
3840
3841         if (filemap_dirty_folio(mapping, folio)) {
3842                 f2fs_update_dirty_folio(inode, folio);
3843                 return true;
3844         }
3845         return false;
3846 }
3847
3848
3849 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3850 {
3851 #ifdef CONFIG_F2FS_FS_COMPRESSION
3852         struct dnode_of_data dn;
3853         sector_t start_idx, blknr = 0;
3854         int ret;
3855
3856         start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3857
3858         set_new_dnode(&dn, inode, NULL, NULL, 0);
3859         ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3860         if (ret)
3861                 return 0;
3862
3863         if (dn.data_blkaddr != COMPRESS_ADDR) {
3864                 dn.ofs_in_node += block - start_idx;
3865                 blknr = f2fs_data_blkaddr(&dn);
3866                 if (!__is_valid_data_blkaddr(blknr))
3867                         blknr = 0;
3868         }
3869
3870         f2fs_put_dnode(&dn);
3871         return blknr;
3872 #else
3873         return 0;
3874 #endif
3875 }
3876
3877
3878 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3879 {
3880         struct inode *inode = mapping->host;
3881         sector_t blknr = 0;
3882
3883         if (f2fs_has_inline_data(inode))
3884                 goto out;
3885
3886         /* make sure allocating whole blocks */
3887         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3888                 filemap_write_and_wait(mapping);
3889
3890         /* Block number less than F2FS MAX BLOCKS */
3891         if (unlikely(block >= max_file_blocks(inode)))
3892                 goto out;
3893
3894         if (f2fs_compressed_file(inode)) {
3895                 blknr = f2fs_bmap_compress(inode, block);
3896         } else {
3897                 struct f2fs_map_blocks map;
3898
3899                 memset(&map, 0, sizeof(map));
3900                 map.m_lblk = block;
3901                 map.m_len = 1;
3902                 map.m_next_pgofs = NULL;
3903                 map.m_seg_type = NO_CHECK_TYPE;
3904
3905                 if (!f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_BMAP))
3906                         blknr = map.m_pblk;
3907         }
3908 out:
3909         trace_f2fs_bmap(inode, block, blknr);
3910         return blknr;
3911 }
3912
3913 #ifdef CONFIG_SWAP
3914 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk,
3915                                                         unsigned int blkcnt)
3916 {
3917         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3918         unsigned int blkofs;
3919         unsigned int blk_per_sec = BLKS_PER_SEC(sbi);
3920         unsigned int secidx = start_blk / blk_per_sec;
3921         unsigned int end_sec = secidx + blkcnt / blk_per_sec;
3922         int ret = 0;
3923
3924         f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3925         filemap_invalidate_lock(inode->i_mapping);
3926
3927         set_inode_flag(inode, FI_ALIGNED_WRITE);
3928         set_inode_flag(inode, FI_OPU_WRITE);
3929
3930         for (; secidx < end_sec; secidx++) {
3931                 f2fs_down_write(&sbi->pin_sem);
3932
3933                 f2fs_lock_op(sbi);
3934                 f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
3935                 f2fs_unlock_op(sbi);
3936
3937                 set_inode_flag(inode, FI_SKIP_WRITES);
3938
3939                 for (blkofs = 0; blkofs < blk_per_sec; blkofs++) {
3940                         struct page *page;
3941                         unsigned int blkidx = secidx * blk_per_sec + blkofs;
3942
3943                         page = f2fs_get_lock_data_page(inode, blkidx, true);
3944                         if (IS_ERR(page)) {
3945                                 f2fs_up_write(&sbi->pin_sem);
3946                                 ret = PTR_ERR(page);
3947                                 goto done;
3948                         }
3949
3950                         set_page_dirty(page);
3951                         f2fs_put_page(page, 1);
3952                 }
3953
3954                 clear_inode_flag(inode, FI_SKIP_WRITES);
3955
3956                 ret = filemap_fdatawrite(inode->i_mapping);
