817d0bcb5c679a21405f3d9635734bdb02d839de
[platform/kernel/linux-starfive.git] / fs / f2fs / checkpoint.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/checkpoint.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/bio.h>
10 #include <linux/mpage.h>
11 #include <linux/writeback.h>
12 #include <linux/blkdev.h>
13 #include <linux/f2fs_fs.h>
14 #include <linux/pagevec.h>
15 #include <linux/swap.h>
16 #include <linux/kthread.h>
17
18 #include "f2fs.h"
19 #include "node.h"
20 #include "segment.h"
21 #include <trace/events/f2fs.h>
22
23 #define DEFAULT_CHECKPOINT_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
24
25 static struct kmem_cache *ino_entry_slab;
26 struct kmem_cache *f2fs_inode_entry_slab;
27
28 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
29 {
30         f2fs_build_fault_attr(sbi, 0, 0);
31         set_ckpt_flags(sbi, CP_ERROR_FLAG);
32         if (!end_io)
33                 f2fs_flush_merged_writes(sbi);
34 }
35
36 /*
37  * We guarantee no failure on the returned page.
38  */
39 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
40 {
41         struct address_space *mapping = META_MAPPING(sbi);
42         struct page *page;
43 repeat:
44         page = f2fs_grab_cache_page(mapping, index, false);
45         if (!page) {
46                 cond_resched();
47                 goto repeat;
48         }
49         f2fs_wait_on_page_writeback(page, META, true, true);
50         if (!PageUptodate(page))
51                 SetPageUptodate(page);
52         return page;
53 }
54
55 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
56                                                         bool is_meta)
57 {
58         struct address_space *mapping = META_MAPPING(sbi);
59         struct page *page;
60         struct f2fs_io_info fio = {
61                 .sbi = sbi,
62                 .type = META,
63                 .op = REQ_OP_READ,
64                 .op_flags = REQ_META | REQ_PRIO,
65                 .old_blkaddr = index,
66                 .new_blkaddr = index,
67                 .encrypted_page = NULL,
68                 .is_por = !is_meta,
69         };
70         int err;
71
72         if (unlikely(!is_meta))
73                 fio.op_flags &= ~REQ_META;
74 repeat:
75         page = f2fs_grab_cache_page(mapping, index, false);
76         if (!page) {
77                 cond_resched();
78                 goto repeat;
79         }
80         if (PageUptodate(page))
81                 goto out;
82
83         fio.page = page;
84
85         err = f2fs_submit_page_bio(&fio);
86         if (err) {
87                 f2fs_put_page(page, 1);
88                 return ERR_PTR(err);
89         }
90
91         f2fs_update_iostat(sbi, FS_META_READ_IO, F2FS_BLKSIZE);
92
93         lock_page(page);
94         if (unlikely(page->mapping != mapping)) {
95                 f2fs_put_page(page, 1);
96                 goto repeat;
97         }
98
99         if (unlikely(!PageUptodate(page))) {
100                 f2fs_put_page(page, 1);
101                 return ERR_PTR(-EIO);
102         }
103 out:
104         return page;
105 }
106
107 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
108 {
109         return __get_meta_page(sbi, index, true);
110 }
111
112 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index)
113 {
114         struct page *page;
115         int count = 0;
116
117 retry:
118         page = __get_meta_page(sbi, index, true);
119         if (IS_ERR(page)) {
120                 if (PTR_ERR(page) == -EIO &&
121                                 ++count <= DEFAULT_RETRY_IO_COUNT)
122                         goto retry;
123                 f2fs_stop_checkpoint(sbi, false);
124         }
125         return page;
126 }
127
128 /* for POR only */
129 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
130 {
131         return __get_meta_page(sbi, index, false);
132 }
133
134 static bool __is_bitmap_valid(struct f2fs_sb_info *sbi, block_t blkaddr,
135                                                         int type)
136 {
137         struct seg_entry *se;
138         unsigned int segno, offset;
139         bool exist;
140
141         if (type != DATA_GENERIC_ENHANCE && type != DATA_GENERIC_ENHANCE_READ)
142                 return true;
143
144         segno = GET_SEGNO(sbi, blkaddr);
145         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
146         se = get_seg_entry(sbi, segno);
147
148         exist = f2fs_test_bit(offset, se->cur_valid_map);
149         if (!exist && type == DATA_GENERIC_ENHANCE) {
150                 f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d",
151                          blkaddr, exist);
152                 set_sbi_flag(sbi, SBI_NEED_FSCK);
153                 WARN_ON(1);
154         }
155         return exist;
156 }
157
158 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
159                                         block_t blkaddr, int type)
160 {
161         switch (type) {
162         case META_NAT:
163                 break;
164         case META_SIT:
165                 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
166                         return false;
167                 break;
168         case META_SSA:
169                 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
170                         blkaddr < SM_I(sbi)->ssa_blkaddr))
171                         return false;
172                 break;
173         case META_CP:
174                 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
175                         blkaddr < __start_cp_addr(sbi)))
176                         return false;
177                 break;
178         case META_POR:
179                 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
180                         blkaddr < MAIN_BLKADDR(sbi)))
181                         return false;
182                 break;
183         case DATA_GENERIC:
184         case DATA_GENERIC_ENHANCE:
185         case DATA_GENERIC_ENHANCE_READ:
186                 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
187                                 blkaddr < MAIN_BLKADDR(sbi))) {
188                         f2fs_warn(sbi, "access invalid blkaddr:%u",
189                                   blkaddr);
190                         set_sbi_flag(sbi, SBI_NEED_FSCK);
191                         WARN_ON(1);
192                         return false;
193                 } else {
194                         return __is_bitmap_valid(sbi, blkaddr, type);
195                 }
196                 break;
197         case META_GENERIC:
198                 if (unlikely(blkaddr < SEG0_BLKADDR(sbi) ||
199                         blkaddr >= MAIN_BLKADDR(sbi)))
200                         return false;
201                 break;
202         default:
203                 BUG();
204         }
205
206         return true;
207 }
208
209 /*
210  * Readahead CP/NAT/SIT/SSA/POR pages
211  */
212 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
213                                                         int type, bool sync)
214 {
215         struct page *page;
216         block_t blkno = start;
217         struct f2fs_io_info fio = {
218                 .sbi = sbi,
219                 .type = META,
220                 .op = REQ_OP_READ,
221                 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
222                 .encrypted_page = NULL,
223                 .in_list = false,
224                 .is_por = (type == META_POR),
225         };
226         struct blk_plug plug;
227         int err;
228
229         if (unlikely(type == META_POR))
230                 fio.op_flags &= ~REQ_META;
231
232         blk_start_plug(&plug);
233         for (; nrpages-- > 0; blkno++) {
234
235                 if (!f2fs_is_valid_blkaddr(sbi, blkno, type))
236                         goto out;
237
238                 switch (type) {
239                 case META_NAT:
240                         if (unlikely(blkno >=
241                                         NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
242                                 blkno = 0;
243                         /* get nat block addr */
244                         fio.new_blkaddr = current_nat_addr(sbi,
245                                         blkno * NAT_ENTRY_PER_BLOCK);
246                         break;
247                 case META_SIT:
248                         if (unlikely(blkno >= TOTAL_SEGS(sbi)))
249                                 goto out;
250                         /* get sit block addr */
251                         fio.new_blkaddr = current_sit_addr(sbi,
252                                         blkno * SIT_ENTRY_PER_BLOCK);
253                         break;
254                 case META_SSA:
255                 case META_CP:
256                 case META_POR:
