Merge tag 'folio-6.0' of git://git.infradead.org/users/willy/pagecache
[platform/kernel/linux-starfive.git] / fs / f2fs / data.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/data.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/sched/mm.h>
12 #include <linux/mpage.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/blk-crypto.h>
18 #include <linux/swap.h>
19 #include <linux/prefetch.h>
20 #include <linux/uio.h>
21 #include <linux/sched/signal.h>
22 #include <linux/fiemap.h>
23 #include <linux/iomap.h>
24
25 #include "f2fs.h"
26 #include "node.h"
27 #include "segment.h"
28 #include "iostat.h"
29 #include <trace/events/f2fs.h>
30
31 #define NUM_PREALLOC_POST_READ_CTXS     128
32
33 static struct kmem_cache *bio_post_read_ctx_cache;
34 static struct kmem_cache *bio_entry_slab;
35 static mempool_t *bio_post_read_ctx_pool;
36 static struct bio_set f2fs_bioset;
37
38 #define F2FS_BIO_POOL_SIZE      NR_CURSEG_TYPE
39
40 int __init f2fs_init_bioset(void)
41 {
42         if (bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
43                                         0, BIOSET_NEED_BVECS))
44                 return -ENOMEM;
45         return 0;
46 }
47
48 void f2fs_destroy_bioset(void)
49 {
50         bioset_exit(&f2fs_bioset);
51 }
52
53 static bool __is_cp_guaranteed(struct page *page)
54 {
55         struct address_space *mapping = page->mapping;
56         struct inode *inode;
57         struct f2fs_sb_info *sbi;
58
59         if (!mapping)
60                 return false;
61
62         inode = mapping->host;
63         sbi = F2FS_I_SB(inode);
64
65         if (inode->i_ino == F2FS_META_INO(sbi) ||
66                         inode->i_ino == F2FS_NODE_INO(sbi) ||
67                         S_ISDIR(inode->i_mode))
68                 return true;
69
70         if (f2fs_is_compressed_page(page))
71                 return false;
72         if ((S_ISREG(inode->i_mode) && IS_NOQUOTA(inode)) ||
73                         page_private_gcing(page))
74                 return true;
75         return false;
76 }
77
78 static enum count_type __read_io_type(struct page *page)
79 {
80         struct address_space *mapping = page_file_mapping(page);
81
82         if (mapping) {
83                 struct inode *inode = mapping->host;
84                 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
85
86                 if (inode->i_ino == F2FS_META_INO(sbi))
87                         return F2FS_RD_META;
88
89                 if (inode->i_ino == F2FS_NODE_INO(sbi))
90                         return F2FS_RD_NODE;
91         }
92         return F2FS_RD_DATA;
93 }
94
95 /* postprocessing steps for read bios */
96 enum bio_post_read_step {
97 #ifdef CONFIG_FS_ENCRYPTION
98         STEP_DECRYPT    = 1 << 0,
99 #else
100         STEP_DECRYPT    = 0,    /* compile out the decryption-related code */
101 #endif
102 #ifdef CONFIG_F2FS_FS_COMPRESSION
103         STEP_DECOMPRESS = 1 << 1,
104 #else
105         STEP_DECOMPRESS = 0,    /* compile out the decompression-related code */
106 #endif
107 #ifdef CONFIG_FS_VERITY
108         STEP_VERITY     = 1 << 2,
109 #else
110         STEP_VERITY     = 0,    /* compile out the verity-related code */
111 #endif
112 };
113
114 struct bio_post_read_ctx {
115         struct bio *bio;
116         struct f2fs_sb_info *sbi;
117         struct work_struct work;
118         unsigned int enabled_steps;
119         block_t fs_blkaddr;
120 };
121
122 static void f2fs_finish_read_bio(struct bio *bio)
123 {
124         struct bio_vec *bv;
125         struct bvec_iter_all iter_all;
126
127         /*
128          * Update and unlock the bio's pagecache pages, and put the
129          * decompression context for any compressed pages.
130          */
131         bio_for_each_segment_all(bv, bio, iter_all) {
132                 struct page *page = bv->bv_page;
133
134                 if (f2fs_is_compressed_page(page)) {
135                         if (bio->bi_status)
136                                 f2fs_end_read_compressed_page(page, true, 0);
137                         f2fs_put_page_dic(page);
138                         continue;
139                 }
140
141                 /* PG_error was set if decryption or verity failed. */
142                 if (bio->bi_status || PageError(page)) {
143                         ClearPageUptodate(page);
144                         /* will re-read again later */
145                         ClearPageError(page);
146                 } else {
147                         SetPageUptodate(page);
148                 }
149                 dec_page_count(F2FS_P_SB(page), __read_io_type(page));
150                 unlock_page(page);
151         }
152
153         if (bio->bi_private)
154                 mempool_free(bio->bi_private, bio_post_read_ctx_pool);
155         bio_put(bio);
156 }
157
158 static void f2fs_verify_bio(struct work_struct *work)
159 {
160         struct bio_post_read_ctx *ctx =
161                 container_of(work, struct bio_post_read_ctx, work);
162         struct bio *bio = ctx->bio;
163         bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS);
164
165         /*
166          * fsverity_verify_bio() may call readahead() again, and while verity
167          * will be disabled for this, decryption and/or decompression may still
168          * be needed, resulting in another bio_post_read_ctx being allocated.
169          * So to prevent deadlocks we need to release the current ctx to the
170          * mempool first.  This assumes that verity is the last post-read step.
171          */
172         mempool_free(ctx, bio_post_read_ctx_pool);
173         bio->bi_private = NULL;
174
175         /*
176          * Verify the bio's pages with fs-verity.  Exclude compressed pages,
177          * as those were handled separately by f2fs_end_read_compressed_page().
178          */
179         if (may_have_compressed_pages) {
180                 struct bio_vec *bv;
181                 struct bvec_iter_all iter_all;
182
183                 bio_for_each_segment_all(bv, bio, iter_all) {
184                         struct page *page = bv->bv_page;
185
186                         if (!f2fs_is_compressed_page(page) &&
187                             !PageError(page) && !fsverity_verify_page(page))
188                                 SetPageError(page);
189                 }
190         } else {
191                 fsverity_verify_bio(bio);
192         }
193
194         f2fs_finish_read_bio(bio);
195 }
196
197 /*
198  * If the bio's data needs to be verified with fs-verity, then enqueue the
199  * verity work for the bio.  Otherwise finish the bio now.
200  *
201  * Note that to avoid deadlocks, the verity work can't be done on the
202  * decryption/decompression workqueue.  This is because verifying the data pages
203  * can involve reading verity metadata pages from the file, and these verity
204  * metadata pages may be encrypted and/or compressed.
205  */
206 static void f2fs_verify_and_finish_bio(struct bio *bio)
207 {
208         struct bio_post_read_ctx *ctx = bio->bi_private;
209
210         if (ctx && (ctx->enabled_steps & STEP_VERITY)) {
211                 INIT_WORK(&ctx->work, f2fs_verify_bio);
212                 fsverity_enqueue_verify_work(&ctx->work);
213         } else {
214                 f2fs_finish_read_bio(bio);
215         }
216 }
217
218 /*
219  * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last
220  * remaining page was read by @ctx->bio.
221  *
222  * Note that a bio may span clusters (even a mix of compressed and uncompressed
223  * clusters) or be for just part of a cluster.  STEP_DECOMPRESS just indicates
224  * that the bio includes at least one compressed page.  The actual decompression
225  * is done on a per-cluster basis, not a per-bio basis.
226  */
227 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx)
228 {
229         struct bio_vec *bv;
230         struct bvec_iter_all iter_all;
231         bool all_compressed = true;
232         block_t blkaddr = ctx->fs_blkaddr;
233
234         bio_for_each_segment_all(bv, ctx->bio, iter_all) {
235                 struct page *page = bv->bv_page;
236
237                 /* PG_error was set if decryption failed. */
238                 if (f2fs_is_compressed_page(page))
239                         f2fs_end_read_compressed_page(page, PageError(page),
240                                                 blkaddr);
241                 else
242                         all_compressed = false;
243
244                 blkaddr++;
245         }
246
247         /*
248          * Optimization: if all the bio's pages are compressed, then scheduling
249          * the per-bio verity work is unnecessary, as verity will be fully
250          * handled at the compression cluster level.
251          */
252         if (all_compressed)
253                 ctx->enabled_steps &= ~STEP_VERITY;
254 }
255
256 static void f2fs_post_read_work(struct work_struct *work)
257 {
258         struct bio_post_read_ctx *ctx =
259                 container_of(work, struct bio_post_read_ctx, work);
260
261         if (ctx->enabled_steps & STEP_DECRYPT)
262                 fscrypt_decrypt_bio(ctx->bio);
263
264         if (ctx->enabled_steps & STEP_DECOMPRESS)
265                 f2fs_handle_step_decompress(ctx);
266
267         f2fs_verify_and_finish_bio(ctx->bio);
268 }
269
270 static void f2fs_read_end_io(struct bio *bio)
271 {
272         struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
273         struct bio_post_read_ctx *ctx;
274
275         iostat_update_and_unbind_ctx(bio, 0);
276         ctx = bio->bi_private;
277
278         if (time_to_inject(sbi, FAULT_READ_IO)) {
279                 f2fs_show_injection_info(sbi, FAULT_READ_IO);
280                 bio->bi_status = BLK_STS_IOERR;
281         }
282
283         if (bio->bi_status) {
284                 f2fs_finish_read_bio(bio);
285                 return;
286         }
287
288         if (ctx && (ctx->enabled_steps & (STEP_DECRYPT | STEP_DECOMPRESS))) {
289                 INIT_WORK(&ctx->work, f2fs_post_read_work);
290                 queue_work(ctx->sbi->post_read_wq, &ctx->work);
291         } else {
292                 f2fs_verify_and_finish_bio(bio);
293         }
294 }
295
296 static void f2fs_write_end_io(struct bio *bio)
297 {
298         struct f2fs_sb_info *sbi;
299         struct bio_vec *bvec;
300         struct bvec_iter_all iter_all;
301
302         iostat_update_and_unbind_ctx(bio, 1);
303         sbi = bio->bi_private;
304
305         if (time_to_inject(sbi, FAULT_WRITE_IO)) {
306                 f2fs_show_injection_info(sbi, FAULT_WRITE_IO);
307                 bio->bi_status = BLK_STS_IOERR;
308         }
309
310         bio_for_each_segment_all(bvec, bio, iter_all) {
311                 struct page *page = bvec->bv_page;
312                 enum count_type type = WB_DATA_TYPE(page);
313
314                 if (page_private_dummy(page)) {
315                         clear_page_private_dummy(page);
316                         unlock_page(page);
317                         mempool_free(page, sbi->write_io_dummy);
318
319                         if (unlikely(bio->bi_status))
320                                 f2fs_stop_checkpoint(sbi, true);
321                         continue;
322                 }
323
324                 fscrypt_finalize_bounce_page(&page);
325
326 #ifdef CONFIG_F2FS_FS_COMPRESSION
327                 if (f2fs_is_compressed_page(page)) {
328                         f2fs_compress_write_end_io(bio, page);
329                         continue;
330                 }
331 #endif
332
333                 if (unlikely(bio->bi_status)) {
334                         mapping_set_error(page->mapping, -EIO);
335                         if (type == F2FS_WB_CP_DATA)
336                                 f2fs_stop_checkpoint(sbi, true);
337                 }
338
339                 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
340                                         page->index != nid_of_node(page));
341
342                 dec_page_count(sbi, type);
343                 if (f2fs_in_warm_node_list(sbi, page))
344                         f2fs_del_fsync_node_entry(sbi, page);
345                 clear_page_private_gcing(page);
346                 end_page_writeback(page);
347         }
348         if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
349                                 wq_has_sleeper(&sbi->cp_wait))
350                 wake_up(&sbi->cp_wait);
351
352         bio_put(bio);
353 }
354
355 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
356                 block_t blk_addr, sector_t *sector)
357 {
358         struct block_device *bdev = sbi->sb->s_bdev;
359         int i;
360
361         if (f2fs_is_multi_device(sbi)) {
362                 for (i = 0; i < sbi->s_ndevs; i++) {
363                         if (FDEV(i).start_blk <= blk_addr &&
364                             FDEV(i).end_blk >= blk_addr) {
365                                 blk_addr -= FDEV(i).start_blk;
366                                 bdev = FDEV(i).bdev;
367                                 break;
368                         }
369                 }
370         }
371
372         if (sector)
373                 *sector = SECTOR_FROM_BLOCK(blk_addr);
374         return bdev;
375 }
376
377 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
378 {
379         int i;
380
381         if (!f2fs_is_multi_device(sbi))
382                 return 0;
383
384         for (i = 0; i < sbi->s_ndevs; i++)
385                 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
386                         return i;
387         return 0;
388 }
389
390 static blk_opf_t f2fs_io_flags(struct f2fs_io_info *fio)
391 {
392         unsigned int temp_mask = (1 << NR_TEMP_TYPE) - 1;
393         unsigned int fua_flag, meta_flag, io_flag;
394         blk_opf_t op_flags = 0;
395
396         if (fio->op != REQ_OP_WRITE)
397                 return 0;
398         if (fio->type == DATA)
399                 io_flag = fio->sbi->data_io_flag;
400         else if (fio->type == NODE)
401                 io_flag = fio->sbi->node_io_flag;
402         else
403                 return 0;
404
405         fua_flag = io_flag & temp_mask;
406         meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
407
408         /*
409          * data/node io flag bits per temp:
410          *      REQ_META     |      REQ_FUA      |
411          *    5 |    4 |   3 |    2 |    1 |   0 |
412          * Cold | Warm | Hot | Cold | Warm | Hot |
413          */
414         if ((1 << fio->temp) & meta_flag)
415                 op_flags |= REQ_META;
416         if ((1 << fio->temp) & fua_flag)
417                 op_flags |= REQ_FUA;
418         return op_flags;
419 }
420
421 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
422 {
423         struct f2fs_sb_info *sbi = fio->sbi;
424         struct block_device *bdev;
425         sector_t sector;
426         struct bio *bio;
427
428         bdev = f2fs_target_device(sbi, fio->new_blkaddr, &sector);
429         bio = bio_alloc_bioset(bdev, npages,
430                                 fio->op | fio->op_flags | f2fs_io_flags(fio),
431                                 GFP_NOIO, &f2fs_bioset);
432         bio->bi_iter.bi_sector = sector;
433         if (is_read_io(fio->op)) {
434                 bio->bi_end_io = f2fs_read_end_io;
435                 bio->bi_private = NULL;
436         } else {
437                 bio->bi_end_io = f2fs_write_end_io;
438                 bio->bi_private = sbi;
439         }
440         iostat_alloc_and_bind_ctx(sbi, bio, NULL);
441
442         if (fio->io_wbc)
443                 wbc_init_bio(fio->io_wbc, bio);
444
445         return bio;
446 }
447
448 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
449                                   pgoff_t first_idx,
450                                   const struct f2fs_io_info *fio,
451                                   gfp_t gfp_mask)
452 {
453         /*
454          * The f2fs garbage collector sets ->encrypted_page when it wants to
455          * read/write raw data without encryption.
456          */
457         if (!fio || !fio->encrypted_page)
458                 fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
459 }
460
461 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
462                                      pgoff_t next_idx,
463                                      const struct f2fs_io_info *fio)
464 {
465         /*
466          * The f2fs garbage collector sets ->encrypted_page when it wants to
467          * read/write raw data without encryption.
468          */
469         if (fio && fio->encrypted_page)
470                 return !bio_has_crypt_ctx(bio);
471
472         return fscrypt_mergeable_bio(bio, inode, next_idx);
473 }
474
475 static inline void __submit_bio(struct f2fs_sb_info *sbi,
476                                 struct bio *bio, enum page_type type)
477 {
478         if (!is_read_io(bio_op(bio))) {
479                 unsigned int start;
480
481                 if (type != DATA && type != NODE)
482                         goto submit_io;
483
484                 if (f2fs_lfs_mode(sbi) && current->plug)
485                         blk_finish_plug(current->plug);
486
487                 if (!F2FS_IO_ALIGNED(sbi))
488                         goto submit_io;
489
490                 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
491                 start %= F2FS_IO_SIZE(sbi);
492
493                 if (start == 0)
494                         goto submit_io;
495
496                 /* fill dummy pages */
497                 for (; start < F2FS_IO_SIZE(sbi); start++) {
498                         struct page *page =
499                                 mempool_alloc(sbi->write_io_dummy,
500                                               GFP_NOIO | __GFP_NOFAIL);
501                         f2fs_bug_on(sbi, !page);
502
503                         lock_page(page);
504
505                         zero_user_segment(page, 0, PAGE_SIZE);
506                         set_page_private_dummy(page);
507
508                         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
509                                 f2fs_bug_on(sbi, 1);
510                 }
511                 /*
512                  * In the NODE case, we lose next block address chain. So, we
513                  * need to do checkpoint in f2fs_sync_file.
