f2fs: avoid format-overflow warning
[platform/kernel/linux-starfive.git] / fs / f2fs / compress.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * f2fs compress support
4  *
5  * Copyright (c) 2019 Chao Yu <chao@kernel.org>
6  */
7
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/moduleparam.h>
11 #include <linux/writeback.h>
12 #include <linux/backing-dev.h>
13 #include <linux/lzo.h>
14 #include <linux/lz4.h>
15 #include <linux/zstd.h>
16 #include <linux/pagevec.h>
17
18 #include "f2fs.h"
19 #include "node.h"
20 #include "segment.h"
21 #include <trace/events/f2fs.h>
22
23 static struct kmem_cache *cic_entry_slab;
24 static struct kmem_cache *dic_entry_slab;
25
26 static void *page_array_alloc(struct inode *inode, int nr)
27 {
28         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
29         unsigned int size = sizeof(struct page *) * nr;
30
31         if (likely(size <= sbi->page_array_slab_size))
32                 return f2fs_kmem_cache_alloc(sbi->page_array_slab,
33                                         GFP_F2FS_ZERO, false, F2FS_I_SB(inode));
34         return f2fs_kzalloc(sbi, size, GFP_NOFS);
35 }
36
37 static void page_array_free(struct inode *inode, void *pages, int nr)
38 {
39         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
40         unsigned int size = sizeof(struct page *) * nr;
41
42         if (!pages)
43                 return;
44
45         if (likely(size <= sbi->page_array_slab_size))
46                 kmem_cache_free(sbi->page_array_slab, pages);
47         else
48                 kfree(pages);
49 }
50
51 struct f2fs_compress_ops {
52         int (*init_compress_ctx)(struct compress_ctx *cc);
53         void (*destroy_compress_ctx)(struct compress_ctx *cc);
54         int (*compress_pages)(struct compress_ctx *cc);
55         int (*init_decompress_ctx)(struct decompress_io_ctx *dic);
56         void (*destroy_decompress_ctx)(struct decompress_io_ctx *dic);
57         int (*decompress_pages)(struct decompress_io_ctx *dic);
58 };
59
60 static unsigned int offset_in_cluster(struct compress_ctx *cc, pgoff_t index)
61 {
62         return index & (cc->cluster_size - 1);
63 }
64
65 static pgoff_t cluster_idx(struct compress_ctx *cc, pgoff_t index)
66 {
67         return index >> cc->log_cluster_size;
68 }
69
70 static pgoff_t start_idx_of_cluster(struct compress_ctx *cc)
71 {
72         return cc->cluster_idx << cc->log_cluster_size;
73 }
74
75 bool f2fs_is_compressed_page(struct page *page)
76 {
77         if (!PagePrivate(page))
78                 return false;
79         if (!page_private(page))
80                 return false;
81         if (page_private_nonpointer(page))
82                 return false;
83
84         f2fs_bug_on(F2FS_M_SB(page->mapping),
85                 *((u32 *)page_private(page)) != F2FS_COMPRESSED_PAGE_MAGIC);
86         return true;
87 }
88
89 static void f2fs_set_compressed_page(struct page *page,
90                 struct inode *inode, pgoff_t index, void *data)
91 {
92         attach_page_private(page, (void *)data);
93
94         /* i_crypto_info and iv index */
95         page->index = index;
96         page->mapping = inode->i_mapping;
97 }
98
99 static void f2fs_drop_rpages(struct compress_ctx *cc, int len, bool unlock)
100 {
101         int i;
102
103         for (i = 0; i < len; i++) {
104                 if (!cc->rpages[i])
105                         continue;
106                 if (unlock)
107                         unlock_page(cc->rpages[i]);
108                 else
109                         put_page(cc->rpages[i]);
110         }
111 }
112
113 static void f2fs_put_rpages(struct compress_ctx *cc)
114 {
115         f2fs_drop_rpages(cc, cc->cluster_size, false);
116 }
117
118 static void f2fs_unlock_rpages(struct compress_ctx *cc, int len)
119 {
120         f2fs_drop_rpages(cc, len, true);
121 }
122
123 static void f2fs_put_rpages_wbc(struct compress_ctx *cc,
124                 struct writeback_control *wbc, bool redirty, int unlock)
125 {
126         unsigned int i;
127
128         for (i = 0; i < cc->cluster_size; i++) {
129                 if (!cc->rpages[i])
130                         continue;
131                 if (redirty)
132                         redirty_page_for_writepage(wbc, cc->rpages[i]);
133                 f2fs_put_page(cc->rpages[i], unlock);
134         }
135 }
136
137 struct page *f2fs_compress_control_page(struct page *page)
138 {
139         return ((struct compress_io_ctx *)page_private(page))->rpages[0];
140 }
141
142 int f2fs_init_compress_ctx(struct compress_ctx *cc)
143 {
144         if (cc->rpages)
145                 return 0;
146
147         cc->rpages = page_array_alloc(cc->inode, cc->cluster_size);
148         return cc->rpages ? 0 : -ENOMEM;
149 }
150
151 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse)
152 {
153         page_array_free(cc->inode, cc->rpages, cc->cluster_size);
154         cc->rpages = NULL;
155         cc->nr_rpages = 0;
156         cc->nr_cpages = 0;
157         cc->valid_nr_cpages = 0;
158         if (!reuse)
159                 cc->cluster_idx = NULL_CLUSTER;
160 }
161
162 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page)
163 {
164         unsigned int cluster_ofs;
165
166         if (!f2fs_cluster_can_merge_page(cc, page->index))
167                 f2fs_bug_on(F2FS_I_SB(cc->inode), 1);
168
169         cluster_ofs = offset_in_cluster(cc, page->index);
170         cc->rpages[cluster_ofs] = page;
171         cc->nr_rpages++;
172         cc->cluster_idx = cluster_idx(cc, page->index);
173 }
174
175 #ifdef CONFIG_F2FS_FS_LZO
176 static int lzo_init_compress_ctx(struct compress_ctx *cc)
177 {
178         cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode),
179                                 LZO1X_MEM_COMPRESS, GFP_NOFS);
180         if (!cc->private)
181                 return -ENOMEM;
182
183         cc->clen = lzo1x_worst_compress(PAGE_SIZE << cc->log_cluster_size);
184         return 0;
185 }
186
187 static void lzo_destroy_compress_ctx(struct compress_ctx *cc)
188 {
189         kvfree(cc->private);
190         cc->private = NULL;
191 }
192
193 static int lzo_compress_pages(struct compress_ctx *cc)
194 {
195         int ret;
196
197         ret = lzo1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
198                                         &cc->clen, cc->private);
199         if (ret != LZO_E_OK) {
200                 printk_ratelimited("%sF2FS-fs (%s): lzo compress failed, ret:%d\n",
201                                 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret);
202                 return -EIO;
203         }
204         return 0;
205 }
206
207 static int lzo_decompress_pages(struct decompress_io_ctx *dic)
208 {
209         int ret;
210
211         ret = lzo1x_decompress_safe(dic->cbuf->cdata, dic->clen,
212                                                 dic->rbuf, &dic->rlen);
213         if (ret != LZO_E_OK) {
214                 printk_ratelimited("%sF2FS-fs (%s): lzo decompress failed, ret:%d\n",
215                                 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret);
216                 return -EIO;
217         }
218
219         if (dic->rlen != PAGE_SIZE << dic->log_cluster_size) {
220                 printk_ratelimited("%sF2FS-fs (%s): lzo invalid rlen:%zu, "
221                                         "expected:%lu\n", KERN_ERR,
222                                         F2FS_I_SB(dic->inode)->sb->s_id,
223                                         dic->rlen,
224                                         PAGE_SIZE << dic->log_cluster_size);
225                 return -EIO;
226         }
227         return 0;
228 }
229
230 static const struct f2fs_compress_ops f2fs_lzo_ops = {
231         .init_compress_ctx      = lzo_init_compress_ctx,
232         .destroy_compress_ctx   = lzo_destroy_compress_ctx,
233         .compress_pages         = lzo_compress_pages,
234         .decompress_pages       = lzo_decompress_pages,
235 };
236 #endif
237
238 #ifdef CONFIG_F2FS_FS_LZ4
239 static int lz4_init_compress_ctx(struct compress_ctx *cc)
240 {
241         unsigned int size = LZ4_MEM_COMPRESS;
242
243 #ifdef CONFIG_F2FS_FS_LZ4HC
244         if (F2FS_I(cc->inode)->i_compress_flag >> COMPRESS_LEVEL_OFFSET)
245                 size = LZ4HC_MEM_COMPRESS;
246 #endif
247
248         cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode), size, GFP_NOFS);
249         if (!cc->private)
250                 return -ENOMEM;
251
252         /*
253          * we do not change cc->clen to LZ4_compressBound(inputsize) to
254          * adapt worst compress case, because lz4 compressor can handle
255          * output budget properly.
