d80882763ffd94c5a77f9561096d36c0486970a7
[platform/adaptation/renesas_rcar/renesas_kernel.git] / fs / f2fs / checkpoint.c
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include <trace/events/f2fs.h>
24
25 static struct kmem_cache *orphan_entry_slab;
26 static struct kmem_cache *inode_entry_slab;
27
28 /*
29  * We guarantee no failure on the returned page.
30  */
31 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
32 {
33         struct address_space *mapping = sbi->meta_inode->i_mapping;
34         struct page *page = NULL;
35 repeat:
36         page = grab_cache_page(mapping, index);
37         if (!page) {
38                 cond_resched();
39                 goto repeat;
40         }
41
42         /* We wait writeback only inside grab_meta_page() */
43         wait_on_page_writeback(page);
44         SetPageUptodate(page);
45         return page;
46 }
47
48 /*
49  * We guarantee no failure on the returned page.
50  */
51 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
52 {
53         struct address_space *mapping = sbi->meta_inode->i_mapping;
54         struct page *page;
55 repeat:
56         page = grab_cache_page(mapping, index);
57         if (!page) {
58                 cond_resched();
59                 goto repeat;
60         }
61         if (PageUptodate(page))
62                 goto out;
63
64         if (f2fs_readpage(sbi, page, index, READ_SYNC))
65                 goto repeat;
66
67         lock_page(page);
68         if (page->mapping != mapping) {
69                 f2fs_put_page(page, 1);
70                 goto repeat;
71         }
72 out:
73         mark_page_accessed(page);
74         return page;
75 }
76
77 static int f2fs_write_meta_page(struct page *page,
78                                 struct writeback_control *wbc)
79 {
80         struct inode *inode = page->mapping->host;
81         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
82
83         /* Should not write any meta pages, if any IO error was occurred */
84         if (wbc->for_reclaim ||
85                         is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ERROR_FLAG)) {
86                 dec_page_count(sbi, F2FS_DIRTY_META);
87                 wbc->pages_skipped++;
88                 set_page_dirty(page);
89                 return AOP_WRITEPAGE_ACTIVATE;
90         }
91
92         wait_on_page_writeback(page);
93
94         write_meta_page(sbi, page);
95         dec_page_count(sbi, F2FS_DIRTY_META);
96         unlock_page(page);
97         return 0;
98 }
99
100 static int f2fs_write_meta_pages(struct address_space *mapping,
101                                 struct writeback_control *wbc)
102 {
103         struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
104         struct block_device *bdev = sbi->sb->s_bdev;
105         long written;
106
107         if (wbc->for_kupdate)
108                 return 0;
109
110         if (get_pages(sbi, F2FS_DIRTY_META) == 0)
111                 return 0;
112
113         /* if mounting is failed, skip writing node pages */
114         mutex_lock(&sbi->cp_mutex);
115         written = sync_meta_pages(sbi, META, bio_get_nr_vecs(bdev));
116         mutex_unlock(&sbi->cp_mutex);
117         wbc->nr_to_write -= written;
118         return 0;
119 }
120
121 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
122                                                 long nr_to_write)
123 {
124         struct address_space *mapping = sbi->meta_inode->i_mapping;
125         pgoff_t index = 0, end = LONG_MAX;
126         struct pagevec pvec;
127         long nwritten = 0;
128         struct writeback_control wbc = {
129                 .for_reclaim = 0,
130         };
131
132         pagevec_init(&pvec, 0);
133
134         while (index <= end) {
135                 int i, nr_pages;
136                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
137                                 PAGECACHE_TAG_DIRTY,
138                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
139                 if (nr_pages == 0)
140                         break;
141
142                 for (i = 0; i < nr_pages; i++) {
143                         struct page *page = pvec.pages[i];
144                         lock_page(page);
145                         BUG_ON(page->mapping != mapping);
146                         BUG_ON(!PageDirty(page));
147                         clear_page_dirty_for_io(page);
148                         if (f2fs_write_meta_page(page, &wbc)) {
149                                 unlock_page(page);
150                                 break;
151                         }
152                         if (nwritten++ >= nr_to_write)
153                                 break;
154                 }
155                 pagevec_release(&pvec);
156                 cond_resched();
157         }
158
159         if (nwritten)
160                 f2fs_submit_bio(sbi, type, nr_to_write == LONG_MAX);
161
162         return nwritten;
163 }
164
165 static int f2fs_set_meta_page_dirty(struct page *page)
166 {
167         struct address_space *mapping = page->mapping;
168         struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
169
170         SetPageUptodate(page);
171         if (!PageDirty(page)) {
