Merge tag 'for-6.1-rc6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[platform/kernel/linux-starfive.git] / fs / f2fs / checkpoint.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/checkpoint.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/bio.h>
10 #include <linux/mpage.h>
11 #include <linux/writeback.h>
12 #include <linux/blkdev.h>
13 #include <linux/f2fs_fs.h>
14 #include <linux/pagevec.h>
15 #include <linux/swap.h>
16 #include <linux/kthread.h>
17
18 #include "f2fs.h"
19 #include "node.h"
20 #include "segment.h"
21 #include "iostat.h"
22 #include <trace/events/f2fs.h>
23
24 #define DEFAULT_CHECKPOINT_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
25
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *f2fs_inode_entry_slab;
28
29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io,
30                                                 unsigned char reason)
31 {
32         f2fs_build_fault_attr(sbi, 0, 0);
33         set_ckpt_flags(sbi, CP_ERROR_FLAG);
34         if (!end_io) {
35                 f2fs_flush_merged_writes(sbi);
36
37                 f2fs_handle_stop(sbi, reason);
38         }
39 }
40
41 /*
42  * We guarantee no failure on the returned page.
43  */
44 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
45 {
46         struct address_space *mapping = META_MAPPING(sbi);
47         struct page *page;
48 repeat:
49         page = f2fs_grab_cache_page(mapping, index, false);
50         if (!page) {
51                 cond_resched();
52                 goto repeat;
53         }
54         f2fs_wait_on_page_writeback(page, META, true, true);
55         if (!PageUptodate(page))
56                 SetPageUptodate(page);
57         return page;
58 }
59
60 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
61                                                         bool is_meta)
62 {
63         struct address_space *mapping = META_MAPPING(sbi);
64         struct page *page;
65         struct f2fs_io_info fio = {
66                 .sbi = sbi,
67                 .type = META,
68                 .op = REQ_OP_READ,
69                 .op_flags = REQ_META | REQ_PRIO,
70                 .old_blkaddr = index,
71                 .new_blkaddr = index,
72                 .encrypted_page = NULL,
73                 .is_por = !is_meta,
74         };
75         int err;
76
77         if (unlikely(!is_meta))
78                 fio.op_flags &= ~REQ_META;
79 repeat:
80         page = f2fs_grab_cache_page(mapping, index, false);
81         if (!page) {
82                 cond_resched();
83                 goto repeat;
84         }
85         if (PageUptodate(page))
86                 goto out;
87
88         fio.page = page;
89
90         err = f2fs_submit_page_bio(&fio);
91         if (err) {
92                 f2fs_put_page(page, 1);
93                 return ERR_PTR(err);
94         }
95
96         f2fs_update_iostat(sbi, NULL, FS_META_READ_IO, F2FS_BLKSIZE);
97
98         lock_page(page);
99         if (unlikely(page->mapping != mapping)) {
100                 f2fs_put_page(page, 1);
101                 goto repeat;
102         }
103
104         if (unlikely(!PageUptodate(page))) {
105                 f2fs_handle_page_eio(sbi, page->index, META);
106                 f2fs_put_page(page, 1);
107                 return ERR_PTR(-EIO);
108         }
109 out:
110         return page;
111 }
112
113 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
114 {
115         return __get_meta_page(sbi, index, true);
116 }
117
118 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index)
119 {
120         struct page *page;
121         int count = 0;
122
123 retry:
124         page = __get_meta_page(sbi, index, true);
125         if (IS_ERR(page)) {
126                 if (PTR_ERR(page) == -EIO &&
127                                 ++count <= DEFAULT_RETRY_IO_COUNT)
128                         goto retry;
129                 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_META_PAGE);
130         }
131         return page;
132 }
133
134 /* for POR only */
135 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
136 {
137         return __get_meta_page(sbi, index, false);
138 }
139
140 static bool __is_bitmap_valid(struct f2fs_sb_info *sbi, block_t blkaddr,
141                                                         int type)
142 {
143         struct seg_entry *se;
144         unsigned int segno, offset;
145         bool exist;
146
147         if (type == DATA_GENERIC)
148                 return true;
149
150         segno = GET_SEGNO(sbi, blkaddr);
151         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
152         se = get_seg_entry(sbi, segno);
153
154         exist = f2fs_test_bit(offset, se->cur_valid_map);
155         if (exist && type == DATA_GENERIC_ENHANCE_UPDATE) {
156                 f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d",
157                          blkaddr, exist);
158                 set_sbi_flag(sbi, SBI_NEED_FSCK);
159                 return exist;
160         }
161
162         if (!exist && type == DATA_GENERIC_ENHANCE) {
163                 f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d",
164                          blkaddr, exist);
165                 set_sbi_flag(sbi, SBI_NEED_FSCK);
166                 dump_stack();
167         }
168         return exist;
169 }
170
171 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
172                                         block_t blkaddr, int type)
173 {
174         switch (type) {
175         case META_NAT:
176                 break;
177         case META_SIT:
178                 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
179                         return false;
180                 break;
181         case META_SSA:
182                 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
183                         blkaddr < SM_I(sbi)->ssa_blkaddr))
184                         return false;
185                 break;
186         case META_CP:
187                 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
188                         blkaddr < __start_cp_addr(sbi)))
189                         return false;
190                 break;
191         case META_POR:
192                 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
193                         blkaddr < MAIN_BLKADDR(sbi)))
194                         return false;
195                 break;
196         case DATA_GENERIC:
197         case DATA_GENERIC_ENHANCE:
198         case DATA_GENERIC_ENHANCE_READ:
199         case DATA_GENERIC_ENHANCE_UPDATE:
200                 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
201                                 blkaddr < MAIN_BLKADDR(sbi))) {
202                         f2fs_warn(sbi, "access invalid blkaddr:%u",
203                                   blkaddr);
204                         set_sbi_flag(sbi, SBI_NEED_FSCK);
205                         dump_stack();
206                         return false;
207                 } else {
208                         return __is_bitmap_valid(sbi, blkaddr, type);
209                 }
210                 break;
211         case META_GENERIC:
212                 if (unlikely(blkaddr < SEG0_BLKADDR(sbi) ||
213                         blkaddr >= MAIN_BLKADDR(sbi)))
214                         return false;
215                 break;
216         default:
217                 BUG();
218         }
219
220         return true;
221 }
222
223 /*
224  * Readahead CP/NAT/SIT/SSA/POR pages
225  */
226 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
227                                                         int type, bool sync)
228 {
229         struct page *page;
230         block_t blkno = start;
231         struct f2fs_io_info fio = {
232                 .sbi = sbi,
233                 .type = META,
234                 .op = REQ_OP_READ,
235                 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
236                 .encrypted_page = NULL,
237                 .in_list = false,
238                 .is_por = (type == META_POR),
239         };
240         struct blk_plug plug;
241         int err;
242
243         if (unlikely(type == META_POR))
244                 fio.op_flags &= ~REQ_META;
245
246         blk_start_plug(&plug);
247         for (; nrpages-- > 0; blkno++) {
248
249                 if (!f2fs_is_valid_blkaddr(sbi, blkno, type))
250                         goto out;
251
252                 switch (type) {
253                 case META_NAT:
254                         if (unlikely(blkno >=
255                                         NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
256                                 blkno = 0;
257                         /* get nat block addr */
258                         fio.new_blkaddr = current_nat_addr(sbi,
259                                         blkno * NAT_ENTRY_PER_BLOCK);
260                         break;
261                 case META_SIT:
262                         if (unlikely(blkno >= TOTAL_SEGS(sbi)))
263                                 goto out;
264                         /* get sit block addr */
265                         fio.new_blkaddr = current_sit_addr(sbi,
266                                         blkno * SIT_ENTRY_PER_BLOCK);