256          */
257         cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
258         return 0;
259 }
260
261 static void lz4_destroy_compress_ctx(struct compress_ctx *cc)
262 {
263         kvfree(cc->private);
264         cc->private = NULL;
265 }
266
267 #ifdef CONFIG_F2FS_FS_LZ4HC
268 static int lz4hc_compress_pages(struct compress_ctx *cc)
269 {
270         unsigned char level = F2FS_I(cc->inode)->i_compress_flag >>
271                                                 COMPRESS_LEVEL_OFFSET;
272         int len;
273
274         if (level)
275                 len = LZ4_compress_HC(cc->rbuf, cc->cbuf->cdata, cc->rlen,
276                                         cc->clen, level, cc->private);
277         else
278                 len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen,
279                                                 cc->clen, cc->private);
280         if (!len)
281                 return -EAGAIN;
282
283         cc->clen = len;
284         return 0;
285 }
286 #endif
287
288 static int lz4_compress_pages(struct compress_ctx *cc)
289 {
290         int len;
291
292 #ifdef CONFIG_F2FS_FS_LZ4HC
293         return lz4hc_compress_pages(cc);
294 #endif
295         len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen,
296                                                 cc->clen, cc->private);
297         if (!len)
298                 return -EAGAIN;
299
300         cc->clen = len;
301         return 0;
302 }
303
304 static int lz4_decompress_pages(struct decompress_io_ctx *dic)
305 {
306         int ret;
307
308         ret = LZ4_decompress_safe(dic->cbuf->cdata, dic->rbuf,
309                                                 dic->clen, dic->rlen);
310         if (ret < 0) {
311                 printk_ratelimited("%sF2FS-fs (%s): lz4 decompress failed, ret:%d\n",
312                                 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret);
313                 return -EIO;
314         }
315
316         if (ret != PAGE_SIZE << dic->log_cluster_size) {
317                 printk_ratelimited("%sF2FS-fs (%s): lz4 invalid ret:%d, "
318                                         "expected:%lu\n", KERN_ERR,
319                                         F2FS_I_SB(dic->inode)->sb->s_id, ret,
320                                         PAGE_SIZE << dic->log_cluster_size);
321                 return -EIO;
322         }
323         return 0;
324 }
325
326 static const struct f2fs_compress_ops f2fs_lz4_ops = {
327         .init_compress_ctx      = lz4_init_compress_ctx,
328         .destroy_compress_ctx   = lz4_destroy_compress_ctx,
329         .compress_pages         = lz4_compress_pages,
330         .decompress_pages       = lz4_decompress_pages,
331 };
332 #endif
333
334 #ifdef CONFIG_F2FS_FS_ZSTD
335 #define F2FS_ZSTD_DEFAULT_CLEVEL        1
336
337 static int zstd_init_compress_ctx(struct compress_ctx *cc)
338 {
339         zstd_parameters params;
340         zstd_cstream *stream;
341         void *workspace;
342         unsigned int workspace_size;
343         unsigned char level = F2FS_I(cc->inode)->i_compress_flag >>
344                                                 COMPRESS_LEVEL_OFFSET;
345
346         if (!level)
347                 level = F2FS_ZSTD_DEFAULT_CLEVEL;
348
349         params = zstd_get_params(level, cc->rlen);
350         workspace_size = zstd_cstream_workspace_bound(&params.cParams);
351
352         workspace = f2fs_kvmalloc(F2FS_I_SB(cc->inode),
353                                         workspace_size, GFP_NOFS);
354         if (!workspace)
355                 return -ENOMEM;
356
357         stream = zstd_init_cstream(&params, 0, workspace, workspace_size);
358         if (!stream) {
359                 printk_ratelimited("%sF2FS-fs (%s): %s zstd_init_cstream failed\n",
360                                 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
361                                 __func__);
362                 kvfree(workspace);
363                 return -EIO;
364         }
365
366         cc->private = workspace;
367         cc->private2 = stream;
368
369         cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
370         return 0;
371 }
372
373 static void zstd_destroy_compress_ctx(struct compress_ctx *cc)
374 {
375         kvfree(cc->private);
376         cc->private = NULL;
377         cc->private2 = NULL;
378 }
379
380 static int zstd_compress_pages(struct compress_ctx *cc)
381 {
382         zstd_cstream *stream = cc->private2;
383         zstd_in_buffer inbuf;
384         zstd_out_buffer outbuf;
385         int src_size = cc->rlen;
386         int dst_size = src_size - PAGE_SIZE - COMPRESS_HEADER_SIZE;
387         int ret;
388
389         inbuf.pos = 0;
390         inbuf.src = cc->rbuf;
391         inbuf.size = src_size;
392
393         outbuf.pos = 0;
394         outbuf.dst = cc->cbuf->cdata;
395         outbuf.size = dst_size;
396
397         ret = zstd_compress_stream(stream, &outbuf, &inbuf);
398         if (zstd_is_error(ret)) {
399                 printk_ratelimited("%sF2FS-fs (%s): %s zstd_compress_stream failed, ret: %d\n",
400                                 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
401                                 __func__, zstd_get_error_code(ret));
402                 return -EIO;
403         }
404
405         ret = zstd_end_stream(stream, &outbuf);
406         if (zstd_is_error(ret)) {
407                 printk_ratelimited("%sF2FS-fs (%s): %s zstd_end_stream returned %d\n",
408                                 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
409                                 __func__, zstd_get_error_code(ret));
410                 return -EIO;
411         }
412
413         /*
414          * there is compressed data remained in intermediate buffer due to
415          * no more space in cbuf.cdata
416          */
417         if (ret)
418                 return -EAGAIN;
419
420         cc->clen = outbuf.pos;
421         return 0;
422 }
423
424 static int zstd_init_decompress_ctx(struct decompress_io_ctx *dic)
425 {
426         zstd_dstream *stream;
427         void *workspace;
428         unsigned int workspace_size;
429         unsigned int max_window_size =
430                         MAX_COMPRESS_WINDOW_SIZE(dic->log_cluster_size);
431
432         workspace_size = zstd_dstream_workspace_bound(max_window_size);
433
434         workspace = f2fs_kvmalloc(F2FS_I_SB(dic->inode),
435                                         workspace_size, GFP_NOFS);
436         if (!workspace)
437                 return -ENOMEM;
438
439         stream = zstd_init_dstream(max_window_size, workspace, workspace_size);
440         if (!stream) {
441                 printk_ratelimited("%sF2FS-fs (%s): %s zstd_init_dstream failed\n",
442                                 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id,
443                                 __func__);
444                 kvfree(workspace);
445                 return -EIO;
446         }
447
448         dic->private = workspace;
449         dic->private2 = stream;
450
451         return 0;
452 }
453
454 static void zstd_destroy_decompress_ctx(struct decompress_io_ctx *dic)
455 {
456         kvfree(dic->private);
457         dic->private = NULL;
458         dic->private2 = NULL;
459 }
460
461 static int zstd_decompress_pages(struct decompress_io_ctx *dic)
462 {
463         zstd_dstream *stream = dic->private2;
464         zstd_in_buffer inbuf;
465         zstd_out_buffer outbuf;
466         int ret;
467
468         inbuf.pos = 0;
469         inbuf.src = dic->cbuf->cdata;
470         inbuf.size = dic->clen;
471
472         outbuf.pos = 0;
473         outbuf.dst = dic->rbuf;
474         outbuf.size = dic->rlen;
475
476         ret = zstd_decompress_stream(stream, &outbuf, &inbuf);
477         if (zstd_is_error(ret)) {
478                 printk_ratelimited("%sF2FS-fs (%s): %s zstd_decompress_stream failed, ret: %d\n",
479                                 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id,
480                                 __func__, zstd_get_error_code(ret));
481                 return -EIO;
482         }
483
484         if (dic->rlen != outbuf.pos) {
485                 printk_ratelimited("%sF2FS-fs (%s): %s ZSTD invalid rlen:%zu, "
486                                 "expected:%lu\n", KERN_ERR,
487                                 F2FS_I_SB(dic->inode)->sb->s_id,
488                                 __func__, dic->rlen,
489                                 PAGE_SIZE << dic->log_cluster_size);
490                 return -EIO;
491         }
492
493         return 0;
494 }
495
496 static const struct f2fs_compress_ops f2fs_zstd_ops = {
497         .init_compress_ctx      = zstd_init_compress_ctx,
498         .destroy_compress_ctx   = zstd_destroy_compress_ctx,
499         .compress_pages         = zstd_compress_pages,
500         .init_decompress_ctx    = zstd_init_decompress_ctx,
501         .destroy_decompress_ctx = zstd_destroy_decompress_ctx,
502         .decompress_pages       = zstd_decompress_pages,
503 };
504 #endif
505
506 #ifdef CONFIG_F2FS_FS_LZO
507 #ifdef CONFIG_F2FS_FS_LZORLE
508 static int lzorle_compress_pages(struct compress_ctx *cc)
509 {
510         int ret;
511
512         ret = lzorle1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
513                                         &cc->clen, cc->private);
514         if (ret != LZO_E_OK) {
515                 printk_ratelimited("%sF2FS-fs (%s): lzo-rle compress failed, ret:%d\n",
516                                 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret);
517                 return -EIO;
518         }
519         return 0;
520 }
521
522 static const struct f2fs_compress_ops f2fs_lzorle_ops = {
523         .init_compress_ctx      = lzo_init_compress_ctx,
524         .destroy_compress_ctx   = lzo_destroy_compress_ctx,
