1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/sched/mm.h>
12 #include <linux/mpage.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/blk-crypto.h>
18 #include <linux/swap.h>
19 #include <linux/prefetch.h>
20 #include <linux/uio.h>
21 #include <linux/sched/signal.h>
22 #include <linux/fiemap.h>
23 #include <linux/iomap.h>
29 #include <trace/events/f2fs.h>
31 #define NUM_PREALLOC_POST_READ_CTXS 128
33 static struct kmem_cache *bio_post_read_ctx_cache;
34 static struct kmem_cache *bio_entry_slab;
35 static mempool_t *bio_post_read_ctx_pool;
36 static struct bio_set f2fs_bioset;
38 #define F2FS_BIO_POOL_SIZE NR_CURSEG_TYPE
40 int __init f2fs_init_bioset(void)
42 if (bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
43 0, BIOSET_NEED_BVECS))
48 void f2fs_destroy_bioset(void)
50 bioset_exit(&f2fs_bioset);
53 static bool __is_cp_guaranteed(struct page *page)
55 struct address_space *mapping = page->mapping;
57 struct f2fs_sb_info *sbi;
62 inode = mapping->host;
63 sbi = F2FS_I_SB(inode);
65 if (inode->i_ino == F2FS_META_INO(sbi) ||
66 inode->i_ino == F2FS_NODE_INO(sbi) ||
67 S_ISDIR(inode->i_mode))
70 if (f2fs_is_compressed_page(page))
72 if ((S_ISREG(inode->i_mode) && IS_NOQUOTA(inode)) ||
73 page_private_gcing(page))
78 static enum count_type __read_io_type(struct page *page)
80 struct address_space *mapping = page_file_mapping(page);
83 struct inode *inode = mapping->host;
84 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
86 if (inode->i_ino == F2FS_META_INO(sbi))
89 if (inode->i_ino == F2FS_NODE_INO(sbi))
95 /* postprocessing steps for read bios */
96 enum bio_post_read_step {
97 #ifdef CONFIG_FS_ENCRYPTION
98 STEP_DECRYPT = 1 << 0,
100 STEP_DECRYPT = 0, /* compile out the decryption-related code */
102 #ifdef CONFIG_F2FS_FS_COMPRESSION
103 STEP_DECOMPRESS = 1 << 1,
105 STEP_DECOMPRESS = 0, /* compile out the decompression-related code */
107 #ifdef CONFIG_FS_VERITY
108 STEP_VERITY = 1 << 2,
110 STEP_VERITY = 0, /* compile out the verity-related code */
114 struct bio_post_read_ctx {
116 struct f2fs_sb_info *sbi;
117 struct work_struct work;
118 unsigned int enabled_steps;
122 static void f2fs_finish_read_bio(struct bio *bio, bool in_task)
125 struct bvec_iter_all iter_all;
128 * Update and unlock the bio's pagecache pages, and put the
129 * decompression context for any compressed pages.
131 bio_for_each_segment_all(bv, bio, iter_all) {
132 struct page *page = bv->bv_page;
134 if (f2fs_is_compressed_page(page)) {
136 f2fs_end_read_compressed_page(page, true, 0,
138 f2fs_put_page_dic(page, in_task);
142 /* PG_error was set if verity failed. */
143 if (bio->bi_status || PageError(page)) {
144 ClearPageUptodate(page);
145 /* will re-read again later */
146 ClearPageError(page);
148 SetPageUptodate(page);
150 dec_page_count(F2FS_P_SB(page), __read_io_type(page));
155 mempool_free(bio->bi_private, bio_post_read_ctx_pool);
159 static void f2fs_verify_bio(struct work_struct *work)
161 struct bio_post_read_ctx *ctx =
162 container_of(work, struct bio_post_read_ctx, work);
163 struct bio *bio = ctx->bio;
164 bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS);
167 * fsverity_verify_bio() may call readahead() again, and while verity
168 * will be disabled for this, decryption and/or decompression may still
169 * be needed, resulting in another bio_post_read_ctx being allocated.
170 * So to prevent deadlocks we need to release the current ctx to the
171 * mempool first. This assumes that verity is the last post-read step.
173 mempool_free(ctx, bio_post_read_ctx_pool);
174 bio->bi_private = NULL;
177 * Verify the bio's pages with fs-verity. Exclude compressed pages,
178 * as those were handled separately by f2fs_end_read_compressed_page().
180 if (may_have_compressed_pages) {
182 struct bvec_iter_all iter_all;
184 bio_for_each_segment_all(bv, bio, iter_all) {
185 struct page *page = bv->bv_page;
187 if (!f2fs_is_compressed_page(page) &&
188 !fsverity_verify_page(page))
192 fsverity_verify_bio(bio);
195 f2fs_finish_read_bio(bio, true);
199 * If the bio's data needs to be verified with fs-verity, then enqueue the
200 * verity work for the bio. Otherwise finish the bio now.
202 * Note that to avoid deadlocks, the verity work can't be done on the
203 * decryption/decompression workqueue. This is because verifying the data pages
204 * can involve reading verity metadata pages from the file, and these verity
205 * metadata pages may be encrypted and/or compressed.
207 static void f2fs_verify_and_finish_bio(struct bio *bio, bool in_task)
209 struct bio_post_read_ctx *ctx = bio->bi_private;
211 if (ctx && (ctx->enabled_steps & STEP_VERITY)) {
212 INIT_WORK(&ctx->work, f2fs_verify_bio);
213 fsverity_enqueue_verify_work(&ctx->work);
215 f2fs_finish_read_bio(bio, in_task);
220 * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last
221 * remaining page was read by @ctx->bio.
223 * Note that a bio may span clusters (even a mix of compressed and uncompressed
224 * clusters) or be for just part of a cluster. STEP_DECOMPRESS just indicates
225 * that the bio includes at least one compressed page. The actual decompression
226 * is done on a per-cluster basis, not a per-bio basis.
228 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx,
232 struct bvec_iter_all iter_all;
233 bool all_compressed = true;
234 block_t blkaddr = ctx->fs_blkaddr;
236 bio_for_each_segment_all(bv, ctx->bio, iter_all) {
237 struct page *page = bv->bv_page;
239 if (f2fs_is_compressed_page(page))
240 f2fs_end_read_compressed_page(page, false, blkaddr,
243 all_compressed = false;
249 * Optimization: if all the bio's pages are compressed, then scheduling
250 * the per-bio verity work is unnecessary, as verity will be fully
251 * handled at the compression cluster level.
254 ctx->enabled_steps &= ~STEP_VERITY;
257 static void f2fs_post_read_work(struct work_struct *work)
259 struct bio_post_read_ctx *ctx =
260 container_of(work, struct bio_post_read_ctx, work);
261 struct bio *bio = ctx->bio;
263 if ((ctx->enabled_steps & STEP_DECRYPT) && !fscrypt_decrypt_bio(bio)) {
264 f2fs_finish_read_bio(bio, true);
268 if (ctx->enabled_steps & STEP_DECOMPRESS)
269 f2fs_handle_step_decompress(ctx, true);
271 f2fs_verify_and_finish_bio(bio, true);
274 static void f2fs_read_end_io(struct bio *bio)
276 struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
277 struct bio_post_read_ctx *ctx;
278 bool intask = in_task();
280 iostat_update_and_unbind_ctx(bio, 0);
281 ctx = bio->bi_private;
283 if (time_to_inject(sbi, FAULT_READ_IO)) {
284 f2fs_show_injection_info(sbi, FAULT_READ_IO);
285 bio->bi_status = BLK_STS_IOERR;
288 if (bio->bi_status) {
289 f2fs_finish_read_bio(bio, intask);
294 unsigned int enabled_steps = ctx->enabled_steps &
295 (STEP_DECRYPT | STEP_DECOMPRESS);
298 * If we have only decompression step between decompression and
299 * decrypt, we don't need post processing for this.
301 if (enabled_steps == STEP_DECOMPRESS &&
302 !f2fs_low_mem_mode(sbi)) {
303 f2fs_handle_step_decompress(ctx, intask);
304 } else if (enabled_steps) {
305 INIT_WORK(&ctx->work, f2fs_post_read_work);
306 queue_work(ctx->sbi->post_read_wq, &ctx->work);
311 f2fs_verify_and_finish_bio(bio, intask);
314 static void f2fs_write_end_io(struct bio *bio)
316 struct f2fs_sb_info *sbi;
317 struct bio_vec *bvec;
318 struct bvec_iter_all iter_all;
320 iostat_update_and_unbind_ctx(bio, 1);
321 sbi = bio->bi_private;
323 if (time_to_inject(sbi, FAULT_WRITE_IO)) {
324 f2fs_show_injection_info(sbi, FAULT_WRITE_IO);
325 bio->bi_status = BLK_STS_IOERR;
328 bio_for_each_segment_all(bvec, bio, iter_all) {
329 struct page *page = bvec->bv_page;
330 enum count_type type = WB_DATA_TYPE(page);
332 if (page_private_dummy(page)) {
333 clear_page_private_dummy(page);
335 mempool_free(page, sbi->write_io_dummy);
337 if (unlikely(bio->bi_status))
338 f2fs_stop_checkpoint(sbi, true);
342 fscrypt_finalize_bounce_page(&page);
344 #ifdef CONFIG_F2FS_FS_COMPRESSION
345 if (f2fs_is_compressed_page(page)) {
346 f2fs_compress_write_end_io(bio, page);
351 if (unlikely(bio->bi_status)) {
352 mapping_set_error(page->mapping, -EIO);
353 if (type == F2FS_WB_CP_DATA)
354 f2fs_stop_checkpoint(sbi, true);
357 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
358 page->index != nid_of_node(page));
360 dec_page_count(sbi, type);
361 if (f2fs_in_warm_node_list(sbi, page))
362 f2fs_del_fsync_node_entry(sbi, page);
363 clear_page_private_gcing(page);
364 end_page_writeback(page);
366 if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
367 wq_has_sleeper(&sbi->cp_wait))
368 wake_up(&sbi->cp_wait);
373 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
374 block_t blk_addr, sector_t *sector)
376 struct block_device *bdev = sbi->sb->s_bdev;
379 if (f2fs_is_multi_device(sbi)) {
380 for (i = 0; i < sbi->s_ndevs; i++) {
381 if (FDEV(i).start_blk <= blk_addr &&
382 FDEV(i).end_blk >= blk_addr) {
383 blk_addr -= FDEV(i).start_blk;
391 *sector = SECTOR_FROM_BLOCK(blk_addr);
395 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
399 if (!f2fs_is_multi_device(sbi))
402 for (i = 0; i < sbi->s_ndevs; i++)
403 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
408 static blk_opf_t f2fs_io_flags(struct f2fs_io_info *fio)
410 unsigned int temp_mask = (1 << NR_TEMP_TYPE) - 1;
411 unsigned int fua_flag, meta_flag, io_flag;
412 blk_opf_t op_flags = 0;
414 if (fio->op != REQ_OP_WRITE)
416 if (fio->type == DATA)
417 io_flag = fio->sbi->data_io_flag;
418 else if (fio->type == NODE)
419 io_flag = fio->sbi->node_io_flag;
423 fua_flag = io_flag & temp_mask;
424 meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
427 * data/node io flag bits per temp:
428 * REQ_META | REQ_FUA |
429 * 5 | 4 | 3 | 2 | 1 | 0 |
430 * Cold | Warm | Hot | Cold | Warm | Hot |
432 if ((1 << fio->temp) & meta_flag)
433 op_flags |= REQ_META;
434 if ((1 << fio->temp) & fua_flag)
439 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
441 struct f2fs_sb_info *sbi = fio->sbi;
442 struct block_device *bdev;
446 bdev = f2fs_target_device(sbi, fio->new_blkaddr, §or);
447 bio = bio_alloc_bioset(bdev, npages,
448 fio->op | fio->op_flags | f2fs_io_flags(fio),
449 GFP_NOIO, &f2fs_bioset);
450 bio->bi_iter.bi_sector = sector;
451 if (is_read_io(fio->op)) {
452 bio->bi_end_io = f2fs_read_end_io;
453 bio->bi_private = NULL;
455 bio->bi_end_io = f2fs_write_end_io;
456 bio->bi_private = sbi;
458 iostat_alloc_and_bind_ctx(sbi, bio, NULL);
461 wbc_init_bio(fio->io_wbc, bio);
466 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
468 const struct f2fs_io_info *fio,
472 * The f2fs garbage collector sets ->encrypted_page when it wants to
473 * read/write raw data without encryption.
