Merge branch 'overlayfs-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mszer...
[platform/kernel/linux-starfive.git] / fs / f2fs / checkpoint.c
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *inode_entry_slab;
28
29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
30 {
31         set_ckpt_flags(sbi, CP_ERROR_FLAG);
32         sbi->sb->s_flags |= MS_RDONLY;
33         if (!end_io)
34                 f2fs_flush_merged_bios(sbi);
35 }
36
37 /*
38  * We guarantee no failure on the returned page.
39  */
40 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
41 {
42         struct address_space *mapping = META_MAPPING(sbi);
43         struct page *page = NULL;
44 repeat:
45         page = f2fs_grab_cache_page(mapping, index, false);
46         if (!page) {
47                 cond_resched();
48                 goto repeat;
49         }
50         f2fs_wait_on_page_writeback(page, META, true);
51         if (!PageUptodate(page))
52                 SetPageUptodate(page);
53         return page;
54 }
55
56 /*
57  * We guarantee no failure on the returned page.
58  */
59 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
60                                                         bool is_meta)
61 {
62         struct address_space *mapping = META_MAPPING(sbi);
63         struct page *page;
64         struct f2fs_io_info fio = {
65                 .sbi = sbi,
66                 .type = META,
67                 .op = REQ_OP_READ,
68                 .op_flags = REQ_META | REQ_PRIO,
69                 .old_blkaddr = index,
70                 .new_blkaddr = index,
71                 .encrypted_page = NULL,
72         };
73
74         if (unlikely(!is_meta))
75                 fio.op_flags &= ~REQ_META;
76 repeat:
77         page = f2fs_grab_cache_page(mapping, index, false);
78         if (!page) {
79                 cond_resched();
80                 goto repeat;
81         }
82         if (PageUptodate(page))
83                 goto out;
84
85         fio.page = page;
86
87         if (f2fs_submit_page_bio(&fio)) {
88                 f2fs_put_page(page, 1);
89                 goto repeat;
90         }
91
92         lock_page(page);
93         if (unlikely(page->mapping != mapping)) {
94                 f2fs_put_page(page, 1);
95                 goto repeat;
96         }
97
98         /*
99          * if there is any IO error when accessing device, make our filesystem
100          * readonly and make sure do not write checkpoint with non-uptodate
101          * meta page.
102          */
103         if (unlikely(!PageUptodate(page)))
104                 f2fs_stop_checkpoint(sbi, false);
105 out:
106         return page;
107 }
108
109 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
110 {
111         return __get_meta_page(sbi, index, true);
112 }
113
114 /* for POR only */
115 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
116 {
117         return __get_meta_page(sbi, index, false);
118 }
119
120 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type)
121 {
122         switch (type) {
123         case META_NAT:
124                 break;
125         case META_SIT:
126                 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
127                         return false;
128                 break;
129         case META_SSA:
130                 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
131                         blkaddr < SM_I(sbi)->ssa_blkaddr))
132                         return false;
133                 break;
134         case META_CP:
135                 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
136                         blkaddr < __start_cp_addr(sbi)))
137                         return false;
138                 break;
139         case META_POR:
140                 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
141                         blkaddr < MAIN_BLKADDR(sbi)))
142                         return false;
143                 break;
144         default:
145                 BUG();
146         }
147
148         return true;
149 }
150
151 /*
152  * Readahead CP/NAT/SIT/SSA pages
153  */
154 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
155                                                         int type, bool sync)
156 {
157         struct page *page;
158         block_t blkno = start;
159         struct f2fs_io_info fio = {
160                 .sbi = sbi,
161                 .type = META,
162                 .op = REQ_OP_READ,
163                 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
164                 .encrypted_page = NULL,
165         };
166         struct blk_plug plug;
167
168         if (unlikely(type == META_POR))
169                 fio.op_flags &= ~REQ_META;
170
171         blk_start_plug(&plug);
172         for (; nrpages-- > 0; blkno++) {
173
174                 if (!is_valid_blkaddr(sbi, blkno, type))
175                         goto out;
176
177                 switch (type) {
178                 case META_NAT:
179                         if (unlikely(blkno >=
180                                         NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
181                                 blkno = 0;
182                         /* get nat block addr */
183                         fio.new_blkaddr = current_nat_addr(sbi,
184                                         blkno * NAT_ENTRY_PER_BLOCK);
185                         break;
186                 case META_SIT:
187                         /* get sit block addr */
188                         fio.new_blkaddr = current_sit_addr(sbi,
189                                         blkno * SIT_ENTRY_PER_BLOCK);
190                         break;
191                 case META_SSA:
192                 case META_CP:
193                 case META_POR:
194                         fio.new_blkaddr = blkno;
195                         break;
196                 default:
197                         BUG();
198                 }
199
200                 page = f2fs_grab_cache_page(META_MAPPING(sbi),
201                                                 fio.new_blkaddr, false);
202                 if (!page)