525         .compress_pages         = lzorle_compress_pages,
526         .decompress_pages       = lzo_decompress_pages,
527 };
528 #endif
529 #endif
530
531 static const struct f2fs_compress_ops *f2fs_cops[COMPRESS_MAX] = {
532 #ifdef CONFIG_F2FS_FS_LZO
533         &f2fs_lzo_ops,
534 #else
535         NULL,
536 #endif
537 #ifdef CONFIG_F2FS_FS_LZ4
538         &f2fs_lz4_ops,
539 #else
540         NULL,
541 #endif
542 #ifdef CONFIG_F2FS_FS_ZSTD
543         &f2fs_zstd_ops,
544 #else
545         NULL,
546 #endif
547 #if defined(CONFIG_F2FS_FS_LZO) && defined(CONFIG_F2FS_FS_LZORLE)
548         &f2fs_lzorle_ops,
549 #else
550         NULL,
551 #endif
552 };
553
554 bool f2fs_is_compress_backend_ready(struct inode *inode)
555 {
556         if (!f2fs_compressed_file(inode))
557                 return true;
558         return f2fs_cops[F2FS_I(inode)->i_compress_algorithm];
559 }
560
561 static mempool_t *compress_page_pool;
562 static int num_compress_pages = 512;
563 module_param(num_compress_pages, uint, 0444);
564 MODULE_PARM_DESC(num_compress_pages,
565                 "Number of intermediate compress pages to preallocate");
566
567 int f2fs_init_compress_mempool(void)
568 {
569         compress_page_pool = mempool_create_page_pool(num_compress_pages, 0);
570         if (!compress_page_pool)
571                 return -ENOMEM;
572
573         return 0;
574 }
575
576 void f2fs_destroy_compress_mempool(void)
577 {
578         mempool_destroy(compress_page_pool);
579 }
580
581 static struct page *f2fs_compress_alloc_page(void)
582 {
583         struct page *page;
584
585         page = mempool_alloc(compress_page_pool, GFP_NOFS);
586         lock_page(page);
587
588         return page;
589 }
590
591 static void f2fs_compress_free_page(struct page *page)
592 {
593         if (!page)
594                 return;
595         detach_page_private(page);
596         page->mapping = NULL;
597         unlock_page(page);
598         mempool_free(page, compress_page_pool);
599 }
600
601 #define MAX_VMAP_RETRIES        3
602
603 static void *f2fs_vmap(struct page **pages, unsigned int count)
604 {
605         int i;
606         void *buf = NULL;
607
608         for (i = 0; i < MAX_VMAP_RETRIES; i++) {
609                 buf = vm_map_ram(pages, count, -1);
610                 if (buf)
611                         break;
612                 vm_unmap_aliases();
613         }
614         return buf;
615 }
616
617 static int f2fs_compress_pages(struct compress_ctx *cc)
618 {
619         struct f2fs_inode_info *fi = F2FS_I(cc->inode);
620         const struct f2fs_compress_ops *cops =
621                                 f2fs_cops[fi->i_compress_algorithm];
622         unsigned int max_len, new_nr_cpages;
623         u32 chksum = 0;
624         int i, ret;
625
626         trace_f2fs_compress_pages_start(cc->inode, cc->cluster_idx,
627                                 cc->cluster_size, fi->i_compress_algorithm);
628
629         if (cops->init_compress_ctx) {
630                 ret = cops->init_compress_ctx(cc);
631                 if (ret)
632                         goto out;
633         }
634
635         max_len = COMPRESS_HEADER_SIZE + cc->clen;
636         cc->nr_cpages = DIV_ROUND_UP(max_len, PAGE_SIZE);
637         cc->valid_nr_cpages = cc->nr_cpages;
638
639         cc->cpages = page_array_alloc(cc->inode, cc->nr_cpages);
640         if (!cc->cpages) {
641                 ret = -ENOMEM;
642                 goto destroy_compress_ctx;
643         }
644
645         for (i = 0; i < cc->nr_cpages; i++) {
646                 cc->cpages[i] = f2fs_compress_alloc_page();
647                 if (!cc->cpages[i]) {
648                         ret = -ENOMEM;
649                         goto out_free_cpages;
650                 }
651         }
652
653         cc->rbuf = f2fs_vmap(cc->rpages, cc->cluster_size);
654         if (!cc->rbuf) {
655                 ret = -ENOMEM;
656                 goto out_free_cpages;
657         }
658
659         cc->cbuf = f2fs_vmap(cc->cpages, cc->nr_cpages);
660         if (!cc->cbuf) {
661                 ret = -ENOMEM;
662                 goto out_vunmap_rbuf;
663         }
664
665         ret = cops->compress_pages(cc);
666         if (ret)
667                 goto out_vunmap_cbuf;
668
669         max_len = PAGE_SIZE * (cc->cluster_size - 1) - COMPRESS_HEADER_SIZE;
670
671         if (cc->clen > max_len) {
672                 ret = -EAGAIN;
673                 goto out_vunmap_cbuf;
674         }
675
676         cc->cbuf->clen = cpu_to_le32(cc->clen);
677
678         if (fi->i_compress_flag & 1 << COMPRESS_CHKSUM)
679                 chksum = f2fs_crc32(F2FS_I_SB(cc->inode),
680                                         cc->cbuf->cdata, cc->clen);
681         cc->cbuf->chksum = cpu_to_le32(chksum);
682
683         for (i = 0; i < COMPRESS_DATA_RESERVED_SIZE; i++)
684                 cc->cbuf->reserved[i] = cpu_to_le32(0);
685
686         new_nr_cpages = DIV_ROUND_UP(cc->clen + COMPRESS_HEADER_SIZE, PAGE_SIZE);
687
688         /* zero out any unused part of the last page */
689         memset(&cc->cbuf->cdata[cc->clen], 0,
690                         (new_nr_cpages * PAGE_SIZE) -
691                         (cc->clen + COMPRESS_HEADER_SIZE));
692
693         vm_unmap_ram(cc->cbuf, cc->nr_cpages);
694         vm_unmap_ram(cc->rbuf, cc->cluster_size);
695
696         for (i = 0; i < cc->nr_cpages; i++) {
697                 if (i < new_nr_cpages)
698                         continue;
699                 f2fs_compress_free_page(cc->cpages[i]);
700                 cc->cpages[i] = NULL;
701         }
702
703         if (cops->destroy_compress_ctx)
704                 cops->destroy_compress_ctx(cc);
705
706         cc->valid_nr_cpages = new_nr_cpages;
707
708         trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
709                                                         cc->clen, ret);
710         return 0;
711
712 out_vunmap_cbuf:
713         vm_unmap_ram(cc->cbuf, cc->nr_cpages);
714 out_vunmap_rbuf:
715         vm_unmap_ram(cc->rbuf, cc->cluster_size);
716 out_free_cpages:
717         for (i = 0; i < cc->nr_cpages; i++) {
718                 if (cc->cpages[i])
719                         f2fs_compress_free_page(cc->cpages[i]);
720         }
721         page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
722         cc->cpages = NULL;
723 destroy_compress_ctx:
724         if (cops->destroy_compress_ctx)
725                 cops->destroy_compress_ctx(cc);
726 out:
727         trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
728                                                         cc->clen, ret);
729         return ret;
730 }
731
732 static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic,
733                 bool pre_alloc);
734 static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic,
735                 bool bypass_destroy_callback, bool pre_alloc);
736
737 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task)
738 {
739         struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode);
740         struct f2fs_inode_info *fi = F2FS_I(dic->inode);
741         const struct f2fs_compress_ops *cops =
742                         f2fs_cops[fi->i_compress_algorithm];
743         bool bypass_callback = false;
744         int ret;
745
746         trace_f2fs_decompress_pages_start(dic->inode, dic->cluster_idx,
747                                 dic->cluster_size, fi->i_compress_algorithm);
748
749         if (dic->failed) {
750                 ret = -EIO;
751                 goto out_end_io;
752         }
753
754         ret = f2fs_prepare_decomp_mem(dic, false);
755         if (ret) {
756                 bypass_callback = true;
757                 goto out_release;
758         }
759
760         dic->clen = le32_to_cpu(dic->cbuf->clen);
761         dic->rlen = PAGE_SIZE << dic->log_cluster_size;
762
763         if (dic->clen > PAGE_SIZE * dic->nr_cpages - COMPRESS_HEADER_SIZE) {
764                 ret = -EFSCORRUPTED;
765
766                 /* Avoid f2fs_commit_super in irq context */
767                 if (!in_task)
768                         f2fs_save_errors(sbi, ERROR_FAIL_DECOMPRESSION);
769                 else
770                         f2fs_handle_error(sbi, ERROR_FAIL_DECOMPRESSION);
771                 goto out_release;
772         }
773
774         ret = cops->decompress_pages(dic);
775
776         if (!ret && (fi->i_compress_flag & 1 << COMPRESS_CHKSUM)) {
777                 u32 provided = le32_to_cpu(dic->cbuf->chksum);
778                 u32 calculated = f2fs_crc32(sbi, dic->cbuf->cdata, dic->clen);
779
780                 if (provided != calculated) {
781                         if (!is_inode_flag_set(dic->inode, FI_COMPRESS_CORRUPT)) {
782                                 set_inode_flag(dic->inode, FI_COMPRESS_CORRUPT);
783                                 printk_ratelimited(
784                                         "%sF2FS-fs (%s): checksum invalid, nid = %lu, %x vs %x",
785                                         KERN_INFO, sbi->sb->s_id, dic->inode->i_ino,
786                                         provided, calculated);
787                         }
788                         set_sbi_flag(sbi, SBI_NEED_FSCK);
789                 }
790         }
791
792 out_release:
793         f2fs_release_decomp_mem(dic, bypass_callback, false);
794
795 out_end_io:
796         trace_f2fs_decompress_pages_end(dic->inode, dic->cluster_idx,
797                                                         dic->clen, ret);
798         f2fs_decompress_end_io(dic, ret, in_task);
799 }
800
801 /*
802  * This is called when a page of a compressed cluster has been read from disk
803  * (or failed to be read from disk).  It checks whether this page was the last
804  * page being waited on in the cluster, and if so, it decompresses the cluster
805  * (or in the case of a failure, cleans up without actually decompressing).