257                         fio.new_blkaddr = blkno;
258                         break;
259                 default:
260                         BUG();
261                 }
262
263                 page = f2fs_grab_cache_page(META_MAPPING(sbi),
264                                                 fio.new_blkaddr, false);
265                 if (!page)
266                         continue;
267                 if (PageUptodate(page)) {
268                         f2fs_put_page(page, 1);
269                         continue;
270                 }
271
272                 fio.page = page;
273                 err = f2fs_submit_page_bio(&fio);
274                 f2fs_put_page(page, err ? 1 : 0);
275
276                 if (!err)
277                         f2fs_update_iostat(sbi, FS_META_READ_IO, F2FS_BLKSIZE);
278         }
279 out:
280         blk_finish_plug(&plug);
281         return blkno - start;
282 }
283
284 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
285 {
286         struct page *page;
287         bool readahead = false;
288
289         page = find_get_page(META_MAPPING(sbi), index);
290         if (!page || !PageUptodate(page))
291                 readahead = true;
292         f2fs_put_page(page, 0);
293
294         if (readahead)
295                 f2fs_ra_meta_pages(sbi, index, BIO_MAX_PAGES, META_POR, true);
296 }
297
298 static int __f2fs_write_meta_page(struct page *page,
299                                 struct writeback_control *wbc,
300                                 enum iostat_type io_type)
301 {
302         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
303
304         trace_f2fs_writepage(page, META);
305
306         if (unlikely(f2fs_cp_error(sbi)))
307                 goto redirty_out;
308         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
309                 goto redirty_out;
310         if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
311                 goto redirty_out;
312
313         f2fs_do_write_meta_page(sbi, page, io_type);
314         dec_page_count(sbi, F2FS_DIRTY_META);
315
316         if (wbc->for_reclaim)
317                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, META);
318
319         unlock_page(page);
320
321         if (unlikely(f2fs_cp_error(sbi)))
322                 f2fs_submit_merged_write(sbi, META);
323
324         return 0;
325
326 redirty_out:
327         redirty_page_for_writepage(wbc, page);
328         return AOP_WRITEPAGE_ACTIVATE;
329 }
330
331 static int f2fs_write_meta_page(struct page *page,
332                                 struct writeback_control *wbc)
333 {
334         return __f2fs_write_meta_page(page, wbc, FS_META_IO);
335 }
336
337 static int f2fs_write_meta_pages(struct address_space *mapping,
338                                 struct writeback_control *wbc)
339 {
340         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
341         long diff, written;
342
343         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
344                 goto skip_write;
345
346         /* collect a number of dirty meta pages and write together */
347         if (wbc->sync_mode != WB_SYNC_ALL &&
348                         get_pages(sbi, F2FS_DIRTY_META) <
349                                         nr_pages_to_skip(sbi, META))
350                 goto skip_write;
351
352         /* if locked failed, cp will flush dirty pages instead */
353         if (!down_write_trylock(&sbi->cp_global_sem))
354                 goto skip_write;
355
356         trace_f2fs_writepages(mapping->host, wbc, META);
357         diff = nr_pages_to_write(sbi, META, wbc);
358         written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO);
359         up_write(&sbi->cp_global_sem);
360         wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
361         return 0;
362
363 skip_write:
364         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
365         trace_f2fs_writepages(mapping->host, wbc, META);
366         return 0;
367 }
368
369 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
370                                 long nr_to_write, enum iostat_type io_type)
371 {
372         struct address_space *mapping = META_MAPPING(sbi);
373         pgoff_t index = 0, prev = ULONG_MAX;
374         struct pagevec pvec;
375         long nwritten = 0;
376         int nr_pages;
377         struct writeback_control wbc = {
378                 .for_reclaim = 0,
379         };
380         struct blk_plug plug;
381
382         pagevec_init(&pvec);
383
384         blk_start_plug(&plug);
385
386         while ((nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
387                                 PAGECACHE_TAG_DIRTY))) {
388                 int i;
389
390                 for (i = 0; i < nr_pages; i++) {
391                         struct page *page = pvec.pages[i];
392
393                         if (prev == ULONG_MAX)
394                                 prev = page->index - 1;
395                         if (nr_to_write != LONG_MAX && page->index != prev + 1) {
396                                 pagevec_release(&pvec);
397                                 goto stop;
398                         }
399
400                         lock_page(page);
401
402                         if (unlikely(page->mapping != mapping)) {
403 continue_unlock:
404                                 unlock_page(page);
405                                 continue;
406                         }
407                         if (!PageDirty(page)) {
408                                 /* someone wrote it for us */
409                                 goto continue_unlock;
410                         }
411
412                         f2fs_wait_on_page_writeback(page, META, true, true);
413
414                         if (!clear_page_dirty_for_io(page))
415                                 goto continue_unlock;
416
417                         if (__f2fs_write_meta_page(page, &wbc, io_type)) {
418                                 unlock_page(page);
419                                 break;
420                         }
421                         nwritten++;
422                         prev = page->index;
423                         if (unlikely(nwritten >= nr_to_write))
424                                 break;
425                 }
426                 pagevec_release(&pvec);
427                 cond_resched();
428         }
429 stop:
430         if (nwritten)
431                 f2fs_submit_merged_write(sbi, type);
432
433         blk_finish_plug(&plug);
434
435         return nwritten;
436 }
437
438 static int f2fs_set_meta_page_dirty(struct page *page)
439 {
440         trace_f2fs_set_page_dirty(page, META);
441
442         if (!PageUptodate(page))
443                 SetPageUptodate(page);
444         if (!PageDirty(page)) {
445                 __set_page_dirty_nobuffers(page);
446                 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
447                 f2fs_set_page_private(page, 0);
448                 return 1;
449         }
450         return 0;
451 }
452
453 const struct address_space_operations f2fs_meta_aops = {
454         .writepage      = f2fs_write_meta_page,
455         .writepages     = f2fs_write_meta_pages,
456         .set_page_dirty = f2fs_set_meta_page_dirty,
457         .invalidatepage = f2fs_invalidate_page,
458         .releasepage    = f2fs_release_page,
459 #ifdef CONFIG_MIGRATION
460         .migratepage    = f2fs_migrate_page,
461 #endif
462 };
463
464 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino,
465                                                 unsigned int devidx, int type)
466 {
467         struct inode_management *im = &sbi->im[type];
468         struct ino_entry *e, *tmp;
469
470         tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
471
472         radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
473
474         spin_lock(&im->ino_lock);
475         e = radix_tree_lookup(&im->ino_root, ino);
476         if (!e) {
477                 e = tmp;
478                 if (unlikely(radix_tree_insert(&im->ino_root, ino, e)))
479                         f2fs_bug_on(sbi, 1);
480
481                 memset(e, 0, sizeof(struct ino_entry));
482                 e->ino = ino;
483
484                 list_add_tail(&e->list, &im->ino_list);
485                 if (type != ORPHAN_INO)
486                         im->ino_num++;
487         }
488
489         if (type == FLUSH_INO)
490                 f2fs_set_bit(devidx, (char *)&e->dirty_device);
491
492         spin_unlock(&im->ino_lock);
493         radix_tree_preload_end();
494
495         if (e != tmp)
496                 kmem_cache_free(ino_entry_slab, tmp);
497 }
498
499 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
500 {
501         struct inode_management *im = &sbi->im[type];
502         struct ino_entry *e;
