Merge tag 'hardening-v6.6-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/kees...
[platform/kernel/linux-rpi.git] / fs / f2fs / compress.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * f2fs compress support
4  *
5  * Copyright (c) 2019 Chao Yu <chao@kernel.org>
6  */
7
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/moduleparam.h>
11 #include <linux/writeback.h>
12 #include <linux/backing-dev.h>
13 #include <linux/lzo.h>
14 #include <linux/lz4.h>
15 #include <linux/zstd.h>
16 #include <linux/pagevec.h>
17
18 #include "f2fs.h"
19 #include "node.h"
20 #include "segment.h"
21 #include <trace/events/f2fs.h>
22
23 static struct kmem_cache *cic_entry_slab;
24 static struct kmem_cache *dic_entry_slab;
25
26 static void *page_array_alloc(struct inode *inode, int nr)
27 {
28         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
29         unsigned int size = sizeof(struct page *) * nr;
30
31         if (likely(size <= sbi->page_array_slab_size))
32                 return f2fs_kmem_cache_alloc(sbi->page_array_slab,
33                                         GFP_F2FS_ZERO, false, F2FS_I_SB(inode));
34         return f2fs_kzalloc(sbi, size, GFP_NOFS);
35 }
36
37 static void page_array_free(struct inode *inode, void *pages, int nr)
38 {
39         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
40         unsigned int size = sizeof(struct page *) * nr;
41
42         if (!pages)
43                 return;
44
45         if (likely(size <= sbi->page_array_slab_size))
46                 kmem_cache_free(sbi->page_array_slab, pages);
47         else
48                 kfree(pages);
49 }
50
51 struct f2fs_compress_ops {
52         int (*init_compress_ctx)(struct compress_ctx *cc);
53         void (*destroy_compress_ctx)(struct compress_ctx *cc);
54         int (*compress_pages)(struct compress_ctx *cc);
55         int (*init_decompress_ctx)(struct decompress_io_ctx *dic);
56         void (*destroy_decompress_ctx)(struct decompress_io_ctx *dic);
57         int (*decompress_pages)(struct decompress_io_ctx *dic);
58         bool (*is_level_valid)(int level);
59 };
60
61 static unsigned int offset_in_cluster(struct compress_ctx *cc, pgoff_t index)
62 {
63         return index & (cc->cluster_size - 1);
64 }
65
66 static pgoff_t cluster_idx(struct compress_ctx *cc, pgoff_t index)
67 {
68         return index >> cc->log_cluster_size;
69 }
70
71 static pgoff_t start_idx_of_cluster(struct compress_ctx *cc)
72 {
73         return cc->cluster_idx << cc->log_cluster_size;
74 }
75
76 bool f2fs_is_compressed_page(struct page *page)
77 {
78         if (!PagePrivate(page))
79                 return false;
80         if (!page_private(page))
81                 return false;
82         if (page_private_nonpointer(page))
83                 return false;
84
85         f2fs_bug_on(F2FS_M_SB(page->mapping),
86                 *((u32 *)page_private(page)) != F2FS_COMPRESSED_PAGE_MAGIC);
87         return true;
88 }
89
90 static void f2fs_set_compressed_page(struct page *page,
91                 struct inode *inode, pgoff_t index, void *data)
92 {
93         attach_page_private(page, (void *)data);
94
95         /* i_crypto_info and iv index */
96         page->index = index;
97         page->mapping = inode->i_mapping;
98 }
99
100 static void f2fs_drop_rpages(struct compress_ctx *cc, int len, bool unlock)
101 {
102         int i;
103
104         for (i = 0; i < len; i++) {
105                 if (!cc->rpages[i])
106                         continue;
107                 if (unlock)
108                         unlock_page(cc->rpages[i]);
109                 else
110                         put_page(cc->rpages[i]);
111         }
112 }
113
114 static void f2fs_put_rpages(struct compress_ctx *cc)
115 {
116         f2fs_drop_rpages(cc, cc->cluster_size, false);
117 }
118
119 static void f2fs_unlock_rpages(struct compress_ctx *cc, int len)
120 {
121         f2fs_drop_rpages(cc, len, true);
122 }
123
124 static void f2fs_put_rpages_wbc(struct compress_ctx *cc,
125                 struct writeback_control *wbc, bool redirty, int unlock)
126 {
127         unsigned int i;
128
129         for (i = 0; i < cc->cluster_size; i++) {
130                 if (!cc->rpages[i])
131                         continue;
132                 if (redirty)
133                         redirty_page_for_writepage(wbc, cc->rpages[i]);
134                 f2fs_put_page(cc->rpages[i], unlock);
135         }
136 }
137
138 struct page *f2fs_compress_control_page(struct page *page)
139 {
140         return ((struct compress_io_ctx *)page_private(page))->rpages[0];
141 }
142
143 int f2fs_init_compress_ctx(struct compress_ctx *cc)
144 {
145         if (cc->rpages)
146                 return 0;
147
148         cc->rpages = page_array_alloc(cc->inode, cc->cluster_size);
149         return cc->rpages ? 0 : -ENOMEM;
150 }
151
152 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse)
153 {
154         page_array_free(cc->inode, cc->rpages, cc->cluster_size);
155         cc->rpages = NULL;
156         cc->nr_rpages = 0;
157         cc->nr_cpages = 0;
158         cc->valid_nr_cpages = 0;
159         if (!reuse)
160                 cc->cluster_idx = NULL_CLUSTER;
161 }
162
163 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page)
164 {
165         unsigned int cluster_ofs;
166
167         if (!f2fs_cluster_can_merge_page(cc, page->index))
168                 f2fs_bug_on(F2FS_I_SB(cc->inode), 1);
169
170         cluster_ofs = offset_in_cluster(cc, page->index);
171         cc->rpages[cluster_ofs] = page;
172         cc->nr_rpages++;
173         cc->cluster_idx = cluster_idx(cc, page->index);
174 }
175
176 #ifdef CONFIG_F2FS_FS_LZO
177 static int lzo_init_compress_ctx(struct compress_ctx *cc)
178 {
179         cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode),
180                                 LZO1X_MEM_COMPRESS, GFP_NOFS);
181         if (!cc->private)
182                 return -ENOMEM;
183
184         cc->clen = lzo1x_worst_compress(PAGE_SIZE << cc->log_cluster_size);
185         return 0;
186 }
187
188 static void lzo_destroy_compress_ctx(struct compress_ctx *cc)
189 {
190         kvfree(cc->private);
191         cc->private = NULL;
192 }
193
194 static int lzo_compress_pages(struct compress_ctx *cc)
195 {
196         int ret;
197
198         ret = lzo1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
199                                         &cc->clen, cc->private);
200         if (ret != LZO_E_OK) {
201                 printk_ratelimited("%sF2FS-fs (%s): lzo compress failed, ret:%d\n",
202                                 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret);
203                 return -EIO;
204         }
205         return 0;
206 }
207
208 static int lzo_decompress_pages(struct decompress_io_ctx *dic)
209 {
210         int ret;
211
212         ret = lzo1x_decompress_safe(dic->cbuf->cdata, dic->clen,
213                                                 dic->rbuf, &dic->rlen);
214         if (ret != LZO_E_OK) {
215                 printk_ratelimited("%sF2FS-fs (%s): lzo decompress failed, ret:%d\n",
216                                 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret);
217                 return -EIO;
218         }
219
220         if (dic->rlen != PAGE_SIZE << dic->log_cluster_size) {
221                 printk_ratelimited("%sF2FS-fs (%s): lzo invalid rlen:%zu, "
222                                         "expected:%lu\n", KERN_ERR,
223                                         F2FS_I_SB(dic->inode)->sb->s_id,
224                                         dic->rlen,
225                                         PAGE_SIZE << dic->log_cluster_size);
226                 return -EIO;
227         }
228         return 0;
229 }
230
231 static const struct f2fs_compress_ops f2fs_lzo_ops = {
232         .init_compress_ctx      = lzo_init_compress_ctx,
233         .destroy_compress_ctx   = lzo_destroy_compress_ctx,
234         .compress_pages         = lzo_compress_pages,
235         .decompress_pages       = lzo_decompress_pages,
236 };
237 #endif
238
239 #ifdef CONFIG_F2FS_FS_LZ4
240 static int lz4_init_compress_ctx(struct compress_ctx *cc)
241 {
242         unsigned int size = LZ4_MEM_COMPRESS;
243
244 #ifdef CONFIG_F2FS_FS_LZ4HC
245         if (F2FS_I(cc->inode)->i_compress_level)
246                 size = LZ4HC_MEM_COMPRESS;
247 #endif
248
249         cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode), size, GFP_NOFS);
250         if (!cc->private)
251                 return -ENOMEM;
252
253         /*
254          * we do not change cc->clen to LZ4_compressBound(inputsize) to
255          * adapt worst compress case, because lz4 compressor can handle
256          * output budget properly.