267                         break;
268                 case META_SSA:
269                 case META_CP:
270                 case META_POR:
271                         fio.new_blkaddr = blkno;
272                         break;
273                 default:
274                         BUG();
275                 }
276
277                 page = f2fs_grab_cache_page(META_MAPPING(sbi),
278                                                 fio.new_blkaddr, false);
279                 if (!page)
280                         continue;
281                 if (PageUptodate(page)) {
282                         f2fs_put_page(page, 1);
283                         continue;
284                 }
285
286                 fio.page = page;
287                 err = f2fs_submit_page_bio(&fio);
288                 f2fs_put_page(page, err ? 1 : 0);
289
290                 if (!err)
291                         f2fs_update_iostat(sbi, NULL, FS_META_READ_IO,
292                                                         F2FS_BLKSIZE);
293         }
294 out:
295         blk_finish_plug(&plug);
296         return blkno - start;
297 }
298
299 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
300                                                         unsigned int ra_blocks)
301 {
302         struct page *page;
303         bool readahead = false;
304
305         if (ra_blocks == RECOVERY_MIN_RA_BLOCKS)
306                 return;
307
308         page = find_get_page(META_MAPPING(sbi), index);
309         if (!page || !PageUptodate(page))
310                 readahead = true;
311         f2fs_put_page(page, 0);
312
313         if (readahead)
314                 f2fs_ra_meta_pages(sbi, index, ra_blocks, META_POR, true);
315 }
316
317 static int __f2fs_write_meta_page(struct page *page,
318                                 struct writeback_control *wbc,
319                                 enum iostat_type io_type)
320 {
321         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
322
323         trace_f2fs_writepage(page, META);
324
325         if (unlikely(f2fs_cp_error(sbi)))
326                 goto redirty_out;
327         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
328                 goto redirty_out;
329         if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
330                 goto redirty_out;
331
332         f2fs_do_write_meta_page(sbi, page, io_type);
333         dec_page_count(sbi, F2FS_DIRTY_META);
334
335         if (wbc->for_reclaim)
336                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, META);
337
338         unlock_page(page);
339
340         if (unlikely(f2fs_cp_error(sbi)))
341                 f2fs_submit_merged_write(sbi, META);
342
343         return 0;
344
345 redirty_out:
346         redirty_page_for_writepage(wbc, page);
347         return AOP_WRITEPAGE_ACTIVATE;
348 }
349
350 static int f2fs_write_meta_page(struct page *page,
351                                 struct writeback_control *wbc)
352 {
353         return __f2fs_write_meta_page(page, wbc, FS_META_IO);
354 }
355
356 static int f2fs_write_meta_pages(struct address_space *mapping,
357                                 struct writeback_control *wbc)
358 {
359         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
360         long diff, written;
361
362         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
363                 goto skip_write;
364
365         /* collect a number of dirty meta pages and write together */
366         if (wbc->sync_mode != WB_SYNC_ALL &&
367                         get_pages(sbi, F2FS_DIRTY_META) <
368                                         nr_pages_to_skip(sbi, META))
369                 goto skip_write;
370
371         /* if locked failed, cp will flush dirty pages instead */
372         if (!f2fs_down_write_trylock(&sbi->cp_global_sem))
373                 goto skip_write;
374
375         trace_f2fs_writepages(mapping->host, wbc, META);
376         diff = nr_pages_to_write(sbi, META, wbc);
377         written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO);
378         f2fs_up_write(&sbi->cp_global_sem);
379         wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
380         return 0;
381
382 skip_write:
383         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
384         trace_f2fs_writepages(mapping->host, wbc, META);
385         return 0;
386 }
387
388 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
389                                 long nr_to_write, enum iostat_type io_type)
390 {
391         struct address_space *mapping = META_MAPPING(sbi);
392         pgoff_t index = 0, prev = ULONG_MAX;
393         struct pagevec pvec;
394         long nwritten = 0;
395         int nr_pages;
396         struct writeback_control wbc = {
397                 .for_reclaim = 0,
398         };
399         struct blk_plug plug;
400
401         pagevec_init(&pvec);
402
403         blk_start_plug(&plug);
404
405         while ((nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
406                                 PAGECACHE_TAG_DIRTY))) {
407                 int i;
408
409                 for (i = 0; i < nr_pages; i++) {
410                         struct page *page = pvec.pages[i];
411
412                         if (prev == ULONG_MAX)
413                                 prev = page->index - 1;
414                         if (nr_to_write != LONG_MAX && page->index != prev + 1) {
415                                 pagevec_release(&pvec);
416                                 goto stop;
417                         }
418
419                         lock_page(page);
420
421                         if (unlikely(page->mapping != mapping)) {
422 continue_unlock:
423                                 unlock_page(page);
424                                 continue;
425                         }
426                         if (!PageDirty(page)) {
427                                 /* someone wrote it for us */
428                                 goto continue_unlock;
429                         }
430
431                         f2fs_wait_on_page_writeback(page, META, true, true);
432
433                         if (!clear_page_dirty_for_io(page))
434                                 goto continue_unlock;
435
436                         if (__f2fs_write_meta_page(page, &wbc, io_type)) {
437                                 unlock_page(page);
438                                 break;
439                         }
440                         nwritten++;
441                         prev = page->index;
442                         if (unlikely(nwritten >= nr_to_write))
443                                 break;
444                 }
445                 pagevec_release(&pvec);
446                 cond_resched();
447         }
448 stop:
449         if (nwritten)
450                 f2fs_submit_merged_write(sbi, type);
451
452         blk_finish_plug(&plug);
453
454         return nwritten;
455 }
456
457 static bool f2fs_dirty_meta_folio(struct address_space *mapping,
458                 struct folio *folio)
459 {
460         trace_f2fs_set_page_dirty(&folio->page, META);
461
462         if (!folio_test_uptodate(folio))
463                 folio_mark_uptodate(folio);
464         if (filemap_dirty_folio(mapping, folio)) {
465                 inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_META);
466                 set_page_private_reference(&folio->page);
467                 return true;
468         }
469         return false;
470 }
471
472 const struct address_space_operations f2fs_meta_aops = {
473         .writepage      = f2fs_write_meta_page,
474         .writepages     = f2fs_write_meta_pages,
475         .dirty_folio    = f2fs_dirty_meta_folio,
476         .invalidate_folio = f2fs_invalidate_folio,
477         .release_folio  = f2fs_release_folio,
478         .migrate_folio  = filemap_migrate_folio,
479 };
480
481 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino,
482                                                 unsigned int devidx, int type)
483 {
484         struct inode_management *im = &sbi->im[type];
485         struct ino_entry *e = NULL, *new = NULL;
486
487         if (type == FLUSH_INO) {
488                 rcu_read_lock();
489                 e = radix_tree_lookup(&im->ino_root, ino);
490                 rcu_read_unlock();
491         }
492
493 retry:
494         if (!e)
495                 new = f2fs_kmem_cache_alloc(ino_entry_slab,
496                                                 GFP_NOFS, true, NULL);
497
498         radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
499
500         spin_lock(&im->ino_lock);
501         e = radix_tree_lookup(&im->ino_root, ino);
502         if (!e) {
503                 if (!new) {
504                         spin_unlock(&im->ino_lock);
505                         goto retry;
506                 }
507                 e = new;
508                 if (unlikely(radix_tree_insert(&im->ino_root, ino, e)))
509                         f2fs_bug_on(sbi, 1);
510
511                 memset(e, 0, sizeof(struct ino_entry));
512                 e->ino = ino;
513
514                 list_add_tail(&e->list, &im->ino_list);