503
504         spin_lock(&im->ino_lock);
505         e = radix_tree_lookup(&im->ino_root, ino);
506         if (e) {
507                 list_del(&e->list);
508                 radix_tree_delete(&im->ino_root, ino);
509                 im->ino_num--;
510                 spin_unlock(&im->ino_lock);
511                 kmem_cache_free(ino_entry_slab, e);
512                 return;
513         }
514         spin_unlock(&im->ino_lock);
515 }
516
517 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
518 {
519         /* add new dirty ino entry into list */
520         __add_ino_entry(sbi, ino, 0, type);
521 }
522
523 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
524 {
525         /* remove dirty ino entry from list */
526         __remove_ino_entry(sbi, ino, type);
527 }
528
529 /* mode should be APPEND_INO, UPDATE_INO or TRANS_DIR_INO */
530 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
531 {
532         struct inode_management *im = &sbi->im[mode];
533         struct ino_entry *e;
534
535         spin_lock(&im->ino_lock);
536         e = radix_tree_lookup(&im->ino_root, ino);
537         spin_unlock(&im->ino_lock);
538         return e ? true : false;
539 }
540
541 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all)
542 {
543         struct ino_entry *e, *tmp;
544         int i;
545
546         for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) {
547                 struct inode_management *im = &sbi->im[i];
548
549                 spin_lock(&im->ino_lock);
550                 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
551                         list_del(&e->list);
552                         radix_tree_delete(&im->ino_root, e->ino);
553                         kmem_cache_free(ino_entry_slab, e);
554                         im->ino_num--;
555                 }
556                 spin_unlock(&im->ino_lock);
557         }
558 }
559
560 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
561                                         unsigned int devidx, int type)
562 {
563         __add_ino_entry(sbi, ino, devidx, type);
564 }
565
566 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
567                                         unsigned int devidx, int type)
568 {
569         struct inode_management *im = &sbi->im[type];
570         struct ino_entry *e;
571         bool is_dirty = false;
572
573         spin_lock(&im->ino_lock);
574         e = radix_tree_lookup(&im->ino_root, ino);
575         if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device))
576                 is_dirty = true;
577         spin_unlock(&im->ino_lock);
578         return is_dirty;
579 }
580
581 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi)
582 {
583         struct inode_management *im = &sbi->im[ORPHAN_INO];
584         int err = 0;
585
586         spin_lock(&im->ino_lock);
587
588         if (time_to_inject(sbi, FAULT_ORPHAN)) {
589                 spin_unlock(&im->ino_lock);
590                 f2fs_show_injection_info(sbi, FAULT_ORPHAN);
591                 return -ENOSPC;
592         }
593
594         if (unlikely(im->ino_num >= sbi->max_orphans))
595                 err = -ENOSPC;
596         else
597                 im->ino_num++;
598         spin_unlock(&im->ino_lock);
599
600         return err;
601 }
602
603 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi)
604 {
605         struct inode_management *im = &sbi->im[ORPHAN_INO];
606
607         spin_lock(&im->ino_lock);
608         f2fs_bug_on(sbi, im->ino_num == 0);
609         im->ino_num--;
610         spin_unlock(&im->ino_lock);
611 }
612
613 void f2fs_add_orphan_inode(struct inode *inode)
614 {
615         /* add new orphan ino entry into list */
616         __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO);
617         f2fs_update_inode_page(inode);
618 }
619
620 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
621 {
622         /* remove orphan entry from orphan list */
623         __remove_ino_entry(sbi, ino, ORPHAN_INO);
624 }
625
626 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
627 {
628         struct inode *inode;
629         struct node_info ni;
630         int err;
631
632         inode = f2fs_iget_retry(sbi->sb, ino);
633         if (IS_ERR(inode)) {
634                 /*
635                  * there should be a bug that we can't find the entry
636                  * to orphan inode.
637                  */
638                 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
639                 return PTR_ERR(inode);
640         }
641
642         err = dquot_initialize(inode);
643         if (err) {
644                 iput(inode);
645                 goto err_out;
646         }
647
648         clear_nlink(inode);
649
650         /* truncate all the data during iput */
651         iput(inode);
652
653         err = f2fs_get_node_info(sbi, ino, &ni);
654         if (err)
655                 goto err_out;
656
657         /* ENOMEM was fully retried in f2fs_evict_inode. */
658         if (ni.blk_addr != NULL_ADDR) {
659                 err = -EIO;
660                 goto err_out;
661         }
662         return 0;
663
664 err_out:
665         set_sbi_flag(sbi, SBI_NEED_FSCK);
666         f2fs_warn(sbi, "%s: orphan failed (ino=%x), run fsck to fix.",
667                   __func__, ino);
668         return err;
669 }
670
671 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi)
672 {
673         block_t start_blk, orphan_blocks, i, j;
674         unsigned int s_flags = sbi->sb->s_flags;
675         int err = 0;
676 #ifdef CONFIG_QUOTA
677         int quota_enabled;
678 #endif
679
680         if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
681                 return 0;
682
683         if (bdev_read_only(sbi->sb->s_bdev)) {
684                 f2fs_info(sbi, "write access unavailable, skipping orphan cleanup");
685                 return 0;
686         }
687
688         if (s_flags & SB_RDONLY) {
689                 f2fs_info(sbi, "orphan cleanup on readonly fs");
690                 sbi->sb->s_flags &= ~SB_RDONLY;
691         }
692
693 #ifdef CONFIG_QUOTA
694         /* Needed for iput() to work correctly and not trash data */
695         sbi->sb->s_flags |= SB_ACTIVE;
696
697         /*
698          * Turn on quotas which were not enabled for read-only mounts if
699          * filesystem has quota feature, so that they are updated correctly.
700          */
701         quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY);
702 #endif
703
704         start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
705         orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
706
707         f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
708
709         for (i = 0; i < orphan_blocks; i++) {
710                 struct page *page;
711                 struct f2fs_orphan_block *orphan_blk;
712
713                 page = f2fs_get_meta_page(sbi, start_blk + i);
714                 if (IS_ERR(page)) {
715                         err = PTR_ERR(page);
716                         goto out;
717                 }
718
719                 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
720                 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
721                         nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
722
723                         err = recover_orphan_inode(sbi, ino);
724                         if (err) {
725                                 f2fs_put_page(page, 1);
726                                 goto out;
727                         }
728                 }
729                 f2fs_put_page(page, 1);
730         }
731         /* clear Orphan Flag */
732         clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
733 out:
734         set_sbi_flag(sbi, SBI_IS_RECOVERED);
735
736 #ifdef CONFIG_QUOTA
737         /* Turn quotas off */
738         if (quota_enabled)
739                 f2fs_quota_off_umount(sbi->sb);
740 #endif
741         sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */
742
743         return err;
744 }
745
746 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
747 {
748         struct list_head *head;
749         struct f2fs_orphan_block *orphan_blk = NULL;
750         unsigned int nentries = 0;
751         unsigned short index = 1;
752         unsigned short orphan_blocks;
753         struct page *page = NULL;
754         struct ino_entry *orphan = NULL;
755         struct inode_management *im = &sbi->im[ORPHAN_INO];
756
757         orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
758
759         /*
760          * we don't need to do spin_lock(&im->ino_lock) here, since all the
761          * orphan inode operations are covered under f2fs_lock_op().
762          * And, spin_lock should be avoided due to page operations below.
