fdc5a12c0edd51fd29b68379cdbc23c7d24c67fb
[platform/adaptation/renesas_rcar/renesas_kernel.git] / fs / f2fs / checkpoint.c
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include <trace/events/f2fs.h>
24
25 static struct kmem_cache *orphan_entry_slab;
26 static struct kmem_cache *inode_entry_slab;
27
28 /*
29  * We guarantee no failure on the returned page.
30  */
31 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
32 {
33         struct address_space *mapping = sbi->meta_inode->i_mapping;
34         struct page *page = NULL;
35 repeat:
36         page = grab_cache_page(mapping, index);
37         if (!page) {
38                 cond_resched();
39                 goto repeat;
40         }
41
42         /* We wait writeback only inside grab_meta_page() */
43         wait_on_page_writeback(page);
44         SetPageUptodate(page);
45         return page;
46 }
47
48 /*
49  * We guarantee no failure on the returned page.
50  */
51 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
52 {
53         struct address_space *mapping = sbi->meta_inode->i_mapping;
54         struct page *page;
55 repeat:
56         page = grab_cache_page(mapping, index);
57         if (!page) {
58                 cond_resched();
59                 goto repeat;
60         }
61         if (PageUptodate(page))
62                 goto out;
63
64         if (f2fs_submit_page_bio(sbi, page, index,
65                                 READ_SYNC | REQ_META | REQ_PRIO))
66                 goto repeat;
67
68         lock_page(page);
69         if (unlikely(page->mapping != mapping)) {
70                 f2fs_put_page(page, 1);
71                 goto repeat;
72         }
73 out:
74         mark_page_accessed(page);
75         return page;
76 }
77
78 static int f2fs_write_meta_page(struct page *page,
79                                 struct writeback_control *wbc)
80 {
81         struct inode *inode = page->mapping->host;
82         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
83
84         /* Should not write any meta pages, if any IO error was occurred */
85         if (unlikely(sbi->por_doing ||
86                         is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ERROR_FLAG)))
87                 goto redirty_out;
88
89         if (wbc->for_reclaim)
90                 goto redirty_out;
91
92         wait_on_page_writeback(page);
93
94         write_meta_page(sbi, page);
95         dec_page_count(sbi, F2FS_DIRTY_META);
96         unlock_page(page);
97         return 0;
98
99 redirty_out:
100         dec_page_count(sbi, F2FS_DIRTY_META);
101         wbc->pages_skipped++;
102         set_page_dirty(page);
103         return AOP_WRITEPAGE_ACTIVATE;
104 }
105
106 static int f2fs_write_meta_pages(struct address_space *mapping,
107                                 struct writeback_control *wbc)
108 {
109         struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
110         int nrpages = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
111         long written;
112
113         if (wbc->for_kupdate)
114                 return 0;
115
116         /* collect a number of dirty meta pages and write together */
117         if (get_pages(sbi, F2FS_DIRTY_META) < nrpages)
118                 return 0;
119
120         /* if mounting is failed, skip writing node pages */
121         mutex_lock(&sbi->cp_mutex);
122         written = sync_meta_pages(sbi, META, nrpages);
123         mutex_unlock(&sbi->cp_mutex);
124         wbc->nr_to_write -= written;
125         return 0;
126 }
127
128 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
129                                                 long nr_to_write)
130 {
131         struct address_space *mapping = sbi->meta_inode->i_mapping;
132         pgoff_t index = 0, end = LONG_MAX;
133         struct pagevec pvec;
134         long nwritten = 0;
135         struct writeback_control wbc = {
136                 .for_reclaim = 0,
137         };
138
139         pagevec_init(&pvec, 0);
140
141         while (index <= end) {
142                 int i, nr_pages;
143                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
144                                 PAGECACHE_TAG_DIRTY,
145                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
146                 if (unlikely(nr_pages == 0))
147                         break;
148
149                 for (i = 0; i < nr_pages; i++) {
150                         struct page *page = pvec.pages[i];
151                         lock_page(page);
152                         f2fs_bug_on(page->mapping != mapping);
153                         f2fs_bug_on(!PageDirty(page));
154                         clear_page_dirty_for_io(page);
155                         if (f2fs_write_meta_page(page, &wbc)) {
156                                 unlock_page(page);
157                                 break;
158                         }
159                         nwritten++;
160                         if (unlikely(nwritten >= nr_to_write))
161                                 break;
162                 }
163                 pagevec_release(&pvec);
164                 cond_resched();
165         }
166
167         if (nwritten)