514                  */
515                 if (type == NODE)
516                         set_sbi_flag(sbi, SBI_NEED_CP);
517         }
518 submit_io:
519         if (is_read_io(bio_op(bio)))
520                 trace_f2fs_submit_read_bio(sbi->sb, type, bio);
521         else
522                 trace_f2fs_submit_write_bio(sbi->sb, type, bio);
523
524         iostat_update_submit_ctx(bio, type);
525         submit_bio(bio);
526 }
527
528 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
529                                 struct bio *bio, enum page_type type)
530 {
531         __submit_bio(sbi, bio, type);
532 }
533
534 static void __submit_merged_bio(struct f2fs_bio_info *io)
535 {
536         struct f2fs_io_info *fio = &io->fio;
537
538         if (!io->bio)
539                 return;
540
541         if (is_read_io(fio->op))
542                 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
543         else
544                 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
545
546         __submit_bio(io->sbi, io->bio, fio->type);
547         io->bio = NULL;
548 }
549
550 static bool __has_merged_page(struct bio *bio, struct inode *inode,
551                                                 struct page *page, nid_t ino)
552 {
553         struct bio_vec *bvec;
554         struct bvec_iter_all iter_all;
555
556         if (!bio)
557                 return false;
558
559         if (!inode && !page && !ino)
560                 return true;
561
562         bio_for_each_segment_all(bvec, bio, iter_all) {
563                 struct page *target = bvec->bv_page;
564
565                 if (fscrypt_is_bounce_page(target)) {
566                         target = fscrypt_pagecache_page(target);
567                         if (IS_ERR(target))
568                                 continue;
569                 }
570                 if (f2fs_is_compressed_page(target)) {
571                         target = f2fs_compress_control_page(target);
572                         if (IS_ERR(target))
573                                 continue;
574                 }
575
576                 if (inode && inode == target->mapping->host)
577                         return true;
578                 if (page && page == target)
579                         return true;
580                 if (ino && ino == ino_of_node(target))
581                         return true;
582         }
583
584         return false;
585 }
586
587 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi)
588 {
589         int i;
590
591         for (i = 0; i < NR_PAGE_TYPE; i++) {
592                 int n = (i == META) ? 1 : NR_TEMP_TYPE;
593                 int j;
594
595                 sbi->write_io[i] = f2fs_kmalloc(sbi,
596                                 array_size(n, sizeof(struct f2fs_bio_info)),
597                                 GFP_KERNEL);
598                 if (!sbi->write_io[i])
599                         return -ENOMEM;
600
601                 for (j = HOT; j < n; j++) {
602                         init_f2fs_rwsem(&sbi->write_io[i][j].io_rwsem);
603                         sbi->write_io[i][j].sbi = sbi;
604                         sbi->write_io[i][j].bio = NULL;
605                         spin_lock_init(&sbi->write_io[i][j].io_lock);
606                         INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
607                         INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list);
608                         init_f2fs_rwsem(&sbi->write_io[i][j].bio_list_lock);
609                 }
610         }
611
612         return 0;
613 }
614
615 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
616                                 enum page_type type, enum temp_type temp)
617 {
618         enum page_type btype = PAGE_TYPE_OF_BIO(type);
619         struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
620
621         f2fs_down_write(&io->io_rwsem);
622
623         /* change META to META_FLUSH in the checkpoint procedure */
624         if (type >= META_FLUSH) {
625                 io->fio.type = META_FLUSH;
626                 io->bio->bi_opf |= REQ_META | REQ_PRIO | REQ_SYNC;
627                 if (!test_opt(sbi, NOBARRIER))
628                         io->bio->bi_opf |= REQ_PREFLUSH | REQ_FUA;
629         }
630         __submit_merged_bio(io);
631         f2fs_up_write(&io->io_rwsem);
632 }
633
634 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
635                                 struct inode *inode, struct page *page,
636                                 nid_t ino, enum page_type type, bool force)
637 {
638         enum temp_type temp;
639         bool ret = true;
640
641         for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
642                 if (!force)     {
643                         enum page_type btype = PAGE_TYPE_OF_BIO(type);
644                         struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
645
646                         f2fs_down_read(&io->io_rwsem);
647                         ret = __has_merged_page(io->bio, inode, page, ino);
648                         f2fs_up_read(&io->io_rwsem);
649                 }
650                 if (ret)
651                         __f2fs_submit_merged_write(sbi, type, temp);
652
653                 /* TODO: use HOT temp only for meta pages now. */
654                 if (type >= META)
655                         break;
656         }
657 }
658
659 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
660 {
661         __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
662 }
663
664 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
665                                 struct inode *inode, struct page *page,
666                                 nid_t ino, enum page_type type)
667 {
668         __submit_merged_write_cond(sbi, inode, page, ino, type, false);
669 }
670
671 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
672 {
673         f2fs_submit_merged_write(sbi, DATA);
674         f2fs_submit_merged_write(sbi, NODE);
675         f2fs_submit_merged_write(sbi, META);
676 }
677
678 /*
679  * Fill the locked page with data located in the block address.
680  * A caller needs to unlock the page on failure.
681  */
682 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
683 {
684         struct bio *bio;
685         struct page *page = fio->encrypted_page ?
686                         fio->encrypted_page : fio->page;
687
688         if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
689                         fio->is_por ? META_POR : (__is_meta_io(fio) ?
690                         META_GENERIC : DATA_GENERIC_ENHANCE)))
691                 return -EFSCORRUPTED;
692
693         trace_f2fs_submit_page_bio(page, fio);
694
695         /* Allocate a new bio */
696         bio = __bio_alloc(fio, 1);
697
698         f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
699                                fio->page->index, fio, GFP_NOIO);
700
701         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
702                 bio_put(bio);
703                 return -EFAULT;
704         }
705
706         if (fio->io_wbc && !is_read_io(fio->op))
707                 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
708
709         inc_page_count(fio->sbi, is_read_io(fio->op) ?
710                         __read_io_type(page): WB_DATA_TYPE(fio->page));
711
712         __submit_bio(fio->sbi, bio, fio->type);
713         return 0;
714 }
715
716 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
717                                 block_t last_blkaddr, block_t cur_blkaddr)
718 {
719         if (unlikely(sbi->max_io_bytes &&
720                         bio->bi_iter.bi_size >= sbi->max_io_bytes))
721                 return false;
722         if (last_blkaddr + 1 != cur_blkaddr)
723                 return false;
724         return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL);
725 }
726
727 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
728                                                 struct f2fs_io_info *fio)
729 {
730         if (io->fio.op != fio->op)
731                 return false;
732         return io->fio.op_flags == fio->op_flags;
733 }
734
735 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
736                                         struct f2fs_bio_info *io,
737                                         struct f2fs_io_info *fio,
738                                         block_t last_blkaddr,
739                                         block_t cur_blkaddr)
740 {
741         if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) {
742                 unsigned int filled_blocks =
743                                 F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size);
744                 unsigned int io_size = F2FS_IO_SIZE(sbi);
745                 unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt;
746
747                 /* IOs in bio is aligned and left space of vectors is not enough */
748                 if (!(filled_blocks % io_size) && left_vecs < io_size)
749                         return false;
750         }
751         if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
752                 return false;
753         return io_type_is_mergeable(io, fio);
754 }
755
756 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
757                                 struct page *page, enum temp_type temp)
758 {
759         struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
760         struct bio_entry *be;
761
762         be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL);
763         be->bio = bio;
764         bio_get(bio);
765
766         if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
767                 f2fs_bug_on(sbi, 1);
768
769         f2fs_down_write(&io->bio_list_lock);
770         list_add_tail(&be->list, &io->bio_list);
771         f2fs_up_write(&io->bio_list_lock);
772 }
773
774 static void del_bio_entry(struct bio_entry *be)
775 {
776         list_del(&be->list);
777         kmem_cache_free(bio_entry_slab, be);
778 }
779
780 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
781                                                         struct page *page)
782 {
783         struct f2fs_sb_info *sbi = fio->sbi;
784         enum temp_type temp;
785         bool found = false;
786         int ret = -EAGAIN;
787
788         for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
789                 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
790                 struct list_head *head = &io->bio_list;
791                 struct bio_entry *be;
792
793                 f2fs_down_write(&io->bio_list_lock);
794                 list_for_each_entry(be, head, list) {
795                         if (be->bio != *bio)
796                                 continue;
797
798                         found = true;
799
800                         f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
801                                                             *fio->last_block,
802                                                             fio->new_blkaddr));
803                         if (f2fs_crypt_mergeable_bio(*bio,
804                                         fio->page->mapping->host,
805                                         fio->page->index, fio) &&
806                             bio_add_page(*bio, page, PAGE_SIZE, 0) ==
807                                         PAGE_SIZE) {
808                                 ret = 0;
809                                 break;
810                         }
811
812                         /* page can't be merged into bio; submit the bio */
813                         del_bio_entry(be);
814                         __submit_bio(sbi, *bio, DATA);
815                         break;
816                 }
817                 f2fs_up_write(&io->bio_list_lock);
818         }
819
820         if (ret) {
821                 bio_put(*bio);
822                 *bio = NULL;
823         }
824
825         return ret;
826 }
827
828 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
829                                         struct bio **bio, struct page *page)
830 {
831         enum temp_type temp;
832         bool found = false;
833         struct bio *target = bio ? *bio : NULL;
834
835         for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
836                 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
837                 struct list_head *head = &io->bio_list;
838                 struct bio_entry *be;
839
840                 if (list_empty(head))
841                         continue;
842
843                 f2fs_down_read(&io->bio_list_lock);
844                 list_for_each_entry(be, head, list) {
845                         if (target)
846                                 found = (target == be->bio);
847                         else
848                                 found = __has_merged_page(be->bio, NULL,
849                                                                 page, 0);
850                         if (found)
851                                 break;
852                 }
853                 f2fs_up_read(&io->bio_list_lock);
854
855                 if (!found)
856                         continue;
857
858                 found = false;
859
860                 f2fs_down_write(&io->bio_list_lock);
861                 list_for_each_entry(be, head, list) {
862                         if (target)
863                                 found = (target == be->bio);
864                         else
865                                 found = __has_merged_page(be->bio, NULL,
866                                                                 page, 0);
867                         if (found) {
868                                 target = be->bio;
869                                 del_bio_entry(be);
870                                 break;
871                         }
872                 }
873                 f2fs_up_write(&io->bio_list_lock);
874         }
875
876         if (found)
877                 __submit_bio(sbi, target, DATA);
878         if (bio && *bio) {
879                 bio_put(*bio);
880                 *bio = NULL;
881         }
882 }
883
884 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
885 {
886         struct bio *bio = *fio->bio;
887         struct page *page = fio->encrypted_page ?
888                         fio->encrypted_page : fio->page;
889
890         if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
891                         __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
892                 return -EFSCORRUPTED;
893
894         trace_f2fs_submit_page_bio(page, fio);
895
896         if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
897                                                 fio->new_blkaddr))
898                 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
899 alloc_new:
900         if (!bio) {
901                 bio = __bio_alloc(fio, BIO_MAX_VECS);
902                 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
903                                        fio->page->index, fio, GFP_NOIO);
904
905                 add_bio_entry(fio->sbi, bio, page, fio->temp);
906         } else {
907                 if (add_ipu_page(fio, &bio, page))
908                         goto alloc_new;
909         }
910
911         if (fio->io_wbc)
912                 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
913
914         inc_page_count(fio->sbi, WB_DATA_TYPE(page));
915
916         *fio->last_block = fio->new_blkaddr;
917         *fio->bio = bio;
918
919         return 0;
920 }
921
922 void f2fs_submit_page_write(struct f2fs_io_info *fio)
923 {
924         struct f2fs_sb_info *sbi = fio->sbi;
925         enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
926         struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
927         struct page *bio_page;
928
929         f2fs_bug_on(sbi, is_read_io(fio->op));
930
931         f2fs_down_write(&io->io_rwsem);
932 next:
933         if (fio->in_list) {
934                 spin_lock(&io->io_lock);
935                 if (list_empty(&io->io_list)) {
936                         spin_unlock(&io->io_lock);
937                         goto out;
938                 }
939                 fio = list_first_entry(&io->io_list,
940                                                 struct f2fs_io_info, list);
941                 list_del(&fio->list);
942                 spin_unlock(&io->io_lock);
943         }
944
945         verify_fio_blkaddr(fio);
946
947         if (fio->encrypted_page)
948                 bio_page = fio->encrypted_page;
949         else if (fio->compressed_page)
950                 bio_page = fio->compressed_page;
951         else
952                 bio_page = fio->page;
953
954         /* set submitted = true as a return value */
955         fio->submitted = true;
956
957         inc_page_count(sbi, WB_DATA_TYPE(bio_page));
958
959         if (io->bio &&
960             (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
961                               fio->new_blkaddr) ||
962              !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
963                                        bio_page->index, fio)))
964                 __submit_merged_bio(io);
965 alloc_new:
966         if (io->bio == NULL) {
967                 if (F2FS_IO_ALIGNED(sbi) &&
968                                 (fio->type == DATA || fio->type == NODE) &&
969                                 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
970                         dec_page_count(sbi, WB_DATA_TYPE(bio_page));
971                         fio->retry = true;
972                         goto skip;
973                 }
974                 io->bio = __bio_alloc(fio, BIO_MAX_VECS);
975                 f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
976                                        bio_page->index, fio, GFP_NOIO);
977                 io->fio = *fio;
978         }
979
980         if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
981                 __submit_merged_bio(io);
982                 goto alloc_new;
983         }
984
985         if (fio->io_wbc)
986                 wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE);
987
988         io->last_block_in_bio = fio->new_blkaddr;
989
990         trace_f2fs_submit_page_write(fio->page, fio);
991 skip:
992         if (fio->in_list)
993                 goto next;
994 out:
995         if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
996                                 !f2fs_is_checkpoint_ready(sbi))
997                 __submit_merged_bio(io);
998         f2fs_up_write(&io->io_rwsem);
999 }
1000
1001 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
1002                                       unsigned nr_pages, blk_opf_t op_flag,
1003                                       pgoff_t first_idx, bool for_write)
1004 {
1005         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1006         struct bio *bio;
1007         struct bio_post_read_ctx *ctx = NULL;
1008         unsigned int post_read_steps = 0;
1009         sector_t sector;
1010         struct block_device *bdev = f2fs_target_device(sbi, blkaddr, &sector);
1011
1012         bio = bio_alloc_bioset(bdev, bio_max_segs(nr_pages),
1013                                REQ_OP_READ | op_flag,
1014                                for_write ? GFP_NOIO : GFP_KERNEL, &f2fs_bioset);
1015         if (!bio)
1016                 return ERR_PTR(-ENOMEM);
1017         bio->bi_iter.bi_sector = sector;
1018         f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
1019         bio->bi_end_io = f2fs_read_end_io;
1020
1021         if (fscrypt_inode_uses_fs_layer_crypto(inode))
1022                 post_read_steps |= STEP_DECRYPT;
1023
1024         if (f2fs_need_verity(inode, first_idx))
1025                 post_read_steps |= STEP_VERITY;
1026
1027         /*
1028          * STEP_DECOMPRESS is handled specially, since a compressed file might
1029          * contain both compressed and uncompressed clusters.  We'll allocate a
1030          * bio_post_read_ctx if the file is compressed, but the caller is
1031          * responsible for enabling STEP_DECOMPRESS if it's actually needed.