763          */
764         head = &im->ino_list;
765
766         /* loop for each orphan inode entry and write them in Jornal block */
767         list_for_each_entry(orphan, head, list) {
768                 if (!page) {
769                         page = f2fs_grab_meta_page(sbi, start_blk++);
770                         orphan_blk =
771                                 (struct f2fs_orphan_block *)page_address(page);
772                         memset(orphan_blk, 0, sizeof(*orphan_blk));
773                 }
774
775                 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
776
777                 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
778                         /*
779                          * an orphan block is full of 1020 entries,
780                          * then we need to flush current orphan blocks
781                          * and bring another one in memory
782                          */
783                         orphan_blk->blk_addr = cpu_to_le16(index);
784                         orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
785                         orphan_blk->entry_count = cpu_to_le32(nentries);
786                         set_page_dirty(page);
787                         f2fs_put_page(page, 1);
788                         index++;
789                         nentries = 0;
790                         page = NULL;
791                 }
792         }
793
794         if (page) {
795                 orphan_blk->blk_addr = cpu_to_le16(index);
796                 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
797                 orphan_blk->entry_count = cpu_to_le32(nentries);
798                 set_page_dirty(page);
799                 f2fs_put_page(page, 1);
800         }
801 }
802
803 static __u32 f2fs_checkpoint_chksum(struct f2fs_sb_info *sbi,
804                                                 struct f2fs_checkpoint *ckpt)
805 {
806         unsigned int chksum_ofs = le32_to_cpu(ckpt->checksum_offset);
807         __u32 chksum;
808
809         chksum = f2fs_crc32(sbi, ckpt, chksum_ofs);
810         if (chksum_ofs < CP_CHKSUM_OFFSET) {
811                 chksum_ofs += sizeof(chksum);
812                 chksum = f2fs_chksum(sbi, chksum, (__u8 *)ckpt + chksum_ofs,
813                                                 F2FS_BLKSIZE - chksum_ofs);
814         }
815         return chksum;
816 }
817
818 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
819                 struct f2fs_checkpoint **cp_block, struct page **cp_page,
820                 unsigned long long *version)
821 {
822         size_t crc_offset = 0;
823         __u32 crc;
824
825         *cp_page = f2fs_get_meta_page(sbi, cp_addr);
826         if (IS_ERR(*cp_page))
827                 return PTR_ERR(*cp_page);
828
829         *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
830
831         crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
832         if (crc_offset < CP_MIN_CHKSUM_OFFSET ||
833                         crc_offset > CP_CHKSUM_OFFSET) {
834                 f2fs_put_page(*cp_page, 1);
835                 f2fs_warn(sbi, "invalid crc_offset: %zu", crc_offset);
836                 return -EINVAL;
837         }
838
839         crc = f2fs_checkpoint_chksum(sbi, *cp_block);
840         if (crc != cur_cp_crc(*cp_block)) {
841                 f2fs_put_page(*cp_page, 1);
842                 f2fs_warn(sbi, "invalid crc value");
843                 return -EINVAL;
844         }
845
846         *version = cur_cp_version(*cp_block);
847         return 0;
848 }
849
850 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
851                                 block_t cp_addr, unsigned long long *version)
852 {
853         struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
854         struct f2fs_checkpoint *cp_block = NULL;
855         unsigned long long cur_version = 0, pre_version = 0;
856         int err;
857
858         err = get_checkpoint_version(sbi, cp_addr, &cp_block,
859                                         &cp_page_1, version);
860         if (err)
861                 return NULL;
862
863         if (le32_to_cpu(cp_block->cp_pack_total_block_count) >
864                                         sbi->blocks_per_seg) {
865                 f2fs_warn(sbi, "invalid cp_pack_total_block_count:%u",
866                           le32_to_cpu(cp_block->cp_pack_total_block_count));
867                 goto invalid_cp;
868         }
869         pre_version = *version;
870
871         cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
872         err = get_checkpoint_version(sbi, cp_addr, &cp_block,
873                                         &cp_page_2, version);
874         if (err)
875                 goto invalid_cp;
876         cur_version = *version;
877
878         if (cur_version == pre_version) {
879                 *version = cur_version;
880                 f2fs_put_page(cp_page_2, 1);
881                 return cp_page_1;
882         }
883         f2fs_put_page(cp_page_2, 1);
884 invalid_cp:
885         f2fs_put_page(cp_page_1, 1);
886         return NULL;
887 }
888
889 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi)
890 {
891         struct f2fs_checkpoint *cp_block;
892         struct f2fs_super_block *fsb = sbi->raw_super;
893         struct page *cp1, *cp2, *cur_page;
894         unsigned long blk_size = sbi->blocksize;
895         unsigned long long cp1_version = 0, cp2_version = 0;
896         unsigned long long cp_start_blk_no;
897         unsigned int cp_blks = 1 + __cp_payload(sbi);
898         block_t cp_blk_no;
899         int i;
900         int err;
901
902         sbi->ckpt = f2fs_kvzalloc(sbi, array_size(blk_size, cp_blks),
903                                   GFP_KERNEL);
904         if (!sbi->ckpt)
905                 return -ENOMEM;
906         /*
907          * Finding out valid cp block involves read both
908          * sets( cp pack 1 and cp pack 2)
909          */
910         cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
911         cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
912
913         /* The second checkpoint pack should start at the next segment */
914         cp_start_blk_no += ((unsigned long long)1) <<
915                                 le32_to_cpu(fsb->log_blocks_per_seg);
916         cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
917
918         if (cp1 && cp2) {
919                 if (ver_after(cp2_version, cp1_version))
920                         cur_page = cp2;
921                 else
922                         cur_page = cp1;
923         } else if (cp1) {
924                 cur_page = cp1;
925         } else if (cp2) {
926                 cur_page = cp2;
927         } else {
928                 err = -EFSCORRUPTED;
929                 goto fail_no_cp;
930         }
931
932         cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
933         memcpy(sbi->ckpt, cp_block, blk_size);
934
935         if (cur_page == cp1)
936                 sbi->cur_cp_pack = 1;
937         else
938                 sbi->cur_cp_pack = 2;
939
940         /* Sanity checking of checkpoint */
941         if (f2fs_sanity_check_ckpt(sbi)) {
942                 err = -EFSCORRUPTED;
943                 goto free_fail_no_cp;
944         }
945
946         if (cp_blks <= 1)
947                 goto done;
948
949         cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
950         if (cur_page == cp2)
951                 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
952
953         for (i = 1; i < cp_blks; i++) {
954                 void *sit_bitmap_ptr;
955                 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
956
957                 cur_page = f2fs_get_meta_page(sbi, cp_blk_no + i);
958                 if (IS_ERR(cur_page)) {
959                         err = PTR_ERR(cur_page);
960                         goto free_fail_no_cp;
961                 }
962                 sit_bitmap_ptr = page_address(cur_page);
963                 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
964                 f2fs_put_page(cur_page, 1);
965         }
966 done:
967         f2fs_put_page(cp1, 1);
968         f2fs_put_page(cp2, 1);
969         return 0;
970
971 free_fail_no_cp:
972         f2fs_put_page(cp1, 1);
973         f2fs_put_page(cp2, 1);
974 fail_no_cp:
975         kvfree(sbi->ckpt);
976         return err;
977 }
978
979 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
980 {
981         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
982         int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
983
984         if (is_inode_flag_set(inode, flag))
985                 return;
986
987         set_inode_flag(inode, flag);
988         if (!f2fs_is_volatile_file(inode))
989                 list_add_tail(&F2FS_I(inode)->dirty_list,
990                                                 &sbi->inode_list[type]);
991         stat_inc_dirty_inode(sbi, type);
992 }
993
994 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
995 {
996         int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
997
998         if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
999                 return;
1000
1001         list_del_init(&F2FS_I(inode)->dirty_list);
1002         clear_inode_flag(inode, flag);
1003         stat_dec_dirty_inode(F2FS_I_SB(inode), type);
1004 }
1005
1006 void f2fs_update_dirty_page(struct inode *inode, struct page *page)
1007 {
1008         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1009         enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
1010
1011         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1012                         !S_ISLNK(inode->i_mode))
1013                 return;
1014
1015         spin_lock(&sbi->inode_lock[type]);
1016         if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
1017                 __add_dirty_inode(inode, type);
1018         inode_inc_dirty_pages(inode);
1019         spin_unlock(&sbi->inode_lock[type]);
1020
1021         f2fs_set_page_private(page, 0);
1022 }
1023
1024 void f2fs_remove_dirty_inode(struct inode *inode)
1025 {
1026         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1027         enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
1028
1029         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1030                         !S_ISLNK(inode->i_mode))
1031                 return;
1032
1033         if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
1034                 return;
1035
1036         spin_lock(&sbi->inode_lock[type]);
1037         __remove_dirty_inode(inode, type);
1038         spin_unlock(&sbi->inode_lock[type]);
1039 }
1040
1041 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
1042 {
1043         struct list_head *head;
1044         struct inode *inode;
1045         struct f2fs_inode_info *fi;
1046         bool is_dir = (type == DIR_INODE);
1047         unsigned long ino = 0;
1048
1049         trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
1050                                 get_pages(sbi, is_dir ?