203                         continue;
204                 if (PageUptodate(page)) {
205                         f2fs_put_page(page, 1);
206                         continue;
207                 }
208
209                 fio.page = page;
210                 fio.old_blkaddr = fio.new_blkaddr;
211                 f2fs_submit_page_mbio(&fio);
212                 f2fs_put_page(page, 0);
213         }
214 out:
215         f2fs_submit_merged_bio(sbi, META, READ);
216         blk_finish_plug(&plug);
217         return blkno - start;
218 }
219
220 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
221 {
222         struct page *page;
223         bool readahead = false;
224
225         page = find_get_page(META_MAPPING(sbi), index);
226         if (!page || !PageUptodate(page))
227                 readahead = true;
228         f2fs_put_page(page, 0);
229
230         if (readahead)
231                 ra_meta_pages(sbi, index, BIO_MAX_PAGES, META_POR, true);
232 }
233
234 static int f2fs_write_meta_page(struct page *page,
235                                 struct writeback_control *wbc)
236 {
237         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
238
239         trace_f2fs_writepage(page, META);
240
241         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
242                 goto redirty_out;
243         if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
244                 goto redirty_out;
245         if (unlikely(f2fs_cp_error(sbi)))
246                 goto redirty_out;
247
248         write_meta_page(sbi, page);
249         dec_page_count(sbi, F2FS_DIRTY_META);
250
251         if (wbc->for_reclaim)
252                 f2fs_submit_merged_bio_cond(sbi, page->mapping->host,
253                                                 0, page->index, META, WRITE);
254
255         unlock_page(page);
256
257         if (unlikely(f2fs_cp_error(sbi)))
258                 f2fs_submit_merged_bio(sbi, META, WRITE);
259
260         return 0;
261
262 redirty_out:
263         redirty_page_for_writepage(wbc, page);
264         return AOP_WRITEPAGE_ACTIVATE;
265 }
266
267 static int f2fs_write_meta_pages(struct address_space *mapping,
268                                 struct writeback_control *wbc)
269 {
270         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
271         long diff, written;
272
273         /* collect a number of dirty meta pages and write together */
274         if (wbc->for_kupdate ||
275                 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
276                 goto skip_write;
277
278         trace_f2fs_writepages(mapping->host, wbc, META);
279
280         /* if mounting is failed, skip writing node pages */
281         mutex_lock(&sbi->cp_mutex);
282         diff = nr_pages_to_write(sbi, META, wbc);
283         written = sync_meta_pages(sbi, META, wbc->nr_to_write);
284         mutex_unlock(&sbi->cp_mutex);
285         wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
286         return 0;
287
288 skip_write:
289         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
290         trace_f2fs_writepages(mapping->host, wbc, META);
291         return 0;
292 }
293
294 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
295                                                 long nr_to_write)
296 {
297         struct address_space *mapping = META_MAPPING(sbi);
298         pgoff_t index = 0, end = ULONG_MAX, prev = ULONG_MAX;
299         struct pagevec pvec;
300         long nwritten = 0;
301         struct writeback_control wbc = {
302                 .for_reclaim = 0,
303         };
304         struct blk_plug plug;
305
306         pagevec_init(&pvec, 0);
307
308         blk_start_plug(&plug);
309
310         while (index <= end) {
311                 int i, nr_pages;
312                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
313                                 PAGECACHE_TAG_DIRTY,
314                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
315                 if (unlikely(nr_pages == 0))
316                         break;
317
318                 for (i = 0; i < nr_pages; i++) {
319                         struct page *page = pvec.pages[i];
320
321                         if (prev == ULONG_MAX)
322                                 prev = page->index - 1;
323                         if (nr_to_write != LONG_MAX && page->index != prev + 1) {
324                                 pagevec_release(&pvec);
325                                 goto stop;
326                         }
327
328                         lock_page(page);
329
330                         if (unlikely(page->mapping != mapping)) {
331 continue_unlock:
332                                 unlock_page(page);
333                                 continue;
334                         }
335                         if (!PageDirty(page)) {
336                                 /* someone wrote it for us */
337                                 goto continue_unlock;
338                         }
339
340                         f2fs_wait_on_page_writeback(page, META, true);
341
342                         BUG_ON(PageWriteback(page));
343                         if (!clear_page_dirty_for_io(page))
344                                 goto continue_unlock;
345
346                         if (mapping->a_ops->writepage(page, &wbc)) {
347                                 unlock_page(page);
348                                 break;
349                         }
350                         nwritten++;
351                         prev = page->index;
352                         if (unlikely(nwritten >= nr_to_write))
353                                 break;
354                 }
355                 pagevec_release(&pvec);
356                 cond_resched();
357         }
358 stop:
359         if (nwritten)
360                 f2fs_submit_merged_bio(sbi, type, WRITE);
361
362         blk_finish_plug(&plug);
363
364         return nwritten;
365 }
366
367 static int f2fs_set_meta_page_dirty(struct page *page)
368 {
369         trace_f2fs_set_page_dirty(page, META);
370
371         if (!PageUptodate(page))
