2 * linux/fs/ext4/super.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
19 #include <linux/module.h>
20 #include <linux/string.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/ctype.h>
38 #include <linux/log2.h>
39 #include <linux/crc16.h>
40 #include <linux/dax.h>
41 #include <linux/cleancache.h>
42 #include <linux/uaccess.h>
44 #include <linux/kthread.h>
45 #include <linux/freezer.h>
48 #include "ext4_extents.h" /* Needed for trace points definition */
49 #include "ext4_jbd2.h"
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/ext4.h>
58 static struct ext4_lazy_init *ext4_li_info;
59 static struct mutex ext4_li_mtx;
60 static struct ratelimit_state ext4_mount_msg_ratelimit;
62 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
63 unsigned long journal_devnum);
64 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
65 static int ext4_commit_super(struct super_block *sb, int sync);
66 static void ext4_mark_recovery_complete(struct super_block *sb,
67 struct ext4_super_block *es);
68 static void ext4_clear_journal_err(struct super_block *sb,
69 struct ext4_super_block *es);
70 static int ext4_sync_fs(struct super_block *sb, int wait);
71 static int ext4_remount(struct super_block *sb, int *flags, char *data);
72 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
73 static int ext4_unfreeze(struct super_block *sb);
74 static int ext4_freeze(struct super_block *sb);
75 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
76 const char *dev_name, void *data);
77 static inline int ext2_feature_set_ok(struct super_block *sb);
78 static inline int ext3_feature_set_ok(struct super_block *sb);
79 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
80 static void ext4_destroy_lazyinit_thread(void);
81 static void ext4_unregister_li_request(struct super_block *sb);
82 static void ext4_clear_request_list(void);
83 static struct inode *ext4_get_journal_inode(struct super_block *sb,
84 unsigned int journal_inum);
89 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
90 * i_mmap_rwsem (inode->i_mmap_rwsem)!
93 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
94 * page lock -> i_data_sem (rw)
96 * buffered write path:
97 * sb_start_write -> i_mutex -> mmap_sem
98 * sb_start_write -> i_mutex -> transaction start -> page lock ->
102 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) ->
103 * i_mmap_rwsem (w) -> page lock
104 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) ->
105 * transaction start -> i_data_sem (rw)
108 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) -> mmap_sem
109 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) ->
110 * transaction start -> i_data_sem (rw)
113 * transaction start -> page lock(s) -> i_data_sem (rw)
116 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
117 static struct file_system_type ext2_fs_type = {
118 .owner = THIS_MODULE,
121 .kill_sb = kill_block_super,
122 .fs_flags = FS_REQUIRES_DEV,
124 MODULE_ALIAS_FS("ext2");
125 MODULE_ALIAS("ext2");
126 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
128 #define IS_EXT2_SB(sb) (0)
132 static struct file_system_type ext3_fs_type = {
133 .owner = THIS_MODULE,
136 .kill_sb = kill_block_super,
137 .fs_flags = FS_REQUIRES_DEV,
139 MODULE_ALIAS_FS("ext3");
140 MODULE_ALIAS("ext3");
141 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
143 static int ext4_verify_csum_type(struct super_block *sb,
144 struct ext4_super_block *es)
146 if (!ext4_has_feature_metadata_csum(sb))
149 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
152 static __le32 ext4_superblock_csum(struct super_block *sb,
153 struct ext4_super_block *es)
155 struct ext4_sb_info *sbi = EXT4_SB(sb);
156 int offset = offsetof(struct ext4_super_block, s_checksum);
159 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
161 return cpu_to_le32(csum);
164 static int ext4_superblock_csum_verify(struct super_block *sb,
165 struct ext4_super_block *es)
167 if (!ext4_has_metadata_csum(sb))
170 return es->s_checksum == ext4_superblock_csum(sb, es);
173 void ext4_superblock_csum_set(struct super_block *sb)
175 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
177 if (!ext4_has_metadata_csum(sb))
180 es->s_checksum = ext4_superblock_csum(sb, es);
183 void *ext4_kvmalloc(size_t size, gfp_t flags)
187 ret = kmalloc(size, flags | __GFP_NOWARN);
189 ret = __vmalloc(size, flags, PAGE_KERNEL);
193 void *ext4_kvzalloc(size_t size, gfp_t flags)
197 ret = kzalloc(size, flags | __GFP_NOWARN);
199 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
203 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
204 struct ext4_group_desc *bg)
206 return le32_to_cpu(bg->bg_block_bitmap_lo) |
207 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
208 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
211 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
212 struct ext4_group_desc *bg)
214 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
