Merge patch series "riscv: dma-mapping: unify support for cache flushes"
[platform/kernel/linux-starfive.git] / fs / f2fs / compress.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * f2fs compress support
4  *
5  * Copyright (c) 2019 Chao Yu <chao@kernel.org>
6  */
7
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/moduleparam.h>
11 #include <linux/writeback.h>
12 #include <linux/backing-dev.h>
13 #include <linux/lzo.h>
14 #include <linux/lz4.h>
15 #include <linux/zstd.h>
16 #include <linux/pagevec.h>
17
18 #include "f2fs.h"
19 #include "node.h"
20 #include "segment.h"
21 #include <trace/events/f2fs.h>
22
23 static struct kmem_cache *cic_entry_slab;
24 static struct kmem_cache *dic_entry_slab;
25
26 static void *page_array_alloc(struct inode *inode, int nr)
27 {
28         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
29         unsigned int size = sizeof(struct page *) * nr;
30
31         if (likely(size <= sbi->page_array_slab_size))
32                 return f2fs_kmem_cache_alloc(sbi->page_array_slab,
33                                         GFP_F2FS_ZERO, false, F2FS_I_SB(inode));
34         return f2fs_kzalloc(sbi, size, GFP_NOFS);
35 }
36
37 static void page_array_free(struct inode *inode, void *pages, int nr)
38 {
39         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
40         unsigned int size = sizeof(struct page *) * nr;
41
42         if (!pages)
43                 return;
44
45         if (likely(size <= sbi->page_array_slab_size))
46                 kmem_cache_free(sbi->page_array_slab, pages);
47         else
48                 kfree(pages);
49 }
50
51 struct f2fs_compress_ops {
52         int (*init_compress_ctx)(struct compress_ctx *cc);
53         void (*destroy_compress_ctx)(struct compress_ctx *cc);
54         int (*compress_pages)(struct compress_ctx *cc);
55         int (*init_decompress_ctx)(struct decompress_io_ctx *dic);
56         void (*destroy_decompress_ctx)(struct decompress_io_ctx *dic);
57         int (*decompress_pages)(struct decompress_io_ctx *dic);
58         bool (*is_level_valid)(int level);
59 };
60
61 static unsigned int offset_in_cluster(struct compress_ctx *cc, pgoff_t index)
62 {
63         return index & (cc->cluster_size - 1);
64 }
65
66 static pgoff_t cluster_idx(struct compress_ctx *cc, pgoff_t index)
67 {
68         return index >> cc->log_cluster_size;
69 }
70
71 static pgoff_t start_idx_of_cluster(struct compress_ctx *cc)
72 {
73         return cc->cluster_idx << cc->log_cluster_size;
74 }
75
76 bool f2fs_is_compressed_page(struct page *page)
77 {
78         if (!PagePrivate(page))
79                 return false;
80         if (!page_private(page))
81                 return false;
82         if (page_private_nonpointer(page))
83                 return false;
84
85         f2fs_bug_on(F2FS_M_SB(page->mapping),
86                 *((u32 *)page_private(page)) != F2FS_COMPRESSED_PAGE_MAGIC);
87         return true;
88 }
89
90 static void f2fs_set_compressed_page(struct page *page,
91                 struct inode *inode, pgoff_t index, void *data)
92 {
93         attach_page_private(page, (void *)data);
94
95         /* i_crypto_info and iv index */
96         page->index = index;
97         page->mapping = inode->i_mapping;
98 }
99
100 static void f2fs_drop_rpages(struct compress_ctx *cc, int len, bool unlock)
101 {
102         int i;
103
104         for (i = 0; i < len; i++) {
105                 if (!cc->rpages[i])
106                         continue;
107                 if (unlock)
108                         unlock_page(cc->rpages[i]);
109                 else
110                         put_page(cc->rpages[i]);
111         }
112 }
113
114 static void f2fs_put_rpages(struct compress_ctx *cc)
115 {
116         f2fs_drop_rpages(cc, cc->cluster_size, false);
117 }
118
119 static void f2fs_unlock_rpages(struct compress_ctx *cc, int len)
120 {
121         f2fs_drop_rpages(cc, len, true);
122 }
123
124 static void f2fs_put_rpages_wbc(struct compress_ctx *cc,
125                 struct writeback_control *wbc, bool redirty, int unlock)
126 {
127         unsigned int i;
128
129         for (i = 0; i < cc->cluster_size; i++) {
130                 if (!cc->rpages[i])
131                         continue;
132                 if (redirty)
133                         redirty_page_for_writepage(wbc, cc->rpages[i]);
134                 f2fs_put_page(cc->rpages[i], unlock);
135         }
136 }
137
138 struct page *f2fs_compress_control_page(struct page *page)
139 {
140         return ((struct compress_io_ctx *)page_private(page))->rpages[0];
141 }
142
143 int f2fs_init_compress_ctx(struct compress_ctx *cc)
144 {
145         if (cc->rpages)
146                 return 0;
147
148         cc->rpages = page_array_alloc(cc->inode, cc->cluster_size);
149         return cc->rpages ? 0 : -ENOMEM;
150 }
151
152 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse)
153 {
154         page_array_free(cc->inode, cc->rpages, cc->cluster_size);
155         cc->rpages = NULL;
156         cc->nr_rpages = 0;
157         cc->nr_cpages = 0;
158         cc->valid_nr_cpages = 0;
159         if (!reuse)
160                 cc->cluster_idx = NULL_CLUSTER;
161 }
162
163 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page)
164 {
165         unsigned int cluster_ofs;
166
167         if (!f2fs_cluster_can_merge_page(cc, page->index))
168                 f2fs_bug_on(F2FS_I_SB(cc->inode), 1);
169
170         cluster_ofs = offset_in_cluster(cc, page->index);
171         cc->rpages[cluster_ofs] = page;
172         cc->nr_rpages++;
173         cc->cluster_idx = cluster_idx(cc, page->index);
174 }
175
176 #ifdef CONFIG_F2FS_FS_LZO
177 static int lzo_init_compress_ctx(struct compress_ctx *cc)
178 {
179         cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode),
180                                 LZO1X_MEM_COMPRESS, GFP_NOFS);
181         if (!cc->private)
182                 return -ENOMEM;
183
184         cc->clen = lzo1x_worst_compress(PAGE_SIZE << cc->log_cluster_size);
185         return 0;
186 }
187
188 static void lzo_destroy_compress_ctx(struct compress_ctx *cc)
189 {
190         kvfree(cc->private);
191         cc->private = NULL;
192 }
193
194 static int lzo_compress_pages(struct compress_ctx *cc)
195 {
196         int ret;
197
198         ret = lzo1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
199                                         &cc->clen, cc->private);
200         if (ret != LZO_E_OK) {
201                 printk_ratelimited("%sF2FS-fs (%s): lzo compress failed, ret:%d\n",
202                                 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret);
203                 return -EIO;
204         }
205         return 0;
206 }
207
208 static int lzo_decompress_pages(struct decompress_io_ctx *dic)
209 {
210         int ret;
211
212         ret = lzo1x_decompress_safe(dic->cbuf->cdata, dic->clen,
213                                                 dic->rbuf, &dic->rlen);
214         if (ret != LZO_E_OK) {
215                 printk_ratelimited("%sF2FS-fs (%s): lzo decompress failed, ret:%d\n",
216                                 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret);
217                 return -EIO;
218         }
219
220         if (dic->rlen != PAGE_SIZE << dic->log_cluster_size) {
221                 printk_ratelimited("%sF2FS-fs (%s): lzo invalid rlen:%zu, "
222                                         "expected:%lu\n", KERN_ERR,
223                                         F2FS_I_SB(dic->inode)->sb->s_id,
224                                         dic->rlen,
225                                         PAGE_SIZE << dic->log_cluster_size);
226                 return -EIO;
227         }
228         return 0;
229 }
230
231 static const struct f2fs_compress_ops f2fs_lzo_ops = {
232         .init_compress_ctx      = lzo_init_compress_ctx,
233         .destroy_compress_ctx   = lzo_destroy_compress_ctx,
234         .compress_pages         = lzo_compress_pages,
235         .decompress_pages       = lzo_decompress_pages,
236 };
237 #endif
238
239 #ifdef CONFIG_F2FS_FS_LZ4
240 static int lz4_init_compress_ctx(struct compress_ctx *cc)
241 {
242         unsigned int size = LZ4_MEM_COMPRESS;
243
244 #ifdef CONFIG_F2FS_FS_LZ4HC
245         if (F2FS_I(cc->inode)->i_compress_level)
246                 size = LZ4HC_MEM_COMPRESS;
247 #endif
248
249         cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode), size, GFP_NOFS);
250         if (!cc->private)
251                 return -ENOMEM;
252
253         /*
254          * we do not change cc->clen to LZ4_compressBound(inputsize) to
255          * adapt worst compress case, because lz4 compressor can handle
256          * output budget properly.