3957
3958                 f2fs_up_write(&sbi->pin_sem);
3959
3960                 if (ret)
3961                         break;
3962         }
3963
3964 done:
3965         clear_inode_flag(inode, FI_SKIP_WRITES);
3966         clear_inode_flag(inode, FI_OPU_WRITE);
3967         clear_inode_flag(inode, FI_ALIGNED_WRITE);
3968
3969         filemap_invalidate_unlock(inode->i_mapping);
3970         f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3971
3972         return ret;
3973 }
3974
3975 static int check_swap_activate(struct swap_info_struct *sis,
3976                                 struct file *swap_file, sector_t *span)
3977 {
3978         struct address_space *mapping = swap_file->f_mapping;
3979         struct inode *inode = mapping->host;
3980         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3981         sector_t cur_lblock;
3982         sector_t last_lblock;
3983         sector_t pblock;
3984         sector_t lowest_pblock = -1;
3985         sector_t highest_pblock = 0;
3986         int nr_extents = 0;
3987         unsigned long nr_pblocks;
3988         unsigned int blks_per_sec = BLKS_PER_SEC(sbi);
3989         unsigned int sec_blks_mask = BLKS_PER_SEC(sbi) - 1;
3990         unsigned int not_aligned = 0;
3991         int ret = 0;
3992
3993         /*
3994          * Map all the blocks into the extent list.  This code doesn't try
3995          * to be very smart.
3996          */
3997         cur_lblock = 0;
3998         last_lblock = bytes_to_blks(inode, i_size_read(inode));
3999
4000         while (cur_lblock < last_lblock && cur_lblock < sis->max) {
4001                 struct f2fs_map_blocks map;
4002 retry:
4003                 cond_resched();
4004
4005                 memset(&map, 0, sizeof(map));
4006                 map.m_lblk = cur_lblock;
4007                 map.m_len = last_lblock - cur_lblock;
4008                 map.m_next_pgofs = NULL;
4009                 map.m_next_extent = NULL;
4010                 map.m_seg_type = NO_CHECK_TYPE;
4011                 map.m_may_create = false;
4012
4013                 ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
4014                 if (ret)
4015                         goto out;
4016
4017                 /* hole */
4018                 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
4019                         f2fs_err(sbi, "Swapfile has holes");
4020                         ret = -EINVAL;
4021                         goto out;
4022                 }
4023
4024                 pblock = map.m_pblk;
4025                 nr_pblocks = map.m_len;
4026
4027                 if ((pblock - SM_I(sbi)->main_blkaddr) & sec_blks_mask ||
4028                                 nr_pblocks & sec_blks_mask) {
4029                         not_aligned++;
4030
4031                         nr_pblocks = roundup(nr_pblocks, blks_per_sec);
4032                         if (cur_lblock + nr_pblocks > sis->max)
4033                                 nr_pblocks -= blks_per_sec;
4034
4035                         if (!nr_pblocks) {
4036                                 /* this extent is last one */
4037                                 nr_pblocks = map.m_len;
4038                                 f2fs_warn(sbi, "Swapfile: last extent is not aligned to section");
4039                                 goto next;
4040                         }
4041
4042                         ret = f2fs_migrate_blocks(inode, cur_lblock,
4043                                                         nr_pblocks);
4044                         if (ret)
4045                                 goto out;
4046                         goto retry;
4047                 }
4048 next:
4049                 if (cur_lblock + nr_pblocks >= sis->max)
4050                         nr_pblocks = sis->max - cur_lblock;
4051
4052                 if (cur_lblock) {       /* exclude the header page */
4053                         if (pblock < lowest_pblock)
4054                                 lowest_pblock = pblock;
4055                         if (pblock + nr_pblocks - 1 > highest_pblock)
4056                                 highest_pblock = pblock + nr_pblocks - 1;
4057                 }
4058
4059                 /*