257          */
258         cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
259         return 0;
260 }
261
262 static void lz4_destroy_compress_ctx(struct compress_ctx *cc)
263 {
264         kvfree(cc->private);
265         cc->private = NULL;
266 }
267
268 static int lz4_compress_pages(struct compress_ctx *cc)
269 {
270         int len = -EINVAL;
271         unsigned char level = F2FS_I(cc->inode)->i_compress_level;
272
273         if (!level)
274                 len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen,
275                                                 cc->clen, cc->private);
276 #ifdef CONFIG_F2FS_FS_LZ4HC
277         else
278                 len = LZ4_compress_HC(cc->rbuf, cc->cbuf->cdata, cc->rlen,
279                                         cc->clen, level, cc->private);
280 #endif
281         if (len < 0)
282                 return len;
283         if (!len)
284                 return -EAGAIN;
285
286         cc->clen = len;
287         return 0;
288 }
289
290 static int lz4_decompress_pages(struct decompress_io_ctx *dic)
291 {
292         int ret;
293
294         ret = LZ4_decompress_safe(dic->cbuf->cdata, dic->rbuf,
295                                                 dic->clen, dic->rlen);
296         if (ret < 0) {
297                 printk_ratelimited("%sF2FS-fs (%s): lz4 decompress failed, ret:%d\n",
298                                 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret);
299                 return -EIO;
300         }
301
302         if (ret != PAGE_SIZE << dic->log_cluster_size) {
303                 printk_ratelimited("%sF2FS-fs (%s): lz4 invalid ret:%d, "
304                                         "expected:%lu\n", KERN_ERR,
305                                         F2FS_I_SB(dic->inode)->sb->s_id, ret,
306                                         PAGE_SIZE << dic->log_cluster_size);
307                 return -EIO;
308         }
309         return 0;
310 }
311
312 static bool lz4_is_level_valid(int lvl)
313 {
314 #ifdef CONFIG_F2FS_FS_LZ4HC
315         return !lvl || (lvl >= LZ4HC_MIN_CLEVEL && lvl <= LZ4HC_MAX_CLEVEL);
316 #else
317         return lvl == 0;
318 #endif
319 }
320
321 static const struct f2fs_compress_ops f2fs_lz4_ops = {
322         .init_compress_ctx      = lz4_init_compress_ctx,
323         .destroy_compress_ctx   = lz4_destroy_compress_ctx,
324         .compress_pages         = lz4_compress_pages,
325         .decompress_pages       = lz4_decompress_pages,
326         .is_level_valid         = lz4_is_level_valid,
327 };
328 #endif
329
330 #ifdef CONFIG_F2FS_FS_ZSTD
331 static int zstd_init_compress_ctx(struct compress_ctx *cc)
332 {
333         zstd_parameters params;
334         zstd_cstream *stream;
335         void *workspace;
336         unsigned int workspace_size;
337         unsigned char level = F2FS_I(cc->inode)->i_compress_level;
338
339         /* Need to remain this for backward compatibility */
340         if (!level)
341                 level = F2FS_ZSTD_DEFAULT_CLEVEL;
342
343         params = zstd_get_params(level, cc->rlen);
344         workspace_size = zstd_cstream_workspace_bound(&params.cParams);
345
346         workspace = f2fs_kvmalloc(F2FS_I_SB(cc->inode),
347                                         workspace_size, GFP_NOFS);
348         if (!workspace)
349                 return -ENOMEM;
350
351         stream = zstd_init_cstream(&params, 0, workspace, workspace_size);
352         if (!stream) {
353                 printk_ratelimited("%sF2FS-fs (%s): %s zstd_init_cstream failed\n",
354                                 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
355                                 __func__);
356                 kvfree(workspace);
357                 return -EIO;
358         }
359
360         cc->private = workspace;
361         cc->private2 = stream;
362
363         cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
364         return 0;
365 }
366
367 static void zstd_destroy_compress_ctx(struct compress_ctx *cc)
368 {
369         kvfree(cc->private);
370         cc->private = NULL;
371         cc->private2 = NULL;
372 }
373
374 static int zstd_compress_pages(struct compress_ctx *cc)
375 {
376         zstd_cstream *stream = cc->private2;
377         zstd_in_buffer inbuf;
378         zstd_out_buffer outbuf;
379         int src_size = cc->rlen;
380         int dst_size = src_size - PAGE_SIZE - COMPRESS_HEADER_SIZE;
381         int ret;
382
383         inbuf.pos = 0;
384         inbuf.src = cc->rbuf;
385         inbuf.size = src_size;
386
387         outbuf.pos = 0;
388         outbuf.dst = cc->cbuf->cdata;
389         outbuf.size = dst_size;
390
391         ret = zstd_compress_stream(stream, &outbuf, &inbuf);
392         if (zstd_is_error(ret)) {
393                 printk_ratelimited("%sF2FS-fs (%s): %s zstd_compress_stream failed, ret: %d\n",
394                                 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
395                                 __func__, zstd_get_error_code(ret));
396                 return -EIO;
397         }
398
399         ret = zstd_end_stream(stream, &outbuf);
400         if (zstd_is_error(ret)) {
401                 printk_ratelimited("%sF2FS-fs (%s): %s zstd_end_stream returned %d\n",
402                                 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
403                                 __func__, zstd_get_error_code(ret));
404                 return -EIO;
405         }
406
407         /*
408          * there is compressed data remained in intermediate buffer due to
409          * no more space in cbuf.cdata
410          */
411         if (ret)
412                 return -EAGAIN;
413
414         cc->clen = outbuf.pos;
415         return 0;
416 }
417
418 static int zstd_init_decompress_ctx(struct decompress_io_ctx *dic)
419 {
420         zstd_dstream *stream;
421         void *workspace;
422         unsigned int workspace_size;
423         unsigned int max_window_size =
424                         MAX_COMPRESS_WINDOW_SIZE(dic->log_cluster_size);
425
426         workspace_size = zstd_dstream_workspace_bound(max_window_size);
427
428         workspace = f2fs_kvmalloc(F2FS_I_SB(dic->inode),
429                                         workspace_size, GFP_NOFS);
430         if (!workspace)
431                 return -ENOMEM;
432
433         stream = zstd_init_dstream(max_window_size, workspace, workspace_size);
434         if (!stream) {
435                 printk_ratelimited("%sF2FS-fs (%s): %s zstd_init_dstream failed\n",
436                                 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id,
437                                 __func__);
438                 kvfree(workspace);
439                 return -EIO;
440         }
441
442         dic->private = workspace;
443         dic->private2 = stream;
444
445         return 0;
446 }
447
448 static void zstd_destroy_decompress_ctx(struct decompress_io_ctx *dic)
449 {
450         kvfree(dic->private);
451         dic->private = NULL;
452         dic->private2 = NULL;
453 }
454
455 static int zstd_decompress_pages(struct decompress_io_ctx *dic)
456 {
457         zstd_dstream *stream = dic->private2;
458         zstd_in_buffer inbuf;
459         zstd_out_buffer outbuf;
460         int ret;
461
462         inbuf.pos = 0;
463         inbuf.src = dic->cbuf->cdata;
464         inbuf.size = dic->clen;
465
466         outbuf.pos = 0;
467         outbuf.dst = dic->rbuf;
468         outbuf.size = dic->rlen;
469
470         ret = zstd_decompress_stream(stream, &outbuf, &inbuf);
471         if (zstd_is_error(ret)) {
472                 printk_ratelimited("%sF2FS-fs (%s): %s zstd_decompress_stream failed, ret: %d\n",
473                                 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id,
474                                 __func__, zstd_get_error_code(ret));
475                 return -EIO;
476         }
477
478         if (dic->rlen != outbuf.pos) {
479                 printk_ratelimited("%sF2FS-fs (%s): %s ZSTD invalid rlen:%zu, "
480                                 "expected:%lu\n", KERN_ERR,
481                                 F2FS_I_SB(dic->inode)->sb->s_id,
482                                 __func__, dic->rlen,
483                                 PAGE_SIZE << dic->log_cluster_size);
484                 return -EIO;
485         }
486
487         return 0;
488 }
489
490 static bool zstd_is_level_valid(int lvl)
491 {
492         return lvl >= zstd_min_clevel() && lvl <= zstd_max_clevel();
493 }
494
495 static const struct f2fs_compress_ops f2fs_zstd_ops = {
496         .init_compress_ctx      = zstd_init_compress_ctx,
497         .destroy_compress_ctx   = zstd_destroy_compress_ctx,
498         .compress_pages         = zstd_compress_pages,
499         .init_decompress_ctx    = zstd_init_decompress_ctx,
500         .destroy_decompress_ctx = zstd_destroy_decompress_ctx,
501         .decompress_pages       = zstd_decompress_pages,
502         .is_level_valid         = zstd_is_level_valid,
503 };
504 #endif
505
506 #ifdef CONFIG_F2FS_FS_LZO
507 #ifdef CONFIG_F2FS_FS_LZORLE
508 static int lzorle_compress_pages(struct compress_ctx *cc)
509 {
510         int ret;
511
512         ret = lzorle1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
513                                         &cc->clen, cc->private);
514         if (ret != LZO_E_OK) {
515                 printk_ratelimited("%sF2FS-fs (%s): lzo-rle compress failed, ret:%d\n",
516                                 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret);
517                 return -EIO;
518         }
519         return 0;
520 }
521
522 static const struct f2fs_compress_ops f2fs_lzorle_ops = {
523         .init_compress_ctx      = lzo_init_compress_ctx,
524         .destroy_compress_ctx   = lzo_destroy_compress_ctx,
525         .compress_pages         = lzorle_compress_pages,