257          */
258         cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
259         return 0;
260 }
261
262 static void lz4_destroy_compress_ctx(struct compress_ctx *cc)
263 {
264         kvfree(cc->private);
265         cc->private = NULL;
266 }
267
268 static int lz4_compress_pages(struct compress_ctx *cc)
269 {
270         int len = -EINVAL;
271         unsigned char level = F2FS_I(cc->inode)->i_compress_level;
272
273         if (!level)
274                 len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen,
275                                                 cc->clen, cc->private);
276 #ifdef CONFIG_F2FS_FS_LZ4HC
277         else
278                 len = LZ4_compress_HC(cc->rbuf, cc->cbuf->cdata, cc->rlen,
279                                         cc->clen, level, cc->private);
280 #endif
281         if (len < 0)
282                 return len;
283         if (!len)
284                 return -EAGAIN;
285
286         cc->clen = len;
287         return 0;
288 }
289
290 static int lz4_decompress_pages(struct decompress_io_ctx *dic)
291 {
292         int ret;
293
294         ret = LZ4_decompress_safe(dic->cbuf->cdata, dic->rbuf,
295                                                 dic->clen, dic->rlen);
296         if (ret < 0) {
297                 printk_ratelimited("%sF2FS-fs (%s): lz4 decompress failed, ret:%d\n",
298                                 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret);
299                 return -EIO;
300         }
301
302         if (ret != PAGE_SIZE << dic->log_cluster_size) {
303                 printk_ratelimited("%sF2FS-fs (%s): lz4 invalid ret:%d, "
304                                         "expected:%lu\n", KERN_ERR,
305                                         F2FS_I_SB(dic->inode)->sb->s_id, ret,
306                                         PAGE_SIZE << dic->log_cluster_size);
307                 return -EIO;
308         }
309         return 0;
310 }
311
312 static bool lz4_is_level_valid(int lvl)
313 {
314 #ifdef CONFIG_F2FS_FS_LZ4HC
315         return !lvl || (lvl >= LZ4HC_MIN_CLEVEL && lvl <= LZ4HC_MAX_CLEVEL);
316 #else
317         return lvl == 0;
318 #endif
319 }
320
321 static const struct f2fs_compress_ops f2fs_lz4_ops = {
322         .init_compress_ctx      = lz4_init_compress_ctx,
323         .destroy_compress_ctx   = lz4_destroy_compress_ctx,
324         .compress_pages         = lz4_compress_pages,
325         .decompress_pages       = lz4_decompress_pages,
326         .is_level_valid         = lz4_is_level_valid,
327 };
328 #endif
329
330 #ifdef CONFIG_F2FS_FS_ZSTD
331 static int zstd_init_compress_ctx(struct compress_ctx *cc)
332 {
333         zstd_parameters params;
334         zstd_cstream *stream;
335         void *workspace;
336         unsigned int workspace_size;
337         unsigned char level = F2FS_I(cc->inode)->i_compress_level;
338
339         /* Need to remain this for backward compatibility */
340         if (!level)
341                 level = F2FS_ZSTD_DEFAULT_CLEVEL;
342
343         params = zstd_get_params(level, cc->rlen);
344         workspace_size = zstd_cstream_workspace_bound(&params.cParams);
345
346         workspace = f2fs_kvmalloc(F2FS_I_SB(cc->inode),
347                                         workspace_size, GFP_NOFS);
348         if (!workspace)
349                 return -ENOMEM;
350
351         stream = zstd_init_cstream(&params, 0, workspace, workspace_size);
352         if (!stream) {
353                 printk_ratelimited("%sF2FS-fs (%s): %s zstd_init_cstream failed\n",
354                                 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
355                                 __func__);
356                 kvfree(workspace);
357                 return -EIO;
358         }
359
360         cc->private = workspace;
361         cc->private2 = stream;
362
363         cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
364         return 0;
365 }
366
367 static void zstd_destroy_compress_ctx(struct compress_ctx *cc)
368 {
369         kvfree(cc->private);
370         cc->private = NULL;
371         cc->private2 = NULL;
372 }
373
374 static int zstd_compress_pages(struct compress_ctx *cc)
375 {
376         zstd_cstream *stream = cc->private2;
377         zstd_in_buffer inbuf;
378         zstd_out_buffer outbuf;
379         int src_size = cc->rlen;
380         int dst_size = src_size - PAGE_SIZE - COMPRESS_HEADER_SIZE;
381         int ret;
382
383         inbuf.pos = 0;
384         inbuf.src = cc->rbuf;
385         inbuf.size = src_size;
386
387         outbuf.pos = 0;
388         outbuf.dst = cc->cbuf->cdata;
389         outbuf.size = dst_size;
390
391         ret = zstd_compress_stream(stream, &outbuf, &inbuf);
392         if (zstd_is_error(ret)) {
393                 printk_ratelimited("%sF2FS-fs (%s): %s zstd_compress_stream failed, ret: %d\n",
394                                 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
395                                 __func__, zstd_get_error_code(ret));
396                 return -EIO;
397         }
398
399         ret = zstd_end_stream(stream, &outbuf);
400         if (zstd_is_error(ret)) {
401                 printk_ratelimited("%sF2FS-fs (%s): %s zstd_end_stream returned %d\n",
402                                 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
403                                 __func__, zstd_get_error_code(ret));
404                 return -EIO;
405         }
406
407         /*
408          * there is compressed data remained in intermediate buffer due to
409          * no more space in cbuf.cdata
410          */
411         if (ret)
412                 return -EAGAIN;
413
414         cc->clen = outbuf.pos;
415         return 0;
416 }
417
418 static int zstd_init_decompress_ctx(struct decompress_io_ctx *dic)
419 {
420         zstd_dstream *stream;
421         void *workspace;
422         unsigned int workspace_size;
423         unsigned int max_window_size =
424                         MAX_COMPRESS_WINDOW_SIZE(dic->log_cluster_size);
425
426         workspace_size = zstd_dstream_workspace_bound(max_window_size);
427
428         workspace = f2fs_kvmalloc(F2FS_I_SB(dic->inode),
429                                         workspace_size, GFP_NOFS);
430         if (!workspace)
431                 return -ENOMEM;
432
433         stream = zstd_init_dstream(max_window_size, workspace, workspace_size);
434         if (!stream) {
435                 printk_ratelimited("%sF2FS-fs (%s): %s zstd_init_dstream failed\n",
436                                 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id,
437                                 __func__);
438                 kvfree(workspace);
439                 return -EIO;
440         }
441
442         dic->private = workspace;
443         dic->private2 = stream;
444
445         return 0;
446 }
447
448 static void zstd_destroy_decompress_ctx(struct decompress_io_ctx *dic)
449 {
450         kvfree(dic->private);
451         dic->private = NULL;
452         dic->private2 = NULL;
453 }
454
455 static int zstd_decompress_pages(struct decompress_io_ctx *dic)
456 {
457         zstd_dstream *stream = dic->private2;
458         zstd_in_buffer inbuf;
459         zstd_out_buffer outbuf;
460         int ret;
461
462         inbuf.pos = 0;
463         inbuf.src = dic->cbuf->cdata;
464         inbuf.size = dic->clen;
465
466         outbuf.pos = 0;
467         outbuf.dst = dic->rbuf;
468         outbuf.size = dic->rlen;
469
470         ret = zstd_decompress_stream(stream, &outbuf, &inbuf);
471         if (zstd_is_error(ret)) {
472                 printk_ratelimited("%sF2FS-fs (%s): %s zstd_decompress_stream failed, ret: %d\n",
473                                 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id,
474                                 __func__, zstd_get_error_code(ret));
475                 return -EIO;
476         }
477
478         if (dic->rlen != outbuf.pos) {
479                 printk_ratelimited("%sF2FS-fs (%s): %s ZSTD invalid rlen:%zu, "
480                                 "expected:%lu\n", KERN_ERR,
481                                 F2FS_I_SB(dic->inode)->sb->s_id,
482                                 __func__, dic->rlen,
483                                 PAGE_SIZE << dic->log_cluster_size);
484                 return -EIO;
485         }
486
487         return 0;
488 }
489
490 static bool zstd_is_level_valid(int lvl)
491 {
492         return lvl >= zstd_min_clevel() && lvl <= zstd_max_clevel();
493 }
494
495 static const struct f2fs_compress_ops f2fs_zstd_ops = {
496         .init_compress_ctx      = zstd_init_compress_ctx,
497         .destroy_compress_ctx   = zstd_destroy_compress_ctx,
498         .compress_pages         = zstd_compress_pages,
499         .init_decompress_ctx    = zstd_init_decompress_ctx,
500         .destroy_decompress_ctx = zstd_destroy_decompress_ctx,
501         .decompress_pages       = zstd_decompress_pages,
502         .is_level_valid         = zstd_is_level_valid,
503 };
504 #endif
505
506 #ifdef CONFIG_F2FS_FS_LZO
507 #ifdef CONFIG_F2FS_FS_LZORLE
508 static int lzorle_compress_pages(struct compress_ctx *cc)
509 {
510         int ret;
511
512         ret = lzorle1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
513                                         &cc->clen, cc->private);
514         if (ret != LZO_E_OK) {
515                 printk_ratelimited("%sF2FS-fs (%s): lzo-rle compress failed, ret:%d\n",
516                                 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret);
517                 return -EIO;
518         }
519         return 0;
520 }
521
522 static const struct f2fs_compress_ops f2fs_lzorle_ops = {
523         .init_compress_ctx      = lzo_init_compress_ctx,
524         .destroy_compress_ctx   = lzo_destroy_compress_ctx,
525         .compress_pages         = lzorle_compress_pages,
526         .decompress_pages       = lzo_decompress_pages,
527 };