4060                  * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
4061                  */
4062                 ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
4063                 if (ret < 0)
4064                         goto out;
4065                 nr_extents += ret;
4066                 cur_lblock += nr_pblocks;
4067         }
4068         ret = nr_extents;
4069         *span = 1 + highest_pblock - lowest_pblock;
4070         if (cur_lblock == 0)
4071                 cur_lblock = 1; /* force Empty message */
4072         sis->max = cur_lblock;
4073         sis->pages = cur_lblock - 1;
4074         sis->highest_bit = cur_lblock - 1;
4075 out:
4076         if (not_aligned)
4077                 f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%u * N)",
4078                           not_aligned, blks_per_sec * F2FS_BLKSIZE);
4079         return ret;
4080 }
4081
4082 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4083                                 sector_t *span)
4084 {
4085         struct inode *inode = file_inode(file);
4086         int ret;
4087
4088         if (!S_ISREG(inode->i_mode))
4089                 return -EINVAL;
4090
4091         if (f2fs_readonly(F2FS_I_SB(inode)->sb))
4092                 return -EROFS;
4093
4094         if (f2fs_lfs_mode(F2FS_I_SB(inode))) {
4095                 f2fs_err(F2FS_I_SB(inode),
4096                         "Swapfile not supported in LFS mode");
4097                 return -EINVAL;
4098         }
4099
4100         ret = f2fs_convert_inline_inode(inode);
4101         if (ret)
4102                 return ret;
4103
4104         if (!f2fs_disable_compressed_file(inode))
4105                 return -EINVAL;
4106
4107         f2fs_precache_extents(inode);
4108
4109         ret = check_swap_activate(sis, file, span);
4110         if (ret < 0)
4111                 return ret;
4112
4113         stat_inc_swapfile_inode(inode);
4114         set_inode_flag(inode, FI_PIN_FILE);
4115         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
4116         return ret;
4117 }
4118
4119 static void f2fs_swap_deactivate(struct file *file)
4120 {
4121         struct inode *inode = file_inode(file);
4122
4123         stat_dec_swapfile_inode(inode);
4124         clear_inode_flag(inode, FI_PIN_FILE);
4125 }
4126 #else
4127 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4128                                 sector_t *span)
4129 {
4130         return -EOPNOTSUPP;
4131 }
4132
4133 static void f2fs_swap_deactivate(struct file *file)
4134 {
4135 }
4136 #endif
4137
4138 const struct address_space_operations f2fs_dblock_aops = {
4139         .read_folio     = f2fs_read_data_folio,
4140         .readahead      = f2fs_readahead,
4141         .writepage      = f2fs_write_data_page,
4142         .writepages     = f2fs_write_data_pages,
4143         .write_begin    = f2fs_write_begin,
4144         .write_end      = f2fs_write_end,
4145         .dirty_folio    = f2fs_dirty_data_folio,
4146         .migrate_folio  = filemap_migrate_folio,
4147         .invalidate_folio = f2fs_invalidate_folio,
4148         .release_folio  = f2fs_release_folio,
4149         .bmap           = f2fs_bmap,
4150         .swap_activate  = f2fs_swap_activate,
4151         .swap_deactivate = f2fs_swap_deactivate,
4152 };
4153
4154 void f2fs_clear_page_cache_dirty_tag(struct page *page)
4155 {
4156         struct address_space *mapping = page_mapping(page);
4157         unsigned long flags;
4158
4159         xa_lock_irqsave(&mapping->i_pages, flags);
4160         __xa_clear_mark(&mapping->i_pages, page_index(page),
4161                                                 PAGECACHE_TAG_DIRTY);
4162         xa_unlock_irqrestore(&mapping->i_pages, flags);
4163 }
4164
4165 int __init f2fs_init_post_read_processing(void)
4166 {
4167         bio_post_read_ctx_cache =
4168                 kmem_cache_create("f2fs_bio_post_read_ctx",
4169                                   sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4170         if (!bio_post_read_ctx_cache)
4171                 goto fail;
4172         bio_post_read_ctx_pool =
4173                 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4174                                          bio_post_read_ctx_cache);
