1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/mpage.h>
12 #include <linux/writeback.h>
13 #include <linux/backing-dev.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/blk-crypto.h>
18 #include <linux/swap.h>
19 #include <linux/prefetch.h>
20 #include <linux/uio.h>
21 #include <linux/cleancache.h>
22 #include <linux/sched/signal.h>
23 #include <linux/fiemap.h>
29 #include <trace/events/f2fs.h>
31 #define NUM_PREALLOC_POST_READ_CTXS 128
33 static struct kmem_cache *bio_post_read_ctx_cache;
34 static struct kmem_cache *bio_entry_slab;
35 static mempool_t *bio_post_read_ctx_pool;
36 static struct bio_set f2fs_bioset;
38 #define F2FS_BIO_POOL_SIZE NR_CURSEG_TYPE
40 int __init f2fs_init_bioset(void)
42 if (bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
43 0, BIOSET_NEED_BVECS))
48 void f2fs_destroy_bioset(void)
50 bioset_exit(&f2fs_bioset);
53 static inline struct bio *__f2fs_bio_alloc(gfp_t gfp_mask,
54 unsigned int nr_iovecs)
56 return bio_alloc_bioset(gfp_mask, nr_iovecs, &f2fs_bioset);
59 struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi, int npages, bool noio)
62 /* No failure on bio allocation */
63 return __f2fs_bio_alloc(GFP_NOIO, npages);
66 if (time_to_inject(sbi, FAULT_ALLOC_BIO)) {
67 f2fs_show_injection_info(sbi, FAULT_ALLOC_BIO);
71 return __f2fs_bio_alloc(GFP_KERNEL, npages);
74 static bool __is_cp_guaranteed(struct page *page)
76 struct address_space *mapping = page->mapping;
78 struct f2fs_sb_info *sbi;
83 if (f2fs_is_compressed_page(page))
86 inode = mapping->host;
87 sbi = F2FS_I_SB(inode);
89 if (inode->i_ino == F2FS_META_INO(sbi) ||
90 inode->i_ino == F2FS_NODE_INO(sbi) ||
91 S_ISDIR(inode->i_mode) ||
92 (S_ISREG(inode->i_mode) &&
93 (f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) ||
99 static enum count_type __read_io_type(struct page *page)
101 struct address_space *mapping = page_file_mapping(page);
104 struct inode *inode = mapping->host;
105 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
107 if (inode->i_ino == F2FS_META_INO(sbi))
110 if (inode->i_ino == F2FS_NODE_INO(sbi))
116 /* postprocessing steps for read bios */
117 enum bio_post_read_step {
119 STEP_DECOMPRESS_NOWQ, /* handle normal cluster data inplace */
120 STEP_DECOMPRESS, /* handle compressed cluster data in workqueue */
124 struct bio_post_read_ctx {
126 struct f2fs_sb_info *sbi;
127 struct work_struct work;
128 unsigned int enabled_steps;
131 static void __read_end_io(struct bio *bio, bool compr, bool verity)
135 struct bvec_iter_all iter_all;
137 bio_for_each_segment_all(bv, bio, iter_all) {
140 #ifdef CONFIG_F2FS_FS_COMPRESSION
141 if (compr && f2fs_is_compressed_page(page)) {
142 f2fs_decompress_pages(bio, page, verity);
149 /* PG_error was set if any post_read step failed */
150 if (bio->bi_status || PageError(page)) {
151 ClearPageUptodate(page);
152 /* will re-read again later */
153 ClearPageError(page);
155 SetPageUptodate(page);
157 dec_page_count(F2FS_P_SB(page), __read_io_type(page));
162 static void f2fs_release_read_bio(struct bio *bio);
163 static void __f2fs_read_end_io(struct bio *bio, bool compr, bool verity)
166 __read_end_io(bio, false, verity);
167 f2fs_release_read_bio(bio);
170 static void f2fs_decompress_bio(struct bio *bio, bool verity)
172 __read_end_io(bio, true, verity);
175 static void bio_post_read_processing(struct bio_post_read_ctx *ctx);
177 static void f2fs_decrypt_work(struct bio_post_read_ctx *ctx)
179 fscrypt_decrypt_bio(ctx->bio);
182 static void f2fs_decompress_work(struct bio_post_read_ctx *ctx)
184 f2fs_decompress_bio(ctx->bio, ctx->enabled_steps & (1 << STEP_VERITY));
187 #ifdef CONFIG_F2FS_FS_COMPRESSION
188 static void f2fs_verify_pages(struct page **rpages, unsigned int cluster_size)
190 f2fs_decompress_end_io(rpages, cluster_size, false, true);
193 static void f2fs_verify_bio(struct bio *bio)
196 struct bvec_iter_all iter_all;
198 bio_for_each_segment_all(bv, bio, iter_all) {
199 struct page *page = bv->bv_page;
200 struct decompress_io_ctx *dic;
202 dic = (struct decompress_io_ctx *)page_private(page);
205 if (atomic_dec_return(&dic->verity_pages))
207 f2fs_verify_pages(dic->rpages,
213 if (bio->bi_status || PageError(page))
216 if (fsverity_verify_page(page)) {
217 SetPageUptodate(page);
221 ClearPageUptodate(page);
222 ClearPageError(page);
224 dec_page_count(F2FS_P_SB(page), __read_io_type(page));
230 static void f2fs_verity_work(struct work_struct *work)
232 struct bio_post_read_ctx *ctx =
233 container_of(work, struct bio_post_read_ctx, work);
234 struct bio *bio = ctx->bio;
235 #ifdef CONFIG_F2FS_FS_COMPRESSION
236 unsigned int enabled_steps = ctx->enabled_steps;
240 * fsverity_verify_bio() may call readpages() again, and while verity
241 * will be disabled for this, decryption may still be needed, resulting
242 * in another bio_post_read_ctx being allocated. So to prevent
243 * deadlocks we need to release the current ctx to the mempool first.
244 * This assumes that verity is the last post-read step.
246 mempool_free(ctx, bio_post_read_ctx_pool);
247 bio->bi_private = NULL;
249 #ifdef CONFIG_F2FS_FS_COMPRESSION
250 /* previous step is decompression */
251 if (enabled_steps & (1 << STEP_DECOMPRESS)) {
252 f2fs_verify_bio(bio);
253 f2fs_release_read_bio(bio);
258 fsverity_verify_bio(bio);
259 __f2fs_read_end_io(bio, false, false);
262 static void f2fs_post_read_work(struct work_struct *work)
264 struct bio_post_read_ctx *ctx =
265 container_of(work, struct bio_post_read_ctx, work);
267 if (ctx->enabled_steps & (1 << STEP_DECRYPT))
268 f2fs_decrypt_work(ctx);
270 if (ctx->enabled_steps & (1 << STEP_DECOMPRESS))
271 f2fs_decompress_work(ctx);
273 if (ctx->enabled_steps & (1 << STEP_VERITY)) {
274 INIT_WORK(&ctx->work, f2fs_verity_work);
275 fsverity_enqueue_verify_work(&ctx->work);
279 __f2fs_read_end_io(ctx->bio,
280 ctx->enabled_steps & (1 << STEP_DECOMPRESS), false);
283 static void f2fs_enqueue_post_read_work(struct f2fs_sb_info *sbi,
284 struct work_struct *work)
286 queue_work(sbi->post_read_wq, work);
289 static void bio_post_read_processing(struct bio_post_read_ctx *ctx)
292 * We use different work queues for decryption and for verity because
293 * verity may require reading metadata pages that need decryption, and
294 * we shouldn't recurse to the same workqueue.
297 if (ctx->enabled_steps & (1 << STEP_DECRYPT) ||
298 ctx->enabled_steps & (1 << STEP_DECOMPRESS)) {
299 INIT_WORK(&ctx->work, f2fs_post_read_work);
300 f2fs_enqueue_post_read_work(ctx->sbi, &ctx->work);
304 if (ctx->enabled_steps & (1 << STEP_VERITY)) {
305 INIT_WORK(&ctx->work, f2fs_verity_work);
306 fsverity_enqueue_verify_work(&ctx->work);
310 __f2fs_read_end_io(ctx->bio, false, false);
313 static bool f2fs_bio_post_read_required(struct bio *bio)
315 return bio->bi_private;
318 static void f2fs_read_end_io(struct bio *bio)
320 struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
322 if (time_to_inject(sbi, FAULT_READ_IO)) {
323 f2fs_show_injection_info(sbi, FAULT_READ_IO);
324 bio->bi_status = BLK_STS_IOERR;
327 if (f2fs_bio_post_read_required(bio)) {
328 struct bio_post_read_ctx *ctx = bio->bi_private;
330 bio_post_read_processing(ctx);
334 __f2fs_read_end_io(bio, false, false);
337 static void f2fs_write_end_io(struct bio *bio)
339 struct f2fs_sb_info *sbi = bio->bi_private;
340 struct bio_vec *bvec;
341 struct bvec_iter_all iter_all;
343 if (time_to_inject(sbi, FAULT_WRITE_IO)) {
344 f2fs_show_injection_info(sbi, FAULT_WRITE_IO);
345 bio->bi_status = BLK_STS_IOERR;
348 bio_for_each_segment_all(bvec, bio, iter_all) {
349 struct page *page = bvec->bv_page;
350 enum count_type type = WB_DATA_TYPE(page);
352 if (IS_DUMMY_WRITTEN_PAGE(page)) {
353 set_page_private(page, (unsigned long)NULL);
354 ClearPagePrivate(page);
356 mempool_free(page, sbi->write_io_dummy);
358 if (unlikely(bio->bi_status))
359 f2fs_stop_checkpoint(sbi, true);
363 fscrypt_finalize_bounce_page(&page);
365 #ifdef CONFIG_F2FS_FS_COMPRESSION
366 if (f2fs_is_compressed_page(page)) {
367 f2fs_compress_write_end_io(bio, page);
372 if (unlikely(bio->bi_status)) {
373 mapping_set_error(page->mapping, -EIO);
374 if (type == F2FS_WB_CP_DATA)
375 f2fs_stop_checkpoint(sbi, true);
378 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
379 page->index != nid_of_node(page));
381 dec_page_count(sbi, type);
382 if (f2fs_in_warm_node_list(sbi, page))
383 f2fs_del_fsync_node_entry(sbi, page);
384 clear_cold_data(page);
385 end_page_writeback(page);
387 if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
388 wq_has_sleeper(&sbi->cp_wait))
389 wake_up(&sbi->cp_wait);
394 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
395 block_t blk_addr, struct bio *bio)
397 struct block_device *bdev = sbi->sb->s_bdev;
400 if (f2fs_is_multi_device(sbi)) {
401 for (i = 0; i < sbi->s_ndevs; i++) {
402 if (FDEV(i).start_blk <= blk_addr &&
403 FDEV(i).end_blk >= blk_addr) {
404 blk_addr -= FDEV(i).start_blk;
411 bio_set_dev(bio, bdev);
412 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
417 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
421 if (!f2fs_is_multi_device(sbi))
424 for (i = 0; i < sbi->s_ndevs; i++)
425 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
431 * Return true, if pre_bio's bdev is same as its target device.
433 static bool __same_bdev(struct f2fs_sb_info *sbi,
434 block_t blk_addr, struct bio *bio)
436 struct block_device *b = f2fs_target_device(sbi, blk_addr, NULL);
437 return bio->bi_disk == b->bd_disk && bio->bi_partno == b->bd_partno;
440 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
442 struct f2fs_sb_info *sbi = fio->sbi;
445 bio = f2fs_bio_alloc(sbi, npages, true);
447 f2fs_target_device(sbi, fio->new_blkaddr, bio);
448 if (is_read_io(fio->op)) {
449 bio->bi_end_io = f2fs_read_end_io;
450 bio->bi_private = NULL;
452 bio->bi_end_io = f2fs_write_end_io;
453 bio->bi_private = sbi;
454 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi,
455 fio->type, fio->temp);
458 wbc_init_bio(fio->io_wbc, bio);
463 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
465 const struct f2fs_io_info *fio,
469 * The f2fs garbage collector sets ->encrypted_page when it wants to
470 * read/write raw data without encryption.
472 if (!fio || !fio->encrypted_page)
473 fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
476 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
478 const struct f2fs_io_info *fio)
481 * The f2fs garbage collector sets ->encrypted_page when it wants to
482 * read/write raw data without encryption.