372                 SetPageUptodate(page);
373         if (!PageDirty(page)) {
374                 f2fs_set_page_dirty_nobuffers(page);
375                 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
376                 SetPagePrivate(page);
377                 f2fs_trace_pid(page);
378                 return 1;
379         }
380         return 0;
381 }
382
383 const struct address_space_operations f2fs_meta_aops = {
384         .writepage      = f2fs_write_meta_page,
385         .writepages     = f2fs_write_meta_pages,
386         .set_page_dirty = f2fs_set_meta_page_dirty,
387         .invalidatepage = f2fs_invalidate_page,
388         .releasepage    = f2fs_release_page,
389 #ifdef CONFIG_MIGRATION
390         .migratepage    = f2fs_migrate_page,
391 #endif
392 };
393
394 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
395 {
396         struct inode_management *im = &sbi->im[type];
397         struct ino_entry *e, *tmp;
398
399         tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
400 retry:
401         radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
402
403         spin_lock(&im->ino_lock);
404         e = radix_tree_lookup(&im->ino_root, ino);
405         if (!e) {
406                 e = tmp;
407                 if (radix_tree_insert(&im->ino_root, ino, e)) {
408                         spin_unlock(&im->ino_lock);
409                         radix_tree_preload_end();
410                         goto retry;
411                 }
412                 memset(e, 0, sizeof(struct ino_entry));
413                 e->ino = ino;
414
415                 list_add_tail(&e->list, &im->ino_list);
416                 if (type != ORPHAN_INO)
417                         im->ino_num++;
418         }
419         spin_unlock(&im->ino_lock);
420         radix_tree_preload_end();
421
422         if (e != tmp)
423                 kmem_cache_free(ino_entry_slab, tmp);
424 }
425
426 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
427 {
428         struct inode_management *im = &sbi->im[type];
429         struct ino_entry *e;
430
431         spin_lock(&im->ino_lock);
432         e = radix_tree_lookup(&im->ino_root, ino);
433         if (e) {
434                 list_del(&e->list);
435                 radix_tree_delete(&im->ino_root, ino);
436                 im->ino_num--;
437                 spin_unlock(&im->ino_lock);
438                 kmem_cache_free(ino_entry_slab, e);
439                 return;
440         }
441         spin_unlock(&im->ino_lock);
442 }
443
444 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
445 {
446         /* add new dirty ino entry into list */
447         __add_ino_entry(sbi, ino, type);
448 }
449
450 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
451 {
452         /* remove dirty ino entry from list */
453         __remove_ino_entry(sbi, ino, type);
454 }
455
456 /* mode should be APPEND_INO or UPDATE_INO */
457 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
458 {
459         struct inode_management *im = &sbi->im[mode];
460         struct ino_entry *e;
461
462         spin_lock(&im->ino_lock);
463         e = radix_tree_lookup(&im->ino_root, ino);
464         spin_unlock(&im->ino_lock);
465         return e ? true : false;
466 }
467
468 void release_ino_entry(struct f2fs_sb_info *sbi, bool all)
469 {
470         struct ino_entry *e, *tmp;
471         int i;
472
473         for (i = all ? ORPHAN_INO: APPEND_INO; i <= UPDATE_INO; i++) {
474                 struct inode_management *im = &sbi->im[i];
475
476                 spin_lock(&im->ino_lock);
477                 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
478                         list_del(&e->list);
479                         radix_tree_delete(&im->ino_root, e->ino);
480                         kmem_cache_free(ino_entry_slab, e);
481                         im->ino_num--;
482                 }
483                 spin_unlock(&im->ino_lock);
484         }
485 }
486
487 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
488 {
489         struct inode_management *im = &sbi->im[ORPHAN_INO];
490         int err = 0;
491
492         spin_lock(&im->ino_lock);
493
494 #ifdef CONFIG_F2FS_FAULT_INJECTION
495         if (time_to_inject(sbi, FAULT_ORPHAN)) {
496                 spin_unlock(&im->ino_lock);
497                 f2fs_show_injection_info(FAULT_ORPHAN);
498                 return -ENOSPC;
499         }
500 #endif
501         if (unlikely(im->ino_num >= sbi->max_orphans))
502                 err = -ENOSPC;
503         else
504                 im->ino_num++;
505         spin_unlock(&im->ino_lock);
506
507         return err;
508 }
509
510 void release_orphan_inode(struct f2fs_sb_info *sbi)
511 {
512         struct inode_management *im = &sbi->im[ORPHAN_INO];
513
514         spin_lock(&im->ino_lock);
515         f2fs_bug_on(sbi, im->ino_num == 0);
516         im->ino_num--;
517         spin_unlock(&im->ino_lock);
518 }
519
520 void add_orphan_inode(struct inode *inode)
521 {
522         /* add new orphan ino entry into list */
523         __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, ORPHAN_INO);
524         update_inode_page(inode);
525 }
526
527 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
528 {
529         /* remove orphan entry from orphan list */
530         __remove_ino_entry(sbi, ino, ORPHAN_INO);
531 }
532
533 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
534 {
535         struct inode *inode;
536         struct node_info ni;
537         int err = acquire_orphan_inode(sbi);
538
539         if (err) {
540                 set_sbi_flag(sbi, SBI_NEED_FSCK);
541                 f2fs_msg(sbi->sb, KERN_WARNING,
542                                 "%s: orphan failed (ino=%x), run fsck to fix.",
543                                 __func__, ino);
544                 return err;
545         }
546
547         __add_ino_entry(sbi, ino, ORPHAN_INO);
548
549         inode = f2fs_iget_retry(sbi->sb, ino);
550         if (IS_ERR(inode)) {
551                 /*
552                  * there should be a bug that we can't find the entry
553                  * to orphan inode.