515                 if (type != ORPHAN_INO)
516                         im->ino_num++;
517         }
518
519         if (type == FLUSH_INO)
520                 f2fs_set_bit(devidx, (char *)&e->dirty_device);
521
522         spin_unlock(&im->ino_lock);
523         radix_tree_preload_end();
524
525         if (new && e != new)
526                 kmem_cache_free(ino_entry_slab, new);
527 }
528
529 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
530 {
531         struct inode_management *im = &sbi->im[type];
532         struct ino_entry *e;
533
534         spin_lock(&im->ino_lock);
535         e = radix_tree_lookup(&im->ino_root, ino);
536         if (e) {
537                 list_del(&e->list);
538                 radix_tree_delete(&im->ino_root, ino);
539                 im->ino_num--;
540                 spin_unlock(&im->ino_lock);
541                 kmem_cache_free(ino_entry_slab, e);
542                 return;
543         }
544         spin_unlock(&im->ino_lock);
545 }
546
547 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
548 {
549         /* add new dirty ino entry into list */
550         __add_ino_entry(sbi, ino, 0, type);
551 }
552
553 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
554 {
555         /* remove dirty ino entry from list */
556         __remove_ino_entry(sbi, ino, type);
557 }
558
559 /* mode should be APPEND_INO, UPDATE_INO or TRANS_DIR_INO */
560 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
561 {
562         struct inode_management *im = &sbi->im[mode];
563         struct ino_entry *e;
564
565         spin_lock(&im->ino_lock);
566         e = radix_tree_lookup(&im->ino_root, ino);
567         spin_unlock(&im->ino_lock);
568         return e ? true : false;
569 }
570
571 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all)
572 {
573         struct ino_entry *e, *tmp;
574         int i;
575
576         for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) {
577                 struct inode_management *im = &sbi->im[i];
578
579                 spin_lock(&im->ino_lock);
580                 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
581                         list_del(&e->list);
582                         radix_tree_delete(&im->ino_root, e->ino);
583                         kmem_cache_free(ino_entry_slab, e);
584                         im->ino_num--;
585                 }
586                 spin_unlock(&im->ino_lock);
587         }
588 }
589
590 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
591                                         unsigned int devidx, int type)
592 {
593         __add_ino_entry(sbi, ino, devidx, type);
594 }
595
596 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
597                                         unsigned int devidx, int type)
598 {
599         struct inode_management *im = &sbi->im[type];
600         struct ino_entry *e;
601         bool is_dirty = false;
602
603         spin_lock(&im->ino_lock);
604         e = radix_tree_lookup(&im->ino_root, ino);
605         if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device))
606                 is_dirty = true;
607         spin_unlock(&im->ino_lock);
608         return is_dirty;
609 }
610
611 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi)
612 {
613         struct inode_management *im = &sbi->im[ORPHAN_INO];
614         int err = 0;
615
616         spin_lock(&im->ino_lock);
617
618         if (time_to_inject(sbi, FAULT_ORPHAN)) {
619                 spin_unlock(&im->ino_lock);
620                 f2fs_show_injection_info(sbi, FAULT_ORPHAN);
621                 return -ENOSPC;
622         }
623
624         if (unlikely(im->ino_num >= sbi->max_orphans))
625                 err = -ENOSPC;
626         else
627                 im->ino_num++;
628         spin_unlock(&im->ino_lock);
629
630         return err;
631 }
632
633 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi)
634 {
635         struct inode_management *im = &sbi->im[ORPHAN_INO];
636
637         spin_lock(&im->ino_lock);
638         f2fs_bug_on(sbi, im->ino_num == 0);
639         im->ino_num--;
640         spin_unlock(&im->ino_lock);
641 }
642
643 void f2fs_add_orphan_inode(struct inode *inode)
644 {
645         /* add new orphan ino entry into list */
646         __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO);
647         f2fs_update_inode_page(inode);
648 }
649
650 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
651 {
652         /* remove orphan entry from orphan list */
653         __remove_ino_entry(sbi, ino, ORPHAN_INO);
654 }
655
656 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
657 {
658         struct inode *inode;
659         struct node_info ni;
660         int err;
661
662         inode = f2fs_iget_retry(sbi->sb, ino);
663         if (IS_ERR(inode)) {
664                 /*
665                  * there should be a bug that we can't find the entry
666                  * to orphan inode.
667                  */
668                 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
669                 return PTR_ERR(inode);
670         }
671
672         err = f2fs_dquot_initialize(inode);
673         if (err) {
674                 iput(inode);
675                 goto err_out;
676         }
677
678         clear_nlink(inode);
679
680         /* truncate all the data during iput */
681         iput(inode);
682
683         err = f2fs_get_node_info(sbi, ino, &ni, false);
684         if (err)
685                 goto err_out;
686
687         /* ENOMEM was fully retried in f2fs_evict_inode. */
688         if (ni.blk_addr != NULL_ADDR) {
689                 err = -EIO;
690                 goto err_out;
691         }
692         return 0;
693
694 err_out:
695         set_sbi_flag(sbi, SBI_NEED_FSCK);
696         f2fs_warn(sbi, "%s: orphan failed (ino=%x), run fsck to fix.",
697                   __func__, ino);
698         return err;
699 }
700
701 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi)
702 {
703         block_t start_blk, orphan_blocks, i, j;
704         unsigned int s_flags = sbi->sb->s_flags;
705         int err = 0;
706 #ifdef CONFIG_QUOTA
707         int quota_enabled;
708 #endif
709
710         if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
711                 return 0;
712
713         if (bdev_read_only(sbi->sb->s_bdev)) {
714                 f2fs_info(sbi, "write access unavailable, skipping orphan cleanup");
715                 return 0;
716         }
717
718         if (s_flags & SB_RDONLY) {
719                 f2fs_info(sbi, "orphan cleanup on readonly fs");
720                 sbi->sb->s_flags &= ~SB_RDONLY;
721         }
722
723 #ifdef CONFIG_QUOTA
724         /*
725          * Turn on quotas which were not enabled for read-only mounts if
726          * filesystem has quota feature, so that they are updated correctly.
727          */
728         quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY);
729 #endif
730
731         start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
732         orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
733
734         f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
735
736         for (i = 0; i < orphan_blocks; i++) {
737                 struct page *page;
738                 struct f2fs_orphan_block *orphan_blk;
739
740                 page = f2fs_get_meta_page(sbi, start_blk + i);
741                 if (IS_ERR(page)) {
742                         err = PTR_ERR(page);
743                         goto out;
744                 }
745
746                 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
747                 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
748                         nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
749
750                         err = recover_orphan_inode(sbi, ino);
751                         if (err) {
752                                 f2fs_put_page(page, 1);
753                                 goto out;
754                         }
755                 }
756                 f2fs_put_page(page, 1);
757         }
758         /* clear Orphan Flag */
759         clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
760 out:
761         set_sbi_flag(sbi, SBI_IS_RECOVERED);
762
763 #ifdef CONFIG_QUOTA
764         /* Turn quotas off */
765         if (quota_enabled)
766                 f2fs_quota_off_umount(sbi->sb);
767 #endif
768         sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */
769
770         return err;
771 }
772
773 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
774 {
775         struct list_head *head;
776         struct f2fs_orphan_block *orphan_blk = NULL;
777         unsigned int nentries = 0;
778         unsigned short index = 1;
779         unsigned short orphan_blocks;
780         struct page *page = NULL;
781         struct ino_entry *orphan = NULL;
782         struct inode_management *im = &sbi->im[ORPHAN_INO];
783
784         orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
785
786         /*
787          * we don't need to do spin_lock(&im->ino_lock) here, since all the
788          * orphan inode operations are covered under f2fs_lock_op().
789          * And, spin_lock should be avoided due to page operations below.