172                 __set_page_dirty_nobuffers(page);
173                 inc_page_count(sbi, F2FS_DIRTY_META);
174                 return 1;
175         }
176         return 0;
177 }
178
179 const struct address_space_operations f2fs_meta_aops = {
180         .writepage      = f2fs_write_meta_page,
181         .writepages     = f2fs_write_meta_pages,
182         .set_page_dirty = f2fs_set_meta_page_dirty,
183 };
184
185 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
186 {
187         unsigned int max_orphans;
188         int err = 0;
189
190         /*
191          * considering 512 blocks in a segment 5 blocks are needed for cp
192          * and log segment summaries. Remaining blocks are used to keep
193          * orphan entries with the limitation one reserved segment
194          * for cp pack we can have max 1020*507 orphan entries
195          */
196         max_orphans = (sbi->blocks_per_seg - 5) * F2FS_ORPHANS_PER_BLOCK;
197         mutex_lock(&sbi->orphan_inode_mutex);
198         if (sbi->n_orphans >= max_orphans)
199                 err = -ENOSPC;
200         else
201                 sbi->n_orphans++;
202         mutex_unlock(&sbi->orphan_inode_mutex);
203         return err;
204 }
205
206 void release_orphan_inode(struct f2fs_sb_info *sbi)
207 {
208         mutex_lock(&sbi->orphan_inode_mutex);
209         BUG_ON(sbi->n_orphans == 0);
210         sbi->n_orphans--;
211         mutex_unlock(&sbi->orphan_inode_mutex);
212 }
213
214 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
215 {
216         struct list_head *head, *this;
217         struct orphan_inode_entry *new = NULL, *orphan = NULL;
218
219         mutex_lock(&sbi->orphan_inode_mutex);
220         head = &sbi->orphan_inode_list;
221         list_for_each(this, head) {
222                 orphan = list_entry(this, struct orphan_inode_entry, list);
223                 if (orphan->ino == ino)
224                         goto out;
225                 if (orphan->ino > ino)
226                         break;
227                 orphan = NULL;
228         }
229 retry:
230         new = kmem_cache_alloc(orphan_entry_slab, GFP_ATOMIC);
231         if (!new) {
232                 cond_resched();
233                 goto retry;
234         }
235         new->ino = ino;
236
237         /* add new_oentry into list which is sorted by inode number */
238         if (orphan)
239                 list_add(&new->list, this->prev);
240         else
241                 list_add_tail(&new->list, head);
242 out:
243         mutex_unlock(&sbi->orphan_inode_mutex);
244 }
245
246 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
247 {
248         struct list_head *head;
249         struct orphan_inode_entry *orphan;
250
251         mutex_lock(&sbi->orphan_inode_mutex);
252         head = &sbi->orphan_inode_list;
253         list_for_each_entry(orphan, head, list) {
254                 if (orphan->ino == ino) {
255                         list_del(&orphan->list);
256                         kmem_cache_free(orphan_entry_slab, orphan);
257                         BUG_ON(sbi->n_orphans == 0);
258                         sbi->n_orphans--;
259                         break;
260                 }
261         }
262         mutex_unlock(&sbi->orphan_inode_mutex);
263 }
264
265 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
266 {
267         struct inode *inode = f2fs_iget(sbi->sb, ino);
268         BUG_ON(IS_ERR(inode));
269         clear_nlink(inode);
270
271         /* truncate all the data during iput */
272         iput(inode);
273 }
274
275 int recover_orphan_inodes(struct f2fs_sb_info *sbi)
276 {
277         block_t start_blk, orphan_blkaddr, i, j;
278
279         if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
280                 return 0;
281
282         sbi->por_doing = 1;
283         start_blk = __start_cp_addr(sbi) + 1;
284         orphan_blkaddr = __start_sum_addr(sbi) - 1;
285
286         for (i = 0; i < orphan_blkaddr; i++) {
287                 struct page *page = get_meta_page(sbi, start_blk + i);
288                 struct f2fs_orphan_block *orphan_blk;
289
290                 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
291                 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
292                         nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
293                         recover_orphan_inode(sbi, ino);
294                 }
295                 f2fs_put_page(page, 1);
296         }
297         /* clear Orphan Flag */
298         clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
299         sbi->por_doing = 0;
300         return 0;
301 }
302
303 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
304 {
305         struct list_head *head, *this, *next;
306         struct f2fs_orphan_block *orphan_blk = NULL;
307         struct page *page = NULL;
308         unsigned int nentries = 0;
309         unsigned short index = 1;
310         unsigned short orphan_blocks;
311
312         orphan_blocks = (unsigned short)((sbi->n_orphans +
313                 (F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK);
314
315         mutex_lock(&sbi->orphan_inode_mutex);
316         head = &sbi->orphan_inode_list;
317
318         /* loop for each orphan inode entry and write them in Jornal block */