484 if (fio && fio->encrypted_page)
485 return !bio_has_crypt_ctx(bio);
487 return fscrypt_mergeable_bio(bio, inode, next_idx);
490 static inline void __submit_bio(struct f2fs_sb_info *sbi,
491 struct bio *bio, enum page_type type)
493 if (!is_read_io(bio_op(bio))) {
496 if (type != DATA && type != NODE)
499 if (f2fs_lfs_mode(sbi) && current->plug)
500 blk_finish_plug(current->plug);
502 if (F2FS_IO_ALIGNED(sbi))
505 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
506 start %= F2FS_IO_SIZE(sbi);
511 /* fill dummy pages */
512 for (; start < F2FS_IO_SIZE(sbi); start++) {
514 mempool_alloc(sbi->write_io_dummy,
515 GFP_NOIO | __GFP_NOFAIL);
516 f2fs_bug_on(sbi, !page);
518 zero_user_segment(page, 0, PAGE_SIZE);
519 SetPagePrivate(page);
520 set_page_private(page, DUMMY_WRITTEN_PAGE);
522 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
526 * In the NODE case, we lose next block address chain. So, we
527 * need to do checkpoint in f2fs_sync_file.
530 set_sbi_flag(sbi, SBI_NEED_CP);
533 if (is_read_io(bio_op(bio)))
534 trace_f2fs_submit_read_bio(sbi->sb, type, bio);
536 trace_f2fs_submit_write_bio(sbi->sb, type, bio);
540 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
541 struct bio *bio, enum page_type type)
543 __submit_bio(sbi, bio, type);
546 static void __attach_io_flag(struct f2fs_io_info *fio)
548 struct f2fs_sb_info *sbi = fio->sbi;
549 unsigned int temp_mask = (1 << NR_TEMP_TYPE) - 1;
550 unsigned int io_flag, fua_flag, meta_flag;
552 if (fio->type == DATA)
553 io_flag = sbi->data_io_flag;
554 else if (fio->type == NODE)
555 io_flag = sbi->node_io_flag;
559 fua_flag = io_flag & temp_mask;
560 meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
563 * data/node io flag bits per temp:
564 * REQ_META | REQ_FUA |
565 * 5 | 4 | 3 | 2 | 1 | 0 |
566 * Cold | Warm | Hot | Cold | Warm | Hot |
568 if ((1 << fio->temp) & meta_flag)
569 fio->op_flags |= REQ_META;
570 if ((1 << fio->temp) & fua_flag)
571 fio->op_flags |= REQ_FUA;
574 static void __submit_merged_bio(struct f2fs_bio_info *io)
576 struct f2fs_io_info *fio = &io->fio;
581 __attach_io_flag(fio);
582 bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
584 if (is_read_io(fio->op))
585 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
587 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
589 __submit_bio(io->sbi, io->bio, fio->type);
593 static bool __has_merged_page(struct bio *bio, struct inode *inode,
594 struct page *page, nid_t ino)
596 struct bio_vec *bvec;
597 struct bvec_iter_all iter_all;
602 if (!inode && !page && !ino)
605 bio_for_each_segment_all(bvec, bio, iter_all) {
606 struct page *target = bvec->bv_page;
608 if (fscrypt_is_bounce_page(target)) {
609 target = fscrypt_pagecache_page(target);
613 if (f2fs_is_compressed_page(target)) {
614 target = f2fs_compress_control_page(target);
619 if (inode && inode == target->mapping->host)
621 if (page && page == target)
623 if (ino && ino == ino_of_node(target))
630 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
631 enum page_type type, enum temp_type temp)
633 enum page_type btype = PAGE_TYPE_OF_BIO(type);
634 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
636 down_write(&io->io_rwsem);
638 /* change META to META_FLUSH in the checkpoint procedure */
639 if (type >= META_FLUSH) {
640 io->fio.type = META_FLUSH;
641 io->fio.op = REQ_OP_WRITE;
642 io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
643 if (!test_opt(sbi, NOBARRIER))
644 io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
646 __submit_merged_bio(io);
647 up_write(&io->io_rwsem);
650 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
651 struct inode *inode, struct page *page,
652 nid_t ino, enum page_type type, bool force)
657 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
659 enum page_type btype = PAGE_TYPE_OF_BIO(type);
660 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
662 down_read(&io->io_rwsem);
663 ret = __has_merged_page(io->bio, inode, page, ino);
664 up_read(&io->io_rwsem);
667 __f2fs_submit_merged_write(sbi, type, temp);
669 /* TODO: use HOT temp only for meta pages now. */
675 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
677 __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
680 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
681 struct inode *inode, struct page *page,
682 nid_t ino, enum page_type type)
684 __submit_merged_write_cond(sbi, inode, page, ino, type, false);
687 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
689 f2fs_submit_merged_write(sbi, DATA);
690 f2fs_submit_merged_write(sbi, NODE);
691 f2fs_submit_merged_write(sbi, META);
695 * Fill the locked page with data located in the block address.
696 * A caller needs to unlock the page on failure.
698 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
701 struct page *page = fio->encrypted_page ?
702 fio->encrypted_page : fio->page;
704 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
705 fio->is_por ? META_POR : (__is_meta_io(fio) ?
706 META_GENERIC : DATA_GENERIC_ENHANCE)))
707 return -EFSCORRUPTED;
709 trace_f2fs_submit_page_bio(page, fio);
710 f2fs_trace_ios(fio, 0);
712 /* Allocate a new bio */
713 bio = __bio_alloc(fio, 1);
715 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
716 fio->page->index, fio, GFP_NOIO);
718 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
723 if (fio->io_wbc && !is_read_io(fio->op))
724 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
726 __attach_io_flag(fio);
727 bio_set_op_attrs(bio, fio->op, fio->op_flags);
729 inc_page_count(fio->sbi, is_read_io(fio->op) ?
730 __read_io_type(page): WB_DATA_TYPE(fio->page));
732 __submit_bio(fio->sbi, bio, fio->type);
736 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
737 block_t last_blkaddr, block_t cur_blkaddr)
739 if (unlikely(sbi->max_io_bytes &&
740 bio->bi_iter.bi_size >= sbi->max_io_bytes))
742 if (last_blkaddr + 1 != cur_blkaddr)
744 return __same_bdev(sbi, cur_blkaddr, bio);
747 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
748 struct f2fs_io_info *fio)
750 if (io->fio.op != fio->op)
752 return io->fio.op_flags == fio->op_flags;
755 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
756 struct f2fs_bio_info *io,
757 struct f2fs_io_info *fio,
758 block_t last_blkaddr,
761 if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) {
762 unsigned int filled_blocks =
763 F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size);
764 unsigned int io_size = F2FS_IO_SIZE(sbi);
765 unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt;
767 /* IOs in bio is aligned and left space of vectors is not enough */
768 if (!(filled_blocks % io_size) && left_vecs < io_size)
771 if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
773 return io_type_is_mergeable(io, fio);
776 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
777 struct page *page, enum temp_type temp)
779 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
780 struct bio_entry *be;
782 be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS);
786 if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
789 down_write(&io->bio_list_lock);
790 list_add_tail(&be->list, &io->bio_list);
791 up_write(&io->bio_list_lock);
794 static void del_bio_entry(struct bio_entry *be)
797 kmem_cache_free(bio_entry_slab, be);
800 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
803 struct f2fs_sb_info *sbi = fio->sbi;
808 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
809 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
810 struct list_head *head = &io->bio_list;
811 struct bio_entry *be;
813 down_write(&io->bio_list_lock);
814 list_for_each_entry(be, head, list) {
820 f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
823 if (f2fs_crypt_mergeable_bio(*bio,
824 fio->page->mapping->host,
825 fio->page->index, fio) &&
826 bio_add_page(*bio, page, PAGE_SIZE, 0) ==
832 /* page can't be merged into bio; submit the bio */
834 __submit_bio(sbi, *bio, DATA);
837 up_write(&io->bio_list_lock);
848 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
849 struct bio **bio, struct page *page)
853 struct bio *target = bio ? *bio : NULL;
855 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
856 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
857 struct list_head *head = &io->bio_list;
858 struct bio_entry *be;
860 if (list_empty(head))
863 down_read(&io->bio_list_lock);
864 list_for_each_entry(be, head, list) {
866 found = (target == be->bio);
868 found = __has_merged_page(be->bio, NULL,
873 up_read(&io->bio_list_lock);
880 down_write(&io->bio_list_lock);
881 list_for_each_entry(be, head, list) {
883 found = (target == be->bio);
885 found = __has_merged_page(be->bio, NULL,
893 up_write(&io->bio_list_lock);
897 __submit_bio(sbi, target, DATA);
904 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
906 struct bio *bio = *fio->bio;
907 struct page *page = fio->encrypted_page ?