1051                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1052 retry:
1053         if (unlikely(f2fs_cp_error(sbi))) {
1054                 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1055                                 get_pages(sbi, is_dir ?
1056                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1057                 return -EIO;
1058         }
1059
1060         spin_lock(&sbi->inode_lock[type]);
1061
1062         head = &sbi->inode_list[type];
1063         if (list_empty(head)) {
1064                 spin_unlock(&sbi->inode_lock[type]);
1065                 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1066                                 get_pages(sbi, is_dir ?
1067                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1068                 return 0;
1069         }
1070         fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
1071         inode = igrab(&fi->vfs_inode);
1072         spin_unlock(&sbi->inode_lock[type]);
1073         if (inode) {
1074                 unsigned long cur_ino = inode->i_ino;
1075
1076                 F2FS_I(inode)->cp_task = current;
1077
1078                 filemap_fdatawrite(inode->i_mapping);
1079
1080                 F2FS_I(inode)->cp_task = NULL;
1081
1082                 iput(inode);
1083                 /* We need to give cpu to another writers. */
1084                 if (ino == cur_ino)
1085                         cond_resched();
1086                 else
1087                         ino = cur_ino;
1088         } else {
1089                 /*
1090                  * We should submit bio, since it exists several
1091                  * wribacking dentry pages in the freeing inode.
1092                  */
1093                 f2fs_submit_merged_write(sbi, DATA);
1094                 cond_resched();
1095         }
1096         goto retry;
1097 }
1098
1099 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
1100 {
1101         struct list_head *head = &sbi->inode_list[DIRTY_META];
1102         struct inode *inode;
1103         struct f2fs_inode_info *fi;
1104         s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
1105
1106         while (total--) {
1107                 if (unlikely(f2fs_cp_error(sbi)))
1108                         return -EIO;
1109
1110                 spin_lock(&sbi->inode_lock[DIRTY_META]);
1111                 if (list_empty(head)) {
1112                         spin_unlock(&sbi->inode_lock[DIRTY_META]);
1113                         return 0;
1114                 }
1115                 fi = list_first_entry(head, struct f2fs_inode_info,
1116                                                         gdirty_list);
1117                 inode = igrab(&fi->vfs_inode);
1118                 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1119                 if (inode) {
1120                         sync_inode_metadata(inode, 0);
1121
1122                         /* it's on eviction */
1123                         if (is_inode_flag_set(inode, FI_DIRTY_INODE))
1124                                 f2fs_update_inode_page(inode);
1125                         iput(inode);
1126                 }
1127         }
1128         return 0;
1129 }
1130
1131 static void __prepare_cp_block(struct f2fs_sb_info *sbi)
1132 {
1133         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1134         struct f2fs_nm_info *nm_i = NM_I(sbi);
1135         nid_t last_nid = nm_i->next_scan_nid;
1136
1137         next_free_nid(sbi, &last_nid);
1138         ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
1139         ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
1140         ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
1141         ckpt->next_free_nid = cpu_to_le32(last_nid);
1142 }
1143
1144 static bool __need_flush_quota(struct f2fs_sb_info *sbi)
1145 {
1146         bool ret = false;
1147
1148         if (!is_journalled_quota(sbi))
1149                 return false;
1150
1151         down_write(&sbi->quota_sem);
1152         if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) {
1153                 ret = false;
1154         } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) {
1155                 ret = false;
1156         } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_FLUSH)) {
1157                 clear_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
1158                 ret = true;
1159         } else if (get_pages(sbi, F2FS_DIRTY_QDATA)) {
1160                 ret = true;
1161         }
1162         up_write(&sbi->quota_sem);
1163         return ret;
1164 }
1165
1166 /*
1167  * Freeze all the FS-operations for checkpoint.
1168  */
1169 static int block_operations(struct f2fs_sb_info *sbi)
1170 {
1171         struct writeback_control wbc = {
1172                 .sync_mode = WB_SYNC_ALL,
1173                 .nr_to_write = LONG_MAX,
1174                 .for_reclaim = 0,
1175         };
1176         int err = 0, cnt = 0;
1177
1178         /*
1179          * Let's flush inline_data in dirty node pages.
1180          */
1181         f2fs_flush_inline_data(sbi);
1182
1183 retry_flush_quotas:
1184         f2fs_lock_all(sbi);
1185         if (__need_flush_quota(sbi)) {
1186                 int locked;
1187
1188                 if (++cnt > DEFAULT_RETRY_QUOTA_FLUSH_COUNT) {
1189                         set_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
1190                         set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
1191                         goto retry_flush_dents;
1192                 }
1193                 f2fs_unlock_all(sbi);
1194
1195                 /* only failed during mount/umount/freeze/quotactl */
1196                 locked = down_read_trylock(&sbi->sb->s_umount);
1197                 f2fs_quota_sync(sbi->sb, -1);
1198                 if (locked)
1199                         up_read(&sbi->sb->s_umount);
1200                 cond_resched();
1201                 goto retry_flush_quotas;
1202         }
1203
1204 retry_flush_dents:
1205         /* write all the dirty dentry pages */
1206         if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
1207                 f2fs_unlock_all(sbi);
1208                 err = f2fs_sync_dirty_inodes(sbi, DIR_INODE);
1209                 if (err)
1210                         return err;
1211                 cond_resched();
1212                 goto retry_flush_quotas;
1213         }
1214
1215         /*
1216          * POR: we should ensure that there are no dirty node pages
1217          * until finishing nat/sit flush. inode->i_blocks can be updated.