806  */
807 void f2fs_end_read_compressed_page(struct page *page, bool failed,
808                 block_t blkaddr, bool in_task)
809 {
810         struct decompress_io_ctx *dic =
811                         (struct decompress_io_ctx *)page_private(page);
812         struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode);
813
814         dec_page_count(sbi, F2FS_RD_DATA);
815
816         if (failed)
817                 WRITE_ONCE(dic->failed, true);
818         else if (blkaddr && in_task)
819                 f2fs_cache_compressed_page(sbi, page,
820                                         dic->inode->i_ino, blkaddr);
821
822         if (atomic_dec_and_test(&dic->remaining_pages))
823                 f2fs_decompress_cluster(dic, in_task);
824 }
825
826 static bool is_page_in_cluster(struct compress_ctx *cc, pgoff_t index)
827 {
828         if (cc->cluster_idx == NULL_CLUSTER)
829                 return true;
830         return cc->cluster_idx == cluster_idx(cc, index);
831 }
832
833 bool f2fs_cluster_is_empty(struct compress_ctx *cc)
834 {
835         return cc->nr_rpages == 0;
836 }
837
838 static bool f2fs_cluster_is_full(struct compress_ctx *cc)
839 {
840         return cc->cluster_size == cc->nr_rpages;
841 }
842
843 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index)
844 {
845         if (f2fs_cluster_is_empty(cc))
846                 return true;
847         return is_page_in_cluster(cc, index);
848 }
849
850 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages,
851                                 int index, int nr_pages, bool uptodate)
852 {
853         unsigned long pgidx = pages[index]->index;
854         int i = uptodate ? 0 : 1;
855
856         /*
857          * when uptodate set to true, try to check all pages in cluster is
858          * uptodate or not.
859          */
860         if (uptodate && (pgidx % cc->cluster_size))
861                 return false;
862
863         if (nr_pages - index < cc->cluster_size)
864                 return false;
865
866         for (; i < cc->cluster_size; i++) {
867                 if (pages[index + i]->index != pgidx + i)
868                         return false;
869                 if (uptodate && !PageUptodate(pages[index + i]))
870                         return false;
871         }
872
873         return true;
874 }
875
876 static bool cluster_has_invalid_data(struct compress_ctx *cc)
877 {
878         loff_t i_size = i_size_read(cc->inode);
879         unsigned nr_pages = DIV_ROUND_UP(i_size, PAGE_SIZE);
880         int i;
881
882         for (i = 0; i < cc->cluster_size; i++) {
883                 struct page *page = cc->rpages[i];
884
885                 f2fs_bug_on(F2FS_I_SB(cc->inode), !page);
886
887                 /* beyond EOF */
888                 if (page->index >= nr_pages)
889                         return true;
890         }
891         return false;
892 }
893
894 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn)
895 {
896         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
897         unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
898         bool compressed = dn->data_blkaddr == COMPRESS_ADDR;
899         int cluster_end = 0;
900         int i;
901         char *reason = "";
902
903         if (!compressed)
904                 return false;
905
906         /* [..., COMPR_ADDR, ...] */
907         if (dn->ofs_in_node % cluster_size) {
908                 reason = "[*|C|*|*]";
909                 goto out;
910         }
911
912         for (i = 1; i < cluster_size; i++) {
913                 block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
914                                                         dn->ofs_in_node + i);
915
916                 /* [COMPR_ADDR, ..., COMPR_ADDR] */
917                 if (blkaddr == COMPRESS_ADDR) {
918                         reason = "[C|*|C|*]";
919                         goto out;
920                 }
921                 if (!__is_valid_data_blkaddr(blkaddr)) {
922                         if (!cluster_end)
923                                 cluster_end = i;
924                         continue;
925                 }
926                 /* [COMPR_ADDR, NULL_ADDR or NEW_ADDR, valid_blkaddr] */
927                 if (cluster_end) {
928                         reason = "[C|N|N|V]";
929                         goto out;
930                 }
931         }
932         return false;
933 out:
934         f2fs_warn(sbi, "access invalid cluster, ino:%lu, nid:%u, ofs_in_node:%u, reason:%s",
935                         dn->inode->i_ino, dn->nid, dn->ofs_in_node, reason);
936         set_sbi_flag(sbi, SBI_NEED_FSCK);
937         return true;
938 }
939
940 static int __f2fs_cluster_blocks(struct inode *inode,
941                                 unsigned int cluster_idx, bool compr)
942 {
943         struct dnode_of_data dn;
944         unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
945         unsigned int start_idx = cluster_idx <<
946                                 F2FS_I(inode)->i_log_cluster_size;
947         int ret;
948
949         set_new_dnode(&dn, inode, NULL, NULL, 0);
950         ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
951         if (ret) {
952                 if (ret == -ENOENT)
953                         ret = 0;
954                 goto fail;
955         }
956
957         if (f2fs_sanity_check_cluster(&dn)) {
958                 ret = -EFSCORRUPTED;
959                 f2fs_handle_error(F2FS_I_SB(inode), ERROR_CORRUPTED_CLUSTER);
960                 goto fail;
961         }
962
963         if (dn.data_blkaddr == COMPRESS_ADDR) {
964                 int i;
965
966                 ret = 1;
967                 for (i = 1; i < cluster_size; i++) {
968                         block_t blkaddr;
969
970                         blkaddr = data_blkaddr(dn.inode,
971                                         dn.node_page, dn.ofs_in_node + i);
972                         if (compr) {
973                                 if (__is_valid_data_blkaddr(blkaddr))
974                                         ret++;
975                         } else {
976                                 if (blkaddr != NULL_ADDR)
977                                         ret++;
978                         }
979                 }
980
981                 f2fs_bug_on(F2FS_I_SB(inode),
982                         !compr && ret != cluster_size &&
983                         !is_inode_flag_set(inode, FI_COMPRESS_RELEASED));
984         }
985 fail:
986         f2fs_put_dnode(&dn);
987         return ret;
988 }
989
990 /* return # of compressed blocks in compressed cluster */
991 static int f2fs_compressed_blocks(struct compress_ctx *cc)
992 {
993         return __f2fs_cluster_blocks(cc->inode, cc->cluster_idx, true);
994 }
995
996 /* return # of valid blocks in compressed cluster */
997 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index)
998 {
999         return __f2fs_cluster_blocks(inode,
1000                 index >> F2FS_I(inode)->i_log_cluster_size,
1001                 false);
1002 }
1003
1004 static bool cluster_may_compress(struct compress_ctx *cc)
1005 {
1006         if (!f2fs_need_compress_data(cc->inode))
1007                 return false;
1008         if (f2fs_is_atomic_file(cc->inode))
1009                 return false;
1010         if (!f2fs_cluster_is_full(cc))
1011                 return false;
1012         if (unlikely(f2fs_cp_error(F2FS_I_SB(cc->inode))))
1013                 return false;
1014         return !cluster_has_invalid_data(cc);
1015 }
1016
1017 static void set_cluster_writeback(struct compress_ctx *cc)
1018 {
1019         int i;
1020
1021         for (i = 0; i < cc->cluster_size; i++) {
1022                 if (cc->rpages[i])
1023                         set_page_writeback(cc->rpages[i]);
1024         }
1025 }
1026
1027 static void set_cluster_dirty(struct compress_ctx *cc)
1028 {
1029         int i;
1030
1031         for (i = 0; i < cc->cluster_size; i++)
1032                 if (cc->rpages[i])
1033                         set_page_dirty(cc->rpages[i]);
1034 }
1035
1036 static int prepare_compress_overwrite(struct compress_ctx *cc,
1037                 struct page **pagep, pgoff_t index, void **fsdata)
1038 {
1039         struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode);