526         .decompress_pages       = lzo_decompress_pages,
527 };
528 #endif
529 #endif
530
531 static const struct f2fs_compress_ops *f2fs_cops[COMPRESS_MAX] = {
532 #ifdef CONFIG_F2FS_FS_LZO
533         &f2fs_lzo_ops,
534 #else
535         NULL,
536 #endif
537 #ifdef CONFIG_F2FS_FS_LZ4
538         &f2fs_lz4_ops,
539 #else
540         NULL,
541 #endif
542 #ifdef CONFIG_F2FS_FS_ZSTD
543         &f2fs_zstd_ops,
544 #else
545         NULL,
546 #endif
547 #if defined(CONFIG_F2FS_FS_LZO) && defined(CONFIG_F2FS_FS_LZORLE)
548         &f2fs_lzorle_ops,
549 #else
550         NULL,
551 #endif
552 };
553
554 bool f2fs_is_compress_backend_ready(struct inode *inode)
555 {
556         if (!f2fs_compressed_file(inode))
557                 return true;
558         return f2fs_cops[F2FS_I(inode)->i_compress_algorithm];
559 }
560
561 bool f2fs_is_compress_level_valid(int alg, int lvl)
562 {
563         const struct f2fs_compress_ops *cops = f2fs_cops[alg];
564
565         if (cops->is_level_valid)
566                 return cops->is_level_valid(lvl);
567
568         return lvl == 0;
569 }
570
571 static mempool_t *compress_page_pool;
572 static int num_compress_pages = 512;
573 module_param(num_compress_pages, uint, 0444);
574 MODULE_PARM_DESC(num_compress_pages,
575                 "Number of intermediate compress pages to preallocate");
576
577 int __init f2fs_init_compress_mempool(void)
578 {
579         compress_page_pool = mempool_create_page_pool(num_compress_pages, 0);
580         return compress_page_pool ? 0 : -ENOMEM;
581 }
582
583 void f2fs_destroy_compress_mempool(void)
584 {
585         mempool_destroy(compress_page_pool);
586 }
587
588 static struct page *f2fs_compress_alloc_page(void)
589 {
590         struct page *page;
591
592         page = mempool_alloc(compress_page_pool, GFP_NOFS);
593         lock_page(page);
594
595         return page;
596 }
597
598 static void f2fs_compress_free_page(struct page *page)
599 {
600         if (!page)
601                 return;
602         detach_page_private(page);
603         page->mapping = NULL;
604         unlock_page(page);
605         mempool_free(page, compress_page_pool);
606 }
607
608 #define MAX_VMAP_RETRIES        3
609
610 static void *f2fs_vmap(struct page **pages, unsigned int count)
611 {
612         int i;
613         void *buf = NULL;
614
615         for (i = 0; i < MAX_VMAP_RETRIES; i++) {
616                 buf = vm_map_ram(pages, count, -1);
617                 if (buf)
618                         break;
619                 vm_unmap_aliases();
620         }
621         return buf;
622 }
623
624 static int f2fs_compress_pages(struct compress_ctx *cc)
625 {
626         struct f2fs_inode_info *fi = F2FS_I(cc->inode);
627         const struct f2fs_compress_ops *cops =
628                                 f2fs_cops[fi->i_compress_algorithm];
629         unsigned int max_len, new_nr_cpages;
630         u32 chksum = 0;
631         int i, ret;
632
633         trace_f2fs_compress_pages_start(cc->inode, cc->cluster_idx,
634                                 cc->cluster_size, fi->i_compress_algorithm);
635
636         if (cops->init_compress_ctx) {
637                 ret = cops->init_compress_ctx(cc);
638                 if (ret)
639                         goto out;
640         }
641
642         max_len = COMPRESS_HEADER_SIZE + cc->clen;
643         cc->nr_cpages = DIV_ROUND_UP(max_len, PAGE_SIZE);
644         cc->valid_nr_cpages = cc->nr_cpages;
645
646         cc->cpages = page_array_alloc(cc->inode, cc->nr_cpages);
647         if (!cc->cpages) {
648                 ret = -ENOMEM;
649                 goto destroy_compress_ctx;
650         }
651
652         for (i = 0; i < cc->nr_cpages; i++)
653                 cc->cpages[i] = f2fs_compress_alloc_page();
654
655         cc->rbuf = f2fs_vmap(cc->rpages, cc->cluster_size);
656         if (!cc->rbuf) {
657                 ret = -ENOMEM;
658                 goto out_free_cpages;
659         }
660
661         cc->cbuf = f2fs_vmap(cc->cpages, cc->nr_cpages);
662         if (!cc->cbuf) {
663                 ret = -ENOMEM;
664                 goto out_vunmap_rbuf;
665         }
666
667         ret = cops->compress_pages(cc);
668         if (ret)
669                 goto out_vunmap_cbuf;
670
671         max_len = PAGE_SIZE * (cc->cluster_size - 1) - COMPRESS_HEADER_SIZE;
672
673         if (cc->clen > max_len) {
674                 ret = -EAGAIN;
675                 goto out_vunmap_cbuf;
676         }
677
678         cc->cbuf->clen = cpu_to_le32(cc->clen);
679
680         if (fi->i_compress_flag & BIT(COMPRESS_CHKSUM))
681                 chksum = f2fs_crc32(F2FS_I_SB(cc->inode),
682                                         cc->cbuf->cdata, cc->clen);
683         cc->cbuf->chksum = cpu_to_le32(chksum);
684
685         for (i = 0; i < COMPRESS_DATA_RESERVED_SIZE; i++)
686                 cc->cbuf->reserved[i] = cpu_to_le32(0);
687
688         new_nr_cpages = DIV_ROUND_UP(cc->clen + COMPRESS_HEADER_SIZE, PAGE_SIZE);
689
690         /* zero out any unused part of the last page */
691         memset(&cc->cbuf->cdata[cc->clen], 0,
692                         (new_nr_cpages * PAGE_SIZE) -
693                         (cc->clen + COMPRESS_HEADER_SIZE));
694
695         vm_unmap_ram(cc->cbuf, cc->nr_cpages);
696         vm_unmap_ram(cc->rbuf, cc->cluster_size);
697
698         for (i = new_nr_cpages; i < cc->nr_cpages; i++) {
699                 f2fs_compress_free_page(cc->cpages[i]);
700                 cc->cpages[i] = NULL;
701         }
702
703         if (cops->destroy_compress_ctx)
704                 cops->destroy_compress_ctx(cc);
705
706         cc->valid_nr_cpages = new_nr_cpages;
707
708         trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
709                                                         cc->clen, ret);
710         return 0;
711
712 out_vunmap_cbuf:
713         vm_unmap_ram(cc->cbuf, cc->nr_cpages);
714 out_vunmap_rbuf:
715         vm_unmap_ram(cc->rbuf, cc->cluster_size);
716 out_free_cpages:
717         for (i = 0; i < cc->nr_cpages; i++) {
718                 if (cc->cpages[i])
719                         f2fs_compress_free_page(cc->cpages[i]);
720         }
721         page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
722         cc->cpages = NULL;
723 destroy_compress_ctx:
724         if (cops->destroy_compress_ctx)
725                 cops->destroy_compress_ctx(cc);
726 out:
727         trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
728                                                         cc->clen, ret);
729         return ret;
730 }
731
732 static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic,
733                 bool pre_alloc);
734 static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic,
735                 bool bypass_destroy_callback, bool pre_alloc);
736
737 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task)
738 {
739         struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode);
740         struct f2fs_inode_info *fi = F2FS_I(dic->inode);
741         const struct f2fs_compress_ops *cops =
742                         f2fs_cops[fi->i_compress_algorithm];
743         bool bypass_callback = false;
744         int ret;
745
746         trace_f2fs_decompress_pages_start(dic->inode, dic->cluster_idx,
747                                 dic->cluster_size, fi->i_compress_algorithm);
748
749         if (dic->failed) {
750                 ret = -EIO;
751                 goto out_end_io;
752         }
753
754         ret = f2fs_prepare_decomp_mem(dic, false);
755         if (ret) {
756                 bypass_callback = true;
757                 goto out_release;
758         }
759
760         dic->clen = le32_to_cpu(dic->cbuf->clen);
761         dic->rlen = PAGE_SIZE << dic->log_cluster_size;
762
763         if (dic->clen > PAGE_SIZE * dic->nr_cpages - COMPRESS_HEADER_SIZE) {
764                 ret = -EFSCORRUPTED;
765
766                 /* Avoid f2fs_commit_super in irq context */
767                 if (!in_task)
768                         f2fs_handle_error_async(sbi, ERROR_FAIL_DECOMPRESSION);
769                 else
770                         f2fs_handle_error(sbi, ERROR_FAIL_DECOMPRESSION);
771                 goto out_release;
772         }
773
774         ret = cops->decompress_pages(dic);
775
776         if (!ret && (fi->i_compress_flag & BIT(COMPRESS_CHKSUM))) {
777                 u32 provided = le32_to_cpu(dic->cbuf->chksum);
778                 u32 calculated = f2fs_crc32(sbi, dic->cbuf->cdata, dic->clen);
779
780                 if (provided != calculated) {
781                         if (!is_inode_flag_set(dic->inode, FI_COMPRESS_CORRUPT)) {
782                                 set_inode_flag(dic->inode, FI_COMPRESS_CORRUPT);
783                                 printk_ratelimited(
784                                         "%sF2FS-fs (%s): checksum invalid, nid = %lu, %x vs %x",
785                                         KERN_INFO, sbi->sb->s_id, dic->inode->i_ino,
786                                         provided, calculated);
787                         }
788                         set_sbi_flag(sbi, SBI_NEED_FSCK);
789                 }
790         }
791
792 out_release:
793         f2fs_release_decomp_mem(dic, bypass_callback, false);
794
795 out_end_io:
796         trace_f2fs_decompress_pages_end(dic->inode, dic->cluster_idx,
797                                                         dic->clen, ret);
798         f2fs_decompress_end_io(dic, ret, in_task);
799 }
800
801 /*
802  * This is called when a page of a compressed cluster has been read from disk
803  * (or failed to be read from disk).  It checks whether this page was the last
804  * page being waited on in the cluster, and if so, it decompresses the cluster
805  * (or in the case of a failure, cleans up without actually decompressing).