475 if (!fio || !fio->encrypted_page)
476 fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
479 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
481 const struct f2fs_io_info *fio)
484 * The f2fs garbage collector sets ->encrypted_page when it wants to
485 * read/write raw data without encryption.
487 if (fio && fio->encrypted_page)
488 return !bio_has_crypt_ctx(bio);
490 return fscrypt_mergeable_bio(bio, inode, next_idx);
493 static inline void __submit_bio(struct f2fs_sb_info *sbi,
494 struct bio *bio, enum page_type type)
496 if (!is_read_io(bio_op(bio))) {
499 if (type != DATA && type != NODE)
502 if (f2fs_lfs_mode(sbi) && current->plug)
503 blk_finish_plug(current->plug);
505 if (!F2FS_IO_ALIGNED(sbi))
508 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
509 start %= F2FS_IO_SIZE(sbi);
514 /* fill dummy pages */
515 for (; start < F2FS_IO_SIZE(sbi); start++) {
517 mempool_alloc(sbi->write_io_dummy,
518 GFP_NOIO | __GFP_NOFAIL);
519 f2fs_bug_on(sbi, !page);
523 zero_user_segment(page, 0, PAGE_SIZE);
524 set_page_private_dummy(page);
526 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
530 * In the NODE case, we lose next block address chain. So, we
531 * need to do checkpoint in f2fs_sync_file.
534 set_sbi_flag(sbi, SBI_NEED_CP);
537 if (is_read_io(bio_op(bio)))
538 trace_f2fs_submit_read_bio(sbi->sb, type, bio);
540 trace_f2fs_submit_write_bio(sbi->sb, type, bio);
542 iostat_update_submit_ctx(bio, type);
546 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
547 struct bio *bio, enum page_type type)
549 __submit_bio(sbi, bio, type);
552 static void __submit_merged_bio(struct f2fs_bio_info *io)
554 struct f2fs_io_info *fio = &io->fio;
559 if (is_read_io(fio->op))
560 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
562 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
564 __submit_bio(io->sbi, io->bio, fio->type);
568 static bool __has_merged_page(struct bio *bio, struct inode *inode,
569 struct page *page, nid_t ino)
571 struct bio_vec *bvec;
572 struct bvec_iter_all iter_all;
577 if (!inode && !page && !ino)
580 bio_for_each_segment_all(bvec, bio, iter_all) {
581 struct page *target = bvec->bv_page;
583 if (fscrypt_is_bounce_page(target)) {
584 target = fscrypt_pagecache_page(target);
588 if (f2fs_is_compressed_page(target)) {
589 target = f2fs_compress_control_page(target);
594 if (inode && inode == target->mapping->host)
596 if (page && page == target)
598 if (ino && ino == ino_of_node(target))
605 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi)
609 for (i = 0; i < NR_PAGE_TYPE; i++) {
610 int n = (i == META) ? 1 : NR_TEMP_TYPE;
613 sbi->write_io[i] = f2fs_kmalloc(sbi,
614 array_size(n, sizeof(struct f2fs_bio_info)),
616 if (!sbi->write_io[i])
619 for (j = HOT; j < n; j++) {
620 init_f2fs_rwsem(&sbi->write_io[i][j].io_rwsem);
621 sbi->write_io[i][j].sbi = sbi;
622 sbi->write_io[i][j].bio = NULL;
623 spin_lock_init(&sbi->write_io[i][j].io_lock);
624 INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
625 INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list);
626 init_f2fs_rwsem(&sbi->write_io[i][j].bio_list_lock);
633 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
634 enum page_type type, enum temp_type temp)
636 enum page_type btype = PAGE_TYPE_OF_BIO(type);
637 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
639 f2fs_down_write(&io->io_rwsem);
641 /* change META to META_FLUSH in the checkpoint procedure */
642 if (type >= META_FLUSH) {
643 io->fio.type = META_FLUSH;
644 io->bio->bi_opf |= REQ_META | REQ_PRIO | REQ_SYNC;
645 if (!test_opt(sbi, NOBARRIER))
646 io->bio->bi_opf |= REQ_PREFLUSH | REQ_FUA;
648 __submit_merged_bio(io);
649 f2fs_up_write(&io->io_rwsem);
652 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
653 struct inode *inode, struct page *page,
654 nid_t ino, enum page_type type, bool force)
659 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
661 enum page_type btype = PAGE_TYPE_OF_BIO(type);
662 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
664 f2fs_down_read(&io->io_rwsem);
665 ret = __has_merged_page(io->bio, inode, page, ino);
666 f2fs_up_read(&io->io_rwsem);
669 __f2fs_submit_merged_write(sbi, type, temp);
671 /* TODO: use HOT temp only for meta pages now. */
677 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
679 __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
682 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
683 struct inode *inode, struct page *page,
684 nid_t ino, enum page_type type)
686 __submit_merged_write_cond(sbi, inode, page, ino, type, false);
689 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
691 f2fs_submit_merged_write(sbi, DATA);
692 f2fs_submit_merged_write(sbi, NODE);
693 f2fs_submit_merged_write(sbi, META);
697 * Fill the locked page with data located in the block address.
698 * A caller needs to unlock the page on failure.
700 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
703 struct page *page = fio->encrypted_page ?
704 fio->encrypted_page : fio->page;
706 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
707 fio->is_por ? META_POR : (__is_meta_io(fio) ?
708 META_GENERIC : DATA_GENERIC_ENHANCE)))
709 return -EFSCORRUPTED;
711 trace_f2fs_submit_page_bio(page, fio);
713 /* Allocate a new bio */
714 bio = __bio_alloc(fio, 1);
716 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
717 fio->page->index, fio, GFP_NOIO);
719 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
724 if (fio->io_wbc && !is_read_io(fio->op))
725 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
727 inc_page_count(fio->sbi, is_read_io(fio->op) ?
728 __read_io_type(page): WB_DATA_TYPE(fio->page));
730 __submit_bio(fio->sbi, bio, fio->type);
734 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
735 block_t last_blkaddr, block_t cur_blkaddr)
737 if (unlikely(sbi->max_io_bytes &&
738 bio->bi_iter.bi_size >= sbi->max_io_bytes))
740 if (last_blkaddr + 1 != cur_blkaddr)
742 return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL);
745 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
746 struct f2fs_io_info *fio)
748 if (io->fio.op != fio->op)
750 return io->fio.op_flags == fio->op_flags;
753 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
754 struct f2fs_bio_info *io,
755 struct f2fs_io_info *fio,
756 block_t last_blkaddr,
759 if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) {
760 unsigned int filled_blocks =
761 F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size);
762 unsigned int io_size = F2FS_IO_SIZE(sbi);
763 unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt;
765 /* IOs in bio is aligned and left space of vectors is not enough */
766 if (!(filled_blocks % io_size) && left_vecs < io_size)
769 if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
771 return io_type_is_mergeable(io, fio);
774 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
775 struct page *page, enum temp_type temp)
777 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
778 struct bio_entry *be;
780 be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL);
784 if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
787 f2fs_down_write(&io->bio_list_lock);
788 list_add_tail(&be->list, &io->bio_list);
789 f2fs_up_write(&io->bio_list_lock);
792 static void del_bio_entry(struct bio_entry *be)
795 kmem_cache_free(bio_entry_slab, be);
798 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
801 struct f2fs_sb_info *sbi = fio->sbi;
806 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
807 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
808 struct list_head *head = &io->bio_list;
809 struct bio_entry *be;
811 f2fs_down_write(&io->bio_list_lock);
812 list_for_each_entry(be, head, list) {
818 f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
821 if (f2fs_crypt_mergeable_bio(*bio,
822 fio->page->mapping->host,
823 fio->page->index, fio) &&
824 bio_add_page(*bio, page, PAGE_SIZE, 0) ==
830 /* page can't be merged into bio; submit the bio */
832 __submit_bio(sbi, *bio, DATA);
835 f2fs_up_write(&io->bio_list_lock);
846 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
847 struct bio **bio, struct page *page)
851 struct bio *target = bio ? *bio : NULL;
853 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
854 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
855 struct list_head *head = &io->bio_list;
856 struct bio_entry *be;
858 if (list_empty(head))
861 f2fs_down_read(&io->bio_list_lock);
862 list_for_each_entry(be, head, list) {
864 found = (target == be->bio);
866 found = __has_merged_page(be->bio, NULL,
871 f2fs_up_read(&io->bio_list_lock);
878 f2fs_down_write(&io->bio_list_lock);
879 list_for_each_entry(be, head, list) {
881 found = (target == be->bio);
883 found = __has_merged_page(be->bio, NULL,
891 f2fs_up_write(&io->bio_list_lock);
895 __submit_bio(sbi, target, DATA);
902 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
904 struct bio *bio = *fio->bio;
905 struct page *page = fio->encrypted_page ?
906 fio->encrypted_page : fio->page;
908 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
909 __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
910 return -EFSCORRUPTED;
912 trace_f2fs_submit_page_bio(page, fio);
914 if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
916 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
919 bio = __bio_alloc(fio, BIO_MAX_VECS);
920 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
921 fio->page->index, fio, GFP_NOIO);
923 add_bio_entry(fio->sbi, bio, page, fio->temp);
925 if (add_ipu_page(fio, &bio, page))
930 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
932 inc_page_count(fio->sbi, WB_DATA_TYPE(page));
934 *fio->last_block = fio->new_blkaddr;
940 void f2fs_submit_page_write(struct f2fs_io_info *fio)
942 struct f2fs_sb_info *sbi = fio->sbi;
943 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
944 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
945 struct page *bio_page;
947 f2fs_bug_on(sbi, is_read_io(fio->op));
949 f2fs_down_write(&io->io_rwsem);
952 spin_lock(&io->io_lock);
953 if (list_empty(&io->io_list)) {
954 spin_unlock(&io->io_lock);
957 fio = list_first_entry(&io->io_list,
958 struct f2fs_io_info, list);
959 list_del(&fio->list);
960 spin_unlock(&io->io_lock);
963 verify_fio_blkaddr(fio);
965 if (fio->encrypted_page)
966 bio_page = fio->encrypted_page;
967 else if (fio->compressed_page)
968 bio_page = fio->compressed_page;
970 bio_page = fio->page;
972 /* set submitted = true as a return value */
973 fio->submitted = true;
975 inc_page_count(sbi, WB_DATA_TYPE(bio_page));
978 (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
980 !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
981 bio_page->index, fio)))
982 __submit_merged_bio(io);
984 if (io->bio == NULL) {
985 if (F2FS_IO_ALIGNED(sbi) &&
986 (fio->type == DATA || fio->type == NODE) &&
987 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
988 dec_page_count(sbi, WB_DATA_TYPE(bio_page));
992 io->bio = __bio_alloc(fio, BIO_MAX_VECS);
993 f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
994 bio_page->index, fio, GFP_NOIO);
998 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
999 __submit_merged_bio(io);
1004 wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE);
1006 io->last_block_in_bio = fio->new_blkaddr;
1008 trace_f2fs_submit_page_write(fio->page, fio);
1013 if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1014 !f2fs_is_checkpoint_ready(sbi))
1015 __submit_merged_bio(io);
1016 f2fs_up_write(&io->io_rwsem);
1019 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
1020 unsigned nr_pages, blk_opf_t op_flag,
1021 pgoff_t first_idx, bool for_write)
1023 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1025 struct bio_post_read_ctx *ctx = NULL;
1026 unsigned int post_read_steps = 0;
1028 struct block_device *bdev = f2fs_target_device(sbi, blkaddr, §or);
1030 bio = bio_alloc_bioset(bdev, bio_max_segs(nr_pages),
1031 REQ_OP_READ | op_flag,
1032 for_write ? GFP_NOIO : GFP_KERNEL, &f2fs_bioset);
1034 return ERR_PTR(-ENOMEM);
1035 bio->bi_iter.bi_sector = sector;
1036 f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
1037 bio->bi_end_io = f2fs_read_end_io;
1039 if (fscrypt_inode_uses_fs_layer_crypto(inode))
1040 post_read_steps |= STEP_DECRYPT;
1042 if (f2fs_need_verity(inode, first_idx))
1043 post_read_steps |= STEP_VERITY;
1046 * STEP_DECOMPRESS is handled specially, since a compressed file might
1047 * contain both compressed and uncompressed clusters. We'll allocate a
1048 * bio_post_read_ctx if the file is compressed, but the caller is
1049 * responsible for enabling STEP_DECOMPRESS if it's actually needed.