908 fio->encrypted_page : fio->page;
910 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
911 __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
912 return -EFSCORRUPTED;
914 trace_f2fs_submit_page_bio(page, fio);
915 f2fs_trace_ios(fio, 0);
917 if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
919 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
922 bio = __bio_alloc(fio, BIO_MAX_PAGES);
923 __attach_io_flag(fio);
924 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
925 fio->page->index, fio, GFP_NOIO);
926 bio_set_op_attrs(bio, fio->op, fio->op_flags);
928 add_bio_entry(fio->sbi, bio, page, fio->temp);
930 if (add_ipu_page(fio, &bio, page))
935 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
937 inc_page_count(fio->sbi, WB_DATA_TYPE(page));
939 *fio->last_block = fio->new_blkaddr;
945 void f2fs_submit_page_write(struct f2fs_io_info *fio)
947 struct f2fs_sb_info *sbi = fio->sbi;
948 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
949 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
950 struct page *bio_page;
952 f2fs_bug_on(sbi, is_read_io(fio->op));
954 down_write(&io->io_rwsem);
957 spin_lock(&io->io_lock);
958 if (list_empty(&io->io_list)) {
959 spin_unlock(&io->io_lock);
962 fio = list_first_entry(&io->io_list,
963 struct f2fs_io_info, list);
964 list_del(&fio->list);
965 spin_unlock(&io->io_lock);
968 verify_fio_blkaddr(fio);
970 if (fio->encrypted_page)
971 bio_page = fio->encrypted_page;
972 else if (fio->compressed_page)
973 bio_page = fio->compressed_page;
975 bio_page = fio->page;
977 /* set submitted = true as a return value */
978 fio->submitted = true;
980 inc_page_count(sbi, WB_DATA_TYPE(bio_page));
983 (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
985 !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
986 bio_page->index, fio)))
987 __submit_merged_bio(io);
989 if (io->bio == NULL) {
990 if (F2FS_IO_ALIGNED(sbi) &&
991 (fio->type == DATA || fio->type == NODE) &&
992 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
993 dec_page_count(sbi, WB_DATA_TYPE(bio_page));
997 io->bio = __bio_alloc(fio, BIO_MAX_PAGES);
998 f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
999 bio_page->index, fio, GFP_NOIO);
1003 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
1004 __submit_merged_bio(io);
1009 wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE);
1011 io->last_block_in_bio = fio->new_blkaddr;
1012 f2fs_trace_ios(fio, 0);
1014 trace_f2fs_submit_page_write(fio->page, fio);
1019 if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1020 !f2fs_is_checkpoint_ready(sbi))
1021 __submit_merged_bio(io);
1022 up_write(&io->io_rwsem);
1025 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
1027 return fsverity_active(inode) &&
1028 idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
1031 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
1032 unsigned nr_pages, unsigned op_flag,
1033 pgoff_t first_idx, bool for_write,
1036 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1038 struct bio_post_read_ctx *ctx;
1039 unsigned int post_read_steps = 0;
1041 bio = f2fs_bio_alloc(sbi, min_t(int, nr_pages, BIO_MAX_PAGES),
1044 return ERR_PTR(-ENOMEM);
1046 f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
1048 f2fs_target_device(sbi, blkaddr, bio);
1049 bio->bi_end_io = f2fs_read_end_io;
1050 bio_set_op_attrs(bio, REQ_OP_READ, op_flag);
1052 if (fscrypt_inode_uses_fs_layer_crypto(inode))
1053 post_read_steps |= 1 << STEP_DECRYPT;
1054 if (f2fs_compressed_file(inode))
1055 post_read_steps |= 1 << STEP_DECOMPRESS_NOWQ;
1056 if (for_verity && f2fs_need_verity(inode, first_idx))
1057 post_read_steps |= 1 << STEP_VERITY;
1059 if (post_read_steps) {
1060 /* Due to the mempool, this never fails. */
1061 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1064 ctx->enabled_steps = post_read_steps;
1065 bio->bi_private = ctx;
1071 static void f2fs_release_read_bio(struct bio *bio)
1073 if (bio->bi_private)
1074 mempool_free(bio->bi_private, bio_post_read_ctx_pool);
1078 /* This can handle encryption stuffs */
1079 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
1080 block_t blkaddr, int op_flags, bool for_write)
1082 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1085 bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1086 page->index, for_write, true);
1088 return PTR_ERR(bio);
1090 /* wait for GCed page writeback via META_MAPPING */
1091 f2fs_wait_on_block_writeback(inode, blkaddr);
1093 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1097 ClearPageError(page);
1098 inc_page_count(sbi, F2FS_RD_DATA);
1099 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
1100 __submit_bio(sbi, bio, DATA);
1104 static void __set_data_blkaddr(struct dnode_of_data *dn)
1106 struct f2fs_node *rn = F2FS_NODE(dn->node_page);
1110 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
1111 base = get_extra_isize(dn->inode);
1113 /* Get physical address of data block */
1114 addr_array = blkaddr_in_node(rn);
1115 addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1119 * Lock ordering for the change of data block address:
1122 * update block addresses in the node page
1124 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
1126 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1127 __set_data_blkaddr(dn);
1128 if (set_page_dirty(dn->node_page))
1129 dn->node_changed = true;
1132 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1134 dn->data_blkaddr = blkaddr;
1135 f2fs_set_data_blkaddr(dn);
1136 f2fs_update_extent_cache(dn);
1139 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
1140 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1142 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1148 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1150 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1153 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1154 dn->ofs_in_node, count);
1156 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1158 for (; count > 0; dn->ofs_in_node++) {
1159 block_t blkaddr = f2fs_data_blkaddr(dn);
1160 if (blkaddr == NULL_ADDR) {
1161 dn->data_blkaddr = NEW_ADDR;
1162 __set_data_blkaddr(dn);
1167 if (set_page_dirty(dn->node_page))
1168 dn->node_changed = true;
1172 /* Should keep dn->ofs_in_node unchanged */
1173 int f2fs_reserve_new_block(struct dnode_of_data *dn)
1175 unsigned int ofs_in_node = dn->ofs_in_node;
1178 ret = f2fs_reserve_new_blocks(dn, 1);
1179 dn->ofs_in_node = ofs_in_node;
1183 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1185 bool need_put = dn->inode_page ? false : true;
1188 err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1192 if (dn->data_blkaddr == NULL_ADDR)
1193 err = f2fs_reserve_new_block(dn);
1194 if (err || need_put)
1199 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
1201 struct extent_info ei = {0, 0, 0};
1202 struct inode *inode = dn->inode;
1204 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1205 dn->data_blkaddr = ei.blk + index - ei.fofs;
1209 return f2fs_reserve_block(dn, index);
1212 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1213 int op_flags, bool for_write)
1215 struct address_space *mapping = inode->i_mapping;
1216 struct dnode_of_data dn;
1218 struct extent_info ei = {0,0,0};
1221 page = f2fs_grab_cache_page(mapping, index, for_write);
1223 return ERR_PTR(-ENOMEM);
1225 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1226 dn.data_blkaddr = ei.blk + index - ei.fofs;
1227 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1228 DATA_GENERIC_ENHANCE_READ)) {
1229 err = -EFSCORRUPTED;
1235 set_new_dnode(&dn, inode, NULL, NULL, 0);
1236 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1239 f2fs_put_dnode(&dn);
1241 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1245 if (dn.data_blkaddr != NEW_ADDR &&
1246 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1248 DATA_GENERIC_ENHANCE)) {
1249 err = -EFSCORRUPTED;
1253 if (PageUptodate(page)) {
1259 * A new dentry page is allocated but not able to be written, since its
1260 * new inode page couldn't be allocated due to -ENOSPC.
1261 * In such the case, its blkaddr can be remained as NEW_ADDR.
1262 * see, f2fs_add_link -> f2fs_get_new_data_page ->
1263 * f2fs_init_inode_metadata.
1265 if (dn.data_blkaddr == NEW_ADDR) {
1266 zero_user_segment(page, 0, PAGE_SIZE);
1267 if (!PageUptodate(page))
1268 SetPageUptodate(page);
1273 err = f2fs_submit_page_read(inode, page, dn.data_blkaddr,
1274 op_flags, for_write);
1280 f2fs_put_page(page, 1);
1281 return ERR_PTR(err);
1284 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
1286 struct address_space *mapping = inode->i_mapping;
1289 page = find_get_page(mapping, index);
1290 if (page && PageUptodate(page))
1292 f2fs_put_page(page, 0);
1294 page = f2fs_get_read_data_page(inode, index, 0, false);
1298 if (PageUptodate(page))
1301 wait_on_page_locked(page);
1302 if (unlikely(!PageUptodate(page))) {
1303 f2fs_put_page(page, 0);
1304 return ERR_PTR(-EIO);
1310 * If it tries to access a hole, return an error.
1311 * Because, the callers, functions in dir.c and GC, should be able to know
1312 * whether this page exists or not.
1314 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1317 struct address_space *mapping = inode->i_mapping;
1320 page = f2fs_get_read_data_page(inode, index, 0, for_write);
1324 /* wait for read completion */
1326 if (unlikely(page->mapping != mapping)) {
1327 f2fs_put_page(page, 1);
1330 if (unlikely(!PageUptodate(page))) {
1331 f2fs_put_page(page, 1);
1332 return ERR_PTR(-EIO);
1338 * Caller ensures that this data page is never allocated.
1339 * A new zero-filled data page is allocated in the page cache.
1341 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1343 * Note that, ipage is set only by make_empty_dir, and if any error occur,
1344 * ipage should be released by this function.
1346 struct page *f2fs_get_new_data_page(struct inode *inode,
1347 struct page *ipage, pgoff_t index, bool new_i_size)
1349 struct address_space *mapping = inode->i_mapping;
1351 struct dnode_of_data dn;
1354 page = f2fs_grab_cache_page(mapping, index, true);
1357 * before exiting, we should make sure ipage will be released
1358 * if any error occur.
1360 f2fs_put_page(ipage, 1);
1361 return ERR_PTR(-ENOMEM);
1364 set_new_dnode(&dn, inode, ipage, NULL, 0);
1365 err = f2fs_reserve_block(&dn, index);
1367 f2fs_put_page(page, 1);
1368 return ERR_PTR(err);
1371 f2fs_put_dnode(&dn);
1373 if (PageUptodate(page))
1376 if (dn.data_blkaddr == NEW_ADDR) {
1377 zero_user_segment(page, 0, PAGE_SIZE);
1378 if (!PageUptodate(page))
1379 SetPageUptodate(page);
1381 f2fs_put_page(page, 1);
1383 /* if ipage exists, blkaddr should be NEW_ADDR */
1384 f2fs_bug_on(F2FS_I_SB(inode), ipage);
1385 page = f2fs_get_lock_data_page(inode, index, true);
1390 if (new_i_size && i_size_read(inode) <
1391 ((loff_t)(index + 1) << PAGE_SHIFT))
1392 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1396 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1398 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1399 struct f2fs_summary sum;
1400 struct node_info ni;
1401 block_t old_blkaddr;
1405 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1408 err = f2fs_get_node_info(sbi, dn->nid, &ni);
1412 dn->data_blkaddr = f2fs_data_blkaddr(dn);
1413 if (dn->data_blkaddr != NULL_ADDR)
1416 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1420 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1421 old_blkaddr = dn->data_blkaddr;
1422 f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1423 &sum, seg_type, NULL);
1424 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1425 invalidate_mapping_pages(META_MAPPING(sbi),
1426 old_blkaddr, old_blkaddr);
1427 f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1430 * i_size will be updated by direct_IO. Otherwise, we'll get stale
1431 * data from unwritten block via dio_read.
1436 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
1438 struct inode *inode = file_inode(iocb->ki_filp);
1439 struct f2fs_map_blocks map;
1442 bool direct_io = iocb->ki_flags & IOCB_DIRECT;
1444 map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
1445 map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
1446 if (map.m_len > map.m_lblk)
1447 map.m_len -= map.m_lblk;
1451 map.m_next_pgofs = NULL;
1452 map.m_next_extent = NULL;
1453 map.m_seg_type = NO_CHECK_TYPE;
1454 map.m_may_create = true;
1457 map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint);
1458 flag = f2fs_force_buffered_io(inode, iocb, from) ?
1459 F2FS_GET_BLOCK_PRE_AIO :
1460 F2FS_GET_BLOCK_PRE_DIO;
1463 if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) {
1464 err = f2fs_convert_inline_inode(inode);
1468 if (f2fs_has_inline_data(inode))
1471 flag = F2FS_GET_BLOCK_PRE_AIO;
1474 err = f2fs_map_blocks(inode, &map, 1, flag);
1475 if (map.m_len > 0 && err == -ENOSPC) {
1477 set_inode_flag(inode, FI_NO_PREALLOC);
1483 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
1485 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1487 down_read(&sbi->node_change);
1489 up_read(&sbi->node_change);
1494 f2fs_unlock_op(sbi);
1499 * f2fs_map_blocks() tries to find or build mapping relationship which
1500 * maps continuous logical blocks to physical blocks, and return such
1501 * info via f2fs_map_blocks structure.