1218          */
1219         down_write(&sbi->node_change);
1220
1221         if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
1222                 up_write(&sbi->node_change);
1223                 f2fs_unlock_all(sbi);
1224                 err = f2fs_sync_inode_meta(sbi);
1225                 if (err)
1226                         return err;
1227                 cond_resched();
1228                 goto retry_flush_quotas;
1229         }
1230
1231 retry_flush_nodes:
1232         down_write(&sbi->node_write);
1233
1234         if (get_pages(sbi, F2FS_DIRTY_NODES)) {
1235                 up_write(&sbi->node_write);
1236                 atomic_inc(&sbi->wb_sync_req[NODE]);
1237                 err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO);
1238                 atomic_dec(&sbi->wb_sync_req[NODE]);
1239                 if (err) {
1240                         up_write(&sbi->node_change);
1241                         f2fs_unlock_all(sbi);
1242                         return err;
1243                 }
1244                 cond_resched();
1245                 goto retry_flush_nodes;
1246         }
1247
1248         /*
1249          * sbi->node_change is used only for AIO write_begin path which produces
1250          * dirty node blocks and some checkpoint values by block allocation.
1251          */
1252         __prepare_cp_block(sbi);
1253         up_write(&sbi->node_change);
1254         return err;
1255 }
1256
1257 static void unblock_operations(struct f2fs_sb_info *sbi)
1258 {
1259         up_write(&sbi->node_write);
1260         f2fs_unlock_all(sbi);
1261 }
1262
1263 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type)
1264 {
1265         DEFINE_WAIT(wait);
1266
1267         for (;;) {
1268                 if (!get_pages(sbi, type))
1269                         break;
1270
1271                 if (unlikely(f2fs_cp_error(sbi)))
1272                         break;
1273
1274                 if (type == F2FS_DIRTY_META)
1275                         f2fs_sync_meta_pages(sbi, META, LONG_MAX,
1276                                                         FS_CP_META_IO);
1277                 else if (type == F2FS_WB_CP_DATA)
1278                         f2fs_submit_merged_write(sbi, DATA);
1279
1280                 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
1281                 io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1282         }
1283         finish_wait(&sbi->cp_wait, &wait);
1284 }
1285
1286 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1287 {
1288         unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1289         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1290         unsigned long flags;
1291
1292         spin_lock_irqsave(&sbi->cp_lock, flags);
1293
1294         if ((cpc->reason & CP_UMOUNT) &&
1295                         le32_to_cpu(ckpt->cp_pack_total_block_count) >
1296                         sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks)
1297                 disable_nat_bits(sbi, false);
1298
1299         if (cpc->reason & CP_TRIMMED)
1300                 __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1301         else
1302                 __clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1303
1304         if (cpc->reason & CP_UMOUNT)
1305                 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1306         else
1307                 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1308
1309         if (cpc->reason & CP_FASTBOOT)
1310                 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1311         else
1312                 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1313
1314         if (orphan_num)
1315                 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1316         else
1317                 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1318
1319         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1320                 __set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1321
1322         if (is_sbi_flag_set(sbi, SBI_IS_RESIZEFS))
1323                 __set_ckpt_flags(ckpt, CP_RESIZEFS_FLAG);
1324         else
1325                 __clear_ckpt_flags(ckpt, CP_RESIZEFS_FLAG);
1326
1327         if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
1328                 __set_ckpt_flags(ckpt, CP_DISABLED_FLAG);
1329         else
1330                 __clear_ckpt_flags(ckpt, CP_DISABLED_FLAG);
1331
1332         if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK))
1333                 __set_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
1334         else
1335                 __clear_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
1336
1337         if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH))
1338                 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1339         else
1340                 __clear_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1341
1342         if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR))
1343                 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1344
1345         /* set this flag to activate crc|cp_ver for recovery */
1346         __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1347         __clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG);
1348
1349         spin_unlock_irqrestore(&sbi->cp_lock, flags);
1350 }
1351
1352 static void commit_checkpoint(struct f2fs_sb_info *sbi,
1353         void *src, block_t blk_addr)
1354 {
1355         struct writeback_control wbc = {
1356                 .for_reclaim = 0,
1357         };
1358
1359         /*
1360          * pagevec_lookup_tag and lock_page again will take
1361          * some extra time. Therefore, f2fs_update_meta_pages and
1362          * f2fs_sync_meta_pages are combined in this function.
1363          */
1364         struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
1365         int err;
1366
1367         f2fs_wait_on_page_writeback(page, META, true, true);
1368
1369         memcpy(page_address(page), src, PAGE_SIZE);
1370
1371         set_page_dirty(page);
1372         if (unlikely(!clear_page_dirty_for_io(page)))
1373                 f2fs_bug_on(sbi, 1);
1374
1375         /* writeout cp pack 2 page */
1376         err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO);
1377         if (unlikely(err && f2fs_cp_error(sbi))) {
1378                 f2fs_put_page(page, 1);
1379                 return;
1380         }
1381
1382         f2fs_bug_on(sbi, err);
1383         f2fs_put_page(page, 0);
1384
1385         /* submit checkpoint (with barrier if NOBARRIER is not set) */
1386         f2fs_submit_merged_write(sbi, META_FLUSH);
1387 }
1388
1389 static inline u64 get_sectors_written(struct block_device *bdev)
1390 {
1391         return (u64)part_stat_read(bdev, sectors[STAT_WRITE]);
1392 }
1393
1394 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi)
1395 {
1396         if (f2fs_is_multi_device(sbi)) {
1397                 u64 sectors = 0;
1398                 int i;
1399
1400                 for (i = 0; i < sbi->s_ndevs; i++)
1401                         sectors += get_sectors_written(FDEV(i).bdev);
1402
1403                 return sectors;
1404         }
1405
1406         return get_sectors_written(sbi->sb->s_bdev);
1407 }
1408
1409 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1410 {
1411         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1412         struct f2fs_nm_info *nm_i = NM_I(sbi);
1413         unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags;
1414         block_t start_blk;
1415         unsigned int data_sum_blocks, orphan_blocks;
1416         __u32 crc32 = 0;
1417         int i;
1418         int cp_payload_blks = __cp_payload(sbi);
1419         struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1420         u64 kbytes_written;
1421         int err;
1422
1423         /* Flush all the NAT/SIT pages */
1424         f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1425
1426         /* start to update checkpoint, cp ver is already updated previously */
1427         ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true));
1428         ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1429         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1430                 ckpt->cur_node_segno[i] =
1431                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
1432                 ckpt->cur_node_blkoff[i] =
1433                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
1434                 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
1435                                 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