319         list_for_each_safe(this, next, head) {
320                 struct orphan_inode_entry *orphan;
321
322                 orphan = list_entry(this, struct orphan_inode_entry, list);
323
324                 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
325                         /*
326                          * an orphan block is full of 1020 entries,
327                          * then we need to flush current orphan blocks
328                          * and bring another one in memory
329                          */
330                         orphan_blk->blk_addr = cpu_to_le16(index);
331                         orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
332                         orphan_blk->entry_count = cpu_to_le32(nentries);
333                         set_page_dirty(page);
334                         f2fs_put_page(page, 1);
335                         index++;
336                         start_blk++;
337                         nentries = 0;
338                         page = NULL;
339                 }
340                 if (page)
341                         goto page_exist;
342
343                 page = grab_meta_page(sbi, start_blk);
344                 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
345                 memset(orphan_blk, 0, sizeof(*orphan_blk));
346 page_exist:
347                 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
348         }
349         if (!page)
350                 goto end;
351
352         orphan_blk->blk_addr = cpu_to_le16(index);
353         orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
354         orphan_blk->entry_count = cpu_to_le32(nentries);
355         set_page_dirty(page);
356         f2fs_put_page(page, 1);
357 end:
358         mutex_unlock(&sbi->orphan_inode_mutex);
359 }
360
361 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
362                                 block_t cp_addr, unsigned long long *version)
363 {
364         struct page *cp_page_1, *cp_page_2 = NULL;
365         unsigned long blk_size = sbi->blocksize;
366         struct f2fs_checkpoint *cp_block;
367         unsigned long long cur_version = 0, pre_version = 0;
368         size_t crc_offset;
369         __u32 crc = 0;
370
371         /* Read the 1st cp block in this CP pack */
372         cp_page_1 = get_meta_page(sbi, cp_addr);
373
374         /* get the version number */
375         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
376         crc_offset = le32_to_cpu(cp_block->checksum_offset);
377         if (crc_offset >= blk_size)
378                 goto invalid_cp1;
379
380         crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
381         if (!f2fs_crc_valid(crc, cp_block, crc_offset))
382                 goto invalid_cp1;
383
384         pre_version = cur_cp_version(cp_block);
385
386         /* Read the 2nd cp block in this CP pack */
387         cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
388         cp_page_2 = get_meta_page(sbi, cp_addr);
389
390         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
391         crc_offset = le32_to_cpu(cp_block->checksum_offset);
392         if (crc_offset >= blk_size)
393                 goto invalid_cp2;
394
395         crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
396         if (!f2fs_crc_valid(crc, cp_block, crc_offset))
397                 goto invalid_cp2;
398
399         cur_version = cur_cp_version(cp_block);
400
401         if (cur_version == pre_version) {
402                 *version = cur_version;
403                 f2fs_put_page(cp_page_2, 1);
404                 return cp_page_1;
405         }
406 invalid_cp2:
407         f2fs_put_page(cp_page_2, 1);
408 invalid_cp1:
409         f2fs_put_page(cp_page_1, 1);
410         return NULL;
411 }
412
413 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
414 {
415         struct f2fs_checkpoint *cp_block;
416         struct f2fs_super_block *fsb = sbi->raw_super;
417         struct page *cp1, *cp2, *cur_page;
418         unsigned long blk_size = sbi->blocksize;
419         unsigned long long cp1_version = 0, cp2_version = 0;
420         unsigned long long cp_start_blk_no;
421
422         sbi->ckpt = kzalloc(blk_size, GFP_KERNEL);
423         if (!sbi->ckpt)
424                 return -ENOMEM;
425         /*
426          * Finding out valid cp block involves read both
427          * sets( cp pack1 and cp pack 2)
428          */
429         cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
430         cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
431
432         /* The second checkpoint pack should start at the next segment */
433         cp_start_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
434         cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
435
436         if (cp1 && cp2) {
437                 if (ver_after(cp2_version, cp1_version))
438                         cur_page = cp2;
439                 else
440                         cur_page = cp1;
441         } else if (cp1) {
442                 cur_page = cp1;
443         } else if (cp2) {
444                 cur_page = cp2;
445         } else {
446                 goto fail_no_cp;
447         }
448
449         cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