528 #endif
529 #endif
530
531 static const struct f2fs_compress_ops *f2fs_cops[COMPRESS_MAX] = {
532 #ifdef CONFIG_F2FS_FS_LZO
533         &f2fs_lzo_ops,
534 #else
535         NULL,
536 #endif
537 #ifdef CONFIG_F2FS_FS_LZ4
538         &f2fs_lz4_ops,
539 #else
540         NULL,
541 #endif
542 #ifdef CONFIG_F2FS_FS_ZSTD
543         &f2fs_zstd_ops,
544 #else
545         NULL,
546 #endif
547 #if defined(CONFIG_F2FS_FS_LZO) && defined(CONFIG_F2FS_FS_LZORLE)
548         &f2fs_lzorle_ops,
549 #else
550         NULL,
551 #endif
552 };
553
554 bool f2fs_is_compress_backend_ready(struct inode *inode)
555 {
556         if (!f2fs_compressed_file(inode))
557                 return true;
558         return f2fs_cops[F2FS_I(inode)->i_compress_algorithm];
559 }
560
561 bool f2fs_is_compress_level_valid(int alg, int lvl)
562 {
563         const struct f2fs_compress_ops *cops = f2fs_cops[alg];
564
565         if (cops->is_level_valid)
566                 return cops->is_level_valid(lvl);
567
568         return lvl == 0;
569 }
570
571 static mempool_t *compress_page_pool;
572 static int num_compress_pages = 512;
573 module_param(num_compress_pages, uint, 0444);
574 MODULE_PARM_DESC(num_compress_pages,
575                 "Number of intermediate compress pages to preallocate");
576
577 int __init f2fs_init_compress_mempool(void)
578 {
579         compress_page_pool = mempool_create_page_pool(num_compress_pages, 0);
580         return compress_page_pool ? 0 : -ENOMEM;
581 }
582
583 void f2fs_destroy_compress_mempool(void)
584 {
585         mempool_destroy(compress_page_pool);
586 }
587
588 static struct page *f2fs_compress_alloc_page(void)
589 {
590         struct page *page;
591
592         page = mempool_alloc(compress_page_pool, GFP_NOFS);
593         lock_page(page);
594
595         return page;
596 }
597
598 static void f2fs_compress_free_page(struct page *page)
599 {
600         if (!page)
601                 return;
602         detach_page_private(page);
603         page->mapping = NULL;
604         unlock_page(page);
605         mempool_free(page, compress_page_pool);
606 }
607
608 #define MAX_VMAP_RETRIES        3
609
610 static void *f2fs_vmap(struct page **pages, unsigned int count)
611 {
612         int i;
613         void *buf = NULL;
614
615         for (i = 0; i < MAX_VMAP_RETRIES; i++) {
616                 buf = vm_map_ram(pages, count, -1);
617                 if (buf)
618                         break;
619                 vm_unmap_aliases();
620         }
621         return buf;
622 }
623
624 static int f2fs_compress_pages(struct compress_ctx *cc)
625 {
626         struct f2fs_inode_info *fi = F2FS_I(cc->inode);
627         const struct f2fs_compress_ops *cops =
628                                 f2fs_cops[fi->i_compress_algorithm];
629         unsigned int max_len, new_nr_cpages;
630         u32 chksum = 0;
631         int i, ret;
632
633         trace_f2fs_compress_pages_start(cc->inode, cc->cluster_idx,
634                                 cc->cluster_size, fi->i_compress_algorithm);
635
636         if (cops->init_compress_ctx) {
637                 ret = cops->init_compress_ctx(cc);
638                 if (ret)
639                         goto out;
640         }
641
642         max_len = COMPRESS_HEADER_SIZE + cc->clen;
643         cc->nr_cpages = DIV_ROUND_UP(max_len, PAGE_SIZE);
644         cc->valid_nr_cpages = cc->nr_cpages;
645
646         cc->cpages = page_array_alloc(cc->inode, cc->nr_cpages);
647         if (!cc->cpages) {
648                 ret = -ENOMEM;
649                 goto destroy_compress_ctx;
650         }
651
652         for (i = 0; i < cc->nr_cpages; i++) {
653                 cc->cpages[i] = f2fs_compress_alloc_page();
654                 if (!cc->cpages[i]) {
655                         ret = -ENOMEM;
656                         goto out_free_cpages;
657                 }
658         }
659
660         cc->rbuf = f2fs_vmap(cc->rpages, cc->cluster_size);
661         if (!cc->rbuf) {
662                 ret = -ENOMEM;
663                 goto out_free_cpages;
664         }
665
666         cc->cbuf = f2fs_vmap(cc->cpages, cc->nr_cpages);
667         if (!cc->cbuf) {
668                 ret = -ENOMEM;
669                 goto out_vunmap_rbuf;
670         }
671
672         ret = cops->compress_pages(cc);
673         if (ret)
674                 goto out_vunmap_cbuf;
675
676         max_len = PAGE_SIZE * (cc->cluster_size - 1) - COMPRESS_HEADER_SIZE;
677
678         if (cc->clen > max_len) {
679                 ret = -EAGAIN;
680                 goto out_vunmap_cbuf;
681         }
682
683         cc->cbuf->clen = cpu_to_le32(cc->clen);
684
685         if (fi->i_compress_flag & BIT(COMPRESS_CHKSUM))
686                 chksum = f2fs_crc32(F2FS_I_SB(cc->inode),
687                                         cc->cbuf->cdata, cc->clen);
688         cc->cbuf->chksum = cpu_to_le32(chksum);
689
690         for (i = 0; i < COMPRESS_DATA_RESERVED_SIZE; i++)
691                 cc->cbuf->reserved[i] = cpu_to_le32(0);
692
693         new_nr_cpages = DIV_ROUND_UP(cc->clen + COMPRESS_HEADER_SIZE, PAGE_SIZE);
694
695         /* zero out any unused part of the last page */
696         memset(&cc->cbuf->cdata[cc->clen], 0,
697                         (new_nr_cpages * PAGE_SIZE) -
698                         (cc->clen + COMPRESS_HEADER_SIZE));
699
700         vm_unmap_ram(cc->cbuf, cc->nr_cpages);
701         vm_unmap_ram(cc->rbuf, cc->cluster_size);
702
703         for (i = new_nr_cpages; i < cc->nr_cpages; i++) {
704                 f2fs_compress_free_page(cc->cpages[i]);
705                 cc->cpages[i] = NULL;
706         }
707
708         if (cops->destroy_compress_ctx)
709                 cops->destroy_compress_ctx(cc);
710
711         cc->valid_nr_cpages = new_nr_cpages;
712
713         trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
714                                                         cc->clen, ret);
715         return 0;
716
717 out_vunmap_cbuf:
718         vm_unmap_ram(cc->cbuf, cc->nr_cpages);
719 out_vunmap_rbuf:
720         vm_unmap_ram(cc->rbuf, cc->cluster_size);
721 out_free_cpages:
722         for (i = 0; i < cc->nr_cpages; i++) {
723                 if (cc->cpages[i])
724                         f2fs_compress_free_page(cc->cpages[i]);
725         }
726         page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
727         cc->cpages = NULL;
728 destroy_compress_ctx:
729         if (cops->destroy_compress_ctx)
730                 cops->destroy_compress_ctx(cc);
731 out:
732         trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
733                                                         cc->clen, ret);
734         return ret;
735 }
736
737 static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic,
738                 bool pre_alloc);
739 static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic,
740                 bool bypass_destroy_callback, bool pre_alloc);
741
742 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task)
743 {
744         struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode);
745         struct f2fs_inode_info *fi = F2FS_I(dic->inode);
746         const struct f2fs_compress_ops *cops =
747                         f2fs_cops[fi->i_compress_algorithm];
748         bool bypass_callback = false;
749         int ret;
750
751         trace_f2fs_decompress_pages_start(dic->inode, dic->cluster_idx,
752                                 dic->cluster_size, fi->i_compress_algorithm);
753
754         if (dic->failed) {
755                 ret = -EIO;
756                 goto out_end_io;
757         }
758
759         ret = f2fs_prepare_decomp_mem(dic, false);
760         if (ret) {
761                 bypass_callback = true;
762                 goto out_release;
763         }
764
765         dic->clen = le32_to_cpu(dic->cbuf->clen);
766         dic->rlen = PAGE_SIZE << dic->log_cluster_size;
767
768         if (dic->clen > PAGE_SIZE * dic->nr_cpages - COMPRESS_HEADER_SIZE) {
769                 ret = -EFSCORRUPTED;
770
771                 /* Avoid f2fs_commit_super in irq context */
772                 if (!in_task)
773                         f2fs_handle_error_async(sbi, ERROR_FAIL_DECOMPRESSION);
774                 else
775                         f2fs_handle_error(sbi, ERROR_FAIL_DECOMPRESSION);
776                 goto out_release;
777         }
778
779         ret = cops->decompress_pages(dic);
780
781         if (!ret && (fi->i_compress_flag & BIT(COMPRESS_CHKSUM))) {
782                 u32 provided = le32_to_cpu(dic->cbuf->chksum);
783                 u32 calculated = f2fs_crc32(sbi, dic->cbuf->cdata, dic->clen);
784
785                 if (provided != calculated) {
786                         if (!is_inode_flag_set(dic->inode, FI_COMPRESS_CORRUPT)) {
787                                 set_inode_flag(dic->inode, FI_COMPRESS_CORRUPT);
788                                 printk_ratelimited(
789                                         "%sF2FS-fs (%s): checksum invalid, nid = %lu, %x vs %x",
790                                         KERN_INFO, sbi->sb->s_id, dic->inode->i_ino,
791                                         provided, calculated);
792                         }
793                         set_sbi_flag(sbi, SBI_NEED_FSCK);
794                 }
795         }
796
797 out_release:
798         f2fs_release_decomp_mem(dic, bypass_callback, false);
799
800 out_end_io:
801         trace_f2fs_decompress_pages_end(dic->inode, dic->cluster_idx,
802                                                         dic->clen, ret);
803         f2fs_decompress_end_io(dic, ret, in_task);
804 }
805
806 /*
807  * This is called when a page of a compressed cluster has been read from disk
808  * (or failed to be read from disk).  It checks whether this page was the last
809  * page being waited on in the cluster, and if so, it decompresses the cluster
810  * (or in the case of a failure, cleans up without actually decompressing).