215 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
216 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
219 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
220 struct ext4_group_desc *bg)
222 return le32_to_cpu(bg->bg_inode_table_lo) |
223 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
224 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
227 __u32 ext4_free_group_clusters(struct super_block *sb,
228 struct ext4_group_desc *bg)
230 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
231 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
232 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
235 __u32 ext4_free_inodes_count(struct super_block *sb,
236 struct ext4_group_desc *bg)
238 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
239 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
240 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
243 __u32 ext4_used_dirs_count(struct super_block *sb,
244 struct ext4_group_desc *bg)
246 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
247 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
248 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
251 __u32 ext4_itable_unused_count(struct super_block *sb,
252 struct ext4_group_desc *bg)
254 return le16_to_cpu(bg->bg_itable_unused_lo) |
255 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
256 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
259 void ext4_block_bitmap_set(struct super_block *sb,
260 struct ext4_group_desc *bg, ext4_fsblk_t blk)
262 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
263 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
264 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
267 void ext4_inode_bitmap_set(struct super_block *sb,
268 struct ext4_group_desc *bg, ext4_fsblk_t blk)
270 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
271 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
272 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
275 void ext4_inode_table_set(struct super_block *sb,
276 struct ext4_group_desc *bg, ext4_fsblk_t blk)
278 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
279 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
280 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
283 void ext4_free_group_clusters_set(struct super_block *sb,
284 struct ext4_group_desc *bg, __u32 count)
286 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
287 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
288 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
291 void ext4_free_inodes_set(struct super_block *sb,
292 struct ext4_group_desc *bg, __u32 count)
294 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
295 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
296 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
299 void ext4_used_dirs_set(struct super_block *sb,
300 struct ext4_group_desc *bg, __u32 count)
302 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
303 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
304 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
307 void ext4_itable_unused_set(struct super_block *sb,
308 struct ext4_group_desc *bg, __u32 count)
310 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
311 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
312 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
316 static void __save_error_info(struct super_block *sb, const char *func,
319 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
321 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
322 if (bdev_read_only(sb->s_bdev))
324 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
325 es->s_last_error_time = cpu_to_le32(get_seconds());
326 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
327 es->s_last_error_line = cpu_to_le32(line);
328 if (!es->s_first_error_time) {
329 es->s_first_error_time = es->s_last_error_time;
330 strncpy(es->s_first_error_func, func,
331 sizeof(es->s_first_error_func));
332 es->s_first_error_line = cpu_to_le32(line);
333 es->s_first_error_ino = es->s_last_error_ino;
334 es->s_first_error_block = es->s_last_error_block;
337 * Start the daily error reporting function if it hasn't been
340 if (!es->s_error_count)
341 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
342 le32_add_cpu(&es->s_error_count, 1);
345 static void save_error_info(struct super_block *sb, const char *func,
348 __save_error_info(sb, func, line);
349 ext4_commit_super(sb, 1);
353 * The del_gendisk() function uninitializes the disk-specific data
354 * structures, including the bdi structure, without telling anyone
355 * else. Once this happens, any attempt to call mark_buffer_dirty()
356 * (for example, by ext4_commit_super), will cause a kernel OOPS.
357 * This is a kludge to prevent these oops until we can put in a proper
358 * hook in del_gendisk() to inform the VFS and file system layers.