1032          */
1033
1034         if (post_read_steps || f2fs_compressed_file(inode)) {
1035                 /* Due to the mempool, this never fails. */
1036                 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1037                 ctx->bio = bio;
1038                 ctx->sbi = sbi;
1039                 ctx->enabled_steps = post_read_steps;
1040                 ctx->fs_blkaddr = blkaddr;
1041                 bio->bi_private = ctx;
1042         }
1043         iostat_alloc_and_bind_ctx(sbi, bio, ctx);
1044
1045         return bio;
1046 }
1047
1048 /* This can handle encryption stuffs */
1049 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
1050                                  block_t blkaddr, blk_opf_t op_flags,
1051                                  bool for_write)
1052 {
1053         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1054         struct bio *bio;
1055
1056         bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1057                                         page->index, for_write);
1058         if (IS_ERR(bio))
1059                 return PTR_ERR(bio);
1060
1061         /* wait for GCed page writeback via META_MAPPING */
1062         f2fs_wait_on_block_writeback(inode, blkaddr);
1063
1064         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1065                 bio_put(bio);
1066                 return -EFAULT;
1067         }
1068         ClearPageError(page);
1069         inc_page_count(sbi, F2FS_RD_DATA);
1070         f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
1071         __submit_bio(sbi, bio, DATA);
1072         return 0;
1073 }
1074
1075 static void __set_data_blkaddr(struct dnode_of_data *dn)
1076 {
1077         struct f2fs_node *rn = F2FS_NODE(dn->node_page);
1078         __le32 *addr_array;
1079         int base = 0;
1080
1081         if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
1082                 base = get_extra_isize(dn->inode);
1083
1084         /* Get physical address of data block */
1085         addr_array = blkaddr_in_node(rn);
1086         addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1087 }
1088
1089 /*
1090  * Lock ordering for the change of data block address:
1091  * ->data_page
1092  *  ->node_page
1093  *    update block addresses in the node page
1094  */
1095 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
1096 {
1097         f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1098         __set_data_blkaddr(dn);
1099         if (set_page_dirty(dn->node_page))
1100                 dn->node_changed = true;
1101 }
1102
1103 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1104 {
1105         dn->data_blkaddr = blkaddr;
1106         f2fs_set_data_blkaddr(dn);
1107         f2fs_update_extent_cache(dn);
1108 }
1109
1110 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
1111 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1112 {
1113         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1114         int err;
1115
1116         if (!count)
1117                 return 0;
1118
1119         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1120                 return -EPERM;
1121         if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1122                 return err;
1123
1124         trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1125                                                 dn->ofs_in_node, count);
1126
1127         f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1128
1129         for (; count > 0; dn->ofs_in_node++) {
1130                 block_t blkaddr = f2fs_data_blkaddr(dn);
1131
1132                 if (blkaddr == NULL_ADDR) {
1133                         dn->data_blkaddr = NEW_ADDR;
1134                         __set_data_blkaddr(dn);
1135                         count--;
1136                 }
1137         }
1138
1139         if (set_page_dirty(dn->node_page))
1140                 dn->node_changed = true;
1141         return 0;
1142 }
1143
1144 /* Should keep dn->ofs_in_node unchanged */
1145 int f2fs_reserve_new_block(struct dnode_of_data *dn)
1146 {
1147         unsigned int ofs_in_node = dn->ofs_in_node;
1148         int ret;
1149
1150         ret = f2fs_reserve_new_blocks(dn, 1);
1151         dn->ofs_in_node = ofs_in_node;
1152         return ret;
1153 }
1154
1155 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1156 {
1157         bool need_put = dn->inode_page ? false : true;
1158         int err;
1159
1160         err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1161         if (err)
1162                 return err;
1163
1164         if (dn->data_blkaddr == NULL_ADDR)
1165                 err = f2fs_reserve_new_block(dn);
1166         if (err || need_put)
1167                 f2fs_put_dnode(dn);
1168         return err;
1169 }
1170
1171 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
1172 {
1173         struct extent_info ei = {0, };
1174         struct inode *inode = dn->inode;
1175
1176         if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1177                 dn->data_blkaddr = ei.blk + index - ei.fofs;
1178                 return 0;
1179         }
1180
1181         return f2fs_reserve_block(dn, index);
1182 }
1183
1184 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1185                                      blk_opf_t op_flags, bool for_write)
1186 {
1187         struct address_space *mapping = inode->i_mapping;
1188         struct dnode_of_data dn;
1189         struct page *page;
1190         struct extent_info ei = {0, };
1191         int err;
1192
1193         page = f2fs_grab_cache_page(mapping, index, for_write);
1194         if (!page)
1195                 return ERR_PTR(-ENOMEM);
1196
1197         if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1198                 dn.data_blkaddr = ei.blk + index - ei.fofs;
1199                 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1200                                                 DATA_GENERIC_ENHANCE_READ)) {
1201                         err = -EFSCORRUPTED;
1202                         goto put_err;
1203                 }
1204                 goto got_it;
1205         }
1206
1207         set_new_dnode(&dn, inode, NULL, NULL, 0);
1208         err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1209         if (err)
1210                 goto put_err;
1211         f2fs_put_dnode(&dn);
1212
1213         if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1214                 err = -ENOENT;
1215                 goto put_err;
1216         }
1217         if (dn.data_blkaddr != NEW_ADDR &&
1218                         !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1219                                                 dn.data_blkaddr,
1220                                                 DATA_GENERIC_ENHANCE)) {
1221                 err = -EFSCORRUPTED;
1222                 goto put_err;
1223         }
1224 got_it:
1225         if (PageUptodate(page)) {
1226                 unlock_page(page);
1227                 return page;
1228         }
1229
1230         /*
1231          * A new dentry page is allocated but not able to be written, since its
1232          * new inode page couldn't be allocated due to -ENOSPC.
1233          * In such the case, its blkaddr can be remained as NEW_ADDR.
1234          * see, f2fs_add_link -> f2fs_get_new_data_page ->
1235          * f2fs_init_inode_metadata.
1236          */
1237         if (dn.data_blkaddr == NEW_ADDR) {
1238                 zero_user_segment(page, 0, PAGE_SIZE);
1239                 if (!PageUptodate(page))
1240                         SetPageUptodate(page);
1241                 unlock_page(page);
1242                 return page;
1243         }
1244
1245         err = f2fs_submit_page_read(inode, page, dn.data_blkaddr,
1246                                                 op_flags, for_write);
1247         if (err)
1248                 goto put_err;
1249         return page;
1250
1251 put_err:
1252         f2fs_put_page(page, 1);
1253         return ERR_PTR(err);
1254 }
1255
1256 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
1257 {
1258         struct address_space *mapping = inode->i_mapping;
1259         struct page *page;
1260
1261         page = find_get_page(mapping, index);
1262         if (page && PageUptodate(page))
1263                 return page;
1264         f2fs_put_page(page, 0);
1265
1266         page = f2fs_get_read_data_page(inode, index, 0, false);
1267         if (IS_ERR(page))
1268                 return page;
1269
1270         if (PageUptodate(page))
1271                 return page;
1272
1273         wait_on_page_locked(page);
1274         if (unlikely(!PageUptodate(page))) {
1275                 f2fs_put_page(page, 0);
1276                 return ERR_PTR(-EIO);
1277         }
1278         return page;
1279 }
1280
1281 /*
1282  * If it tries to access a hole, return an error.
1283  * Because, the callers, functions in dir.c and GC, should be able to know
1284  * whether this page exists or not.
1285  */
1286 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1287                                                         bool for_write)
1288 {
1289         struct address_space *mapping = inode->i_mapping;
1290         struct page *page;
1291 repeat:
1292         page = f2fs_get_read_data_page(inode, index, 0, for_write);
1293         if (IS_ERR(page))
1294                 return page;
1295
1296         /* wait for read completion */
1297         lock_page(page);
1298         if (unlikely(page->mapping != mapping)) {
1299                 f2fs_put_page(page, 1);
1300                 goto repeat;
1301         }
1302         if (unlikely(!PageUptodate(page))) {
1303                 f2fs_put_page(page, 1);
1304                 return ERR_PTR(-EIO);
1305         }
1306         return page;
1307 }
1308
1309 /*
1310  * Caller ensures that this data page is never allocated.
1311  * A new zero-filled data page is allocated in the page cache.
1312  *
1313  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1314  * f2fs_unlock_op().
1315  * Note that, ipage is set only by make_empty_dir, and if any error occur,
1316  * ipage should be released by this function.
1317  */
1318 struct page *f2fs_get_new_data_page(struct inode *inode,
1319                 struct page *ipage, pgoff_t index, bool new_i_size)
1320 {
1321         struct address_space *mapping = inode->i_mapping;
1322         struct page *page;
1323         struct dnode_of_data dn;
1324         int err;
1325
1326         page = f2fs_grab_cache_page(mapping, index, true);
1327         if (!page) {
1328                 /*
1329                  * before exiting, we should make sure ipage will be released
1330                  * if any error occur.
1331                  */
1332                 f2fs_put_page(ipage, 1);
1333                 return ERR_PTR(-ENOMEM);
1334         }
1335
1336         set_new_dnode(&dn, inode, ipage, NULL, 0);
1337         err = f2fs_reserve_block(&dn, index);
1338         if (err) {
1339                 f2fs_put_page(page, 1);
1340                 return ERR_PTR(err);
1341         }
1342         if (!ipage)
1343                 f2fs_put_dnode(&dn);
1344
1345         if (PageUptodate(page))
1346                 goto got_it;
1347
1348         if (dn.data_blkaddr == NEW_ADDR) {
1349                 zero_user_segment(page, 0, PAGE_SIZE);
1350                 if (!PageUptodate(page))
1351                         SetPageUptodate(page);
1352         } else {
1353                 f2fs_put_page(page, 1);
1354
1355                 /* if ipage exists, blkaddr should be NEW_ADDR */
1356                 f2fs_bug_on(F2FS_I_SB(inode), ipage);
1357                 page = f2fs_get_lock_data_page(inode, index, true);
1358                 if (IS_ERR(page))
1359                         return page;
1360         }
1361 got_it:
1362         if (new_i_size && i_size_read(inode) <
1363                                 ((loff_t)(index + 1) << PAGE_SHIFT))
1364                 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1365         return page;
1366 }
1367
1368 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1369 {
1370         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1371         struct f2fs_summary sum;
1372         struct node_info ni;
1373         block_t old_blkaddr;
1374         blkcnt_t count = 1;
1375         int err;
1376
1377         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1378                 return -EPERM;
1379
1380         err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
1381         if (err)
1382                 return err;
1383
1384         dn->data_blkaddr = f2fs_data_blkaddr(dn);
1385         if (dn->data_blkaddr != NULL_ADDR)
1386                 goto alloc;
1387
1388         if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1389                 return err;
1390
1391 alloc:
1392         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1393         old_blkaddr = dn->data_blkaddr;
1394         f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1395                                 &sum, seg_type, NULL);
1396         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
1397                 invalidate_mapping_pages(META_MAPPING(sbi),
1398                                         old_blkaddr, old_blkaddr);
1399                 f2fs_invalidate_compress_page(sbi, old_blkaddr);
1400         }
1401         f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1402         return 0;
1403 }
1404
1405 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
1406 {
1407         if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1408                 if (lock)
1409                         f2fs_down_read(&sbi->node_change);
1410                 else
1411                         f2fs_up_read(&sbi->node_change);
1412         } else {
1413                 if (lock)
1414                         f2fs_lock_op(sbi);
1415                 else
1416                         f2fs_unlock_op(sbi);
1417         }
1418 }
1419
1420 /*
1421  * f2fs_map_blocks() tries to find or build mapping relationship which
1422  * maps continuous logical blocks to physical blocks, and return such
1423  * info via f2fs_map_blocks structure.
1424  */
1425 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1426                                                 int create, int flag)
1427 {
1428         unsigned int maxblocks = map->m_len;
1429         struct dnode_of_data dn;
1430         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1431         int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1432         pgoff_t pgofs, end_offset, end;
1433         int err = 0, ofs = 1;
1434         unsigned int ofs_in_node, last_ofs_in_node;
1435         blkcnt_t prealloc;
1436         struct extent_info ei = {0, };
1437         block_t blkaddr;
1438         unsigned int start_pgofs;
1439         int bidx = 0;
1440
1441         if (!maxblocks)
1442                 return 0;
1443
1444         map->m_bdev = inode->i_sb->s_bdev;
1445         map->m_multidev_dio =
1446                 f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag);
1447
1448         map->m_len = 0;
1449         map->m_flags = 0;
1450
1451         /* it only supports block size == page size */
1452         pgofs = (pgoff_t)map->m_lblk;
1453         end = pgofs + maxblocks;
1454
1455         if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1456                 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1457                                                         map->m_may_create)
1458                         goto next_dnode;
1459
1460                 map->m_pblk = ei.blk + pgofs - ei.fofs;
1461                 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1462                 map->m_flags = F2FS_MAP_MAPPED;
1463                 if (map->m_next_extent)
1464                         *map->m_next_extent = pgofs + map->m_len;
1465
1466                 /* for hardware encryption, but to avoid potential issue in future */
1467                 if (flag == F2FS_GET_BLOCK_DIO)
1468                         f2fs_wait_on_block_writeback_range(inode,
1469                                                 map->m_pblk, map->m_len);
1470
1471                 if (map->m_multidev_dio) {
1472                         block_t blk_addr = map->m_pblk;
1473
1474                         bidx = f2fs_target_device_index(sbi, map->m_pblk);
1475
1476                         map->m_bdev = FDEV(bidx).bdev;
1477                         map->m_pblk -= FDEV(bidx).start_blk;
1478                         map->m_len = min(map->m_len,
1479                                 FDEV(bidx).end_blk + 1 - map->m_pblk);
1480
1481                         if (map->m_may_create)
1482                                 f2fs_update_device_state(sbi, inode->i_ino,
1483                                                         blk_addr, map->m_len);
1484                 }
1485                 goto out;
1486         }
1487
1488 next_dnode:
1489         if (map->m_may_create)
1490                 f2fs_do_map_lock(sbi, flag, true);
1491
1492         /* When reading holes, we need its node page */
1493         set_new_dnode(&dn, inode, NULL, NULL, 0);
1494         err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1495         if (err) {
1496                 if (flag == F2FS_GET_BLOCK_BMAP)
1497                         map->m_pblk = 0;
1498
1499                 if (err == -ENOENT) {
1500                         /*
1501                          * There is one exceptional case that read_node_page()
1502                          * may return -ENOENT due to filesystem has been
1503                          * shutdown or cp_error, so force to convert error
1504                          * number to EIO for such case.
