f2fs: introduce mode=lfs mount option
[platform/kernel/linux-amlogic.git] / fs / f2fs / data.c
1 /*
2  * fs/f2fs/data.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/mpage.h>
15 #include <linux/writeback.h>
16 #include <linux/backing-dev.h>
17 #include <linux/pagevec.h>
18 #include <linux/blkdev.h>
19 #include <linux/bio.h>
20 #include <linux/prefetch.h>
21 #include <linux/uio.h>
22 #include <linux/cleancache.h>
23
24 #include "f2fs.h"
25 #include "node.h"
26 #include "segment.h"
27 #include "trace.h"
28 #include <trace/events/f2fs.h>
29
30 static void f2fs_read_end_io(struct bio *bio)
31 {
32         struct bio_vec *bvec;
33         int i;
34
35         if (f2fs_bio_encrypted(bio)) {
36                 if (bio->bi_error) {
37                         fscrypt_release_ctx(bio->bi_private);
38                 } else {
39                         fscrypt_decrypt_bio_pages(bio->bi_private, bio);
40                         return;
41                 }
42         }
43
44         bio_for_each_segment_all(bvec, bio, i) {
45                 struct page *page = bvec->bv_page;
46
47                 if (!bio->bi_error) {
48                         SetPageUptodate(page);
49                 } else {
50                         ClearPageUptodate(page);
51                         SetPageError(page);
52                 }
53                 unlock_page(page);
54         }
55         bio_put(bio);
56 }
57
58 static void f2fs_write_end_io(struct bio *bio)
59 {
60         struct f2fs_sb_info *sbi = bio->bi_private;
61         struct bio_vec *bvec;
62         int i;
63
64         bio_for_each_segment_all(bvec, bio, i) {
65                 struct page *page = bvec->bv_page;
66
67                 fscrypt_pullback_bio_page(&page, true);
68
69                 if (unlikely(bio->bi_error)) {
70                         set_bit(AS_EIO, &page->mapping->flags);
71                         f2fs_stop_checkpoint(sbi, true);
72                 }
73                 end_page_writeback(page);
74         }
75         if (atomic_dec_and_test(&sbi->nr_wb_bios) &&
76                                 wq_has_sleeper(&sbi->cp_wait))
77                 wake_up(&sbi->cp_wait);
78
79         bio_put(bio);
80 }
81
82 /*
83  * Low-level block read/write IO operations.
84  */
85 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
86                                 int npages, bool is_read)
87 {
88         struct bio *bio;
89
90         bio = f2fs_bio_alloc(npages);
91
92         bio->bi_bdev = sbi->sb->s_bdev;
93         bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
94         bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
95         bio->bi_private = is_read ? NULL : sbi;
96
97         return bio;
98 }
99
100 static inline void __submit_bio(struct f2fs_sb_info *sbi, int rw,
101                         struct bio *bio, enum page_type type)
102 {
103         if (!is_read_io(rw)) {
104                 atomic_inc(&sbi->nr_wb_bios);
105                 if (current->plug && (type == DATA || type == NODE))
106                         blk_finish_plug(current->plug);
107         }
108         submit_bio(rw, bio);
109 }
110
111 static void __submit_merged_bio(struct f2fs_bio_info *io)
112 {
113         struct f2fs_io_info *fio = &io->fio;
114
115         if (!io->bio)
116                 return;
117
118         if (is_read_io(fio->rw))
119                 trace_f2fs_submit_read_bio(io->sbi->sb, fio, io->bio);
120         else
121                 trace_f2fs_submit_write_bio(io->sbi->sb, fio, io->bio);
122
123         __submit_bio(io->sbi, fio->rw, io->bio, fio->type);
124         io->bio = NULL;
125 }
126
127 static bool __has_merged_page(struct f2fs_bio_info *io, struct inode *inode,
128                                                 struct page *page, nid_t ino)
129 {
130         struct bio_vec *bvec;
131         struct page *target;
132         int i;
133
134         if (!io->bio)
135                 return false;
136
137         if (!inode && !page && !ino)
138                 return true;
139
140         bio_for_each_segment_all(bvec, io->bio, i) {
141
142                 if (bvec->bv_page->mapping)
143                         target = bvec->bv_page;
144                 else
145                         target = fscrypt_control_page(bvec->bv_page);
146
147                 if (inode && inode == target->mapping->host)
148                         return true;
149                 if (page && page == target)
150                         return true;
151                 if (ino && ino == ino_of_node(target))
152                         return true;
153         }
154
155         return false;
156 }
157
158 static bool has_merged_page(struct f2fs_sb_info *sbi, struct inode *inode,
159                                                 struct page *page, nid_t ino,
160                                                 enum page_type type)
161 {
162         enum page_type btype = PAGE_TYPE_OF_BIO(type);
163         struct f2fs_bio_info *io = &sbi->write_io[btype];
164         bool ret;
165
166         down_read(&io->io_rwsem);
167         ret = __has_merged_page(io, inode, page, ino);
168         up_read(&io->io_rwsem);
169         return ret;
170 }
171
172 static void __f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
173                                 struct inode *inode, struct page *page,
174                                 nid_t ino, enum page_type type, int rw)
175 {
176         enum page_type btype = PAGE_TYPE_OF_BIO(type);
177         struct f2fs_bio_info *io;
178
179         io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
180
181         down_write(&io->io_rwsem);
182
183         if (!__has_merged_page(io, inode, page, ino))
184                 goto out;
185
186         /* change META to META_FLUSH in the checkpoint procedure */
187         if (type >= META_FLUSH) {
188                 io->fio.type = META_FLUSH;
189                 if (test_opt(sbi, NOBARRIER))
190                         io->fio.rw = WRITE_FLUSH | REQ_META | REQ_PRIO;
191                 else
192                         io->fio.rw = WRITE_FLUSH_FUA | REQ_META | REQ_PRIO;
193         }
194         __submit_merged_bio(io);
195 out:
196         up_write(&io->io_rwsem);
197 }
198
199 void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi, enum page_type type,
200                                                                         int rw)
201 {
202         __f2fs_submit_merged_bio(sbi, NULL, NULL, 0, type, rw);
203 }
204
205 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *sbi,
206                                 struct inode *inode, struct page *page,
207                                 nid_t ino, enum page_type type, int rw)
208 {
209         if (has_merged_page(sbi, inode, page, ino, type))
210                 __f2fs_submit_merged_bio(sbi, inode, page, ino, type, rw);
211 }
212
213 void f2fs_flush_merged_bios(struct f2fs_sb_info *sbi)
214 {
215         f2fs_submit_merged_bio(sbi, DATA, WRITE);
216         f2fs_submit_merged_bio(sbi, NODE, WRITE);
217         f2fs_submit_merged_bio(sbi, META, WRITE);
218 }
219
220 /*
221  * Fill the locked page with data located in the block address.
222  * Return unlocked page.
223  */
224 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
225 {
226         struct bio *bio;
227         struct page *page = fio->encrypted_page ?