1503 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1504 int create, int flag)
1506 unsigned int maxblocks = map->m_len;
1507 struct dnode_of_data dn;
1508 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1509 int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1510 pgoff_t pgofs, end_offset, end;
1511 int err = 0, ofs = 1;
1512 unsigned int ofs_in_node, last_ofs_in_node;
1514 struct extent_info ei = {0,0,0};
1516 unsigned int start_pgofs;
1524 /* it only supports block size == page size */
1525 pgofs = (pgoff_t)map->m_lblk;
1526 end = pgofs + maxblocks;
1528 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1529 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1533 map->m_pblk = ei.blk + pgofs - ei.fofs;
1534 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1535 map->m_flags = F2FS_MAP_MAPPED;
1536 if (map->m_next_extent)
1537 *map->m_next_extent = pgofs + map->m_len;
1539 /* for hardware encryption, but to avoid potential issue in future */
1540 if (flag == F2FS_GET_BLOCK_DIO)
1541 f2fs_wait_on_block_writeback_range(inode,
1542 map->m_pblk, map->m_len);
1547 if (map->m_may_create)
1548 f2fs_do_map_lock(sbi, flag, true);
1550 /* When reading holes, we need its node page */
1551 set_new_dnode(&dn, inode, NULL, NULL, 0);
1552 err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1554 if (flag == F2FS_GET_BLOCK_BMAP)
1556 if (err == -ENOENT) {
1558 if (map->m_next_pgofs)
1559 *map->m_next_pgofs =
1560 f2fs_get_next_page_offset(&dn, pgofs);
1561 if (map->m_next_extent)
1562 *map->m_next_extent =
1563 f2fs_get_next_page_offset(&dn, pgofs);
1568 start_pgofs = pgofs;
1570 last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1571 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1574 blkaddr = f2fs_data_blkaddr(&dn);
1576 if (__is_valid_data_blkaddr(blkaddr) &&
1577 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1578 err = -EFSCORRUPTED;
1582 if (__is_valid_data_blkaddr(blkaddr)) {
1583 /* use out-place-update for driect IO under LFS mode */
1584 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1585 map->m_may_create) {
1586 err = __allocate_data_block(&dn, map->m_seg_type);
1589 blkaddr = dn.data_blkaddr;
1590 set_inode_flag(inode, FI_APPEND_WRITE);
1594 if (unlikely(f2fs_cp_error(sbi))) {
1598 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1599 if (blkaddr == NULL_ADDR) {
1601 last_ofs_in_node = dn.ofs_in_node;
1604 WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO &&
1605 flag != F2FS_GET_BLOCK_DIO);
1606 err = __allocate_data_block(&dn,
1609 set_inode_flag(inode, FI_APPEND_WRITE);
1613 map->m_flags |= F2FS_MAP_NEW;
1614 blkaddr = dn.data_blkaddr;
1616 if (flag == F2FS_GET_BLOCK_BMAP) {
1620 if (flag == F2FS_GET_BLOCK_PRECACHE)
1622 if (flag == F2FS_GET_BLOCK_FIEMAP &&
1623 blkaddr == NULL_ADDR) {
1624 if (map->m_next_pgofs)
1625 *map->m_next_pgofs = pgofs + 1;
1628 if (flag != F2FS_GET_BLOCK_FIEMAP) {
1629 /* for defragment case */
1630 if (map->m_next_pgofs)
1631 *map->m_next_pgofs = pgofs + 1;
1637 if (flag == F2FS_GET_BLOCK_PRE_AIO)
1640 if (map->m_len == 0) {
1641 /* preallocated unwritten block should be mapped for fiemap. */
1642 if (blkaddr == NEW_ADDR)
1643 map->m_flags |= F2FS_MAP_UNWRITTEN;
1644 map->m_flags |= F2FS_MAP_MAPPED;
1646 map->m_pblk = blkaddr;
1648 } else if ((map->m_pblk != NEW_ADDR &&
1649 blkaddr == (map->m_pblk + ofs)) ||
1650 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1651 flag == F2FS_GET_BLOCK_PRE_DIO) {
1662 /* preallocate blocks in batch for one dnode page */
1663 if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1664 (pgofs == end || dn.ofs_in_node == end_offset)) {
1666 dn.ofs_in_node = ofs_in_node;
1667 err = f2fs_reserve_new_blocks(&dn, prealloc);
1671 map->m_len += dn.ofs_in_node - ofs_in_node;
1672 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1676 dn.ofs_in_node = end_offset;
1681 else if (dn.ofs_in_node < end_offset)
1684 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1685 if (map->m_flags & F2FS_MAP_MAPPED) {
1686 unsigned int ofs = start_pgofs - map->m_lblk;
1688 f2fs_update_extent_cache_range(&dn,
1689 start_pgofs, map->m_pblk + ofs,
1694 f2fs_put_dnode(&dn);
1696 if (map->m_may_create) {
1697 f2fs_do_map_lock(sbi, flag, false);
1698 f2fs_balance_fs(sbi, dn.node_changed);
1704 /* for hardware encryption, but to avoid potential issue in future */
1705 if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED)
1706 f2fs_wait_on_block_writeback_range(inode,
1707 map->m_pblk, map->m_len);
1709 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1710 if (map->m_flags & F2FS_MAP_MAPPED) {
1711 unsigned int ofs = start_pgofs - map->m_lblk;
1713 f2fs_update_extent_cache_range(&dn,
1714 start_pgofs, map->m_pblk + ofs,
1717 if (map->m_next_extent)
1718 *map->m_next_extent = pgofs + 1;
1720 f2fs_put_dnode(&dn);
1722 if (map->m_may_create) {
1723 f2fs_do_map_lock(sbi, flag, false);
1724 f2fs_balance_fs(sbi, dn.node_changed);
1727 trace_f2fs_map_blocks(inode, map, err);
1731 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1733 struct f2fs_map_blocks map;
1737 if (pos + len > i_size_read(inode))
1740 map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1741 map.m_next_pgofs = NULL;
1742 map.m_next_extent = NULL;
1743 map.m_seg_type = NO_CHECK_TYPE;
1744 map.m_may_create = false;
1745 last_lblk = F2FS_BLK_ALIGN(pos + len);
1747 while (map.m_lblk < last_lblk) {
1748 map.m_len = last_lblk - map.m_lblk;
1749 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1750 if (err || map.m_len == 0)
1752 map.m_lblk += map.m_len;
1757 static inline u64 bytes_to_blks(struct inode *inode, u64 bytes)
1759 return (bytes >> inode->i_blkbits);
1762 static inline u64 blks_to_bytes(struct inode *inode, u64 blks)
1764 return (blks << inode->i_blkbits);
1767 static int __get_data_block(struct inode *inode, sector_t iblock,
1768 struct buffer_head *bh, int create, int flag,
1769 pgoff_t *next_pgofs, int seg_type, bool may_write)
1771 struct f2fs_map_blocks map;
1774 map.m_lblk = iblock;
1775 map.m_len = bytes_to_blks(inode, bh->b_size);
1776 map.m_next_pgofs = next_pgofs;
1777 map.m_next_extent = NULL;
1778 map.m_seg_type = seg_type;
1779 map.m_may_create = may_write;
1781 err = f2fs_map_blocks(inode, &map, create, flag);
1783 map_bh(bh, inode->i_sb, map.m_pblk);
1784 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1785 bh->b_size = blks_to_bytes(inode, map.m_len);
1790 static int get_data_block_dio_write(struct inode *inode, sector_t iblock,
1791 struct buffer_head *bh_result, int create)
1793 return __get_data_block(inode, iblock, bh_result, create,
1794 F2FS_GET_BLOCK_DIO, NULL,
1795 f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1796 IS_SWAPFILE(inode) ? false : true);
1799 static int get_data_block_dio(struct inode *inode, sector_t iblock,
1800 struct buffer_head *bh_result, int create)
1802 return __get_data_block(inode, iblock, bh_result, create,
1803 F2FS_GET_BLOCK_DIO, NULL,
1804 f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1808 static int f2fs_xattr_fiemap(struct inode *inode,
1809 struct fiemap_extent_info *fieinfo)
1811 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1813 struct node_info ni;
1814 __u64 phys = 0, len;
1816 nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1819 if (f2fs_has_inline_xattr(inode)) {
1822 page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1823 inode->i_ino, false);
1827 err = f2fs_get_node_info(sbi, inode->i_ino, &ni);
1829 f2fs_put_page(page, 1);
1833 phys = blks_to_bytes(inode, ni.blk_addr);
1834 offset = offsetof(struct f2fs_inode, i_addr) +
1835 sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1836 get_inline_xattr_addrs(inode));
1839 len = inline_xattr_size(inode);
1841 f2fs_put_page(page, 1);
1843 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1846 flags |= FIEMAP_EXTENT_LAST;
1848 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1849 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1850 if (err || err == 1)
1855 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1859 err = f2fs_get_node_info(sbi, xnid, &ni);
1861 f2fs_put_page(page, 1);
1865 phys = blks_to_bytes(inode, ni.blk_addr);
1866 len = inode->i_sb->s_blocksize;
1868 f2fs_put_page(page, 1);
1870 flags = FIEMAP_EXTENT_LAST;
1874 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1875 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1878 return (err < 0 ? err : 0);
1881 static loff_t max_inode_blocks(struct inode *inode)
1883 loff_t result = ADDRS_PER_INODE(inode);
1884 loff_t leaf_count = ADDRS_PER_BLOCK(inode);
1886 /* two direct node blocks */
1887 result += (leaf_count * 2);
1889 /* two indirect node blocks */
1890 leaf_count *= NIDS_PER_BLOCK;
1891 result += (leaf_count * 2);
1893 /* one double indirect node block */
1894 leaf_count *= NIDS_PER_BLOCK;
1895 result += leaf_count;
1900 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1903 struct f2fs_map_blocks map;
1904 sector_t start_blk, last_blk;
1906 u64 logical = 0, phys = 0, size = 0;
1909 bool compr_cluster = false;
1910 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1912 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1913 ret = f2fs_precache_extents(inode);
1918 ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1924 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1925 ret = f2fs_xattr_fiemap(inode, fieinfo);
1929 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1930 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1935 if (bytes_to_blks(inode, len) == 0)
1936 len = blks_to_bytes(inode, 1);
1938 start_blk = bytes_to_blks(inode, start);
1939 last_blk = bytes_to_blks(inode, start + len - 1);
1942 memset(&map, 0, sizeof(map));
1943 map.m_lblk = start_blk;
1944 map.m_len = bytes_to_blks(inode, len);
1945 map.m_next_pgofs = &next_pgofs;
1946 map.m_seg_type = NO_CHECK_TYPE;
1949 map.m_len = cluster_size - 1;
1951 ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP);
1956 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
1957 start_blk = next_pgofs;
1959 if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode,
1960 max_inode_blocks(inode)))
1963 flags |= FIEMAP_EXTENT_LAST;
1967 if (IS_ENCRYPTED(inode))
1968 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1970 ret = fiemap_fill_next_extent(fieinfo, logical,
1972 trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
1978 if (start_blk > last_blk)
1981 if (compr_cluster) {
1982 compr_cluster = false;
1985 logical = blks_to_bytes(inode, start_blk - 1);
1986 phys = blks_to_bytes(inode, map.m_pblk);
1987 size = blks_to_bytes(inode, cluster_size);
1989 flags |= FIEMAP_EXTENT_ENCODED;
1991 start_blk += cluster_size - 1;
1993 if (start_blk > last_blk)
1999 if (map.m_pblk == COMPRESS_ADDR) {
2000 compr_cluster = true;
2005 logical = blks_to_bytes(inode, start_blk);
2006 phys = blks_to_bytes(inode, map.m_pblk);
2007 size = blks_to_bytes(inode, map.m_len);
2009 if (map.m_flags & F2FS_MAP_UNWRITTEN)
2010 flags = FIEMAP_EXTENT_UNWRITTEN;
2012 start_blk += bytes_to_blks(inode, size);
2016 if (fatal_signal_pending(current))
2024 inode_unlock(inode);
2028 static inline loff_t f2fs_readpage_limit(struct inode *inode)
2030 if (IS_ENABLED(CONFIG_FS_VERITY) &&
2031 (IS_VERITY(inode) || f2fs_verity_in_progress(inode)))
2032 return inode->i_sb->s_maxbytes;
2034 return i_size_read(inode);
2037 static int f2fs_read_single_page(struct inode *inode, struct page *page,
2039 struct f2fs_map_blocks *map,
2040 struct bio **bio_ret,
2041 sector_t *last_block_in_bio,
2044 struct bio *bio = *bio_ret;
2045 const unsigned blocksize = blks_to_bytes(inode, 1);
2046 sector_t block_in_file;
2047 sector_t last_block;
2048 sector_t last_block_in_file;
2052 block_in_file = (sector_t)page_index(page);
2053 last_block = block_in_file + nr_pages;
2054 last_block_in_file = bytes_to_blks(inode,
2055 f2fs_readpage_limit(inode) + blocksize - 1);
2056 if (last_block > last_block_in_file)
2057 last_block = last_block_in_file;
2059 /* just zeroing out page which is beyond EOF */
2060 if (block_in_file >= last_block)
2063 * Map blocks using the previous result first.
2065 if ((map->m_flags & F2FS_MAP_MAPPED) &&
2066 block_in_file > map->m_lblk &&
2067 block_in_file < (map->m_lblk + map->m_len))
2071 * Then do more f2fs_map_blocks() calls until we are
2072 * done with this page.
2074 map->m_lblk = block_in_file;
2075 map->m_len = last_block - block_in_file;
2077 ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT);
2081 if ((map->m_flags & F2FS_MAP_MAPPED)) {
2082 block_nr = map->m_pblk + block_in_file - map->m_lblk;
2083 SetPageMappedToDisk(page);
2085 if (!PageUptodate(page) && (!PageSwapCache(page) &&
2086 !cleancache_get_page(page))) {
2087 SetPageUptodate(page);
2091 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2092 DATA_GENERIC_ENHANCE_READ)) {
2093 ret = -EFSCORRUPTED;
2098 zero_user_segment(page, 0, PAGE_SIZE);
2099 if (f2fs_need_verity(inode, page->index) &&
2100 !fsverity_verify_page(page)) {
2104 if (!PageUptodate(page))
2105 SetPageUptodate(page);
2111 * This page will go to BIO. Do we need to send this
2114 if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2115 *last_block_in_bio, block_nr) ||
2116 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2118 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2122 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2123 is_readahead ? REQ_RAHEAD : 0, page->index,
2133 * If the page is under writeback, we need to wait for
2134 * its completion to see the correct decrypted data.