1505                          */
1506                         if (map->m_may_create &&
1507                                 (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1508                                 f2fs_cp_error(sbi))) {
1509                                 err = -EIO;
1510                                 goto unlock_out;
1511                         }
1512
1513                         err = 0;
1514                         if (map->m_next_pgofs)
1515                                 *map->m_next_pgofs =
1516                                         f2fs_get_next_page_offset(&dn, pgofs);
1517                         if (map->m_next_extent)
1518                                 *map->m_next_extent =
1519                                         f2fs_get_next_page_offset(&dn, pgofs);
1520                 }
1521                 goto unlock_out;
1522         }
1523
1524         start_pgofs = pgofs;
1525         prealloc = 0;
1526         last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1527         end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1528
1529 next_block:
1530         blkaddr = f2fs_data_blkaddr(&dn);
1531
1532         if (__is_valid_data_blkaddr(blkaddr) &&
1533                 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1534                 err = -EFSCORRUPTED;
1535                 goto sync_out;
1536         }
1537
1538         if (__is_valid_data_blkaddr(blkaddr)) {
1539                 /* use out-place-update for driect IO under LFS mode */
1540                 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1541                                                         map->m_may_create) {
1542                         err = __allocate_data_block(&dn, map->m_seg_type);
1543                         if (err)
1544                                 goto sync_out;
1545                         blkaddr = dn.data_blkaddr;
1546                         set_inode_flag(inode, FI_APPEND_WRITE);
1547                 }
1548         } else {
1549                 if (create) {
1550                         if (unlikely(f2fs_cp_error(sbi))) {
1551                                 err = -EIO;
1552                                 goto sync_out;
1553                         }
1554                         if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1555                                 if (blkaddr == NULL_ADDR) {
1556                                         prealloc++;
1557                                         last_ofs_in_node = dn.ofs_in_node;
1558                                 }
1559                         } else {
1560                                 WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO &&
1561                                         flag != F2FS_GET_BLOCK_DIO);
1562                                 err = __allocate_data_block(&dn,
1563                                                         map->m_seg_type);
1564                                 if (!err) {
1565                                         if (flag == F2FS_GET_BLOCK_PRE_DIO)
1566                                                 file_need_truncate(inode);
1567                                         set_inode_flag(inode, FI_APPEND_WRITE);
1568                                 }
1569                         }
1570                         if (err)
1571                                 goto sync_out;
1572                         map->m_flags |= F2FS_MAP_NEW;
1573                         blkaddr = dn.data_blkaddr;
1574                 } else {
1575                         if (f2fs_compressed_file(inode) &&
1576                                         f2fs_sanity_check_cluster(&dn) &&
1577                                         (flag != F2FS_GET_BLOCK_FIEMAP ||
1578                                         IS_ENABLED(CONFIG_F2FS_CHECK_FS))) {
1579                                 err = -EFSCORRUPTED;
1580                                 goto sync_out;
1581                         }
1582                         if (flag == F2FS_GET_BLOCK_BMAP) {
1583                                 map->m_pblk = 0;
1584                                 goto sync_out;
1585                         }
1586                         if (flag == F2FS_GET_BLOCK_PRECACHE)
1587                                 goto sync_out;
1588                         if (flag == F2FS_GET_BLOCK_FIEMAP &&
1589                                                 blkaddr == NULL_ADDR) {
1590                                 if (map->m_next_pgofs)
1591                                         *map->m_next_pgofs = pgofs + 1;
1592                                 goto sync_out;
1593                         }
1594                         if (flag != F2FS_GET_BLOCK_FIEMAP) {
1595                                 /* for defragment case */
1596                                 if (map->m_next_pgofs)
1597                                         *map->m_next_pgofs = pgofs + 1;
1598                                 goto sync_out;
1599                         }
1600                 }
1601         }
1602
1603         if (flag == F2FS_GET_BLOCK_PRE_AIO)
1604                 goto skip;
1605
1606         if (map->m_multidev_dio)
1607                 bidx = f2fs_target_device_index(sbi, blkaddr);
1608
1609         if (map->m_len == 0) {
1610                 /* preallocated unwritten block should be mapped for fiemap. */
1611                 if (blkaddr == NEW_ADDR)
1612                         map->m_flags |= F2FS_MAP_UNWRITTEN;
1613                 map->m_flags |= F2FS_MAP_MAPPED;
1614
1615                 map->m_pblk = blkaddr;
1616                 map->m_len = 1;
1617
1618                 if (map->m_multidev_dio)
1619                         map->m_bdev = FDEV(bidx).bdev;
1620         } else if ((map->m_pblk != NEW_ADDR &&
1621                         blkaddr == (map->m_pblk + ofs)) ||
1622                         (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1623                         flag == F2FS_GET_BLOCK_PRE_DIO) {
1624                 if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev)
1625                         goto sync_out;
1626                 ofs++;
1627                 map->m_len++;
1628         } else {
1629                 goto sync_out;
1630         }
1631
1632 skip:
1633         dn.ofs_in_node++;
1634         pgofs++;
1635
1636         /* preallocate blocks in batch for one dnode page */
1637         if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1638                         (pgofs == end || dn.ofs_in_node == end_offset)) {
1639
1640                 dn.ofs_in_node = ofs_in_node;
1641                 err = f2fs_reserve_new_blocks(&dn, prealloc);
1642                 if (err)
1643                         goto sync_out;
1644
1645                 map->m_len += dn.ofs_in_node - ofs_in_node;
1646                 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1647                         err = -ENOSPC;
1648                         goto sync_out;
1649                 }
1650                 dn.ofs_in_node = end_offset;
1651         }
1652
1653         if (pgofs >= end)
1654                 goto sync_out;
1655         else if (dn.ofs_in_node < end_offset)
1656                 goto next_block;
1657
1658         if (flag == F2FS_GET_BLOCK_PRECACHE) {
1659                 if (map->m_flags & F2FS_MAP_MAPPED) {
1660                         unsigned int ofs = start_pgofs - map->m_lblk;
1661
1662                         f2fs_update_extent_cache_range(&dn,
1663                                 start_pgofs, map->m_pblk + ofs,
1664                                 map->m_len - ofs);
1665                 }
1666         }
1667
1668         f2fs_put_dnode(&dn);
1669
1670         if (map->m_may_create) {
1671                 f2fs_do_map_lock(sbi, flag, false);
1672                 f2fs_balance_fs(sbi, dn.node_changed);
1673         }
1674         goto next_dnode;
1675
1676 sync_out:
1677
1678         if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) {
1679                 /*
1680                  * for hardware encryption, but to avoid potential issue
1681                  * in future
1682                  */
1683                 f2fs_wait_on_block_writeback_range(inode,
1684                                                 map->m_pblk, map->m_len);
1685                 invalidate_mapping_pages(META_MAPPING(sbi),
1686                                                 map->m_pblk, map->m_pblk);
1687
1688                 if (map->m_multidev_dio) {
1689                         block_t blk_addr = map->m_pblk;
1690
1691                         bidx = f2fs_target_device_index(sbi, map->m_pblk);
1692
1693                         map->m_bdev = FDEV(bidx).bdev;
1694                         map->m_pblk -= FDEV(bidx).start_blk;
1695
1696                         if (map->m_may_create)
1697                                 f2fs_update_device_state(sbi, inode->i_ino,
1698                                                         blk_addr, map->m_len);
1699
1700                         f2fs_bug_on(sbi, blk_addr + map->m_len >
1701                                                 FDEV(bidx).end_blk + 1);
1702                 }
1703         }
1704
1705         if (flag == F2FS_GET_BLOCK_PRECACHE) {
1706                 if (map->m_flags & F2FS_MAP_MAPPED) {
1707                         unsigned int ofs = start_pgofs - map->m_lblk;
1708
1709                         f2fs_update_extent_cache_range(&dn,
1710                                 start_pgofs, map->m_pblk + ofs,
1711                                 map->m_len - ofs);
1712                 }
1713                 if (map->m_next_extent)
1714                         *map->m_next_extent = pgofs + 1;
1715         }
1716         f2fs_put_dnode(&dn);
1717 unlock_out:
1718         if (map->m_may_create) {
1719                 f2fs_do_map_lock(sbi, flag, false);
1720                 f2fs_balance_fs(sbi, dn.node_changed);
1721         }
1722 out:
1723         trace_f2fs_map_blocks(inode, map, create, flag, err);
1724         return err;
1725 }
1726
1727 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1728 {
1729         struct f2fs_map_blocks map;
1730         block_t last_lblk;
1731         int err;
1732
1733         if (pos + len > i_size_read(inode))
1734                 return false;
1735
1736         map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1737         map.m_next_pgofs = NULL;
1738         map.m_next_extent = NULL;
1739         map.m_seg_type = NO_CHECK_TYPE;
1740         map.m_may_create = false;
1741         last_lblk = F2FS_BLK_ALIGN(pos + len);
1742
1743         while (map.m_lblk < last_lblk) {
1744                 map.m_len = last_lblk - map.m_lblk;
1745                 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1746                 if (err || map.m_len == 0)
1747                         return false;
1748                 map.m_lblk += map.m_len;
1749         }
1750         return true;
1751 }
1752
1753 static inline u64 bytes_to_blks(struct inode *inode, u64 bytes)
1754 {
1755         return (bytes >> inode->i_blkbits);
1756 }
1757
1758 static inline u64 blks_to_bytes(struct inode *inode, u64 blks)
1759 {
1760         return (blks << inode->i_blkbits);
1761 }
1762
1763 static int f2fs_xattr_fiemap(struct inode *inode,
1764                                 struct fiemap_extent_info *fieinfo)
1765 {
1766         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1767         struct page *page;
1768         struct node_info ni;
1769         __u64 phys = 0, len;
1770         __u32 flags;
1771         nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1772         int err = 0;
1773
1774         if (f2fs_has_inline_xattr(inode)) {
1775                 int offset;
1776
1777                 page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1778                                                 inode->i_ino, false);
1779                 if (!page)
1780                         return -ENOMEM;
1781
1782                 err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false);
1783                 if (err) {
1784                         f2fs_put_page(page, 1);
1785                         return err;
1786                 }
1787
1788                 phys = blks_to_bytes(inode, ni.blk_addr);
1789                 offset = offsetof(struct f2fs_inode, i_addr) +
1790                                         sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1791                                         get_inline_xattr_addrs(inode));
1792
1793                 phys += offset;
1794                 len = inline_xattr_size(inode);
1795
1796                 f2fs_put_page(page, 1);
1797
1798                 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1799
1800                 if (!xnid)
1801                         flags |= FIEMAP_EXTENT_LAST;
1802
1803                 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1804                 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1805                 if (err || err == 1)
1806                         return err;
1807         }
1808
1809         if (xnid) {
1810                 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1811                 if (!page)
1812                         return -ENOMEM;
1813
1814                 err = f2fs_get_node_info(sbi, xnid, &ni, false);
1815                 if (err) {
1816                         f2fs_put_page(page, 1);
1817                         return err;
1818                 }
1819
1820                 phys = blks_to_bytes(inode, ni.blk_addr);
1821                 len = inode->i_sb->s_blocksize;
1822
1823                 f2fs_put_page(page, 1);
1824
1825                 flags = FIEMAP_EXTENT_LAST;
1826         }
1827
1828         if (phys) {
1829                 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1830                 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1831         }
1832
1833         return (err < 0 ? err : 0);
1834 }
1835
1836 static loff_t max_inode_blocks(struct inode *inode)
1837 {
1838         loff_t result = ADDRS_PER_INODE(inode);
1839         loff_t leaf_count = ADDRS_PER_BLOCK(inode);
1840
1841         /* two direct node blocks */
1842         result += (leaf_count * 2);
1843
1844         /* two indirect node blocks */
1845         leaf_count *= NIDS_PER_BLOCK;
1846         result += (leaf_count * 2);
1847
1848         /* one double indirect node block */
1849         leaf_count *= NIDS_PER_BLOCK;
1850         result += leaf_count;
1851
1852         return result;
1853 }
1854
1855 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1856                 u64 start, u64 len)
1857 {
1858         struct f2fs_map_blocks map;
1859         sector_t start_blk, last_blk;
1860         pgoff_t next_pgofs;
1861         u64 logical = 0, phys = 0, size = 0;
1862         u32 flags = 0;
1863         int ret = 0;
1864         bool compr_cluster = false, compr_appended;
1865         unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1866         unsigned int count_in_cluster = 0;
1867         loff_t maxbytes;
1868
1869         if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1870                 ret = f2fs_precache_extents(inode);
1871                 if (ret)
1872                         return ret;
1873         }
1874
1875         ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1876         if (ret)
1877                 return ret;
1878
1879         inode_lock(inode);
1880
1881         maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
1882         if (start > maxbytes) {
1883                 ret = -EFBIG;
1884                 goto out;
1885         }
1886
1887         if (len > maxbytes || (maxbytes - len) < start)
1888                 len = maxbytes - start;
1889
1890         if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1891                 ret = f2fs_xattr_fiemap(inode, fieinfo);
1892                 goto out;
1893         }
1894
1895         if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1896                 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1897                 if (ret != -EAGAIN)
1898                         goto out;
1899         }
1900
1901         if (bytes_to_blks(inode, len) == 0)
1902                 len = blks_to_bytes(inode, 1);
1903
1904         start_blk = bytes_to_blks(inode, start);
1905         last_blk = bytes_to_blks(inode, start + len - 1);
1906
1907 next:
1908         memset(&map, 0, sizeof(map));
1909         map.m_lblk = start_blk;
1910         map.m_len = bytes_to_blks(inode, len);
1911         map.m_next_pgofs = &next_pgofs;
1912         map.m_seg_type = NO_CHECK_TYPE;
1913
1914         if (compr_cluster) {
1915                 map.m_lblk += 1;
1916                 map.m_len = cluster_size - count_in_cluster;
1917         }
1918
1919         ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP);
1920         if (ret)
1921                 goto out;
1922
1923         /* HOLE */
1924         if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) {
1925                 start_blk = next_pgofs;
1926
1927                 if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode,
1928                                                 max_inode_blocks(inode)))
1929                         goto prep_next;
1930
1931                 flags |= FIEMAP_EXTENT_LAST;
1932         }
1933
1934         compr_appended = false;
1935         /* In a case of compressed cluster, append this to the last extent */
1936         if (compr_cluster && ((map.m_flags & F2FS_MAP_UNWRITTEN) ||
1937                         !(map.m_flags & F2FS_MAP_FLAGS))) {
1938                 compr_appended = true;
1939                 goto skip_fill;
1940         }
1941
1942         if (size) {
1943                 flags |= FIEMAP_EXTENT_MERGED;
1944                 if (IS_ENCRYPTED(inode))
1945                         flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1946
1947                 ret = fiemap_fill_next_extent(fieinfo, logical,
1948                                 phys, size, flags);
1949                 trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
1950                 if (ret)
1951                         goto out;
1952                 size = 0;
1953         }
1954
1955         if (start_blk > last_blk)
1956                 goto out;
1957
1958 skip_fill:
1959         if (map.m_pblk == COMPRESS_ADDR) {
1960                 compr_cluster = true;
1961                 count_in_cluster = 1;
1962         } else if (compr_appended) {
1963                 unsigned int appended_blks = cluster_size -
1964                                                 count_in_cluster + 1;
1965                 size += blks_to_bytes(inode, appended_blks);
1966                 start_blk += appended_blks;
1967                 compr_cluster = false;
1968         } else {
1969                 logical = blks_to_bytes(inode, start_blk);
1970                 phys = __is_valid_data_blkaddr(map.m_pblk) ?
1971                         blks_to_bytes(inode, map.m_pblk) : 0;
1972                 size = blks_to_bytes(inode, map.m_len);
1973                 flags = 0;
1974
1975                 if (compr_cluster) {
1976                         flags = FIEMAP_EXTENT_ENCODED;
1977                         count_in_cluster += map.m_len;
1978                         if (count_in_cluster == cluster_size) {
1979                                 compr_cluster = false;
1980                                 size += blks_to_bytes(inode, 1);
1981                         }
1982                 } else if (map.m_flags & F2FS_MAP_UNWRITTEN) {
1983                         flags = FIEMAP_EXTENT_UNWRITTEN;
1984                 }
1985
1986                 start_blk += bytes_to_blks(inode, size);
1987         }
1988
1989 prep_next:
1990         cond_resched();
1991         if (fatal_signal_pending(current))
1992                 ret = -EINTR;
1993         else
1994                 goto next;
1995 out:
1996         if (ret == 1)
1997                 ret = 0;
1998
1999         inode_unlock(inode);
2000         return ret;
2001 }
2002
2003 static inline loff_t f2fs_readpage_limit(struct inode *inode)
2004 {
2005         if (IS_ENABLED(CONFIG_FS_VERITY) &&
2006             (IS_VERITY(inode) || f2fs_verity_in_progress(inode)))
2007                 return inode->i_sb->s_maxbytes;
2008
2009         return i_size_read(inode);
2010 }
2011
2012 static int f2fs_read_single_page(struct inode *inode, struct page *page,
2013                                         unsigned nr_pages,
2014                                         struct f2fs_map_blocks *map,
2015                                         struct bio **bio_ret,
2016                                         sector_t *last_block_in_bio,
2017                                         bool is_readahead)
2018 {
2019         struct bio *bio = *bio_ret;
2020         const unsigned blocksize = blks_to_bytes(inode, 1);
2021         sector_t block_in_file;
2022         sector_t last_block;
2023         sector_t last_block_in_file;
2024         sector_t block_nr;
2025         int ret = 0;
2026
2027         block_in_file = (sector_t)page_index(page);
2028         last_block = block_in_file + nr_pages;
2029         last_block_in_file = bytes_to_blks(inode,
2030                         f2fs_readpage_limit(inode) + blocksize - 1);
2031         if (last_block > last_block_in_file)
2032                 last_block = last_block_in_file;
2033
2034         /* just zeroing out page which is beyond EOF */
2035         if (block_in_file >= last_block)
2036                 goto zero_out;
2037         /*
2038          * Map blocks using the previous result first.
2039          */
2040         if ((map->m_flags & F2FS_MAP_MAPPED) &&
2041                         block_in_file > map->m_lblk &&
2042                         block_in_file < (map->m_lblk + map->m_len))
2043                 goto got_it;
2044
2045         /*
2046          * Then do more f2fs_map_blocks() calls until we are
2047          * done with this page.
2048          */
2049         map->m_lblk = block_in_file;
2050         map->m_len = last_block - block_in_file;
2051
2052         ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT);
2053         if (ret)
2054                 goto out;
2055 got_it:
2056         if ((map->m_flags & F2FS_MAP_MAPPED)) {
2057                 block_nr = map->m_pblk + block_in_file - map->m_lblk;
2058                 SetPageMappedToDisk(page);
2059
2060                 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2061                                                 DATA_GENERIC_ENHANCE_READ)) {
2062                         ret = -EFSCORRUPTED;
2063                         goto out;
2064                 }
2065         } else {
2066 zero_out:
2067                 zero_user_segment(page, 0, PAGE_SIZE);
2068                 if (f2fs_need_verity(inode, page->index) &&
2069                     !fsverity_verify_page(page)) {
2070                         ret = -EIO;
2071                         goto out;
2072                 }
2073                 if (!PageUptodate(page))
2074                         SetPageUptodate(page);
2075                 unlock_page(page);
2076                 goto out;
2077         }
2078
2079         /*
2080          * This page will go to BIO.  Do we need to send this
2081          * BIO off first?
2082          */
2083         if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2084                                        *last_block_in_bio, block_nr) ||
2085                     !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2086 submit_and_realloc:
2087                 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2088                 bio = NULL;
2089         }
2090         if (bio == NULL) {
2091                 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2092                                 is_readahead ? REQ_RAHEAD : 0, page->index,
2093                                 false);
2094                 if (IS_ERR(bio)) {
2095                         ret = PTR_ERR(bio);
2096                         bio = NULL;
2097                         goto out;
2098                 }
2099         }
2100
2101         /*
2102          * If the page is under writeback, we need to wait for
2103          * its completion to see the correct decrypted data.