4175         if (!bio_post_read_ctx_pool)
4176                 goto fail_free_cache;
4177         return 0;
4178
4179 fail_free_cache:
4180         kmem_cache_destroy(bio_post_read_ctx_cache);
4181 fail:
4182         return -ENOMEM;
4183 }
4184
4185 void f2fs_destroy_post_read_processing(void)
4186 {
4187         mempool_destroy(bio_post_read_ctx_pool);
4188         kmem_cache_destroy(bio_post_read_ctx_cache);
4189 }
4190
4191 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4192 {
4193         if (!f2fs_sb_has_encrypt(sbi) &&
4194                 !f2fs_sb_has_verity(sbi) &&
4195                 !f2fs_sb_has_compression(sbi))
4196                 return 0;
4197
4198         sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4199                                                  WQ_UNBOUND | WQ_HIGHPRI,
4200                                                  num_online_cpus());
4201         return sbi->post_read_wq ? 0 : -ENOMEM;
4202 }
4203
4204 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4205 {
4206         if (sbi->post_read_wq)
4207                 destroy_workqueue(sbi->post_read_wq);
4208 }
4209
4210 int __init f2fs_init_bio_entry_cache(void)
4211 {
4212         bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4213                         sizeof(struct bio_entry));
4214         return bio_entry_slab ? 0 : -ENOMEM;
4215 }
4216
4217 void f2fs_destroy_bio_entry_cache(void)
4218 {
4219         kmem_cache_destroy(bio_entry_slab);
4220 }
4221
4222 static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
4223                             unsigned int flags, struct iomap *iomap,
4224                             struct iomap *srcmap)
4225 {
4226         struct f2fs_map_blocks map = {};
4227         pgoff_t next_pgofs = 0;
4228         int err;
4229
4230         map.m_lblk = bytes_to_blks(inode, offset);
4231         map.m_len = bytes_to_blks(inode, offset + length - 1) - map.m_lblk + 1;
4232         map.m_next_pgofs = &next_pgofs;
4233         map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint);
4234         if (flags & IOMAP_WRITE)
4235                 map.m_may_create = true;
4236
4237         err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DIO);
4238         if (err)
4239                 return err;
4240
4241         iomap->offset = blks_to_bytes(inode, map.m_lblk);
4242
4243         /*
4244          * When inline encryption is enabled, sometimes I/O to an encrypted file
4245          * has to be broken up to guarantee DUN contiguity.  Handle this by
4246          * limiting the length of the mapping returned.
4247          */
4248         map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
4249
4250         /*
4251          * We should never see delalloc or compressed extents here based on
4252          * prior flushing and checks.
4253          */
4254         if (WARN_ON_ONCE(map.m_pblk == NEW_ADDR))
4255                 return -EINVAL;
4256         if (WARN_ON_ONCE(map.m_pblk == COMPRESS_ADDR))
4257                 return -EINVAL;
4258
4259         if (map.m_pblk != NULL_ADDR) {
4260                 iomap->length = blks_to_bytes(inode, map.m_len);
4261                 iomap->type = IOMAP_MAPPED;
4262                 iomap->flags |= IOMAP_F_MERGED;
4263                 iomap->bdev = map.m_bdev;
4264                 iomap->addr = blks_to_bytes(inode, map.m_pblk);
4265         } else {
4266                 if (flags & IOMAP_WRITE)
4267                         return -ENOTBLK;
4268                 iomap->length = blks_to_bytes(inode, next_pgofs) -
4269                                 iomap->offset;
4270                 iomap->type = IOMAP_HOLE;
4271                 iomap->addr = IOMAP_NULL_ADDR;
4272         }
4273
4274         if (map.m_flags & F2FS_MAP_NEW)
4275                 iomap->flags |= IOMAP_F_NEW;
4276         if ((inode->i_state & I_DIRTY_DATASYNC) ||
4277             offset + length > i_size_read(inode))
4278                 iomap->flags |= IOMAP_F_DIRTY;
4279
4280         return 0;
4281 }
4282
4283 const struct iomap_ops f2fs_iomap_ops = {
4284         .iomap_begin    = f2fs_iomap_begin,
4285 };