790          */
791         head = &im->ino_list;
792
793         /* loop for each orphan inode entry and write them in Jornal block */
794         list_for_each_entry(orphan, head, list) {
795                 if (!page) {
796                         page = f2fs_grab_meta_page(sbi, start_blk++);
797                         orphan_blk =
798                                 (struct f2fs_orphan_block *)page_address(page);
799                         memset(orphan_blk, 0, sizeof(*orphan_blk));
800                 }
801
802                 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
803
804                 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
805                         /*
806                          * an orphan block is full of 1020 entries,
807                          * then we need to flush current orphan blocks
808                          * and bring another one in memory
809                          */
810                         orphan_blk->blk_addr = cpu_to_le16(index);
811                         orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
812                         orphan_blk->entry_count = cpu_to_le32(nentries);
813                         set_page_dirty(page);
814                         f2fs_put_page(page, 1);
815                         index++;
816                         nentries = 0;
817                         page = NULL;
818                 }
819         }
820
821         if (page) {
822                 orphan_blk->blk_addr = cpu_to_le16(index);
823                 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
824                 orphan_blk->entry_count = cpu_to_le32(nentries);
825                 set_page_dirty(page);
826                 f2fs_put_page(page, 1);
827         }
828 }
829
830 static __u32 f2fs_checkpoint_chksum(struct f2fs_sb_info *sbi,
831                                                 struct f2fs_checkpoint *ckpt)
832 {
833         unsigned int chksum_ofs = le32_to_cpu(ckpt->checksum_offset);
834         __u32 chksum;
835
836         chksum = f2fs_crc32(sbi, ckpt, chksum_ofs);
837         if (chksum_ofs < CP_CHKSUM_OFFSET) {
838                 chksum_ofs += sizeof(chksum);
839                 chksum = f2fs_chksum(sbi, chksum, (__u8 *)ckpt + chksum_ofs,
840                                                 F2FS_BLKSIZE - chksum_ofs);
841         }
842         return chksum;
843 }
844
845 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
846                 struct f2fs_checkpoint **cp_block, struct page **cp_page,
847                 unsigned long long *version)
848 {
849         size_t crc_offset = 0;
850         __u32 crc;
851
852         *cp_page = f2fs_get_meta_page(sbi, cp_addr);
853         if (IS_ERR(*cp_page))
854                 return PTR_ERR(*cp_page);
855
856         *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
857
858         crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
859         if (crc_offset < CP_MIN_CHKSUM_OFFSET ||
860                         crc_offset > CP_CHKSUM_OFFSET) {
861                 f2fs_put_page(*cp_page, 1);
862                 f2fs_warn(sbi, "invalid crc_offset: %zu", crc_offset);
863                 return -EINVAL;
864         }
865
866         crc = f2fs_checkpoint_chksum(sbi, *cp_block);
867         if (crc != cur_cp_crc(*cp_block)) {
868                 f2fs_put_page(*cp_page, 1);
869                 f2fs_warn(sbi, "invalid crc value");
870                 return -EINVAL;
871         }
872
873         *version = cur_cp_version(*cp_block);
874         return 0;
875 }
876
877 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
878                                 block_t cp_addr, unsigned long long *version)
879 {
880         struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
881         struct f2fs_checkpoint *cp_block = NULL;
882         unsigned long long cur_version = 0, pre_version = 0;
883         unsigned int cp_blocks;
884         int err;
885
886         err = get_checkpoint_version(sbi, cp_addr, &cp_block,
887                                         &cp_page_1, version);
888         if (err)
889                 return NULL;
890
891         cp_blocks = le32_to_cpu(cp_block->cp_pack_total_block_count);
892
893         if (cp_blocks > sbi->blocks_per_seg || cp_blocks <= F2FS_CP_PACKS) {
894                 f2fs_warn(sbi, "invalid cp_pack_total_block_count:%u",
895                           le32_to_cpu(cp_block->cp_pack_total_block_count));
896                 goto invalid_cp;
897         }
898         pre_version = *version;
899
900         cp_addr += cp_blocks - 1;
901         err = get_checkpoint_version(sbi, cp_addr, &cp_block,
902                                         &cp_page_2, version);
903         if (err)
904                 goto invalid_cp;
905         cur_version = *version;
906
907         if (cur_version == pre_version) {
908                 *version = cur_version;
909                 f2fs_put_page(cp_page_2, 1);
910                 return cp_page_1;
911         }
912         f2fs_put_page(cp_page_2, 1);
913 invalid_cp:
914         f2fs_put_page(cp_page_1, 1);
915         return NULL;
916 }
917
918 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi)
919 {
920         struct f2fs_checkpoint *cp_block;
921         struct f2fs_super_block *fsb = sbi->raw_super;
922         struct page *cp1, *cp2, *cur_page;
923         unsigned long blk_size = sbi->blocksize;
924         unsigned long long cp1_version = 0, cp2_version = 0;
925         unsigned long long cp_start_blk_no;
926         unsigned int cp_blks = 1 + __cp_payload(sbi);
927         block_t cp_blk_no;
928         int i;
929         int err;
930
931         sbi->ckpt = f2fs_kvzalloc(sbi, array_size(blk_size, cp_blks),
932                                   GFP_KERNEL);
933         if (!sbi->ckpt)
934                 return -ENOMEM;
935         /*
936          * Finding out valid cp block involves read both
937          * sets( cp pack 1 and cp pack 2)
938          */
939         cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
940         cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
941
942         /* The second checkpoint pack should start at the next segment */
943         cp_start_blk_no += ((unsigned long long)1) <<
944                                 le32_to_cpu(fsb->log_blocks_per_seg);
945         cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
946
947         if (cp1 && cp2) {
948                 if (ver_after(cp2_version, cp1_version))
949                         cur_page = cp2;
950                 else
951                         cur_page = cp1;
952         } else if (cp1) {
953                 cur_page = cp1;
954         } else if (cp2) {
955                 cur_page = cp2;
956         } else {
957                 err = -EFSCORRUPTED;
958                 goto fail_no_cp;
959         }
960
961         cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
962         memcpy(sbi->ckpt, cp_block, blk_size);
963
964         if (cur_page == cp1)
965                 sbi->cur_cp_pack = 1;
966         else
967                 sbi->cur_cp_pack = 2;
968
969         /* Sanity checking of checkpoint */
970         if (f2fs_sanity_check_ckpt(sbi)) {
971                 err = -EFSCORRUPTED;
972                 goto free_fail_no_cp;
973         }
974
975         if (cp_blks <= 1)
976                 goto done;
977
978         cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
979         if (cur_page == cp2)
980                 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
981
982         for (i = 1; i < cp_blks; i++) {
983                 void *sit_bitmap_ptr;
984                 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
985
986                 cur_page = f2fs_get_meta_page(sbi, cp_blk_no + i);
987                 if (IS_ERR(cur_page)) {
988                         err = PTR_ERR(cur_page);
989                         goto free_fail_no_cp;
990                 }
991                 sit_bitmap_ptr = page_address(cur_page);
992                 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
993                 f2fs_put_page(cur_page, 1);
994         }
995 done:
996         f2fs_put_page(cp1, 1);
997         f2fs_put_page(cp2, 1);
998         return 0;
999
1000 free_fail_no_cp:
1001         f2fs_put_page(cp1, 1);
1002         f2fs_put_page(cp2, 1);
1003 fail_no_cp:
1004         kvfree(sbi->ckpt);
1005         return err;
1006 }
1007
1008 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
1009 {
1010         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1011         int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
1012
1013         if (is_inode_flag_set(inode, flag))
1014                 return;
1015
1016         set_inode_flag(inode, flag);
1017         list_add_tail(&F2FS_I(inode)->dirty_list, &sbi->inode_list[type]);
1018         stat_inc_dirty_inode(sbi, type);
1019 }
1020
1021 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
1022 {
1023         int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
1024
1025         if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
1026                 return;
1027
1028         list_del_init(&F2FS_I(inode)->dirty_list);
1029         clear_inode_flag(inode, flag);
1030         stat_dec_dirty_inode(F2FS_I_SB(inode), type);
1031 }
1032
1033 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio)
1034 {
1035         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1036         enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
1037
1038         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1039                         !S_ISLNK(inode->i_mode))
1040                 return;
1041
1042         spin_lock(&sbi->inode_lock[type]);
1043         if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
1044                 __add_dirty_inode(inode, type);
1045         inode_inc_dirty_pages(inode);
1046         spin_unlock(&sbi->inode_lock[type]);
1047
1048         set_page_private_reference(&folio->page);
1049 }
1050
1051 void f2fs_remove_dirty_inode(struct inode *inode)
1052 {
1053         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1054         enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
1055
1056         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1057                         !S_ISLNK(inode->i_mode))
1058                 return;
1059
1060         if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
1061                 return;
1062
1063         spin_lock(&sbi->inode_lock[type]);
1064         __remove_dirty_inode(inode, type);
1065         spin_unlock(&sbi->inode_lock[type]);
1066 }
1067
1068 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
1069                                                 bool from_cp)
1070 {
1071         struct list_head *head;
1072         struct inode *inode;
1073         struct f2fs_inode_info *fi;
1074         bool is_dir = (type == DIR_INODE);
1075         unsigned long ino = 0;
1076
1077         trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
1078                                 get_pages(sbi, is_dir ?