168                 f2fs_submit_merged_bio(sbi, type, WRITE);
169
170         return nwritten;
171 }
172
173 static int f2fs_set_meta_page_dirty(struct page *page)
174 {
175         struct address_space *mapping = page->mapping;
176         struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
177
178         trace_f2fs_set_page_dirty(page, META);
179
180         SetPageUptodate(page);
181         if (!PageDirty(page)) {
182                 __set_page_dirty_nobuffers(page);
183                 inc_page_count(sbi, F2FS_DIRTY_META);
184                 return 1;
185         }
186         return 0;
187 }
188
189 const struct address_space_operations f2fs_meta_aops = {
190         .writepage      = f2fs_write_meta_page,
191         .writepages     = f2fs_write_meta_pages,
192         .set_page_dirty = f2fs_set_meta_page_dirty,
193 };
194
195 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
196 {
197         int err = 0;
198
199         mutex_lock(&sbi->orphan_inode_mutex);
200         if (unlikely(sbi->n_orphans >= sbi->max_orphans))
201                 err = -ENOSPC;
202         else
203                 sbi->n_orphans++;
204         mutex_unlock(&sbi->orphan_inode_mutex);
205
206         return err;
207 }
208
209 void release_orphan_inode(struct f2fs_sb_info *sbi)
210 {
211         mutex_lock(&sbi->orphan_inode_mutex);
212         f2fs_bug_on(sbi->n_orphans == 0);
213         sbi->n_orphans--;
214         mutex_unlock(&sbi->orphan_inode_mutex);
215 }
216
217 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
218 {
219         struct list_head *head, *this;
220         struct orphan_inode_entry *new = NULL, *orphan = NULL;
221
222         mutex_lock(&sbi->orphan_inode_mutex);
223         head = &sbi->orphan_inode_list;
224         list_for_each(this, head) {
225                 orphan = list_entry(this, struct orphan_inode_entry, list);
226                 if (orphan->ino == ino)
227                         goto out;
228                 if (orphan->ino > ino)
229                         break;
230                 orphan = NULL;
231         }
232
233         new = f2fs_kmem_cache_alloc(orphan_entry_slab, GFP_ATOMIC);
234         new->ino = ino;
235
236         /* add new_oentry into list which is sorted by inode number */
237         if (orphan)
238                 list_add(&new->list, this->prev);
239         else
240                 list_add_tail(&new->list, head);
241 out:
242         mutex_unlock(&sbi->orphan_inode_mutex);
243 }
244
245 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
246 {
247         struct list_head *head;
248         struct orphan_inode_entry *orphan;
249
250         mutex_lock(&sbi->orphan_inode_mutex);
251         head = &sbi->orphan_inode_list;
252         list_for_each_entry(orphan, head, list) {
253                 if (orphan->ino == ino) {
254                         list_del(&orphan->list);
255                         kmem_cache_free(orphan_entry_slab, orphan);
256                         f2fs_bug_on(sbi->n_orphans == 0);
257                         sbi->n_orphans--;
258                         break;
259                 }
260         }
261         mutex_unlock(&sbi->orphan_inode_mutex);
262 }
263
264 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
265 {
266         struct inode *inode = f2fs_iget(sbi->sb, ino);
267         f2fs_bug_on(IS_ERR(inode));
268         clear_nlink(inode);
269
270         /* truncate all the data during iput */
271         iput(inode);
272 }
273
274 void recover_orphan_inodes(struct f2fs_sb_info *sbi)
275 {
276         block_t start_blk, orphan_blkaddr, i, j;
277
278         if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
279                 return;
280
281         sbi->por_doing = true;
282         start_blk = __start_cp_addr(sbi) + 1;
283         orphan_blkaddr = __start_sum_addr(sbi) - 1;
284
285         for (i = 0; i < orphan_blkaddr; i++) {
286                 struct page *page = get_meta_page(sbi, start_blk + i);
287                 struct f2fs_orphan_block *orphan_blk;
288
289                 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
290                 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
291                         nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
292                         recover_orphan_inode(sbi, ino);
293                 }
294                 f2fs_put_page(page, 1);
295         }
296         /* clear Orphan Flag */
297         clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
298         sbi->por_doing = false;
299         return;
300 }
301
302 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
303 {
304         struct list_head *head;
305         struct f2fs_orphan_block *orphan_blk = NULL;
306         unsigned int nentries = 0;
307         unsigned short index;
308         unsigned short orphan_blocks = (unsigned short)((sbi->n_orphans +
309                 (F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK);
310         struct page *page = NULL;
311         struct page *pages[orphan_blocks];
312         struct orphan_inode_entry *orphan = NULL;
313
314         for (index = 0; index < orphan_blocks; index++)
315                 pages[index] = grab_meta_page(sbi, start_blk + index);