554                  */
555                 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
556                 return PTR_ERR(inode);
557         }
558
559         clear_nlink(inode);
560
561         /* truncate all the data during iput */
562         iput(inode);
563
564         get_node_info(sbi, ino, &ni);
565
566         /* ENOMEM was fully retried in f2fs_evict_inode. */
567         if (ni.blk_addr != NULL_ADDR) {
568                 set_sbi_flag(sbi, SBI_NEED_FSCK);
569                 f2fs_msg(sbi->sb, KERN_WARNING,
570                         "%s: orphan failed (ino=%x), run fsck to fix.",
571                                 __func__, ino);
572                 return -EIO;
573         }
574         __remove_ino_entry(sbi, ino, ORPHAN_INO);
575         return 0;
576 }
577
578 int recover_orphan_inodes(struct f2fs_sb_info *sbi)
579 {
580         block_t start_blk, orphan_blocks, i, j;
581         int err;
582
583         if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
584                 return 0;
585
586         start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
587         orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
588
589         ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
590
591         for (i = 0; i < orphan_blocks; i++) {
592                 struct page *page = get_meta_page(sbi, start_blk + i);
593                 struct f2fs_orphan_block *orphan_blk;
594
595                 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
596                 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
597                         nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
598                         err = recover_orphan_inode(sbi, ino);
599                         if (err) {
600                                 f2fs_put_page(page, 1);
601                                 return err;
602                         }
603                 }
604                 f2fs_put_page(page, 1);
605         }
606         /* clear Orphan Flag */
607         clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
608         return 0;
609 }
610
611 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
612 {
613         struct list_head *head;
614         struct f2fs_orphan_block *orphan_blk = NULL;
615         unsigned int nentries = 0;
616         unsigned short index = 1;
617         unsigned short orphan_blocks;
618         struct page *page = NULL;
619         struct ino_entry *orphan = NULL;
620         struct inode_management *im = &sbi->im[ORPHAN_INO];
621
622         orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
623
624         /*
625          * we don't need to do spin_lock(&im->ino_lock) here, since all the
626          * orphan inode operations are covered under f2fs_lock_op().
627          * And, spin_lock should be avoided due to page operations below.
628          */
629         head = &im->ino_list;
630
631         /* loop for each orphan inode entry and write them in Jornal block */
632         list_for_each_entry(orphan, head, list) {
633                 if (!page) {
634                         page = grab_meta_page(sbi, start_blk++);
635                         orphan_blk =
636                                 (struct f2fs_orphan_block *)page_address(page);
637                         memset(orphan_blk, 0, sizeof(*orphan_blk));
638                 }
639
640                 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
641
642                 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
643                         /*
644                          * an orphan block is full of 1020 entries,
645                          * then we need to flush current orphan blocks
646                          * and bring another one in memory
647                          */
648                         orphan_blk->blk_addr = cpu_to_le16(index);
649                         orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
650                         orphan_blk->entry_count = cpu_to_le32(nentries);
651                         set_page_dirty(page);
652                         f2fs_put_page(page, 1);
653                         index++;
654                         nentries = 0;
655                         page = NULL;
656                 }
657         }
658
659         if (page) {
660                 orphan_blk->blk_addr = cpu_to_le16(index);
661                 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
662                 orphan_blk->entry_count = cpu_to_le32(nentries);
663                 set_page_dirty(page);
664                 f2fs_put_page(page, 1);
665         }
666 }
667
668 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
669                 struct f2fs_checkpoint **cp_block, struct page **cp_page,
670                 unsigned long long *version)
671 {
672         unsigned long blk_size = sbi->blocksize;
673         size_t crc_offset = 0;
674         __u32 crc = 0;
675
676         *cp_page = get_meta_page(sbi, cp_addr);
677         *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
678
679         crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
680         if (crc_offset >= blk_size) {
681                 f2fs_msg(sbi->sb, KERN_WARNING,
682                         "invalid crc_offset: %zu", crc_offset);
683                 return -EINVAL;
684         }
685
686         crc = cur_cp_crc(*cp_block);
687         if (!f2fs_crc_valid(sbi, crc, *cp_block, crc_offset)) {
688                 f2fs_msg(sbi->sb, KERN_WARNING, "invalid crc value");
689                 return -EINVAL;
690         }
691
692         *version = cur_cp_version(*cp_block);
693         return 0;
694 }
695
696 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
697                                 block_t cp_addr, unsigned long long *version)
698 {
699         struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
700         struct f2fs_checkpoint *cp_block = NULL;
701         unsigned long long cur_version = 0, pre_version = 0;
702         int err;
703
704         err = get_checkpoint_version(sbi, cp_addr, &cp_block,
705                                         &cp_page_1, version);