1436         }
1437         for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1438                 ckpt->cur_data_segno[i] =
1439                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
1440                 ckpt->cur_data_blkoff[i] =
1441                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
1442                 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
1443                                 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
1444         }
1445
1446         /* 2 cp + n data seg summary + orphan inode blocks */
1447         data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false);
1448         spin_lock_irqsave(&sbi->cp_lock, flags);
1449         if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1450                 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1451         else
1452                 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1453         spin_unlock_irqrestore(&sbi->cp_lock, flags);
1454
1455         orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1456         ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1457                         orphan_blocks);
1458
1459         if (__remain_node_summaries(cpc->reason))
1460                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1461                                 cp_payload_blks + data_sum_blocks +
1462                                 orphan_blocks + NR_CURSEG_NODE_TYPE);
1463         else
1464                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1465                                 cp_payload_blks + data_sum_blocks +
1466                                 orphan_blocks);
1467
1468         /* update ckpt flag for checkpoint */
1469         update_ckpt_flags(sbi, cpc);
1470
1471         /* update SIT/NAT bitmap */
1472         get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1473         get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1474
1475         crc32 = f2fs_checkpoint_chksum(sbi, ckpt);
1476         *((__le32 *)((unsigned char *)ckpt +
1477                                 le32_to_cpu(ckpt->checksum_offset)))
1478                                 = cpu_to_le32(crc32);
1479
1480         start_blk = __start_cp_next_addr(sbi);
1481
1482         /* write nat bits */
1483         if (enabled_nat_bits(sbi, cpc)) {
1484                 __u64 cp_ver = cur_cp_version(ckpt);
1485                 block_t blk;
1486
1487                 cp_ver |= ((__u64)crc32 << 32);
1488                 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
1489
1490                 blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
1491                 for (i = 0; i < nm_i->nat_bits_blocks; i++)
1492                         f2fs_update_meta_page(sbi, nm_i->nat_bits +
1493                                         (i << F2FS_BLKSIZE_BITS), blk + i);
1494         }
1495
1496         /* write out checkpoint buffer at block 0 */
1497         f2fs_update_meta_page(sbi, ckpt, start_blk++);
1498
1499         for (i = 1; i < 1 + cp_payload_blks; i++)
1500                 f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1501                                                         start_blk++);
1502
1503         if (orphan_num) {
1504                 write_orphan_inodes(sbi, start_blk);
1505                 start_blk += orphan_blocks;
1506         }
1507
1508         f2fs_write_data_summaries(sbi, start_blk);
1509         start_blk += data_sum_blocks;
1510
1511         /* Record write statistics in the hot node summary */
1512         kbytes_written = sbi->kbytes_written;
1513         kbytes_written += (f2fs_get_sectors_written(sbi) -
1514                                 sbi->sectors_written_start) >> 1;
1515         seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1516
1517         if (__remain_node_summaries(cpc->reason)) {
1518                 f2fs_write_node_summaries(sbi, start_blk);
1519                 start_blk += NR_CURSEG_NODE_TYPE;
1520         }
1521
1522         /* update user_block_counts */
1523         sbi->last_valid_block_count = sbi->total_valid_block_count;
1524         percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1525
1526         /* Here, we have one bio having CP pack except cp pack 2 page */
1527         f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1528         /* Wait for all dirty meta pages to be submitted for IO */
1529         f2fs_wait_on_all_pages(sbi, F2FS_DIRTY_META);
1530
1531         /* wait for previous submitted meta pages writeback */
1532         f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1533
1534         /* flush all device cache */
1535         err = f2fs_flush_device_cache(sbi);
1536         if (err)
1537                 return err;
1538
1539         /* barrier and flush checkpoint cp pack 2 page if it can */
1540         commit_checkpoint(sbi, ckpt, start_blk);
1541         f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1542
1543         /*
1544          * invalidate intermediate page cache borrowed from meta inode which are
1545          * used for migration of encrypted, verity or compressed inode's blocks.
1546          */
1547         if (f2fs_sb_has_encrypt(sbi) || f2fs_sb_has_verity(sbi) ||
1548                 f2fs_sb_has_compression(sbi))
1549                 invalidate_mapping_pages(META_MAPPING(sbi),
1550                                 MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1);
1551
1552         f2fs_release_ino_entry(sbi, false);
1553
1554         f2fs_reset_fsync_node_info(sbi);
1555
1556         clear_sbi_flag(sbi, SBI_IS_DIRTY);
1557         clear_sbi_flag(sbi, SBI_NEED_CP);
1558         clear_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
1559
1560         spin_lock(&sbi->stat_lock);
1561         sbi->unusable_block_count = 0;
1562         spin_unlock(&sbi->stat_lock);
1563
1564         __set_cp_next_pack(sbi);
1565
1566         /*
1567          * redirty superblock if metadata like node page or inode cache is
1568          * updated during writing checkpoint.
1569          */
1570         if (get_pages(sbi, F2FS_DIRTY_NODES) ||
1571                         get_pages(sbi, F2FS_DIRTY_IMETA))
1572                 set_sbi_flag(sbi, SBI_IS_DIRTY);
1573
1574         f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1575
1576         return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0;
1577 }
1578
1579 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1580 {
1581         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1582         unsigned long long ckpt_ver;
1583         int err = 0;
1584
1585         if (f2fs_readonly(sbi->sb) || f2fs_hw_is_readonly(sbi))
1586                 return -EROFS;
1587
1588         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1589                 if (cpc->reason != CP_PAUSE)
1590                         return 0;
1591                 f2fs_warn(sbi, "Start checkpoint disabled!");
1592         }
1593         if (cpc->reason != CP_RESIZE)
1594                 down_write(&sbi->cp_global_sem);
1595
1596         if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1597                 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
1598                 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
1599                 goto out;
1600         if (unlikely(f2fs_cp_error(sbi))) {
1601                 err = -EIO;
1602                 goto out;
1603         }
1604
1605         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1606
1607         err = block_operations(sbi);
1608         if (err)
1609                 goto out;
1610
1611         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1612
1613         f2fs_flush_merged_writes(sbi);
1614
1615         /* this is the case of multiple fstrims without any changes */
1616         if (cpc->reason & CP_DISCARD) {
1617                 if (!f2fs_exist_trim_candidates(sbi, cpc)) {
1618                         unblock_operations(sbi);
1619                         goto out;
1620                 }
1621
1622                 if (NM_I(sbi)->nat_cnt[DIRTY_NAT] == 0 &&
1623                                 SIT_I(sbi)->dirty_sentries == 0 &&
1624                                 prefree_segments(sbi) == 0) {
1625                         f2fs_flush_sit_entries(sbi, cpc);
1626                         f2fs_clear_prefree_segments(sbi, cpc);
1627                         unblock_operations(sbi);
1628                         goto out;
1629                 }
1630         }
1631
1632         /*
1633          * update checkpoint pack index
1634          * Increase the version number so that
1635          * SIT entries and seg summaries are written at correct place