2104          */
2105         f2fs_wait_on_block_writeback(inode, block_nr);
2106
2107         if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2108                 goto submit_and_realloc;
2109
2110         inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2111         f2fs_update_iostat(F2FS_I_SB(inode), FS_DATA_READ_IO, F2FS_BLKSIZE);
2112         ClearPageError(page);
2113         *last_block_in_bio = block_nr;
2114         goto out;
2115 out:
2116         *bio_ret = bio;
2117         return ret;
2118 }
2119
2120 #ifdef CONFIG_F2FS_FS_COMPRESSION
2121 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2122                                 unsigned nr_pages, sector_t *last_block_in_bio,
2123                                 bool is_readahead, bool for_write)
2124 {
2125         struct dnode_of_data dn;
2126         struct inode *inode = cc->inode;
2127         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2128         struct bio *bio = *bio_ret;
2129         unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2130         sector_t last_block_in_file;
2131         const unsigned blocksize = blks_to_bytes(inode, 1);
2132         struct decompress_io_ctx *dic = NULL;
2133         struct extent_info ei = {0, };
2134         bool from_dnode = true;
2135         int i;
2136         int ret = 0;
2137
2138         f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2139
2140         last_block_in_file = bytes_to_blks(inode,
2141                         f2fs_readpage_limit(inode) + blocksize - 1);
2142
2143         /* get rid of pages beyond EOF */
2144         for (i = 0; i < cc->cluster_size; i++) {
2145                 struct page *page = cc->rpages[i];
2146
2147                 if (!page)
2148                         continue;
2149                 if ((sector_t)page->index >= last_block_in_file) {
2150                         zero_user_segment(page, 0, PAGE_SIZE);
2151                         if (!PageUptodate(page))
2152                                 SetPageUptodate(page);
2153                 } else if (!PageUptodate(page)) {
2154                         continue;
2155                 }
2156                 unlock_page(page);
2157                 if (for_write)
2158                         put_page(page);
2159                 cc->rpages[i] = NULL;
2160                 cc->nr_rpages--;
2161         }
2162
2163         /* we are done since all pages are beyond EOF */
2164         if (f2fs_cluster_is_empty(cc))
2165                 goto out;
2166
2167         if (f2fs_lookup_extent_cache(inode, start_idx, &ei))
2168                 from_dnode = false;
2169
2170         if (!from_dnode)
2171                 goto skip_reading_dnode;
2172
2173         set_new_dnode(&dn, inode, NULL, NULL, 0);
2174         ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2175         if (ret)
2176                 goto out;
2177
2178         f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2179
2180 skip_reading_dnode:
2181         for (i = 1; i < cc->cluster_size; i++) {
2182                 block_t blkaddr;
2183
2184                 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2185                                         dn.ofs_in_node + i) :
2186                                         ei.blk + i - 1;
2187
2188                 if (!__is_valid_data_blkaddr(blkaddr))
2189                         break;
2190
2191                 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2192                         ret = -EFAULT;
2193                         goto out_put_dnode;
2194                 }
2195                 cc->nr_cpages++;
2196
2197                 if (!from_dnode && i >= ei.c_len)
2198                         break;
2199         }
2200
2201         /* nothing to decompress */
2202         if (cc->nr_cpages == 0) {
2203                 ret = 0;
2204                 goto out_put_dnode;
2205         }
2206
2207         dic = f2fs_alloc_dic(cc);
2208         if (IS_ERR(dic)) {
2209                 ret = PTR_ERR(dic);
2210                 goto out_put_dnode;
2211         }
2212
2213         for (i = 0; i < cc->nr_cpages; i++) {
2214                 struct page *page = dic->cpages[i];
2215                 block_t blkaddr;
2216                 struct bio_post_read_ctx *ctx;
2217
2218                 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2219                                         dn.ofs_in_node + i + 1) :
2220                                         ei.blk + i;
2221
2222                 f2fs_wait_on_block_writeback(inode, blkaddr);
2223
2224                 if (f2fs_load_compressed_page(sbi, page, blkaddr)) {
2225                         if (atomic_dec_and_test(&dic->remaining_pages))
2226                                 f2fs_decompress_cluster(dic);
2227                         continue;
2228                 }
2229
2230                 if (bio && (!page_is_mergeable(sbi, bio,
2231                                         *last_block_in_bio, blkaddr) ||
2232                     !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2233 submit_and_realloc:
2234                         __submit_bio(sbi, bio, DATA);
2235                         bio = NULL;
2236                 }
2237
2238                 if (!bio) {
2239                         bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2240                                         is_readahead ? REQ_RAHEAD : 0,
2241                                         page->index, for_write);
2242                         if (IS_ERR(bio)) {
2243                                 ret = PTR_ERR(bio);
2244                                 f2fs_decompress_end_io(dic, ret);
2245                                 f2fs_put_dnode(&dn);
2246                                 *bio_ret = NULL;
2247                                 return ret;
2248                         }
2249                 }
2250
2251                 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2252                         goto submit_and_realloc;
2253
2254                 ctx = get_post_read_ctx(bio);
2255                 ctx->enabled_steps |= STEP_DECOMPRESS;
2256                 refcount_inc(&dic->refcnt);
2257
2258                 inc_page_count(sbi, F2FS_RD_DATA);
2259                 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
2260                 f2fs_update_iostat(sbi, FS_CDATA_READ_IO, F2FS_BLKSIZE);
2261                 ClearPageError(page);
2262                 *last_block_in_bio = blkaddr;
2263         }
2264
2265         if (from_dnode)
2266                 f2fs_put_dnode(&dn);
2267
2268         *bio_ret = bio;
2269         return 0;
2270
2271 out_put_dnode:
2272         if (from_dnode)
2273                 f2fs_put_dnode(&dn);
2274 out:
2275         for (i = 0; i < cc->cluster_size; i++) {
2276                 if (cc->rpages[i]) {
2277                         ClearPageUptodate(cc->rpages[i]);
2278                         ClearPageError(cc->rpages[i]);
2279                         unlock_page(cc->rpages[i]);
2280                 }
2281         }
2282         *bio_ret = bio;
2283         return ret;
2284 }
2285 #endif
2286
2287 /*
2288  * This function was originally taken from fs/mpage.c, and customized for f2fs.
2289  * Major change was from block_size == page_size in f2fs by default.
2290  */
2291 static int f2fs_mpage_readpages(struct inode *inode,
2292                 struct readahead_control *rac, struct page *page)
2293 {
2294         struct bio *bio = NULL;
2295         sector_t last_block_in_bio = 0;
2296         struct f2fs_map_blocks map;
2297 #ifdef CONFIG_F2FS_FS_COMPRESSION
2298         struct compress_ctx cc = {
2299                 .inode = inode,
2300                 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2301                 .cluster_size = F2FS_I(inode)->i_cluster_size,
2302                 .cluster_idx = NULL_CLUSTER,
2303                 .rpages = NULL,
2304                 .cpages = NULL,
2305                 .nr_rpages = 0,
2306                 .nr_cpages = 0,
2307         };
2308         pgoff_t nc_cluster_idx = NULL_CLUSTER;
2309 #endif
2310         unsigned nr_pages = rac ? readahead_count(rac) : 1;
2311         unsigned max_nr_pages = nr_pages;
2312         int ret = 0;
2313
2314         map.m_pblk = 0;
2315         map.m_lblk = 0;
2316         map.m_len = 0;
2317         map.m_flags = 0;
2318         map.m_next_pgofs = NULL;
2319         map.m_next_extent = NULL;
2320         map.m_seg_type = NO_CHECK_TYPE;
2321         map.m_may_create = false;
2322
2323         for (; nr_pages; nr_pages--) {
2324                 if (rac) {
2325                         page = readahead_page(rac);
2326                         prefetchw(&page->flags);
2327                 }
2328
2329 #ifdef CONFIG_F2FS_FS_COMPRESSION
2330                 if (f2fs_compressed_file(inode)) {
2331                         /* there are remained comressed pages, submit them */
2332                         if (!f2fs_cluster_can_merge_page(&cc, page->index)) {
2333                                 ret = f2fs_read_multi_pages(&cc, &bio,
2334                                                         max_nr_pages,
2335                                                         &last_block_in_bio,
2336                                                         rac != NULL, false);
2337                                 f2fs_destroy_compress_ctx(&cc, false);
2338                                 if (ret)
2339                                         goto set_error_page;
2340                         }
2341                         if (cc.cluster_idx == NULL_CLUSTER) {
2342                                 if (nc_cluster_idx ==
2343                                         page->index >> cc.log_cluster_size) {
2344                                         goto read_single_page;
2345                                 }
2346
2347                                 ret = f2fs_is_compressed_cluster(inode, page->index);
2348                                 if (ret < 0)
2349                                         goto set_error_page;
2350                                 else if (!ret) {
2351                                         nc_cluster_idx =
2352                                                 page->index >> cc.log_cluster_size;
2353                                         goto read_single_page;
2354                                 }
2355
2356                                 nc_cluster_idx = NULL_CLUSTER;
2357                         }
2358                         ret = f2fs_init_compress_ctx(&cc);
2359                         if (ret)
2360                                 goto set_error_page;
2361
2362                         f2fs_compress_ctx_add_page(&cc, page);
2363
2364                         goto next_page;
2365                 }
2366 read_single_page:
2367 #endif
2368
2369                 ret = f2fs_read_single_page(inode, page, max_nr_pages, &map,
2370                                         &bio, &last_block_in_bio, rac);
2371                 if (ret) {
2372 #ifdef CONFIG_F2FS_FS_COMPRESSION
2373 set_error_page:
2374 #endif
2375                         SetPageError(page);
2376                         zero_user_segment(page, 0, PAGE_SIZE);
2377                         unlock_page(page);
2378                 }
2379 #ifdef CONFIG_F2FS_FS_COMPRESSION
2380 next_page:
2381 #endif
2382                 if (rac)
2383                         put_page(page);
2384
2385 #ifdef CONFIG_F2FS_FS_COMPRESSION
2386                 if (f2fs_compressed_file(inode)) {
2387                         /* last page */
2388                         if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2389                                 ret = f2fs_read_multi_pages(&cc, &bio,
2390                                                         max_nr_pages,
2391                                                         &last_block_in_bio,
2392                                                         rac != NULL, false);
2393                                 f2fs_destroy_compress_ctx(&cc, false);
2394                         }
2395                 }
2396 #endif
2397         }
2398         if (bio)
2399                 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2400         return ret;
2401 }
2402
2403 static int f2fs_read_data_folio(struct file *file, struct folio *folio)
2404 {
2405         struct page *page = &folio->page;
2406         struct inode *inode = page_file_mapping(page)->host;
2407         int ret = -EAGAIN;
2408
2409         trace_f2fs_readpage(page, DATA);
2410
2411         if (!f2fs_is_compress_backend_ready(inode)) {
2412                 unlock_page(page);
2413                 return -EOPNOTSUPP;
2414         }
2415
2416         /* If the file has inline data, try to read it directly */
2417         if (f2fs_has_inline_data(inode))
2418                 ret = f2fs_read_inline_data(inode, page);
2419         if (ret == -EAGAIN)
2420                 ret = f2fs_mpage_readpages(inode, NULL, page);
2421         return ret;
2422 }
2423
2424 static void f2fs_readahead(struct readahead_control *rac)
2425 {
2426         struct inode *inode = rac->mapping->host;
2427
2428         trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2429
2430         if (!f2fs_is_compress_backend_ready(inode))
2431                 return;
2432
2433         /* If the file has inline data, skip readahead */
2434         if (f2fs_has_inline_data(inode))
2435                 return;
2436
2437         f2fs_mpage_readpages(inode, rac, NULL);
2438 }
2439
2440 int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2441 {
2442         struct inode *inode = fio->page->mapping->host;
2443         struct page *mpage, *page;
2444         gfp_t gfp_flags = GFP_NOFS;
2445
2446         if (!f2fs_encrypted_file(inode))
2447                 return 0;
2448
2449         page = fio->compressed_page ? fio->compressed_page : fio->page;
2450
2451         /* wait for GCed page writeback via META_MAPPING */
2452         f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2453
2454         if (fscrypt_inode_uses_inline_crypto(inode))
2455                 return 0;
2456
2457 retry_encrypt:
2458         fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2459                                         PAGE_SIZE, 0, gfp_flags);
2460         if (IS_ERR(fio->encrypted_page)) {
2461                 /* flush pending IOs and wait for a while in the ENOMEM case */
2462                 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2463                         f2fs_flush_merged_writes(fio->sbi);
2464                         memalloc_retry_wait(GFP_NOFS);
2465                         gfp_flags |= __GFP_NOFAIL;
2466                         goto retry_encrypt;
2467                 }
2468                 return PTR_ERR(fio->encrypted_page);
2469         }
2470
2471         mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2472         if (mpage) {
2473                 if (PageUptodate(mpage))
2474                         memcpy(page_address(mpage),
2475                                 page_address(fio->encrypted_page), PAGE_SIZE);
2476                 f2fs_put_page(mpage, 1);
2477         }
2478         return 0;
2479 }
2480
2481 static inline bool check_inplace_update_policy(struct inode *inode,
2482                                 struct f2fs_io_info *fio)
2483 {
2484         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2485         unsigned int policy = SM_I(sbi)->ipu_policy;
2486
2487         if (policy & (0x1 << F2FS_IPU_HONOR_OPU_WRITE) &&
2488                         is_inode_flag_set(inode, FI_OPU_WRITE))
2489                 return false;
2490         if (policy & (0x1 << F2FS_IPU_FORCE))
2491                 return true;
2492         if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
2493                 return true;
2494         if (policy & (0x1 << F2FS_IPU_UTIL) &&
2495                         utilization(sbi) > SM_I(sbi)->min_ipu_util)
2496                 return true;
2497         if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
2498                         utilization(sbi) > SM_I(sbi)->min_ipu_util)
2499                 return true;
2500
2501         /*
2502          * IPU for rewrite async pages
2503          */
2504         if (policy & (0x1 << F2FS_IPU_ASYNC) &&
2505                         fio && fio->op == REQ_OP_WRITE &&
2506                         !(fio->op_flags & REQ_SYNC) &&
2507                         !IS_ENCRYPTED(inode))
2508                 return true;
2509
2510         /* this is only set during fdatasync */
2511         if (policy & (0x1 << F2FS_IPU_FSYNC) &&
2512                         is_inode_flag_set(inode, FI_NEED_IPU))
2513                 return true;
2514
2515         if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2516                         !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2517                 return true;
2518
2519         return false;
2520 }
2521
2522 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2523 {
2524         /* swap file is migrating in aligned write mode */
2525         if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2526                 return false;
2527
2528         if (f2fs_is_pinned_file(inode))
2529                 return true;
2530
2531         /* if this is cold file, we should overwrite to avoid fragmentation */
2532         if (file_is_cold(inode))
2533                 return true;
2534
2535         return check_inplace_update_policy(inode, fio);
2536 }
2537
2538 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2539 {
2540         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2541
2542         /* The below cases were checked when setting it. */
2543         if (f2fs_is_pinned_file(inode))
2544                 return false;
2545         if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK))
2546                 return true;
2547         if (f2fs_lfs_mode(sbi))
2548                 return true;
2549         if (S_ISDIR(inode->i_mode))
2550                 return true;
2551         if (IS_NOQUOTA(inode))
2552                 return true;
2553         if (f2fs_is_atomic_file(inode))
2554                 return true;
2555
2556         /* swap file is migrating in aligned write mode */
2557         if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2558                 return true;
2559
2560         if (is_inode_flag_set(inode, FI_OPU_WRITE))
2561                 return true;
2562
2563         if (fio) {
2564                 if (page_private_gcing(fio->page))
2565                         return true;
2566                 if (page_private_dummy(fio->page))
2567                         return true;
2568                 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2569                         f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2570                         return true;
2571         }
2572         return false;
2573 }
2574
2575 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2576 {
2577         struct inode *inode = fio->page->mapping->host;
2578
2579         if (f2fs_should_update_outplace(inode, fio))
2580                 return false;
2581
2582         return f2fs_should_update_inplace(inode, fio);
2583 }
2584
2585 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2586 {
2587         struct page *page = fio->page;
2588         struct inode *inode = page->mapping->host;
2589         struct dnode_of_data dn;
2590         struct extent_info ei = {0, };
2591         struct node_info ni;
2592         bool ipu_force = false;
2593         int err = 0;
2594
2595         /* Use COW inode to make dnode_of_data for atomic write */
2596         if (f2fs_is_atomic_file(inode))
2597                 set_new_dnode(&dn, F2FS_I(inode)->cow_inode, NULL, NULL, 0);
2598         else
2599                 set_new_dnode(&dn, inode, NULL, NULL, 0);
2600
2601         if (need_inplace_update(fio) &&
2602                         f2fs_lookup_extent_cache(inode, page->index, &ei)) {
2603                 fio->old_blkaddr = ei.blk + page->index - ei.fofs;
2604
2605                 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2606                                                 DATA_GENERIC_ENHANCE))
2607                         return -EFSCORRUPTED;
2608
2609                 ipu_force = true;
2610                 fio->need_lock = LOCK_DONE;
2611                 goto got_it;
2612         }
2613
2614         /* Deadlock due to between page->lock and f2fs_lock_op */
2615         if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2616                 return -EAGAIN;
2617
2618         err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2619         if (err)
2620                 goto out;
2621
2622         fio->old_blkaddr = dn.data_blkaddr;
2623
2624         /* This page is already truncated */
2625         if (fio->old_blkaddr == NULL_ADDR) {
2626                 ClearPageUptodate(page);
2627                 clear_page_private_gcing(page);
2628                 goto out_writepage;
2629         }
2630 got_it:
2631         if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2632                 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2633                                                 DATA_GENERIC_ENHANCE)) {
2634                 err = -EFSCORRUPTED;
2635                 goto out_writepage;
2636         }
2637
2638         /*
2639          * If current allocation needs SSR,
2640          * it had better in-place writes for updated data.