316
317         index = 1;
318         mutex_lock(&sbi->orphan_inode_mutex);
319         head = &sbi->orphan_inode_list;
320
321         /* loop for each orphan inode entry and write them in Jornal block */
322         list_for_each_entry(orphan, head, list) {
323                 if (!page) {
324                         page = pages[index - 1];
325                         orphan_blk =
326                                 (struct f2fs_orphan_block *)page_address(page);
327                         memset(orphan_blk, 0, sizeof(*orphan_blk));
328                 }
329
330                 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
331
332                 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
333                         /*
334                          * an orphan block is full of 1020 entries,
335                          * then we need to flush current orphan blocks
336                          * and bring another one in memory
337                          */
338                         orphan_blk->blk_addr = cpu_to_le16(index);
339                         orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
340                         orphan_blk->entry_count = cpu_to_le32(nentries);
341                         set_page_dirty(page);
342                         f2fs_put_page(page, 1);
343                         index++;
344                         nentries = 0;
345                         page = NULL;
346                 }
347         }
348
349         if (page) {
350                 orphan_blk->blk_addr = cpu_to_le16(index);
351                 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
352                 orphan_blk->entry_count = cpu_to_le32(nentries);
353                 set_page_dirty(page);
354                 f2fs_put_page(page, 1);
355         }
356
357         mutex_unlock(&sbi->orphan_inode_mutex);
358 }
359
360 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
361                                 block_t cp_addr, unsigned long long *version)
362 {
363         struct page *cp_page_1, *cp_page_2 = NULL;
364         unsigned long blk_size = sbi->blocksize;
365         struct f2fs_checkpoint *cp_block;
366         unsigned long long cur_version = 0, pre_version = 0;
367         size_t crc_offset;
368         __u32 crc = 0;
369
370         /* Read the 1st cp block in this CP pack */
371         cp_page_1 = get_meta_page(sbi, cp_addr);
372
373         /* get the version number */
374         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
375         crc_offset = le32_to_cpu(cp_block->checksum_offset);
376         if (crc_offset >= blk_size)
377                 goto invalid_cp1;
378
379         crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
380         if (!f2fs_crc_valid(crc, cp_block, crc_offset))
381                 goto invalid_cp1;
382
383         pre_version = cur_cp_version(cp_block);
384
385         /* Read the 2nd cp block in this CP pack */
386         cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
387         cp_page_2 = get_meta_page(sbi, cp_addr);
388
389         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
390         crc_offset = le32_to_cpu(cp_block->checksum_offset);
391         if (crc_offset >= blk_size)
392                 goto invalid_cp2;
393
394         crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
395         if (!f2fs_crc_valid(crc, cp_block, crc_offset))
396                 goto invalid_cp2;
397
398         cur_version = cur_cp_version(cp_block);
399
400         if (cur_version == pre_version) {
401                 *version = cur_version;
402                 f2fs_put_page(cp_page_2, 1);
403                 return cp_page_1;
404         }
405 invalid_cp2:
406         f2fs_put_page(cp_page_2, 1);
407 invalid_cp1:
408         f2fs_put_page(cp_page_1, 1);
409         return NULL;
410 }
411
412 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
413 {
414         struct f2fs_checkpoint *cp_block;
415         struct f2fs_super_block *fsb = sbi->raw_super;
416         struct page *cp1, *cp2, *cur_page;
417         unsigned long blk_size = sbi->blocksize;
418         unsigned long long cp1_version = 0, cp2_version = 0;
419         unsigned long long cp_start_blk_no;
420
421         sbi->ckpt = kzalloc(blk_size, GFP_KERNEL);
422         if (!sbi->ckpt)
423                 return -ENOMEM;
424         /*
425          * Finding out valid cp block involves read both
426          * sets( cp pack1 and cp pack 2)
427          */
428         cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
429         cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
430
431         /* The second checkpoint pack should start at the next segment */
432         cp_start_blk_no += ((unsigned long long)1) <<
433                                 le32_to_cpu(fsb->log_blocks_per_seg);
434         cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
435
436         if (cp1 && cp2) {
437                 if (ver_after(cp2_version, cp1_version))
438                         cur_page = cp2;
439                 else
440                         cur_page = cp1;
441         } else if (cp1) {