228                         fio->encrypted_page : fio->page;
229
230         trace_f2fs_submit_page_bio(page, fio);
231         f2fs_trace_ios(fio, 0);
232
233         /* Allocate a new bio */
234         bio = __bio_alloc(fio->sbi, fio->new_blkaddr, 1, is_read_io(fio->rw));
235
236         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
237                 bio_put(bio);
238                 return -EFAULT;
239         }
240
241         __submit_bio(fio->sbi, fio->rw, bio, fio->type);
242         return 0;
243 }
244
245 void f2fs_submit_page_mbio(struct f2fs_io_info *fio)
246 {
247         struct f2fs_sb_info *sbi = fio->sbi;
248         enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
249         struct f2fs_bio_info *io;
250         bool is_read = is_read_io(fio->rw);
251         struct page *bio_page;
252
253         io = is_read ? &sbi->read_io : &sbi->write_io[btype];
254
255         if (fio->old_blkaddr != NEW_ADDR)
256                 verify_block_addr(sbi, fio->old_blkaddr);
257         verify_block_addr(sbi, fio->new_blkaddr);
258
259         down_write(&io->io_rwsem);
260
261         if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 ||
262                                                 io->fio.rw != fio->rw))
263                 __submit_merged_bio(io);
264 alloc_new:
265         if (io->bio == NULL) {
266                 int bio_blocks = MAX_BIO_BLOCKS(sbi);
267
268                 io->bio = __bio_alloc(sbi, fio->new_blkaddr,
269                                                 bio_blocks, is_read);
270                 io->fio = *fio;
271         }
272
273         bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
274
275         if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) <
276                                                         PAGE_SIZE) {
277                 __submit_merged_bio(io);
278                 goto alloc_new;
279         }
280
281         io->last_block_in_bio = fio->new_blkaddr;
282         f2fs_trace_ios(fio, 0);
283
284         up_write(&io->io_rwsem);
285         trace_f2fs_submit_page_mbio(fio->page, fio);
286 }
287
288 static void __set_data_blkaddr(struct dnode_of_data *dn)
289 {
290         struct f2fs_node *rn = F2FS_NODE(dn->node_page);
291         __le32 *addr_array;
292
293         /* Get physical address of data block */
294         addr_array = blkaddr_in_node(rn);
295         addr_array[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
296 }
297
298 /*
299  * Lock ordering for the change of data block address:
300  * ->data_page
301  *  ->node_page
302  *    update block addresses in the node page
303  */
304 void set_data_blkaddr(struct dnode_of_data *dn)
305 {
306         f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
307         __set_data_blkaddr(dn);
308         if (set_page_dirty(dn->node_page))
309                 dn->node_changed = true;
310 }
311
312 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
313 {
314         dn->data_blkaddr = blkaddr;
315         set_data_blkaddr(dn);
316         f2fs_update_extent_cache(dn);
317 }
318
319 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
320 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
321 {
322         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
323
324         if (!count)
325                 return 0;
326
327         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
328                 return -EPERM;
329         if (unlikely(!inc_valid_block_count(sbi, dn->inode, &count)))
330                 return -ENOSPC;
331
332         trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
333                                                 dn->ofs_in_node, count);
334
335         f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
336
337         for (; count > 0; dn->ofs_in_node++) {
338                 block_t blkaddr =
339                         datablock_addr(dn->node_page, dn->ofs_in_node);
340                 if (blkaddr == NULL_ADDR) {
341                         dn->data_blkaddr = NEW_ADDR;
342                         __set_data_blkaddr(dn);
343                         count--;
344                 }
345         }
346
347         if (set_page_dirty(dn->node_page))
348                 dn->node_changed = true;
349         return 0;
350 }
351
352 /* Should keep dn->ofs_in_node unchanged */
353 int reserve_new_block(struct dnode_of_data *dn)
354 {
355         unsigned int ofs_in_node = dn->ofs_in_node;
356         int ret;
357
358         ret = reserve_new_blocks(dn, 1);
359         dn->ofs_in_node = ofs_in_node;
360         return ret;
361 }
362
363 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
364 {
365         bool need_put = dn->inode_page ? false : true;
366         int err;
367
368         err = get_dnode_of_data(dn, index, ALLOC_NODE);
369         if (err)
370                 return err;
371
372         if (dn->data_blkaddr == NULL_ADDR)
373                 err = reserve_new_block(dn);
374         if (err || need_put)
375                 f2fs_put_dnode(dn);
376         return err;
377 }
378
379 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
380 {
381         struct extent_info ei;
382         struct inode *inode = dn->inode;
383
384         if (f2fs_lookup_extent_cache(inode, index, &ei)) {
385                 dn->data_blkaddr = ei.blk + index - ei.fofs;
386                 return 0;
387         }
388
389         return f2fs_reserve_block(dn, index);
390 }
391
392 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
393                                                 int rw, bool for_write)
394 {
395         struct address_space *mapping = inode->i_mapping;
396         struct dnode_of_data dn;
397         struct page *page;
398         struct extent_info ei;
399         int err;
400         struct f2fs_io_info fio = {
401                 .sbi = F2FS_I_SB(inode),
402                 .type = DATA,
403                 .rw = rw,
404                 .encrypted_page = NULL,
405         };
406
407         if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
408                 return read_mapping_page(mapping, index, NULL);
409
410         page = f2fs_grab_cache_page(mapping, index, for_write);
411         if (!page)
412                 return ERR_PTR(-ENOMEM);
413
414         if (f2fs_lookup_extent_cache(inode, index, &ei)) {
415                 dn.data_blkaddr = ei.blk + index - ei.fofs;
416                 goto got_it;
417         }
418
419         set_new_dnode(&dn, inode, NULL, NULL, 0);
420         err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
421         if (err)
422                 goto put_err;
423         f2fs_put_dnode(&dn);
424
425         if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
426                 err = -ENOENT;
427                 goto put_err;
428         }
429 got_it:
430         if (PageUptodate(page)) {
431                 unlock_page(page);
432                 return page;
433         }
434
435         /*
436          * A new dentry page is allocated but not able to be written, since its
437          * new inode page couldn't be allocated due to -ENOSPC.
438          * In such the case, its blkaddr can be remained as NEW_ADDR.
439          * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
440          */
441         if (dn.data_blkaddr == NEW_ADDR) {
442                 zero_user_segment(page, 0, PAGE_SIZE);
443                 SetPageUptodate(page);
444                 unlock_page(page);
445                 return page;
446         }
447
448         fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
449         fio.page = page;
450         err = f2fs_submit_page_bio(&fio);
451         if (err)
452                 goto put_err;
453         return page;
454
455 put_err:
456         f2fs_put_page(page, 1);
457         return ERR_PTR(err);
458 }
459
460 struct page *find_data_page(struct inode *inode, pgoff_t index)
461 {
462         struct address_space *mapping = inode->i_mapping;
463         struct page *page;
464
465         page = find_get_page(mapping, index);
466         if (page && PageUptodate(page))
467                 return page;
468         f2fs_put_page(page, 0);
469
470         page = get_read_data_page(inode, index, READ_SYNC, false);
471         if (IS_ERR(page))
472                 return page;
473
474         if (PageUptodate(page))
475                 return page;
476
477         wait_on_page_locked(page);
478         if (unlikely(!PageUptodate(page))) {
479                 f2fs_put_page(page, 0);
480                 return ERR_PTR(-EIO);
481         }
482         return page;
483 }
484
485 /*
486  * If it tries to access a hole, return an error.
487  * Because, the callers, functions in dir.c and GC, should be able to know
488  * whether this page exists or not.