806  */
807 void f2fs_end_read_compressed_page(struct page *page, bool failed,
808                 block_t blkaddr, bool in_task)
809 {
810         struct decompress_io_ctx *dic =
811                         (struct decompress_io_ctx *)page_private(page);
812         struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode);
813
814         dec_page_count(sbi, F2FS_RD_DATA);
815
816         if (failed)
817                 WRITE_ONCE(dic->failed, true);
818         else if (blkaddr && in_task)
819                 f2fs_cache_compressed_page(sbi, page,
820                                         dic->inode->i_ino, blkaddr);
821
822         if (atomic_dec_and_test(&dic->remaining_pages))
823                 f2fs_decompress_cluster(dic, in_task);
824 }
825
826 static bool is_page_in_cluster(struct compress_ctx *cc, pgoff_t index)
827 {
828         if (cc->cluster_idx == NULL_CLUSTER)
829                 return true;
830         return cc->cluster_idx == cluster_idx(cc, index);
831 }
832
833 bool f2fs_cluster_is_empty(struct compress_ctx *cc)
834 {
835         return cc->nr_rpages == 0;
836 }
837
838 static bool f2fs_cluster_is_full(struct compress_ctx *cc)
839 {
840         return cc->cluster_size == cc->nr_rpages;
841 }
842
843 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index)
844 {
845         if (f2fs_cluster_is_empty(cc))
846                 return true;
847         return is_page_in_cluster(cc, index);
848 }
849
850 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages,
851                                 int index, int nr_pages, bool uptodate)
852 {
853         unsigned long pgidx = pages[index]->index;
854         int i = uptodate ? 0 : 1;
855
856         /*
857          * when uptodate set to true, try to check all pages in cluster is
858          * uptodate or not.
859          */
860         if (uptodate && (pgidx % cc->cluster_size))
861                 return false;
862
863         if (nr_pages - index < cc->cluster_size)
864                 return false;
865
866         for (; i < cc->cluster_size; i++) {
867                 if (pages[index + i]->index != pgidx + i)
868                         return false;
869                 if (uptodate && !PageUptodate(pages[index + i]))
870                         return false;
871         }
872
873         return true;
874 }
875
876 static bool cluster_has_invalid_data(struct compress_ctx *cc)
877 {
878         loff_t i_size = i_size_read(cc->inode);
879         unsigned nr_pages = DIV_ROUND_UP(i_size, PAGE_SIZE);
880         int i;
881
882         for (i = 0; i < cc->cluster_size; i++) {
883                 struct page *page = cc->rpages[i];
884
885                 f2fs_bug_on(F2FS_I_SB(cc->inode), !page);
886
887                 /* beyond EOF */
888                 if (page->index >= nr_pages)
889                         return true;
890         }
891         return false;
892 }
893
894 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn)
895 {
896         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
897         unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
898         bool compressed = dn->data_blkaddr == COMPRESS_ADDR;
899         int cluster_end = 0;
900         int i;
901         char *reason = "";
902
903         if (!compressed)
904                 return false;
905
906         /* [..., COMPR_ADDR, ...] */
907         if (dn->ofs_in_node % cluster_size) {
908                 reason = "[*|C|*|*]";
909                 goto out;
910         }
911
912         for (i = 1; i < cluster_size; i++) {
913                 block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
914                                                         dn->ofs_in_node + i);
915
916                 /* [COMPR_ADDR, ..., COMPR_ADDR] */
917                 if (blkaddr == COMPRESS_ADDR) {
918                         reason = "[C|*|C|*]";
919                         goto out;
920                 }
921                 if (!__is_valid_data_blkaddr(blkaddr)) {
922                         if (!cluster_end)
923                                 cluster_end = i;
924                         continue;
925                 }
926                 /* [COMPR_ADDR, NULL_ADDR or NEW_ADDR, valid_blkaddr] */
927                 if (cluster_end) {
928                         reason = "[C|N|N|V]";
929                         goto out;
930                 }
931         }
932         return false;
933 out:
934         f2fs_warn(sbi, "access invalid cluster, ino:%lu, nid:%u, ofs_in_node:%u, reason:%s",
935                         dn->inode->i_ino, dn->nid, dn->ofs_in_node, reason);
936         set_sbi_flag(sbi, SBI_NEED_FSCK);
937         return true;
938 }
939
940 static int __f2fs_cluster_blocks(struct inode *inode,
941                                 unsigned int cluster_idx, bool compr)
942 {
943         struct dnode_of_data dn;
944         unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
945         unsigned int start_idx = cluster_idx <<
946                                 F2FS_I(inode)->i_log_cluster_size;
947         int ret;
948
949         set_new_dnode(&dn, inode, NULL, NULL, 0);
950         ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
951         if (ret) {
952                 if (ret == -ENOENT)
953                         ret = 0;
954                 goto fail;
955         }
956
957         if (f2fs_sanity_check_cluster(&dn)) {
958                 ret = -EFSCORRUPTED;
959                 f2fs_handle_error(F2FS_I_SB(inode), ERROR_CORRUPTED_CLUSTER);
960                 goto fail;
961         }
962
963         if (dn.data_blkaddr == COMPRESS_ADDR) {
964                 int i;
965
966                 ret = 1;
967                 for (i = 1; i < cluster_size; i++) {
968                         block_t blkaddr;
969
970                         blkaddr = data_blkaddr(dn.inode,
971                                         dn.node_page, dn.ofs_in_node + i);
972                         if (compr) {
973                                 if (__is_valid_data_blkaddr(blkaddr))
974                                         ret++;
975                         } else {
976                                 if (blkaddr != NULL_ADDR)
977                                         ret++;
978                         }
979                 }
980
981                 f2fs_bug_on(F2FS_I_SB(inode),
982                         !compr && ret != cluster_size &&
983                         !is_inode_flag_set(inode, FI_COMPRESS_RELEASED));
984         }
985 fail:
986         f2fs_put_dnode(&dn);
987         return ret;
988 }
989
990 /* return # of compressed blocks in compressed cluster */
991 static int f2fs_compressed_blocks(struct compress_ctx *cc)
992 {
993         return __f2fs_cluster_blocks(cc->inode, cc->cluster_idx, true);
994 }
995
996 /* return # of valid blocks in compressed cluster */
997 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index)
998 {
999         return __f2fs_cluster_blocks(inode,
1000                 index >> F2FS_I(inode)->i_log_cluster_size,
1001                 false);
1002 }
1003
1004 static bool cluster_may_compress(struct compress_ctx *cc)
1005 {
1006         if (!f2fs_need_compress_data(cc->inode))
1007                 return false;
1008         if (f2fs_is_atomic_file(cc->inode))
1009                 return false;
1010         if (!f2fs_cluster_is_full(cc))
1011                 return false;
1012         if (unlikely(f2fs_cp_error(F2FS_I_SB(cc->inode))))
1013                 return false;
1014         return !cluster_has_invalid_data(cc);
1015 }
1016
1017 static void set_cluster_writeback(struct compress_ctx *cc)
1018 {
1019         int i;
1020
1021         for (i = 0; i < cc->cluster_size; i++) {
1022                 if (cc->rpages[i])
1023                         set_page_writeback(cc->rpages[i]);
1024         }
1025 }
1026
1027 static void set_cluster_dirty(struct compress_ctx *cc)
1028 {
1029         int i;
1030
1031         for (i = 0; i < cc->cluster_size; i++)
1032                 if (cc->rpages[i])
1033                         set_page_dirty(cc->rpages[i]);
1034 }
1035
1036 static int prepare_compress_overwrite(struct compress_ctx *cc,
1037                 struct page **pagep, pgoff_t index, void **fsdata)
1038 {
1039         struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode);
1040         struct address_space *mapping = cc->inode->i_mapping;