1079                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1080 retry:
1081         if (unlikely(f2fs_cp_error(sbi))) {
1082                 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1083                                 get_pages(sbi, is_dir ?
1084                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1085                 return -EIO;
1086         }
1087
1088         spin_lock(&sbi->inode_lock[type]);
1089
1090         head = &sbi->inode_list[type];
1091         if (list_empty(head)) {
1092                 spin_unlock(&sbi->inode_lock[type]);
1093                 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1094                                 get_pages(sbi, is_dir ?
1095                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1096                 return 0;
1097         }
1098         fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
1099         inode = igrab(&fi->vfs_inode);
1100         spin_unlock(&sbi->inode_lock[type]);
1101         if (inode) {
1102                 unsigned long cur_ino = inode->i_ino;
1103
1104                 if (from_cp)
1105                         F2FS_I(inode)->cp_task = current;
1106                 F2FS_I(inode)->wb_task = current;
1107
1108                 filemap_fdatawrite(inode->i_mapping);
1109
1110                 F2FS_I(inode)->wb_task = NULL;
1111                 if (from_cp)
1112                         F2FS_I(inode)->cp_task = NULL;
1113
1114                 iput(inode);
1115                 /* We need to give cpu to another writers. */
1116                 if (ino == cur_ino)
1117                         cond_resched();
1118                 else
1119                         ino = cur_ino;
1120         } else {
1121                 /*
1122                  * We should submit bio, since it exists several
1123                  * wribacking dentry pages in the freeing inode.
1124                  */
1125                 f2fs_submit_merged_write(sbi, DATA);
1126                 cond_resched();
1127         }
1128         goto retry;
1129 }
1130
1131 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
1132 {
1133         struct list_head *head = &sbi->inode_list[DIRTY_META];
1134         struct inode *inode;
1135         struct f2fs_inode_info *fi;
1136         s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
1137
1138         while (total--) {
1139                 if (unlikely(f2fs_cp_error(sbi)))
1140                         return -EIO;
1141
1142                 spin_lock(&sbi->inode_lock[DIRTY_META]);
1143                 if (list_empty(head)) {
1144                         spin_unlock(&sbi->inode_lock[DIRTY_META]);
1145                         return 0;
1146                 }
1147                 fi = list_first_entry(head, struct f2fs_inode_info,
1148                                                         gdirty_list);
1149                 inode = igrab(&fi->vfs_inode);
1150                 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1151                 if (inode) {
1152                         sync_inode_metadata(inode, 0);
1153
1154                         /* it's on eviction */
1155                         if (is_inode_flag_set(inode, FI_DIRTY_INODE))
1156                                 f2fs_update_inode_page(inode);
1157                         iput(inode);
1158                 }
1159         }
1160         return 0;
1161 }
1162
1163 static void __prepare_cp_block(struct f2fs_sb_info *sbi)
1164 {
1165         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1166         struct f2fs_nm_info *nm_i = NM_I(sbi);
1167         nid_t last_nid = nm_i->next_scan_nid;
1168
1169         next_free_nid(sbi, &last_nid);
1170         ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
1171         ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
1172         ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
1173         ckpt->next_free_nid = cpu_to_le32(last_nid);
1174 }
1175
1176 static bool __need_flush_quota(struct f2fs_sb_info *sbi)
1177 {
1178         bool ret = false;
1179
1180         if (!is_journalled_quota(sbi))
1181                 return false;
1182
1183         if (!f2fs_down_write_trylock(&sbi->quota_sem))
1184                 return true;
1185         if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) {
1186                 ret = false;
1187         } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) {
1188                 ret = false;
1189         } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_FLUSH)) {
1190                 clear_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
1191                 ret = true;
1192         } else if (get_pages(sbi, F2FS_DIRTY_QDATA)) {
1193                 ret = true;
1194         }
1195         f2fs_up_write(&sbi->quota_sem);
1196         return ret;
1197 }
1198
1199 /*
1200  * Freeze all the FS-operations for checkpoint.
1201  */
1202 static int block_operations(struct f2fs_sb_info *sbi)
1203 {
1204         struct writeback_control wbc = {
1205                 .sync_mode = WB_SYNC_ALL,
1206                 .nr_to_write = LONG_MAX,
1207                 .for_reclaim = 0,
1208         };
1209         int err = 0, cnt = 0;
1210
1211         /*
1212          * Let's flush inline_data in dirty node pages.
1213          */
1214         f2fs_flush_inline_data(sbi);
1215
1216 retry_flush_quotas:
1217         f2fs_lock_all(sbi);
1218         if (__need_flush_quota(sbi)) {
1219                 int locked;
1220
1221                 if (++cnt > DEFAULT_RETRY_QUOTA_FLUSH_COUNT) {
1222                         set_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
1223                         set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
1224                         goto retry_flush_dents;
1225                 }
1226                 f2fs_unlock_all(sbi);
1227
1228                 /* only failed during mount/umount/freeze/quotactl */
1229                 locked = down_read_trylock(&sbi->sb->s_umount);
1230                 f2fs_quota_sync(sbi->sb, -1);
1231                 if (locked)
1232                         up_read(&sbi->sb->s_umount);
1233                 cond_resched();
1234                 goto retry_flush_quotas;
1235         }
1236
1237 retry_flush_dents:
1238         /* write all the dirty dentry pages */
1239         if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
1240                 f2fs_unlock_all(sbi);
1241                 err = f2fs_sync_dirty_inodes(sbi, DIR_INODE, true);
1242                 if (err)
1243                         return err;
1244                 cond_resched();
1245                 goto retry_flush_quotas;
1246         }
1247
1248         /*
1249          * POR: we should ensure that there are no dirty node pages
1250          * until finishing nat/sit flush. inode->i_blocks can be updated.
1251          */
1252         f2fs_down_write(&sbi->node_change);
1253
1254         if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
1255                 f2fs_up_write(&sbi->node_change);
1256                 f2fs_unlock_all(sbi);
1257                 err = f2fs_sync_inode_meta(sbi);
1258                 if (err)
1259                         return err;
1260                 cond_resched();
1261                 goto retry_flush_quotas;
1262         }
1263
1264 retry_flush_nodes:
1265         f2fs_down_write(&sbi->node_write);
1266
1267         if (get_pages(sbi, F2FS_DIRTY_NODES)) {
1268                 f2fs_up_write(&sbi->node_write);
1269                 atomic_inc(&sbi->wb_sync_req[NODE]);
1270                 err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO);
1271                 atomic_dec(&sbi->wb_sync_req[NODE]);
1272                 if (err) {
1273                         f2fs_up_write(&sbi->node_change);
1274                         f2fs_unlock_all(sbi);
1275                         return err;
1276                 }
1277                 cond_resched();
1278                 goto retry_flush_nodes;
1279         }
1280
1281         /*
1282          * sbi->node_change is used only for AIO write_begin path which produces
1283          * dirty node blocks and some checkpoint values by block allocation.