1052 if (post_read_steps || f2fs_compressed_file(inode)) {
1053 /* Due to the mempool, this never fails. */
1054 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1057 ctx->enabled_steps = post_read_steps;
1058 ctx->fs_blkaddr = blkaddr;
1059 bio->bi_private = ctx;
1061 iostat_alloc_and_bind_ctx(sbi, bio, ctx);
1066 /* This can handle encryption stuffs */
1067 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
1068 block_t blkaddr, blk_opf_t op_flags,
1071 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1074 bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1075 page->index, for_write);
1077 return PTR_ERR(bio);
1079 /* wait for GCed page writeback via META_MAPPING */
1080 f2fs_wait_on_block_writeback(inode, blkaddr);
1082 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1086 ClearPageError(page);
1087 inc_page_count(sbi, F2FS_RD_DATA);
1088 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
1089 __submit_bio(sbi, bio, DATA);
1093 static void __set_data_blkaddr(struct dnode_of_data *dn)
1095 struct f2fs_node *rn = F2FS_NODE(dn->node_page);
1099 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
1100 base = get_extra_isize(dn->inode);
1102 /* Get physical address of data block */
1103 addr_array = blkaddr_in_node(rn);
1104 addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1108 * Lock ordering for the change of data block address:
1111 * update block addresses in the node page
1113 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
1115 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1116 __set_data_blkaddr(dn);
1117 if (set_page_dirty(dn->node_page))
1118 dn->node_changed = true;
1121 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1123 dn->data_blkaddr = blkaddr;
1124 f2fs_set_data_blkaddr(dn);
1125 f2fs_update_extent_cache(dn);
1128 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
1129 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1131 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1137 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1139 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1142 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1143 dn->ofs_in_node, count);
1145 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1147 for (; count > 0; dn->ofs_in_node++) {
1148 block_t blkaddr = f2fs_data_blkaddr(dn);
1150 if (blkaddr == NULL_ADDR) {
1151 dn->data_blkaddr = NEW_ADDR;
1152 __set_data_blkaddr(dn);
1157 if (set_page_dirty(dn->node_page))
1158 dn->node_changed = true;
1162 /* Should keep dn->ofs_in_node unchanged */
1163 int f2fs_reserve_new_block(struct dnode_of_data *dn)
1165 unsigned int ofs_in_node = dn->ofs_in_node;
1168 ret = f2fs_reserve_new_blocks(dn, 1);
1169 dn->ofs_in_node = ofs_in_node;
1173 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1175 bool need_put = dn->inode_page ? false : true;
1178 err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1182 if (dn->data_blkaddr == NULL_ADDR)
1183 err = f2fs_reserve_new_block(dn);
1184 if (err || need_put)
1189 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
1191 struct extent_info ei = {0, };
1192 struct inode *inode = dn->inode;
1194 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1195 dn->data_blkaddr = ei.blk + index - ei.fofs;
1199 return f2fs_reserve_block(dn, index);
1202 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1203 blk_opf_t op_flags, bool for_write)
1205 struct address_space *mapping = inode->i_mapping;
1206 struct dnode_of_data dn;
1208 struct extent_info ei = {0, };
1211 page = f2fs_grab_cache_page(mapping, index, for_write);
1213 return ERR_PTR(-ENOMEM);
1215 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1216 dn.data_blkaddr = ei.blk + index - ei.fofs;
1217 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1218 DATA_GENERIC_ENHANCE_READ)) {
1219 err = -EFSCORRUPTED;
1225 set_new_dnode(&dn, inode, NULL, NULL, 0);
1226 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1229 f2fs_put_dnode(&dn);
1231 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1235 if (dn.data_blkaddr != NEW_ADDR &&
1236 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1238 DATA_GENERIC_ENHANCE)) {
1239 err = -EFSCORRUPTED;
1243 if (PageUptodate(page)) {
1249 * A new dentry page is allocated but not able to be written, since its
1250 * new inode page couldn't be allocated due to -ENOSPC.
1251 * In such the case, its blkaddr can be remained as NEW_ADDR.
1252 * see, f2fs_add_link -> f2fs_get_new_data_page ->
1253 * f2fs_init_inode_metadata.
1255 if (dn.data_blkaddr == NEW_ADDR) {
1256 zero_user_segment(page, 0, PAGE_SIZE);
1257 if (!PageUptodate(page))
1258 SetPageUptodate(page);
1263 err = f2fs_submit_page_read(inode, page, dn.data_blkaddr,
1264 op_flags, for_write);
1270 f2fs_put_page(page, 1);
1271 return ERR_PTR(err);
1274 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
1276 struct address_space *mapping = inode->i_mapping;
1279 page = find_get_page(mapping, index);
1280 if (page && PageUptodate(page))
1282 f2fs_put_page(page, 0);
1284 page = f2fs_get_read_data_page(inode, index, 0, false);
1288 if (PageUptodate(page))
1291 wait_on_page_locked(page);
1292 if (unlikely(!PageUptodate(page))) {
1293 f2fs_put_page(page, 0);
1294 return ERR_PTR(-EIO);
1300 * If it tries to access a hole, return an error.
1301 * Because, the callers, functions in dir.c and GC, should be able to know
1302 * whether this page exists or not.
1304 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1307 struct address_space *mapping = inode->i_mapping;
1310 page = f2fs_get_read_data_page(inode, index, 0, for_write);
1314 /* wait for read completion */
1316 if (unlikely(page->mapping != mapping)) {
1317 f2fs_put_page(page, 1);
1320 if (unlikely(!PageUptodate(page))) {
1321 f2fs_put_page(page, 1);
1322 return ERR_PTR(-EIO);
1328 * Caller ensures that this data page is never allocated.
1329 * A new zero-filled data page is allocated in the page cache.
1331 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1333 * Note that, ipage is set only by make_empty_dir, and if any error occur,
1334 * ipage should be released by this function.
1336 struct page *f2fs_get_new_data_page(struct inode *inode,
1337 struct page *ipage, pgoff_t index, bool new_i_size)
1339 struct address_space *mapping = inode->i_mapping;
1341 struct dnode_of_data dn;
1344 page = f2fs_grab_cache_page(mapping, index, true);
1347 * before exiting, we should make sure ipage will be released
1348 * if any error occur.
1350 f2fs_put_page(ipage, 1);
1351 return ERR_PTR(-ENOMEM);
1354 set_new_dnode(&dn, inode, ipage, NULL, 0);
1355 err = f2fs_reserve_block(&dn, index);
1357 f2fs_put_page(page, 1);
1358 return ERR_PTR(err);
1361 f2fs_put_dnode(&dn);
1363 if (PageUptodate(page))
1366 if (dn.data_blkaddr == NEW_ADDR) {
1367 zero_user_segment(page, 0, PAGE_SIZE);
1368 if (!PageUptodate(page))
1369 SetPageUptodate(page);
1371 f2fs_put_page(page, 1);
1373 /* if ipage exists, blkaddr should be NEW_ADDR */
1374 f2fs_bug_on(F2FS_I_SB(inode), ipage);
1375 page = f2fs_get_lock_data_page(inode, index, true);
1380 if (new_i_size && i_size_read(inode) <
1381 ((loff_t)(index + 1) << PAGE_SHIFT))
1382 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1386 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1388 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1389 struct f2fs_summary sum;
1390 struct node_info ni;
1391 block_t old_blkaddr;
1395 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1398 err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
1402 dn->data_blkaddr = f2fs_data_blkaddr(dn);
1403 if (dn->data_blkaddr != NULL_ADDR)
1406 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1410 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1411 old_blkaddr = dn->data_blkaddr;
1412 f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1413 &sum, seg_type, NULL);
1414 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
1415 invalidate_mapping_pages(META_MAPPING(sbi),
1416 old_blkaddr, old_blkaddr);
1417 f2fs_invalidate_compress_page(sbi, old_blkaddr);
1419 f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1423 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
1425 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1427 f2fs_down_read(&sbi->node_change);
1429 f2fs_up_read(&sbi->node_change);
1434 f2fs_unlock_op(sbi);
1439 * f2fs_map_blocks() tries to find or build mapping relationship which
1440 * maps continuous logical blocks to physical blocks, and return such
1441 * info via f2fs_map_blocks structure.
1443 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1444 int create, int flag)
1446 unsigned int maxblocks = map->m_len;
1447 struct dnode_of_data dn;
1448 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1449 int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1450 pgoff_t pgofs, end_offset, end;
1451 int err = 0, ofs = 1;
1452 unsigned int ofs_in_node, last_ofs_in_node;
1454 struct extent_info ei = {0, };
1456 unsigned int start_pgofs;
1462 map->m_bdev = inode->i_sb->s_bdev;
1463 map->m_multidev_dio =
1464 f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag);
1469 /* it only supports block size == page size */
1470 pgofs = (pgoff_t)map->m_lblk;
1471 end = pgofs + maxblocks;
1473 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1474 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1478 map->m_pblk = ei.blk + pgofs - ei.fofs;
1479 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1480 map->m_flags = F2FS_MAP_MAPPED;
1481 if (map->m_next_extent)
1482 *map->m_next_extent = pgofs + map->m_len;
1484 /* for hardware encryption, but to avoid potential issue in future */
1485 if (flag == F2FS_GET_BLOCK_DIO)
1486 f2fs_wait_on_block_writeback_range(inode,
1487 map->m_pblk, map->m_len);
1489 if (map->m_multidev_dio) {
1490 block_t blk_addr = map->m_pblk;
1492 bidx = f2fs_target_device_index(sbi, map->m_pblk);
1494 map->m_bdev = FDEV(bidx).bdev;
1495 map->m_pblk -= FDEV(bidx).start_blk;
1496 map->m_len = min(map->m_len,
1497 FDEV(bidx).end_blk + 1 - map->m_pblk);
1499 if (map->m_may_create)
1500 f2fs_update_device_state(sbi, inode->i_ino,
1501 blk_addr, map->m_len);
1507 if (map->m_may_create)
1508 f2fs_do_map_lock(sbi, flag, true);
1510 /* When reading holes, we need its node page */
1511 set_new_dnode(&dn, inode, NULL, NULL, 0);
1512 err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1514 if (flag == F2FS_GET_BLOCK_BMAP)
1517 if (err == -ENOENT) {
1519 * There is one exceptional case that read_node_page()
1520 * may return -ENOENT due to filesystem has been
1521 * shutdown or cp_error, so force to convert error
1522 * number to EIO for such case.