1041         struct page *page;
1042         sector_t last_block_in_bio;
1043         fgf_t fgp_flag = FGP_LOCK | FGP_WRITE | FGP_CREAT;
1044         pgoff_t start_idx = start_idx_of_cluster(cc);
1045         int i, ret;
1046
1047 retry:
1048         ret = f2fs_is_compressed_cluster(cc->inode, start_idx);
1049         if (ret <= 0)
1050                 return ret;
1051
1052         ret = f2fs_init_compress_ctx(cc);
1053         if (ret)
1054                 return ret;
1055
1056         /* keep page reference to avoid page reclaim */
1057         for (i = 0; i < cc->cluster_size; i++) {
1058                 page = f2fs_pagecache_get_page(mapping, start_idx + i,
1059                                                         fgp_flag, GFP_NOFS);
1060                 if (!page) {
1061                         ret = -ENOMEM;
1062                         goto unlock_pages;
1063                 }
1064
1065                 if (PageUptodate(page))
1066                         f2fs_put_page(page, 1);
1067                 else
1068                         f2fs_compress_ctx_add_page(cc, page);
1069         }
1070
1071         if (!f2fs_cluster_is_empty(cc)) {
1072                 struct bio *bio = NULL;
1073
1074                 ret = f2fs_read_multi_pages(cc, &bio, cc->cluster_size,
1075                                         &last_block_in_bio, false, true);
1076                 f2fs_put_rpages(cc);
1077                 f2fs_destroy_compress_ctx(cc, true);
1078                 if (ret)
1079                         goto out;
1080                 if (bio)
1081                         f2fs_submit_read_bio(sbi, bio, DATA);
1082
1083                 ret = f2fs_init_compress_ctx(cc);
1084                 if (ret)
1085                         goto out;
1086         }
1087
1088         for (i = 0; i < cc->cluster_size; i++) {
1089                 f2fs_bug_on(sbi, cc->rpages[i]);
1090
1091                 page = find_lock_page(mapping, start_idx + i);
1092                 if (!page) {
1093                         /* page can be truncated */
1094                         goto release_and_retry;
1095                 }
1096
1097                 f2fs_wait_on_page_writeback(page, DATA, true, true);
1098                 f2fs_compress_ctx_add_page(cc, page);
1099
1100                 if (!PageUptodate(page)) {
1101 release_and_retry:
1102                         f2fs_put_rpages(cc);
1103                         f2fs_unlock_rpages(cc, i + 1);
1104                         f2fs_destroy_compress_ctx(cc, true);
1105                         goto retry;
1106                 }
1107         }
1108
1109         if (likely(!ret)) {
1110                 *fsdata = cc->rpages;
1111                 *pagep = cc->rpages[offset_in_cluster(cc, index)];
1112                 return cc->cluster_size;
1113         }
1114
1115 unlock_pages:
1116         f2fs_put_rpages(cc);
1117         f2fs_unlock_rpages(cc, i);
1118         f2fs_destroy_compress_ctx(cc, true);
1119 out:
1120         return ret;
1121 }
1122
1123 int f2fs_prepare_compress_overwrite(struct inode *inode,
1124                 struct page **pagep, pgoff_t index, void **fsdata)
1125 {
1126         struct compress_ctx cc = {
1127                 .inode = inode,
1128                 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
1129                 .cluster_size = F2FS_I(inode)->i_cluster_size,
1130                 .cluster_idx = index >> F2FS_I(inode)->i_log_cluster_size,
1131                 .rpages = NULL,
1132                 .nr_rpages = 0,
1133         };
1134
1135         return prepare_compress_overwrite(&cc, pagep, index, fsdata);
1136 }
1137
1138 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
1139                                         pgoff_t index, unsigned copied)
1140
1141 {
1142         struct compress_ctx cc = {
1143                 .inode = inode,
1144                 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
1145                 .cluster_size = F2FS_I(inode)->i_cluster_size,
1146                 .rpages = fsdata,
1147         };
1148         bool first_index = (index == cc.rpages[0]->index);
1149
1150         if (copied)
1151                 set_cluster_dirty(&cc);
1152
1153         f2fs_put_rpages_wbc(&cc, NULL, false, 1);
1154         f2fs_destroy_compress_ctx(&cc, false);
1155
1156         return first_index;
1157 }
1158
1159 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock)
1160 {
1161         void *fsdata = NULL;
1162         struct page *pagep;
1163         int log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
1164         pgoff_t start_idx = from >> (PAGE_SHIFT + log_cluster_size) <<
1165                                                         log_cluster_size;
1166         int err;
1167
1168         err = f2fs_is_compressed_cluster(inode, start_idx);
1169         if (err < 0)
1170                 return err;
1171
1172         /* truncate normal cluster */
1173         if (!err)
1174                 return f2fs_do_truncate_blocks(inode, from, lock);
1175
1176         /* truncate compressed cluster */
1177         err = f2fs_prepare_compress_overwrite(inode, &pagep,
1178                                                 start_idx, &fsdata);
1179
1180         /* should not be a normal cluster */
1181         f2fs_bug_on(F2FS_I_SB(inode), err == 0);
1182
1183         if (err <= 0)
1184                 return err;
1185
1186         if (err > 0) {
1187                 struct page **rpages = fsdata;
1188                 int cluster_size = F2FS_I(inode)->i_cluster_size;
1189                 int i;
1190
1191                 for (i = cluster_size - 1; i >= 0; i--) {
1192                         loff_t start = rpages[i]->index << PAGE_SHIFT;
1193
1194                         if (from <= start) {
1195                                 zero_user_segment(rpages[i], 0, PAGE_SIZE);
1196                         } else {
1197                                 zero_user_segment(rpages[i], from - start,
1198                                                                 PAGE_SIZE);
1199                                 break;
1200                         }
1201                 }
1202
1203                 f2fs_compress_write_end(inode, fsdata, start_idx, true);
1204         }
1205         return 0;
1206 }
1207
1208 static int f2fs_write_compressed_pages(struct compress_ctx *cc,
1209                                         int *submitted,
1210                                         struct writeback_control *wbc,
1211                                         enum iostat_type io_type)
1212 {
1213         struct inode *inode = cc->inode;
1214         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1215         struct f2fs_inode_info *fi = F2FS_I(inode);
1216         struct f2fs_io_info fio = {
1217                 .sbi = sbi,
1218                 .ino = cc->inode->i_ino,
1219                 .type = DATA,
1220                 .op = REQ_OP_WRITE,
1221                 .op_flags = wbc_to_write_flags(wbc),
1222                 .old_blkaddr = NEW_ADDR,
1223                 .page = NULL,
1224                 .encrypted_page = NULL,
1225                 .compressed_page = NULL,
1226                 .submitted = 0,
1227                 .io_type = io_type,
1228                 .io_wbc = wbc,
1229                 .encrypted = fscrypt_inode_uses_fs_layer_crypto(cc->inode) ?
1230                                                                         1 : 0,
1231         };
1232         struct dnode_of_data dn;
1233         struct node_info ni;
1234         struct compress_io_ctx *cic;
1235         pgoff_t start_idx = start_idx_of_cluster(cc);
1236         unsigned int last_index = cc->cluster_size - 1;
1237         loff_t psize;
1238         int i, err;
1239         bool quota_inode = IS_NOQUOTA(inode);
1240
1241         /* we should bypass data pages to proceed the kworker jobs */
1242         if (unlikely(f2fs_cp_error(sbi))) {
1243                 mapping_set_error(cc->rpages[0]->mapping, -EIO);
1244                 goto out_free;
1245         }
1246
1247         if (quota_inode) {
1248                 /*
1249                  * We need to wait for node_write to avoid block allocation during
1250                  * checkpoint. This can only happen to quota writes which can cause
1251                  * the below discard race condition.