489  */
490 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
491                                                         bool for_write)
492 {
493         struct address_space *mapping = inode->i_mapping;
494         struct page *page;
495 repeat:
496         page = get_read_data_page(inode, index, READ_SYNC, for_write);
497         if (IS_ERR(page))
498                 return page;
499
500         /* wait for read completion */
501         lock_page(page);
502         if (unlikely(!PageUptodate(page))) {
503                 f2fs_put_page(page, 1);
504                 return ERR_PTR(-EIO);
505         }
506         if (unlikely(page->mapping != mapping)) {
507                 f2fs_put_page(page, 1);
508                 goto repeat;
509         }
510         return page;
511 }
512
513 /*
514  * Caller ensures that this data page is never allocated.
515  * A new zero-filled data page is allocated in the page cache.
516  *
517  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
518  * f2fs_unlock_op().
519  * Note that, ipage is set only by make_empty_dir, and if any error occur,
520  * ipage should be released by this function.
521  */
522 struct page *get_new_data_page(struct inode *inode,
523                 struct page *ipage, pgoff_t index, bool new_i_size)
524 {
525         struct address_space *mapping = inode->i_mapping;
526         struct page *page;
527         struct dnode_of_data dn;
528         int err;
529
530         page = f2fs_grab_cache_page(mapping, index, true);
531         if (!page) {
532                 /*
533                  * before exiting, we should make sure ipage will be released
534                  * if any error occur.
535                  */
536                 f2fs_put_page(ipage, 1);
537                 return ERR_PTR(-ENOMEM);
538         }
539
540         set_new_dnode(&dn, inode, ipage, NULL, 0);
541         err = f2fs_reserve_block(&dn, index);
542         if (err) {
543                 f2fs_put_page(page, 1);
544                 return ERR_PTR(err);
545         }
546         if (!ipage)
547                 f2fs_put_dnode(&dn);
548
549         if (PageUptodate(page))
550                 goto got_it;
551
552         if (dn.data_blkaddr == NEW_ADDR) {
553                 zero_user_segment(page, 0, PAGE_SIZE);
554                 SetPageUptodate(page);
555         } else {
556                 f2fs_put_page(page, 1);
557
558                 /* if ipage exists, blkaddr should be NEW_ADDR */
559                 f2fs_bug_on(F2FS_I_SB(inode), ipage);
560                 page = get_lock_data_page(inode, index, true);
561                 if (IS_ERR(page))
562                         return page;
563         }
564 got_it:
565         if (new_i_size && i_size_read(inode) <
566                                 ((loff_t)(index + 1) << PAGE_SHIFT))
567                 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
568         return page;
569 }
570
571 static int __allocate_data_block(struct dnode_of_data *dn)
572 {
573         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
574         struct f2fs_summary sum;
575         struct node_info ni;
576         int seg = CURSEG_WARM_DATA;
577         pgoff_t fofs;
578         blkcnt_t count = 1;
579
580         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
581                 return -EPERM;
582
583         dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
584         if (dn->data_blkaddr == NEW_ADDR)
585                 goto alloc;
586
587         if (unlikely(!inc_valid_block_count(sbi, dn->inode, &count)))
588                 return -ENOSPC;
589
590 alloc:
591         get_node_info(sbi, dn->nid, &ni);
592         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
593
594         if (dn->ofs_in_node == 0 && dn->inode_page == dn->node_page)
595                 seg = CURSEG_DIRECT_IO;
596
597         allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr,
598                                                                 &sum, seg);
599         set_data_blkaddr(dn);
600
601         /* update i_size */
602         fofs = start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) +
603                                                         dn->ofs_in_node;
604         if (i_size_read(dn->inode) < ((loff_t)(fofs + 1) << PAGE_SHIFT))
605                 f2fs_i_size_write(dn->inode,
606                                 ((loff_t)(fofs + 1) << PAGE_SHIFT));
607         return 0;
608 }
609
610 ssize_t f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
611 {
612         struct inode *inode = file_inode(iocb->ki_filp);
613         struct f2fs_map_blocks map;
614         ssize_t ret = 0;
615
616         map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
617         map.m_len = F2FS_BYTES_TO_BLK(iov_iter_count(from));
618         map.m_next_pgofs = NULL;
619
620         if (f2fs_encrypted_inode(inode))
621                 return 0;
622
623         if (iocb->ki_flags & IOCB_DIRECT) {
624                 ret = f2fs_convert_inline_inode(inode);
625                 if (ret)
626                         return ret;
627                 return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_DIO);
628         }
629         if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA) {
630                 ret = f2fs_convert_inline_inode(inode);
631                 if (ret)
632                         return ret;
633         }
634         if (!f2fs_has_inline_data(inode))
635                 return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
636         return ret;
637 }
638
639 /*
640  * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
641  * f2fs_map_blocks structure.
642  * If original data blocks are allocated, then give them to blockdev.
643  * Otherwise,
644  *     a. preallocate requested block addresses
645  *     b. do not use extent cache for better performance
646  *     c. give the block addresses to blockdev
647  */
648 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
649                                                 int create, int flag)
650 {
651         unsigned int maxblocks = map->m_len;
652         struct dnode_of_data dn;
653         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
654         int mode = create ? ALLOC_NODE : LOOKUP_NODE_RA;
655         pgoff_t pgofs, end_offset, end;
656         int err = 0, ofs = 1;
657         unsigned int ofs_in_node, last_ofs_in_node;
658         blkcnt_t prealloc;
659         struct extent_info ei;
660         bool allocated = false;
661         block_t blkaddr;
662
663         map->m_len = 0;
664         map->m_flags = 0;
665
666         /* it only supports block size == page size */
667         pgofs = (pgoff_t)map->m_lblk;
668         end = pgofs + maxblocks;
669
670         if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
671                 map->m_pblk = ei.blk + pgofs - ei.fofs;
672                 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
673                 map->m_flags = F2FS_MAP_MAPPED;
674                 goto out;
675         }
676
677 next_dnode:
678         if (create)
679                 f2fs_lock_op(sbi);
680
681         /* When reading holes, we need its node page */
682         set_new_dnode(&dn, inode, NULL, NULL, 0);
683         err = get_dnode_of_data(&dn, pgofs, mode);
684         if (err) {
685                 if (flag == F2FS_GET_BLOCK_BMAP)
686                         map->m_pblk = 0;
687                 if (err == -ENOENT) {
688                         err = 0;
689                         if (map->m_next_pgofs)
690                                 *map->m_next_pgofs =
691                                         get_next_page_offset(&dn, pgofs);
692                 }
693                 goto unlock_out;
694         }
695
696         prealloc = 0;
697         ofs_in_node = dn.ofs_in_node;
698         end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
699
700 next_block:
701         blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
702
703         if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) {
704                 if (create) {
705                         if (unlikely(f2fs_cp_error(sbi))) {
706                                 err = -EIO;
707                                 goto sync_out;
708                         }
709                         if (flag == F2FS_GET_BLOCK_PRE_AIO) {
710                                 if (blkaddr == NULL_ADDR) {
711                                         prealloc++;
712                                         last_ofs_in_node = dn.ofs_in_node;
713                                 }
714                         } else {
715                                 err = __allocate_data_block(&dn);
716                                 if (!err) {