706         if (err)
707                 goto invalid_cp1;
708         pre_version = *version;
709
710         cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
711         err = get_checkpoint_version(sbi, cp_addr, &cp_block,
712                                         &cp_page_2, version);
713         if (err)
714                 goto invalid_cp2;
715         cur_version = *version;
716
717         if (cur_version == pre_version) {
718                 *version = cur_version;
719                 f2fs_put_page(cp_page_2, 1);
720                 return cp_page_1;
721         }
722 invalid_cp2:
723         f2fs_put_page(cp_page_2, 1);
724 invalid_cp1:
725         f2fs_put_page(cp_page_1, 1);
726         return NULL;
727 }
728
729 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
730 {
731         struct f2fs_checkpoint *cp_block;
732         struct f2fs_super_block *fsb = sbi->raw_super;
733         struct page *cp1, *cp2, *cur_page;
734         unsigned long blk_size = sbi->blocksize;
735         unsigned long long cp1_version = 0, cp2_version = 0;
736         unsigned long long cp_start_blk_no;
737         unsigned int cp_blks = 1 + __cp_payload(sbi);
738         block_t cp_blk_no;
739         int i;
740
741         sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
742         if (!sbi->ckpt)
743                 return -ENOMEM;
744         /*
745          * Finding out valid cp block involves read both
746          * sets( cp pack1 and cp pack 2)
747          */
748         cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
749         cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
750
751         /* The second checkpoint pack should start at the next segment */
752         cp_start_blk_no += ((unsigned long long)1) <<
753                                 le32_to_cpu(fsb->log_blocks_per_seg);
754         cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
755
756         if (cp1 && cp2) {
757                 if (ver_after(cp2_version, cp1_version))
758                         cur_page = cp2;
759                 else
760                         cur_page = cp1;
761         } else if (cp1) {
762                 cur_page = cp1;
763         } else if (cp2) {
764                 cur_page = cp2;
765         } else {
766                 goto fail_no_cp;
767         }
768
769         cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
770         memcpy(sbi->ckpt, cp_block, blk_size);
771
772         /* Sanity checking of checkpoint */
773         if (sanity_check_ckpt(sbi))
774                 goto free_fail_no_cp;
775
776         if (cur_page == cp1)
777                 sbi->cur_cp_pack = 1;
778         else
779                 sbi->cur_cp_pack = 2;
780
781         if (cp_blks <= 1)
782                 goto done;
783
784         cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
785         if (cur_page == cp2)
786                 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
787
788         for (i = 1; i < cp_blks; i++) {
789                 void *sit_bitmap_ptr;
790                 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
791
792                 cur_page = get_meta_page(sbi, cp_blk_no + i);
793                 sit_bitmap_ptr = page_address(cur_page);
794                 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
795                 f2fs_put_page(cur_page, 1);
796         }
797 done:
798         f2fs_put_page(cp1, 1);
799         f2fs_put_page(cp2, 1);
800         return 0;
801
802 free_fail_no_cp:
803         f2fs_put_page(cp1, 1);
804         f2fs_put_page(cp2, 1);
805 fail_no_cp:
806         kfree(sbi->ckpt);
807         return -EINVAL;
808 }
809
810 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
811 {
812         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
813         int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
814
815         if (is_inode_flag_set(inode, flag))
816                 return;
817
818         set_inode_flag(inode, flag);
819         list_add_tail(&F2FS_I(inode)->dirty_list, &sbi->inode_list[type]);
820         stat_inc_dirty_inode(sbi, type);
821 }
822
823 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
824 {
825         int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
826
827         if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
828                 return;
829
830         list_del_init(&F2FS_I(inode)->dirty_list);
831         clear_inode_flag(inode, flag);
832         stat_dec_dirty_inode(F2FS_I_SB(inode), type);
833 }
834
835 void update_dirty_page(struct inode *inode, struct page *page)
836 {
837         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
838         enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
839
840         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
841                         !S_ISLNK(inode->i_mode))
842                 return;
843
844         spin_lock(&sbi->inode_lock[type]);
845         if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
846                 __add_dirty_inode(inode, type);
847         inode_inc_dirty_pages(inode);
848         spin_unlock(&sbi->inode_lock[type]);
849
850         SetPagePrivate(page);
851         f2fs_trace_pid(page);
852 }
853
854 void remove_dirty_inode(struct inode *inode)
855 {
856         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
857         enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
858
859         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
860                         !S_ISLNK(inode->i_mode))
861                 return;
862
863         if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
864                 return;
865
866         spin_lock(&sbi->inode_lock[type]);
867         __remove_dirty_inode(inode, type);
868         spin_unlock(&sbi->inode_lock[type]);
869 }
870
871 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
872 {
873         struct list_head *head;
874         struct inode *inode;
875         struct f2fs_inode_info *fi;
876         bool is_dir = (type == DIR_INODE);
877
878         trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
879                                 get_pages(sbi, is_dir ?