1284          */
1285         __prepare_cp_block(sbi);
1286         f2fs_up_write(&sbi->node_change);
1287         return err;
1288 }
1289
1290 static void unblock_operations(struct f2fs_sb_info *sbi)
1291 {
1292         f2fs_up_write(&sbi->node_write);
1293         f2fs_unlock_all(sbi);
1294 }
1295
1296 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type)
1297 {
1298         DEFINE_WAIT(wait);
1299
1300         for (;;) {
1301                 if (!get_pages(sbi, type))
1302                         break;
1303
1304                 if (unlikely(f2fs_cp_error(sbi)))
1305                         break;
1306
1307                 if (type == F2FS_DIRTY_META)
1308                         f2fs_sync_meta_pages(sbi, META, LONG_MAX,
1309                                                         FS_CP_META_IO);
1310                 else if (type == F2FS_WB_CP_DATA)
1311                         f2fs_submit_merged_write(sbi, DATA);
1312
1313                 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
1314                 io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1315         }
1316         finish_wait(&sbi->cp_wait, &wait);
1317 }
1318
1319 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1320 {
1321         unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1322         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1323         unsigned long flags;
1324
1325         if (cpc->reason & CP_UMOUNT) {
1326                 if (le32_to_cpu(ckpt->cp_pack_total_block_count) +
1327                         NM_I(sbi)->nat_bits_blocks > sbi->blocks_per_seg) {
1328                         clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1329                         f2fs_notice(sbi, "Disable nat_bits due to no space");
1330                 } else if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG) &&
1331                                                 f2fs_nat_bitmap_enabled(sbi)) {
1332                         f2fs_enable_nat_bits(sbi);
1333                         set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1334                         f2fs_notice(sbi, "Rebuild and enable nat_bits");
1335                 }
1336         }
1337
1338         spin_lock_irqsave(&sbi->cp_lock, flags);
1339
1340         if (cpc->reason & CP_TRIMMED)
1341                 __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1342         else
1343                 __clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1344
1345         if (cpc->reason & CP_UMOUNT)
1346                 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1347         else
1348                 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1349
1350         if (cpc->reason & CP_FASTBOOT)
1351                 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1352         else
1353                 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1354
1355         if (orphan_num)
1356                 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1357         else
1358                 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1359
1360         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1361                 __set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1362
1363         if (is_sbi_flag_set(sbi, SBI_IS_RESIZEFS))
1364                 __set_ckpt_flags(ckpt, CP_RESIZEFS_FLAG);
1365         else
1366                 __clear_ckpt_flags(ckpt, CP_RESIZEFS_FLAG);
1367
1368         if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
1369                 __set_ckpt_flags(ckpt, CP_DISABLED_FLAG);
1370         else
1371                 __clear_ckpt_flags(ckpt, CP_DISABLED_FLAG);
1372
1373         if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK))
1374                 __set_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
1375         else
1376                 __clear_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
1377
1378         if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH))
1379                 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1380         else
1381                 __clear_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1382
1383         if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR))
1384                 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1385
1386         /* set this flag to activate crc|cp_ver for recovery */
1387         __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1388         __clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG);
1389
1390         spin_unlock_irqrestore(&sbi->cp_lock, flags);
1391 }
1392
1393 static void commit_checkpoint(struct f2fs_sb_info *sbi,
1394         void *src, block_t blk_addr)
1395 {
1396         struct writeback_control wbc = {
1397                 .for_reclaim = 0,
1398         };
1399
1400         /*
1401          * pagevec_lookup_tag and lock_page again will take
1402          * some extra time. Therefore, f2fs_update_meta_pages and
1403          * f2fs_sync_meta_pages are combined in this function.
1404          */
1405         struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
1406         int err;
1407
1408         f2fs_wait_on_page_writeback(page, META, true, true);
1409
1410         memcpy(page_address(page), src, PAGE_SIZE);
1411
1412         set_page_dirty(page);
1413         if (unlikely(!clear_page_dirty_for_io(page)))
1414                 f2fs_bug_on(sbi, 1);
1415
1416         /* writeout cp pack 2 page */
1417         err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO);
1418         if (unlikely(err && f2fs_cp_error(sbi))) {
1419                 f2fs_put_page(page, 1);
1420                 return;
1421         }
1422
1423         f2fs_bug_on(sbi, err);
1424         f2fs_put_page(page, 0);
1425
1426         /* submit checkpoint (with barrier if NOBARRIER is not set) */
1427         f2fs_submit_merged_write(sbi, META_FLUSH);
1428 }
1429
1430 static inline u64 get_sectors_written(struct block_device *bdev)
1431 {
1432         return (u64)part_stat_read(bdev, sectors[STAT_WRITE]);
1433 }
1434
1435 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi)
1436 {
1437         if (f2fs_is_multi_device(sbi)) {
1438                 u64 sectors = 0;
1439                 int i;
1440
1441                 for (i = 0; i < sbi->s_ndevs; i++)
1442                         sectors += get_sectors_written(FDEV(i).bdev);
1443
1444                 return sectors;
1445         }
1446
1447         return get_sectors_written(sbi->sb->s_bdev);
1448 }
1449
1450 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1451 {
1452         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1453         struct f2fs_nm_info *nm_i = NM_I(sbi);
1454         unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags;
1455         block_t start_blk;
1456         unsigned int data_sum_blocks, orphan_blocks;
1457         __u32 crc32 = 0;
1458         int i;
1459         int cp_payload_blks = __cp_payload(sbi);
1460         struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1461         u64 kbytes_written;
1462         int err;
1463
1464         /* Flush all the NAT/SIT pages */
1465         f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1466
1467         /* start to update checkpoint, cp ver is already updated previously */
1468         ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true));
1469         ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1470         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1471                 ckpt->cur_node_segno[i] =
1472                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
1473                 ckpt->cur_node_blkoff[i] =
1474                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
1475                 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
1476                                 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
1477         }
1478         for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1479                 ckpt->cur_data_segno[i] =
1480                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
1481                 ckpt->cur_data_blkoff[i] =
1482                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
1483                 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
1484                                 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
1485         }
1486
1487         /* 2 cp + n data seg summary + orphan inode blocks */
1488         data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false);
1489         spin_lock_irqsave(&sbi->cp_lock, flags);
1490         if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1491                 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1492         else