442                 cur_page = cp1;
443         } else if (cp2) {
444                 cur_page = cp2;
445         } else {
446                 goto fail_no_cp;
447         }
448
449         cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
450         memcpy(sbi->ckpt, cp_block, blk_size);
451
452         f2fs_put_page(cp1, 1);
453         f2fs_put_page(cp2, 1);
454         return 0;
455
456 fail_no_cp:
457         kfree(sbi->ckpt);
458         return -EINVAL;
459 }
460
461 static int __add_dirty_inode(struct inode *inode, struct dir_inode_entry *new)
462 {
463         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
464         struct list_head *head = &sbi->dir_inode_list;
465         struct list_head *this;
466
467         list_for_each(this, head) {
468                 struct dir_inode_entry *entry;
469                 entry = list_entry(this, struct dir_inode_entry, list);
470                 if (unlikely(entry->inode == inode))
471                         return -EEXIST;
472         }
473         list_add_tail(&new->list, head);
474         stat_inc_dirty_dir(sbi);
475         return 0;
476 }
477
478 void set_dirty_dir_page(struct inode *inode, struct page *page)
479 {
480         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
481         struct dir_inode_entry *new;
482
483         if (!S_ISDIR(inode->i_mode))
484                 return;
485
486         new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
487         new->inode = inode;
488         INIT_LIST_HEAD(&new->list);
489
490         spin_lock(&sbi->dir_inode_lock);
491         if (__add_dirty_inode(inode, new))
492                 kmem_cache_free(inode_entry_slab, new);
493
494         inc_page_count(sbi, F2FS_DIRTY_DENTS);
495         inode_inc_dirty_dents(inode);
496         SetPagePrivate(page);
497         spin_unlock(&sbi->dir_inode_lock);
498 }
499
500 void add_dirty_dir_inode(struct inode *inode)
501 {
502         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
503         struct dir_inode_entry *new =
504                         f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
505
506         new->inode = inode;
507         INIT_LIST_HEAD(&new->list);
508
509         spin_lock(&sbi->dir_inode_lock);
510         if (__add_dirty_inode(inode, new))
511                 kmem_cache_free(inode_entry_slab, new);
512         spin_unlock(&sbi->dir_inode_lock);
513 }
514
515 void remove_dirty_dir_inode(struct inode *inode)
516 {
517         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
518
519         struct list_head *this, *head;
520
521         if (!S_ISDIR(inode->i_mode))
522                 return;
523
524         spin_lock(&sbi->dir_inode_lock);
525         if (atomic_read(&F2FS_I(inode)->dirty_dents)) {
526                 spin_unlock(&sbi->dir_inode_lock);
527                 return;
528         }
529
530         head = &sbi->dir_inode_list;
531         list_for_each(this, head) {
532                 struct dir_inode_entry *entry;
533                 entry = list_entry(this, struct dir_inode_entry, list);
534                 if (entry->inode == inode) {
535                         list_del(&entry->list);
536                         kmem_cache_free(inode_entry_slab, entry);
537                         stat_dec_dirty_dir(sbi);
538                         break;
539                 }
540         }
541         spin_unlock(&sbi->dir_inode_lock);
542
543         /* Only from the recovery routine */
544         if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
545                 clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
546                 iput(inode);
547         }
548 }
549
550 struct inode *check_dirty_dir_inode(struct f2fs_sb_info *sbi, nid_t ino)
551 {
552
553         struct list_head *this, *head;
554         struct inode *inode = NULL;
555
556         spin_lock(&sbi->dir_inode_lock);
557
558         head = &sbi->dir_inode_list;
559         list_for_each(this, head) {
560                 struct dir_inode_entry *entry;
561                 entry = list_entry(this, struct dir_inode_entry, list);
562                 if (entry->inode->i_ino == ino) {
563                         inode = entry->inode;
564                         break;
565                 }
566         }
567         spin_unlock(&sbi->dir_inode_lock);
568         return inode;
569 }
570
571 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
572 {
573         struct list_head *head;
574         struct dir_inode_entry *entry;
575         struct inode *inode;
576 retry:
577         spin_lock(&sbi->dir_inode_lock);
578
579         head = &sbi->dir_inode_list;
580         if (list_empty(head)) {
581                 spin_unlock(&sbi->dir_inode_lock);
582                 return;
583         }
584         entry = list_entry(head->next, struct dir_inode_entry, list);
585         inode = igrab(entry->inode);
586         spin_unlock(&sbi->dir_inode_lock);
587         if (inode) {
588                 filemap_flush(inode->i_mapping);
589                 iput(inode);
590         } else {
591                 /*
592                  * We should submit bio, since it exists several
593                  * wribacking dentry pages in the freeing inode.