2641          */
2642         if (ipu_force ||
2643                 (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2644                                         need_inplace_update(fio))) {
2645                 err = f2fs_encrypt_one_page(fio);
2646                 if (err)
2647                         goto out_writepage;
2648
2649                 set_page_writeback(page);
2650                 ClearPageError(page);
2651                 f2fs_put_dnode(&dn);
2652                 if (fio->need_lock == LOCK_REQ)
2653                         f2fs_unlock_op(fio->sbi);
2654                 err = f2fs_inplace_write_data(fio);
2655                 if (err) {
2656                         if (fscrypt_inode_uses_fs_layer_crypto(inode))
2657                                 fscrypt_finalize_bounce_page(&fio->encrypted_page);
2658                         if (PageWriteback(page))
2659                                 end_page_writeback(page);
2660                 } else {
2661                         set_inode_flag(inode, FI_UPDATE_WRITE);
2662                 }
2663                 trace_f2fs_do_write_data_page(fio->page, IPU);
2664                 return err;
2665         }
2666
2667         if (fio->need_lock == LOCK_RETRY) {
2668                 if (!f2fs_trylock_op(fio->sbi)) {
2669                         err = -EAGAIN;
2670                         goto out_writepage;
2671                 }
2672                 fio->need_lock = LOCK_REQ;
2673         }
2674
2675         err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false);
2676         if (err)
2677                 goto out_writepage;
2678
2679         fio->version = ni.version;
2680
2681         err = f2fs_encrypt_one_page(fio);
2682         if (err)
2683                 goto out_writepage;
2684
2685         set_page_writeback(page);
2686         ClearPageError(page);
2687
2688         if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2689                 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2690
2691         /* LFS mode write path */
2692         f2fs_outplace_write_data(&dn, fio);
2693         trace_f2fs_do_write_data_page(page, OPU);
2694         set_inode_flag(inode, FI_APPEND_WRITE);
2695         if (page->index == 0)
2696                 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
2697 out_writepage:
2698         f2fs_put_dnode(&dn);
2699 out:
2700         if (fio->need_lock == LOCK_REQ)
2701                 f2fs_unlock_op(fio->sbi);
2702         return err;
2703 }
2704
2705 int f2fs_write_single_data_page(struct page *page, int *submitted,
2706                                 struct bio **bio,
2707                                 sector_t *last_block,
2708                                 struct writeback_control *wbc,
2709                                 enum iostat_type io_type,
2710                                 int compr_blocks,
2711                                 bool allow_balance)
2712 {
2713         struct inode *inode = page->mapping->host;
2714         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2715         loff_t i_size = i_size_read(inode);
2716         const pgoff_t end_index = ((unsigned long long)i_size)
2717                                                         >> PAGE_SHIFT;
2718         loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2719         unsigned offset = 0;
2720         bool need_balance_fs = false;
2721         int err = 0;
2722         struct f2fs_io_info fio = {
2723                 .sbi = sbi,
2724                 .ino = inode->i_ino,
2725                 .type = DATA,
2726                 .op = REQ_OP_WRITE,
2727                 .op_flags = wbc_to_write_flags(wbc),
2728                 .old_blkaddr = NULL_ADDR,
2729                 .page = page,
2730                 .encrypted_page = NULL,
2731                 .submitted = false,
2732                 .compr_blocks = compr_blocks,
2733                 .need_lock = LOCK_RETRY,
2734                 .io_type = io_type,
2735                 .io_wbc = wbc,
2736                 .bio = bio,
2737                 .last_block = last_block,
2738         };
2739
2740         trace_f2fs_writepage(page, DATA);
2741
2742         /* we should bypass data pages to proceed the kworkder jobs */
2743         if (unlikely(f2fs_cp_error(sbi))) {
2744                 mapping_set_error(page->mapping, -EIO);
2745                 /*
2746                  * don't drop any dirty dentry pages for keeping lastest
2747                  * directory structure.
2748                  */
2749                 if (S_ISDIR(inode->i_mode))
2750                         goto redirty_out;
2751                 goto out;
2752         }
2753
2754         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2755                 goto redirty_out;
2756
2757         if (page->index < end_index ||
2758                         f2fs_verity_in_progress(inode) ||
2759                         compr_blocks)
2760                 goto write;
2761
2762         /*
2763          * If the offset is out-of-range of file size,
2764          * this page does not have to be written to disk.
2765          */
2766         offset = i_size & (PAGE_SIZE - 1);
2767         if ((page->index >= end_index + 1) || !offset)
2768                 goto out;
2769
2770         zero_user_segment(page, offset, PAGE_SIZE);
2771 write:
2772         if (f2fs_is_drop_cache(inode))
2773                 goto out;
2774
2775         /* Dentry/quota blocks are controlled by checkpoint */
2776         if (S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) {
2777                 /*
2778                  * We need to wait for node_write to avoid block allocation during
2779                  * checkpoint. This can only happen to quota writes which can cause
2780                  * the below discard race condition.
2781                  */
2782                 if (IS_NOQUOTA(inode))
2783                         f2fs_down_read(&sbi->node_write);
2784
2785                 fio.need_lock = LOCK_DONE;
2786                 err = f2fs_do_write_data_page(&fio);
2787
2788                 if (IS_NOQUOTA(inode))
2789                         f2fs_up_read(&sbi->node_write);
2790
2791                 goto done;
2792         }
2793
2794         if (!wbc->for_reclaim)
2795                 need_balance_fs = true;
2796         else if (has_not_enough_free_secs(sbi, 0, 0))
2797                 goto redirty_out;
2798         else
2799                 set_inode_flag(inode, FI_HOT_DATA);
2800
2801         err = -EAGAIN;
2802         if (f2fs_has_inline_data(inode)) {
2803                 err = f2fs_write_inline_data(inode, page);
2804                 if (!err)
2805                         goto out;
2806         }
2807
2808         if (err == -EAGAIN) {
2809                 err = f2fs_do_write_data_page(&fio);
2810                 if (err == -EAGAIN) {
2811                         fio.need_lock = LOCK_REQ;
2812                         err = f2fs_do_write_data_page(&fio);
2813                 }
2814         }
2815
2816         if (err) {
2817                 file_set_keep_isize(inode);
2818         } else {
2819                 spin_lock(&F2FS_I(inode)->i_size_lock);
2820                 if (F2FS_I(inode)->last_disk_size < psize)
2821                         F2FS_I(inode)->last_disk_size = psize;
2822                 spin_unlock(&F2FS_I(inode)->i_size_lock);
2823         }
2824
2825 done:
2826         if (err && err != -ENOENT)
2827                 goto redirty_out;
2828
2829 out:
2830         inode_dec_dirty_pages(inode);
2831         if (err) {
2832                 ClearPageUptodate(page);
2833                 clear_page_private_gcing(page);
2834         }
2835
2836         if (wbc->for_reclaim) {
2837                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2838                 clear_inode_flag(inode, FI_HOT_DATA);
2839                 f2fs_remove_dirty_inode(inode);
2840                 submitted = NULL;
2841         }
2842         unlock_page(page);
2843         if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2844                         !F2FS_I(inode)->cp_task && allow_balance)
2845                 f2fs_balance_fs(sbi, need_balance_fs);
2846
2847         if (unlikely(f2fs_cp_error(sbi))) {
2848                 f2fs_submit_merged_write(sbi, DATA);
2849                 f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2850                 submitted = NULL;
2851         }
2852
2853         if (submitted)
2854                 *submitted = fio.submitted ? 1 : 0;
2855
2856         return 0;
2857
2858 redirty_out:
2859         redirty_page_for_writepage(wbc, page);
2860         /*
2861          * pageout() in MM traslates EAGAIN, so calls handle_write_error()
2862          * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2863          * file_write_and_wait_range() will see EIO error, which is critical
2864          * to return value of fsync() followed by atomic_write failure to user.
2865          */
2866         if (!err || wbc->for_reclaim)
2867                 return AOP_WRITEPAGE_ACTIVATE;
2868         unlock_page(page);
2869         return err;
2870 }
2871
2872 static int f2fs_write_data_page(struct page *page,
2873                                         struct writeback_control *wbc)
2874 {
2875 #ifdef CONFIG_F2FS_FS_COMPRESSION
2876         struct inode *inode = page->mapping->host;
2877
2878         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2879                 goto out;
2880
2881         if (f2fs_compressed_file(inode)) {
2882                 if (f2fs_is_compressed_cluster(inode, page->index)) {
2883                         redirty_page_for_writepage(wbc, page);
2884                         return AOP_WRITEPAGE_ACTIVATE;
2885                 }
2886         }
2887 out:
2888 #endif
2889
2890         return f2fs_write_single_data_page(page, NULL, NULL, NULL,
2891                                                 wbc, FS_DATA_IO, 0, true);
2892 }
2893
2894 /*
2895  * This function was copied from write_cche_pages from mm/page-writeback.c.
2896  * The major change is making write step of cold data page separately from
2897  * warm/hot data page.
2898  */
2899 static int f2fs_write_cache_pages(struct address_space *mapping,
2900                                         struct writeback_control *wbc,
2901                                         enum iostat_type io_type)
2902 {
2903         int ret = 0;
2904         int done = 0, retry = 0;
2905         struct pagevec pvec;
2906         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2907         struct bio *bio = NULL;
2908         sector_t last_block;
2909 #ifdef CONFIG_F2FS_FS_COMPRESSION
2910         struct inode *inode = mapping->host;
2911         struct compress_ctx cc = {
2912                 .inode = inode,
2913                 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2914                 .cluster_size = F2FS_I(inode)->i_cluster_size,
2915                 .cluster_idx = NULL_CLUSTER,
2916                 .rpages = NULL,
2917                 .nr_rpages = 0,
2918                 .cpages = NULL,
2919                 .valid_nr_cpages = 0,
2920                 .rbuf = NULL,
2921                 .cbuf = NULL,
2922                 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
2923                 .private = NULL,
2924         };
2925 #endif
2926         int nr_pages;
2927         pgoff_t index;
2928         pgoff_t end;            /* Inclusive */
2929         pgoff_t done_index;
2930         int range_whole = 0;
2931         xa_mark_t tag;
2932         int nwritten = 0;
2933         int submitted = 0;
2934         int i;
2935
2936         pagevec_init(&pvec);
2937
2938         if (get_dirty_pages(mapping->host) <=
2939                                 SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2940                 set_inode_flag(mapping->host, FI_HOT_DATA);
2941         else
2942                 clear_inode_flag(mapping->host, FI_HOT_DATA);
2943
2944         if (wbc->range_cyclic) {
2945                 index = mapping->writeback_index; /* prev offset */
2946                 end = -1;
2947         } else {
2948                 index = wbc->range_start >> PAGE_SHIFT;
2949                 end = wbc->range_end >> PAGE_SHIFT;
2950                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2951                         range_whole = 1;
2952         }
2953         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2954                 tag = PAGECACHE_TAG_TOWRITE;
2955         else
2956                 tag = PAGECACHE_TAG_DIRTY;
2957 retry:
2958         retry = 0;
2959         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2960                 tag_pages_for_writeback(mapping, index, end);
2961         done_index = index;
2962         while (!done && !retry && (index <= end)) {
2963                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2964                                 tag);
2965                 if (nr_pages == 0)
2966                         break;
2967
2968                 for (i = 0; i < nr_pages; i++) {
2969                         struct page *page = pvec.pages[i];
2970                         bool need_readd;
2971 readd:
2972                         need_readd = false;
2973 #ifdef CONFIG_F2FS_FS_COMPRESSION
2974                         if (f2fs_compressed_file(inode)) {
2975                                 void *fsdata = NULL;
2976                                 struct page *pagep;
2977                                 int ret2;
2978
2979                                 ret = f2fs_init_compress_ctx(&cc);
2980                                 if (ret) {
2981                                         done = 1;
2982                                         break;
2983                                 }
2984
2985                                 if (!f2fs_cluster_can_merge_page(&cc,
2986                                                                 page->index)) {
2987                                         ret = f2fs_write_multi_pages(&cc,
2988                                                 &submitted, wbc, io_type);
2989                                         if (!ret)
2990                                                 need_readd = true;
2991                                         goto result;
2992                                 }
2993
2994                                 if (unlikely(f2fs_cp_error(sbi)))
2995                                         goto lock_page;
2996
2997                                 if (!f2fs_cluster_is_empty(&cc))
2998                                         goto lock_page;
2999
3000                                 ret2 = f2fs_prepare_compress_overwrite(
3001                                                         inode, &pagep,
3002                                                         page->index, &fsdata);
3003                                 if (ret2 < 0) {
3004                                         ret = ret2;
3005                                         done = 1;
3006                                         break;
3007                                 } else if (ret2 &&
3008                                         (!f2fs_compress_write_end(inode,
3009                                                 fsdata, page->index, 1) ||
3010                                          !f2fs_all_cluster_page_loaded(&cc,
3011                                                 &pvec, i, nr_pages))) {
3012                                         retry = 1;
3013                                         break;
3014                                 }
3015                         }
3016 #endif
3017                         /* give a priority to WB_SYNC threads */
3018                         if (atomic_read(&sbi->wb_sync_req[DATA]) &&
3019                                         wbc->sync_mode == WB_SYNC_NONE) {
3020                                 done = 1;
3021                                 break;
3022                         }
3023 #ifdef CONFIG_F2FS_FS_COMPRESSION
3024 lock_page:
3025 #endif
3026                         done_index = page->index;
3027 retry_write:
3028                         lock_page(page);
3029
3030                         if (unlikely(page->mapping != mapping)) {
3031 continue_unlock:
3032                                 unlock_page(page);
3033                                 continue;
3034                         }
3035
3036                         if (!PageDirty(page)) {
3037                                 /* someone wrote it for us */
3038                                 goto continue_unlock;
3039                         }
3040
3041                         if (PageWriteback(page)) {
3042                                 if (wbc->sync_mode != WB_SYNC_NONE)
3043                                         f2fs_wait_on_page_writeback(page,
3044                                                         DATA, true, true);
3045                                 else
3046                                         goto continue_unlock;
3047                         }
3048
3049                         if (!clear_page_dirty_for_io(page))
3050                                 goto continue_unlock;
3051
3052 #ifdef CONFIG_F2FS_FS_COMPRESSION
3053                         if (f2fs_compressed_file(inode)) {
3054                                 get_page(page);
3055                                 f2fs_compress_ctx_add_page(&cc, page);
3056                                 continue;
3057                         }
3058 #endif
3059                         ret = f2fs_write_single_data_page(page, &submitted,
3060                                         &bio, &last_block, wbc, io_type,
3061                                         0, true);
3062                         if (ret == AOP_WRITEPAGE_ACTIVATE)
3063                                 unlock_page(page);
3064 #ifdef CONFIG_F2FS_FS_COMPRESSION
3065 result:
3066 #endif
3067                         nwritten += submitted;
3068                         wbc->nr_to_write -= submitted;
3069
3070                         if (unlikely(ret)) {
3071                                 /*
3072                                  * keep nr_to_write, since vfs uses this to
3073                                  * get # of written pages.