450         memcpy(sbi->ckpt, cp_block, blk_size);
451
452         f2fs_put_page(cp1, 1);
453         f2fs_put_page(cp2, 1);
454         return 0;
455
456 fail_no_cp:
457         kfree(sbi->ckpt);
458         return -EINVAL;
459 }
460
461 static int __add_dirty_inode(struct inode *inode, struct dir_inode_entry *new)
462 {
463         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
464         struct list_head *head = &sbi->dir_inode_list;
465         struct list_head *this;
466
467         list_for_each(this, head) {
468                 struct dir_inode_entry *entry;
469                 entry = list_entry(this, struct dir_inode_entry, list);
470                 if (entry->inode == inode)
471                         return -EEXIST;
472         }
473         list_add_tail(&new->list, head);
474 #ifdef CONFIG_F2FS_STAT_FS
475         sbi->n_dirty_dirs++;
476 #endif
477         return 0;
478 }
479
480 void set_dirty_dir_page(struct inode *inode, struct page *page)
481 {
482         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
483         struct dir_inode_entry *new;
484
485         if (!S_ISDIR(inode->i_mode))
486                 return;
487 retry:
488         new = kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
489         if (!new) {
490                 cond_resched();
491                 goto retry;
492         }
493         new->inode = inode;
494         INIT_LIST_HEAD(&new->list);
495
496         spin_lock(&sbi->dir_inode_lock);
497         if (__add_dirty_inode(inode, new))
498                 kmem_cache_free(inode_entry_slab, new);
499
500         inc_page_count(sbi, F2FS_DIRTY_DENTS);
501         inode_inc_dirty_dents(inode);
502         SetPagePrivate(page);
503         spin_unlock(&sbi->dir_inode_lock);
504 }
505
506 void add_dirty_dir_inode(struct inode *inode)
507 {
508         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
509         struct dir_inode_entry *new;
510 retry:
511         new = kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
512         if (!new) {
513                 cond_resched();
514                 goto retry;
515         }
516         new->inode = inode;
517         INIT_LIST_HEAD(&new->list);
518
519         spin_lock(&sbi->dir_inode_lock);
520         if (__add_dirty_inode(inode, new))
521                 kmem_cache_free(inode_entry_slab, new);
522         spin_unlock(&sbi->dir_inode_lock);
523 }
524
525 void remove_dirty_dir_inode(struct inode *inode)
526 {
527         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
528         struct list_head *head = &sbi->dir_inode_list;
529         struct list_head *this;
530
531         if (!S_ISDIR(inode->i_mode))
532                 return;
533
534         spin_lock(&sbi->dir_inode_lock);
535         if (atomic_read(&F2FS_I(inode)->dirty_dents)) {
536                 spin_unlock(&sbi->dir_inode_lock);
537                 return;
538         }
539
540         list_for_each(this, head) {
541                 struct dir_inode_entry *entry;
542                 entry = list_entry(this, struct dir_inode_entry, list);
543                 if (entry->inode == inode) {
544                         list_del(&entry->list);
545                         kmem_cache_free(inode_entry_slab, entry);
546 #ifdef CONFIG_F2FS_STAT_FS
547                         sbi->n_dirty_dirs--;
548 #endif
549                         break;
550                 }
551         }
552         spin_unlock(&sbi->dir_inode_lock);
553
554         /* Only from the recovery routine */
555         if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
556                 clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
557                 iput(inode);
558         }
559 }
560
561 struct inode *check_dirty_dir_inode(struct f2fs_sb_info *sbi, nid_t ino)
562 {
563         struct list_head *head = &sbi->dir_inode_list;
564         struct list_head *this;
565         struct inode *inode = NULL;
566
567         spin_lock(&sbi->dir_inode_lock);
568         list_for_each(this, head) {
569                 struct dir_inode_entry *entry;
570                 entry = list_entry(this, struct dir_inode_entry, list);
571                 if (entry->inode->i_ino == ino) {
572                         inode = entry->inode;
573                         break;
574                 }
575         }
576         spin_unlock(&sbi->dir_inode_lock);
577         return inode;
578 }
579
580 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
581 {
582         struct list_head *head = &sbi->dir_inode_list;
583         struct dir_inode_entry *entry;
584         struct inode *inode;
585 retry:
586         spin_lock(&sbi->dir_inode_lock);
587         if (list_empty(head)) {
588                 spin_unlock(&sbi->dir_inode_lock);
589                 return;
590         }
591         entry = list_entry(head->next, struct dir_inode_entry, list);
592         inode = igrab(entry->inode);
593         spin_unlock(&sbi->dir_inode_lock);
594         if (inode) {
595                 filemap_flush(inode->i_mapping);
596                 iput(inode);
597         } else {
598                 /*
599                  * We should submit bio, since it exists several
600                  * wribacking dentry pages in the freeing inode.