811  */
812 void f2fs_end_read_compressed_page(struct page *page, bool failed,
813                 block_t blkaddr, bool in_task)
814 {
815         struct decompress_io_ctx *dic =
816                         (struct decompress_io_ctx *)page_private(page);
817         struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode);
818
819         dec_page_count(sbi, F2FS_RD_DATA);
820
821         if (failed)
822                 WRITE_ONCE(dic->failed, true);
823         else if (blkaddr && in_task)
824                 f2fs_cache_compressed_page(sbi, page,
825                                         dic->inode->i_ino, blkaddr);
826
827         if (atomic_dec_and_test(&dic->remaining_pages))
828                 f2fs_decompress_cluster(dic, in_task);
829 }
830
831 static bool is_page_in_cluster(struct compress_ctx *cc, pgoff_t index)
832 {
833         if (cc->cluster_idx == NULL_CLUSTER)
834                 return true;
835         return cc->cluster_idx == cluster_idx(cc, index);
836 }
837
838 bool f2fs_cluster_is_empty(struct compress_ctx *cc)
839 {
840         return cc->nr_rpages == 0;
841 }
842
843 static bool f2fs_cluster_is_full(struct compress_ctx *cc)
844 {
845         return cc->cluster_size == cc->nr_rpages;
846 }
847
848 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index)
849 {
850         if (f2fs_cluster_is_empty(cc))
851                 return true;
852         return is_page_in_cluster(cc, index);
853 }
854
855 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages,
856                                 int index, int nr_pages, bool uptodate)
857 {
858         unsigned long pgidx = pages[index]->index;
859         int i = uptodate ? 0 : 1;
860
861         /*
862          * when uptodate set to true, try to check all pages in cluster is
863          * uptodate or not.
864          */
865         if (uptodate && (pgidx % cc->cluster_size))
866                 return false;
867
868         if (nr_pages - index < cc->cluster_size)
869                 return false;
870
871         for (; i < cc->cluster_size; i++) {
872                 if (pages[index + i]->index != pgidx + i)
873                         return false;
874                 if (uptodate && !PageUptodate(pages[index + i]))
875                         return false;
876         }
877
878         return true;
879 }
880
881 static bool cluster_has_invalid_data(struct compress_ctx *cc)
882 {
883         loff_t i_size = i_size_read(cc->inode);
884         unsigned nr_pages = DIV_ROUND_UP(i_size, PAGE_SIZE);
885         int i;
886
887         for (i = 0; i < cc->cluster_size; i++) {
888                 struct page *page = cc->rpages[i];
889
890                 f2fs_bug_on(F2FS_I_SB(cc->inode), !page);
891
892                 /* beyond EOF */
893                 if (page->index >= nr_pages)
894                         return true;
895         }
896         return false;
897 }
898
899 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn)
900 {
901         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
902         unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
903         bool compressed = dn->data_blkaddr == COMPRESS_ADDR;
904         int cluster_end = 0;
905         int i;
906         char *reason = "";
907
908         if (!compressed)
909                 return false;
910
911         /* [..., COMPR_ADDR, ...] */
912         if (dn->ofs_in_node % cluster_size) {
913                 reason = "[*|C|*|*]";
914                 goto out;
915         }
916
917         for (i = 1; i < cluster_size; i++) {
918                 block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
919                                                         dn->ofs_in_node + i);
920
921                 /* [COMPR_ADDR, ..., COMPR_ADDR] */
922                 if (blkaddr == COMPRESS_ADDR) {
923                         reason = "[C|*|C|*]";
924                         goto out;
925                 }
926                 if (!__is_valid_data_blkaddr(blkaddr)) {
927                         if (!cluster_end)
928                                 cluster_end = i;
929                         continue;
930                 }
931                 /* [COMPR_ADDR, NULL_ADDR or NEW_ADDR, valid_blkaddr] */
932                 if (cluster_end) {
933                         reason = "[C|N|N|V]";
934                         goto out;
935                 }
936         }
937         return false;
938 out:
939         f2fs_warn(sbi, "access invalid cluster, ino:%lu, nid:%u, ofs_in_node:%u, reason:%s",
940                         dn->inode->i_ino, dn->nid, dn->ofs_in_node, reason);
941         set_sbi_flag(sbi, SBI_NEED_FSCK);
942         return true;
943 }
944
945 static int __f2fs_cluster_blocks(struct inode *inode,
946                                 unsigned int cluster_idx, bool compr)
947 {
948         struct dnode_of_data dn;
949         unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
950         unsigned int start_idx = cluster_idx <<
951                                 F2FS_I(inode)->i_log_cluster_size;
952         int ret;
953
954         set_new_dnode(&dn, inode, NULL, NULL, 0);
955         ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
956         if (ret) {
957                 if (ret == -ENOENT)
958                         ret = 0;
959                 goto fail;
960         }
961
962         if (f2fs_sanity_check_cluster(&dn)) {
963                 ret = -EFSCORRUPTED;
964                 f2fs_handle_error(F2FS_I_SB(inode), ERROR_CORRUPTED_CLUSTER);
965                 goto fail;
966         }
967
968         if (dn.data_blkaddr == COMPRESS_ADDR) {
969                 int i;
970
971                 ret = 1;
972                 for (i = 1; i < cluster_size; i++) {
973                         block_t blkaddr;
974
975                         blkaddr = data_blkaddr(dn.inode,
976                                         dn.node_page, dn.ofs_in_node + i);
977                         if (compr) {
978                                 if (__is_valid_data_blkaddr(blkaddr))
979                                         ret++;
980                         } else {
981                                 if (blkaddr != NULL_ADDR)
982                                         ret++;
983                         }
984                 }
985
986                 f2fs_bug_on(F2FS_I_SB(inode),
987                         !compr && ret != cluster_size &&
988                         !is_inode_flag_set(inode, FI_COMPRESS_RELEASED));
989         }
990 fail:
991         f2fs_put_dnode(&dn);
992         return ret;
993 }
994
995 /* return # of compressed blocks in compressed cluster */
996 static int f2fs_compressed_blocks(struct compress_ctx *cc)
997 {
998         return __f2fs_cluster_blocks(cc->inode, cc->cluster_idx, true);
999 }
1000
1001 /* return # of valid blocks in compressed cluster */
1002 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index)
1003 {
1004         return __f2fs_cluster_blocks(inode,
1005                 index >> F2FS_I(inode)->i_log_cluster_size,
1006                 false);
1007 }
1008
1009 static bool cluster_may_compress(struct compress_ctx *cc)
1010 {
1011         if (!f2fs_need_compress_data(cc->inode))
1012                 return false;
1013         if (f2fs_is_atomic_file(cc->inode))
1014                 return false;
1015         if (!f2fs_cluster_is_full(cc))
1016                 return false;
1017         if (unlikely(f2fs_cp_error(F2FS_I_SB(cc->inode))))
1018                 return false;
1019         return !cluster_has_invalid_data(cc);
1020 }
1021
1022 static void set_cluster_writeback(struct compress_ctx *cc)
1023 {
1024         int i;
1025
1026         for (i = 0; i < cc->cluster_size; i++) {
1027                 if (cc->rpages[i])
1028                         set_page_writeback(cc->rpages[i]);
1029         }
1030 }
1031
1032 static void set_cluster_dirty(struct compress_ctx *cc)
1033 {
1034         int i;
1035
1036         for (i = 0; i < cc->cluster_size; i++)
1037                 if (cc->rpages[i])
1038                         set_page_dirty(cc->rpages[i]);
1039 }
1040
1041 static int prepare_compress_overwrite(struct compress_ctx *cc,
1042                 struct page **pagep, pgoff_t index, void **fsdata)
1043 {
1044         struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode);
1045         struct address_space *mapping = cc->inode->i_mapping;