3074                                  */
3075                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
3076                                         ret = 0;
3077                                         goto next;
3078                                 } else if (ret == -EAGAIN) {
3079                                         ret = 0;
3080                                         if (wbc->sync_mode == WB_SYNC_ALL) {
3081                                                 f2fs_io_schedule_timeout(
3082                                                         DEFAULT_IO_TIMEOUT);
3083                                                 goto retry_write;
3084                                         }
3085                                         goto next;
3086                                 }
3087                                 done_index = page->index + 1;
3088                                 done = 1;
3089                                 break;
3090                         }
3091
3092                         if (wbc->nr_to_write <= 0 &&
3093                                         wbc->sync_mode == WB_SYNC_NONE) {
3094                                 done = 1;
3095                                 break;
3096                         }
3097 next:
3098                         if (need_readd)
3099                                 goto readd;
3100                 }
3101                 pagevec_release(&pvec);
3102                 cond_resched();
3103         }
3104 #ifdef CONFIG_F2FS_FS_COMPRESSION
3105         /* flush remained pages in compress cluster */
3106         if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3107                 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3108                 nwritten += submitted;
3109                 wbc->nr_to_write -= submitted;
3110                 if (ret) {
3111                         done = 1;
3112                         retry = 0;
3113                 }
3114         }
3115         if (f2fs_compressed_file(inode))
3116                 f2fs_destroy_compress_ctx(&cc, false);
3117 #endif
3118         if (retry) {
3119                 index = 0;
3120                 end = -1;
3121                 goto retry;
3122         }
3123         if (wbc->range_cyclic && !done)
3124                 done_index = 0;
3125         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3126                 mapping->writeback_index = done_index;
3127
3128         if (nwritten)
3129                 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3130                                                                 NULL, 0, DATA);
3131         /* submit cached bio of IPU write */
3132         if (bio)
3133                 f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3134
3135         return ret;
3136 }
3137
3138 static inline bool __should_serialize_io(struct inode *inode,
3139                                         struct writeback_control *wbc)
3140 {
3141         /* to avoid deadlock in path of data flush */
3142         if (F2FS_I(inode)->cp_task)
3143                 return false;
3144
3145         if (!S_ISREG(inode->i_mode))
3146                 return false;
3147         if (IS_NOQUOTA(inode))
3148                 return false;
3149
3150         if (f2fs_need_compress_data(inode))
3151                 return true;
3152         if (wbc->sync_mode != WB_SYNC_ALL)
3153                 return true;
3154         if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3155                 return true;
3156         return false;
3157 }
3158
3159 static int __f2fs_write_data_pages(struct address_space *mapping,
3160                                                 struct writeback_control *wbc,
3161                                                 enum iostat_type io_type)
3162 {
3163         struct inode *inode = mapping->host;
3164         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3165         struct blk_plug plug;
3166         int ret;
3167         bool locked = false;
3168
3169         /* deal with chardevs and other special file */
3170         if (!mapping->a_ops->writepage)
3171                 return 0;
3172
3173         /* skip writing if there is no dirty page in this inode */
3174         if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3175                 return 0;
3176
3177         /* during POR, we don't need to trigger writepage at all. */
3178         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3179                 goto skip_write;
3180
3181         if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3182                         wbc->sync_mode == WB_SYNC_NONE &&
3183                         get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3184                         f2fs_available_free_memory(sbi, DIRTY_DENTS))
3185                 goto skip_write;
3186
3187         /* skip writing in file defragment preparing stage */
3188         if (is_inode_flag_set(inode, FI_SKIP_WRITES))
3189                 goto skip_write;
3190
3191         trace_f2fs_writepages(mapping->host, wbc, DATA);
3192
3193         /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3194         if (wbc->sync_mode == WB_SYNC_ALL)
3195                 atomic_inc(&sbi->wb_sync_req[DATA]);
3196         else if (atomic_read(&sbi->wb_sync_req[DATA])) {
3197                 /* to avoid potential deadlock */
3198                 if (current->plug)
3199                         blk_finish_plug(current->plug);
3200                 goto skip_write;
3201         }
3202
3203         if (__should_serialize_io(inode, wbc)) {
3204                 mutex_lock(&sbi->writepages);
3205                 locked = true;
3206         }
3207
3208         blk_start_plug(&plug);
3209         ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3210         blk_finish_plug(&plug);
3211
3212         if (locked)
3213                 mutex_unlock(&sbi->writepages);
3214
3215         if (wbc->sync_mode == WB_SYNC_ALL)
3216                 atomic_dec(&sbi->wb_sync_req[DATA]);
3217         /*
3218          * if some pages were truncated, we cannot guarantee its mapping->host
3219          * to detect pending bios.
3220          */
3221
3222         f2fs_remove_dirty_inode(inode);
3223         return ret;
3224
3225 skip_write:
3226         wbc->pages_skipped += get_dirty_pages(inode);
3227         trace_f2fs_writepages(mapping->host, wbc, DATA);
3228         return 0;
3229 }
3230
3231 static int f2fs_write_data_pages(struct address_space *mapping,
3232                             struct writeback_control *wbc)
3233 {
3234         struct inode *inode = mapping->host;
3235
3236         return __f2fs_write_data_pages(mapping, wbc,
3237                         F2FS_I(inode)->cp_task == current ?
3238                         FS_CP_DATA_IO : FS_DATA_IO);
3239 }
3240
3241 void f2fs_write_failed(struct inode *inode, loff_t to)
3242 {
3243         loff_t i_size = i_size_read(inode);
3244
3245         if (IS_NOQUOTA(inode))
3246                 return;
3247
3248         /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3249         if (to > i_size && !f2fs_verity_in_progress(inode)) {
3250                 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3251                 filemap_invalidate_lock(inode->i_mapping);
3252
3253                 truncate_pagecache(inode, i_size);
3254                 f2fs_truncate_blocks(inode, i_size, true);
3255
3256                 filemap_invalidate_unlock(inode->i_mapping);
3257                 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3258         }
3259 }
3260
3261 static int prepare_write_begin(struct f2fs_sb_info *sbi,
3262                         struct page *page, loff_t pos, unsigned len,
3263                         block_t *blk_addr, bool *node_changed)
3264 {
3265         struct inode *inode = page->mapping->host;
3266         pgoff_t index = page->index;
3267         struct dnode_of_data dn;
3268         struct page *ipage;
3269         bool locked = false;
3270         struct extent_info ei = {0, };
3271         int err = 0;
3272         int flag;
3273
3274         /*
3275          * If a whole page is being written and we already preallocated all the
3276          * blocks, then there is no need to get a block address now.
3277          */
3278         if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL))
3279                 return 0;
3280
3281         /* f2fs_lock_op avoids race between write CP and convert_inline_page */
3282         if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode))
3283                 flag = F2FS_GET_BLOCK_DEFAULT;
3284         else
3285                 flag = F2FS_GET_BLOCK_PRE_AIO;
3286
3287         if (f2fs_has_inline_data(inode) ||
3288                         (pos & PAGE_MASK) >= i_size_read(inode)) {
3289                 f2fs_do_map_lock(sbi, flag, true);
3290                 locked = true;
3291         }
3292
3293 restart:
3294         /* check inline_data */
3295         ipage = f2fs_get_node_page(sbi, inode->i_ino);
3296         if (IS_ERR(ipage)) {
3297                 err = PTR_ERR(ipage);
3298                 goto unlock_out;
3299         }
3300
3301         set_new_dnode(&dn, inode, ipage, ipage, 0);
3302
3303         if (f2fs_has_inline_data(inode)) {
3304                 if (pos + len <= MAX_INLINE_DATA(inode)) {
3305                         f2fs_do_read_inline_data(page, ipage);
3306                         set_inode_flag(inode, FI_DATA_EXIST);
3307                         if (inode->i_nlink)
3308                                 set_page_private_inline(ipage);
3309                 } else {
3310                         err = f2fs_convert_inline_page(&dn, page);
3311                         if (err)
3312                                 goto out;
3313                         if (dn.data_blkaddr == NULL_ADDR)
3314                                 err = f2fs_get_block(&dn, index);
3315                 }
3316         } else if (locked) {
3317                 err = f2fs_get_block(&dn, index);
3318         } else {
3319                 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
3320                         dn.data_blkaddr = ei.blk + index - ei.fofs;
3321                 } else {
3322                         /* hole case */
3323                         err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3324                         if (err || dn.data_blkaddr == NULL_ADDR) {
3325                                 f2fs_put_dnode(&dn);
3326                                 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
3327                                                                 true);
3328                                 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3329                                 locked = true;
3330                                 goto restart;
3331                         }
3332                 }
3333         }
3334
3335         /* convert_inline_page can make node_changed */
3336         *blk_addr = dn.data_blkaddr;
3337         *node_changed = dn.node_changed;
3338 out:
3339         f2fs_put_dnode(&dn);
3340 unlock_out:
3341         if (locked)
3342                 f2fs_do_map_lock(sbi, flag, false);
3343         return err;
3344 }
3345
3346 static int __find_data_block(struct inode *inode, pgoff_t index,
3347                                 block_t *blk_addr)
3348 {
3349         struct dnode_of_data dn;
3350         struct page *ipage;
3351         struct extent_info ei = {0, };
3352         int err = 0;
3353
3354         ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
3355         if (IS_ERR(ipage))
3356                 return PTR_ERR(ipage);
3357
3358         set_new_dnode(&dn, inode, ipage, ipage, 0);
3359
3360         if (f2fs_lookup_extent_cache(inode, index, &ei)) {
3361                 dn.data_blkaddr = ei.blk + index - ei.fofs;
3362         } else {
3363                 /* hole case */
3364                 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3365                 if (err) {
3366                         dn.data_blkaddr = NULL_ADDR;
3367                         err = 0;
3368                 }
3369         }
3370         *blk_addr = dn.data_blkaddr;
3371         f2fs_put_dnode(&dn);
3372         return err;
3373 }
3374
3375 static int __reserve_data_block(struct inode *inode, pgoff_t index,
3376                                 block_t *blk_addr, bool *node_changed)
3377 {
3378         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3379         struct dnode_of_data dn;
3380         struct page *ipage;
3381         int err = 0;
3382
3383         f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true);
3384
3385         ipage = f2fs_get_node_page(sbi, inode->i_ino);
3386         if (IS_ERR(ipage)) {
3387                 err = PTR_ERR(ipage);
3388                 goto unlock_out;
3389         }
3390         set_new_dnode(&dn, inode, ipage, ipage, 0);
3391
3392         err = f2fs_get_block(&dn, index);
3393
3394         *blk_addr = dn.data_blkaddr;
3395         *node_changed = dn.node_changed;
3396         f2fs_put_dnode(&dn);
3397
3398 unlock_out:
3399         f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false);
3400         return err;
3401 }
3402
3403 static int prepare_atomic_write_begin(struct f2fs_sb_info *sbi,
3404                         struct page *page, loff_t pos, unsigned int len,
3405                         block_t *blk_addr, bool *node_changed)
3406 {
3407         struct inode *inode = page->mapping->host;
3408         struct inode *cow_inode = F2FS_I(inode)->cow_inode;
3409         pgoff_t index = page->index;
3410         int err = 0;
3411         block_t ori_blk_addr;
3412
3413         /* If pos is beyond the end of file, reserve a new block in COW inode */
3414         if ((pos & PAGE_MASK) >= i_size_read(inode))
3415                 return __reserve_data_block(cow_inode, index, blk_addr,
3416                                         node_changed);
3417
3418         /* Look for the block in COW inode first */
3419         err = __find_data_block(cow_inode, index, blk_addr);
3420         if (err)
3421                 return err;
3422         else if (*blk_addr != NULL_ADDR)
3423                 return 0;
3424
3425         /* Look for the block in the original inode */
3426         err = __find_data_block(inode, index, &ori_blk_addr);
3427         if (err)
3428                 return err;
3429
3430         /* Finally, we should reserve a new block in COW inode for the update */
3431         err = __reserve_data_block(cow_inode, index, blk_addr, node_changed);
3432         if (err)
3433                 return err;
3434
3435         if (ori_blk_addr != NULL_ADDR)
3436                 *blk_addr = ori_blk_addr;
3437         return 0;
3438 }
3439
3440 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3441                 loff_t pos, unsigned len, struct page **pagep, void **fsdata)
3442 {
3443         struct inode *inode = mapping->host;
3444         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3445         struct page *page = NULL;
3446         pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
3447         bool need_balance = false;
3448         block_t blkaddr = NULL_ADDR;
3449         int err = 0;
3450
3451         trace_f2fs_write_begin(inode, pos, len);
3452
3453         if (!f2fs_is_checkpoint_ready(sbi)) {
3454                 err = -ENOSPC;
3455                 goto fail;
3456         }
3457
3458         /*
3459          * We should check this at this moment to avoid deadlock on inode page
3460          * and #0 page. The locking rule for inline_data conversion should be:
3461          * lock_page(page #0) -> lock_page(inode_page)
3462          */
3463         if (index != 0) {
3464                 err = f2fs_convert_inline_inode(inode);
3465                 if (err)
3466                         goto fail;
3467         }
3468
3469 #ifdef CONFIG_F2FS_FS_COMPRESSION
3470         if (f2fs_compressed_file(inode)) {
3471                 int ret;
3472
3473                 *fsdata = NULL;
3474
3475                 if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode)))
3476                         goto repeat;
3477
3478                 ret = f2fs_prepare_compress_overwrite(inode, pagep,
3479                                                         index, fsdata);
3480                 if (ret < 0) {
3481                         err = ret;
3482                         goto fail;
3483                 } else if (ret) {
3484                         return 0;
3485                 }
3486         }
3487 #endif
3488
3489 repeat:
3490         /*
3491          * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3492          * wait_for_stable_page. Will wait that below with our IO control.
3493          */
3494         page = f2fs_pagecache_get_page(mapping, index,
3495                                 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3496         if (!page) {
3497                 err = -ENOMEM;
3498                 goto fail;
3499         }
3500
3501         /* TODO: cluster can be compressed due to race with .writepage */
3502
3503         *pagep = page;
3504
3505         if (f2fs_is_atomic_file(inode))
3506                 err = prepare_atomic_write_begin(sbi, page, pos, len,
3507                                         &blkaddr, &need_balance);
3508         else
3509                 err = prepare_write_begin(sbi, page, pos, len,
3510                                         &blkaddr, &need_balance);
3511         if (err)
3512                 goto fail;
3513
3514         if (need_balance && !IS_NOQUOTA(inode) &&
3515                         has_not_enough_free_secs(sbi, 0, 0)) {
3516                 unlock_page(page);
3517                 f2fs_balance_fs(sbi, true);
3518                 lock_page(page);
3519                 if (page->mapping != mapping) {
3520                         /* The page got truncated from under us */
3521                         f2fs_put_page(page, 1);
3522                         goto repeat;
3523                 }
3524         }
3525
3526         f2fs_wait_on_page_writeback(page, DATA, false, true);
3527
3528         if (len == PAGE_SIZE || PageUptodate(page))
3529                 return 0;
3530
3531         if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3532             !f2fs_verity_in_progress(inode)) {
3533                 zero_user_segment(page, len, PAGE_SIZE);
3534                 return 0;
3535         }
3536
3537         if (blkaddr == NEW_ADDR) {
3538                 zero_user_segment(page, 0, PAGE_SIZE);
3539                 SetPageUptodate(page);
3540         } else {
3541                 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3542                                 DATA_GENERIC_ENHANCE_READ)) {
3543                         err = -EFSCORRUPTED;
3544                         goto fail;
3545                 }
3546                 err = f2fs_submit_page_read(inode, page, blkaddr, 0, true);
3547                 if (err)
3548                         goto fail;
3549
3550                 lock_page(page);
3551                 if (unlikely(page->mapping != mapping)) {
3552                         f2fs_put_page(page, 1);
3553                         goto repeat;
3554                 }
3555                 if (unlikely(!PageUptodate(page))) {
3556                         err = -EIO;
3557                         goto fail;
3558                 }
3559         }
3560         return 0;
3561
3562 fail:
3563         f2fs_put_page(page, 1);
3564         f2fs_write_failed(inode, pos + len);
3565         return err;
3566 }
3567
3568 static int f2fs_write_end(struct file *file,
3569                         struct address_space *mapping,
3570                         loff_t pos, unsigned len, unsigned copied,
3571                         struct page *page, void *fsdata)
3572 {
3573         struct inode *inode = page->mapping->host;
3574
3575         trace_f2fs_write_end(inode, pos, len, copied);
3576
3577         /*
3578          * This should be come from len == PAGE_SIZE, and we expect copied
3579          * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3580          * let generic_perform_write() try to copy data again through copied=0.