1524 if (map->m_may_create &&
1525 (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1526 f2fs_cp_error(sbi))) {
1532 if (map->m_next_pgofs)
1533 *map->m_next_pgofs =
1534 f2fs_get_next_page_offset(&dn, pgofs);
1535 if (map->m_next_extent)
1536 *map->m_next_extent =
1537 f2fs_get_next_page_offset(&dn, pgofs);
1542 start_pgofs = pgofs;
1544 last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1545 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1548 blkaddr = f2fs_data_blkaddr(&dn);
1550 if (__is_valid_data_blkaddr(blkaddr) &&
1551 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1552 err = -EFSCORRUPTED;
1556 if (__is_valid_data_blkaddr(blkaddr)) {
1557 /* use out-place-update for driect IO under LFS mode */
1558 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1559 map->m_may_create) {
1560 err = __allocate_data_block(&dn, map->m_seg_type);
1563 blkaddr = dn.data_blkaddr;
1564 set_inode_flag(inode, FI_APPEND_WRITE);
1568 if (unlikely(f2fs_cp_error(sbi))) {
1572 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1573 if (blkaddr == NULL_ADDR) {
1575 last_ofs_in_node = dn.ofs_in_node;
1578 WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO &&
1579 flag != F2FS_GET_BLOCK_DIO);
1580 err = __allocate_data_block(&dn,
1583 if (flag == F2FS_GET_BLOCK_PRE_DIO)
1584 file_need_truncate(inode);
1585 set_inode_flag(inode, FI_APPEND_WRITE);
1590 map->m_flags |= F2FS_MAP_NEW;
1591 blkaddr = dn.data_blkaddr;
1593 if (f2fs_compressed_file(inode) &&
1594 f2fs_sanity_check_cluster(&dn) &&
1595 (flag != F2FS_GET_BLOCK_FIEMAP ||
1596 IS_ENABLED(CONFIG_F2FS_CHECK_FS))) {
1597 err = -EFSCORRUPTED;
1600 if (flag == F2FS_GET_BLOCK_BMAP) {
1604 if (flag == F2FS_GET_BLOCK_PRECACHE)
1606 if (flag == F2FS_GET_BLOCK_FIEMAP &&
1607 blkaddr == NULL_ADDR) {
1608 if (map->m_next_pgofs)
1609 *map->m_next_pgofs = pgofs + 1;
1612 if (flag != F2FS_GET_BLOCK_FIEMAP) {
1613 /* for defragment case */
1614 if (map->m_next_pgofs)
1615 *map->m_next_pgofs = pgofs + 1;
1621 if (flag == F2FS_GET_BLOCK_PRE_AIO)
1624 if (map->m_multidev_dio)
1625 bidx = f2fs_target_device_index(sbi, blkaddr);
1627 if (map->m_len == 0) {
1628 /* preallocated unwritten block should be mapped for fiemap. */
1629 if (blkaddr == NEW_ADDR)
1630 map->m_flags |= F2FS_MAP_UNWRITTEN;
1631 map->m_flags |= F2FS_MAP_MAPPED;
1633 map->m_pblk = blkaddr;
1636 if (map->m_multidev_dio)
1637 map->m_bdev = FDEV(bidx).bdev;
1638 } else if ((map->m_pblk != NEW_ADDR &&
1639 blkaddr == (map->m_pblk + ofs)) ||
1640 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1641 flag == F2FS_GET_BLOCK_PRE_DIO) {
1642 if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev)
1654 /* preallocate blocks in batch for one dnode page */
1655 if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1656 (pgofs == end || dn.ofs_in_node == end_offset)) {
1658 dn.ofs_in_node = ofs_in_node;
1659 err = f2fs_reserve_new_blocks(&dn, prealloc);
1663 map->m_len += dn.ofs_in_node - ofs_in_node;
1664 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1668 dn.ofs_in_node = end_offset;
1673 else if (dn.ofs_in_node < end_offset)
1676 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1677 if (map->m_flags & F2FS_MAP_MAPPED) {
1678 unsigned int ofs = start_pgofs - map->m_lblk;
1680 f2fs_update_extent_cache_range(&dn,
1681 start_pgofs, map->m_pblk + ofs,
1686 f2fs_put_dnode(&dn);
1688 if (map->m_may_create) {
1689 f2fs_do_map_lock(sbi, flag, false);
1690 f2fs_balance_fs(sbi, dn.node_changed);
1696 if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) {
1698 * for hardware encryption, but to avoid potential issue
1701 f2fs_wait_on_block_writeback_range(inode,
1702 map->m_pblk, map->m_len);
1704 if (map->m_multidev_dio) {
1705 block_t blk_addr = map->m_pblk;
1707 bidx = f2fs_target_device_index(sbi, map->m_pblk);
1709 map->m_bdev = FDEV(bidx).bdev;
1710 map->m_pblk -= FDEV(bidx).start_blk;
1712 if (map->m_may_create)
1713 f2fs_update_device_state(sbi, inode->i_ino,
1714 blk_addr, map->m_len);
1716 f2fs_bug_on(sbi, blk_addr + map->m_len >
1717 FDEV(bidx).end_blk + 1);
1721 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1722 if (map->m_flags & F2FS_MAP_MAPPED) {
1723 unsigned int ofs = start_pgofs - map->m_lblk;
1725 f2fs_update_extent_cache_range(&dn,
1726 start_pgofs, map->m_pblk + ofs,
1729 if (map->m_next_extent)
1730 *map->m_next_extent = pgofs + 1;
1732 f2fs_put_dnode(&dn);
1734 if (map->m_may_create) {
1735 f2fs_do_map_lock(sbi, flag, false);
1736 f2fs_balance_fs(sbi, dn.node_changed);
1739 trace_f2fs_map_blocks(inode, map, create, flag, err);
1743 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1745 struct f2fs_map_blocks map;
1749 if (pos + len > i_size_read(inode))
1752 map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1753 map.m_next_pgofs = NULL;
1754 map.m_next_extent = NULL;
1755 map.m_seg_type = NO_CHECK_TYPE;
1756 map.m_may_create = false;
1757 last_lblk = F2FS_BLK_ALIGN(pos + len);
1759 while (map.m_lblk < last_lblk) {
1760 map.m_len = last_lblk - map.m_lblk;
1761 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1762 if (err || map.m_len == 0)
1764 map.m_lblk += map.m_len;
1769 static inline u64 bytes_to_blks(struct inode *inode, u64 bytes)
1771 return (bytes >> inode->i_blkbits);
1774 static inline u64 blks_to_bytes(struct inode *inode, u64 blks)
1776 return (blks << inode->i_blkbits);
1779 static int f2fs_xattr_fiemap(struct inode *inode,
1780 struct fiemap_extent_info *fieinfo)
1782 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1784 struct node_info ni;
1785 __u64 phys = 0, len;
1787 nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1790 if (f2fs_has_inline_xattr(inode)) {
1793 page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1794 inode->i_ino, false);
1798 err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false);
1800 f2fs_put_page(page, 1);
1804 phys = blks_to_bytes(inode, ni.blk_addr);
1805 offset = offsetof(struct f2fs_inode, i_addr) +
1806 sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1807 get_inline_xattr_addrs(inode));
1810 len = inline_xattr_size(inode);
1812 f2fs_put_page(page, 1);
1814 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1817 flags |= FIEMAP_EXTENT_LAST;
1819 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1820 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1821 if (err || err == 1)
1826 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1830 err = f2fs_get_node_info(sbi, xnid, &ni, false);
1832 f2fs_put_page(page, 1);
1836 phys = blks_to_bytes(inode, ni.blk_addr);
1837 len = inode->i_sb->s_blocksize;
1839 f2fs_put_page(page, 1);
1841 flags = FIEMAP_EXTENT_LAST;
1845 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1846 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1849 return (err < 0 ? err : 0);
1852 static loff_t max_inode_blocks(struct inode *inode)
1854 loff_t result = ADDRS_PER_INODE(inode);
1855 loff_t leaf_count = ADDRS_PER_BLOCK(inode);
1857 /* two direct node blocks */
1858 result += (leaf_count * 2);
1860 /* two indirect node blocks */
1861 leaf_count *= NIDS_PER_BLOCK;
1862 result += (leaf_count * 2);
1864 /* one double indirect node block */
1865 leaf_count *= NIDS_PER_BLOCK;
1866 result += leaf_count;
1871 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1874 struct f2fs_map_blocks map;
1875 sector_t start_blk, last_blk;
1877 u64 logical = 0, phys = 0, size = 0;
1880 bool compr_cluster = false, compr_appended;
1881 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1882 unsigned int count_in_cluster = 0;
1885 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1886 ret = f2fs_precache_extents(inode);
1891 ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1897 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
1898 if (start > maxbytes) {
1903 if (len > maxbytes || (maxbytes - len) < start)
1904 len = maxbytes - start;
1906 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1907 ret = f2fs_xattr_fiemap(inode, fieinfo);
1911 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1912 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1917 if (bytes_to_blks(inode, len) == 0)
1918 len = blks_to_bytes(inode, 1);
1920 start_blk = bytes_to_blks(inode, start);
1921 last_blk = bytes_to_blks(inode, start + len - 1);
1924 memset(&map, 0, sizeof(map));
1925 map.m_lblk = start_blk;
1926 map.m_len = bytes_to_blks(inode, len);
1927 map.m_next_pgofs = &next_pgofs;
1928 map.m_seg_type = NO_CHECK_TYPE;
1930 if (compr_cluster) {
1932 map.m_len = cluster_size - count_in_cluster;
1935 ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP);
1940 if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) {
1941 start_blk = next_pgofs;
1943 if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode,
1944 max_inode_blocks(inode)))
1947 flags |= FIEMAP_EXTENT_LAST;
1950 compr_appended = false;
1951 /* In a case of compressed cluster, append this to the last extent */
1952 if (compr_cluster && ((map.m_flags & F2FS_MAP_UNWRITTEN) ||
1953 !(map.m_flags & F2FS_MAP_FLAGS))) {
1954 compr_appended = true;
1959 flags |= FIEMAP_EXTENT_MERGED;
1960 if (IS_ENCRYPTED(inode))
1961 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1963 ret = fiemap_fill_next_extent(fieinfo, logical,
1965 trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
1971 if (start_blk > last_blk)
1975 if (map.m_pblk == COMPRESS_ADDR) {
1976 compr_cluster = true;
1977 count_in_cluster = 1;
1978 } else if (compr_appended) {
1979 unsigned int appended_blks = cluster_size -
1980 count_in_cluster + 1;
1981 size += blks_to_bytes(inode, appended_blks);
1982 start_blk += appended_blks;
1983 compr_cluster = false;
1985 logical = blks_to_bytes(inode, start_blk);
1986 phys = __is_valid_data_blkaddr(map.m_pblk) ?
1987 blks_to_bytes(inode, map.m_pblk) : 0;
1988 size = blks_to_bytes(inode, map.m_len);
1991 if (compr_cluster) {
1992 flags = FIEMAP_EXTENT_ENCODED;
1993 count_in_cluster += map.m_len;
1994 if (count_in_cluster == cluster_size) {
1995 compr_cluster = false;
1996 size += blks_to_bytes(inode, 1);
1998 } else if (map.m_flags & F2FS_MAP_UNWRITTEN) {
1999 flags = FIEMAP_EXTENT_UNWRITTEN;
2002 start_blk += bytes_to_blks(inode, size);
2007 if (fatal_signal_pending(current))
2015 inode_unlock(inode);
2019 static inline loff_t f2fs_readpage_limit(struct inode *inode)
2021 if (IS_ENABLED(CONFIG_FS_VERITY) &&
2022 (IS_VERITY(inode) || f2fs_verity_in_progress(inode)))
2023 return inode->i_sb->s_maxbytes;
2025 return i_size_read(inode);
2028 static int f2fs_read_single_page(struct inode *inode, struct page *page,
2030 struct f2fs_map_blocks *map,
2031 struct bio **bio_ret,
2032 sector_t *last_block_in_bio,
2035 struct bio *bio = *bio_ret;
2036 const unsigned blocksize = blks_to_bytes(inode, 1);
2037 sector_t block_in_file;
2038 sector_t last_block;
2039 sector_t last_block_in_file;
2043 block_in_file = (sector_t)page_index(page);
2044 last_block = block_in_file + nr_pages;
2045 last_block_in_file = bytes_to_blks(inode,
2046 f2fs_readpage_limit(inode) + blocksize - 1);
2047 if (last_block > last_block_in_file)
2048 last_block = last_block_in_file;
2050 /* just zeroing out page which is beyond EOF */
2051 if (block_in_file >= last_block)
2054 * Map blocks using the previous result first.
2056 if ((map->m_flags & F2FS_MAP_MAPPED) &&
2057 block_in_file > map->m_lblk &&
2058 block_in_file < (map->m_lblk + map->m_len))
2062 * Then do more f2fs_map_blocks() calls until we are
2063 * done with this page.
2065 map->m_lblk = block_in_file;
2066 map->m_len = last_block - block_in_file;
2068 ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT);
2072 if ((map->m_flags & F2FS_MAP_MAPPED)) {
2073 block_nr = map->m_pblk + block_in_file - map->m_lblk;
2074 SetPageMappedToDisk(page);
2076 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2077 DATA_GENERIC_ENHANCE_READ)) {
2078 ret = -EFSCORRUPTED;
2083 zero_user_segment(page, 0, PAGE_SIZE);
2084 if (f2fs_need_verity(inode, page->index) &&
2085 !fsverity_verify_page(page)) {
2089 if (!PageUptodate(page))
2090 SetPageUptodate(page);
2096 * This page will go to BIO. Do we need to send this
2099 if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2100 *last_block_in_bio, block_nr) ||
2101 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2103 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2107 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2108 is_readahead ? REQ_RAHEAD : 0, page->index,
2118 * If the page is under writeback, we need to wait for
2119 * its completion to see the correct decrypted data.