2136 f2fs_wait_on_block_writeback(inode, block_nr);
2138 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2139 goto submit_and_realloc;
2141 inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2142 f2fs_update_iostat(F2FS_I_SB(inode), FS_DATA_READ_IO, F2FS_BLKSIZE);
2143 ClearPageError(page);
2144 *last_block_in_bio = block_nr;
2148 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2157 #ifdef CONFIG_F2FS_FS_COMPRESSION
2158 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2159 unsigned nr_pages, sector_t *last_block_in_bio,
2160 bool is_readahead, bool for_write)
2162 struct dnode_of_data dn;
2163 struct inode *inode = cc->inode;
2164 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2165 struct bio *bio = *bio_ret;
2166 unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2167 sector_t last_block_in_file;
2168 const unsigned blocksize = blks_to_bytes(inode, 1);
2169 struct decompress_io_ctx *dic = NULL;
2170 struct bio_post_read_ctx *ctx;
2171 bool for_verity = false;
2175 f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2177 last_block_in_file = bytes_to_blks(inode,
2178 f2fs_readpage_limit(inode) + blocksize - 1);
2180 /* get rid of pages beyond EOF */
2181 for (i = 0; i < cc->cluster_size; i++) {
2182 struct page *page = cc->rpages[i];
2186 if ((sector_t)page->index >= last_block_in_file) {
2187 zero_user_segment(page, 0, PAGE_SIZE);
2188 if (!PageUptodate(page))
2189 SetPageUptodate(page);
2190 } else if (!PageUptodate(page)) {
2194 cc->rpages[i] = NULL;
2198 /* we are done since all pages are beyond EOF */
2199 if (f2fs_cluster_is_empty(cc))
2202 set_new_dnode(&dn, inode, NULL, NULL, 0);
2203 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2207 f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2209 for (i = 1; i < cc->cluster_size; i++) {
2212 blkaddr = data_blkaddr(dn.inode, dn.node_page,
2213 dn.ofs_in_node + i);
2215 if (!__is_valid_data_blkaddr(blkaddr))
2218 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2225 /* nothing to decompress */
2226 if (cc->nr_cpages == 0) {
2231 dic = f2fs_alloc_dic(cc);
2238 * It's possible to enable fsverity on the fly when handling a cluster,
2239 * which requires complicated error handling. Instead of adding more
2240 * complexity, let's give a rule where end_io post-processes fsverity
2241 * per cluster. In order to do that, we need to submit bio, if previous
2242 * bio sets a different post-process policy.
2244 if (fsverity_active(cc->inode)) {
2245 atomic_set(&dic->verity_pages, cc->nr_cpages);
2249 ctx = bio->bi_private;
2250 if (!(ctx->enabled_steps & (1 << STEP_VERITY))) {
2251 __submit_bio(sbi, bio, DATA);
2257 for (i = 0; i < dic->nr_cpages; i++) {
2258 struct page *page = dic->cpages[i];
2261 blkaddr = data_blkaddr(dn.inode, dn.node_page,
2262 dn.ofs_in_node + i + 1);
2264 if (bio && (!page_is_mergeable(sbi, bio,
2265 *last_block_in_bio, blkaddr) ||
2266 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2268 __submit_bio(sbi, bio, DATA);
2273 bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2274 is_readahead ? REQ_RAHEAD : 0,
2275 page->index, for_write, for_verity);
2277 unsigned int remained = dic->nr_cpages - i;
2278 bool release = false;
2284 if (!atomic_sub_return(remained,
2285 &dic->verity_pages))
2288 if (!atomic_sub_return(remained,
2289 &dic->pending_pages))
2294 f2fs_decompress_end_io(dic->rpages,
2295 cc->cluster_size, true,
2300 f2fs_put_dnode(&dn);
2306 f2fs_wait_on_block_writeback(inode, blkaddr);
2308 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2309 goto submit_and_realloc;
2311 /* tag STEP_DECOMPRESS to handle IO in wq */
2312 ctx = bio->bi_private;
2313 if (!(ctx->enabled_steps & (1 << STEP_DECOMPRESS)))
2314 ctx->enabled_steps |= 1 << STEP_DECOMPRESS;
2316 inc_page_count(sbi, F2FS_RD_DATA);
2317 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
2318 f2fs_update_iostat(sbi, FS_CDATA_READ_IO, F2FS_BLKSIZE);
2319 ClearPageError(page);
2320 *last_block_in_bio = blkaddr;
2323 f2fs_put_dnode(&dn);
2329 f2fs_put_dnode(&dn);
2331 f2fs_decompress_end_io(cc->rpages, cc->cluster_size, true, false);
2338 * This function was originally taken from fs/mpage.c, and customized for f2fs.
2339 * Major change was from block_size == page_size in f2fs by default.
2341 * Note that the aops->readpages() function is ONLY used for read-ahead. If
2342 * this function ever deviates from doing just read-ahead, it should either
2343 * use ->readpage() or do the necessary surgery to decouple ->readpages()
2346 static int f2fs_mpage_readpages(struct inode *inode,
2347 struct readahead_control *rac, struct page *page)
2349 struct bio *bio = NULL;
2350 sector_t last_block_in_bio = 0;
2351 struct f2fs_map_blocks map;
2352 #ifdef CONFIG_F2FS_FS_COMPRESSION
2353 struct compress_ctx cc = {
2355 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2356 .cluster_size = F2FS_I(inode)->i_cluster_size,
2357 .cluster_idx = NULL_CLUSTER,
2364 unsigned nr_pages = rac ? readahead_count(rac) : 1;
2365 unsigned max_nr_pages = nr_pages;
2367 bool drop_ra = false;
2373 map.m_next_pgofs = NULL;
2374 map.m_next_extent = NULL;
2375 map.m_seg_type = NO_CHECK_TYPE;
2376 map.m_may_create = false;
2379 * Two readahead threads for same address range can cause race condition
2380 * which fragments sequential read IOs. So let's avoid each other.
2382 if (rac && readahead_count(rac)) {
2383 if (READ_ONCE(F2FS_I(inode)->ra_offset) == readahead_index(rac))
2386 WRITE_ONCE(F2FS_I(inode)->ra_offset,
2387 readahead_index(rac));
2390 for (; nr_pages; nr_pages--) {
2392 page = readahead_page(rac);
2393 prefetchw(&page->flags);
2395 f2fs_put_page(page, 1);
2400 #ifdef CONFIG_F2FS_FS_COMPRESSION
2401 if (f2fs_compressed_file(inode)) {
2402 /* there are remained comressed pages, submit them */
2403 if (!f2fs_cluster_can_merge_page(&cc, page->index)) {
2404 ret = f2fs_read_multi_pages(&cc, &bio,
2407 rac != NULL, false);
2408 f2fs_destroy_compress_ctx(&cc);
2410 goto set_error_page;
2412 ret = f2fs_is_compressed_cluster(inode, page->index);
2414 goto set_error_page;
2416 goto read_single_page;
2418 ret = f2fs_init_compress_ctx(&cc);
2420 goto set_error_page;
2422 f2fs_compress_ctx_add_page(&cc, page);
2429 ret = f2fs_read_single_page(inode, page, max_nr_pages, &map,
2430 &bio, &last_block_in_bio, rac);
2432 #ifdef CONFIG_F2FS_FS_COMPRESSION
2436 zero_user_segment(page, 0, PAGE_SIZE);
2439 #ifdef CONFIG_F2FS_FS_COMPRESSION
2445 #ifdef CONFIG_F2FS_FS_COMPRESSION
2446 if (f2fs_compressed_file(inode)) {
2448 if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2449 ret = f2fs_read_multi_pages(&cc, &bio,
2452 rac != NULL, false);
2453 f2fs_destroy_compress_ctx(&cc);
2459 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2461 if (rac && readahead_count(rac) && !drop_ra)
2462 WRITE_ONCE(F2FS_I(inode)->ra_offset, -1);
2466 static int f2fs_read_data_page(struct file *file, struct page *page)
2468 struct inode *inode = page_file_mapping(page)->host;
2471 trace_f2fs_readpage(page, DATA);
2473 if (!f2fs_is_compress_backend_ready(inode)) {
2478 /* If the file has inline data, try to read it directly */
2479 if (f2fs_has_inline_data(inode))
2480 ret = f2fs_read_inline_data(inode, page);
2482 ret = f2fs_mpage_readpages(inode, NULL, page);
2486 static void f2fs_readahead(struct readahead_control *rac)
2488 struct inode *inode = rac->mapping->host;
2490 trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2492 if (!f2fs_is_compress_backend_ready(inode))
2495 /* If the file has inline data, skip readpages */
2496 if (f2fs_has_inline_data(inode))
2499 f2fs_mpage_readpages(inode, rac, NULL);
2502 int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2504 struct inode *inode = fio->page->mapping->host;
2505 struct page *mpage, *page;
2506 gfp_t gfp_flags = GFP_NOFS;
2508 if (!f2fs_encrypted_file(inode))
2511 page = fio->compressed_page ? fio->compressed_page : fio->page;
2513 /* wait for GCed page writeback via META_MAPPING */
2514 f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2516 if (fscrypt_inode_uses_inline_crypto(inode))
2520 fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2521 PAGE_SIZE, 0, gfp_flags);
2522 if (IS_ERR(fio->encrypted_page)) {
2523 /* flush pending IOs and wait for a while in the ENOMEM case */
2524 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2525 f2fs_flush_merged_writes(fio->sbi);
2526 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2527 gfp_flags |= __GFP_NOFAIL;
2530 return PTR_ERR(fio->encrypted_page);
2533 mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2535 if (PageUptodate(mpage))
2536 memcpy(page_address(mpage),
2537 page_address(fio->encrypted_page), PAGE_SIZE);
2538 f2fs_put_page(mpage, 1);
2543 static inline bool check_inplace_update_policy(struct inode *inode,
2544 struct f2fs_io_info *fio)
2546 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2547 unsigned int policy = SM_I(sbi)->ipu_policy;
2549 if (policy & (0x1 << F2FS_IPU_FORCE))
2551 if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
2553 if (policy & (0x1 << F2FS_IPU_UTIL) &&
2554 utilization(sbi) > SM_I(sbi)->min_ipu_util)
2556 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
2557 utilization(sbi) > SM_I(sbi)->min_ipu_util)
2561 * IPU for rewrite async pages
2563 if (policy & (0x1 << F2FS_IPU_ASYNC) &&
2564 fio && fio->op == REQ_OP_WRITE &&
2565 !(fio->op_flags & REQ_SYNC) &&
2566 !IS_ENCRYPTED(inode))
2569 /* this is only set during fdatasync */
2570 if (policy & (0x1 << F2FS_IPU_FSYNC) &&
2571 is_inode_flag_set(inode, FI_NEED_IPU))
2574 if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2575 !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2581 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2583 if (f2fs_is_pinned_file(inode))
2586 /* if this is cold file, we should overwrite to avoid fragmentation */
2587 if (file_is_cold(inode))
2590 return check_inplace_update_policy(inode, fio);
2593 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2595 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2597 if (f2fs_lfs_mode(sbi))
2599 if (S_ISDIR(inode->i_mode))
2601 if (IS_NOQUOTA(inode))
2603 if (f2fs_is_atomic_file(inode))
2606 if (is_cold_data(fio->page))
2608 if (IS_ATOMIC_WRITTEN_PAGE(fio->page))
2610 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2611 f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2617 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2619 struct inode *inode = fio->page->mapping->host;
2621 if (f2fs_should_update_outplace(inode, fio))
2624 return f2fs_should_update_inplace(inode, fio);
2627 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2629 struct page *page = fio->page;
2630 struct inode *inode = page->mapping->host;
2631 struct dnode_of_data dn;
2632 struct extent_info ei = {0,0,0};
2633 struct node_info ni;
2634 bool ipu_force = false;
2637 set_new_dnode(&dn, inode, NULL, NULL, 0);
2638 if (need_inplace_update(fio) &&
2639 f2fs_lookup_extent_cache(inode, page->index, &ei)) {
2640 fio->old_blkaddr = ei.blk + page->index - ei.fofs;
2642 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2643 DATA_GENERIC_ENHANCE))
2644 return -EFSCORRUPTED;
2647 fio->need_lock = LOCK_DONE;
2651 /* Deadlock due to between page->lock and f2fs_lock_op */
2652 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2655 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2659 fio->old_blkaddr = dn.data_blkaddr;
2661 /* This page is already truncated */
2662 if (fio->old_blkaddr == NULL_ADDR) {
2663 ClearPageUptodate(page);
2664 clear_cold_data(page);
2668 if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2669 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2670 DATA_GENERIC_ENHANCE)) {
2671 err = -EFSCORRUPTED;
2675 * If current allocation needs SSR,
2676 * it had better in-place writes for updated data.