1040         struct address_space *mapping = cc->inode->i_mapping;
1041         struct page *page;
1042         sector_t last_block_in_bio;
1043         unsigned fgp_flag = FGP_LOCK | FGP_WRITE | FGP_CREAT;
1044         pgoff_t start_idx = start_idx_of_cluster(cc);
1045         int i, ret;
1046
1047 retry:
1048         ret = f2fs_is_compressed_cluster(cc->inode, start_idx);
1049         if (ret <= 0)
1050                 return ret;
1051
1052         ret = f2fs_init_compress_ctx(cc);
1053         if (ret)
1054                 return ret;
1055
1056         /* keep page reference to avoid page reclaim */
1057         for (i = 0; i < cc->cluster_size; i++) {
1058                 page = f2fs_pagecache_get_page(mapping, start_idx + i,
1059                                                         fgp_flag, GFP_NOFS);
1060                 if (!page) {
1061                         ret = -ENOMEM;
1062                         goto unlock_pages;
1063                 }
1064
1065                 if (PageUptodate(page))
1066                         f2fs_put_page(page, 1);
1067                 else
1068                         f2fs_compress_ctx_add_page(cc, page);
1069         }
1070
1071         if (!f2fs_cluster_is_empty(cc)) {
1072                 struct bio *bio = NULL;
1073
1074                 ret = f2fs_read_multi_pages(cc, &bio, cc->cluster_size,
1075                                         &last_block_in_bio, false, true);
1076                 f2fs_put_rpages(cc);
1077                 f2fs_destroy_compress_ctx(cc, true);
1078                 if (ret)
1079                         goto out;
1080                 if (bio)
1081                         f2fs_submit_bio(sbi, bio, DATA);
1082
1083                 ret = f2fs_init_compress_ctx(cc);
1084                 if (ret)
1085                         goto out;
1086         }
1087
1088         for (i = 0; i < cc->cluster_size; i++) {
1089                 f2fs_bug_on(sbi, cc->rpages[i]);
1090
1091                 page = find_lock_page(mapping, start_idx + i);
1092                 if (!page) {
1093                         /* page can be truncated */
1094                         goto release_and_retry;
1095                 }
1096
1097                 f2fs_wait_on_page_writeback(page, DATA, true, true);
1098                 f2fs_compress_ctx_add_page(cc, page);
1099
1100                 if (!PageUptodate(page)) {
1101 release_and_retry:
1102                         f2fs_put_rpages(cc);
1103                         f2fs_unlock_rpages(cc, i + 1);
1104                         f2fs_destroy_compress_ctx(cc, true);
1105                         goto retry;
1106                 }
1107         }
1108
1109         if (likely(!ret)) {
1110                 *fsdata = cc->rpages;
1111                 *pagep = cc->rpages[offset_in_cluster(cc, index)];
1112                 return cc->cluster_size;
1113         }
1114
1115 unlock_pages:
1116         f2fs_put_rpages(cc);
1117         f2fs_unlock_rpages(cc, i);
1118         f2fs_destroy_compress_ctx(cc, true);
1119 out:
1120         return ret;
1121 }
1122
1123 int f2fs_prepare_compress_overwrite(struct inode *inode,
1124                 struct page **pagep, pgoff_t index, void **fsdata)
1125 {
1126         struct compress_ctx cc = {
1127                 .inode = inode,
1128                 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
1129                 .cluster_size = F2FS_I(inode)->i_cluster_size,
1130                 .cluster_idx = index >> F2FS_I(inode)->i_log_cluster_size,
1131                 .rpages = NULL,
1132                 .nr_rpages = 0,
1133         };
1134
1135         return prepare_compress_overwrite(&cc, pagep, index, fsdata);
1136 }
1137
1138 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
1139                                         pgoff_t index, unsigned copied)
1140
1141 {
1142         struct compress_ctx cc = {
1143                 .inode = inode,
1144                 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
1145                 .cluster_size = F2FS_I(inode)->i_cluster_size,
1146                 .rpages = fsdata,
1147         };
1148         bool first_index = (index == cc.rpages[0]->index);
1149
1150         if (copied)
1151                 set_cluster_dirty(&cc);
1152
1153         f2fs_put_rpages_wbc(&cc, NULL, false, 1);
1154         f2fs_destroy_compress_ctx(&cc, false);
1155
1156         return first_index;
1157 }
1158
1159 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock)
1160 {
1161         void *fsdata = NULL;
1162         struct page *pagep;
1163         int log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
1164         pgoff_t start_idx = from >> (PAGE_SHIFT + log_cluster_size) <<
1165                                                         log_cluster_size;
1166         int err;
1167
1168         err = f2fs_is_compressed_cluster(inode, start_idx);
1169         if (err < 0)
1170                 return err;
1171
1172         /* truncate normal cluster */
1173         if (!err)
1174                 return f2fs_do_truncate_blocks(inode, from, lock);
1175
1176         /* truncate compressed cluster */
1177         err = f2fs_prepare_compress_overwrite(inode, &pagep,
1178                                                 start_idx, &fsdata);
1179
1180         /* should not be a normal cluster */
1181         f2fs_bug_on(F2FS_I_SB(inode), err == 0);
1182
1183         if (err <= 0)
1184                 return err;
1185
1186         if (err > 0) {
1187                 struct page **rpages = fsdata;
1188                 int cluster_size = F2FS_I(inode)->i_cluster_size;
1189                 int i;
1190
1191                 for (i = cluster_size - 1; i >= 0; i--) {
1192                         loff_t start = rpages[i]->index << PAGE_SHIFT;
1193
1194                         if (from <= start) {
1195                                 zero_user_segment(rpages[i], 0, PAGE_SIZE);
1196                         } else {
1197                                 zero_user_segment(rpages[i], from - start,
1198                                                                 PAGE_SIZE);
1199                                 break;
1200                         }
1201                 }
1202
1203                 f2fs_compress_write_end(inode, fsdata, start_idx, true);
1204         }
1205         return 0;
1206 }
1207
1208 static int f2fs_write_compressed_pages(struct compress_ctx *cc,
1209                                         int *submitted,
1210                                         struct writeback_control *wbc,
1211                                         enum iostat_type io_type)
1212 {
1213         struct inode *inode = cc->inode;
1214         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1215         struct f2fs_inode_info *fi = F2FS_I(inode);
1216         struct f2fs_io_info fio = {
1217                 .sbi = sbi,
1218                 .ino = cc->inode->i_ino,
1219                 .type = DATA,
1220                 .op = REQ_OP_WRITE,
1221                 .op_flags = wbc_to_write_flags(wbc),
1222                 .old_blkaddr = NEW_ADDR,
1223                 .page = NULL,
1224                 .encrypted_page = NULL,
1225                 .compressed_page = NULL,
1226                 .submitted = false,
1227                 .io_type = io_type,
1228                 .io_wbc = wbc,
1229                 .encrypted = fscrypt_inode_uses_fs_layer_crypto(cc->inode),
1230         };
1231         struct dnode_of_data dn;
1232         struct node_info ni;
1233         struct compress_io_ctx *cic;
1234         pgoff_t start_idx = start_idx_of_cluster(cc);
1235         unsigned int last_index = cc->cluster_size - 1;
1236         loff_t psize;
1237         int i, err;
1238         bool quota_inode = IS_NOQUOTA(inode);
1239
1240         /* we should bypass data pages to proceed the kworkder jobs */
1241         if (unlikely(f2fs_cp_error(sbi))) {
1242                 mapping_set_error(cc->rpages[0]->mapping, -EIO);
1243                 goto out_free;
1244         }
1245
1246         if (quota_inode) {
1247                 /*
1248                  * We need to wait for node_write to avoid block allocation during
1249                  * checkpoint. This can only happen to quota writes which can cause
1250                  * the below discard race condition.