601                  */
602                 f2fs_submit_bio(sbi, DATA, true);
603         }
604         goto retry;
605 }
606
607 /*
608  * Freeze all the FS-operations for checkpoint.
609  */
610 static void block_operations(struct f2fs_sb_info *sbi)
611 {
612         struct writeback_control wbc = {
613                 .sync_mode = WB_SYNC_ALL,
614                 .nr_to_write = LONG_MAX,
615                 .for_reclaim = 0,
616         };
617         struct blk_plug plug;
618
619         blk_start_plug(&plug);
620
621 retry_flush_dents:
622         f2fs_lock_all(sbi);
623         /* write all the dirty dentry pages */
624         if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
625                 f2fs_unlock_all(sbi);
626                 sync_dirty_dir_inodes(sbi);
627                 goto retry_flush_dents;
628         }
629
630         /*
631          * POR: we should ensure that there is no dirty node pages
632          * until finishing nat/sit flush.
633          */
634 retry_flush_nodes:
635         mutex_lock(&sbi->node_write);
636
637         if (get_pages(sbi, F2FS_DIRTY_NODES)) {
638                 mutex_unlock(&sbi->node_write);
639                 sync_node_pages(sbi, 0, &wbc);
640                 goto retry_flush_nodes;
641         }
642         blk_finish_plug(&plug);
643 }
644
645 static void unblock_operations(struct f2fs_sb_info *sbi)
646 {
647         mutex_unlock(&sbi->node_write);
648         f2fs_unlock_all(sbi);
649 }
650
651 static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
652 {
653         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
654         nid_t last_nid = 0;
655         block_t start_blk;
656         struct page *cp_page;
657         unsigned int data_sum_blocks, orphan_blocks;
658         __u32 crc32 = 0;
659         void *kaddr;
660         int i;
661
662         /* Flush all the NAT/SIT pages */
663         while (get_pages(sbi, F2FS_DIRTY_META))
664                 sync_meta_pages(sbi, META, LONG_MAX);
665
666         next_free_nid(sbi, &last_nid);
667
668         /*
669          * modify checkpoint
670          * version number is already updated
671          */
672         ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
673         ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
674         ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
675         for (i = 0; i < 3; i++) {
676                 ckpt->cur_node_segno[i] =
677                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
678                 ckpt->cur_node_blkoff[i] =
679                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
680                 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
681                                 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
682         }
683         for (i = 0; i < 3; i++) {
684                 ckpt->cur_data_segno[i] =
685                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
686                 ckpt->cur_data_blkoff[i] =
687                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
688                 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
689                                 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
690         }
691
692         ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
693         ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
694         ckpt->next_free_nid = cpu_to_le32(last_nid);
695
696         /* 2 cp  + n data seg summary + orphan inode blocks */
697         data_sum_blocks = npages_for_summary_flush(sbi);
698         if (data_sum_blocks < 3)
699                 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
700         else
701                 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
702
703         orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1)
704                                         / F2FS_ORPHANS_PER_BLOCK;
705         ckpt->cp_pack_start_sum = cpu_to_le32(1 + orphan_blocks);
706
707         if (is_umount) {
708                 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
709                 ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
710                         data_sum_blocks + orphan_blocks + NR_CURSEG_NODE_TYPE);
711         } else {
712                 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
713                 ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
714                         data_sum_blocks + orphan_blocks);
715         }
716
717         if (sbi->n_orphans)
718                 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
719         else
720                 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