360 static int block_device_ejected(struct super_block *sb)
362 struct inode *bd_inode = sb->s_bdev->bd_inode;
363 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
365 return bdi->dev == NULL;
368 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
370 struct super_block *sb = journal->j_private;
371 struct ext4_sb_info *sbi = EXT4_SB(sb);
372 int error = is_journal_aborted(journal);
373 struct ext4_journal_cb_entry *jce;
375 BUG_ON(txn->t_state == T_FINISHED);
377 ext4_process_freed_data(sb, txn->t_tid);
379 spin_lock(&sbi->s_md_lock);
380 while (!list_empty(&txn->t_private_list)) {
381 jce = list_entry(txn->t_private_list.next,
382 struct ext4_journal_cb_entry, jce_list);
383 list_del_init(&jce->jce_list);
384 spin_unlock(&sbi->s_md_lock);
385 jce->jce_func(sb, jce, error);
386 spin_lock(&sbi->s_md_lock);
388 spin_unlock(&sbi->s_md_lock);
391 /* Deal with the reporting of failure conditions on a filesystem such as
392 * inconsistencies detected or read IO failures.
394 * On ext2, we can store the error state of the filesystem in the
395 * superblock. That is not possible on ext4, because we may have other
396 * write ordering constraints on the superblock which prevent us from
397 * writing it out straight away; and given that the journal is about to
398 * be aborted, we can't rely on the current, or future, transactions to
399 * write out the superblock safely.
401 * We'll just use the jbd2_journal_abort() error code to record an error in
402 * the journal instead. On recovery, the journal will complain about
403 * that error until we've noted it down and cleared it.
406 static void ext4_handle_error(struct super_block *sb)
411 if (!test_opt(sb, ERRORS_CONT)) {
412 journal_t *journal = EXT4_SB(sb)->s_journal;
414 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
416 jbd2_journal_abort(journal, -EIO);
418 if (test_opt(sb, ERRORS_RO)) {
419 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
421 * Make sure updated value of ->s_mount_flags will be visible
422 * before ->s_flags update
425 sb->s_flags |= MS_RDONLY;
427 if (test_opt(sb, ERRORS_PANIC)) {
428 if (EXT4_SB(sb)->s_journal &&
429 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
431 panic("EXT4-fs (device %s): panic forced after error\n",
436 #define ext4_error_ratelimit(sb) \
437 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
440 void __ext4_error(struct super_block *sb, const char *function,
441 unsigned int line, const char *fmt, ...)
443 struct va_format vaf;
446 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
449 if (ext4_error_ratelimit(sb)) {
454 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
455 sb->s_id, function, line, current->comm, &vaf);
458 save_error_info(sb, function, line);
459 ext4_handle_error(sb);
462 void __ext4_error_inode(struct inode *inode, const char *function,
463 unsigned int line, ext4_fsblk_t block,
464 const char *fmt, ...)
467 struct va_format vaf;
468 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
470 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
473 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
474 es->s_last_error_block = cpu_to_le64(block);
475 if (ext4_error_ratelimit(inode->i_sb)) {
480 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
481 "inode #%lu: block %llu: comm %s: %pV\n",
482 inode->i_sb->s_id, function, line, inode->i_ino,
483 block, current->comm, &vaf);
485 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
486 "inode #%lu: comm %s: %pV\n",
487 inode->i_sb->s_id, function, line, inode->i_ino,
488 current->comm, &vaf);
491 save_error_info(inode->i_sb, function, line);
492 ext4_handle_error(inode->i_sb);
495 void __ext4_error_file(struct file *file, const char *function,
496 unsigned int line, ext4_fsblk_t block,
497 const char *fmt, ...)