1251                  */
1252                 f2fs_down_read(&sbi->node_write);
1253         } else if (!f2fs_trylock_op(sbi)) {
1254                 goto out_free;
1255         }
1256
1257         set_new_dnode(&dn, cc->inode, NULL, NULL, 0);
1258
1259         err = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
1260         if (err)
1261                 goto out_unlock_op;
1262
1263         for (i = 0; i < cc->cluster_size; i++) {
1264                 if (data_blkaddr(dn.inode, dn.node_page,
1265                                         dn.ofs_in_node + i) == NULL_ADDR)
1266                         goto out_put_dnode;
1267         }
1268
1269         psize = (loff_t)(cc->rpages[last_index]->index + 1) << PAGE_SHIFT;
1270
1271         err = f2fs_get_node_info(fio.sbi, dn.nid, &ni, false);
1272         if (err)
1273                 goto out_put_dnode;
1274
1275         fio.version = ni.version;
1276
1277         cic = f2fs_kmem_cache_alloc(cic_entry_slab, GFP_F2FS_ZERO, false, sbi);
1278         if (!cic)
1279                 goto out_put_dnode;
1280
1281         cic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
1282         cic->inode = inode;
1283         atomic_set(&cic->pending_pages, cc->valid_nr_cpages);
1284         cic->rpages = page_array_alloc(cc->inode, cc->cluster_size);
1285         if (!cic->rpages)
1286                 goto out_put_cic;
1287
1288         cic->nr_rpages = cc->cluster_size;
1289
1290         for (i = 0; i < cc->valid_nr_cpages; i++) {
1291                 f2fs_set_compressed_page(cc->cpages[i], inode,
1292                                         cc->rpages[i + 1]->index, cic);
1293                 fio.compressed_page = cc->cpages[i];
1294
1295                 fio.old_blkaddr = data_blkaddr(dn.inode, dn.node_page,
1296                                                 dn.ofs_in_node + i + 1);
1297
1298                 /* wait for GCed page writeback via META_MAPPING */
1299                 f2fs_wait_on_block_writeback(inode, fio.old_blkaddr);
1300
1301                 if (fio.encrypted) {
1302                         fio.page = cc->rpages[i + 1];
1303                         err = f2fs_encrypt_one_page(&fio);
1304                         if (err)
1305                                 goto out_destroy_crypt;
1306                         cc->cpages[i] = fio.encrypted_page;
1307                 }
1308         }
1309
1310         set_cluster_writeback(cc);
1311
1312         for (i = 0; i < cc->cluster_size; i++)
1313                 cic->rpages[i] = cc->rpages[i];
1314
1315         for (i = 0; i < cc->cluster_size; i++, dn.ofs_in_node++) {
1316                 block_t blkaddr;
1317
1318                 blkaddr = f2fs_data_blkaddr(&dn);
1319                 fio.page = cc->rpages[i];
1320                 fio.old_blkaddr = blkaddr;
1321
1322                 /* cluster header */
1323                 if (i == 0) {
1324                         if (blkaddr == COMPRESS_ADDR)
1325                                 fio.compr_blocks++;
1326                         if (__is_valid_data_blkaddr(blkaddr))
1327                                 f2fs_invalidate_blocks(sbi, blkaddr);
1328                         f2fs_update_data_blkaddr(&dn, COMPRESS_ADDR);
1329                         goto unlock_continue;
1330                 }
1331
1332                 if (fio.compr_blocks && __is_valid_data_blkaddr(blkaddr))
1333                         fio.compr_blocks++;
1334
1335                 if (i > cc->valid_nr_cpages) {
1336                         if (__is_valid_data_blkaddr(blkaddr)) {
1337                                 f2fs_invalidate_blocks(sbi, blkaddr);
1338                                 f2fs_update_data_blkaddr(&dn, NEW_ADDR);
1339                         }
1340                         goto unlock_continue;
1341                 }
1342
1343                 f2fs_bug_on(fio.sbi, blkaddr == NULL_ADDR);
1344
1345                 if (fio.encrypted)
1346                         fio.encrypted_page = cc->cpages[i - 1];
1347                 else
1348                         fio.compressed_page = cc->cpages[i - 1];
1349
1350                 cc->cpages[i - 1] = NULL;
1351                 f2fs_outplace_write_data(&dn, &fio);
1352                 (*submitted)++;
1353 unlock_continue:
1354                 inode_dec_dirty_pages(cc->inode);
1355                 unlock_page(fio.page);
1356         }
1357
1358         if (fio.compr_blocks)
1359                 f2fs_i_compr_blocks_update(inode, fio.compr_blocks - 1, false);
1360         f2fs_i_compr_blocks_update(inode, cc->valid_nr_cpages, true);
1361         add_compr_block_stat(inode, cc->valid_nr_cpages);
1362
1363         set_inode_flag(cc->inode, FI_APPEND_WRITE);
1364         if (cc->cluster_idx == 0)
1365                 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1366
1367         f2fs_put_dnode(&dn);
1368         if (quota_inode)
1369                 f2fs_up_read(&sbi->node_write);
1370         else
1371                 f2fs_unlock_op(sbi);
1372
1373         spin_lock(&fi->i_size_lock);
1374         if (fi->last_disk_size < psize)
1375                 fi->last_disk_size = psize;
1376         spin_unlock(&fi->i_size_lock);
1377
1378         f2fs_put_rpages(cc);
1379         page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
1380         cc->cpages = NULL;
1381         f2fs_destroy_compress_ctx(cc, false);
1382         return 0;
1383
1384 out_destroy_crypt:
1385         page_array_free(cc->inode, cic->rpages, cc->cluster_size);
1386
1387         for (--i; i >= 0; i--)
1388                 fscrypt_finalize_bounce_page(&cc->cpages[i]);
1389 out_put_cic:
1390         kmem_cache_free(cic_entry_slab, cic);
1391 out_put_dnode:
1392         f2fs_put_dnode(&dn);
1393 out_unlock_op:
1394         if (quota_inode)
1395                 f2fs_up_read(&sbi->node_write);
1396         else
1397                 f2fs_unlock_op(sbi);
1398 out_free:
1399         for (i = 0; i < cc->valid_nr_cpages; i++) {
1400                 f2fs_compress_free_page(cc->cpages[i]);
1401                 cc->cpages[i] = NULL;
1402         }
1403         page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
1404         cc->cpages = NULL;
1405         return -EAGAIN;
1406 }
1407
1408 void f2fs_compress_write_end_io(struct bio *bio, struct page *page)
1409 {
1410         struct f2fs_sb_info *sbi = bio->bi_private;
1411         struct compress_io_ctx *cic =
1412                         (struct compress_io_ctx *)page_private(page);
1413         int i;
1414
1415         if (unlikely(bio->bi_status))
1416                 mapping_set_error(cic->inode->i_mapping, -EIO);
1417
1418         f2fs_compress_free_page(page);
1419
1420         dec_page_count(sbi, F2FS_WB_DATA);
1421
1422         if (atomic_dec_return(&cic->pending_pages))
1423                 return;
1424
1425         for (i = 0; i < cic->nr_rpages; i++) {
1426                 WARN_ON(!cic->rpages[i]);
1427                 clear_page_private_gcing(cic->rpages[i]);
1428                 end_page_writeback(cic->rpages[i]);
1429         }
1430
1431         page_array_free(cic->inode, cic->rpages, cic->nr_rpages);
1432         kmem_cache_free(cic_entry_slab, cic);
1433 }
1434
1435 static int f2fs_write_raw_pages(struct compress_ctx *cc,
1436                                         int *submitted,
1437                                         struct writeback_control *wbc,
1438                                         enum iostat_type io_type)
1439 {
1440         struct address_space *mapping = cc->inode->i_mapping;
1441         int _submitted, compr_blocks, ret, i;
1442
1443         compr_blocks = f2fs_compressed_blocks(cc);
1444
1445         for (i = 0; i < cc->cluster_size; i++) {
1446                 if (!cc->rpages[i])
1447                         continue;
1448
1449                 redirty_page_for_writepage(wbc, cc->rpages[i]);
1450                 unlock_page(cc->rpages[i]);
1451         }
1452
1453         if (compr_blocks < 0)
1454                 return compr_blocks;
1455
1456         for (i = 0; i < cc->cluster_size; i++) {
1457                 if (!cc->rpages[i])
1458                         continue;
1459 retry_write:
1460                 lock_page(cc->rpages[i]);
1461
1462                 if (cc->rpages[i]->mapping != mapping) {
1463 continue_unlock:
1464                         unlock_page(cc->rpages[i]);
1465                         continue;
1466                 }
1467
1468                 if (!PageDirty(cc->rpages[i]))
1469                         goto continue_unlock;
1470
1471                 if (PageWriteback(cc->rpages[i])) {
1472                         if (wbc->sync_mode == WB_SYNC_NONE)
1473                                 goto continue_unlock;
1474                         f2fs_wait_on_page_writeback(cc->rpages[i], DATA, true, true);
1475                 }
1476
1477                 if (!clear_page_dirty_for_io(cc->rpages[i]))
1478                         goto continue_unlock;
1479
1480                 ret = f2fs_write_single_data_page(cc->rpages[i], &_submitted,
1481                                                 NULL, NULL, wbc, io_type,
1482                                                 compr_blocks, false);
1483                 if (ret) {
1484                         if (ret == AOP_WRITEPAGE_ACTIVATE) {
1485                                 unlock_page(cc->rpages[i]);
1486                                 ret = 0;
1487                         } else if (ret == -EAGAIN) {
1488                                 /*
1489                                  * for quota file, just redirty left pages to
1490                                  * avoid deadlock caused by cluster update race
1491                                  * from foreground operation.