717                                         set_inode_flag(inode, FI_APPEND_WRITE);
718                                         allocated = true;
719                                 }
720                         }
721                         if (err)
722                                 goto sync_out;
723                         map->m_flags = F2FS_MAP_NEW;
724                         blkaddr = dn.data_blkaddr;
725                 } else {
726                         if (flag == F2FS_GET_BLOCK_BMAP) {
727                                 map->m_pblk = 0;
728                                 goto sync_out;
729                         }
730                         if (flag == F2FS_GET_BLOCK_FIEMAP &&
731                                                 blkaddr == NULL_ADDR) {
732                                 if (map->m_next_pgofs)
733                                         *map->m_next_pgofs = pgofs + 1;
734                         }
735                         if (flag != F2FS_GET_BLOCK_FIEMAP ||
736                                                 blkaddr != NEW_ADDR)
737                                 goto sync_out;
738                 }
739         }
740
741         if (flag == F2FS_GET_BLOCK_PRE_AIO)
742                 goto skip;
743
744         if (map->m_len == 0) {
745                 /* preallocated unwritten block should be mapped for fiemap. */
746                 if (blkaddr == NEW_ADDR)
747                         map->m_flags |= F2FS_MAP_UNWRITTEN;
748                 map->m_flags |= F2FS_MAP_MAPPED;
749
750                 map->m_pblk = blkaddr;
751                 map->m_len = 1;
752         } else if ((map->m_pblk != NEW_ADDR &&
753                         blkaddr == (map->m_pblk + ofs)) ||
754                         (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
755                         flag == F2FS_GET_BLOCK_PRE_DIO) {
756                 ofs++;
757                 map->m_len++;
758         } else {
759                 goto sync_out;
760         }
761
762 skip:
763         dn.ofs_in_node++;
764         pgofs++;
765
766         /* preallocate blocks in batch for one dnode page */
767         if (flag == F2FS_GET_BLOCK_PRE_AIO &&
768                         (pgofs == end || dn.ofs_in_node == end_offset)) {
769
770                 dn.ofs_in_node = ofs_in_node;
771                 err = reserve_new_blocks(&dn, prealloc);
772                 if (err)
773                         goto sync_out;
774
775                 map->m_len += dn.ofs_in_node - ofs_in_node;
776                 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
777                         err = -ENOSPC;
778                         goto sync_out;
779                 }
780                 dn.ofs_in_node = end_offset;
781         }
782
783         if (pgofs >= end)
784                 goto sync_out;
785         else if (dn.ofs_in_node < end_offset)
786                 goto next_block;
787
788         f2fs_put_dnode(&dn);
789
790         if (create) {
791                 f2fs_unlock_op(sbi);
792                 f2fs_balance_fs(sbi, allocated);
793         }
794         allocated = false;
795         goto next_dnode;
796
797 sync_out:
798         f2fs_put_dnode(&dn);
799 unlock_out:
800         if (create) {
801                 f2fs_unlock_op(sbi);
802                 f2fs_balance_fs(sbi, allocated);
803         }
804 out:
805         trace_f2fs_map_blocks(inode, map, err);
806         return err;
807 }
808
809 static int __get_data_block(struct inode *inode, sector_t iblock,
810                         struct buffer_head *bh, int create, int flag,
811                         pgoff_t *next_pgofs)
812 {
813         struct f2fs_map_blocks map;
814         int ret;
815
816         map.m_lblk = iblock;
817         map.m_len = bh->b_size >> inode->i_blkbits;
818         map.m_next_pgofs = next_pgofs;
819
820         ret = f2fs_map_blocks(inode, &map, create, flag);
821         if (!ret) {
822                 map_bh(bh, inode->i_sb, map.m_pblk);
823                 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
824                 bh->b_size = map.m_len << inode->i_blkbits;
825         }
826         return ret;
827 }
828
829 static int get_data_block(struct inode *inode, sector_t iblock,
830                         struct buffer_head *bh_result, int create, int flag,
831                         pgoff_t *next_pgofs)
832 {
833         return __get_data_block(inode, iblock, bh_result, create,
834                                                         flag, next_pgofs);
835 }
836
837 static int get_data_block_dio(struct inode *inode, sector_t iblock,
838                         struct buffer_head *bh_result, int create)
839 {
840         return __get_data_block(inode, iblock, bh_result, create,
841                                                 F2FS_GET_BLOCK_DIO, NULL);
842 }
843
844 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
845                         struct buffer_head *bh_result, int create)
846 {
847         /* Block number less than F2FS MAX BLOCKS */
848         if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
849                 return -EFBIG;
850
851         return __get_data_block(inode, iblock, bh_result, create,
852                                                 F2FS_GET_BLOCK_BMAP, NULL);
853 }
854
855 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
856 {
857         return (offset >> inode->i_blkbits);
858 }
859
860 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
861 {
862         return (blk << inode->i_blkbits);
863 }
864
865 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
866                 u64 start, u64 len)
867 {
868         struct buffer_head map_bh;
869         sector_t start_blk, last_blk;
870         pgoff_t next_pgofs;
871         loff_t isize;
872         u64 logical = 0, phys = 0, size = 0;
873         u32 flags = 0;
874         int ret = 0;
875
876         ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC);
877         if (ret)
878                 return ret;
879
880         if (f2fs_has_inline_data(inode)) {
881                 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
882                 if (ret != -EAGAIN)
883                         return ret;
884         }
885
886         inode_lock(inode);
887
888         isize = i_size_read(inode);
889         if (start >= isize)
890                 goto out;
891
892         if (start + len > isize)
893                 len = isize - start;
894
895         if (logical_to_blk(inode, len) == 0)
896                 len = blk_to_logical(inode, 1);
897
898         start_blk = logical_to_blk(inode, start);
899         last_blk = logical_to_blk(inode, start + len - 1);
900
901 next:
902         memset(&map_bh, 0, sizeof(struct buffer_head));
903         map_bh.b_size = len;
904
905         ret = get_data_block(inode, start_blk, &map_bh, 0,
906                                         F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
907         if (ret)
908                 goto out;
909
910         /* HOLE */
911         if (!buffer_mapped(&map_bh)) {
912                 start_blk = next_pgofs;
913                 /* Go through holes util pass the EOF */
914                 if (blk_to_logical(inode, start_blk) < isize)
915                         goto prep_next;
916                 /* Found a hole beyond isize means no more extents.
917                  * Note that the premise is that filesystems don't
918                  * punch holes beyond isize and keep size unchanged.
919                  */
920                 flags |= FIEMAP_EXTENT_LAST;
921         }
922
923         if (size) {
924                 if (f2fs_encrypted_inode(inode))
925                         flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
926
927                 ret = fiemap_fill_next_extent(fieinfo, logical,
928                                 phys, size, flags);
929         }
930
931         if (start_blk > last_blk || ret)
932                 goto out;
933
934         logical = blk_to_logical(inode, start_blk);
935         phys = blk_to_logical(inode, map_bh.b_blocknr);
936         size = map_bh.b_size;
937         flags = 0;
938         if (buffer_unwritten(&map_bh))
939                 flags = FIEMAP_EXTENT_UNWRITTEN;
940
941         start_blk += logical_to_blk(inode, size);
942
943 prep_next:
944         cond_resched();
945         if (fatal_signal_pending(current))
946                 ret = -EINTR;
947         else
948                 goto next;
949 out:
950         if (ret == 1)
951                 ret = 0;
952
953         inode_unlock(inode);
954         return ret;
955 }
956
957 /*
958  * This function was originally taken from fs/mpage.c, and customized for f2fs.
959  * Major change was from block_size == page_size in f2fs by default.