1046         struct page *page;
1047         sector_t last_block_in_bio;
1048         fgf_t fgp_flag = FGP_LOCK | FGP_WRITE | FGP_CREAT;
1049         pgoff_t start_idx = start_idx_of_cluster(cc);
1050         int i, ret;
1051
1052 retry:
1053         ret = f2fs_is_compressed_cluster(cc->inode, start_idx);
1054         if (ret <= 0)
1055                 return ret;
1056
1057         ret = f2fs_init_compress_ctx(cc);
1058         if (ret)
1059                 return ret;
1060
1061         /* keep page reference to avoid page reclaim */
1062         for (i = 0; i < cc->cluster_size; i++) {
1063                 page = f2fs_pagecache_get_page(mapping, start_idx + i,
1064                                                         fgp_flag, GFP_NOFS);
1065                 if (!page) {
1066                         ret = -ENOMEM;
1067                         goto unlock_pages;
1068                 }
1069
1070                 if (PageUptodate(page))
1071                         f2fs_put_page(page, 1);
1072                 else
1073                         f2fs_compress_ctx_add_page(cc, page);
1074         }
1075
1076         if (!f2fs_cluster_is_empty(cc)) {
1077                 struct bio *bio = NULL;
1078
1079                 ret = f2fs_read_multi_pages(cc, &bio, cc->cluster_size,
1080                                         &last_block_in_bio, false, true);
1081                 f2fs_put_rpages(cc);
1082                 f2fs_destroy_compress_ctx(cc, true);
1083                 if (ret)
1084                         goto out;
1085                 if (bio)
1086                         f2fs_submit_read_bio(sbi, bio, DATA);
1087
1088                 ret = f2fs_init_compress_ctx(cc);
1089                 if (ret)
1090                         goto out;
1091         }
1092
1093         for (i = 0; i < cc->cluster_size; i++) {
1094                 f2fs_bug_on(sbi, cc->rpages[i]);
1095
1096                 page = find_lock_page(mapping, start_idx + i);
1097                 if (!page) {
1098                         /* page can be truncated */
1099                         goto release_and_retry;
1100                 }
1101
1102                 f2fs_wait_on_page_writeback(page, DATA, true, true);
1103                 f2fs_compress_ctx_add_page(cc, page);
1104
1105                 if (!PageUptodate(page)) {
1106 release_and_retry:
1107                         f2fs_put_rpages(cc);
1108                         f2fs_unlock_rpages(cc, i + 1);
1109                         f2fs_destroy_compress_ctx(cc, true);
1110                         goto retry;
1111                 }
1112         }
1113
1114         if (likely(!ret)) {
1115                 *fsdata = cc->rpages;
1116                 *pagep = cc->rpages[offset_in_cluster(cc, index)];
1117                 return cc->cluster_size;
1118         }
1119
1120 unlock_pages:
1121         f2fs_put_rpages(cc);
1122         f2fs_unlock_rpages(cc, i);
1123         f2fs_destroy_compress_ctx(cc, true);
1124 out:
1125         return ret;
1126 }
1127
1128 int f2fs_prepare_compress_overwrite(struct inode *inode,
1129                 struct page **pagep, pgoff_t index, void **fsdata)
1130 {
1131         struct compress_ctx cc = {
1132                 .inode = inode,
1133                 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
1134                 .cluster_size = F2FS_I(inode)->i_cluster_size,
1135                 .cluster_idx = index >> F2FS_I(inode)->i_log_cluster_size,
1136                 .rpages = NULL,
1137                 .nr_rpages = 0,
1138         };
1139
1140         return prepare_compress_overwrite(&cc, pagep, index, fsdata);
1141 }
1142
1143 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
1144                                         pgoff_t index, unsigned copied)
1145
1146 {
1147         struct compress_ctx cc = {
1148                 .inode = inode,
1149                 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
1150                 .cluster_size = F2FS_I(inode)->i_cluster_size,
1151                 .rpages = fsdata,
1152         };
1153         bool first_index = (index == cc.rpages[0]->index);
1154
1155         if (copied)
1156                 set_cluster_dirty(&cc);
1157
1158         f2fs_put_rpages_wbc(&cc, NULL, false, 1);
1159         f2fs_destroy_compress_ctx(&cc, false);
1160
1161         return first_index;
1162 }
1163
1164 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock)
1165 {
1166         void *fsdata = NULL;
1167         struct page *pagep;
1168         int log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
1169         pgoff_t start_idx = from >> (PAGE_SHIFT + log_cluster_size) <<
1170                                                         log_cluster_size;
1171         int err;
1172
1173         err = f2fs_is_compressed_cluster(inode, start_idx);
1174         if (err < 0)
1175                 return err;
1176
1177         /* truncate normal cluster */
1178         if (!err)
1179                 return f2fs_do_truncate_blocks(inode, from, lock);
1180
1181         /* truncate compressed cluster */
1182         err = f2fs_prepare_compress_overwrite(inode, &pagep,
1183                                                 start_idx, &fsdata);
1184
1185         /* should not be a normal cluster */
1186         f2fs_bug_on(F2FS_I_SB(inode), err == 0);
1187
1188         if (err <= 0)
1189                 return err;
1190
1191         if (err > 0) {
1192                 struct page **rpages = fsdata;
1193                 int cluster_size = F2FS_I(inode)->i_cluster_size;
1194                 int i;
1195
1196                 for (i = cluster_size - 1; i >= 0; i--) {
1197                         loff_t start = rpages[i]->index << PAGE_SHIFT;
1198
1199                         if (from <= start) {
1200                                 zero_user_segment(rpages[i], 0, PAGE_SIZE);
1201                         } else {
1202                                 zero_user_segment(rpages[i], from - start,
1203                                                                 PAGE_SIZE);
1204                                 break;
1205                         }
1206                 }
1207
1208                 f2fs_compress_write_end(inode, fsdata, start_idx, true);
1209         }
1210         return 0;
1211 }
1212
1213 static int f2fs_write_compressed_pages(struct compress_ctx *cc,
1214                                         int *submitted,
1215                                         struct writeback_control *wbc,
1216                                         enum iostat_type io_type)
1217 {
1218         struct inode *inode = cc->inode;
1219         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1220         struct f2fs_inode_info *fi = F2FS_I(inode);
1221         struct f2fs_io_info fio = {
1222                 .sbi = sbi,
1223                 .ino = cc->inode->i_ino,
1224                 .type = DATA,
1225                 .op = REQ_OP_WRITE,
1226                 .op_flags = wbc_to_write_flags(wbc),
1227                 .old_blkaddr = NEW_ADDR,
1228                 .page = NULL,
1229                 .encrypted_page = NULL,
1230                 .compressed_page = NULL,
1231                 .submitted = 0,
1232                 .io_type = io_type,
1233                 .io_wbc = wbc,
1234                 .encrypted = fscrypt_inode_uses_fs_layer_crypto(cc->inode) ?
1235                                                                         1 : 0,
1236         };
1237         struct dnode_of_data dn;
1238         struct node_info ni;
1239         struct compress_io_ctx *cic;
1240         pgoff_t start_idx = start_idx_of_cluster(cc);
1241         unsigned int last_index = cc->cluster_size - 1;
1242         loff_t psize;
1243         int i, err;
1244         bool quota_inode = IS_NOQUOTA(inode);
1245
1246         /* we should bypass data pages to proceed the kworker jobs */
1247         if (unlikely(f2fs_cp_error(sbi))) {
1248                 mapping_set_error(cc->rpages[0]->mapping, -EIO);
1249                 goto out_free;
1250         }
1251
1252         if (quota_inode) {
1253                 /*
1254                  * We need to wait for node_write to avoid block allocation during
1255                  * checkpoint. This can only happen to quota writes which can cause
1256                  * the below discard race condition.