1252                  */
1253                 f2fs_down_read(&sbi->node_write);
1254         } else if (!f2fs_trylock_op(sbi)) {
1255                 goto out_free;
1256         }
1257
1258         set_new_dnode(&dn, cc->inode, NULL, NULL, 0);
1259
1260         err = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
1261         if (err)
1262                 goto out_unlock_op;
1263
1264         for (i = 0; i < cc->cluster_size; i++) {
1265                 if (data_blkaddr(dn.inode, dn.node_page,
1266                                         dn.ofs_in_node + i) == NULL_ADDR)
1267                         goto out_put_dnode;
1268         }
1269
1270         psize = (loff_t)(cc->rpages[last_index]->index + 1) << PAGE_SHIFT;
1271
1272         err = f2fs_get_node_info(fio.sbi, dn.nid, &ni, false);
1273         if (err)
1274                 goto out_put_dnode;
1275
1276         fio.version = ni.version;
1277
1278         cic = f2fs_kmem_cache_alloc(cic_entry_slab, GFP_F2FS_ZERO, false, sbi);
1279         if (!cic)
1280                 goto out_put_dnode;
1281
1282         cic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
1283         cic->inode = inode;
1284         atomic_set(&cic->pending_pages, cc->valid_nr_cpages);
1285         cic->rpages = page_array_alloc(cc->inode, cc->cluster_size);
1286         if (!cic->rpages)
1287                 goto out_put_cic;
1288
1289         cic->nr_rpages = cc->cluster_size;
1290
1291         for (i = 0; i < cc->valid_nr_cpages; i++) {
1292                 f2fs_set_compressed_page(cc->cpages[i], inode,
1293                                         cc->rpages[i + 1]->index, cic);
1294                 fio.compressed_page = cc->cpages[i];
1295
1296                 fio.old_blkaddr = data_blkaddr(dn.inode, dn.node_page,
1297                                                 dn.ofs_in_node + i + 1);
1298
1299                 /* wait for GCed page writeback via META_MAPPING */
1300                 f2fs_wait_on_block_writeback(inode, fio.old_blkaddr);
1301
1302                 if (fio.encrypted) {
1303                         fio.page = cc->rpages[i + 1];
1304                         err = f2fs_encrypt_one_page(&fio);
1305                         if (err)
1306                                 goto out_destroy_crypt;
1307                         cc->cpages[i] = fio.encrypted_page;
1308                 }
1309         }
1310
1311         set_cluster_writeback(cc);
1312
1313         for (i = 0; i < cc->cluster_size; i++)
1314                 cic->rpages[i] = cc->rpages[i];
1315
1316         for (i = 0; i < cc->cluster_size; i++, dn.ofs_in_node++) {
1317                 block_t blkaddr;
1318
1319                 blkaddr = f2fs_data_blkaddr(&dn);
1320                 fio.page = cc->rpages[i];
1321                 fio.old_blkaddr = blkaddr;
1322
1323                 /* cluster header */
1324                 if (i == 0) {
1325                         if (blkaddr == COMPRESS_ADDR)
1326                                 fio.compr_blocks++;
1327                         if (__is_valid_data_blkaddr(blkaddr))
1328                                 f2fs_invalidate_blocks(sbi, blkaddr);
1329                         f2fs_update_data_blkaddr(&dn, COMPRESS_ADDR);
1330                         goto unlock_continue;
1331                 }
1332
1333                 if (fio.compr_blocks && __is_valid_data_blkaddr(blkaddr))
1334                         fio.compr_blocks++;
1335
1336                 if (i > cc->valid_nr_cpages) {
1337                         if (__is_valid_data_blkaddr(blkaddr)) {
1338                                 f2fs_invalidate_blocks(sbi, blkaddr);
1339                                 f2fs_update_data_blkaddr(&dn, NEW_ADDR);
1340                         }
1341                         goto unlock_continue;
1342                 }
1343
1344                 f2fs_bug_on(fio.sbi, blkaddr == NULL_ADDR);
1345
1346                 if (fio.encrypted)
1347                         fio.encrypted_page = cc->cpages[i - 1];
1348                 else
1349                         fio.compressed_page = cc->cpages[i - 1];
1350
1351                 cc->cpages[i - 1] = NULL;
1352                 f2fs_outplace_write_data(&dn, &fio);
1353                 (*submitted)++;
1354 unlock_continue:
1355                 inode_dec_dirty_pages(cc->inode);
1356                 unlock_page(fio.page);
1357         }
1358
1359         if (fio.compr_blocks)
1360                 f2fs_i_compr_blocks_update(inode, fio.compr_blocks - 1, false);
1361         f2fs_i_compr_blocks_update(inode, cc->valid_nr_cpages, true);
1362         add_compr_block_stat(inode, cc->valid_nr_cpages);
1363
1364         set_inode_flag(cc->inode, FI_APPEND_WRITE);
1365         if (cc->cluster_idx == 0)
1366                 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1367
1368         f2fs_put_dnode(&dn);
1369         if (quota_inode)
1370                 f2fs_up_read(&sbi->node_write);
1371         else
1372                 f2fs_unlock_op(sbi);
1373
1374         spin_lock(&fi->i_size_lock);
1375         if (fi->last_disk_size < psize)
1376                 fi->last_disk_size = psize;
1377         spin_unlock(&fi->i_size_lock);
1378
1379         f2fs_put_rpages(cc);
1380         page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
1381         cc->cpages = NULL;
1382         f2fs_destroy_compress_ctx(cc, false);
1383         return 0;
1384
1385 out_destroy_crypt:
1386         page_array_free(cc->inode, cic->rpages, cc->cluster_size);
1387
1388         for (--i; i >= 0; i--)
1389                 fscrypt_finalize_bounce_page(&cc->cpages[i]);
1390 out_put_cic:
1391         kmem_cache_free(cic_entry_slab, cic);
1392 out_put_dnode:
1393         f2fs_put_dnode(&dn);
1394 out_unlock_op:
1395         if (quota_inode)
1396                 f2fs_up_read(&sbi->node_write);
1397         else
1398                 f2fs_unlock_op(sbi);
1399 out_free:
1400         for (i = 0; i < cc->valid_nr_cpages; i++) {
1401                 f2fs_compress_free_page(cc->cpages[i]);
1402                 cc->cpages[i] = NULL;
1403         }
1404         page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
1405         cc->cpages = NULL;
1406         return -EAGAIN;
1407 }
1408
1409 void f2fs_compress_write_end_io(struct bio *bio, struct page *page)
1410 {
1411         struct f2fs_sb_info *sbi = bio->bi_private;
1412         struct compress_io_ctx *cic =
1413                         (struct compress_io_ctx *)page_private(page);
1414         int i;
1415
1416         if (unlikely(bio->bi_status))
1417                 mapping_set_error(cic->inode->i_mapping, -EIO);
1418
1419         f2fs_compress_free_page(page);
1420
1421         dec_page_count(sbi, F2FS_WB_DATA);
1422
1423         if (atomic_dec_return(&cic->pending_pages))
1424                 return;
1425
1426         for (i = 0; i < cic->nr_rpages; i++) {
1427                 WARN_ON(!cic->rpages[i]);
1428                 clear_page_private_gcing(cic->rpages[i]);
1429                 end_page_writeback(cic->rpages[i]);
1430         }
1431
1432         page_array_free(cic->inode, cic->rpages, cic->nr_rpages);
1433         kmem_cache_free(cic_entry_slab, cic);
1434 }
1435
1436 static int f2fs_write_raw_pages(struct compress_ctx *cc,
1437                                         int *submitted,
1438                                         struct writeback_control *wbc,
1439                                         enum iostat_type io_type)
1440 {
1441         struct address_space *mapping = cc->inode->i_mapping;
1442         int _submitted, compr_blocks, ret, i;
1443
1444         compr_blocks = f2fs_compressed_blocks(cc);
1445
1446         for (i = 0; i < cc->cluster_size; i++) {
1447                 if (!cc->rpages[i])
1448                         continue;
1449
1450                 redirty_page_for_writepage(wbc, cc->rpages[i]);
1451                 unlock_page(cc->rpages[i]);
1452         }
1453
1454         if (compr_blocks < 0)
1455                 return compr_blocks;
1456
1457         for (i = 0; i < cc->cluster_size; i++) {
1458                 if (!cc->rpages[i])
1459                         continue;
1460 retry_write:
1461                 lock_page(cc->rpages[i]);
1462
1463                 if (cc->rpages[i]->mapping != mapping) {
1464 continue_unlock:
1465                         unlock_page(cc->rpages[i]);
1466                         continue;
1467                 }
1468
1469                 if (!PageDirty(cc->rpages[i]))
1470                         goto continue_unlock;
1471
1472                 if (PageWriteback(cc->rpages[i])) {
1473                         if (wbc->sync_mode == WB_SYNC_NONE)
1474                                 goto continue_unlock;
1475                         f2fs_wait_on_page_writeback(cc->rpages[i], DATA, true, true);
1476                 }
1477
1478                 if (!clear_page_dirty_for_io(cc->rpages[i]))
1479                         goto continue_unlock;
1480
1481                 ret = f2fs_write_single_data_page(cc->rpages[i], &_submitted,
1482                                                 NULL, NULL, wbc, io_type,
1483                                                 compr_blocks, false);
1484                 if (ret) {
1485                         if (ret == AOP_WRITEPAGE_ACTIVATE) {
1486                                 unlock_page(cc->rpages[i]);
1487                                 ret = 0;
1488                         } else if (ret == -EAGAIN) {
1489                                 /*
1490                                  * for quota file, just redirty left pages to
1491                                  * avoid deadlock caused by cluster update race
1492                                  * from foreground operation.