2679 (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2680 need_inplace_update(fio))) {
2681 err = f2fs_encrypt_one_page(fio);
2685 set_page_writeback(page);
2686 ClearPageError(page);
2687 f2fs_put_dnode(&dn);
2688 if (fio->need_lock == LOCK_REQ)
2689 f2fs_unlock_op(fio->sbi);
2690 err = f2fs_inplace_write_data(fio);
2692 if (fscrypt_inode_uses_fs_layer_crypto(inode))
2693 fscrypt_finalize_bounce_page(&fio->encrypted_page);
2694 if (PageWriteback(page))
2695 end_page_writeback(page);
2697 set_inode_flag(inode, FI_UPDATE_WRITE);
2699 trace_f2fs_do_write_data_page(fio->page, IPU);
2703 if (fio->need_lock == LOCK_RETRY) {
2704 if (!f2fs_trylock_op(fio->sbi)) {
2708 fio->need_lock = LOCK_REQ;
2711 err = f2fs_get_node_info(fio->sbi, dn.nid, &ni);
2715 fio->version = ni.version;
2717 err = f2fs_encrypt_one_page(fio);
2721 set_page_writeback(page);
2722 ClearPageError(page);
2724 if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2725 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2727 /* LFS mode write path */
2728 f2fs_outplace_write_data(&dn, fio);
2729 trace_f2fs_do_write_data_page(page, OPU);
2730 set_inode_flag(inode, FI_APPEND_WRITE);
2731 if (page->index == 0)
2732 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
2734 f2fs_put_dnode(&dn);
2736 if (fio->need_lock == LOCK_REQ)
2737 f2fs_unlock_op(fio->sbi);
2741 int f2fs_write_single_data_page(struct page *page, int *submitted,
2743 sector_t *last_block,
2744 struct writeback_control *wbc,
2745 enum iostat_type io_type,
2748 struct inode *inode = page->mapping->host;
2749 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2750 loff_t i_size = i_size_read(inode);
2751 const pgoff_t end_index = ((unsigned long long)i_size)
2753 loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2754 unsigned offset = 0;
2755 bool need_balance_fs = false;
2757 struct f2fs_io_info fio = {
2759 .ino = inode->i_ino,
2762 .op_flags = wbc_to_write_flags(wbc),
2763 .old_blkaddr = NULL_ADDR,
2765 .encrypted_page = NULL,
2767 .compr_blocks = compr_blocks,
2768 .need_lock = LOCK_RETRY,
2772 .last_block = last_block,
2775 trace_f2fs_writepage(page, DATA);
2777 /* we should bypass data pages to proceed the kworkder jobs */
2778 if (unlikely(f2fs_cp_error(sbi))) {
2779 mapping_set_error(page->mapping, -EIO);
2781 * don't drop any dirty dentry pages for keeping lastest
2782 * directory structure.
2784 if (S_ISDIR(inode->i_mode))
2789 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2792 if (page->index < end_index ||
2793 f2fs_verity_in_progress(inode) ||
2798 * If the offset is out-of-range of file size,
2799 * this page does not have to be written to disk.
2801 offset = i_size & (PAGE_SIZE - 1);
2802 if ((page->index >= end_index + 1) || !offset)
2805 zero_user_segment(page, offset, PAGE_SIZE);
2807 if (f2fs_is_drop_cache(inode))
2809 /* we should not write 0'th page having journal header */
2810 if (f2fs_is_volatile_file(inode) && (!page->index ||
2811 (!wbc->for_reclaim &&
2812 f2fs_available_free_memory(sbi, BASE_CHECK))))
2815 /* Dentry/quota blocks are controlled by checkpoint */
2816 if (S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) {
2818 * We need to wait for node_write to avoid block allocation during
2819 * checkpoint. This can only happen to quota writes which can cause
2820 * the below discard race condition.
2822 if (IS_NOQUOTA(inode))
2823 down_read(&sbi->node_write);
2825 fio.need_lock = LOCK_DONE;
2826 err = f2fs_do_write_data_page(&fio);
2828 if (IS_NOQUOTA(inode))
2829 up_read(&sbi->node_write);
2834 if (!wbc->for_reclaim)
2835 need_balance_fs = true;
2836 else if (has_not_enough_free_secs(sbi, 0, 0))
2839 set_inode_flag(inode, FI_HOT_DATA);
2842 if (f2fs_has_inline_data(inode)) {
2843 err = f2fs_write_inline_data(inode, page);
2848 if (err == -EAGAIN) {
2849 err = f2fs_do_write_data_page(&fio);
2850 if (err == -EAGAIN) {
2851 fio.need_lock = LOCK_REQ;
2852 err = f2fs_do_write_data_page(&fio);
2857 file_set_keep_isize(inode);
2859 spin_lock(&F2FS_I(inode)->i_size_lock);
2860 if (F2FS_I(inode)->last_disk_size < psize)
2861 F2FS_I(inode)->last_disk_size = psize;
2862 spin_unlock(&F2FS_I(inode)->i_size_lock);
2866 if (err && err != -ENOENT)
2870 inode_dec_dirty_pages(inode);
2872 ClearPageUptodate(page);
2873 clear_cold_data(page);
2876 if (wbc->for_reclaim) {
2877 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2878 clear_inode_flag(inode, FI_HOT_DATA);
2879 f2fs_remove_dirty_inode(inode);
2883 if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2884 !F2FS_I(inode)->cp_task)
2885 f2fs_balance_fs(sbi, need_balance_fs);
2887 if (unlikely(f2fs_cp_error(sbi))) {
2888 f2fs_submit_merged_write(sbi, DATA);
2889 f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2894 *submitted = fio.submitted ? 1 : 0;
2899 redirty_page_for_writepage(wbc, page);
2901 * pageout() in MM traslates EAGAIN, so calls handle_write_error()
2902 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2903 * file_write_and_wait_range() will see EIO error, which is critical
2904 * to return value of fsync() followed by atomic_write failure to user.
2906 if (!err || wbc->for_reclaim)
2907 return AOP_WRITEPAGE_ACTIVATE;
2912 static int f2fs_write_data_page(struct page *page,
2913 struct writeback_control *wbc)
2915 #ifdef CONFIG_F2FS_FS_COMPRESSION
2916 struct inode *inode = page->mapping->host;
2918 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2921 if (f2fs_compressed_file(inode)) {
2922 if (f2fs_is_compressed_cluster(inode, page->index)) {
2923 redirty_page_for_writepage(wbc, page);
2924 return AOP_WRITEPAGE_ACTIVATE;
2930 return f2fs_write_single_data_page(page, NULL, NULL, NULL,
2931 wbc, FS_DATA_IO, 0);
2935 * This function was copied from write_cche_pages from mm/page-writeback.c.
2936 * The major change is making write step of cold data page separately from
2937 * warm/hot data page.
2939 static int f2fs_write_cache_pages(struct address_space *mapping,
2940 struct writeback_control *wbc,
2941 enum iostat_type io_type)
2944 int done = 0, retry = 0;
2945 struct pagevec pvec;
2946 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2947 struct bio *bio = NULL;
2948 sector_t last_block;
2949 #ifdef CONFIG_F2FS_FS_COMPRESSION
2950 struct inode *inode = mapping->host;
2951 struct compress_ctx cc = {
2953 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2954 .cluster_size = F2FS_I(inode)->i_cluster_size,
2955 .cluster_idx = NULL_CLUSTER,
2961 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
2967 pgoff_t end; /* Inclusive */
2969 int range_whole = 0;
2975 pagevec_init(&pvec);
2977 if (get_dirty_pages(mapping->host) <=
2978 SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2979 set_inode_flag(mapping->host, FI_HOT_DATA);
2981 clear_inode_flag(mapping->host, FI_HOT_DATA);
2983 if (wbc->range_cyclic) {
2984 index = mapping->writeback_index; /* prev offset */
2987 index = wbc->range_start >> PAGE_SHIFT;
2988 end = wbc->range_end >> PAGE_SHIFT;
2989 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2992 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2993 tag = PAGECACHE_TAG_TOWRITE;
2995 tag = PAGECACHE_TAG_DIRTY;
2998 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2999 tag_pages_for_writeback(mapping, index, end);
3001 while (!done && !retry && (index <= end)) {
3002 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
3007 for (i = 0; i < nr_pages; i++) {
3008 struct page *page = pvec.pages[i];
3012 #ifdef CONFIG_F2FS_FS_COMPRESSION
3013 if (f2fs_compressed_file(inode)) {
3014 ret = f2fs_init_compress_ctx(&cc);
3020 if (!f2fs_cluster_can_merge_page(&cc,
3022 ret = f2fs_write_multi_pages(&cc,
3023 &submitted, wbc, io_type);
3029 if (unlikely(f2fs_cp_error(sbi)))
3032 if (f2fs_cluster_is_empty(&cc)) {
3033 void *fsdata = NULL;
3037 ret2 = f2fs_prepare_compress_overwrite(
3039 page->index, &fsdata);
3045 !f2fs_compress_write_end(inode,
3046 fsdata, page->index,
3056 /* give a priority to WB_SYNC threads */
3057 if (atomic_read(&sbi->wb_sync_req[DATA]) &&
3058 wbc->sync_mode == WB_SYNC_NONE) {
3062 #ifdef CONFIG_F2FS_FS_COMPRESSION
3065 done_index = page->index;
3069 if (unlikely(page->mapping != mapping)) {
3075 if (!PageDirty(page)) {
3076 /* someone wrote it for us */
3077 goto continue_unlock;
3080 if (PageWriteback(page)) {
3081 if (wbc->sync_mode != WB_SYNC_NONE)
3082 f2fs_wait_on_page_writeback(page,
3085 goto continue_unlock;
3088 if (!clear_page_dirty_for_io(page))
3089 goto continue_unlock;
3091 #ifdef CONFIG_F2FS_FS_COMPRESSION
3092 if (f2fs_compressed_file(inode)) {
3094 f2fs_compress_ctx_add_page(&cc, page);
3098 ret = f2fs_write_single_data_page(page, &submitted,
3099 &bio, &last_block, wbc, io_type, 0);
3100 if (ret == AOP_WRITEPAGE_ACTIVATE)
3102 #ifdef CONFIG_F2FS_FS_COMPRESSION
3105 nwritten += submitted;
3106 wbc->nr_to_write -= submitted;
3108 if (unlikely(ret)) {
3110 * keep nr_to_write, since vfs uses this to
3111 * get # of written pages.
3113 if (ret == AOP_WRITEPAGE_ACTIVATE) {
3116 } else if (ret == -EAGAIN) {
3118 if (wbc->sync_mode == WB_SYNC_ALL) {
3120 congestion_wait(BLK_RW_ASYNC,
3121 DEFAULT_IO_TIMEOUT);
3126 done_index = page->index + 1;
3131 if (wbc->nr_to_write <= 0 &&
3132 wbc->sync_mode == WB_SYNC_NONE) {
3140 pagevec_release(&pvec);
3143 #ifdef CONFIG_F2FS_FS_COMPRESSION
3144 /* flush remained pages in compress cluster */
3145 if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3146 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3147 nwritten += submitted;
3148 wbc->nr_to_write -= submitted;
3154 if (f2fs_compressed_file(inode))
3155 f2fs_destroy_compress_ctx(&cc);
3162 if (wbc->range_cyclic && !done)
3164 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3165 mapping->writeback_index = done_index;
3168 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3170 /* submit cached bio of IPU write */
3172 f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3177 static inline bool __should_serialize_io(struct inode *inode,
3178 struct writeback_control *wbc)
3180 /* to avoid deadlock in path of data flush */
3181 if (F2FS_I(inode)->cp_task)
3184 if (!S_ISREG(inode->i_mode))
3186 if (IS_NOQUOTA(inode))
3189 if (f2fs_need_compress_data(inode))
3191 if (wbc->sync_mode != WB_SYNC_ALL)
3193 if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3198 static int __f2fs_write_data_pages(struct address_space *mapping,
3199 struct writeback_control *wbc,
3200 enum iostat_type io_type)
3202 struct inode *inode = mapping->host;
3203 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3204 struct blk_plug plug;
3206 bool locked = false;
3208 /* deal with chardevs and other special file */
3209 if (!mapping->a_ops->writepage)
3212 /* skip writing if there is no dirty page in this inode */
3213 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3216 /* during POR, we don't need to trigger writepage at all. */
3217 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3220 if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3221 wbc->sync_mode == WB_SYNC_NONE &&
3222 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3223 f2fs_available_free_memory(sbi, DIRTY_DENTS))
3226 /* skip writing during file defragment */
3227 if (is_inode_flag_set(inode, FI_DO_DEFRAG))
3230 trace_f2fs_writepages(mapping->host, wbc, DATA);
3232 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3233 if (wbc->sync_mode == WB_SYNC_ALL)
3234 atomic_inc(&sbi->wb_sync_req[DATA]);
3235 else if (atomic_read(&sbi->wb_sync_req[DATA]))
3238 if (__should_serialize_io(inode, wbc)) {
3239 mutex_lock(&sbi->writepages);
3243 blk_start_plug(&plug);
3244 ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3245 blk_finish_plug(&plug);
3248 mutex_unlock(&sbi->writepages);
3250 if (wbc->sync_mode == WB_SYNC_ALL)
3251 atomic_dec(&sbi->wb_sync_req[DATA]);
3253 * if some pages were truncated, we cannot guarantee its mapping->host
3254 * to detect pending bios.