3581          */
3582         if (!PageUptodate(page)) {
3583                 if (unlikely(copied != len))
3584                         copied = 0;
3585                 else
3586                         SetPageUptodate(page);
3587         }
3588
3589 #ifdef CONFIG_F2FS_FS_COMPRESSION
3590         /* overwrite compressed file */
3591         if (f2fs_compressed_file(inode) && fsdata) {
3592                 f2fs_compress_write_end(inode, fsdata, page->index, copied);
3593                 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3594
3595                 if (pos + copied > i_size_read(inode) &&
3596                                 !f2fs_verity_in_progress(inode))
3597                         f2fs_i_size_write(inode, pos + copied);
3598                 return copied;
3599         }
3600 #endif
3601
3602         if (!copied)
3603                 goto unlock_out;
3604
3605         set_page_dirty(page);
3606
3607         if (pos + copied > i_size_read(inode) &&
3608             !f2fs_verity_in_progress(inode)) {
3609                 f2fs_i_size_write(inode, pos + copied);
3610                 if (f2fs_is_atomic_file(inode))
3611                         f2fs_i_size_write(F2FS_I(inode)->cow_inode,
3612                                         pos + copied);
3613         }
3614 unlock_out:
3615         f2fs_put_page(page, 1);
3616         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3617         return copied;
3618 }
3619
3620 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length)
3621 {
3622         struct inode *inode = folio->mapping->host;
3623         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3624
3625         if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3626                                 (offset || length != folio_size(folio)))
3627                 return;
3628
3629         if (folio_test_dirty(folio)) {
3630                 if (inode->i_ino == F2FS_META_INO(sbi)) {
3631                         dec_page_count(sbi, F2FS_DIRTY_META);
3632                 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3633                         dec_page_count(sbi, F2FS_DIRTY_NODES);
3634                 } else {
3635                         inode_dec_dirty_pages(inode);
3636                         f2fs_remove_dirty_inode(inode);
3637                 }
3638         }
3639
3640         clear_page_private_gcing(&folio->page);
3641
3642         if (test_opt(sbi, COMPRESS_CACHE) &&
3643                         inode->i_ino == F2FS_COMPRESS_INO(sbi))
3644                 clear_page_private_data(&folio->page);
3645
3646         folio_detach_private(folio);
3647 }
3648
3649 bool f2fs_release_folio(struct folio *folio, gfp_t wait)
3650 {
3651         struct f2fs_sb_info *sbi;
3652
3653         /* If this is dirty folio, keep private data */
3654         if (folio_test_dirty(folio))
3655                 return false;
3656
3657         sbi = F2FS_M_SB(folio->mapping);
3658         if (test_opt(sbi, COMPRESS_CACHE)) {
3659                 struct inode *inode = folio->mapping->host;
3660
3661                 if (inode->i_ino == F2FS_COMPRESS_INO(sbi))
3662                         clear_page_private_data(&folio->page);
3663         }
3664
3665         clear_page_private_gcing(&folio->page);
3666
3667         folio_detach_private(folio);
3668         return true;
3669 }
3670
3671 static bool f2fs_dirty_data_folio(struct address_space *mapping,
3672                 struct folio *folio)
3673 {
3674         struct inode *inode = mapping->host;
3675
3676         trace_f2fs_set_page_dirty(&folio->page, DATA);
3677
3678         if (!folio_test_uptodate(folio))
3679                 folio_mark_uptodate(folio);
3680         BUG_ON(folio_test_swapcache(folio));
3681
3682         if (!folio_test_dirty(folio)) {
3683                 filemap_dirty_folio(mapping, folio);
3684                 f2fs_update_dirty_folio(inode, folio);
3685                 return true;
3686         }
3687         return false;
3688 }
3689
3690
3691 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3692 {
3693 #ifdef CONFIG_F2FS_FS_COMPRESSION
3694         struct dnode_of_data dn;
3695         sector_t start_idx, blknr = 0;
3696         int ret;
3697
3698         start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3699
3700         set_new_dnode(&dn, inode, NULL, NULL, 0);
3701         ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3702         if (ret)
3703                 return 0;
3704
3705         if (dn.data_blkaddr != COMPRESS_ADDR) {
3706                 dn.ofs_in_node += block - start_idx;
3707                 blknr = f2fs_data_blkaddr(&dn);
3708                 if (!__is_valid_data_blkaddr(blknr))
3709                         blknr = 0;
3710         }
3711
3712         f2fs_put_dnode(&dn);
3713         return blknr;
3714 #else
3715         return 0;
3716 #endif
3717 }
3718
3719
3720 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3721 {
3722         struct inode *inode = mapping->host;
3723         sector_t blknr = 0;
3724
3725         if (f2fs_has_inline_data(inode))
3726                 goto out;
3727
3728         /* make sure allocating whole blocks */
3729         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3730                 filemap_write_and_wait(mapping);
3731
3732         /* Block number less than F2FS MAX BLOCKS */
3733         if (unlikely(block >= max_file_blocks(inode)))
3734                 goto out;
3735
3736         if (f2fs_compressed_file(inode)) {
3737                 blknr = f2fs_bmap_compress(inode, block);
3738         } else {
3739                 struct f2fs_map_blocks map;
3740
3741                 memset(&map, 0, sizeof(map));
3742                 map.m_lblk = block;
3743                 map.m_len = 1;
3744                 map.m_next_pgofs = NULL;
3745                 map.m_seg_type = NO_CHECK_TYPE;
3746
3747                 if (!f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_BMAP))
3748                         blknr = map.m_pblk;
3749         }
3750 out:
3751         trace_f2fs_bmap(inode, block, blknr);
3752         return blknr;
3753 }
3754
3755 #ifdef CONFIG_SWAP
3756 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk,
3757                                                         unsigned int blkcnt)
3758 {
3759         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3760         unsigned int blkofs;
3761         unsigned int blk_per_sec = BLKS_PER_SEC(sbi);
3762         unsigned int secidx = start_blk / blk_per_sec;
3763         unsigned int end_sec = secidx + blkcnt / blk_per_sec;
3764         int ret = 0;
3765
3766         f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3767         filemap_invalidate_lock(inode->i_mapping);
3768
3769         set_inode_flag(inode, FI_ALIGNED_WRITE);
3770         set_inode_flag(inode, FI_OPU_WRITE);
3771
3772         for (; secidx < end_sec; secidx++) {
3773                 f2fs_down_write(&sbi->pin_sem);
3774
3775                 f2fs_lock_op(sbi);
3776                 f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
3777                 f2fs_unlock_op(sbi);
3778
3779                 set_inode_flag(inode, FI_SKIP_WRITES);
3780
3781                 for (blkofs = 0; blkofs < blk_per_sec; blkofs++) {
3782                         struct page *page;
3783                         unsigned int blkidx = secidx * blk_per_sec + blkofs;
3784
3785                         page = f2fs_get_lock_data_page(inode, blkidx, true);
3786                         if (IS_ERR(page)) {
3787                                 f2fs_up_write(&sbi->pin_sem);
3788                                 ret = PTR_ERR(page);
3789                                 goto done;
3790                         }
3791
3792                         set_page_dirty(page);
3793                         f2fs_put_page(page, 1);
3794                 }
3795
3796                 clear_inode_flag(inode, FI_SKIP_WRITES);
3797
3798                 ret = filemap_fdatawrite(inode->i_mapping);
3799
3800                 f2fs_up_write(&sbi->pin_sem);
3801
3802                 if (ret)
3803                         break;
3804         }
3805
3806 done:
3807         clear_inode_flag(inode, FI_SKIP_WRITES);
3808         clear_inode_flag(inode, FI_OPU_WRITE);
3809         clear_inode_flag(inode, FI_ALIGNED_WRITE);
3810
3811         filemap_invalidate_unlock(inode->i_mapping);
3812         f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3813
3814         return ret;
3815 }
3816
3817 static int check_swap_activate(struct swap_info_struct *sis,
3818                                 struct file *swap_file, sector_t *span)
3819 {
3820         struct address_space *mapping = swap_file->f_mapping;
3821         struct inode *inode = mapping->host;
3822         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3823         sector_t cur_lblock;
3824         sector_t last_lblock;
3825         sector_t pblock;
3826         sector_t lowest_pblock = -1;
3827         sector_t highest_pblock = 0;
3828         int nr_extents = 0;
3829         unsigned long nr_pblocks;
3830         unsigned int blks_per_sec = BLKS_PER_SEC(sbi);
3831         unsigned int sec_blks_mask = BLKS_PER_SEC(sbi) - 1;
3832         unsigned int not_aligned = 0;
3833         int ret = 0;
3834
3835         /*
3836          * Map all the blocks into the extent list.  This code doesn't try
3837          * to be very smart.
3838          */
3839         cur_lblock = 0;
3840         last_lblock = bytes_to_blks(inode, i_size_read(inode));
3841
3842         while (cur_lblock < last_lblock && cur_lblock < sis->max) {
3843                 struct f2fs_map_blocks map;
3844 retry:
3845                 cond_resched();
3846
3847                 memset(&map, 0, sizeof(map));
3848                 map.m_lblk = cur_lblock;
3849                 map.m_len = last_lblock - cur_lblock;
3850                 map.m_next_pgofs = NULL;
3851                 map.m_next_extent = NULL;
3852                 map.m_seg_type = NO_CHECK_TYPE;
3853                 map.m_may_create = false;
3854
3855                 ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP);
3856                 if (ret)
3857                         goto out;
3858
3859                 /* hole */
3860                 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
3861                         f2fs_err(sbi, "Swapfile has holes");
3862                         ret = -EINVAL;
3863                         goto out;
3864                 }
3865
3866                 pblock = map.m_pblk;
3867                 nr_pblocks = map.m_len;
3868
3869                 if ((pblock - SM_I(sbi)->main_blkaddr) & sec_blks_mask ||
3870                                 nr_pblocks & sec_blks_mask) {
3871                         not_aligned++;
3872
3873                         nr_pblocks = roundup(nr_pblocks, blks_per_sec);
3874                         if (cur_lblock + nr_pblocks > sis->max)
3875                                 nr_pblocks -= blks_per_sec;
3876
3877                         if (!nr_pblocks) {
3878                                 /* this extent is last one */
3879                                 nr_pblocks = map.m_len;
3880                                 f2fs_warn(sbi, "Swapfile: last extent is not aligned to section");
3881                                 goto next;
3882                         }
3883
3884                         ret = f2fs_migrate_blocks(inode, cur_lblock,
3885                                                         nr_pblocks);
3886                         if (ret)
3887                                 goto out;
3888                         goto retry;
3889                 }
3890 next:
3891                 if (cur_lblock + nr_pblocks >= sis->max)
3892                         nr_pblocks = sis->max - cur_lblock;
3893
3894                 if (cur_lblock) {       /* exclude the header page */
3895                         if (pblock < lowest_pblock)
3896                                 lowest_pblock = pblock;
3897                         if (pblock + nr_pblocks - 1 > highest_pblock)
3898                                 highest_pblock = pblock + nr_pblocks - 1;
3899                 }
3900
3901                 /*
3902                  * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
3903                  */
3904                 ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
3905                 if (ret < 0)
3906                         goto out;
3907                 nr_extents += ret;
3908                 cur_lblock += nr_pblocks;
3909         }
3910         ret = nr_extents;
3911         *span = 1 + highest_pblock - lowest_pblock;
3912         if (cur_lblock == 0)
3913                 cur_lblock = 1; /* force Empty message */
3914         sis->max = cur_lblock;
3915         sis->pages = cur_lblock - 1;
3916         sis->highest_bit = cur_lblock - 1;
3917 out:
3918         if (not_aligned)
3919                 f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%u * N)",
3920                           not_aligned, blks_per_sec * F2FS_BLKSIZE);
3921         return ret;
3922 }
3923
3924 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
3925                                 sector_t *span)
3926 {
3927         struct inode *inode = file_inode(file);
3928         int ret;
3929
3930         if (!S_ISREG(inode->i_mode))
3931                 return -EINVAL;
3932
3933         if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3934                 return -EROFS;
3935
3936         if (f2fs_lfs_mode(F2FS_I_SB(inode))) {
3937                 f2fs_err(F2FS_I_SB(inode),
3938                         "Swapfile not supported in LFS mode");
3939                 return -EINVAL;
3940         }
3941
3942         ret = f2fs_convert_inline_inode(inode);
3943         if (ret)
3944                 return ret;
3945
3946         if (!f2fs_disable_compressed_file(inode))
3947                 return -EINVAL;
3948
3949         f2fs_precache_extents(inode);
3950
3951         ret = check_swap_activate(sis, file, span);
3952         if (ret < 0)
3953                 return ret;
3954
3955         set_inode_flag(inode, FI_PIN_FILE);
3956         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3957         return ret;
3958 }
3959
3960 static void f2fs_swap_deactivate(struct file *file)
3961 {
3962         struct inode *inode = file_inode(file);
3963
3964         clear_inode_flag(inode, FI_PIN_FILE);
3965 }
3966 #else
3967 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
3968                                 sector_t *span)
3969 {
3970         return -EOPNOTSUPP;
3971 }
3972
3973 static void f2fs_swap_deactivate(struct file *file)
3974 {
3975 }
3976 #endif
3977
3978 const struct address_space_operations f2fs_dblock_aops = {
3979         .read_folio     = f2fs_read_data_folio,
3980         .readahead      = f2fs_readahead,
3981         .writepage      = f2fs_write_data_page,
3982         .writepages     = f2fs_write_data_pages,
3983         .write_begin    = f2fs_write_begin,
3984         .write_end      = f2fs_write_end,
3985         .dirty_folio    = f2fs_dirty_data_folio,
3986         .migrate_folio  = filemap_migrate_folio,
3987         .invalidate_folio = f2fs_invalidate_folio,
3988         .release_folio  = f2fs_release_folio,
3989         .direct_IO      = noop_direct_IO,
3990         .bmap           = f2fs_bmap,
3991         .swap_activate  = f2fs_swap_activate,
3992         .swap_deactivate = f2fs_swap_deactivate,
3993 };
3994
3995 void f2fs_clear_page_cache_dirty_tag(struct page *page)
3996 {
3997         struct address_space *mapping = page_mapping(page);
3998         unsigned long flags;
3999
4000         xa_lock_irqsave(&mapping->i_pages, flags);
4001         __xa_clear_mark(&mapping->i_pages, page_index(page),
4002                                                 PAGECACHE_TAG_DIRTY);
4003         xa_unlock_irqrestore(&mapping->i_pages, flags);
4004 }
4005
4006 int __init f2fs_init_post_read_processing(void)
4007 {
4008         bio_post_read_ctx_cache =
4009                 kmem_cache_create("f2fs_bio_post_read_ctx",
4010                                   sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4011         if (!bio_post_read_ctx_cache)
4012                 goto fail;
4013         bio_post_read_ctx_pool =
4014                 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4015                                          bio_post_read_ctx_cache);
4016         if (!bio_post_read_ctx_pool)
4017                 goto fail_free_cache;
4018         return 0;
4019
4020 fail_free_cache:
4021         kmem_cache_destroy(bio_post_read_ctx_cache);
4022 fail:
4023         return -ENOMEM;
4024 }
4025
4026 void f2fs_destroy_post_read_processing(void)
4027 {
4028         mempool_destroy(bio_post_read_ctx_pool);
4029         kmem_cache_destroy(bio_post_read_ctx_cache);
4030 }
4031
4032 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4033 {
4034         if (!f2fs_sb_has_encrypt(sbi) &&
4035                 !f2fs_sb_has_verity(sbi) &&
4036                 !f2fs_sb_has_compression(sbi))
4037                 return 0;
4038
4039         sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4040                                                  WQ_UNBOUND | WQ_HIGHPRI,
4041                                                  num_online_cpus());
4042         if (!sbi->post_read_wq)
4043                 return -ENOMEM;
4044         return 0;
4045 }
4046
4047 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4048 {
4049         if (sbi->post_read_wq)
4050                 destroy_workqueue(sbi->post_read_wq);
4051 }
4052
4053 int __init f2fs_init_bio_entry_cache(void)
4054 {
4055         bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4056                         sizeof(struct bio_entry));
4057         if (!bio_entry_slab)
4058                 return -ENOMEM;
4059         return 0;
4060 }
4061
4062 void f2fs_destroy_bio_entry_cache(void)
4063 {
4064         kmem_cache_destroy(bio_entry_slab);
4065 }
4066
4067 static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
4068                             unsigned int flags, struct iomap *iomap,
4069                             struct iomap *srcmap)
4070 {
4071         struct f2fs_map_blocks map = {};
4072         pgoff_t next_pgofs = 0;
4073         int err;
4074
4075         map.m_lblk = bytes_to_blks(inode, offset);
4076         map.m_len = bytes_to_blks(inode, offset + length - 1) - map.m_lblk + 1;
4077         map.m_next_pgofs = &next_pgofs;
4078         map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint);
4079         if (flags & IOMAP_WRITE)
4080                 map.m_may_create = true;
4081
4082         err = f2fs_map_blocks(inode, &map, flags & IOMAP_WRITE,
4083                               F2FS_GET_BLOCK_DIO);
4084         if (err)
4085                 return err;
4086
4087         iomap->offset = blks_to_bytes(inode, map.m_lblk);
4088
4089         /*
4090          * When inline encryption is enabled, sometimes I/O to an encrypted file
4091          * has to be broken up to guarantee DUN contiguity.  Handle this by
4092          * limiting the length of the mapping returned.
4093          */
4094         map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
4095
4096         if (map.m_flags & (F2FS_MAP_MAPPED | F2FS_MAP_UNWRITTEN)) {
4097                 iomap->length = blks_to_bytes(inode, map.m_len);
4098                 if (map.m_flags & F2FS_MAP_MAPPED) {
4099                         iomap->type = IOMAP_MAPPED;
4100                         iomap->flags |= IOMAP_F_MERGED;
4101                 } else {
4102                         iomap->type = IOMAP_UNWRITTEN;
4103                 }
4104                 if (WARN_ON_ONCE(!__is_valid_data_blkaddr(map.m_pblk)))
4105                         return -EINVAL;
4106
4107                 iomap->bdev = map.m_bdev;
4108                 iomap->addr = blks_to_bytes(inode, map.m_pblk);
4109         } else {
4110                 iomap->length = blks_to_bytes(inode, next_pgofs) -
4111                                 iomap->offset;
4112                 iomap->type = IOMAP_HOLE;
4113                 iomap->addr = IOMAP_NULL_ADDR;
4114         }
4115
4116         if (map.m_flags & F2FS_MAP_NEW)
4117                 iomap->flags |= IOMAP_F_NEW;
4118         if ((inode->i_state & I_DIRTY_DATASYNC) ||
4119             offset + length > i_size_read(inode))
4120                 iomap->flags |= IOMAP_F_DIRTY;
4121
4122         return 0;
4123 }
4124
4125 const struct iomap_ops f2fs_iomap_ops = {
4126         .iomap_begin    = f2fs_iomap_begin,
4127 };