1493                                  */
1494                                 if (IS_NOQUOTA(cc->inode))
1495                                         return 0;
1496                                 ret = 0;
1497                                 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1498                                 goto retry_write;
1499                         }
1500                         return ret;
1501                 }
1502
1503                 *submitted += _submitted;
1504         }
1505
1506         f2fs_balance_fs(F2FS_M_SB(mapping), true);
1507
1508         return 0;
1509 }
1510
1511 int f2fs_write_multi_pages(struct compress_ctx *cc,
1512                                         int *submitted,
1513                                         struct writeback_control *wbc,
1514                                         enum iostat_type io_type)
1515 {
1516         int err;
1517
1518         *submitted = 0;
1519         if (cluster_may_compress(cc)) {
1520                 err = f2fs_compress_pages(cc);
1521                 if (err == -EAGAIN) {
1522                         add_compr_block_stat(cc->inode, cc->cluster_size);
1523                         goto write;
1524                 } else if (err) {
1525                         f2fs_put_rpages_wbc(cc, wbc, true, 1);
1526                         goto destroy_out;
1527                 }
1528
1529                 err = f2fs_write_compressed_pages(cc, submitted,
1530                                                         wbc, io_type);
1531                 if (!err)
1532                         return 0;
1533                 f2fs_bug_on(F2FS_I_SB(cc->inode), err != -EAGAIN);
1534         }
1535 write:
1536         f2fs_bug_on(F2FS_I_SB(cc->inode), *submitted);
1537
1538         err = f2fs_write_raw_pages(cc, submitted, wbc, io_type);
1539         f2fs_put_rpages_wbc(cc, wbc, false, 0);
1540 destroy_out:
1541         f2fs_destroy_compress_ctx(cc, false);
1542         return err;
1543 }
1544
1545 static inline bool allow_memalloc_for_decomp(struct f2fs_sb_info *sbi,
1546                 bool pre_alloc)
1547 {
1548         return pre_alloc ^ f2fs_low_mem_mode(sbi);
1549 }
1550
1551 static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic,
1552                 bool pre_alloc)
1553 {
1554         const struct f2fs_compress_ops *cops =
1555                 f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm];
1556         int i;
1557
1558         if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc))
1559                 return 0;
1560
1561         dic->tpages = page_array_alloc(dic->inode, dic->cluster_size);
1562         if (!dic->tpages)
1563                 return -ENOMEM;
1564
1565         for (i = 0; i < dic->cluster_size; i++) {
1566                 if (dic->rpages[i]) {
1567                         dic->tpages[i] = dic->rpages[i];
1568                         continue;
1569                 }
1570
1571                 dic->tpages[i] = f2fs_compress_alloc_page();
1572         }
1573
1574         dic->rbuf = f2fs_vmap(dic->tpages, dic->cluster_size);
1575         if (!dic->rbuf)
1576                 return -ENOMEM;
1577
1578         dic->cbuf = f2fs_vmap(dic->cpages, dic->nr_cpages);
1579         if (!dic->cbuf)
1580                 return -ENOMEM;
1581
1582         if (cops->init_decompress_ctx)
1583                 return cops->init_decompress_ctx(dic);
1584
1585         return 0;
1586 }
1587
1588 static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic,
1589                 bool bypass_destroy_callback, bool pre_alloc)
1590 {
1591         const struct f2fs_compress_ops *cops =
1592                 f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm];
1593
1594         if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc))
1595                 return;
1596
1597         if (!bypass_destroy_callback && cops->destroy_decompress_ctx)
1598                 cops->destroy_decompress_ctx(dic);
1599
1600         if (dic->cbuf)
1601                 vm_unmap_ram(dic->cbuf, dic->nr_cpages);
1602
1603         if (dic->rbuf)
1604                 vm_unmap_ram(dic->rbuf, dic->cluster_size);
1605 }
1606
1607 static void f2fs_free_dic(struct decompress_io_ctx *dic,
1608                 bool bypass_destroy_callback);
1609
1610 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc)
1611 {
1612         struct decompress_io_ctx *dic;
1613         pgoff_t start_idx = start_idx_of_cluster(cc);
1614         struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode);
1615         int i, ret;
1616
1617         dic = f2fs_kmem_cache_alloc(dic_entry_slab, GFP_F2FS_ZERO, false, sbi);
1618         if (!dic)
1619                 return ERR_PTR(-ENOMEM);
1620
1621         dic->rpages = page_array_alloc(cc->inode, cc->cluster_size);
1622         if (!dic->rpages) {
1623                 kmem_cache_free(dic_entry_slab, dic);
1624                 return ERR_PTR(-ENOMEM);
1625         }
1626
1627         dic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
1628         dic->inode = cc->inode;
1629         atomic_set(&dic->remaining_pages, cc->nr_cpages);
1630         dic->cluster_idx = cc->cluster_idx;
1631         dic->cluster_size = cc->cluster_size;
1632         dic->log_cluster_size = cc->log_cluster_size;
1633         dic->nr_cpages = cc->nr_cpages;
1634         refcount_set(&dic->refcnt, 1);
1635         dic->failed = false;
1636         dic->need_verity = f2fs_need_verity(cc->inode, start_idx);
1637
1638         for (i = 0; i < dic->cluster_size; i++)
1639                 dic->rpages[i] = cc->rpages[i];
1640         dic->nr_rpages = cc->cluster_size;
1641
1642         dic->cpages = page_array_alloc(dic->inode, dic->nr_cpages);
1643         if (!dic->cpages) {
1644                 ret = -ENOMEM;
1645                 goto out_free;
1646         }
1647
1648         for (i = 0; i < dic->nr_cpages; i++) {
1649                 struct page *page;
1650
1651                 page = f2fs_compress_alloc_page();
1652                 f2fs_set_compressed_page(page, cc->inode,
1653                                         start_idx + i + 1, dic);
1654                 dic->cpages[i] = page;
1655         }
1656
1657         ret = f2fs_prepare_decomp_mem(dic, true);
1658         if (ret)
1659                 goto out_free;
1660
1661         return dic;
1662
1663 out_free:
1664         f2fs_free_dic(dic, true);
1665         return ERR_PTR(ret);
1666 }
1667
1668 static void f2fs_free_dic(struct decompress_io_ctx *dic,
1669                 bool bypass_destroy_callback)
1670 {
1671         int i;
1672
1673         f2fs_release_decomp_mem(dic, bypass_destroy_callback, true);
1674
1675         if (dic->tpages) {
1676                 for (i = 0; i < dic->cluster_size; i++) {
1677                         if (dic->rpages[i])
1678                                 continue;
1679                         if (!dic->tpages[i])
1680                                 continue;
1681                         f2fs_compress_free_page(dic->tpages[i]);
1682                 }
1683                 page_array_free(dic->inode, dic->tpages, dic->cluster_size);
1684         }
1685
1686         if (dic->cpages) {
1687                 for (i = 0; i < dic->nr_cpages; i++) {
1688                         if (!dic->cpages[i])
1689                                 continue;
1690                         f2fs_compress_free_page(dic->cpages[i]);
1691                 }
1692                 page_array_free(dic->inode, dic->cpages, dic->nr_cpages);
1693         }
1694
1695         page_array_free(dic->inode, dic->rpages, dic->nr_rpages);
1696         kmem_cache_free(dic_entry_slab, dic);
1697 }
1698
1699 static void f2fs_late_free_dic(struct work_struct *work)
1700 {
1701         struct decompress_io_ctx *dic =
1702                 container_of(work, struct decompress_io_ctx, free_work);
1703
1704         f2fs_free_dic(dic, false);
1705 }
1706
1707 static void f2fs_put_dic(struct decompress_io_ctx *dic, bool in_task)
1708 {
1709         if (refcount_dec_and_test(&dic->refcnt)) {
1710                 if (in_task) {
1711                         f2fs_free_dic(dic, false);
1712                 } else {
1713                         INIT_WORK(&dic->free_work, f2fs_late_free_dic);
1714                         queue_work(F2FS_I_SB(dic->inode)->post_read_wq,
1715                                         &dic->free_work);
1716                 }
1717         }
1718 }
1719
1720 static void f2fs_verify_cluster(struct work_struct *work)
1721 {
1722         struct decompress_io_ctx *dic =
1723                 container_of(work, struct decompress_io_ctx, verity_work);
1724         int i;
1725
1726         /* Verify, update, and unlock the decompressed pages. */
1727         for (i = 0; i < dic->cluster_size; i++) {
1728                 struct page *rpage = dic->rpages[i];
1729
1730                 if (!rpage)
1731                         continue;
1732
1733                 if (fsverity_verify_page(rpage))
1734                         SetPageUptodate(rpage);
1735                 else
1736                         ClearPageUptodate(rpage);
1737                 unlock_page(rpage);
1738         }
1739
1740         f2fs_put_dic(dic, true);
1741 }
1742
1743 /*
1744  * This is called when a compressed cluster has been decompressed
1745  * (or failed to be read and/or decompressed).