2121 f2fs_wait_on_block_writeback(inode, block_nr);
2123 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2124 goto submit_and_realloc;
2126 inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2127 f2fs_update_iostat(F2FS_I_SB(inode), FS_DATA_READ_IO, F2FS_BLKSIZE);
2128 ClearPageError(page);
2129 *last_block_in_bio = block_nr;
2136 #ifdef CONFIG_F2FS_FS_COMPRESSION
2137 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2138 unsigned nr_pages, sector_t *last_block_in_bio,
2139 bool is_readahead, bool for_write)
2141 struct dnode_of_data dn;
2142 struct inode *inode = cc->inode;
2143 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2144 struct bio *bio = *bio_ret;
2145 unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2146 sector_t last_block_in_file;
2147 const unsigned blocksize = blks_to_bytes(inode, 1);
2148 struct decompress_io_ctx *dic = NULL;
2149 struct extent_info ei = {0, };
2150 bool from_dnode = true;
2154 f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2156 last_block_in_file = bytes_to_blks(inode,
2157 f2fs_readpage_limit(inode) + blocksize - 1);
2159 /* get rid of pages beyond EOF */
2160 for (i = 0; i < cc->cluster_size; i++) {
2161 struct page *page = cc->rpages[i];
2165 if ((sector_t)page->index >= last_block_in_file) {
2166 zero_user_segment(page, 0, PAGE_SIZE);
2167 if (!PageUptodate(page))
2168 SetPageUptodate(page);
2169 } else if (!PageUptodate(page)) {
2175 cc->rpages[i] = NULL;
2179 /* we are done since all pages are beyond EOF */
2180 if (f2fs_cluster_is_empty(cc))
2183 if (f2fs_lookup_extent_cache(inode, start_idx, &ei))
2187 goto skip_reading_dnode;
2189 set_new_dnode(&dn, inode, NULL, NULL, 0);
2190 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2194 f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2197 for (i = 1; i < cc->cluster_size; i++) {
2200 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2201 dn.ofs_in_node + i) :
2204 if (!__is_valid_data_blkaddr(blkaddr))
2207 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2213 if (!from_dnode && i >= ei.c_len)
2217 /* nothing to decompress */
2218 if (cc->nr_cpages == 0) {
2223 dic = f2fs_alloc_dic(cc);
2229 for (i = 0; i < cc->nr_cpages; i++) {
2230 struct page *page = dic->cpages[i];
2232 struct bio_post_read_ctx *ctx;
2234 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2235 dn.ofs_in_node + i + 1) :
2238 f2fs_wait_on_block_writeback(inode, blkaddr);
2240 if (f2fs_load_compressed_page(sbi, page, blkaddr)) {
2241 if (atomic_dec_and_test(&dic->remaining_pages))
2242 f2fs_decompress_cluster(dic, true);
2246 if (bio && (!page_is_mergeable(sbi, bio,
2247 *last_block_in_bio, blkaddr) ||
2248 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2250 __submit_bio(sbi, bio, DATA);
2255 bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2256 is_readahead ? REQ_RAHEAD : 0,
2257 page->index, for_write);
2260 f2fs_decompress_end_io(dic, ret, true);
2261 f2fs_put_dnode(&dn);
2267 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2268 goto submit_and_realloc;
2270 ctx = get_post_read_ctx(bio);
2271 ctx->enabled_steps |= STEP_DECOMPRESS;
2272 refcount_inc(&dic->refcnt);
2274 inc_page_count(sbi, F2FS_RD_DATA);
2275 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
2276 f2fs_update_iostat(sbi, FS_CDATA_READ_IO, F2FS_BLKSIZE);
2277 ClearPageError(page);
2278 *last_block_in_bio = blkaddr;
2282 f2fs_put_dnode(&dn);
2289 f2fs_put_dnode(&dn);
2291 for (i = 0; i < cc->cluster_size; i++) {
2292 if (cc->rpages[i]) {
2293 ClearPageUptodate(cc->rpages[i]);
2294 ClearPageError(cc->rpages[i]);
2295 unlock_page(cc->rpages[i]);
2304 * This function was originally taken from fs/mpage.c, and customized for f2fs.
2305 * Major change was from block_size == page_size in f2fs by default.
2307 static int f2fs_mpage_readpages(struct inode *inode,
2308 struct readahead_control *rac, struct page *page)
2310 struct bio *bio = NULL;
2311 sector_t last_block_in_bio = 0;
2312 struct f2fs_map_blocks map;
2313 #ifdef CONFIG_F2FS_FS_COMPRESSION
2314 struct compress_ctx cc = {
2316 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2317 .cluster_size = F2FS_I(inode)->i_cluster_size,
2318 .cluster_idx = NULL_CLUSTER,
2324 pgoff_t nc_cluster_idx = NULL_CLUSTER;
2326 unsigned nr_pages = rac ? readahead_count(rac) : 1;
2327 unsigned max_nr_pages = nr_pages;
2334 map.m_next_pgofs = NULL;
2335 map.m_next_extent = NULL;
2336 map.m_seg_type = NO_CHECK_TYPE;
2337 map.m_may_create = false;
2339 for (; nr_pages; nr_pages--) {
2341 page = readahead_page(rac);
2342 prefetchw(&page->flags);
2345 #ifdef CONFIG_F2FS_FS_COMPRESSION
2346 if (f2fs_compressed_file(inode)) {
2347 /* there are remained comressed pages, submit them */
2348 if (!f2fs_cluster_can_merge_page(&cc, page->index)) {
2349 ret = f2fs_read_multi_pages(&cc, &bio,
2352 rac != NULL, false);
2353 f2fs_destroy_compress_ctx(&cc, false);
2355 goto set_error_page;
2357 if (cc.cluster_idx == NULL_CLUSTER) {
2358 if (nc_cluster_idx ==
2359 page->index >> cc.log_cluster_size) {
2360 goto read_single_page;
2363 ret = f2fs_is_compressed_cluster(inode, page->index);
2365 goto set_error_page;
2368 page->index >> cc.log_cluster_size;
2369 goto read_single_page;
2372 nc_cluster_idx = NULL_CLUSTER;
2374 ret = f2fs_init_compress_ctx(&cc);
2376 goto set_error_page;
2378 f2fs_compress_ctx_add_page(&cc, page);
2385 ret = f2fs_read_single_page(inode, page, max_nr_pages, &map,
2386 &bio, &last_block_in_bio, rac);
2388 #ifdef CONFIG_F2FS_FS_COMPRESSION
2392 zero_user_segment(page, 0, PAGE_SIZE);
2395 #ifdef CONFIG_F2FS_FS_COMPRESSION
2401 #ifdef CONFIG_F2FS_FS_COMPRESSION
2402 if (f2fs_compressed_file(inode)) {
2404 if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2405 ret = f2fs_read_multi_pages(&cc, &bio,
2408 rac != NULL, false);
2409 f2fs_destroy_compress_ctx(&cc, false);
2415 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2419 static int f2fs_read_data_folio(struct file *file, struct folio *folio)
2421 struct page *page = &folio->page;
2422 struct inode *inode = page_file_mapping(page)->host;
2425 trace_f2fs_readpage(page, DATA);
2427 if (!f2fs_is_compress_backend_ready(inode)) {
2432 /* If the file has inline data, try to read it directly */
2433 if (f2fs_has_inline_data(inode))
2434 ret = f2fs_read_inline_data(inode, page);
2436 ret = f2fs_mpage_readpages(inode, NULL, page);
2440 static void f2fs_readahead(struct readahead_control *rac)
2442 struct inode *inode = rac->mapping->host;
2444 trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2446 if (!f2fs_is_compress_backend_ready(inode))
2449 /* If the file has inline data, skip readahead */
2450 if (f2fs_has_inline_data(inode))
2453 f2fs_mpage_readpages(inode, rac, NULL);
2456 int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2458 struct inode *inode = fio->page->mapping->host;
2459 struct page *mpage, *page;
2460 gfp_t gfp_flags = GFP_NOFS;
2462 if (!f2fs_encrypted_file(inode))
2465 page = fio->compressed_page ? fio->compressed_page : fio->page;
2467 /* wait for GCed page writeback via META_MAPPING */
2468 f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2470 if (fscrypt_inode_uses_inline_crypto(inode))
2474 fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2475 PAGE_SIZE, 0, gfp_flags);
2476 if (IS_ERR(fio->encrypted_page)) {
2477 /* flush pending IOs and wait for a while in the ENOMEM case */
2478 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2479 f2fs_flush_merged_writes(fio->sbi);
2480 memalloc_retry_wait(GFP_NOFS);
2481 gfp_flags |= __GFP_NOFAIL;
2484 return PTR_ERR(fio->encrypted_page);
2487 mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2489 if (PageUptodate(mpage))
2490 memcpy(page_address(mpage),
2491 page_address(fio->encrypted_page), PAGE_SIZE);
2492 f2fs_put_page(mpage, 1);
2497 static inline bool check_inplace_update_policy(struct inode *inode,
2498 struct f2fs_io_info *fio)
2500 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2501 unsigned int policy = SM_I(sbi)->ipu_policy;
2503 if (policy & (0x1 << F2FS_IPU_HONOR_OPU_WRITE) &&
2504 is_inode_flag_set(inode, FI_OPU_WRITE))
2506 if (policy & (0x1 << F2FS_IPU_FORCE))
2508 if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
2510 if (policy & (0x1 << F2FS_IPU_UTIL) &&
2511 utilization(sbi) > SM_I(sbi)->min_ipu_util)
2513 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
2514 utilization(sbi) > SM_I(sbi)->min_ipu_util)
2518 * IPU for rewrite async pages
2520 if (policy & (0x1 << F2FS_IPU_ASYNC) &&
2521 fio && fio->op == REQ_OP_WRITE &&
2522 !(fio->op_flags & REQ_SYNC) &&
2523 !IS_ENCRYPTED(inode))
2526 /* this is only set during fdatasync */
2527 if (policy & (0x1 << F2FS_IPU_FSYNC) &&
2528 is_inode_flag_set(inode, FI_NEED_IPU))
2531 if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2532 !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2538 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2540 /* swap file is migrating in aligned write mode */
2541 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2544 if (f2fs_is_pinned_file(inode))
2547 /* if this is cold file, we should overwrite to avoid fragmentation */
2548 if (file_is_cold(inode))
2551 return check_inplace_update_policy(inode, fio);
2554 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2556 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2558 /* The below cases were checked when setting it. */
2559 if (f2fs_is_pinned_file(inode))
2561 if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK))
2563 if (f2fs_lfs_mode(sbi))
2565 if (S_ISDIR(inode->i_mode))
2567 if (IS_NOQUOTA(inode))
2569 if (f2fs_is_atomic_file(inode))
2572 /* swap file is migrating in aligned write mode */
2573 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2576 if (is_inode_flag_set(inode, FI_OPU_WRITE))
2580 if (page_private_gcing(fio->page))
2582 if (page_private_dummy(fio->page))
2584 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2585 f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2591 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2593 struct inode *inode = fio->page->mapping->host;
2595 if (f2fs_should_update_outplace(inode, fio))
2598 return f2fs_should_update_inplace(inode, fio);
2601 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2603 struct page *page = fio->page;
2604 struct inode *inode = page->mapping->host;
2605 struct dnode_of_data dn;
2606 struct extent_info ei = {0, };
2607 struct node_info ni;
2608 bool ipu_force = false;
2611 /* Use COW inode to make dnode_of_data for atomic write */
2612 if (f2fs_is_atomic_file(inode))
2613 set_new_dnode(&dn, F2FS_I(inode)->cow_inode, NULL, NULL, 0);
2615 set_new_dnode(&dn, inode, NULL, NULL, 0);
2617 if (need_inplace_update(fio) &&
2618 f2fs_lookup_extent_cache(inode, page->index, &ei)) {
2619 fio->old_blkaddr = ei.blk + page->index - ei.fofs;
2621 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2622 DATA_GENERIC_ENHANCE))
2623 return -EFSCORRUPTED;
2626 fio->need_lock = LOCK_DONE;
2630 /* Deadlock due to between page->lock and f2fs_lock_op */
2631 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2634 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2638 fio->old_blkaddr = dn.data_blkaddr;
2640 /* This page is already truncated */
2641 if (fio->old_blkaddr == NULL_ADDR) {
2642 ClearPageUptodate(page);
2643 clear_page_private_gcing(page);
2647 if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2648 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2649 DATA_GENERIC_ENHANCE)) {
2650 err = -EFSCORRUPTED;
2655 * If current allocation needs SSR,
2656 * it had better in-place writes for updated data.