1493                 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1494         spin_unlock_irqrestore(&sbi->cp_lock, flags);
1495
1496         orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1497         ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1498                         orphan_blocks);
1499
1500         if (__remain_node_summaries(cpc->reason))
1501                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1502                                 cp_payload_blks + data_sum_blocks +
1503                                 orphan_blocks + NR_CURSEG_NODE_TYPE);
1504         else
1505                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1506                                 cp_payload_blks + data_sum_blocks +
1507                                 orphan_blocks);
1508
1509         /* update ckpt flag for checkpoint */
1510         update_ckpt_flags(sbi, cpc);
1511
1512         /* update SIT/NAT bitmap */
1513         get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1514         get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1515
1516         crc32 = f2fs_checkpoint_chksum(sbi, ckpt);
1517         *((__le32 *)((unsigned char *)ckpt +
1518                                 le32_to_cpu(ckpt->checksum_offset)))
1519                                 = cpu_to_le32(crc32);
1520
1521         start_blk = __start_cp_next_addr(sbi);
1522
1523         /* write nat bits */
1524         if ((cpc->reason & CP_UMOUNT) &&
1525                         is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG)) {
1526                 __u64 cp_ver = cur_cp_version(ckpt);
1527                 block_t blk;
1528
1529                 cp_ver |= ((__u64)crc32 << 32);
1530                 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
1531
1532                 blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
1533                 for (i = 0; i < nm_i->nat_bits_blocks; i++)
1534                         f2fs_update_meta_page(sbi, nm_i->nat_bits +
1535                                         (i << F2FS_BLKSIZE_BITS), blk + i);
1536         }
1537
1538         /* write out checkpoint buffer at block 0 */
1539         f2fs_update_meta_page(sbi, ckpt, start_blk++);
1540
1541         for (i = 1; i < 1 + cp_payload_blks; i++)
1542                 f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1543                                                         start_blk++);
1544
1545         if (orphan_num) {
1546                 write_orphan_inodes(sbi, start_blk);
1547                 start_blk += orphan_blocks;
1548         }
1549
1550         f2fs_write_data_summaries(sbi, start_blk);
1551         start_blk += data_sum_blocks;
1552
1553         /* Record write statistics in the hot node summary */
1554         kbytes_written = sbi->kbytes_written;
1555         kbytes_written += (f2fs_get_sectors_written(sbi) -
1556                                 sbi->sectors_written_start) >> 1;
1557         seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1558
1559         if (__remain_node_summaries(cpc->reason)) {
1560                 f2fs_write_node_summaries(sbi, start_blk);
1561                 start_blk += NR_CURSEG_NODE_TYPE;
1562         }
1563
1564         /* update user_block_counts */
1565         sbi->last_valid_block_count = sbi->total_valid_block_count;
1566         percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1567         percpu_counter_set(&sbi->rf_node_block_count, 0);
1568
1569         /* Here, we have one bio having CP pack except cp pack 2 page */
1570         f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1571         /* Wait for all dirty meta pages to be submitted for IO */
1572         f2fs_wait_on_all_pages(sbi, F2FS_DIRTY_META);
1573
1574         /* wait for previous submitted meta pages writeback */
1575         f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1576
1577         /* flush all device cache */
1578         err = f2fs_flush_device_cache(sbi);
1579         if (err)
1580                 return err;
1581
1582         /* barrier and flush checkpoint cp pack 2 page if it can */
1583         commit_checkpoint(sbi, ckpt, start_blk);
1584         f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1585
1586         /*
1587          * invalidate intermediate page cache borrowed from meta inode which are
1588          * used for migration of encrypted, verity or compressed inode's blocks.
1589          */
1590         if (f2fs_sb_has_encrypt(sbi) || f2fs_sb_has_verity(sbi) ||
1591                 f2fs_sb_has_compression(sbi))
1592                 invalidate_mapping_pages(META_MAPPING(sbi),
1593                                 MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1);
1594
1595         f2fs_release_ino_entry(sbi, false);
1596
1597         f2fs_reset_fsync_node_info(sbi);
1598
1599         clear_sbi_flag(sbi, SBI_IS_DIRTY);
1600         clear_sbi_flag(sbi, SBI_NEED_CP);
1601         clear_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
1602
1603         spin_lock(&sbi->stat_lock);
1604         sbi->unusable_block_count = 0;
1605         spin_unlock(&sbi->stat_lock);
1606
1607         __set_cp_next_pack(sbi);
1608
1609         /*
1610          * redirty superblock if metadata like node page or inode cache is
1611          * updated during writing checkpoint.
1612          */
1613         if (get_pages(sbi, F2FS_DIRTY_NODES) ||
1614                         get_pages(sbi, F2FS_DIRTY_IMETA))
1615                 set_sbi_flag(sbi, SBI_IS_DIRTY);
1616
1617         f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1618
1619         return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0;
1620 }
1621
1622 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1623 {
1624         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1625         unsigned long long ckpt_ver;
1626         int err = 0;
1627
1628         if (f2fs_readonly(sbi->sb) || f2fs_hw_is_readonly(sbi))
1629                 return -EROFS;
1630
1631         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1632                 if (cpc->reason != CP_PAUSE)
1633                         return 0;
1634                 f2fs_warn(sbi, "Start checkpoint disabled!");
1635         }
1636         if (cpc->reason != CP_RESIZE)
1637                 f2fs_down_write(&sbi->cp_global_sem);
1638
1639         if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1640                 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
1641                 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
1642                 goto out;
1643         if (unlikely(f2fs_cp_error(sbi))) {
1644                 err = -EIO;
1645                 goto out;
1646         }
1647
1648         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1649
1650         err = block_operations(sbi);
1651         if (err)
1652                 goto out;
1653
1654         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1655
1656         f2fs_flush_merged_writes(sbi);
1657
1658         /* this is the case of multiple fstrims without any changes */
1659         if (cpc->reason & CP_DISCARD) {
1660                 if (!f2fs_exist_trim_candidates(sbi, cpc)) {
1661                         unblock_operations(sbi);
1662                         goto out;
1663                 }
1664
1665                 if (NM_I(sbi)->nat_cnt[DIRTY_NAT] == 0 &&
1666                                 SIT_I(sbi)->dirty_sentries == 0 &&
1667                                 prefree_segments(sbi) == 0) {
1668                         f2fs_flush_sit_entries(sbi, cpc);
1669                         f2fs_clear_prefree_segments(sbi, cpc);
1670                         unblock_operations(sbi);
1671                         goto out;
1672                 }
1673         }
1674
1675         /*
1676          * update checkpoint pack index
1677          * Increase the version number so that
1678          * SIT entries and seg summaries are written at correct place
1679          */
1680         ckpt_ver = cur_cp_version(ckpt);
1681         ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1682
1683         /* write cached NAT/SIT entries to NAT/SIT area */
1684         err = f2fs_flush_nat_entries(sbi, cpc);
1685         if (err) {
1686                 f2fs_err(sbi, "f2fs_flush_nat_entries failed err:%d, stop checkpoint", err);
1687                 f2fs_bug_on(sbi, !f2fs_cp_error(sbi));
1688                 goto stop;
1689         }
1690
1691         f2fs_flush_sit_entries(sbi, cpc);
1692
1693         /* save inmem log status */
1694         f2fs_save_inmem_curseg(sbi);
1695
1696         err = do_checkpoint(sbi, cpc);
1697         if (err) {