880                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
881 retry:
882         if (unlikely(f2fs_cp_error(sbi)))
883                 return -EIO;
884
885         spin_lock(&sbi->inode_lock[type]);
886
887         head = &sbi->inode_list[type];
888         if (list_empty(head)) {
889                 spin_unlock(&sbi->inode_lock[type]);
890                 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
891                                 get_pages(sbi, is_dir ?
892                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
893                 return 0;
894         }
895         fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
896         inode = igrab(&fi->vfs_inode);
897         spin_unlock(&sbi->inode_lock[type]);
898         if (inode) {
899                 filemap_fdatawrite(inode->i_mapping);
900                 iput(inode);
901         } else {
902                 /*
903                  * We should submit bio, since it exists several
904                  * wribacking dentry pages in the freeing inode.
905                  */
906                 f2fs_submit_merged_bio(sbi, DATA, WRITE);
907                 cond_resched();
908         }
909         goto retry;
910 }
911
912 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
913 {
914         struct list_head *head = &sbi->inode_list[DIRTY_META];
915         struct inode *inode;
916         struct f2fs_inode_info *fi;
917         s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
918
919         while (total--) {
920                 if (unlikely(f2fs_cp_error(sbi)))
921                         return -EIO;
922
923                 spin_lock(&sbi->inode_lock[DIRTY_META]);
924                 if (list_empty(head)) {
925                         spin_unlock(&sbi->inode_lock[DIRTY_META]);
926                         return 0;
927                 }
928                 fi = list_first_entry(head, struct f2fs_inode_info,
929                                                         gdirty_list);
930                 inode = igrab(&fi->vfs_inode);
931                 spin_unlock(&sbi->inode_lock[DIRTY_META]);
932                 if (inode) {
933                         sync_inode_metadata(inode, 0);
934
935                         /* it's on eviction */
936                         if (is_inode_flag_set(inode, FI_DIRTY_INODE))
937                                 update_inode_page(inode);
938                         iput(inode);
939                 }
940         };
941         return 0;
942 }
943
944 /*
945  * Freeze all the FS-operations for checkpoint.
946  */
947 static int block_operations(struct f2fs_sb_info *sbi)
948 {
949         struct writeback_control wbc = {
950                 .sync_mode = WB_SYNC_ALL,
951                 .nr_to_write = LONG_MAX,
952                 .for_reclaim = 0,
953         };
954         struct blk_plug plug;
955         int err = 0;
956
957         blk_start_plug(&plug);
958
959 retry_flush_dents:
960         f2fs_lock_all(sbi);
961         /* write all the dirty dentry pages */
962         if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
963                 f2fs_unlock_all(sbi);
964                 err = sync_dirty_inodes(sbi, DIR_INODE);
965                 if (err)
966                         goto out;
967                 goto retry_flush_dents;
968         }
969
970         if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
971                 f2fs_unlock_all(sbi);
972                 err = f2fs_sync_inode_meta(sbi);
973                 if (err)
974                         goto out;
975                 goto retry_flush_dents;
976         }
977
978         /*
979          * POR: we should ensure that there are no dirty node pages
980          * until finishing nat/sit flush.
981          */
982 retry_flush_nodes:
983         down_write(&sbi->node_write);
984
985         if (get_pages(sbi, F2FS_DIRTY_NODES)) {
986                 up_write(&sbi->node_write);
987                 err = sync_node_pages(sbi, &wbc);
988                 if (err) {
989                         f2fs_unlock_all(sbi);
990                         goto out;
991                 }
992                 goto retry_flush_nodes;
993         }
994 out:
995         blk_finish_plug(&plug);
996         return err;
997 }
998
999 static void unblock_operations(struct f2fs_sb_info *sbi)
1000 {
1001         up_write(&sbi->node_write);
1002         f2fs_unlock_all(sbi);
1003 }
1004
1005 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
1006 {
1007         DEFINE_WAIT(wait);
1008
1009         for (;;) {
1010                 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
1011
1012                 if (!get_pages(sbi, F2FS_WB_CP_DATA))
1013                         break;
1014
1015                 io_schedule_timeout(5*HZ);
1016         }
1017         finish_wait(&sbi->cp_wait, &wait);
1018 }
1019
1020 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1021 {
1022         unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1023         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1024
1025         spin_lock(&sbi->cp_lock);
1026
1027         if (cpc->reason == CP_UMOUNT && ckpt->cp_pack_total_block_count >
1028                         sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks)
1029                 disable_nat_bits(sbi, false);
1030
1031         if (cpc->reason == CP_UMOUNT)
1032                 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1033         else
1034                 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1035
1036         if (cpc->reason == CP_FASTBOOT)
1037                 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1038         else
1039                 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1040
1041         if (orphan_num)
1042                 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1043         else
1044                 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1045
1046         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1047                 __set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1048
1049         /* set this flag to activate crc|cp_ver for recovery */
1050         __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1051
1052         spin_unlock(&sbi->cp_lock);
1053 }
1054
1055 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1056 {
1057         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1058         struct f2fs_nm_info *nm_i = NM_I(sbi);
1059         unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1060         nid_t last_nid = nm_i->next_scan_nid;
1061         block_t start_blk;
1062         unsigned int data_sum_blocks, orphan_blocks;
1063         __u32 crc32 = 0;
1064         int i;
1065         int cp_payload_blks = __cp_payload(sbi);
1066         struct super_block *sb = sbi->sb;
1067         struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1068         u64 kbytes_written;
1069
1070         /* Flush all the NAT/SIT pages */
1071         while (get_pages(sbi, F2FS_DIRTY_META)) {