3257 f2fs_remove_dirty_inode(inode);
3261 wbc->pages_skipped += get_dirty_pages(inode);
3262 trace_f2fs_writepages(mapping->host, wbc, DATA);
3266 static int f2fs_write_data_pages(struct address_space *mapping,
3267 struct writeback_control *wbc)
3269 struct inode *inode = mapping->host;
3271 return __f2fs_write_data_pages(mapping, wbc,
3272 F2FS_I(inode)->cp_task == current ?
3273 FS_CP_DATA_IO : FS_DATA_IO);
3276 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
3278 struct inode *inode = mapping->host;
3279 loff_t i_size = i_size_read(inode);
3281 if (IS_NOQUOTA(inode))
3284 /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3285 if (to > i_size && !f2fs_verity_in_progress(inode)) {
3286 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3287 down_write(&F2FS_I(inode)->i_mmap_sem);
3289 truncate_pagecache(inode, i_size);
3290 f2fs_truncate_blocks(inode, i_size, true);
3292 up_write(&F2FS_I(inode)->i_mmap_sem);
3293 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3297 static int prepare_write_begin(struct f2fs_sb_info *sbi,
3298 struct page *page, loff_t pos, unsigned len,
3299 block_t *blk_addr, bool *node_changed)
3301 struct inode *inode = page->mapping->host;
3302 pgoff_t index = page->index;
3303 struct dnode_of_data dn;
3305 bool locked = false;
3306 struct extent_info ei = {0,0,0};
3311 * we already allocated all the blocks, so we don't need to get
3312 * the block addresses when there is no need to fill the page.
3314 if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
3315 !is_inode_flag_set(inode, FI_NO_PREALLOC) &&
3316 !f2fs_verity_in_progress(inode))
3319 /* f2fs_lock_op avoids race between write CP and convert_inline_page */
3320 if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode))
3321 flag = F2FS_GET_BLOCK_DEFAULT;
3323 flag = F2FS_GET_BLOCK_PRE_AIO;
3325 if (f2fs_has_inline_data(inode) ||
3326 (pos & PAGE_MASK) >= i_size_read(inode)) {
3327 f2fs_do_map_lock(sbi, flag, true);
3332 /* check inline_data */
3333 ipage = f2fs_get_node_page(sbi, inode->i_ino);
3334 if (IS_ERR(ipage)) {
3335 err = PTR_ERR(ipage);
3339 set_new_dnode(&dn, inode, ipage, ipage, 0);
3341 if (f2fs_has_inline_data(inode)) {
3342 if (pos + len <= MAX_INLINE_DATA(inode)) {
3343 f2fs_do_read_inline_data(page, ipage);
3344 set_inode_flag(inode, FI_DATA_EXIST);
3346 set_inline_node(ipage);
3348 err = f2fs_convert_inline_page(&dn, page);
3351 if (dn.data_blkaddr == NULL_ADDR)
3352 err = f2fs_get_block(&dn, index);
3354 } else if (locked) {
3355 err = f2fs_get_block(&dn, index);
3357 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
3358 dn.data_blkaddr = ei.blk + index - ei.fofs;
3361 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3362 if (err || dn.data_blkaddr == NULL_ADDR) {
3363 f2fs_put_dnode(&dn);
3364 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
3366 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3373 /* convert_inline_page can make node_changed */
3374 *blk_addr = dn.data_blkaddr;
3375 *node_changed = dn.node_changed;
3377 f2fs_put_dnode(&dn);
3380 f2fs_do_map_lock(sbi, flag, false);
3384 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3385 loff_t pos, unsigned len, unsigned flags,
3386 struct page **pagep, void **fsdata)
3388 struct inode *inode = mapping->host;
3389 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3390 struct page *page = NULL;
3391 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
3392 bool need_balance = false, drop_atomic = false;
3393 block_t blkaddr = NULL_ADDR;
3396 trace_f2fs_write_begin(inode, pos, len, flags);
3398 if (!f2fs_is_checkpoint_ready(sbi)) {
3403 if ((f2fs_is_atomic_file(inode) &&
3404 !f2fs_available_free_memory(sbi, INMEM_PAGES)) ||
3405 is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
3412 * We should check this at this moment to avoid deadlock on inode page
3413 * and #0 page. The locking rule for inline_data conversion should be:
3414 * lock_page(page #0) -> lock_page(inode_page)
3417 err = f2fs_convert_inline_inode(inode);
3422 #ifdef CONFIG_F2FS_FS_COMPRESSION
3423 if (f2fs_compressed_file(inode)) {
3428 ret = f2fs_prepare_compress_overwrite(inode, pagep,
3441 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3442 * wait_for_stable_page. Will wait that below with our IO control.
3444 page = f2fs_pagecache_get_page(mapping, index,
3445 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3451 /* TODO: cluster can be compressed due to race with .writepage */
3455 err = prepare_write_begin(sbi, page, pos, len,
3456 &blkaddr, &need_balance);
3460 if (need_balance && !IS_NOQUOTA(inode) &&
3461 has_not_enough_free_secs(sbi, 0, 0)) {
3463 f2fs_balance_fs(sbi, true);
3465 if (page->mapping != mapping) {
3466 /* The page got truncated from under us */
3467 f2fs_put_page(page, 1);
3472 f2fs_wait_on_page_writeback(page, DATA, false, true);
3474 if (len == PAGE_SIZE || PageUptodate(page))
3477 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3478 !f2fs_verity_in_progress(inode)) {
3479 zero_user_segment(page, len, PAGE_SIZE);
3483 if (blkaddr == NEW_ADDR) {
3484 zero_user_segment(page, 0, PAGE_SIZE);
3485 SetPageUptodate(page);
3487 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3488 DATA_GENERIC_ENHANCE_READ)) {
3489 err = -EFSCORRUPTED;
3492 err = f2fs_submit_page_read(inode, page, blkaddr, 0, true);
3497 if (unlikely(page->mapping != mapping)) {
3498 f2fs_put_page(page, 1);
3501 if (unlikely(!PageUptodate(page))) {
3509 f2fs_put_page(page, 1);
3510 f2fs_write_failed(mapping, pos + len);
3512 f2fs_drop_inmem_pages_all(sbi, false);
3516 static int f2fs_write_end(struct file *file,
3517 struct address_space *mapping,
3518 loff_t pos, unsigned len, unsigned copied,
3519 struct page *page, void *fsdata)
3521 struct inode *inode = page->mapping->host;
3523 trace_f2fs_write_end(inode, pos, len, copied);
3526 * This should be come from len == PAGE_SIZE, and we expect copied
3527 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3528 * let generic_perform_write() try to copy data again through copied=0.
3530 if (!PageUptodate(page)) {
3531 if (unlikely(copied != len))
3534 SetPageUptodate(page);
3537 #ifdef CONFIG_F2FS_FS_COMPRESSION
3538 /* overwrite compressed file */
3539 if (f2fs_compressed_file(inode) && fsdata) {
3540 f2fs_compress_write_end(inode, fsdata, page->index, copied);
3541 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3543 if (pos + copied > i_size_read(inode) &&
3544 !f2fs_verity_in_progress(inode))
3545 f2fs_i_size_write(inode, pos + copied);
3553 set_page_dirty(page);
3555 if (pos + copied > i_size_read(inode) &&
3556 !f2fs_verity_in_progress(inode))
3557 f2fs_i_size_write(inode, pos + copied);
3559 f2fs_put_page(page, 1);
3560 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3564 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
3567 unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
3568 unsigned blkbits = i_blkbits;
3569 unsigned blocksize_mask = (1 << blkbits) - 1;
3570 unsigned long align = offset | iov_iter_alignment(iter);
3571 struct block_device *bdev = inode->i_sb->s_bdev;
3573 if (iov_iter_rw(iter) == READ && offset >= i_size_read(inode))
3576 if (align & blocksize_mask) {
3578 blkbits = blksize_bits(bdev_logical_block_size(bdev));
3579 blocksize_mask = (1 << blkbits) - 1;
3580 if (align & blocksize_mask)
3587 static void f2fs_dio_end_io(struct bio *bio)
3589 struct f2fs_private_dio *dio = bio->bi_private;
3591 dec_page_count(F2FS_I_SB(dio->inode),
3592 dio->write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
3594 bio->bi_private = dio->orig_private;
3595 bio->bi_end_io = dio->orig_end_io;
3602 static void f2fs_dio_submit_bio(struct bio *bio, struct inode *inode,
3605 struct f2fs_private_dio *dio;
3606 bool write = (bio_op(bio) == REQ_OP_WRITE);
3608 dio = f2fs_kzalloc(F2FS_I_SB(inode),
3609 sizeof(struct f2fs_private_dio), GFP_NOFS);
3614 dio->orig_end_io = bio->bi_end_io;
3615 dio->orig_private = bio->bi_private;
3618 bio->bi_end_io = f2fs_dio_end_io;
3619 bio->bi_private = dio;
3621 inc_page_count(F2FS_I_SB(inode),
3622 write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
3627 bio->bi_status = BLK_STS_IOERR;
3631 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3633 struct address_space *mapping = iocb->ki_filp->f_mapping;
3634 struct inode *inode = mapping->host;
3635 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3636 struct f2fs_inode_info *fi = F2FS_I(inode);
3637 size_t count = iov_iter_count(iter);
3638 loff_t offset = iocb->ki_pos;
3639 int rw = iov_iter_rw(iter);
3641 enum rw_hint hint = iocb->ki_hint;
3642 int whint_mode = F2FS_OPTION(sbi).whint_mode;
3645 err = check_direct_IO(inode, iter, offset);
3647 return err < 0 ? err : 0;
3649 if (f2fs_force_buffered_io(inode, iocb, iter))
3652 do_opu = allow_outplace_dio(inode, iocb, iter);
3654 trace_f2fs_direct_IO_enter(inode, offset, count, rw);
3656 if (rw == WRITE && whint_mode == WHINT_MODE_OFF)
3657 iocb->ki_hint = WRITE_LIFE_NOT_SET;
3659 if (iocb->ki_flags & IOCB_NOWAIT) {
3660 if (!down_read_trylock(&fi->i_gc_rwsem[rw])) {
3661 iocb->ki_hint = hint;
3665 if (do_opu && !down_read_trylock(&fi->i_gc_rwsem[READ])) {
3666 up_read(&fi->i_gc_rwsem[rw]);
3667 iocb->ki_hint = hint;
3672 down_read(&fi->i_gc_rwsem[rw]);
3674 down_read(&fi->i_gc_rwsem[READ]);
3677 err = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3678 iter, rw == WRITE ? get_data_block_dio_write :
3679 get_data_block_dio, NULL, f2fs_dio_submit_bio,
3680 rw == WRITE ? DIO_LOCKING | DIO_SKIP_HOLES :
3684 up_read(&fi->i_gc_rwsem[READ]);
3686 up_read(&fi->i_gc_rwsem[rw]);
3689 if (whint_mode == WHINT_MODE_OFF)
3690 iocb->ki_hint = hint;
3692 f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
3695 set_inode_flag(inode, FI_UPDATE_WRITE);
3696 } else if (err == -EIOCBQUEUED) {
3697 f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
3698 count - iov_iter_count(iter));
3699 } else if (err < 0) {
3700 f2fs_write_failed(mapping, offset + count);
3704 f2fs_update_iostat(sbi, APP_DIRECT_READ_IO, err);
3705 else if (err == -EIOCBQUEUED)
3706 f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_READ_IO,
3707 count - iov_iter_count(iter));
3711 trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
3716 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3717 unsigned int length)
3719 struct inode *inode = page->mapping->host;
3720 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3722 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3723 (offset % PAGE_SIZE || length != PAGE_SIZE))