1257                  */
1258                 f2fs_down_read(&sbi->node_write);
1259         } else if (!f2fs_trylock_op(sbi)) {
1260                 goto out_free;
1261         }
1262
1263         set_new_dnode(&dn, cc->inode, NULL, NULL, 0);
1264
1265         err = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
1266         if (err)
1267                 goto out_unlock_op;
1268
1269         for (i = 0; i < cc->cluster_size; i++) {
1270                 if (data_blkaddr(dn.inode, dn.node_page,
1271                                         dn.ofs_in_node + i) == NULL_ADDR)
1272                         goto out_put_dnode;
1273         }
1274
1275         psize = (loff_t)(cc->rpages[last_index]->index + 1) << PAGE_SHIFT;
1276
1277         err = f2fs_get_node_info(fio.sbi, dn.nid, &ni, false);
1278         if (err)
1279                 goto out_put_dnode;
1280
1281         fio.version = ni.version;
1282
1283         cic = f2fs_kmem_cache_alloc(cic_entry_slab, GFP_F2FS_ZERO, false, sbi);
1284         if (!cic)
1285                 goto out_put_dnode;
1286
1287         cic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
1288         cic->inode = inode;
1289         atomic_set(&cic->pending_pages, cc->valid_nr_cpages);
1290         cic->rpages = page_array_alloc(cc->inode, cc->cluster_size);
1291         if (!cic->rpages)
1292                 goto out_put_cic;
1293
1294         cic->nr_rpages = cc->cluster_size;
1295
1296         for (i = 0; i < cc->valid_nr_cpages; i++) {
1297                 f2fs_set_compressed_page(cc->cpages[i], inode,
1298                                         cc->rpages[i + 1]->index, cic);
1299                 fio.compressed_page = cc->cpages[i];
1300
1301                 fio.old_blkaddr = data_blkaddr(dn.inode, dn.node_page,
1302                                                 dn.ofs_in_node + i + 1);
1303
1304                 /* wait for GCed page writeback via META_MAPPING */
1305                 f2fs_wait_on_block_writeback(inode, fio.old_blkaddr);
1306
1307                 if (fio.encrypted) {
1308                         fio.page = cc->rpages[i + 1];
1309                         err = f2fs_encrypt_one_page(&fio);
1310                         if (err)
1311                                 goto out_destroy_crypt;
1312                         cc->cpages[i] = fio.encrypted_page;
1313                 }
1314         }
1315
1316         set_cluster_writeback(cc);
1317
1318         for (i = 0; i < cc->cluster_size; i++)
1319                 cic->rpages[i] = cc->rpages[i];
1320
1321         for (i = 0; i < cc->cluster_size; i++, dn.ofs_in_node++) {
1322                 block_t blkaddr;
1323
1324                 blkaddr = f2fs_data_blkaddr(&dn);
1325                 fio.page = cc->rpages[i];
1326                 fio.old_blkaddr = blkaddr;
1327
1328                 /* cluster header */
1329                 if (i == 0) {
1330                         if (blkaddr == COMPRESS_ADDR)
1331                                 fio.compr_blocks++;
1332                         if (__is_valid_data_blkaddr(blkaddr))
1333                                 f2fs_invalidate_blocks(sbi, blkaddr);
1334                         f2fs_update_data_blkaddr(&dn, COMPRESS_ADDR);
1335                         goto unlock_continue;
1336                 }
1337
1338                 if (fio.compr_blocks && __is_valid_data_blkaddr(blkaddr))
1339                         fio.compr_blocks++;
1340
1341                 if (i > cc->valid_nr_cpages) {
1342                         if (__is_valid_data_blkaddr(blkaddr)) {
1343                                 f2fs_invalidate_blocks(sbi, blkaddr);
1344                                 f2fs_update_data_blkaddr(&dn, NEW_ADDR);
1345                         }
1346                         goto unlock_continue;
1347                 }
1348
1349                 f2fs_bug_on(fio.sbi, blkaddr == NULL_ADDR);
1350
1351                 if (fio.encrypted)
1352                         fio.encrypted_page = cc->cpages[i - 1];
1353                 else
1354                         fio.compressed_page = cc->cpages[i - 1];
1355
1356                 cc->cpages[i - 1] = NULL;
1357                 f2fs_outplace_write_data(&dn, &fio);
1358                 (*submitted)++;
1359 unlock_continue:
1360                 inode_dec_dirty_pages(cc->inode);
1361                 unlock_page(fio.page);
1362         }
1363
1364         if (fio.compr_blocks)
1365                 f2fs_i_compr_blocks_update(inode, fio.compr_blocks - 1, false);
1366         f2fs_i_compr_blocks_update(inode, cc->valid_nr_cpages, true);
1367         add_compr_block_stat(inode, cc->valid_nr_cpages);
1368
1369         set_inode_flag(cc->inode, FI_APPEND_WRITE);
1370         if (cc->cluster_idx == 0)
1371                 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1372
1373         f2fs_put_dnode(&dn);
1374         if (quota_inode)
1375                 f2fs_up_read(&sbi->node_write);
1376         else
1377                 f2fs_unlock_op(sbi);
1378
1379         spin_lock(&fi->i_size_lock);
1380         if (fi->last_disk_size < psize)
1381                 fi->last_disk_size = psize;
1382         spin_unlock(&fi->i_size_lock);
1383
1384         f2fs_put_rpages(cc);
1385         page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
1386         cc->cpages = NULL;
1387         f2fs_destroy_compress_ctx(cc, false);
1388         return 0;
1389
1390 out_destroy_crypt:
1391         page_array_free(cc->inode, cic->rpages, cc->cluster_size);
1392
1393         for (--i; i >= 0; i--)
1394                 fscrypt_finalize_bounce_page(&cc->cpages[i]);
1395 out_put_cic:
1396         kmem_cache_free(cic_entry_slab, cic);
1397 out_put_dnode:
1398         f2fs_put_dnode(&dn);
1399 out_unlock_op:
1400         if (quota_inode)
1401                 f2fs_up_read(&sbi->node_write);
1402         else
1403                 f2fs_unlock_op(sbi);
1404 out_free:
1405         for (i = 0; i < cc->valid_nr_cpages; i++) {
1406                 f2fs_compress_free_page(cc->cpages[i]);
1407                 cc->cpages[i] = NULL;
1408         }
1409         page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
1410         cc->cpages = NULL;
1411         return -EAGAIN;
1412 }
1413
1414 void f2fs_compress_write_end_io(struct bio *bio, struct page *page)
1415 {
1416         struct f2fs_sb_info *sbi = bio->bi_private;
1417         struct compress_io_ctx *cic =
1418                         (struct compress_io_ctx *)page_private(page);
1419         int i;
1420
1421         if (unlikely(bio->bi_status))
1422                 mapping_set_error(cic->inode->i_mapping, -EIO);
1423
1424         f2fs_compress_free_page(page);
1425
1426         dec_page_count(sbi, F2FS_WB_DATA);
1427
1428         if (atomic_dec_return(&cic->pending_pages))
1429                 return;
1430
1431         for (i = 0; i < cic->nr_rpages; i++) {
1432                 WARN_ON(!cic->rpages[i]);
1433                 clear_page_private_gcing(cic->rpages[i]);
1434                 end_page_writeback(cic->rpages[i]);
1435         }
1436
1437         page_array_free(cic->inode, cic->rpages, cic->nr_rpages);
1438         kmem_cache_free(cic_entry_slab, cic);
1439 }
1440
1441 static int f2fs_write_raw_pages(struct compress_ctx *cc,
1442                                         int *submitted,
1443                                         struct writeback_control *wbc,
1444                                         enum iostat_type io_type)
1445 {
1446         struct address_space *mapping = cc->inode->i_mapping;
1447         int _submitted, compr_blocks, ret, i;
1448
1449         compr_blocks = f2fs_compressed_blocks(cc);
1450
1451         for (i = 0; i < cc->cluster_size; i++) {
1452                 if (!cc->rpages[i])
1453                         continue;
1454
1455                 redirty_page_for_writepage(wbc, cc->rpages[i]);
1456                 unlock_page(cc->rpages[i]);
1457         }
1458
1459         if (compr_blocks < 0)
1460                 return compr_blocks;
1461
1462         for (i = 0; i < cc->cluster_size; i++) {
1463                 if (!cc->rpages[i])
1464                         continue;
1465 retry_write:
1466                 lock_page(cc->rpages[i]);
1467
1468                 if (cc->rpages[i]->mapping != mapping) {
1469 continue_unlock:
1470                         unlock_page(cc->rpages[i]);
1471                         continue;
1472                 }
1473
1474                 if (!PageDirty(cc->rpages[i]))
1475                         goto continue_unlock;
1476
1477                 if (PageWriteback(cc->rpages[i])) {
1478                         if (wbc->sync_mode == WB_SYNC_NONE)
1479                                 goto continue_unlock;
1480                         f2fs_wait_on_page_writeback(cc->rpages[i], DATA, true, true);
1481                 }
1482
1483                 if (!clear_page_dirty_for_io(cc->rpages[i]))
1484                         goto continue_unlock;
1485
1486                 ret = f2fs_write_single_data_page(cc->rpages[i], &_submitted,
1487                                                 NULL, NULL, wbc, io_type,
1488                                                 compr_blocks, false);
1489                 if (ret) {
1490                         if (ret == AOP_WRITEPAGE_ACTIVATE) {
1491                                 unlock_page(cc->rpages[i]);
1492                                 ret = 0;
1493                         } else if (ret == -EAGAIN) {
1494                                 /*
1495                                  * for quota file, just redirty left pages to
1496                                  * avoid deadlock caused by cluster update race
1497                                  * from foreground operation.