1072                 sync_meta_pages(sbi, META, LONG_MAX);
1073                 if (unlikely(f2fs_cp_error(sbi)))
1074                         return -EIO;
1075         }
1076
1077         next_free_nid(sbi, &last_nid);
1078
1079         /*
1080          * modify checkpoint
1081          * version number is already updated
1082          */
1083         ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
1084         ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
1085         ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1086         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1087                 ckpt->cur_node_segno[i] =
1088                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
1089                 ckpt->cur_node_blkoff[i] =
1090                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
1091                 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
1092                                 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
1093         }
1094         for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1095                 ckpt->cur_data_segno[i] =
1096                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
1097                 ckpt->cur_data_blkoff[i] =
1098                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
1099                 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
1100                                 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
1101         }
1102
1103         ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
1104         ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
1105         ckpt->next_free_nid = cpu_to_le32(last_nid);
1106
1107         /* 2 cp  + n data seg summary + orphan inode blocks */
1108         data_sum_blocks = npages_for_summary_flush(sbi, false);
1109         spin_lock(&sbi->cp_lock);
1110         if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1111                 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1112         else
1113                 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1114         spin_unlock(&sbi->cp_lock);
1115
1116         orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1117         ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1118                         orphan_blocks);
1119
1120         if (__remain_node_summaries(cpc->reason))
1121                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
1122                                 cp_payload_blks + data_sum_blocks +
1123                                 orphan_blocks + NR_CURSEG_NODE_TYPE);
1124         else
1125                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1126                                 cp_payload_blks + data_sum_blocks +
1127                                 orphan_blocks);
1128
1129         /* update ckpt flag for checkpoint */
1130         update_ckpt_flags(sbi, cpc);
1131
1132         /* update SIT/NAT bitmap */
1133         get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1134         get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1135
1136         crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset));
1137         *((__le32 *)((unsigned char *)ckpt +
1138                                 le32_to_cpu(ckpt->checksum_offset)))
1139                                 = cpu_to_le32(crc32);
1140
1141         start_blk = __start_cp_next_addr(sbi);
1142
1143         /* write nat bits */
1144         if (enabled_nat_bits(sbi, cpc)) {
1145                 __u64 cp_ver = cur_cp_version(ckpt);
1146                 unsigned int i;
1147                 block_t blk;
1148
1149                 cp_ver |= ((__u64)crc32 << 32);
1150                 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
1151
1152                 blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
1153                 for (i = 0; i < nm_i->nat_bits_blocks; i++)
1154                         update_meta_page(sbi, nm_i->nat_bits +
1155                                         (i << F2FS_BLKSIZE_BITS), blk + i);
1156
1157                 /* Flush all the NAT BITS pages */
1158                 while (get_pages(sbi, F2FS_DIRTY_META)) {
1159                         sync_meta_pages(sbi, META, LONG_MAX);
1160                         if (unlikely(f2fs_cp_error(sbi)))
1161                                 return -EIO;
1162                 }
1163         }
1164
1165         /* need to wait for end_io results */
1166         wait_on_all_pages_writeback(sbi);
1167         if (unlikely(f2fs_cp_error(sbi)))
1168                 return -EIO;
1169
1170         /* write out checkpoint buffer at block 0 */
1171         update_meta_page(sbi, ckpt, start_blk++);
1172
1173         for (i = 1; i < 1 + cp_payload_blks; i++)
1174                 update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1175                                                         start_blk++);
1176
1177         if (orphan_num) {
1178                 write_orphan_inodes(sbi, start_blk);
1179                 start_blk += orphan_blocks;
1180         }
1181
1182         write_data_summaries(sbi, start_blk);
1183         start_blk += data_sum_blocks;
1184
1185         /* Record write statistics in the hot node summary */
1186         kbytes_written = sbi->kbytes_written;
1187         if (sb->s_bdev->bd_part)
1188                 kbytes_written += BD_PART_WRITTEN(sbi);
1189
1190         seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1191
1192         if (__remain_node_summaries(cpc->reason)) {
1193                 write_node_summaries(sbi, start_blk);
1194                 start_blk += NR_CURSEG_NODE_TYPE;
1195         }
1196
1197         /* writeout checkpoint block */
1198         update_meta_page(sbi, ckpt, start_blk);
1199
1200         /* wait for previous submitted node/meta pages writeback */
1201         wait_on_all_pages_writeback(sbi);
1202
1203         if (unlikely(f2fs_cp_error(sbi)))
1204                 return -EIO;
1205
1206         filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LLONG_MAX);
1207         filemap_fdatawait_range(META_MAPPING(sbi), 0, LLONG_MAX);
1208
1209         /* update user_block_counts */
1210         sbi->last_valid_block_count = sbi->total_valid_block_count;
1211         percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1212
1213         /* Here, we only have one bio having CP pack */
1214         sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
1215
1216         /* wait for previous submitted meta pages writeback */
1217         wait_on_all_pages_writeback(sbi);
1218
1219         release_ino_entry(sbi, false);
1220
1221         if (unlikely(f2fs_cp_error(sbi)))
1222                 return -EIO;
1223
1224         clear_sbi_flag(sbi, SBI_IS_DIRTY);
1225         clear_sbi_flag(sbi, SBI_NEED_CP);
1226         __set_cp_next_pack(sbi);
1227
1228         /*
1229          * redirty superblock if metadata like node page or inode cache is
1230          * updated during writing checkpoint.