1636          */
1637         ckpt_ver = cur_cp_version(ckpt);
1638         ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1639
1640         /* write cached NAT/SIT entries to NAT/SIT area */
1641         err = f2fs_flush_nat_entries(sbi, cpc);
1642         if (err)
1643                 goto stop;
1644
1645         f2fs_flush_sit_entries(sbi, cpc);
1646
1647         /* save inmem log status */
1648         f2fs_save_inmem_curseg(sbi);
1649
1650         err = do_checkpoint(sbi, cpc);
1651         if (err)
1652                 f2fs_release_discard_addrs(sbi);
1653         else
1654                 f2fs_clear_prefree_segments(sbi, cpc);
1655
1656         f2fs_restore_inmem_curseg(sbi);
1657 stop:
1658         unblock_operations(sbi);
1659         stat_inc_cp_count(sbi->stat_info);
1660
1661         if (cpc->reason & CP_RECOVERY)
1662                 f2fs_notice(sbi, "checkpoint: version = %llx", ckpt_ver);
1663
1664         /* update CP_TIME to trigger checkpoint periodically */
1665         f2fs_update_time(sbi, CP_TIME);
1666         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1667 out:
1668         if (cpc->reason != CP_RESIZE)
1669                 up_write(&sbi->cp_global_sem);
1670         return err;
1671 }
1672
1673 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi)
1674 {
1675         int i;
1676
1677         for (i = 0; i < MAX_INO_ENTRY; i++) {
1678                 struct inode_management *im = &sbi->im[i];
1679
1680                 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1681                 spin_lock_init(&im->ino_lock);
1682                 INIT_LIST_HEAD(&im->ino_list);
1683                 im->ino_num = 0;
1684         }
1685
1686         sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1687                         NR_CURSEG_PERSIST_TYPE - __cp_payload(sbi)) *
1688                                 F2FS_ORPHANS_PER_BLOCK;
1689 }
1690
1691 int __init f2fs_create_checkpoint_caches(void)
1692 {
1693         ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1694                         sizeof(struct ino_entry));
1695         if (!ino_entry_slab)
1696                 return -ENOMEM;
1697         f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1698                         sizeof(struct inode_entry));
1699         if (!f2fs_inode_entry_slab) {
1700                 kmem_cache_destroy(ino_entry_slab);
1701                 return -ENOMEM;
1702         }
1703         return 0;
1704 }
1705
1706 void f2fs_destroy_checkpoint_caches(void)
1707 {
1708         kmem_cache_destroy(ino_entry_slab);
1709         kmem_cache_destroy(f2fs_inode_entry_slab);
1710 }
1711
1712 static int __write_checkpoint_sync(struct f2fs_sb_info *sbi)
1713 {
1714         struct cp_control cpc = { .reason = CP_SYNC, };
1715         int err;
1716
1717         down_write(&sbi->gc_lock);
1718         err = f2fs_write_checkpoint(sbi, &cpc);
1719         up_write(&sbi->gc_lock);
1720
1721         return err;
1722 }
1723
1724 static void __checkpoint_and_complete_reqs(struct f2fs_sb_info *sbi)
1725 {
1726         struct ckpt_req_control *cprc = &sbi->cprc_info;
1727         struct ckpt_req *req, *next;
1728         struct llist_node *dispatch_list;
1729         u64 sum_diff = 0, diff, count = 0;
1730         int ret;
1731
1732         dispatch_list = llist_del_all(&cprc->issue_list);
1733         if (!dispatch_list)
1734                 return;
1735         dispatch_list = llist_reverse_order(dispatch_list);
1736
1737         ret = __write_checkpoint_sync(sbi);
1738         atomic_inc(&cprc->issued_ckpt);
1739
1740         llist_for_each_entry_safe(req, next, dispatch_list, llnode) {
1741                 diff = (u64)ktime_ms_delta(ktime_get(), req->queue_time);
1742                 req->ret = ret;
1743                 complete(&req->wait);
1744
1745                 sum_diff += diff;
1746                 count++;
1747         }
1748         atomic_sub(count, &cprc->queued_ckpt);
1749         atomic_add(count, &cprc->total_ckpt);
1750
1751         spin_lock(&cprc->stat_lock);
1752         cprc->cur_time = (unsigned int)div64_u64(sum_diff, count);
1753         if (cprc->peak_time < cprc->cur_time)
1754                 cprc->peak_time = cprc->cur_time;
1755         spin_unlock(&cprc->stat_lock);
1756 }
1757
1758 static int issue_checkpoint_thread(void *data)
1759 {
1760         struct f2fs_sb_info *sbi = data;
1761         struct ckpt_req_control *cprc = &sbi->cprc_info;
1762         wait_queue_head_t *q = &cprc->ckpt_wait_queue;
1763 repeat:
1764         if (kthread_should_stop())
1765                 return 0;
1766
1767         if (!llist_empty(&cprc->issue_list))
1768                 __checkpoint_and_complete_reqs(sbi);
1769
1770         wait_event_interruptible(*q,
1771                 kthread_should_stop() || !llist_empty(&cprc->issue_list));
1772         goto repeat;
1773 }
1774
1775 static void flush_remained_ckpt_reqs(struct f2fs_sb_info *sbi,
1776                 struct ckpt_req *wait_req)
1777 {
1778         struct ckpt_req_control *cprc = &sbi->cprc_info;
1779
1780         if (!llist_empty(&cprc->issue_list)) {
1781                 __checkpoint_and_complete_reqs(sbi);
1782         } else {
1783                 /* already dispatched by issue_checkpoint_thread */
1784                 if (wait_req)
1785                         wait_for_completion(&wait_req->wait);
1786         }
1787 }
1788
1789 static void init_ckpt_req(struct ckpt_req *req)
1790 {
1791         memset(req, 0, sizeof(struct ckpt_req));
1792
1793         init_completion(&req->wait);
1794         req->queue_time = ktime_get();
1795 }
1796
1797 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi)
1798 {
1799         struct ckpt_req_control *cprc = &sbi->cprc_info;
1800         struct ckpt_req req;
1801         struct cp_control cpc;
1802
1803         cpc.reason = __get_cp_reason(sbi);
1804         if (!test_opt(sbi, MERGE_CHECKPOINT) || cpc.reason != CP_SYNC) {
1805                 int ret;
1806
1807                 down_write(&sbi->gc_lock);
1808                 ret = f2fs_write_checkpoint(sbi, &cpc);
1809                 up_write(&sbi->gc_lock);
1810
1811                 return ret;
1812         }
1813
1814         if (!cprc->f2fs_issue_ckpt)
1815                 return __write_checkpoint_sync(sbi);
1816
1817         init_ckpt_req(&req);
1818
1819         llist_add(&req.llnode, &cprc->issue_list);
1820         atomic_inc(&cprc->queued_ckpt);
1821
1822         /*
1823          * update issue_list before we wake up issue_checkpoint thread,
1824          * this smp_mb() pairs with another barrier in ___wait_event(),
1825          * see more details in comments of waitqueue_active().
1826          */
1827         smp_mb();
1828
1829         if (waitqueue_active(&cprc->ckpt_wait_queue))
1830                 wake_up(&cprc->ckpt_wait_queue);
1831
1832         if (cprc->f2fs_issue_ckpt)
1833                 wait_for_completion(&req.wait);
1834         else
1835                 flush_remained_ckpt_reqs(sbi, &req);
1836
1837         return req.ret;
1838 }
1839
1840 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi)
1841 {
1842         dev_t dev = sbi->sb->s_bdev->bd_dev;
1843         struct ckpt_req_control *cprc = &sbi->cprc_info;
1844
1845         if (cprc->f2fs_issue_ckpt)
1846                 return 0;
1847
1848         cprc->f2fs_issue_ckpt = kthread_run(issue_checkpoint_thread, sbi,
1849                         "f2fs_ckpt-%u:%u", MAJOR(dev), MINOR(dev));
1850         if (IS_ERR(cprc->f2fs_issue_ckpt)) {
1851                 cprc->f2fs_issue_ckpt = NULL;
1852                 return -ENOMEM;
1853         }
1854
1855         set_task_ioprio(cprc->f2fs_issue_ckpt, cprc->ckpt_thread_ioprio);
1856
1857         return 0;
1858 }
1859
1860 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi)
1861 {
1862         struct ckpt_req_control *cprc = &sbi->cprc_info;
1863
1864         if (cprc->f2fs_issue_ckpt) {
1865                 struct task_struct *ckpt_task = cprc->f2fs_issue_ckpt;
1866
1867                 cprc->f2fs_issue_ckpt = NULL;
1868                 kthread_stop(ckpt_task);
1869
1870                 flush_remained_ckpt_reqs(sbi, NULL);
1871         }
1872 }
1873
1874 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi)
1875 {
1876         struct ckpt_req_control *cprc = &sbi->cprc_info;
1877
1878         atomic_set(&cprc->issued_ckpt, 0);
1879         atomic_set(&cprc->total_ckpt, 0);
1880         atomic_set(&cprc->queued_ckpt, 0);
1881         cprc->ckpt_thread_ioprio = DEFAULT_CHECKPOINT_IOPRIO;
1882         init_waitqueue_head(&cprc->ckpt_wait_queue);
1883         init_llist_head(&cprc->issue_list);
1884         spin_lock_init(&cprc->stat_lock);
1885 }