960  */
961 static int f2fs_mpage_readpages(struct address_space *mapping,
962                         struct list_head *pages, struct page *page,
963                         unsigned nr_pages)
964 {
965         struct bio *bio = NULL;
966         unsigned page_idx;
967         sector_t last_block_in_bio = 0;
968         struct inode *inode = mapping->host;
969         const unsigned blkbits = inode->i_blkbits;
970         const unsigned blocksize = 1 << blkbits;
971         sector_t block_in_file;
972         sector_t last_block;
973         sector_t last_block_in_file;
974         sector_t block_nr;
975         struct block_device *bdev = inode->i_sb->s_bdev;
976         struct f2fs_map_blocks map;
977
978         map.m_pblk = 0;
979         map.m_lblk = 0;
980         map.m_len = 0;
981         map.m_flags = 0;
982         map.m_next_pgofs = NULL;
983
984         for (page_idx = 0; nr_pages; page_idx++, nr_pages--) {
985
986                 prefetchw(&page->flags);
987                 if (pages) {
988                         page = list_entry(pages->prev, struct page, lru);
989                         list_del(&page->lru);
990                         if (add_to_page_cache_lru(page, mapping,
991                                                   page->index, GFP_KERNEL))
992                                 goto next_page;
993                 }
994
995                 block_in_file = (sector_t)page->index;
996                 last_block = block_in_file + nr_pages;
997                 last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
998                                                                 blkbits;
999                 if (last_block > last_block_in_file)
1000                         last_block = last_block_in_file;
1001
1002                 /*
1003                  * Map blocks using the previous result first.
1004                  */
1005                 if ((map.m_flags & F2FS_MAP_MAPPED) &&
1006                                 block_in_file > map.m_lblk &&
1007                                 block_in_file < (map.m_lblk + map.m_len))
1008                         goto got_it;
1009
1010                 /*
1011                  * Then do more f2fs_map_blocks() calls until we are
1012                  * done with this page.
1013                  */
1014                 map.m_flags = 0;
1015
1016                 if (block_in_file < last_block) {
1017                         map.m_lblk = block_in_file;
1018                         map.m_len = last_block - block_in_file;
1019
1020                         if (f2fs_map_blocks(inode, &map, 0,
1021                                                 F2FS_GET_BLOCK_READ))
1022                                 goto set_error_page;
1023                 }
1024 got_it:
1025                 if ((map.m_flags & F2FS_MAP_MAPPED)) {
1026                         block_nr = map.m_pblk + block_in_file - map.m_lblk;
1027                         SetPageMappedToDisk(page);
1028
1029                         if (!PageUptodate(page) && !cleancache_get_page(page)) {
1030                                 SetPageUptodate(page);
1031                                 goto confused;
1032                         }
1033                 } else {
1034                         zero_user_segment(page, 0, PAGE_SIZE);
1035                         SetPageUptodate(page);
1036                         unlock_page(page);
1037                         goto next_page;
1038                 }
1039
1040                 /*
1041                  * This page will go to BIO.  Do we need to send this
1042                  * BIO off first?
1043                  */
1044                 if (bio && (last_block_in_bio != block_nr - 1)) {
1045 submit_and_realloc:
1046                         __submit_bio(F2FS_I_SB(inode), READ, bio, DATA);
1047                         bio = NULL;
1048                 }
1049                 if (bio == NULL) {
1050                         struct fscrypt_ctx *ctx = NULL;
1051
1052                         if (f2fs_encrypted_inode(inode) &&
1053                                         S_ISREG(inode->i_mode)) {
1054
1055                                 ctx = fscrypt_get_ctx(inode, GFP_NOFS);
1056                                 if (IS_ERR(ctx))
1057                                         goto set_error_page;
1058
1059                                 /* wait the page to be moved by cleaning */
1060                                 f2fs_wait_on_encrypted_page_writeback(
1061                                                 F2FS_I_SB(inode), block_nr);
1062                         }
1063
1064                         bio = bio_alloc(GFP_KERNEL,
1065                                 min_t(int, nr_pages, BIO_MAX_PAGES));
1066                         if (!bio) {
1067                                 if (ctx)
1068                                         fscrypt_release_ctx(ctx);
1069                                 goto set_error_page;
1070                         }
1071                         bio->bi_bdev = bdev;
1072                         bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(block_nr);
1073                         bio->bi_end_io = f2fs_read_end_io;
1074                         bio->bi_private = ctx;
1075                 }
1076
1077                 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
1078                         goto submit_and_realloc;
1079
1080                 last_block_in_bio = block_nr;
1081                 goto next_page;
1082 set_error_page:
1083                 SetPageError(page);
1084                 zero_user_segment(page, 0, PAGE_SIZE);
1085                 unlock_page(page);
1086                 goto next_page;
1087 confused:
1088                 if (bio) {
1089                         __submit_bio(F2FS_I_SB(inode), READ, bio, DATA);
1090                         bio = NULL;
1091                 }
1092                 unlock_page(page);
1093 next_page:
1094                 if (pages)
1095                         put_page(page);
1096         }
1097         BUG_ON(pages && !list_empty(pages));
1098         if (bio)
1099                 __submit_bio(F2FS_I_SB(inode), READ, bio, DATA);
1100         return 0;
1101 }
1102
1103 static int f2fs_read_data_page(struct file *file, struct page *page)
1104 {
1105         struct inode *inode = page->mapping->host;
1106         int ret = -EAGAIN;
1107
1108         trace_f2fs_readpage(page, DATA);
1109
1110         /* If the file has inline data, try to read it directly */
1111         if (f2fs_has_inline_data(inode))
1112                 ret = f2fs_read_inline_data(inode, page);
1113         if (ret == -EAGAIN)
1114                 ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1);
1115         return ret;
1116 }
1117
1118 static int f2fs_read_data_pages(struct file *file,
1119                         struct address_space *mapping,
1120                         struct list_head *pages, unsigned nr_pages)
1121 {
1122         struct inode *inode = file->f_mapping->host;
1123         struct page *page = list_entry(pages->prev, struct page, lru);
1124
1125         trace_f2fs_readpages(inode, page, nr_pages);
1126
1127         /* If the file has inline data, skip readpages */
1128         if (f2fs_has_inline_data(inode))
1129                 return 0;
1130
1131         return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages);
1132 }
1133
1134 int do_write_data_page(struct f2fs_io_info *fio)
1135 {
1136         struct page *page = fio->page;
1137         struct inode *inode = page->mapping->host;
1138         struct dnode_of_data dn;
1139         int err = 0;
1140
1141         set_new_dnode(&dn, inode, NULL, NULL, 0);
1142         err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
1143         if (err)
1144                 return err;
1145
1146         fio->old_blkaddr = dn.data_blkaddr;
1147
1148         /* This page is already truncated */
1149         if (fio->old_blkaddr == NULL_ADDR) {
1150                 ClearPageUptodate(page);
1151                 goto out_writepage;
1152         }
1153
1154         if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1155                 gfp_t gfp_flags = GFP_NOFS;
1156
1157                 /* wait for GCed encrypted page writeback */
1158                 f2fs_wait_on_encrypted_page_writeback(F2FS_I_SB(inode),
1159                                                         fio->old_blkaddr);
1160 retry_encrypt:
1161                 fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page,
1162                                                                 gfp_flags);
1163                 if (IS_ERR(fio->encrypted_page)) {
1164                         err = PTR_ERR(fio->encrypted_page);
1165                         if (err == -ENOMEM) {
1166                                 /* flush pending ios and wait for a while */
1167                                 f2fs_flush_merged_bios(F2FS_I_SB(inode));
1168                                 congestion_wait(BLK_RW_ASYNC, HZ/50);
1169                                 gfp_flags |= __GFP_NOFAIL;
1170                                 err = 0;
1171                                 goto retry_encrypt;
1172                         }
1173                         goto out_writepage;
1174                 }
1175         }
1176
1177         set_page_writeback(page);
1178
1179         /*
1180          * If current allocation needs SSR,
1181          * it had better in-place writes for updated data.