2659 (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2660 need_inplace_update(fio))) {
2661 err = f2fs_encrypt_one_page(fio);
2665 set_page_writeback(page);
2666 ClearPageError(page);
2667 f2fs_put_dnode(&dn);
2668 if (fio->need_lock == LOCK_REQ)
2669 f2fs_unlock_op(fio->sbi);
2670 err = f2fs_inplace_write_data(fio);
2672 if (fscrypt_inode_uses_fs_layer_crypto(inode))
2673 fscrypt_finalize_bounce_page(&fio->encrypted_page);
2674 if (PageWriteback(page))
2675 end_page_writeback(page);
2677 set_inode_flag(inode, FI_UPDATE_WRITE);
2679 trace_f2fs_do_write_data_page(fio->page, IPU);
2683 if (fio->need_lock == LOCK_RETRY) {
2684 if (!f2fs_trylock_op(fio->sbi)) {
2688 fio->need_lock = LOCK_REQ;
2691 err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false);
2695 fio->version = ni.version;
2697 err = f2fs_encrypt_one_page(fio);
2701 set_page_writeback(page);
2702 ClearPageError(page);
2704 if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2705 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2707 /* LFS mode write path */
2708 f2fs_outplace_write_data(&dn, fio);
2709 trace_f2fs_do_write_data_page(page, OPU);
2710 set_inode_flag(inode, FI_APPEND_WRITE);
2711 if (page->index == 0)
2712 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
2714 f2fs_put_dnode(&dn);
2716 if (fio->need_lock == LOCK_REQ)
2717 f2fs_unlock_op(fio->sbi);
2721 int f2fs_write_single_data_page(struct page *page, int *submitted,
2723 sector_t *last_block,
2724 struct writeback_control *wbc,
2725 enum iostat_type io_type,
2729 struct inode *inode = page->mapping->host;
2730 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2731 loff_t i_size = i_size_read(inode);
2732 const pgoff_t end_index = ((unsigned long long)i_size)
2734 loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2735 unsigned offset = 0;
2736 bool need_balance_fs = false;
2738 struct f2fs_io_info fio = {
2740 .ino = inode->i_ino,
2743 .op_flags = wbc_to_write_flags(wbc),
2744 .old_blkaddr = NULL_ADDR,
2746 .encrypted_page = NULL,
2748 .compr_blocks = compr_blocks,
2749 .need_lock = LOCK_RETRY,
2750 .post_read = f2fs_post_read_required(inode),
2754 .last_block = last_block,
2757 trace_f2fs_writepage(page, DATA);
2759 /* we should bypass data pages to proceed the kworkder jobs */
2760 if (unlikely(f2fs_cp_error(sbi))) {
2761 mapping_set_error(page->mapping, -EIO);
2763 * don't drop any dirty dentry pages for keeping lastest
2764 * directory structure.
2766 if (S_ISDIR(inode->i_mode))
2771 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2774 if (page->index < end_index ||
2775 f2fs_verity_in_progress(inode) ||
2780 * If the offset is out-of-range of file size,
2781 * this page does not have to be written to disk.
2783 offset = i_size & (PAGE_SIZE - 1);
2784 if ((page->index >= end_index + 1) || !offset)
2787 zero_user_segment(page, offset, PAGE_SIZE);
2789 if (f2fs_is_drop_cache(inode))
2792 /* Dentry/quota blocks are controlled by checkpoint */
2793 if (S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) {
2795 * We need to wait for node_write to avoid block allocation during
2796 * checkpoint. This can only happen to quota writes which can cause
2797 * the below discard race condition.
2799 if (IS_NOQUOTA(inode))
2800 f2fs_down_read(&sbi->node_write);
2802 fio.need_lock = LOCK_DONE;
2803 err = f2fs_do_write_data_page(&fio);
2805 if (IS_NOQUOTA(inode))
2806 f2fs_up_read(&sbi->node_write);
2811 if (!wbc->for_reclaim)
2812 need_balance_fs = true;
2813 else if (has_not_enough_free_secs(sbi, 0, 0))
2816 set_inode_flag(inode, FI_HOT_DATA);
2819 if (f2fs_has_inline_data(inode)) {
2820 err = f2fs_write_inline_data(inode, page);
2825 if (err == -EAGAIN) {
2826 err = f2fs_do_write_data_page(&fio);
2827 if (err == -EAGAIN) {
2828 fio.need_lock = LOCK_REQ;
2829 err = f2fs_do_write_data_page(&fio);
2834 file_set_keep_isize(inode);
2836 spin_lock(&F2FS_I(inode)->i_size_lock);
2837 if (F2FS_I(inode)->last_disk_size < psize)
2838 F2FS_I(inode)->last_disk_size = psize;
2839 spin_unlock(&F2FS_I(inode)->i_size_lock);
2843 if (err && err != -ENOENT)
2847 inode_dec_dirty_pages(inode);
2849 ClearPageUptodate(page);
2850 clear_page_private_gcing(page);
2853 if (wbc->for_reclaim) {
2854 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2855 clear_inode_flag(inode, FI_HOT_DATA);
2856 f2fs_remove_dirty_inode(inode);
2860 if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2861 !F2FS_I(inode)->cp_task && allow_balance)
2862 f2fs_balance_fs(sbi, need_balance_fs);
2864 if (unlikely(f2fs_cp_error(sbi))) {
2865 f2fs_submit_merged_write(sbi, DATA);
2866 f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2871 *submitted = fio.submitted ? 1 : 0;
2876 redirty_page_for_writepage(wbc, page);
2878 * pageout() in MM traslates EAGAIN, so calls handle_write_error()
2879 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2880 * file_write_and_wait_range() will see EIO error, which is critical
2881 * to return value of fsync() followed by atomic_write failure to user.
2883 if (!err || wbc->for_reclaim)
2884 return AOP_WRITEPAGE_ACTIVATE;
2889 static int f2fs_write_data_page(struct page *page,
2890 struct writeback_control *wbc)
2892 #ifdef CONFIG_F2FS_FS_COMPRESSION
2893 struct inode *inode = page->mapping->host;
2895 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2898 if (f2fs_compressed_file(inode)) {
2899 if (f2fs_is_compressed_cluster(inode, page->index)) {
2900 redirty_page_for_writepage(wbc, page);
2901 return AOP_WRITEPAGE_ACTIVATE;
2907 return f2fs_write_single_data_page(page, NULL, NULL, NULL,
2908 wbc, FS_DATA_IO, 0, true);
2912 * This function was copied from write_cche_pages from mm/page-writeback.c.
2913 * The major change is making write step of cold data page separately from
2914 * warm/hot data page.
2916 static int f2fs_write_cache_pages(struct address_space *mapping,
2917 struct writeback_control *wbc,
2918 enum iostat_type io_type)
2921 int done = 0, retry = 0;
2922 struct page *pages[F2FS_ONSTACK_PAGES];
2923 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2924 struct bio *bio = NULL;
2925 sector_t last_block;
2926 #ifdef CONFIG_F2FS_FS_COMPRESSION
2927 struct inode *inode = mapping->host;
2928 struct compress_ctx cc = {
2930 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2931 .cluster_size = F2FS_I(inode)->i_cluster_size,
2932 .cluster_idx = NULL_CLUSTER,
2936 .valid_nr_cpages = 0,
2939 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
2945 pgoff_t end; /* Inclusive */
2947 int range_whole = 0;
2953 if (get_dirty_pages(mapping->host) <=
2954 SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2955 set_inode_flag(mapping->host, FI_HOT_DATA);
2957 clear_inode_flag(mapping->host, FI_HOT_DATA);
2959 if (wbc->range_cyclic) {
2960 index = mapping->writeback_index; /* prev offset */
2963 index = wbc->range_start >> PAGE_SHIFT;
2964 end = wbc->range_end >> PAGE_SHIFT;
2965 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2968 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2969 tag = PAGECACHE_TAG_TOWRITE;
2971 tag = PAGECACHE_TAG_DIRTY;
2974 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2975 tag_pages_for_writeback(mapping, index, end);
2977 while (!done && !retry && (index <= end)) {
2978 nr_pages = find_get_pages_range_tag(mapping, &index, end,
2979 tag, F2FS_ONSTACK_PAGES, pages);
2983 for (i = 0; i < nr_pages; i++) {
2984 struct page *page = pages[i];
2988 #ifdef CONFIG_F2FS_FS_COMPRESSION
2989 if (f2fs_compressed_file(inode)) {
2990 void *fsdata = NULL;
2994 ret = f2fs_init_compress_ctx(&cc);
3000 if (!f2fs_cluster_can_merge_page(&cc,
3002 ret = f2fs_write_multi_pages(&cc,
3003 &submitted, wbc, io_type);
3009 if (unlikely(f2fs_cp_error(sbi)))
3012 if (!f2fs_cluster_is_empty(&cc))
3015 if (f2fs_all_cluster_page_ready(&cc,
3016 pages, i, nr_pages, true))
3019 ret2 = f2fs_prepare_compress_overwrite(
3021 page->index, &fsdata);
3027 (!f2fs_compress_write_end(inode,
3028 fsdata, page->index, 1) ||
3029 !f2fs_all_cluster_page_ready(&cc,
3030 pages, i, nr_pages, false))) {
3036 /* give a priority to WB_SYNC threads */
3037 if (atomic_read(&sbi->wb_sync_req[DATA]) &&
3038 wbc->sync_mode == WB_SYNC_NONE) {
3042 #ifdef CONFIG_F2FS_FS_COMPRESSION
3045 done_index = page->index;
3049 if (unlikely(page->mapping != mapping)) {
3055 if (!PageDirty(page)) {
3056 /* someone wrote it for us */
3057 goto continue_unlock;
3060 if (PageWriteback(page)) {
3061 if (wbc->sync_mode != WB_SYNC_NONE)
3062 f2fs_wait_on_page_writeback(page,
3065 goto continue_unlock;
3068 if (!clear_page_dirty_for_io(page))
3069 goto continue_unlock;
3071 #ifdef CONFIG_F2FS_FS_COMPRESSION
3072 if (f2fs_compressed_file(inode)) {
3074 f2fs_compress_ctx_add_page(&cc, page);
3078 ret = f2fs_write_single_data_page(page, &submitted,
3079 &bio, &last_block, wbc, io_type,
3081 if (ret == AOP_WRITEPAGE_ACTIVATE)
3083 #ifdef CONFIG_F2FS_FS_COMPRESSION
3086 nwritten += submitted;
3087 wbc->nr_to_write -= submitted;
3089 if (unlikely(ret)) {
3091 * keep nr_to_write, since vfs uses this to
3092 * get # of written pages.
3094 if (ret == AOP_WRITEPAGE_ACTIVATE) {
3097 } else if (ret == -EAGAIN) {
3099 if (wbc->sync_mode == WB_SYNC_ALL) {
3100 f2fs_io_schedule_timeout(
3101 DEFAULT_IO_TIMEOUT);
3106 done_index = page->index + 1;
3111 if (wbc->nr_to_write <= 0 &&
3112 wbc->sync_mode == WB_SYNC_NONE) {
3120 release_pages(pages, nr_pages);
3123 #ifdef CONFIG_F2FS_FS_COMPRESSION
3124 /* flush remained pages in compress cluster */
3125 if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3126 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3127 nwritten += submitted;
3128 wbc->nr_to_write -= submitted;
3134 if (f2fs_compressed_file(inode))
3135 f2fs_destroy_compress_ctx(&cc, false);
3142 if (wbc->range_cyclic && !done)
3144 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3145 mapping->writeback_index = done_index;
3148 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3150 /* submit cached bio of IPU write */
3152 f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3157 static inline bool __should_serialize_io(struct inode *inode,
3158 struct writeback_control *wbc)
3160 /* to avoid deadlock in path of data flush */
3161 if (F2FS_I(inode)->cp_task)
3164 if (!S_ISREG(inode->i_mode))
3166 if (IS_NOQUOTA(inode))
3169 if (f2fs_need_compress_data(inode))
3171 if (wbc->sync_mode != WB_SYNC_ALL)
3173 if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3178 static int __f2fs_write_data_pages(struct address_space *mapping,
3179 struct writeback_control *wbc,
3180 enum iostat_type io_type)
3182 struct inode *inode = mapping->host;
3183 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3184 struct blk_plug plug;
3186 bool locked = false;
3188 /* deal with chardevs and other special file */
3189 if (!mapping->a_ops->writepage)
3192 /* skip writing if there is no dirty page in this inode */
3193 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3196 /* during POR, we don't need to trigger writepage at all. */
3197 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3200 if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3201 wbc->sync_mode == WB_SYNC_NONE &&
3202 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3203 f2fs_available_free_memory(sbi, DIRTY_DENTS))
3206 /* skip writing in file defragment preparing stage */
3207 if (is_inode_flag_set(inode, FI_SKIP_WRITES))
3210 trace_f2fs_writepages(mapping->host, wbc, DATA);
3212 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3213 if (wbc->sync_mode == WB_SYNC_ALL)
3214 atomic_inc(&sbi->wb_sync_req[DATA]);
3215 else if (atomic_read(&sbi->wb_sync_req[DATA])) {
3216 /* to avoid potential deadlock */
3218 blk_finish_plug(current->plug);
3222 if (__should_serialize_io(inode, wbc)) {
3223 mutex_lock(&sbi->writepages);
3227 blk_start_plug(&plug);
3228 ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3229 blk_finish_plug(&plug);
3232 mutex_unlock(&sbi->writepages);
3234 if (wbc->sync_mode == WB_SYNC_ALL)
3235 atomic_dec(&sbi->wb_sync_req[DATA]);
3237 * if some pages were truncated, we cannot guarantee its mapping->host
3238 * to detect pending bios.