3726 if (PageDirty(page)) {
3727 if (inode->i_ino == F2FS_META_INO(sbi)) {
3728 dec_page_count(sbi, F2FS_DIRTY_META);
3729 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3730 dec_page_count(sbi, F2FS_DIRTY_NODES);
3732 inode_dec_dirty_pages(inode);
3733 f2fs_remove_dirty_inode(inode);
3737 clear_cold_data(page);
3739 if (IS_ATOMIC_WRITTEN_PAGE(page))
3740 return f2fs_drop_inmem_page(inode, page);
3742 f2fs_clear_page_private(page);
3745 int f2fs_release_page(struct page *page, gfp_t wait)
3747 /* If this is dirty page, keep PagePrivate */
3748 if (PageDirty(page))
3751 /* This is atomic written page, keep Private */
3752 if (IS_ATOMIC_WRITTEN_PAGE(page))
3755 clear_cold_data(page);
3756 f2fs_clear_page_private(page);
3760 static int f2fs_set_data_page_dirty(struct page *page)
3762 struct inode *inode = page_file_mapping(page)->host;
3764 trace_f2fs_set_page_dirty(page, DATA);
3766 if (!PageUptodate(page))
3767 SetPageUptodate(page);
3768 if (PageSwapCache(page))
3769 return __set_page_dirty_nobuffers(page);
3771 if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
3772 if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
3773 f2fs_register_inmem_page(inode, page);
3777 * Previously, this page has been registered, we just
3783 if (!PageDirty(page)) {
3784 __set_page_dirty_nobuffers(page);
3785 f2fs_update_dirty_page(inode, page);
3792 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3794 #ifdef CONFIG_F2FS_FS_COMPRESSION
3795 struct dnode_of_data dn;
3796 sector_t start_idx, blknr = 0;
3799 start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3801 set_new_dnode(&dn, inode, NULL, NULL, 0);
3802 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3806 if (dn.data_blkaddr != COMPRESS_ADDR) {
3807 dn.ofs_in_node += block - start_idx;
3808 blknr = f2fs_data_blkaddr(&dn);
3809 if (!__is_valid_data_blkaddr(blknr))
3813 f2fs_put_dnode(&dn);
3821 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3823 struct inode *inode = mapping->host;
3826 if (f2fs_has_inline_data(inode))
3829 /* make sure allocating whole blocks */
3830 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3831 filemap_write_and_wait(mapping);
3833 /* Block number less than F2FS MAX BLOCKS */
3834 if (unlikely(block >= F2FS_I_SB(inode)->max_file_blocks))
3837 if (f2fs_compressed_file(inode)) {
3838 blknr = f2fs_bmap_compress(inode, block);
3840 struct f2fs_map_blocks map;
3842 memset(&map, 0, sizeof(map));
3845 map.m_next_pgofs = NULL;
3846 map.m_seg_type = NO_CHECK_TYPE;
3848 if (!f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_BMAP))
3852 trace_f2fs_bmap(inode, block, blknr);
3856 #ifdef CONFIG_MIGRATION
3857 #include <linux/migrate.h>
3859 int f2fs_migrate_page(struct address_space *mapping,
3860 struct page *newpage, struct page *page, enum migrate_mode mode)
3862 int rc, extra_count;
3863 struct f2fs_inode_info *fi = F2FS_I(mapping->host);
3864 bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
3866 BUG_ON(PageWriteback(page));
3868 /* migrating an atomic written page is safe with the inmem_lock hold */
3869 if (atomic_written) {
3870 if (mode != MIGRATE_SYNC)
3872 if (!mutex_trylock(&fi->inmem_lock))
3876 /* one extra reference was held for atomic_write page */
3877 extra_count = atomic_written ? 1 : 0;
3878 rc = migrate_page_move_mapping(mapping, newpage,
3880 if (rc != MIGRATEPAGE_SUCCESS) {
3882 mutex_unlock(&fi->inmem_lock);
3886 if (atomic_written) {
3887 struct inmem_pages *cur;
3888 list_for_each_entry(cur, &fi->inmem_pages, list)
3889 if (cur->page == page) {
3890 cur->page = newpage;
3893 mutex_unlock(&fi->inmem_lock);
3898 if (PagePrivate(page)) {
3899 f2fs_set_page_private(newpage, page_private(page));
3900 f2fs_clear_page_private(page);
3903 if (mode != MIGRATE_SYNC_NO_COPY)
3904 migrate_page_copy(newpage, page);
3906 migrate_page_states(newpage, page);
3908 return MIGRATEPAGE_SUCCESS;
3913 static int check_swap_activate_fast(struct swap_info_struct *sis,
3914 struct file *swap_file, sector_t *span)
3916 struct address_space *mapping = swap_file->f_mapping;
3917 struct inode *inode = mapping->host;
3918 sector_t cur_lblock;
3919 sector_t last_lblock;
3921 sector_t lowest_pblock = -1;
3922 sector_t highest_pblock = 0;
3924 unsigned long nr_pblocks;
3929 * Map all the blocks into the extent list. This code doesn't try
3933 last_lblock = bytes_to_blks(inode, i_size_read(inode));
3934 len = i_size_read(inode);
3936 while (cur_lblock <= last_lblock && cur_lblock < sis->max) {
3937 struct f2fs_map_blocks map;
3942 memset(&map, 0, sizeof(map));
3943 map.m_lblk = cur_lblock;
3944 map.m_len = bytes_to_blks(inode, len) - cur_lblock;
3945 map.m_next_pgofs = &next_pgofs;
3946 map.m_seg_type = NO_CHECK_TYPE;
3948 ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP);
3953 if (!(map.m_flags & F2FS_MAP_FLAGS))
3956 pblock = map.m_pblk;
3957 nr_pblocks = map.m_len;
3959 if (cur_lblock + nr_pblocks >= sis->max)
3960 nr_pblocks = sis->max - cur_lblock;
3962 if (cur_lblock) { /* exclude the header page */
3963 if (pblock < lowest_pblock)
3964 lowest_pblock = pblock;
3965 if (pblock + nr_pblocks - 1 > highest_pblock)
3966 highest_pblock = pblock + nr_pblocks - 1;
3970 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
3972 ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
3976 cur_lblock += nr_pblocks;
3979 *span = 1 + highest_pblock - lowest_pblock;
3980 if (cur_lblock == 0)
3981 cur_lblock = 1; /* force Empty message */
3982 sis->max = cur_lblock;
3983 sis->pages = cur_lblock - 1;
3984 sis->highest_bit = cur_lblock - 1;
3988 pr_err("swapon: swapfile has holes\n");
3992 /* Copied from generic_swapfile_activate() to check any holes */
3993 static int check_swap_activate(struct swap_info_struct *sis,
3994 struct file *swap_file, sector_t *span)
3996 struct address_space *mapping = swap_file->f_mapping;
3997 struct inode *inode = mapping->host;
3998 unsigned blocks_per_page;
3999 unsigned long page_no;
4000 sector_t probe_block;
4001 sector_t last_block;
4002 sector_t lowest_block = -1;
4003 sector_t highest_block = 0;
4007 if (PAGE_SIZE == F2FS_BLKSIZE)
4008 return check_swap_activate_fast(sis, swap_file, span);
4010 blocks_per_page = bytes_to_blks(inode, PAGE_SIZE);
4013 * Map all the blocks into the extent list. This code doesn't try
4018 last_block = bytes_to_blks(inode, i_size_read(inode));
4019 while ((probe_block + blocks_per_page) <= last_block &&
4020 page_no < sis->max) {
4021 unsigned block_in_page;
4022 sector_t first_block;
4028 block = probe_block;
4029 err = bmap(inode, &block);
4032 first_block = block;
4035 * It must be PAGE_SIZE aligned on-disk
4037 if (first_block & (blocks_per_page - 1)) {
4042 for (block_in_page = 1; block_in_page < blocks_per_page;
4045 block = probe_block + block_in_page;
4046 err = bmap(inode, &block);
4051 if (block != first_block + block_in_page) {
4058 first_block >>= (PAGE_SHIFT - inode->i_blkbits);
4059 if (page_no) { /* exclude the header page */
4060 if (first_block < lowest_block)
4061 lowest_block = first_block;
4062 if (first_block > highest_block)
4063 highest_block = first_block;
4067 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
4069 ret = add_swap_extent(sis, page_no, 1, first_block);
4074 probe_block += blocks_per_page;
4079 *span = 1 + highest_block - lowest_block;
4081 page_no = 1; /* force Empty message */
4083 sis->pages = page_no - 1;
4084 sis->highest_bit = page_no - 1;
4088 pr_err("swapon: swapfile has holes\n");
4092 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4095 struct inode *inode = file_inode(file);
4098 if (!S_ISREG(inode->i_mode))
4101 if (f2fs_readonly(F2FS_I_SB(inode)->sb))
4104 ret = f2fs_convert_inline_inode(inode);
4108 if (!f2fs_disable_compressed_file(inode))
4111 ret = check_swap_activate(sis, file, span);
4115 set_inode_flag(inode, FI_PIN_FILE);
4116 f2fs_precache_extents(inode);
4117 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
4121 static void f2fs_swap_deactivate(struct file *file)
4123 struct inode *inode = file_inode(file);
4125 clear_inode_flag(inode, FI_PIN_FILE);
4128 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4134 static void f2fs_swap_deactivate(struct file *file)
4139 const struct address_space_operations f2fs_dblock_aops = {
4140 .readpage = f2fs_read_data_page,
4141 .readahead = f2fs_readahead,
4142 .writepage = f2fs_write_data_page,
4143 .writepages = f2fs_write_data_pages,
4144 .write_begin = f2fs_write_begin,
4145 .write_end = f2fs_write_end,
4146 .set_page_dirty = f2fs_set_data_page_dirty,
4147 .invalidatepage = f2fs_invalidate_page,
4148 .releasepage = f2fs_release_page,
4149 .direct_IO = f2fs_direct_IO,
4151 .swap_activate = f2fs_swap_activate,
4152 .swap_deactivate = f2fs_swap_deactivate,
4153 #ifdef CONFIG_MIGRATION
4154 .migratepage = f2fs_migrate_page,
4158 void f2fs_clear_page_cache_dirty_tag(struct page *page)
4160 struct address_space *mapping = page_mapping(page);
4161 unsigned long flags;
4163 xa_lock_irqsave(&mapping->i_pages, flags);
4164 __xa_clear_mark(&mapping->i_pages, page_index(page),
4165 PAGECACHE_TAG_DIRTY);
4166 xa_unlock_irqrestore(&mapping->i_pages, flags);
4169 int __init f2fs_init_post_read_processing(void)
4171 bio_post_read_ctx_cache =
4172 kmem_cache_create("f2fs_bio_post_read_ctx",
4173 sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4174 if (!bio_post_read_ctx_cache)
4176 bio_post_read_ctx_pool =
4177 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4178 bio_post_read_ctx_cache);
4179 if (!bio_post_read_ctx_pool)
4180 goto fail_free_cache;
4184 kmem_cache_destroy(bio_post_read_ctx_cache);
4189 void f2fs_destroy_post_read_processing(void)
4191 mempool_destroy(bio_post_read_ctx_pool);
4192 kmem_cache_destroy(bio_post_read_ctx_cache);
4195 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4197 if (!f2fs_sb_has_encrypt(sbi) &&
4198 !f2fs_sb_has_verity(sbi) &&
4199 !f2fs_sb_has_compression(sbi))
4202 sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4203 WQ_UNBOUND | WQ_HIGHPRI,
4205 if (!sbi->post_read_wq)
4210 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4212 if (sbi->post_read_wq)
4213 destroy_workqueue(sbi->post_read_wq);
4216 int __init f2fs_init_bio_entry_cache(void)
4218 bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4219 sizeof(struct bio_entry));
4220 if (!bio_entry_slab)
4225 void f2fs_destroy_bio_entry_cache(void)
4227 kmem_cache_destroy(bio_entry_slab);