1182          */
1183         if (unlikely(fio->old_blkaddr != NEW_ADDR &&
1184                         !is_cold_data(page) &&
1185                         !IS_ATOMIC_WRITTEN_PAGE(page) &&
1186                         need_inplace_update(inode))) {
1187                 rewrite_data_page(fio);
1188                 set_inode_flag(inode, FI_UPDATE_WRITE);
1189                 trace_f2fs_do_write_data_page(page, IPU);
1190         } else {
1191                 write_data_page(&dn, fio);
1192                 trace_f2fs_do_write_data_page(page, OPU);
1193                 set_inode_flag(inode, FI_APPEND_WRITE);
1194                 if (page->index == 0)
1195                         set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1196         }
1197 out_writepage:
1198         f2fs_put_dnode(&dn);
1199         return err;
1200 }
1201
1202 static int f2fs_write_data_page(struct page *page,
1203                                         struct writeback_control *wbc)
1204 {
1205         struct inode *inode = page->mapping->host;
1206         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1207         loff_t i_size = i_size_read(inode);
1208         const pgoff_t end_index = ((unsigned long long) i_size)
1209                                                         >> PAGE_SHIFT;
1210         loff_t psize = (page->index + 1) << PAGE_SHIFT;
1211         unsigned offset = 0;
1212         bool need_balance_fs = false;
1213         int err = 0;
1214         struct f2fs_io_info fio = {
1215                 .sbi = sbi,
1216                 .type = DATA,
1217                 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
1218                 .page = page,
1219                 .encrypted_page = NULL,
1220         };
1221
1222         trace_f2fs_writepage(page, DATA);
1223
1224         if (page->index < end_index)
1225                 goto write;
1226
1227         /*
1228          * If the offset is out-of-range of file size,
1229          * this page does not have to be written to disk.
1230          */
1231         offset = i_size & (PAGE_SIZE - 1);
1232         if ((page->index >= end_index + 1) || !offset)
1233                 goto out;
1234
1235         zero_user_segment(page, offset, PAGE_SIZE);
1236 write:
1237         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1238                 goto redirty_out;
1239         if (f2fs_is_drop_cache(inode))
1240                 goto out;
1241         /* we should not write 0'th page having journal header */
1242         if (f2fs_is_volatile_file(inode) && (!page->index ||
1243                         (!wbc->for_reclaim &&
1244                         available_free_memory(sbi, BASE_CHECK))))
1245                 goto redirty_out;
1246
1247         /* we should bypass data pages to proceed the kworkder jobs */
1248         if (unlikely(f2fs_cp_error(sbi))) {
1249                 mapping_set_error(page->mapping, -EIO);
1250                 goto out;
1251         }
1252
1253         /* Dentry blocks are controlled by checkpoint */
1254         if (S_ISDIR(inode->i_mode)) {
1255                 err = do_write_data_page(&fio);
1256                 goto done;
1257         }
1258
1259         if (!wbc->for_reclaim)
1260                 need_balance_fs = true;
1261         else if (has_not_enough_free_secs(sbi, 0))
1262                 goto redirty_out;
1263
1264         err = -EAGAIN;
1265         f2fs_lock_op(sbi);
1266         if (f2fs_has_inline_data(inode))
1267                 err = f2fs_write_inline_data(inode, page);
1268         if (err == -EAGAIN)
1269                 err = do_write_data_page(&fio);
1270         if (F2FS_I(inode)->last_disk_size < psize)
1271                 F2FS_I(inode)->last_disk_size = psize;
1272         f2fs_unlock_op(sbi);
1273 done:
1274         if (err && err != -ENOENT)
1275                 goto redirty_out;
1276
1277         clear_cold_data(page);
1278 out:
1279         inode_dec_dirty_pages(inode);
1280         if (err)
1281                 ClearPageUptodate(page);
1282
1283         if (wbc->for_reclaim) {
1284                 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, DATA, WRITE);
1285                 remove_dirty_inode(inode);
1286         }
1287
1288         unlock_page(page);
1289         f2fs_balance_fs(sbi, need_balance_fs);
1290
1291         if (unlikely(f2fs_cp_error(sbi)))
1292                 f2fs_submit_merged_bio(sbi, DATA, WRITE);
1293
1294         return 0;
1295
1296 redirty_out:
1297         redirty_page_for_writepage(wbc, page);
1298         unlock_page(page);
1299         return err;
1300 }
1301
1302 /*
1303  * This function was copied from write_cche_pages from mm/page-writeback.c.
1304  * The major change is making write step of cold data page separately from
1305  * warm/hot data page.