1498                                  */
1499                                 if (IS_NOQUOTA(cc->inode))
1500                                         return 0;
1501                                 ret = 0;
1502                                 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1503                                 goto retry_write;
1504                         }
1505                         return ret;
1506                 }
1507
1508                 *submitted += _submitted;
1509         }
1510
1511         f2fs_balance_fs(F2FS_M_SB(mapping), true);
1512
1513         return 0;
1514 }
1515
1516 int f2fs_write_multi_pages(struct compress_ctx *cc,
1517                                         int *submitted,
1518                                         struct writeback_control *wbc,
1519                                         enum iostat_type io_type)
1520 {
1521         int err;
1522
1523         *submitted = 0;
1524         if (cluster_may_compress(cc)) {
1525                 err = f2fs_compress_pages(cc);
1526                 if (err == -EAGAIN) {
1527                         add_compr_block_stat(cc->inode, cc->cluster_size);
1528                         goto write;
1529                 } else if (err) {
1530                         f2fs_put_rpages_wbc(cc, wbc, true, 1);
1531                         goto destroy_out;
1532                 }
1533
1534                 err = f2fs_write_compressed_pages(cc, submitted,
1535                                                         wbc, io_type);
1536                 if (!err)
1537                         return 0;
1538                 f2fs_bug_on(F2FS_I_SB(cc->inode), err != -EAGAIN);
1539         }
1540 write:
1541         f2fs_bug_on(F2FS_I_SB(cc->inode), *submitted);
1542
1543         err = f2fs_write_raw_pages(cc, submitted, wbc, io_type);
1544         f2fs_put_rpages_wbc(cc, wbc, false, 0);
1545 destroy_out:
1546         f2fs_destroy_compress_ctx(cc, false);
1547         return err;
1548 }
1549
1550 static inline bool allow_memalloc_for_decomp(struct f2fs_sb_info *sbi,
1551                 bool pre_alloc)
1552 {
1553         return pre_alloc ^ f2fs_low_mem_mode(sbi);
1554 }
1555
1556 static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic,
1557                 bool pre_alloc)
1558 {
1559         const struct f2fs_compress_ops *cops =
1560                 f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm];
1561         int i;
1562
1563         if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc))
1564                 return 0;
1565
1566         dic->tpages = page_array_alloc(dic->inode, dic->cluster_size);
1567         if (!dic->tpages)
1568                 return -ENOMEM;
1569
1570         for (i = 0; i < dic->cluster_size; i++) {
1571                 if (dic->rpages[i]) {
1572                         dic->tpages[i] = dic->rpages[i];
1573                         continue;
1574                 }
1575
1576                 dic->tpages[i] = f2fs_compress_alloc_page();
1577                 if (!dic->tpages[i])
1578                         return -ENOMEM;
1579         }
1580
1581         dic->rbuf = f2fs_vmap(dic->tpages, dic->cluster_size);
1582         if (!dic->rbuf)
1583                 return -ENOMEM;
1584
1585         dic->cbuf = f2fs_vmap(dic->cpages, dic->nr_cpages);
1586         if (!dic->cbuf)
1587                 return -ENOMEM;
1588
1589         if (cops->init_decompress_ctx)
1590                 return cops->init_decompress_ctx(dic);
1591
1592         return 0;
1593 }
1594
1595 static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic,
1596                 bool bypass_destroy_callback, bool pre_alloc)
1597 {
1598         const struct f2fs_compress_ops *cops =
1599                 f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm];
1600
1601         if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc))
1602                 return;
1603
1604         if (!bypass_destroy_callback && cops->destroy_decompress_ctx)
1605                 cops->destroy_decompress_ctx(dic);
1606
1607         if (dic->cbuf)
1608                 vm_unmap_ram(dic->cbuf, dic->nr_cpages);
1609
1610         if (dic->rbuf)
1611                 vm_unmap_ram(dic->rbuf, dic->cluster_size);
1612 }
1613
1614 static void f2fs_free_dic(struct decompress_io_ctx *dic,
1615                 bool bypass_destroy_callback);
1616
1617 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc)
1618 {
1619         struct decompress_io_ctx *dic;
1620         pgoff_t start_idx = start_idx_of_cluster(cc);
1621         struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode);
1622         int i, ret;
1623
1624         dic = f2fs_kmem_cache_alloc(dic_entry_slab, GFP_F2FS_ZERO, false, sbi);
1625         if (!dic)
1626                 return ERR_PTR(-ENOMEM);
1627
1628         dic->rpages = page_array_alloc(cc->inode, cc->cluster_size);
1629         if (!dic->rpages) {
1630                 kmem_cache_free(dic_entry_slab, dic);
1631                 return ERR_PTR(-ENOMEM);
1632         }
1633
1634         dic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
1635         dic->inode = cc->inode;
1636         atomic_set(&dic->remaining_pages, cc->nr_cpages);
1637         dic->cluster_idx = cc->cluster_idx;
1638         dic->cluster_size = cc->cluster_size;
1639         dic->log_cluster_size = cc->log_cluster_size;
1640         dic->nr_cpages = cc->nr_cpages;
1641         refcount_set(&dic->refcnt, 1);
1642         dic->failed = false;
1643         dic->need_verity = f2fs_need_verity(cc->inode, start_idx);
1644
1645         for (i = 0; i < dic->cluster_size; i++)
1646                 dic->rpages[i] = cc->rpages[i];
1647         dic->nr_rpages = cc->cluster_size;
1648
1649         dic->cpages = page_array_alloc(dic->inode, dic->nr_cpages);
1650         if (!dic->cpages) {
1651                 ret = -ENOMEM;
1652                 goto out_free;
1653         }
1654
1655         for (i = 0; i < dic->nr_cpages; i++) {
1656                 struct page *page;
1657
1658                 page = f2fs_compress_alloc_page();
1659                 if (!page) {
1660                         ret = -ENOMEM;
1661                         goto out_free;
1662                 }
1663
1664                 f2fs_set_compressed_page(page, cc->inode,
1665                                         start_idx + i + 1, dic);
1666                 dic->cpages[i] = page;
1667         }
1668
1669         ret = f2fs_prepare_decomp_mem(dic, true);
1670         if (ret)
1671                 goto out_free;
1672
1673         return dic;
1674
1675 out_free:
1676         f2fs_free_dic(dic, true);
1677         return ERR_PTR(ret);
1678 }
1679
1680 static void f2fs_free_dic(struct decompress_io_ctx *dic,
1681                 bool bypass_destroy_callback)
1682 {
1683         int i;
1684
1685         f2fs_release_decomp_mem(dic, bypass_destroy_callback, true);
1686
1687         if (dic->tpages) {
1688                 for (i = 0; i < dic->cluster_size; i++) {
1689                         if (dic->rpages[i])
1690                                 continue;
1691                         if (!dic->tpages[i])
1692                                 continue;
1693                         f2fs_compress_free_page(dic->tpages[i]);
1694                 }
1695                 page_array_free(dic->inode, dic->tpages, dic->cluster_size);
1696         }
1697
1698         if (dic->cpages) {
1699                 for (i = 0; i < dic->nr_cpages; i++) {
1700                         if (!dic->cpages[i])
1701                                 continue;
1702                         f2fs_compress_free_page(dic->cpages[i]);
1703                 }
1704                 page_array_free(dic->inode, dic->cpages, dic->nr_cpages);
1705         }
1706
1707         page_array_free(dic->inode, dic->rpages, dic->nr_rpages);
1708         kmem_cache_free(dic_entry_slab, dic);
1709 }
1710
1711 static void f2fs_late_free_dic(struct work_struct *work)
1712 {
1713         struct decompress_io_ctx *dic =
1714                 container_of(work, struct decompress_io_ctx, free_work);
1715
1716         f2fs_free_dic(dic, false);
1717 }
1718
1719 static void f2fs_put_dic(struct decompress_io_ctx *dic, bool in_task)
1720 {
1721         if (refcount_dec_and_test(&dic->refcnt)) {
1722                 if (in_task) {
1723                         f2fs_free_dic(dic, false);
1724                 } else {
1725                         INIT_WORK(&dic->free_work, f2fs_late_free_dic);
1726                         queue_work(F2FS_I_SB(dic->inode)->post_read_wq,
1727                                         &dic->free_work);
1728                 }
1729         }
1730 }
1731
1732 static void f2fs_verify_cluster(struct work_struct *work)
1733 {
1734         struct decompress_io_ctx *dic =
1735                 container_of(work, struct decompress_io_ctx, verity_work);
1736         int i;
1737
1738         /* Verify, update, and unlock the decompressed pages. */
1739         for (i = 0; i < dic->cluster_size; i++) {
1740                 struct page *rpage = dic->rpages[i];
1741
1742                 if (!rpage)
1743                         continue;
1744
1745                 if (fsverity_verify_page(rpage))
1746                         SetPageUptodate(rpage);
1747                 else
1748                         ClearPageUptodate(rpage);
1749                 unlock_page(rpage);
1750         }
1751
1752         f2fs_put_dic(dic, true);
1753 }
1754
1755 /*
1756  * This is called when a compressed cluster has been decompressed
1757  * (or failed to be read and/or decompressed).