1698                 f2fs_err(sbi, "do_checkpoint failed err:%d, stop checkpoint", err);
1699                 f2fs_bug_on(sbi, !f2fs_cp_error(sbi));
1700                 f2fs_release_discard_addrs(sbi);
1701         } else {
1702                 f2fs_clear_prefree_segments(sbi, cpc);
1703         }
1704
1705         f2fs_restore_inmem_curseg(sbi);
1706 stop:
1707         unblock_operations(sbi);
1708         stat_inc_cp_count(sbi->stat_info);
1709
1710         if (cpc->reason & CP_RECOVERY)
1711                 f2fs_notice(sbi, "checkpoint: version = %llx", ckpt_ver);
1712
1713         /* update CP_TIME to trigger checkpoint periodically */
1714         f2fs_update_time(sbi, CP_TIME);
1715         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1716 out:
1717         if (cpc->reason != CP_RESIZE)
1718                 f2fs_up_write(&sbi->cp_global_sem);
1719         return err;
1720 }
1721
1722 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi)
1723 {
1724         int i;
1725
1726         for (i = 0; i < MAX_INO_ENTRY; i++) {
1727                 struct inode_management *im = &sbi->im[i];
1728
1729                 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1730                 spin_lock_init(&im->ino_lock);
1731                 INIT_LIST_HEAD(&im->ino_list);
1732                 im->ino_num = 0;
1733         }
1734
1735         sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1736                         NR_CURSEG_PERSIST_TYPE - __cp_payload(sbi)) *
1737                                 F2FS_ORPHANS_PER_BLOCK;
1738 }
1739
1740 int __init f2fs_create_checkpoint_caches(void)
1741 {
1742         ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1743                         sizeof(struct ino_entry));
1744         if (!ino_entry_slab)
1745                 return -ENOMEM;
1746         f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1747                         sizeof(struct inode_entry));
1748         if (!f2fs_inode_entry_slab) {
1749                 kmem_cache_destroy(ino_entry_slab);
1750                 return -ENOMEM;
1751         }
1752         return 0;
1753 }
1754
1755 void f2fs_destroy_checkpoint_caches(void)
1756 {
1757         kmem_cache_destroy(ino_entry_slab);
1758         kmem_cache_destroy(f2fs_inode_entry_slab);
1759 }
1760
1761 static int __write_checkpoint_sync(struct f2fs_sb_info *sbi)
1762 {
1763         struct cp_control cpc = { .reason = CP_SYNC, };
1764         int err;
1765
1766         f2fs_down_write(&sbi->gc_lock);
1767         err = f2fs_write_checkpoint(sbi, &cpc);
1768         f2fs_up_write(&sbi->gc_lock);
1769
1770         return err;
1771 }
1772
1773 static void __checkpoint_and_complete_reqs(struct f2fs_sb_info *sbi)
1774 {
1775         struct ckpt_req_control *cprc = &sbi->cprc_info;
1776         struct ckpt_req *req, *next;
1777         struct llist_node *dispatch_list;
1778         u64 sum_diff = 0, diff, count = 0;
1779         int ret;
1780
1781         dispatch_list = llist_del_all(&cprc->issue_list);
1782         if (!dispatch_list)
1783                 return;
1784         dispatch_list = llist_reverse_order(dispatch_list);
1785
1786         ret = __write_checkpoint_sync(sbi);
1787         atomic_inc(&cprc->issued_ckpt);
1788
1789         llist_for_each_entry_safe(req, next, dispatch_list, llnode) {
1790                 diff = (u64)ktime_ms_delta(ktime_get(), req->queue_time);
1791                 req->ret = ret;
1792                 complete(&req->wait);
1793
1794                 sum_diff += diff;
1795                 count++;
1796         }
1797         atomic_sub(count, &cprc->queued_ckpt);
1798         atomic_add(count, &cprc->total_ckpt);
1799
1800         spin_lock(&cprc->stat_lock);
1801         cprc->cur_time = (unsigned int)div64_u64(sum_diff, count);
1802         if (cprc->peak_time < cprc->cur_time)
1803                 cprc->peak_time = cprc->cur_time;
1804         spin_unlock(&cprc->stat_lock);
1805 }
1806
1807 static int issue_checkpoint_thread(void *data)
1808 {
1809         struct f2fs_sb_info *sbi = data;
1810         struct ckpt_req_control *cprc = &sbi->cprc_info;
1811         wait_queue_head_t *q = &cprc->ckpt_wait_queue;
1812 repeat:
1813         if (kthread_should_stop())
1814                 return 0;
1815
1816         if (!llist_empty(&cprc->issue_list))
1817                 __checkpoint_and_complete_reqs(sbi);
1818
1819         wait_event_interruptible(*q,
1820                 kthread_should_stop() || !llist_empty(&cprc->issue_list));
1821         goto repeat;
1822 }
1823
1824 static void flush_remained_ckpt_reqs(struct f2fs_sb_info *sbi,
1825                 struct ckpt_req *wait_req)
1826 {
1827         struct ckpt_req_control *cprc = &sbi->cprc_info;
1828
1829         if (!llist_empty(&cprc->issue_list)) {
1830                 __checkpoint_and_complete_reqs(sbi);
1831         } else {
1832                 /* already dispatched by issue_checkpoint_thread */
1833                 if (wait_req)
1834                         wait_for_completion(&wait_req->wait);
1835         }
1836 }
1837
1838 static void init_ckpt_req(struct ckpt_req *req)
1839 {
1840         memset(req, 0, sizeof(struct ckpt_req));
1841
1842         init_completion(&req->wait);
1843         req->queue_time = ktime_get();
1844 }
1845
1846 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi)
1847 {
1848         struct ckpt_req_control *cprc = &sbi->cprc_info;
1849         struct ckpt_req req;
1850         struct cp_control cpc;
1851
1852         cpc.reason = __get_cp_reason(sbi);
1853         if (!test_opt(sbi, MERGE_CHECKPOINT) || cpc.reason != CP_SYNC) {
1854                 int ret;
1855
1856                 f2fs_down_write(&sbi->gc_lock);
1857                 ret = f2fs_write_checkpoint(sbi, &cpc);
1858                 f2fs_up_write(&sbi->gc_lock);
1859
1860                 return ret;
1861         }
1862
1863         if (!cprc->f2fs_issue_ckpt)
1864                 return __write_checkpoint_sync(sbi);
1865
1866         init_ckpt_req(&req);
1867
1868         llist_add(&req.llnode, &cprc->issue_list);
1869         atomic_inc(&cprc->queued_ckpt);
1870
1871         /*
1872          * update issue_list before we wake up issue_checkpoint thread,
1873          * this smp_mb() pairs with another barrier in ___wait_event(),
1874          * see more details in comments of waitqueue_active().
1875          */
1876         smp_mb();
1877
1878         if (waitqueue_active(&cprc->ckpt_wait_queue))
1879                 wake_up(&cprc->ckpt_wait_queue);
1880
1881         if (cprc->f2fs_issue_ckpt)
1882                 wait_for_completion(&req.wait);
1883         else
1884                 flush_remained_ckpt_reqs(sbi, &req);
1885
1886         return req.ret;
1887 }
1888
1889 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi)
1890 {
1891         dev_t dev = sbi->sb->s_bdev->bd_dev;
1892         struct ckpt_req_control *cprc = &sbi->cprc_info;
1893
1894         if (cprc->f2fs_issue_ckpt)
1895                 return 0;
1896
1897         cprc->f2fs_issue_ckpt = kthread_run(issue_checkpoint_thread, sbi,
1898                         "f2fs_ckpt-%u:%u", MAJOR(dev), MINOR(dev));
1899         if (IS_ERR(cprc->f2fs_issue_ckpt)) {
1900                 cprc->f2fs_issue_ckpt = NULL;
1901                 return -ENOMEM;
1902         }
1903
1904         set_task_ioprio(cprc->f2fs_issue_ckpt, cprc->ckpt_thread_ioprio);
1905
1906         return 0;
1907 }
1908
1909 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi)
1910 {
1911         struct ckpt_req_control *cprc = &sbi->cprc_info;
1912         struct task_struct *ckpt_task;
1913
1914         if (!cprc->f2fs_issue_ckpt)
1915                 return;
1916
1917         ckpt_task = cprc->f2fs_issue_ckpt;
1918         cprc->f2fs_issue_ckpt = NULL;
1919         kthread_stop(ckpt_task);
1920
1921         f2fs_flush_ckpt_thread(sbi);
1922 }
1923
1924 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi)
1925 {
1926         struct ckpt_req_control *cprc = &sbi->cprc_info;
1927
1928         flush_remained_ckpt_reqs(sbi, NULL);
1929
1930         /* Let's wait for the previous dispatched checkpoint. */
1931         while (atomic_read(&cprc->queued_ckpt))
1932                 io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1933 }
1934
1935 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi)
1936 {
1937         struct ckpt_req_control *cprc = &sbi->cprc_info;
1938
1939         atomic_set(&cprc->issued_ckpt, 0);
1940         atomic_set(&cprc->total_ckpt, 0);
1941         atomic_set(&cprc->queued_ckpt, 0);
1942         cprc->ckpt_thread_ioprio = DEFAULT_CHECKPOINT_IOPRIO;
1943         init_waitqueue_head(&cprc->ckpt_wait_queue);
1944         init_llist_head(&cprc->issue_list);
1945         spin_lock_init(&cprc->stat_lock);
1946 }