1306  */
1307 static int f2fs_write_cache_pages(struct address_space *mapping,
1308                                         struct writeback_control *wbc)
1309 {
1310         int ret = 0;
1311         int done = 0;
1312         struct pagevec pvec;
1313         int nr_pages;
1314         pgoff_t uninitialized_var(writeback_index);
1315         pgoff_t index;
1316         pgoff_t end;            /* Inclusive */
1317         pgoff_t done_index;
1318         int cycled;
1319         int range_whole = 0;
1320         int tag;
1321
1322         pagevec_init(&pvec, 0);
1323
1324         if (wbc->range_cyclic) {
1325                 writeback_index = mapping->writeback_index; /* prev offset */
1326                 index = writeback_index;
1327                 if (index == 0)
1328                         cycled = 1;
1329                 else
1330                         cycled = 0;
1331                 end = -1;
1332         } else {
1333                 index = wbc->range_start >> PAGE_SHIFT;
1334                 end = wbc->range_end >> PAGE_SHIFT;
1335                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1336                         range_whole = 1;
1337                 cycled = 1; /* ignore range_cyclic tests */
1338         }
1339         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1340                 tag = PAGECACHE_TAG_TOWRITE;
1341         else
1342                 tag = PAGECACHE_TAG_DIRTY;
1343 retry:
1344         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1345                 tag_pages_for_writeback(mapping, index, end);
1346         done_index = index;
1347         while (!done && (index <= end)) {
1348                 int i;
1349
1350                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1351                               min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1);
1352                 if (nr_pages == 0)
1353                         break;
1354
1355                 for (i = 0; i < nr_pages; i++) {
1356                         struct page *page = pvec.pages[i];
1357
1358                         if (page->index > end) {
1359                                 done = 1;
1360                                 break;
1361                         }
1362
1363                         done_index = page->index;
1364
1365                         lock_page(page);
1366
1367                         if (unlikely(page->mapping != mapping)) {
1368 continue_unlock:
1369                                 unlock_page(page);
1370                                 continue;
1371                         }
1372
1373                         if (!PageDirty(page)) {
1374                                 /* someone wrote it for us */
1375                                 goto continue_unlock;
1376                         }
1377
1378                         if (PageWriteback(page)) {
1379                                 if (wbc->sync_mode != WB_SYNC_NONE)
1380                                         f2fs_wait_on_page_writeback(page,
1381                                                                 DATA, true);
1382                                 else
1383                                         goto continue_unlock;
1384                         }
1385
1386                         BUG_ON(PageWriteback(page));
1387                         if (!clear_page_dirty_for_io(page))
1388                                 goto continue_unlock;
1389
1390                         ret = mapping->a_ops->writepage(page, wbc);
1391                         if (unlikely(ret)) {
1392                                 done_index = page->index + 1;
1393                                 done = 1;
1394                                 break;
1395                         }
1396
1397                         if (--wbc->nr_to_write <= 0 &&
1398                             wbc->sync_mode == WB_SYNC_NONE) {
1399                                 done = 1;
1400                                 break;
1401                         }
1402                 }
1403                 pagevec_release(&pvec);
1404                 cond_resched();
1405         }
1406
1407         if (!cycled && !done) {
1408                 cycled = 1;
1409                 index = 0;
1410                 end = writeback_index - 1;
1411                 goto retry;
1412         }
1413         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1414                 mapping->writeback_index = done_index;
1415
1416         return ret;
1417 }
1418
1419 static int f2fs_write_data_pages(struct address_space *mapping,
1420                             struct writeback_control *wbc)
1421 {
1422         struct inode *inode = mapping->host;
1423         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1424         int ret;
1425
1426         /* deal with chardevs and other special file */
1427         if (!mapping->a_ops->writepage)
1428                 return 0;
1429
1430         /* skip writing if there is no dirty page in this inode */
1431         if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
1432                 return 0;
1433
1434         if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
1435                         get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
1436                         available_free_memory(sbi, DIRTY_DENTS))
1437                 goto skip_write;
1438
1439         /* skip writing during file defragment */
1440         if (is_inode_flag_set(inode, FI_DO_DEFRAG))
1441                 goto skip_write;
1442
1443         /* during POR, we don't need to trigger writepage at all. */
1444         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1445                 goto skip_write;
1446
1447         trace_f2fs_writepages(mapping->host, wbc, DATA);
1448
1449         ret = f2fs_write_cache_pages(mapping, wbc);
1450         /*
1451          * if some pages were truncated, we cannot guarantee its mapping->host
1452          * to detect pending bios.
1453          */
1454         f2fs_submit_merged_bio(sbi, DATA, WRITE);
1455
1456         remove_dirty_inode(inode);
1457         return ret;
1458
1459 skip_write:
1460         wbc->pages_skipped += get_dirty_pages(inode);
1461         trace_f2fs_writepages(mapping->host, wbc, DATA);
1462         return 0;
1463 }
1464
1465 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
1466 {
1467         struct inode *inode = mapping->host;
1468         loff_t i_size = i_size_read(inode);
1469
1470         if (to > i_size) {
1471                 truncate_pagecache(inode, i_size);
1472                 truncate_blocks(inode, i_size, true);
1473         }
1474 }
1475
1476 static int prepare_write_begin(struct f2fs_sb_info *sbi,
1477                         struct page *page, loff_t pos, unsigned len,
1478                         block_t *blk_addr, bool *node_changed)
1479 {
1480         struct inode *inode = page->mapping->host;
1481         pgoff_t index = page->index;
1482         struct dnode_of_data dn;
1483         struct page *ipage;
1484         bool locked = false;
1485         struct extent_info ei;
1486         int err = 0;
1487
1488         /*
1489          * we already allocated all the blocks, so we don't need to get
1490          * the block addresses when there is no need to fill the page.
1491          */
1492         if (!f2fs_has_inline_data(inode) && !f2fs_encrypted_inode(inode) &&
1493                                         len == PAGE_SIZE)
1494                 return 0;
1495
1496         if (f2fs_has_inline_data(inode) ||
1497                         (pos & PAGE_MASK) >= i_size_read(inode)) {
1498                 f2fs_lock_op(sbi);
1499                 locked = true;
1500         }
1501 restart:
1502         /* check inline_data */
1503         ipage = get_node_page(sbi, inode->i_ino);
1504         if (IS_ERR(ipage)) {
1505                 err = PTR_ERR(ipage);
1506                 goto unlock_out;
1507         }
1508
1509         set_new_dnode(&dn, inode, ipage, ipage, 0);
1510
1511         if (f2fs_has_inline_data(inode)) {
1512                 if (pos + len <= MAX_INLINE_DATA) {
1513                         read_inline_data(page, ipage);
1514                         set_inode_flag(inode, FI_DATA_EXIST);
1515                         if (inode->i_nlink)
1516                                 set_inline_node(ipage);
1517                 } else {
1518                         err = f2fs_convert_inline_page(&dn, page);
1519                         if (err)
1520                                 goto out;
1521                         if (dn.data_blkaddr == NULL_ADDR)
1522                                 err = f2fs_get_block(&dn, index);
1523                 }
1524         } else if (locked) {
1525                 err = f2fs_get_block(&dn, index);
1526         } else {
1527                 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1528                         dn.data_blkaddr = ei.blk + index - ei.fofs;
1529                 } else {
1530                         /* hole case */
1531                         err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
1532                         if (err || dn.data_blkaddr == NULL_ADDR) {
1533                                 f2fs_put_dnode(&dn);
1534                                 f2fs_lock_op(sbi);
1535                                 locked = true;
1536                                 goto restart;
1537                         }
1538                 }
1539         }
1540
1541         /* convert_inline_page can make node_changed */
1542         *blk_addr = dn.data_blkaddr;
1543         *node_changed = dn.node_changed;
1544 out:
1545         f2fs_put_dnode(&dn);
1546 unlock_out:
1547         if (locked)
1548                 f2fs_unlock_op(sbi);
1549         return err;
1550 }
1551
1552 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
1553                 loff_t pos, unsigned len, unsigned flags,
1554                 struct page **pagep, void **fsdata)
1555 {
1556         struct inode *inode = mapping->host;