3241 f2fs_remove_dirty_inode(inode);
3245 wbc->pages_skipped += get_dirty_pages(inode);
3246 trace_f2fs_writepages(mapping->host, wbc, DATA);
3250 static int f2fs_write_data_pages(struct address_space *mapping,
3251 struct writeback_control *wbc)
3253 struct inode *inode = mapping->host;
3255 return __f2fs_write_data_pages(mapping, wbc,
3256 F2FS_I(inode)->cp_task == current ?
3257 FS_CP_DATA_IO : FS_DATA_IO);
3260 void f2fs_write_failed(struct inode *inode, loff_t to)
3262 loff_t i_size = i_size_read(inode);
3264 if (IS_NOQUOTA(inode))
3267 /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3268 if (to > i_size && !f2fs_verity_in_progress(inode)) {
3269 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3270 filemap_invalidate_lock(inode->i_mapping);
3272 truncate_pagecache(inode, i_size);
3273 f2fs_truncate_blocks(inode, i_size, true);
3275 filemap_invalidate_unlock(inode->i_mapping);
3276 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3280 static int prepare_write_begin(struct f2fs_sb_info *sbi,
3281 struct page *page, loff_t pos, unsigned len,
3282 block_t *blk_addr, bool *node_changed)
3284 struct inode *inode = page->mapping->host;
3285 pgoff_t index = page->index;
3286 struct dnode_of_data dn;
3288 bool locked = false;
3289 struct extent_info ei = {0, };
3294 * If a whole page is being written and we already preallocated all the
3295 * blocks, then there is no need to get a block address now.
3297 if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL))
3300 /* f2fs_lock_op avoids race between write CP and convert_inline_page */
3301 if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode))
3302 flag = F2FS_GET_BLOCK_DEFAULT;
3304 flag = F2FS_GET_BLOCK_PRE_AIO;
3306 if (f2fs_has_inline_data(inode) ||
3307 (pos & PAGE_MASK) >= i_size_read(inode)) {
3308 f2fs_do_map_lock(sbi, flag, true);
3313 /* check inline_data */
3314 ipage = f2fs_get_node_page(sbi, inode->i_ino);
3315 if (IS_ERR(ipage)) {
3316 err = PTR_ERR(ipage);
3320 set_new_dnode(&dn, inode, ipage, ipage, 0);
3322 if (f2fs_has_inline_data(inode)) {
3323 if (pos + len <= MAX_INLINE_DATA(inode)) {
3324 f2fs_do_read_inline_data(page, ipage);
3325 set_inode_flag(inode, FI_DATA_EXIST);
3327 set_page_private_inline(ipage);
3329 err = f2fs_convert_inline_page(&dn, page);
3332 if (dn.data_blkaddr == NULL_ADDR)
3333 err = f2fs_get_block(&dn, index);
3335 } else if (locked) {
3336 err = f2fs_get_block(&dn, index);
3338 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
3339 dn.data_blkaddr = ei.blk + index - ei.fofs;
3342 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3343 if (err || dn.data_blkaddr == NULL_ADDR) {
3344 f2fs_put_dnode(&dn);
3345 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
3347 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3354 /* convert_inline_page can make node_changed */
3355 *blk_addr = dn.data_blkaddr;
3356 *node_changed = dn.node_changed;
3358 f2fs_put_dnode(&dn);
3361 f2fs_do_map_lock(sbi, flag, false);
3365 static int __find_data_block(struct inode *inode, pgoff_t index,
3368 struct dnode_of_data dn;
3370 struct extent_info ei = {0, };
3373 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
3375 return PTR_ERR(ipage);
3377 set_new_dnode(&dn, inode, ipage, ipage, 0);
3379 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
3380 dn.data_blkaddr = ei.blk + index - ei.fofs;
3383 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3385 dn.data_blkaddr = NULL_ADDR;
3389 *blk_addr = dn.data_blkaddr;
3390 f2fs_put_dnode(&dn);
3394 static int __reserve_data_block(struct inode *inode, pgoff_t index,
3395 block_t *blk_addr, bool *node_changed)
3397 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3398 struct dnode_of_data dn;
3402 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true);
3404 ipage = f2fs_get_node_page(sbi, inode->i_ino);
3405 if (IS_ERR(ipage)) {
3406 err = PTR_ERR(ipage);
3409 set_new_dnode(&dn, inode, ipage, ipage, 0);
3411 err = f2fs_get_block(&dn, index);
3413 *blk_addr = dn.data_blkaddr;
3414 *node_changed = dn.node_changed;
3415 f2fs_put_dnode(&dn);
3418 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false);
3422 static int prepare_atomic_write_begin(struct f2fs_sb_info *sbi,
3423 struct page *page, loff_t pos, unsigned int len,
3424 block_t *blk_addr, bool *node_changed)
3426 struct inode *inode = page->mapping->host;
3427 struct inode *cow_inode = F2FS_I(inode)->cow_inode;
3428 pgoff_t index = page->index;
3430 block_t ori_blk_addr = NULL_ADDR;
3432 /* If pos is beyond the end of file, reserve a new block in COW inode */
3433 if ((pos & PAGE_MASK) >= i_size_read(inode))
3436 /* Look for the block in COW inode first */
3437 err = __find_data_block(cow_inode, index, blk_addr);
3440 else if (*blk_addr != NULL_ADDR)
3443 /* Look for the block in the original inode */
3444 err = __find_data_block(inode, index, &ori_blk_addr);
3449 /* Finally, we should reserve a new block in COW inode for the update */
3450 err = __reserve_data_block(cow_inode, index, blk_addr, node_changed);
3453 inc_atomic_write_cnt(inode);
3455 if (ori_blk_addr != NULL_ADDR)
3456 *blk_addr = ori_blk_addr;
3460 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3461 loff_t pos, unsigned len, struct page **pagep, void **fsdata)
3463 struct inode *inode = mapping->host;
3464 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3465 struct page *page = NULL;
3466 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
3467 bool need_balance = false;
3468 block_t blkaddr = NULL_ADDR;
3471 trace_f2fs_write_begin(inode, pos, len);
3473 if (!f2fs_is_checkpoint_ready(sbi)) {
3479 * We should check this at this moment to avoid deadlock on inode page
3480 * and #0 page. The locking rule for inline_data conversion should be:
3481 * lock_page(page #0) -> lock_page(inode_page)
3484 err = f2fs_convert_inline_inode(inode);
3489 #ifdef CONFIG_F2FS_FS_COMPRESSION
3490 if (f2fs_compressed_file(inode)) {
3495 if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode)))
3498 ret = f2fs_prepare_compress_overwrite(inode, pagep,
3511 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3512 * wait_for_stable_page. Will wait that below with our IO control.
3514 page = f2fs_pagecache_get_page(mapping, index,
3515 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3521 /* TODO: cluster can be compressed due to race with .writepage */
3525 if (f2fs_is_atomic_file(inode))
3526 err = prepare_atomic_write_begin(sbi, page, pos, len,
3527 &blkaddr, &need_balance);
3529 err = prepare_write_begin(sbi, page, pos, len,
3530 &blkaddr, &need_balance);
3534 if (need_balance && !IS_NOQUOTA(inode) &&
3535 has_not_enough_free_secs(sbi, 0, 0)) {
3537 f2fs_balance_fs(sbi, true);
3539 if (page->mapping != mapping) {
3540 /* The page got truncated from under us */
3541 f2fs_put_page(page, 1);
3546 f2fs_wait_on_page_writeback(page, DATA, false, true);
3548 if (len == PAGE_SIZE || PageUptodate(page))
3551 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3552 !f2fs_verity_in_progress(inode)) {
3553 zero_user_segment(page, len, PAGE_SIZE);
3557 if (blkaddr == NEW_ADDR) {
3558 zero_user_segment(page, 0, PAGE_SIZE);
3559 SetPageUptodate(page);
3561 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3562 DATA_GENERIC_ENHANCE_READ)) {
3563 err = -EFSCORRUPTED;
3566 err = f2fs_submit_page_read(inode, page, blkaddr, 0, true);
3571 if (unlikely(page->mapping != mapping)) {
3572 f2fs_put_page(page, 1);
3575 if (unlikely(!PageUptodate(page))) {
3583 f2fs_put_page(page, 1);
3584 f2fs_write_failed(inode, pos + len);
3588 static int f2fs_write_end(struct file *file,
3589 struct address_space *mapping,
3590 loff_t pos, unsigned len, unsigned copied,
3591 struct page *page, void *fsdata)
3593 struct inode *inode = page->mapping->host;
3595 trace_f2fs_write_end(inode, pos, len, copied);
3598 * This should be come from len == PAGE_SIZE, and we expect copied
3599 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3600 * let generic_perform_write() try to copy data again through copied=0.