721
722         /* update SIT/NAT bitmap */
723         get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
724         get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
725
726         crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
727         *((__le32 *)((unsigned char *)ckpt +
728                                 le32_to_cpu(ckpt->checksum_offset)))
729                                 = cpu_to_le32(crc32);
730
731         start_blk = __start_cp_addr(sbi);
732
733         /* write out checkpoint buffer at block 0 */
734         cp_page = grab_meta_page(sbi, start_blk++);
735         kaddr = page_address(cp_page);
736         memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
737         set_page_dirty(cp_page);
738         f2fs_put_page(cp_page, 1);
739
740         if (sbi->n_orphans) {
741                 write_orphan_inodes(sbi, start_blk);
742                 start_blk += orphan_blocks;
743         }
744
745         write_data_summaries(sbi, start_blk);
746         start_blk += data_sum_blocks;
747         if (is_umount) {
748                 write_node_summaries(sbi, start_blk);
749                 start_blk += NR_CURSEG_NODE_TYPE;
750         }
751
752         /* writeout checkpoint block */
753         cp_page = grab_meta_page(sbi, start_blk);
754         kaddr = page_address(cp_page);
755         memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
756         set_page_dirty(cp_page);
757         f2fs_put_page(cp_page, 1);
758
759         /* wait for previous submitted node/meta pages writeback */
760         while (get_pages(sbi, F2FS_WRITEBACK))
761                 congestion_wait(BLK_RW_ASYNC, HZ / 50);
762
763         filemap_fdatawait_range(sbi->node_inode->i_mapping, 0, LONG_MAX);
764         filemap_fdatawait_range(sbi->meta_inode->i_mapping, 0, LONG_MAX);
765
766         /* update user_block_counts */
767         sbi->last_valid_block_count = sbi->total_valid_block_count;
768         sbi->alloc_valid_block_count = 0;
769
770         /* Here, we only have one bio having CP pack */
771         sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
772
773         if (!is_set_ckpt_flags(ckpt, CP_ERROR_FLAG)) {
774                 clear_prefree_segments(sbi);
775                 F2FS_RESET_SB_DIRT(sbi);
776         }
777 }
778
779 /*
780  * We guarantee that this checkpoint procedure should not fail.
781  */
782 void write_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
783 {
784         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
785         unsigned long long ckpt_ver;
786
787         trace_f2fs_write_checkpoint(sbi->sb, is_umount, "start block_ops");
788
789         mutex_lock(&sbi->cp_mutex);
790         block_operations(sbi);
791
792         trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish block_ops");
793
794         f2fs_submit_bio(sbi, DATA, true);
795         f2fs_submit_bio(sbi, NODE, true);
796         f2fs_submit_bio(sbi, META, true);
797
798         /*
799          * update checkpoint pack index
800          * Increase the version number so that
801          * SIT entries and seg summaries are written at correct place
802          */
803         ckpt_ver = cur_cp_version(ckpt);
804         ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
805
806         /* write cached NAT/SIT entries to NAT/SIT area */
807         flush_nat_entries(sbi);
808         flush_sit_entries(sbi);
809
810         /* unlock all the fs_lock[] in do_checkpoint() */
811         do_checkpoint(sbi, is_umount);
812
813         unblock_operations(sbi);
814         mutex_unlock(&sbi->cp_mutex);
815
816         trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish checkpoint");
817 }
818
819 void init_orphan_info(struct f2fs_sb_info *sbi)
820 {
821         mutex_init(&sbi->orphan_inode_mutex);
822         INIT_LIST_HEAD(&sbi->orphan_inode_list);
823         sbi->n_orphans = 0;
824 }
825
826 int __init create_checkpoint_caches(void)
827 {
828         orphan_entry_slab = f2fs_kmem_cache_create("f2fs_orphan_entry",
829                         sizeof(struct orphan_inode_entry), NULL);
830         if (unlikely(!orphan_entry_slab))
831                 return -ENOMEM;
832         inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
833                         sizeof(struct dir_inode_entry), NULL);
834         if (unlikely(!inode_entry_slab)) {
835                 kmem_cache_destroy(orphan_entry_slab);
836                 return -ENOMEM;
837         }
838         return 0;
839 }
840
841 void destroy_checkpoint_caches(void)
842 {
843         kmem_cache_destroy(orphan_entry_slab);
844         kmem_cache_destroy(inode_entry_slab);
845 }