1557         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1558         struct page *page = NULL;
1559         pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
1560         bool need_balance = false;
1561         block_t blkaddr = NULL_ADDR;
1562         int err = 0;
1563
1564         trace_f2fs_write_begin(inode, pos, len, flags);
1565
1566         /*
1567          * We should check this at this moment to avoid deadlock on inode page
1568          * and #0 page. The locking rule for inline_data conversion should be:
1569          * lock_page(page #0) -> lock_page(inode_page)
1570          */
1571         if (index != 0) {
1572                 err = f2fs_convert_inline_inode(inode);
1573                 if (err)
1574                         goto fail;
1575         }
1576 repeat:
1577         page = grab_cache_page_write_begin(mapping, index, flags);
1578         if (!page) {
1579                 err = -ENOMEM;
1580                 goto fail;
1581         }
1582
1583         *pagep = page;
1584
1585         err = prepare_write_begin(sbi, page, pos, len,
1586                                         &blkaddr, &need_balance);
1587         if (err)
1588                 goto fail;
1589
1590         if (need_balance && has_not_enough_free_secs(sbi, 0)) {
1591                 unlock_page(page);
1592                 f2fs_balance_fs(sbi, true);
1593                 lock_page(page);
1594                 if (page->mapping != mapping) {
1595                         /* The page got truncated from under us */
1596                         f2fs_put_page(page, 1);
1597                         goto repeat;
1598                 }
1599         }
1600
1601         f2fs_wait_on_page_writeback(page, DATA, false);
1602
1603         /* wait for GCed encrypted page writeback */
1604         if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
1605                 f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr);
1606
1607         if (len == PAGE_SIZE)
1608                 goto out_update;
1609         if (PageUptodate(page))
1610                 goto out_clear;
1611
1612         if ((pos & PAGE_MASK) >= i_size_read(inode)) {
1613                 unsigned start = pos & (PAGE_SIZE - 1);
1614                 unsigned end = start + len;
1615
1616                 /* Reading beyond i_size is simple: memset to zero */
1617                 zero_user_segments(page, 0, start, end, PAGE_SIZE);
1618                 goto out_update;
1619         }
1620
1621         if (blkaddr == NEW_ADDR) {
1622                 zero_user_segment(page, 0, PAGE_SIZE);
1623         } else {
1624                 struct f2fs_io_info fio = {
1625                         .sbi = sbi,
1626                         .type = DATA,
1627                         .rw = READ_SYNC,
1628                         .old_blkaddr = blkaddr,
1629                         .new_blkaddr = blkaddr,
1630                         .page = page,
1631                         .encrypted_page = NULL,
1632                 };
1633                 err = f2fs_submit_page_bio(&fio);
1634                 if (err)
1635                         goto fail;
1636
1637                 lock_page(page);
1638                 if (unlikely(!PageUptodate(page))) {
1639                         err = -EIO;
1640                         goto fail;
1641                 }
1642                 if (unlikely(page->mapping != mapping)) {
1643                         f2fs_put_page(page, 1);
1644                         goto repeat;
1645                 }
1646
1647                 /* avoid symlink page */
1648                 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1649                         err = fscrypt_decrypt_page(page);
1650                         if (err)
1651                                 goto fail;
1652                 }
1653         }
1654 out_update:
1655         SetPageUptodate(page);
1656 out_clear:
1657         clear_cold_data(page);
1658         return 0;
1659
1660 fail:
1661         f2fs_put_page(page, 1);
1662         f2fs_write_failed(mapping, pos + len);
1663         return err;
1664 }
1665
1666 static int f2fs_write_end(struct file *file,
1667                         struct address_space *mapping,
1668                         loff_t pos, unsigned len, unsigned copied,
1669                         struct page *page, void *fsdata)
1670 {
1671         struct inode *inode = page->mapping->host;
1672
1673         trace_f2fs_write_end(inode, pos, len, copied);
1674
1675         set_page_dirty(page);
1676
1677         if (pos + copied > i_size_read(inode))
1678                 f2fs_i_size_write(inode, pos + copied);
1679
1680         f2fs_put_page(page, 1);
1681         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1682         return copied;
1683 }
1684
1685 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
1686                            loff_t offset)
1687 {
1688         unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
1689
1690         if (offset & blocksize_mask)
1691                 return -EINVAL;
1692
1693         if (iov_iter_alignment(iter) & blocksize_mask)
1694                 return -EINVAL;
1695
1696         return 0;
1697 }
1698
1699 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1700 {
1701         struct address_space *mapping = iocb->ki_filp->f_mapping;
1702         struct inode *inode = mapping->host;
1703         size_t count = iov_iter_count(iter);
1704         loff_t offset = iocb->ki_pos;
1705         int err;
1706
1707         err = check_direct_IO(inode, iter, offset);
1708         if (err)
1709                 return err;
1710
1711         if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
1712                 return 0;
1713         if (test_opt(F2FS_I_SB(inode), LFS))
1714                 return 0;
1715
1716         trace_f2fs_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
1717
1718         err = blockdev_direct_IO(iocb, inode, iter, get_data_block_dio);
1719         if (iov_iter_rw(iter) == WRITE) {
1720                 if (err > 0)
1721                         set_inode_flag(inode, FI_UPDATE_WRITE);
1722                 else if (err < 0)
1723                         f2fs_write_failed(mapping, offset + count);
1724         }
1725
1726         trace_f2fs_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), err);
1727
1728         return err;
1729 }
1730
1731 void f2fs_invalidate_page(struct page *page, unsigned int offset,
1732                                                         unsigned int length)
1733 {
1734         struct inode *inode = page->mapping->host;
1735         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1736
1737         if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
1738                 (offset % PAGE_SIZE || length != PAGE_SIZE))
1739                 return;
1740
1741         if (PageDirty(page)) {
1742                 if (inode->i_ino == F2FS_META_INO(sbi))
1743                         dec_page_count(sbi, F2FS_DIRTY_META);
1744                 else if (inode->i_ino == F2FS_NODE_INO(sbi))
1745                         dec_page_count(sbi, F2FS_DIRTY_NODES);
1746                 else
1747                         inode_dec_dirty_pages(inode);
1748         }
1749
1750         /* This is atomic written page, keep Private */
1751         if (IS_ATOMIC_WRITTEN_PAGE(page))
1752                 return;
1753
1754         set_page_private(page, 0);
1755         ClearPagePrivate(page);
1756 }
1757
1758 int f2fs_release_page(struct page *page, gfp_t wait)
1759 {
1760         /* If this is dirty page, keep PagePrivate */
1761         if (PageDirty(page))
1762                 return 0;
1763
1764         /* This is atomic written page, keep Private */
1765         if (IS_ATOMIC_WRITTEN_PAGE(page))
1766                 return 0;
1767
1768         set_page_private(page, 0);
1769         ClearPagePrivate(page);
1770         return 1;
1771 }
1772
1773 static int f2fs_set_data_page_dirty(struct page *page)
1774 {
1775         struct address_space *mapping = page->mapping;
1776         struct inode *inode = mapping->host;
1777
1778         trace_f2fs_set_page_dirty(page, DATA);
1779
1780         SetPageUptodate(page);
1781
1782         if (f2fs_is_atomic_file(inode)) {
1783                 if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
1784                         register_inmem_page(inode, page);
1785                         return 1;
1786                 }
1787                 /*
1788                  * Previously, this page has been registered, we just
1789                  * return here.
1790                  */
1791                 return 0;
1792         }
1793
1794         if (!PageDirty(page)) {
1795                 __set_page_dirty_nobuffers(page);
1796                 update_dirty_page(inode, page);
1797                 return 1;
1798         }
1799         return 0;
1800 }
1801
1802 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
1803 {
1804         struct inode *inode = mapping->host;
1805
1806         if (f2fs_has_inline_data(inode))
1807                 return 0;
1808
1809         /* make sure allocating whole blocks */
1810         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1811                 filemap_write_and_wait(mapping);
1812
1813         return generic_block_bmap(mapping, block, get_data_block_bmap);
1814 }
1815
1816 const struct address_space_operations f2fs_dblock_aops = {
1817         .readpage       = f2fs_read_data_page,
1818         .readpages      = f2fs_read_data_pages,
1819         .writepage      = f2fs_write_data_page,
1820         .writepages     = f2fs_write_data_pages,
1821         .write_begin    = f2fs_write_begin,
1822         .write_end      = f2fs_write_end,
1823         .set_page_dirty = f2fs_set_data_page_dirty,
1824         .invalidatepage = f2fs_invalidate_page,
1825         .releasepage    = f2fs_release_page,
1826         .direct_IO      = f2fs_direct_IO,
1827         .bmap           = f2fs_bmap,
1828 };