594                  */
595                 f2fs_submit_merged_bio(sbi, DATA, WRITE);
596         }
597         goto retry;
598 }
599
600 /*
601  * Freeze all the FS-operations for checkpoint.
602  */
603 static void block_operations(struct f2fs_sb_info *sbi)
604 {
605         struct writeback_control wbc = {
606                 .sync_mode = WB_SYNC_ALL,
607                 .nr_to_write = LONG_MAX,
608                 .for_reclaim = 0,
609         };
610         struct blk_plug plug;
611
612         blk_start_plug(&plug);
613
614 retry_flush_dents:
615         f2fs_lock_all(sbi);
616         /* write all the dirty dentry pages */
617         if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
618                 f2fs_unlock_all(sbi);
619                 sync_dirty_dir_inodes(sbi);
620                 goto retry_flush_dents;
621         }
622
623         /*
624          * POR: we should ensure that there is no dirty node pages
625          * until finishing nat/sit flush.
626          */
627 retry_flush_nodes:
628         mutex_lock(&sbi->node_write);
629
630         if (get_pages(sbi, F2FS_DIRTY_NODES)) {
631                 mutex_unlock(&sbi->node_write);
632                 sync_node_pages(sbi, 0, &wbc);
633                 goto retry_flush_nodes;
634         }
635         blk_finish_plug(&plug);
636 }
637
638 static void unblock_operations(struct f2fs_sb_info *sbi)
639 {
640         mutex_unlock(&sbi->node_write);
641         f2fs_unlock_all(sbi);
642 }
643
644 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
645 {
646         DEFINE_WAIT(wait);
647
648         for (;;) {
649                 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
650
651                 if (!get_pages(sbi, F2FS_WRITEBACK))
652                         break;
653
654                 io_schedule();
655         }
656         finish_wait(&sbi->cp_wait, &wait);
657 }
658
659 static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
660 {
661         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
662         nid_t last_nid = 0;
663         block_t start_blk;
664         struct page *cp_page;
665         unsigned int data_sum_blocks, orphan_blocks;
666         __u32 crc32 = 0;
667         void *kaddr;
668         int i;
669
670         /* Flush all the NAT/SIT pages */
671         while (get_pages(sbi, F2FS_DIRTY_META))
672                 sync_meta_pages(sbi, META, LONG_MAX);
673
674         next_free_nid(sbi, &last_nid);
675
676         /*
677          * modify checkpoint
678          * version number is already updated
679          */
680         ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
681         ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
682         ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
683         for (i = 0; i < 3; i++) {
684                 ckpt->cur_node_segno[i] =
685                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
686                 ckpt->cur_node_blkoff[i] =
687                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
688                 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
689                                 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
690         }
691         for (i = 0; i < 3; i++) {
692                 ckpt->cur_data_segno[i] =
693                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
694                 ckpt->cur_data_blkoff[i] =
695                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
696                 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
697                                 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
698         }
699
700         ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
701         ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
702         ckpt->next_free_nid = cpu_to_le32(last_nid);
703
704         /* 2 cp  + n data seg summary + orphan inode blocks */
705         data_sum_blocks = npages_for_summary_flush(sbi);
706         if (data_sum_blocks < 3)
707                 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
708         else
709                 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
710
711         orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1)
712                                         / F2FS_ORPHANS_PER_BLOCK;
713         ckpt->cp_pack_start_sum = cpu_to_le32(1 + orphan_blocks);
714
715         if (is_umount) {
716                 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
717                 ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
718                         data_sum_blocks + orphan_blocks + NR_CURSEG_NODE_TYPE);
719         } else {
720                 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
721                 ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
722                         data_sum_blocks + orphan_blocks);
723         }
724
725         if (sbi->n_orphans)
726                 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
727         else
728                 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