1746  */
1747 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
1748                                 bool in_task)
1749 {
1750         int i;
1751
1752         if (!failed && dic->need_verity) {
1753                 /*
1754                  * Note that to avoid deadlocks, the verity work can't be done
1755                  * on the decompression workqueue.  This is because verifying
1756                  * the data pages can involve reading metadata pages from the
1757                  * file, and these metadata pages may be compressed.
1758                  */
1759                 INIT_WORK(&dic->verity_work, f2fs_verify_cluster);
1760                 fsverity_enqueue_verify_work(&dic->verity_work);
1761                 return;
1762         }
1763
1764         /* Update and unlock the cluster's pagecache pages. */
1765         for (i = 0; i < dic->cluster_size; i++) {
1766                 struct page *rpage = dic->rpages[i];
1767
1768                 if (!rpage)
1769                         continue;
1770
1771                 if (failed)
1772                         ClearPageUptodate(rpage);
1773                 else
1774                         SetPageUptodate(rpage);
1775                 unlock_page(rpage);
1776         }
1777
1778         /*
1779          * Release the reference to the decompress_io_ctx that was being held
1780          * for I/O completion.
1781          */
1782         f2fs_put_dic(dic, in_task);
1783 }
1784
1785 /*
1786  * Put a reference to a compressed page's decompress_io_ctx.
1787  *
1788  * This is called when the page is no longer needed and can be freed.
1789  */
1790 void f2fs_put_page_dic(struct page *page, bool in_task)
1791 {
1792         struct decompress_io_ctx *dic =
1793                         (struct decompress_io_ctx *)page_private(page);
1794
1795         f2fs_put_dic(dic, in_task);
1796 }
1797
1798 /*
1799  * check whether cluster blocks are contiguous, and add extent cache entry
1800  * only if cluster blocks are logically and physically contiguous.
1801  */
1802 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn)
1803 {
1804         bool compressed = f2fs_data_blkaddr(dn) == COMPRESS_ADDR;
1805         int i = compressed ? 1 : 0;
1806         block_t first_blkaddr = data_blkaddr(dn->inode, dn->node_page,
1807                                                 dn->ofs_in_node + i);
1808
1809         for (i += 1; i < F2FS_I(dn->inode)->i_cluster_size; i++) {
1810                 block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
1811                                                 dn->ofs_in_node + i);
1812
1813                 if (!__is_valid_data_blkaddr(blkaddr))
1814                         break;
1815                 if (first_blkaddr + i - (compressed ? 1 : 0) != blkaddr)
1816                         return 0;
1817         }
1818
1819         return compressed ? i - 1 : i;
1820 }
1821
1822 const struct address_space_operations f2fs_compress_aops = {
1823         .release_folio = f2fs_release_folio,
1824         .invalidate_folio = f2fs_invalidate_folio,
1825         .migrate_folio  = filemap_migrate_folio,
1826 };
1827
1828 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi)
1829 {
1830         return sbi->compress_inode->i_mapping;
1831 }
1832
1833 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr)
1834 {
1835         if (!sbi->compress_inode)
1836                 return;
1837         invalidate_mapping_pages(COMPRESS_MAPPING(sbi), blkaddr, blkaddr);
1838 }
1839
1840 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
1841                                                 nid_t ino, block_t blkaddr)
1842 {
1843         struct page *cpage;
1844         int ret;
1845
1846         if (!test_opt(sbi, COMPRESS_CACHE))
1847                 return;
1848
1849         if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ))
1850                 return;
1851
1852         if (!f2fs_available_free_memory(sbi, COMPRESS_PAGE))
1853                 return;
1854
1855         cpage = find_get_page(COMPRESS_MAPPING(sbi), blkaddr);
1856         if (cpage) {
1857                 f2fs_put_page(cpage, 0);
1858                 return;
1859         }
1860
1861         cpage = alloc_page(__GFP_NOWARN | __GFP_IO);
1862         if (!cpage)
1863                 return;
1864
1865         ret = add_to_page_cache_lru(cpage, COMPRESS_MAPPING(sbi),
1866                                                 blkaddr, GFP_NOFS);
1867         if (ret) {
1868                 f2fs_put_page(cpage, 0);
1869                 return;
1870         }
1871
1872         set_page_private_data(cpage, ino);
1873
1874         if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ))
1875                 goto out;
1876
1877         memcpy(page_address(cpage), page_address(page), PAGE_SIZE);
1878         SetPageUptodate(cpage);
1879 out:
1880         f2fs_put_page(cpage, 1);
1881 }
1882
1883 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
1884                                                                 block_t blkaddr)
1885 {
1886         struct page *cpage;
1887         bool hitted = false;
1888
1889         if (!test_opt(sbi, COMPRESS_CACHE))
1890                 return false;
1891
1892         cpage = f2fs_pagecache_get_page(COMPRESS_MAPPING(sbi),
1893                                 blkaddr, FGP_LOCK | FGP_NOWAIT, GFP_NOFS);
1894         if (cpage) {
1895                 if (PageUptodate(cpage)) {
1896                         atomic_inc(&sbi->compress_page_hit);
1897                         memcpy(page_address(page),
1898                                 page_address(cpage), PAGE_SIZE);
1899                         hitted = true;
1900                 }
1901                 f2fs_put_page(cpage, 1);
1902         }
1903
1904         return hitted;
1905 }
1906
1907 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino)
1908 {
1909         struct address_space *mapping = COMPRESS_MAPPING(sbi);
1910         struct folio_batch fbatch;
1911         pgoff_t index = 0;
1912         pgoff_t end = MAX_BLKADDR(sbi);
1913
1914         if (!mapping->nrpages)
1915                 return;
1916
1917         folio_batch_init(&fbatch);
1918
1919         do {
1920                 unsigned int nr, i;
1921
1922                 nr = filemap_get_folios(mapping, &index, end - 1, &fbatch);
1923                 if (!nr)
1924                         break;
1925
1926                 for (i = 0; i < nr; i++) {
1927                         struct folio *folio = fbatch.folios[i];
1928
1929                         folio_lock(folio);
1930                         if (folio->mapping != mapping) {
1931                                 folio_unlock(folio);
1932                                 continue;
1933                         }
1934
1935                         if (ino != get_page_private_data(&folio->page)) {
1936                                 folio_unlock(folio);
1937                                 continue;
1938                         }
1939
1940                         generic_error_remove_page(mapping, &folio->page);
1941                         folio_unlock(folio);
1942                 }
1943                 folio_batch_release(&fbatch);
1944                 cond_resched();
1945         } while (index < end);
1946 }
1947
1948 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi)
1949 {
1950         struct inode *inode;
1951
1952         if (!test_opt(sbi, COMPRESS_CACHE))
1953                 return 0;
1954
1955         inode = f2fs_iget(sbi->sb, F2FS_COMPRESS_INO(sbi));
1956         if (IS_ERR(inode))
1957                 return PTR_ERR(inode);
1958         sbi->compress_inode = inode;
1959
1960         sbi->compress_percent = COMPRESS_PERCENT;
1961         sbi->compress_watermark = COMPRESS_WATERMARK;
1962
1963         atomic_set(&sbi->compress_page_hit, 0);
1964
1965         return 0;
1966 }
1967
1968 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi)
1969 {
1970         if (!sbi->compress_inode)
1971                 return;
1972         iput(sbi->compress_inode);
1973         sbi->compress_inode = NULL;
1974 }
1975
1976 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi)
1977 {
1978         dev_t dev = sbi->sb->s_bdev->bd_dev;
1979         char slab_name[32];
1980
1981         if (!f2fs_sb_has_compression(sbi))
1982                 return 0;
1983
1984         sprintf(slab_name, "f2fs_page_array_entry-%u:%u", MAJOR(dev), MINOR(dev));
1985
1986         sbi->page_array_slab_size = sizeof(struct page *) <<
1987                                         F2FS_OPTION(sbi).compress_log_size;
1988
1989         sbi->page_array_slab = f2fs_kmem_cache_create(slab_name,
1990                                         sbi->page_array_slab_size);
1991         return sbi->page_array_slab ? 0 : -ENOMEM;
1992 }
1993
1994 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi)
1995 {
1996         kmem_cache_destroy(sbi->page_array_slab);
1997 }
1998
1999 int __init f2fs_init_compress_cache(void)
2000 {
2001         cic_entry_slab = f2fs_kmem_cache_create("f2fs_cic_entry",
2002                                         sizeof(struct compress_io_ctx));
2003         if (!cic_entry_slab)
2004                 return -ENOMEM;
2005         dic_entry_slab = f2fs_kmem_cache_create("f2fs_dic_entry",
2006                                         sizeof(struct decompress_io_ctx));
2007         if (!dic_entry_slab)
2008                 goto free_cic;
2009         return 0;
2010 free_cic:
2011         kmem_cache_destroy(cic_entry_slab);
2012         return -ENOMEM;
2013 }
2014
2015 void f2fs_destroy_compress_cache(void)
2016 {
2017         kmem_cache_destroy(dic_entry_slab);
2018         kmem_cache_destroy(cic_entry_slab);
2019 }