1492                                  */
1493                                 if (IS_NOQUOTA(cc->inode))
1494                                         return 0;
1495                                 ret = 0;
1496                                 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1497                                 goto retry_write;
1498                         }
1499                         return ret;
1500                 }
1501
1502                 *submitted += _submitted;
1503         }
1504
1505         f2fs_balance_fs(F2FS_M_SB(mapping), true);
1506
1507         return 0;
1508 }
1509
1510 int f2fs_write_multi_pages(struct compress_ctx *cc,
1511                                         int *submitted,
1512                                         struct writeback_control *wbc,
1513                                         enum iostat_type io_type)
1514 {
1515         int err;
1516
1517         *submitted = 0;
1518         if (cluster_may_compress(cc)) {
1519                 err = f2fs_compress_pages(cc);
1520                 if (err == -EAGAIN) {
1521                         add_compr_block_stat(cc->inode, cc->cluster_size);
1522                         goto write;
1523                 } else if (err) {
1524                         f2fs_put_rpages_wbc(cc, wbc, true, 1);
1525                         goto destroy_out;
1526                 }
1527
1528                 err = f2fs_write_compressed_pages(cc, submitted,
1529                                                         wbc, io_type);
1530                 if (!err)
1531                         return 0;
1532                 f2fs_bug_on(F2FS_I_SB(cc->inode), err != -EAGAIN);
1533         }
1534 write:
1535         f2fs_bug_on(F2FS_I_SB(cc->inode), *submitted);
1536
1537         err = f2fs_write_raw_pages(cc, submitted, wbc, io_type);
1538         f2fs_put_rpages_wbc(cc, wbc, false, 0);
1539 destroy_out:
1540         f2fs_destroy_compress_ctx(cc, false);
1541         return err;
1542 }
1543
1544 static inline bool allow_memalloc_for_decomp(struct f2fs_sb_info *sbi,
1545                 bool pre_alloc)
1546 {
1547         return pre_alloc ^ f2fs_low_mem_mode(sbi);
1548 }
1549
1550 static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic,
1551                 bool pre_alloc)
1552 {
1553         const struct f2fs_compress_ops *cops =
1554                 f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm];
1555         int i;
1556
1557         if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc))
1558                 return 0;
1559
1560         dic->tpages = page_array_alloc(dic->inode, dic->cluster_size);
1561         if (!dic->tpages)
1562                 return -ENOMEM;
1563
1564         for (i = 0; i < dic->cluster_size; i++) {
1565                 if (dic->rpages[i]) {
1566                         dic->tpages[i] = dic->rpages[i];
1567                         continue;
1568                 }
1569
1570                 dic->tpages[i] = f2fs_compress_alloc_page();
1571                 if (!dic->tpages[i])
1572                         return -ENOMEM;
1573         }
1574
1575         dic->rbuf = f2fs_vmap(dic->tpages, dic->cluster_size);
1576         if (!dic->rbuf)
1577                 return -ENOMEM;
1578
1579         dic->cbuf = f2fs_vmap(dic->cpages, dic->nr_cpages);
1580         if (!dic->cbuf)
1581                 return -ENOMEM;
1582
1583         if (cops->init_decompress_ctx)
1584                 return cops->init_decompress_ctx(dic);
1585
1586         return 0;
1587 }
1588
1589 static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic,
1590                 bool bypass_destroy_callback, bool pre_alloc)
1591 {
1592         const struct f2fs_compress_ops *cops =
1593                 f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm];
1594
1595         if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc))
1596                 return;
1597
1598         if (!bypass_destroy_callback && cops->destroy_decompress_ctx)
1599                 cops->destroy_decompress_ctx(dic);
1600
1601         if (dic->cbuf)
1602                 vm_unmap_ram(dic->cbuf, dic->nr_cpages);
1603
1604         if (dic->rbuf)
1605                 vm_unmap_ram(dic->rbuf, dic->cluster_size);
1606 }
1607
1608 static void f2fs_free_dic(struct decompress_io_ctx *dic,
1609                 bool bypass_destroy_callback);
1610
1611 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc)
1612 {
1613         struct decompress_io_ctx *dic;
1614         pgoff_t start_idx = start_idx_of_cluster(cc);
1615         struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode);
1616         int i, ret;
1617
1618         dic = f2fs_kmem_cache_alloc(dic_entry_slab, GFP_F2FS_ZERO, false, sbi);
1619         if (!dic)
1620                 return ERR_PTR(-ENOMEM);
1621
1622         dic->rpages = page_array_alloc(cc->inode, cc->cluster_size);
1623         if (!dic->rpages) {
1624                 kmem_cache_free(dic_entry_slab, dic);
1625                 return ERR_PTR(-ENOMEM);
1626         }
1627
1628         dic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
1629         dic->inode = cc->inode;
1630         atomic_set(&dic->remaining_pages, cc->nr_cpages);
1631         dic->cluster_idx = cc->cluster_idx;
1632         dic->cluster_size = cc->cluster_size;
1633         dic->log_cluster_size = cc->log_cluster_size;
1634         dic->nr_cpages = cc->nr_cpages;
1635         refcount_set(&dic->refcnt, 1);
1636         dic->failed = false;
1637         dic->need_verity = f2fs_need_verity(cc->inode, start_idx);
1638
1639         for (i = 0; i < dic->cluster_size; i++)
1640                 dic->rpages[i] = cc->rpages[i];
1641         dic->nr_rpages = cc->cluster_size;
1642
1643         dic->cpages = page_array_alloc(dic->inode, dic->nr_cpages);
1644         if (!dic->cpages) {
1645                 ret = -ENOMEM;
1646                 goto out_free;
1647         }
1648
1649         for (i = 0; i < dic->nr_cpages; i++) {
1650                 struct page *page;
1651
1652                 page = f2fs_compress_alloc_page();
1653                 if (!page) {
1654                         ret = -ENOMEM;
1655                         goto out_free;
1656                 }
1657
1658                 f2fs_set_compressed_page(page, cc->inode,
1659                                         start_idx + i + 1, dic);
1660                 dic->cpages[i] = page;
1661         }
1662
1663         ret = f2fs_prepare_decomp_mem(dic, true);
1664         if (ret)
1665                 goto out_free;
1666
1667         return dic;
1668
1669 out_free:
1670         f2fs_free_dic(dic, true);
1671         return ERR_PTR(ret);
1672 }
1673
1674 static void f2fs_free_dic(struct decompress_io_ctx *dic,
1675                 bool bypass_destroy_callback)
1676 {
1677         int i;
1678
1679         f2fs_release_decomp_mem(dic, bypass_destroy_callback, true);
1680
1681         if (dic->tpages) {
1682                 for (i = 0; i < dic->cluster_size; i++) {
1683                         if (dic->rpages[i])
1684                                 continue;
1685                         if (!dic->tpages[i])
1686                                 continue;
1687                         f2fs_compress_free_page(dic->tpages[i]);
1688                 }
1689                 page_array_free(dic->inode, dic->tpages, dic->cluster_size);
1690         }
1691
1692         if (dic->cpages) {
1693                 for (i = 0; i < dic->nr_cpages; i++) {
1694                         if (!dic->cpages[i])
1695                                 continue;
1696                         f2fs_compress_free_page(dic->cpages[i]);
1697                 }
1698                 page_array_free(dic->inode, dic->cpages, dic->nr_cpages);
1699         }
1700
1701         page_array_free(dic->inode, dic->rpages, dic->nr_rpages);
1702         kmem_cache_free(dic_entry_slab, dic);
1703 }
1704
1705 static void f2fs_late_free_dic(struct work_struct *work)
1706 {
1707         struct decompress_io_ctx *dic =
1708                 container_of(work, struct decompress_io_ctx, free_work);
1709
1710         f2fs_free_dic(dic, false);
1711 }
1712
1713 static void f2fs_put_dic(struct decompress_io_ctx *dic, bool in_task)
1714 {
1715         if (refcount_dec_and_test(&dic->refcnt)) {
1716                 if (in_task) {
1717                         f2fs_free_dic(dic, false);
1718                 } else {
1719                         INIT_WORK(&dic->free_work, f2fs_late_free_dic);
1720                         queue_work(F2FS_I_SB(dic->inode)->post_read_wq,
1721                                         &dic->free_work);
1722                 }
1723         }
1724 }
1725
1726 /*
1727  * Update and unlock the cluster's pagecache pages, and release the reference to
1728  * the decompress_io_ctx that was being held for I/O completion.
1729  */
1730 static void __f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
1731                                 bool in_task)
1732 {
1733         int i;
1734
1735         for (i = 0; i < dic->cluster_size; i++) {
1736                 struct page *rpage = dic->rpages[i];
1737
1738                 if (!rpage)
1739                         continue;
1740
1741                 /* PG_error was set if verity failed. */
1742                 if (failed || PageError(rpage)) {
1743                         ClearPageUptodate(rpage);
1744                         /* will re-read again later */
1745                         ClearPageError(rpage);
1746                 } else {
1747                         SetPageUptodate(rpage);
1748                 }
1749                 unlock_page(rpage);
1750         }
1751
1752         f2fs_put_dic(dic, in_task);
1753 }
1754
1755 static void f2fs_verify_cluster(struct work_struct *work)
1756 {
1757         struct decompress_io_ctx *dic =
1758                 container_of(work, struct decompress_io_ctx, verity_work);
1759         int i;
1760
1761         /* Verify the cluster's decompressed pages with fs-verity. */
1762         for (i = 0; i < dic->cluster_size; i++) {
1763                 struct page *rpage = dic->rpages[i];
1764
1765                 if (rpage && !fsverity_verify_page(rpage))
1766                         SetPageError(rpage);
1767         }
1768
1769         __f2fs_decompress_end_io(dic, false, true);
1770 }
1771
1772 /*
1773  * This is called when a compressed cluster has been decompressed
1774  * (or failed to be read and/or decompressed).