1231          */
1232         if (get_pages(sbi, F2FS_DIRTY_NODES) ||
1233                         get_pages(sbi, F2FS_DIRTY_IMETA))
1234                 set_sbi_flag(sbi, SBI_IS_DIRTY);
1235
1236         f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1237
1238         return 0;
1239 }
1240
1241 /*
1242  * We guarantee that this checkpoint procedure will not fail.
1243  */
1244 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1245 {
1246         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1247         unsigned long long ckpt_ver;
1248         int err = 0;
1249
1250         mutex_lock(&sbi->cp_mutex);
1251
1252         if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1253                 (cpc->reason == CP_FASTBOOT || cpc->reason == CP_SYNC ||
1254                 (cpc->reason == CP_DISCARD && !sbi->discard_blks)))
1255                 goto out;
1256         if (unlikely(f2fs_cp_error(sbi))) {
1257                 err = -EIO;
1258                 goto out;
1259         }
1260         if (f2fs_readonly(sbi->sb)) {
1261                 err = -EROFS;
1262                 goto out;
1263         }
1264
1265         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1266
1267         err = block_operations(sbi);
1268         if (err)
1269                 goto out;
1270
1271         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1272
1273         f2fs_flush_merged_bios(sbi);
1274
1275         /* this is the case of multiple fstrims without any changes */
1276         if (cpc->reason == CP_DISCARD) {
1277                 if (!exist_trim_candidates(sbi, cpc)) {
1278                         unblock_operations(sbi);
1279                         goto out;
1280                 }
1281
1282                 if (NM_I(sbi)->dirty_nat_cnt == 0 &&
1283                                 SIT_I(sbi)->dirty_sentries == 0 &&
1284                                 prefree_segments(sbi) == 0) {
1285                         flush_sit_entries(sbi, cpc);
1286                         clear_prefree_segments(sbi, cpc);
1287                         unblock_operations(sbi);
1288                         goto out;
1289                 }
1290         }
1291
1292         /*
1293          * update checkpoint pack index
1294          * Increase the version number so that
1295          * SIT entries and seg summaries are written at correct place
1296          */
1297         ckpt_ver = cur_cp_version(ckpt);
1298         ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1299
1300         /* write cached NAT/SIT entries to NAT/SIT area */
1301         flush_nat_entries(sbi, cpc);
1302         flush_sit_entries(sbi, cpc);
1303
1304         /* unlock all the fs_lock[] in do_checkpoint() */
1305         err = do_checkpoint(sbi, cpc);
1306         if (err)
1307                 release_discard_addrs(sbi);
1308         else
1309                 clear_prefree_segments(sbi, cpc);
1310
1311         unblock_operations(sbi);
1312         stat_inc_cp_count(sbi->stat_info);
1313
1314         if (cpc->reason == CP_RECOVERY)
1315                 f2fs_msg(sbi->sb, KERN_NOTICE,
1316                         "checkpoint: version = %llx", ckpt_ver);
1317
1318         /* do checkpoint periodically */
1319         f2fs_update_time(sbi, CP_TIME);
1320         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1321 out:
1322         mutex_unlock(&sbi->cp_mutex);
1323         return err;
1324 }
1325
1326 void init_ino_entry_info(struct f2fs_sb_info *sbi)
1327 {
1328         int i;
1329
1330         for (i = 0; i < MAX_INO_ENTRY; i++) {
1331                 struct inode_management *im = &sbi->im[i];
1332
1333                 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1334                 spin_lock_init(&im->ino_lock);
1335                 INIT_LIST_HEAD(&im->ino_list);
1336                 im->ino_num = 0;
1337         }
1338
1339         sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1340                         NR_CURSEG_TYPE - __cp_payload(sbi)) *
1341                                 F2FS_ORPHANS_PER_BLOCK;
1342 }
1343
1344 int __init create_checkpoint_caches(void)
1345 {
1346         ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1347                         sizeof(struct ino_entry));
1348         if (!ino_entry_slab)
1349                 return -ENOMEM;
1350         inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1351                         sizeof(struct inode_entry));
1352         if (!inode_entry_slab) {
1353                 kmem_cache_destroy(ino_entry_slab);
1354                 return -ENOMEM;
1355         }
1356         return 0;
1357 }
1358
1359 void destroy_checkpoint_caches(void)
1360 {
1361         kmem_cache_destroy(ino_entry_slab);
1362         kmem_cache_destroy(inode_entry_slab);
1363 }