3602 if (!PageUptodate(page)) {
3603 if (unlikely(copied != len))
3606 SetPageUptodate(page);
3609 #ifdef CONFIG_F2FS_FS_COMPRESSION
3610 /* overwrite compressed file */
3611 if (f2fs_compressed_file(inode) && fsdata) {
3612 f2fs_compress_write_end(inode, fsdata, page->index, copied);
3613 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3615 if (pos + copied > i_size_read(inode) &&
3616 !f2fs_verity_in_progress(inode))
3617 f2fs_i_size_write(inode, pos + copied);
3625 set_page_dirty(page);
3627 if (pos + copied > i_size_read(inode) &&
3628 !f2fs_verity_in_progress(inode)) {
3629 f2fs_i_size_write(inode, pos + copied);
3630 if (f2fs_is_atomic_file(inode))
3631 f2fs_i_size_write(F2FS_I(inode)->cow_inode,
3635 f2fs_put_page(page, 1);
3636 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3640 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length)
3642 struct inode *inode = folio->mapping->host;
3643 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3645 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3646 (offset || length != folio_size(folio)))
3649 if (folio_test_dirty(folio)) {
3650 if (inode->i_ino == F2FS_META_INO(sbi)) {
3651 dec_page_count(sbi, F2FS_DIRTY_META);
3652 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3653 dec_page_count(sbi, F2FS_DIRTY_NODES);
3655 inode_dec_dirty_pages(inode);
3656 f2fs_remove_dirty_inode(inode);
3660 clear_page_private_gcing(&folio->page);
3662 if (test_opt(sbi, COMPRESS_CACHE) &&
3663 inode->i_ino == F2FS_COMPRESS_INO(sbi))
3664 clear_page_private_data(&folio->page);
3666 folio_detach_private(folio);
3669 bool f2fs_release_folio(struct folio *folio, gfp_t wait)
3671 struct f2fs_sb_info *sbi;
3673 /* If this is dirty folio, keep private data */
3674 if (folio_test_dirty(folio))
3677 sbi = F2FS_M_SB(folio->mapping);
3678 if (test_opt(sbi, COMPRESS_CACHE)) {
3679 struct inode *inode = folio->mapping->host;
3681 if (inode->i_ino == F2FS_COMPRESS_INO(sbi))
3682 clear_page_private_data(&folio->page);
3685 clear_page_private_gcing(&folio->page);
3687 folio_detach_private(folio);
3691 static bool f2fs_dirty_data_folio(struct address_space *mapping,
3692 struct folio *folio)
3694 struct inode *inode = mapping->host;
3696 trace_f2fs_set_page_dirty(&folio->page, DATA);
3698 if (!folio_test_uptodate(folio))
3699 folio_mark_uptodate(folio);
3700 BUG_ON(folio_test_swapcache(folio));
3702 if (!folio_test_dirty(folio)) {
3703 filemap_dirty_folio(mapping, folio);
3704 f2fs_update_dirty_folio(inode, folio);
3711 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3713 #ifdef CONFIG_F2FS_FS_COMPRESSION
3714 struct dnode_of_data dn;
3715 sector_t start_idx, blknr = 0;
3718 start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3720 set_new_dnode(&dn, inode, NULL, NULL, 0);
3721 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3725 if (dn.data_blkaddr != COMPRESS_ADDR) {
3726 dn.ofs_in_node += block - start_idx;
3727 blknr = f2fs_data_blkaddr(&dn);
3728 if (!__is_valid_data_blkaddr(blknr))
3732 f2fs_put_dnode(&dn);
3740 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3742 struct inode *inode = mapping->host;
3745 if (f2fs_has_inline_data(inode))
3748 /* make sure allocating whole blocks */
3749 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3750 filemap_write_and_wait(mapping);
3752 /* Block number less than F2FS MAX BLOCKS */
3753 if (unlikely(block >= max_file_blocks(inode)))
3756 if (f2fs_compressed_file(inode)) {
3757 blknr = f2fs_bmap_compress(inode, block);
3759 struct f2fs_map_blocks map;
3761 memset(&map, 0, sizeof(map));
3764 map.m_next_pgofs = NULL;
3765 map.m_seg_type = NO_CHECK_TYPE;
3767 if (!f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_BMAP))
3771 trace_f2fs_bmap(inode, block, blknr);
3776 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk,
3777 unsigned int blkcnt)
3779 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3780 unsigned int blkofs;
3781 unsigned int blk_per_sec = BLKS_PER_SEC(sbi);
3782 unsigned int secidx = start_blk / blk_per_sec;
3783 unsigned int end_sec = secidx + blkcnt / blk_per_sec;
3786 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3787 filemap_invalidate_lock(inode->i_mapping);
3789 set_inode_flag(inode, FI_ALIGNED_WRITE);
3790 set_inode_flag(inode, FI_OPU_WRITE);
3792 for (; secidx < end_sec; secidx++) {
3793 f2fs_down_write(&sbi->pin_sem);
3796 f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
3797 f2fs_unlock_op(sbi);
3799 set_inode_flag(inode, FI_SKIP_WRITES);
3801 for (blkofs = 0; blkofs < blk_per_sec; blkofs++) {
3803 unsigned int blkidx = secidx * blk_per_sec + blkofs;
3805 page = f2fs_get_lock_data_page(inode, blkidx, true);
3807 f2fs_up_write(&sbi->pin_sem);
3808 ret = PTR_ERR(page);
3812 set_page_dirty(page);
3813 f2fs_put_page(page, 1);
3816 clear_inode_flag(inode, FI_SKIP_WRITES);
3818 ret = filemap_fdatawrite(inode->i_mapping);
3820 f2fs_up_write(&sbi->pin_sem);
3827 clear_inode_flag(inode, FI_SKIP_WRITES);
3828 clear_inode_flag(inode, FI_OPU_WRITE);
3829 clear_inode_flag(inode, FI_ALIGNED_WRITE);
3831 filemap_invalidate_unlock(inode->i_mapping);
3832 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3837 static int check_swap_activate(struct swap_info_struct *sis,
3838 struct file *swap_file, sector_t *span)
3840 struct address_space *mapping = swap_file->f_mapping;
3841 struct inode *inode = mapping->host;
3842 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3843 sector_t cur_lblock;
3844 sector_t last_lblock;
3846 sector_t lowest_pblock = -1;
3847 sector_t highest_pblock = 0;
3849 unsigned long nr_pblocks;
3850 unsigned int blks_per_sec = BLKS_PER_SEC(sbi);
3851 unsigned int sec_blks_mask = BLKS_PER_SEC(sbi) - 1;
3852 unsigned int not_aligned = 0;
3856 * Map all the blocks into the extent list. This code doesn't try
3860 last_lblock = bytes_to_blks(inode, i_size_read(inode));
3862 while (cur_lblock < last_lblock && cur_lblock < sis->max) {
3863 struct f2fs_map_blocks map;
3867 memset(&map, 0, sizeof(map));
3868 map.m_lblk = cur_lblock;
3869 map.m_len = last_lblock - cur_lblock;
3870 map.m_next_pgofs = NULL;
3871 map.m_next_extent = NULL;
3872 map.m_seg_type = NO_CHECK_TYPE;
3873 map.m_may_create = false;
3875 ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP);
3880 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
3881 f2fs_err(sbi, "Swapfile has holes");
3886 pblock = map.m_pblk;
3887 nr_pblocks = map.m_len;
3889 if ((pblock - SM_I(sbi)->main_blkaddr) & sec_blks_mask ||
3890 nr_pblocks & sec_blks_mask) {
3893 nr_pblocks = roundup(nr_pblocks, blks_per_sec);
3894 if (cur_lblock + nr_pblocks > sis->max)
3895 nr_pblocks -= blks_per_sec;
3898 /* this extent is last one */
3899 nr_pblocks = map.m_len;
3900 f2fs_warn(sbi, "Swapfile: last extent is not aligned to section");
3904 ret = f2fs_migrate_blocks(inode, cur_lblock,
3911 if (cur_lblock + nr_pblocks >= sis->max)
3912 nr_pblocks = sis->max - cur_lblock;
3914 if (cur_lblock) { /* exclude the header page */
3915 if (pblock < lowest_pblock)
3916 lowest_pblock = pblock;
3917 if (pblock + nr_pblocks - 1 > highest_pblock)
3918 highest_pblock = pblock + nr_pblocks - 1;
3922 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
3924 ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
3928 cur_lblock += nr_pblocks;
3931 *span = 1 + highest_pblock - lowest_pblock;
3932 if (cur_lblock == 0)
3933 cur_lblock = 1; /* force Empty message */
3934 sis->max = cur_lblock;
3935 sis->pages = cur_lblock - 1;
3936 sis->highest_bit = cur_lblock - 1;
3939 f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%u * N)",
3940 not_aligned, blks_per_sec * F2FS_BLKSIZE);
3944 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
3947 struct inode *inode = file_inode(file);
3950 if (!S_ISREG(inode->i_mode))
3953 if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3956 if (f2fs_lfs_mode(F2FS_I_SB(inode))) {
3957 f2fs_err(F2FS_I_SB(inode),
3958 "Swapfile not supported in LFS mode");
3962 ret = f2fs_convert_inline_inode(inode);
3966 if (!f2fs_disable_compressed_file(inode))
3969 f2fs_precache_extents(inode);
3971 ret = check_swap_activate(sis, file, span);
3975 set_inode_flag(inode, FI_PIN_FILE);
3976 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3980 static void f2fs_swap_deactivate(struct file *file)
3982 struct inode *inode = file_inode(file);
3984 clear_inode_flag(inode, FI_PIN_FILE);
3987 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
3993 static void f2fs_swap_deactivate(struct file *file)
3998 const struct address_space_operations f2fs_dblock_aops = {
3999 .read_folio = f2fs_read_data_folio,
4000 .readahead = f2fs_readahead,
4001 .writepage = f2fs_write_data_page,
4002 .writepages = f2fs_write_data_pages,
4003 .write_begin = f2fs_write_begin,
4004 .write_end = f2fs_write_end,
4005 .dirty_folio = f2fs_dirty_data_folio,
4006 .migrate_folio = filemap_migrate_folio,
4007 .invalidate_folio = f2fs_invalidate_folio,
4008 .release_folio = f2fs_release_folio,
4009 .direct_IO = noop_direct_IO,
4011 .swap_activate = f2fs_swap_activate,
4012 .swap_deactivate = f2fs_swap_deactivate,
4015 void f2fs_clear_page_cache_dirty_tag(struct page *page)
4017 struct address_space *mapping = page_mapping(page);
4018 unsigned long flags;
4020 xa_lock_irqsave(&mapping->i_pages, flags);
4021 __xa_clear_mark(&mapping->i_pages, page_index(page),
4022 PAGECACHE_TAG_DIRTY);
4023 xa_unlock_irqrestore(&mapping->i_pages, flags);
4026 int __init f2fs_init_post_read_processing(void)
4028 bio_post_read_ctx_cache =
4029 kmem_cache_create("f2fs_bio_post_read_ctx",
4030 sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4031 if (!bio_post_read_ctx_cache)
4033 bio_post_read_ctx_pool =
4034 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4035 bio_post_read_ctx_cache);
4036 if (!bio_post_read_ctx_pool)
4037 goto fail_free_cache;
4041 kmem_cache_destroy(bio_post_read_ctx_cache);
4046 void f2fs_destroy_post_read_processing(void)
4048 mempool_destroy(bio_post_read_ctx_pool);
4049 kmem_cache_destroy(bio_post_read_ctx_cache);
4052 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4054 if (!f2fs_sb_has_encrypt(sbi) &&
4055 !f2fs_sb_has_verity(sbi) &&
4056 !f2fs_sb_has_compression(sbi))
4059 sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4060 WQ_UNBOUND | WQ_HIGHPRI,
4062 if (!sbi->post_read_wq)
4067 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4069 if (sbi->post_read_wq)
4070 destroy_workqueue(sbi->post_read_wq);
4073 int __init f2fs_init_bio_entry_cache(void)
4075 bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4076 sizeof(struct bio_entry));
4077 if (!bio_entry_slab)
4082 void f2fs_destroy_bio_entry_cache(void)
4084 kmem_cache_destroy(bio_entry_slab);
4087 static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
4088 unsigned int flags, struct iomap *iomap,
4089 struct iomap *srcmap)
4091 struct f2fs_map_blocks map = {};
4092 pgoff_t next_pgofs = 0;
4095 map.m_lblk = bytes_to_blks(inode, offset);
4096 map.m_len = bytes_to_blks(inode, offset + length - 1) - map.m_lblk + 1;
4097 map.m_next_pgofs = &next_pgofs;
4098 map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint);
4099 if (flags & IOMAP_WRITE)
4100 map.m_may_create = true;
4102 err = f2fs_map_blocks(inode, &map, flags & IOMAP_WRITE,
4103 F2FS_GET_BLOCK_DIO);
4107 iomap->offset = blks_to_bytes(inode, map.m_lblk);
4110 * When inline encryption is enabled, sometimes I/O to an encrypted file
4111 * has to be broken up to guarantee DUN contiguity. Handle this by
4112 * limiting the length of the mapping returned.
4114 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
4116 if (map.m_flags & (F2FS_MAP_MAPPED | F2FS_MAP_UNWRITTEN)) {
4117 iomap->length = blks_to_bytes(inode, map.m_len);
4118 if (map.m_flags & F2FS_MAP_MAPPED) {
4119 iomap->type = IOMAP_MAPPED;
4120 iomap->flags |= IOMAP_F_MERGED;
4122 iomap->type = IOMAP_UNWRITTEN;
4124 if (WARN_ON_ONCE(!__is_valid_data_blkaddr(map.m_pblk)))
4127 iomap->bdev = map.m_bdev;
4128 iomap->addr = blks_to_bytes(inode, map.m_pblk);
4130 iomap->length = blks_to_bytes(inode, next_pgofs) -
4132 iomap->type = IOMAP_HOLE;
4133 iomap->addr = IOMAP_NULL_ADDR;
4136 if (map.m_flags & F2FS_MAP_NEW)
4137 iomap->flags |= IOMAP_F_NEW;
4138 if ((inode->i_state & I_DIRTY_DATASYNC) ||
4139 offset + length > i_size_read(inode))
4140 iomap->flags |= IOMAP_F_DIRTY;
4145 const struct iomap_ops f2fs_iomap_ops = {
4146 .iomap_begin = f2fs_iomap_begin,