1775  */
1776 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
1777                                 bool in_task)
1778 {
1779         if (!failed && dic->need_verity) {
1780                 /*
1781                  * Note that to avoid deadlocks, the verity work can't be done
1782                  * on the decompression workqueue.  This is because verifying
1783                  * the data pages can involve reading metadata pages from the
1784                  * file, and these metadata pages may be compressed.
1785                  */
1786                 INIT_WORK(&dic->verity_work, f2fs_verify_cluster);
1787                 fsverity_enqueue_verify_work(&dic->verity_work);
1788         } else {
1789                 __f2fs_decompress_end_io(dic, failed, in_task);
1790         }
1791 }
1792
1793 /*
1794  * Put a reference to a compressed page's decompress_io_ctx.
1795  *
1796  * This is called when the page is no longer needed and can be freed.
1797  */
1798 void f2fs_put_page_dic(struct page *page, bool in_task)
1799 {
1800         struct decompress_io_ctx *dic =
1801                         (struct decompress_io_ctx *)page_private(page);
1802
1803         f2fs_put_dic(dic, in_task);
1804 }
1805
1806 /*
1807  * check whether cluster blocks are contiguous, and add extent cache entry
1808  * only if cluster blocks are logically and physically contiguous.
1809  */
1810 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn)
1811 {
1812         bool compressed = f2fs_data_blkaddr(dn) == COMPRESS_ADDR;
1813         int i = compressed ? 1 : 0;
1814         block_t first_blkaddr = data_blkaddr(dn->inode, dn->node_page,
1815                                                 dn->ofs_in_node + i);
1816
1817         for (i += 1; i < F2FS_I(dn->inode)->i_cluster_size; i++) {
1818                 block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
1819                                                 dn->ofs_in_node + i);
1820
1821                 if (!__is_valid_data_blkaddr(blkaddr))
1822                         break;
1823                 if (first_blkaddr + i - (compressed ? 1 : 0) != blkaddr)
1824                         return 0;
1825         }
1826
1827         return compressed ? i - 1 : i;
1828 }
1829
1830 const struct address_space_operations f2fs_compress_aops = {
1831         .release_folio = f2fs_release_folio,
1832         .invalidate_folio = f2fs_invalidate_folio,
1833 };
1834
1835 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi)
1836 {
1837         return sbi->compress_inode->i_mapping;
1838 }
1839
1840 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr)
1841 {
1842         if (!sbi->compress_inode)
1843                 return;
1844         invalidate_mapping_pages(COMPRESS_MAPPING(sbi), blkaddr, blkaddr);
1845 }
1846
1847 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
1848                                                 nid_t ino, block_t blkaddr)
1849 {
1850         struct page *cpage;
1851         int ret;
1852
1853         if (!test_opt(sbi, COMPRESS_CACHE))
1854                 return;
1855
1856         if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ))
1857                 return;
1858
1859         if (!f2fs_available_free_memory(sbi, COMPRESS_PAGE))
1860                 return;
1861
1862         cpage = find_get_page(COMPRESS_MAPPING(sbi), blkaddr);
1863         if (cpage) {
1864                 f2fs_put_page(cpage, 0);
1865                 return;
1866         }
1867
1868         cpage = alloc_page(__GFP_NOWARN | __GFP_IO);
1869         if (!cpage)
1870                 return;
1871
1872         ret = add_to_page_cache_lru(cpage, COMPRESS_MAPPING(sbi),
1873                                                 blkaddr, GFP_NOFS);
1874         if (ret) {
1875                 f2fs_put_page(cpage, 0);
1876                 return;
1877         }
1878
1879         set_page_private_data(cpage, ino);
1880
1881         if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ))
1882                 goto out;
1883
1884         memcpy(page_address(cpage), page_address(page), PAGE_SIZE);
1885         SetPageUptodate(cpage);
1886 out:
1887         f2fs_put_page(cpage, 1);
1888 }
1889
1890 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
1891                                                                 block_t blkaddr)
1892 {
1893         struct page *cpage;
1894         bool hitted = false;
1895
1896         if (!test_opt(sbi, COMPRESS_CACHE))
1897                 return false;
1898
1899         cpage = f2fs_pagecache_get_page(COMPRESS_MAPPING(sbi),
1900                                 blkaddr, FGP_LOCK | FGP_NOWAIT, GFP_NOFS);
1901         if (cpage) {
1902                 if (PageUptodate(cpage)) {
1903                         atomic_inc(&sbi->compress_page_hit);
1904                         memcpy(page_address(page),
1905                                 page_address(cpage), PAGE_SIZE);
1906                         hitted = true;
1907                 }
1908                 f2fs_put_page(cpage, 1);
1909         }
1910
1911         return hitted;
1912 }
1913
1914 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino)
1915 {
1916         struct address_space *mapping = COMPRESS_MAPPING(sbi);
1917         struct folio_batch fbatch;
1918         pgoff_t index = 0;
1919         pgoff_t end = MAX_BLKADDR(sbi);
1920
1921         if (!mapping->nrpages)
1922                 return;
1923
1924         folio_batch_init(&fbatch);
1925
1926         do {
1927                 unsigned int nr, i;
1928
1929                 nr = filemap_get_folios(mapping, &index, end - 1, &fbatch);
1930                 if (!nr)
1931                         break;
1932
1933                 for (i = 0; i < nr; i++) {
1934                         struct folio *folio = fbatch.folios[i];
1935
1936                         folio_lock(folio);
1937                         if (folio->mapping != mapping) {
1938                                 folio_unlock(folio);
1939                                 continue;
1940                         }
1941
1942                         if (ino != get_page_private_data(&folio->page)) {
1943                                 folio_unlock(folio);
1944                                 continue;
1945                         }
1946
1947                         generic_error_remove_page(mapping, &folio->page);
1948                         folio_unlock(folio);
1949                 }
1950                 folio_batch_release(&fbatch);
1951                 cond_resched();
1952         } while (index < end);
1953 }
1954
1955 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi)
1956 {
1957         struct inode *inode;
1958
1959         if (!test_opt(sbi, COMPRESS_CACHE))
1960                 return 0;
1961
1962         inode = f2fs_iget(sbi->sb, F2FS_COMPRESS_INO(sbi));
1963         if (IS_ERR(inode))
1964                 return PTR_ERR(inode);
1965         sbi->compress_inode = inode;
1966
1967         sbi->compress_percent = COMPRESS_PERCENT;
1968         sbi->compress_watermark = COMPRESS_WATERMARK;
1969
1970         atomic_set(&sbi->compress_page_hit, 0);
1971
1972         return 0;
1973 }
1974
1975 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi)
1976 {
1977         if (!sbi->compress_inode)
1978                 return;
1979         iput(sbi->compress_inode);
1980         sbi->compress_inode = NULL;
1981 }
1982
1983 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi)
1984 {
1985         dev_t dev = sbi->sb->s_bdev->bd_dev;
1986         char slab_name[35];
1987
1988         if (!f2fs_sb_has_compression(sbi))
1989                 return 0;
1990
1991         sprintf(slab_name, "f2fs_page_array_entry-%u:%u", MAJOR(dev), MINOR(dev));
1992
1993         sbi->page_array_slab_size = sizeof(struct page *) <<
1994                                         F2FS_OPTION(sbi).compress_log_size;
1995
1996         sbi->page_array_slab = f2fs_kmem_cache_create(slab_name,
1997                                         sbi->page_array_slab_size);
1998         if (!sbi->page_array_slab)
1999                 return -ENOMEM;
2000         return 0;
2001 }
2002
2003 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi)
2004 {
2005         kmem_cache_destroy(sbi->page_array_slab);
2006 }
2007
2008 static int __init f2fs_init_cic_cache(void)
2009 {
2010         cic_entry_slab = f2fs_kmem_cache_create("f2fs_cic_entry",
2011                                         sizeof(struct compress_io_ctx));
2012         if (!cic_entry_slab)
2013                 return -ENOMEM;
2014         return 0;
2015 }
2016
2017 static void f2fs_destroy_cic_cache(void)
2018 {
2019         kmem_cache_destroy(cic_entry_slab);
2020 }
2021
2022 static int __init f2fs_init_dic_cache(void)
2023 {
2024         dic_entry_slab = f2fs_kmem_cache_create("f2fs_dic_entry",
2025                                         sizeof(struct decompress_io_ctx));
2026         if (!dic_entry_slab)
2027                 return -ENOMEM;
2028         return 0;
2029 }
2030
2031 static void f2fs_destroy_dic_cache(void)
2032 {
2033         kmem_cache_destroy(dic_entry_slab);
2034 }
2035
2036 int __init f2fs_init_compress_cache(void)
2037 {
2038         int err;
2039
2040         err = f2fs_init_cic_cache();
2041         if (err)
2042                 goto out;
2043         err = f2fs_init_dic_cache();
2044         if (err)
2045                 goto free_cic;
2046         return 0;
2047 free_cic:
2048         f2fs_destroy_cic_cache();
2049 out:
2050         return -ENOMEM;
2051 }
2052
2053 void f2fs_destroy_compress_cache(void)
2054 {
2055         f2fs_destroy_dic_cache();
2056         f2fs_destroy_cic_cache();
2057 }