729
730         /* update SIT/NAT bitmap */
731         get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
732         get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
733
734         crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
735         *((__le32 *)((unsigned char *)ckpt +
736                                 le32_to_cpu(ckpt->checksum_offset)))
737                                 = cpu_to_le32(crc32);
738
739         start_blk = __start_cp_addr(sbi);
740
741         /* write out checkpoint buffer at block 0 */
742         cp_page = grab_meta_page(sbi, start_blk++);
743         kaddr = page_address(cp_page);
744         memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
745         set_page_dirty(cp_page);
746         f2fs_put_page(cp_page, 1);
747
748         if (sbi->n_orphans) {
749                 write_orphan_inodes(sbi, start_blk);
750                 start_blk += orphan_blocks;
751         }
752
753         write_data_summaries(sbi, start_blk);
754         start_blk += data_sum_blocks;
755         if (is_umount) {
756                 write_node_summaries(sbi, start_blk);
757                 start_blk += NR_CURSEG_NODE_TYPE;
758         }
759
760         /* writeout checkpoint block */
761         cp_page = grab_meta_page(sbi, start_blk);
762         kaddr = page_address(cp_page);
763         memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
764         set_page_dirty(cp_page);
765         f2fs_put_page(cp_page, 1);
766
767         /* wait for previous submitted node/meta pages writeback */
768         wait_on_all_pages_writeback(sbi);
769
770         filemap_fdatawait_range(sbi->node_inode->i_mapping, 0, LONG_MAX);
771         filemap_fdatawait_range(sbi->meta_inode->i_mapping, 0, LONG_MAX);
772
773         /* update user_block_counts */
774         sbi->last_valid_block_count = sbi->total_valid_block_count;
775         sbi->alloc_valid_block_count = 0;
776
777         /* Here, we only have one bio having CP pack */
778         sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
779
780         if (unlikely(!is_set_ckpt_flags(ckpt, CP_ERROR_FLAG))) {
781                 clear_prefree_segments(sbi);
782                 F2FS_RESET_SB_DIRT(sbi);
783         }
784 }
785
786 /*
787  * We guarantee that this checkpoint procedure should not fail.
788  */
789 void write_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
790 {
791         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
792         unsigned long long ckpt_ver;
793
794         trace_f2fs_write_checkpoint(sbi->sb, is_umount, "start block_ops");
795
796         mutex_lock(&sbi->cp_mutex);
797         block_operations(sbi);
798
799         trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish block_ops");
800
801         f2fs_submit_merged_bio(sbi, DATA, WRITE);
802         f2fs_submit_merged_bio(sbi, NODE, WRITE);
803         f2fs_submit_merged_bio(sbi, META, WRITE);
804
805         /*
806          * update checkpoint pack index
807          * Increase the version number so that
808          * SIT entries and seg summaries are written at correct place
809          */
810         ckpt_ver = cur_cp_version(ckpt);
811         ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
812
813         /* write cached NAT/SIT entries to NAT/SIT area */
814         flush_nat_entries(sbi);
815         flush_sit_entries(sbi);
816
817         /* unlock all the fs_lock[] in do_checkpoint() */
818         do_checkpoint(sbi, is_umount);
819
820         unblock_operations(sbi);
821         mutex_unlock(&sbi->cp_mutex);
822
823         trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish checkpoint");
824 }
825
826 void init_orphan_info(struct f2fs_sb_info *sbi)
827 {
828         mutex_init(&sbi->orphan_inode_mutex);
829         INIT_LIST_HEAD(&sbi->orphan_inode_list);
830         sbi->n_orphans = 0;
831         /*
832          * considering 512 blocks in a segment 8 blocks are needed for cp
833          * and log segment summaries. Remaining blocks are used to keep
834          * orphan entries with the limitation one reserved segment
835          * for cp pack we can have max 1020*504 orphan entries
836          */
837         sbi->max_orphans = (sbi->blocks_per_seg - 2 - NR_CURSEG_TYPE)
838                                 * F2FS_ORPHANS_PER_BLOCK;
839 }
840
841 int __init create_checkpoint_caches(void)
842 {
843         orphan_entry_slab = f2fs_kmem_cache_create("f2fs_orphan_entry",
844                         sizeof(struct orphan_inode_entry), NULL);
845         if (!orphan_entry_slab)
846                 return -ENOMEM;
847         inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
848                         sizeof(struct dir_inode_entry), NULL);
849         if (!inode_entry_slab) {
850                 kmem_cache_destroy(orphan_entry_slab);
851                 return -ENOMEM;
852         }
853         return 0;
854 }
855
856 void destroy_checkpoint_caches(void)
857 {
858         kmem_cache_destroy(orphan_entry_slab);
859         kmem_cache_destroy(inode_entry_slab);
860 }