1758  */
1759 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
1760                                 bool in_task)
1761 {
1762         int i;
1763
1764         if (!failed && dic->need_verity) {
1765                 /*
1766                  * Note that to avoid deadlocks, the verity work can't be done
1767                  * on the decompression workqueue.  This is because verifying
1768                  * the data pages can involve reading metadata pages from the
1769                  * file, and these metadata pages may be compressed.
1770                  */
1771                 INIT_WORK(&dic->verity_work, f2fs_verify_cluster);
1772                 fsverity_enqueue_verify_work(&dic->verity_work);
1773                 return;
1774         }
1775
1776         /* Update and unlock the cluster's pagecache pages. */
1777         for (i = 0; i < dic->cluster_size; i++) {
1778                 struct page *rpage = dic->rpages[i];
1779
1780                 if (!rpage)
1781                         continue;
1782
1783                 if (failed)
1784                         ClearPageUptodate(rpage);
1785                 else
1786                         SetPageUptodate(rpage);
1787                 unlock_page(rpage);
1788         }
1789
1790         /*
1791          * Release the reference to the decompress_io_ctx that was being held
1792          * for I/O completion.
1793          */
1794         f2fs_put_dic(dic, in_task);
1795 }
1796
1797 /*
1798  * Put a reference to a compressed page's decompress_io_ctx.
1799  *
1800  * This is called when the page is no longer needed and can be freed.
1801  */
1802 void f2fs_put_page_dic(struct page *page, bool in_task)
1803 {
1804         struct decompress_io_ctx *dic =
1805                         (struct decompress_io_ctx *)page_private(page);
1806
1807         f2fs_put_dic(dic, in_task);
1808 }
1809
1810 /*
1811  * check whether cluster blocks are contiguous, and add extent cache entry
1812  * only if cluster blocks are logically and physically contiguous.
1813  */
1814 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn)
1815 {
1816         bool compressed = f2fs_data_blkaddr(dn) == COMPRESS_ADDR;
1817         int i = compressed ? 1 : 0;
1818         block_t first_blkaddr = data_blkaddr(dn->inode, dn->node_page,
1819                                                 dn->ofs_in_node + i);
1820
1821         for (i += 1; i < F2FS_I(dn->inode)->i_cluster_size; i++) {
1822                 block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
1823                                                 dn->ofs_in_node + i);
1824
1825                 if (!__is_valid_data_blkaddr(blkaddr))
1826                         break;
1827                 if (first_blkaddr + i - (compressed ? 1 : 0) != blkaddr)
1828                         return 0;
1829         }
1830
1831         return compressed ? i - 1 : i;
1832 }
1833
1834 const struct address_space_operations f2fs_compress_aops = {
1835         .release_folio = f2fs_release_folio,
1836         .invalidate_folio = f2fs_invalidate_folio,
1837         .migrate_folio  = filemap_migrate_folio,
1838 };
1839
1840 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi)
1841 {
1842         return sbi->compress_inode->i_mapping;
1843 }
1844
1845 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr)
1846 {
1847         if (!sbi->compress_inode)
1848                 return;
1849         invalidate_mapping_pages(COMPRESS_MAPPING(sbi), blkaddr, blkaddr);
1850 }
1851
1852 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
1853                                                 nid_t ino, block_t blkaddr)
1854 {
1855         struct page *cpage;
1856         int ret;
1857
1858         if (!test_opt(sbi, COMPRESS_CACHE))
1859                 return;
1860
1861         if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ))
1862                 return;
1863
1864         if (!f2fs_available_free_memory(sbi, COMPRESS_PAGE))
1865                 return;
1866
1867         cpage = find_get_page(COMPRESS_MAPPING(sbi), blkaddr);
1868         if (cpage) {
1869                 f2fs_put_page(cpage, 0);
1870                 return;
1871         }
1872
1873         cpage = alloc_page(__GFP_NOWARN | __GFP_IO);
1874         if (!cpage)
1875                 return;
1876
1877         ret = add_to_page_cache_lru(cpage, COMPRESS_MAPPING(sbi),
1878                                                 blkaddr, GFP_NOFS);
1879         if (ret) {
1880                 f2fs_put_page(cpage, 0);
1881                 return;
1882         }
1883
1884         set_page_private_data(cpage, ino);
1885
1886         if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ))
1887                 goto out;
1888
1889         memcpy(page_address(cpage), page_address(page), PAGE_SIZE);
1890         SetPageUptodate(cpage);
1891 out:
1892         f2fs_put_page(cpage, 1);
1893 }
1894
1895 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
1896                                                                 block_t blkaddr)
1897 {
1898         struct page *cpage;
1899         bool hitted = false;
1900
1901         if (!test_opt(sbi, COMPRESS_CACHE))
1902                 return false;
1903
1904         cpage = f2fs_pagecache_get_page(COMPRESS_MAPPING(sbi),
1905                                 blkaddr, FGP_LOCK | FGP_NOWAIT, GFP_NOFS);
1906         if (cpage) {
1907                 if (PageUptodate(cpage)) {
1908                         atomic_inc(&sbi->compress_page_hit);
1909                         memcpy(page_address(page),
1910                                 page_address(cpage), PAGE_SIZE);
1911                         hitted = true;
1912                 }
1913                 f2fs_put_page(cpage, 1);
1914         }
1915
1916         return hitted;
1917 }
1918
1919 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino)
1920 {
1921         struct address_space *mapping = COMPRESS_MAPPING(sbi);
1922         struct folio_batch fbatch;
1923         pgoff_t index = 0;
1924         pgoff_t end = MAX_BLKADDR(sbi);
1925
1926         if (!mapping->nrpages)
1927                 return;
1928
1929         folio_batch_init(&fbatch);
1930
1931         do {
1932                 unsigned int nr, i;
1933
1934                 nr = filemap_get_folios(mapping, &index, end - 1, &fbatch);
1935                 if (!nr)
1936                         break;
1937
1938                 for (i = 0; i < nr; i++) {
1939                         struct folio *folio = fbatch.folios[i];
1940
1941                         folio_lock(folio);
1942                         if (folio->mapping != mapping) {
1943                                 folio_unlock(folio);
1944                                 continue;
1945                         }
1946
1947                         if (ino != get_page_private_data(&folio->page)) {
1948                                 folio_unlock(folio);
1949                                 continue;
1950                         }
1951
1952                         generic_error_remove_page(mapping, &folio->page);
1953                         folio_unlock(folio);
1954                 }
1955                 folio_batch_release(&fbatch);
1956                 cond_resched();
1957         } while (index < end);
1958 }
1959
1960 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi)
1961 {
1962         struct inode *inode;
1963
1964         if (!test_opt(sbi, COMPRESS_CACHE))
1965                 return 0;
1966
1967         inode = f2fs_iget(sbi->sb, F2FS_COMPRESS_INO(sbi));
1968         if (IS_ERR(inode))
1969                 return PTR_ERR(inode);
1970         sbi->compress_inode = inode;
1971
1972         sbi->compress_percent = COMPRESS_PERCENT;
1973         sbi->compress_watermark = COMPRESS_WATERMARK;
1974
1975         atomic_set(&sbi->compress_page_hit, 0);
1976
1977         return 0;
1978 }
1979
1980 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi)
1981 {
1982         if (!sbi->compress_inode)
1983                 return;
1984         iput(sbi->compress_inode);
1985         sbi->compress_inode = NULL;
1986 }
1987
1988 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi)
1989 {
1990         dev_t dev = sbi->sb->s_bdev->bd_dev;
1991         char slab_name[32];
1992
1993         if (!f2fs_sb_has_compression(sbi))
1994                 return 0;
1995
1996         sprintf(slab_name, "f2fs_page_array_entry-%u:%u", MAJOR(dev), MINOR(dev));
1997
1998         sbi->page_array_slab_size = sizeof(struct page *) <<
1999                                         F2FS_OPTION(sbi).compress_log_size;
2000
2001         sbi->page_array_slab = f2fs_kmem_cache_create(slab_name,
2002                                         sbi->page_array_slab_size);
2003         return sbi->page_array_slab ? 0 : -ENOMEM;
2004 }
2005
2006 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi)
2007 {
2008         kmem_cache_destroy(sbi->page_array_slab);
2009 }
2010
2011 int __init f2fs_init_compress_cache(void)
2012 {
2013         cic_entry_slab = f2fs_kmem_cache_create("f2fs_cic_entry",
2014                                         sizeof(struct compress_io_ctx));
2015         if (!cic_entry_slab)
2016                 return -ENOMEM;
2017         dic_entry_slab = f2fs_kmem_cache_create("f2fs_dic_entry",
2018                                         sizeof(struct decompress_io_ctx));
2019         if (!dic_entry_slab)
2020                 goto free_cic;
2021         return 0;
2022 free_cic:
2023         kmem_cache_destroy(cic_entry_slab);
2024         return -ENOMEM;
2025 }
2026
2027 void f2fs_destroy_compress_cache(void)
2028 {
2029         kmem_cache_destroy(dic_entry_slab);
2030         kmem_cache_destroy(cic_entry_slab);
2031 }