500 struct va_format vaf;
501 struct ext4_super_block *es;
502 struct inode *inode = file_inode(file);
503 char pathname[80], *path;
505 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
508 es = EXT4_SB(inode->i_sb)->s_es;
509 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
510 if (ext4_error_ratelimit(inode->i_sb)) {
511 path = file_path(file, pathname, sizeof(pathname));
519 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
520 "block %llu: comm %s: path %s: %pV\n",
521 inode->i_sb->s_id, function, line, inode->i_ino,
522 block, current->comm, path, &vaf);
525 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
526 "comm %s: path %s: %pV\n",
527 inode->i_sb->s_id, function, line, inode->i_ino,
528 current->comm, path, &vaf);
531 save_error_info(inode->i_sb, function, line);
532 ext4_handle_error(inode->i_sb);
535 const char *ext4_decode_error(struct super_block *sb, int errno,
542 errstr = "Corrupt filesystem";
545 errstr = "Filesystem failed CRC";
548 errstr = "IO failure";
551 errstr = "Out of memory";
554 if (!sb || (EXT4_SB(sb)->s_journal &&
555 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
556 errstr = "Journal has aborted";
558 errstr = "Readonly filesystem";
561 /* If the caller passed in an extra buffer for unknown
562 * errors, textualise them now. Else we just return
565 /* Check for truncated error codes... */
566 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
575 /* __ext4_std_error decodes expected errors from journaling functions
576 * automatically and invokes the appropriate error response. */
578 void __ext4_std_error(struct super_block *sb, const char *function,
579 unsigned int line, int errno)
584 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
587 /* Special case: if the error is EROFS, and we're not already
588 * inside a transaction, then there's really no point in logging
590 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
593 if (ext4_error_ratelimit(sb)) {
594 errstr = ext4_decode_error(sb, errno, nbuf);
595 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
596 sb->s_id, function, line, errstr);
599 save_error_info(sb, function, line);
600 ext4_handle_error(sb);
604 * ext4_abort is a much stronger failure handler than ext4_error. The
605 * abort function may be used to deal with unrecoverable failures such
606 * as journal IO errors or ENOMEM at a critical moment in log management.
608 * We unconditionally force the filesystem into an ABORT|READONLY state,
609 * unless the error response on the fs has been set to panic in which
610 * case we take the easy way out and panic immediately.
613 void __ext4_abort(struct super_block *sb, const char *function,
614 unsigned int line, const char *fmt, ...)
616 struct va_format vaf;
619 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
622 save_error_info(sb, function, line);
626 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n",
627 sb->s_id, function, line, &vaf);
630 if (sb_rdonly(sb) == 0) {
631 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
632 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
634 * Make sure updated value of ->s_mount_flags will be visible
635 * before ->s_flags update
638 sb->s_flags |= MS_RDONLY;
639 if (EXT4_SB(sb)->s_journal)
640 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
641 save_error_info(sb, function, line);
643 if (test_opt(sb, ERRORS_PANIC)) {
644 if (EXT4_SB(sb)->s_journal &&
645 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
647 panic("EXT4-fs panic from previous error\n");
651 void __ext4_msg(struct super_block *sb,
652 const char *prefix, const char *fmt, ...)
654 struct va_format vaf;
657 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
663 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
667 #define ext4_warning_ratelimit(sb) \
668 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \
671 void __ext4_warning(struct super_block *sb, const char *function,
672 unsigned int line, const char *fmt, ...)
674 struct va_format vaf;
677 if (!ext4_warning_ratelimit(sb))
683 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
684 sb->s_id, function, line, &vaf);
688 void __ext4_warning_inode(const struct inode *inode, const char *function,
689 unsigned int line, const char *fmt, ...)
691 struct va_format vaf;
694 if (!ext4_warning_ratelimit(inode->i_sb))
700 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
701 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
702 function, line, inode->i_ino, current->comm, &vaf);
706 void __ext4_grp_locked_error(const char *function, unsigned int line,
707 struct super_block *sb, ext4_group_t grp,
708 unsigned long ino, ext4_fsblk_t block,
709 const char *fmt, ...)
713 struct va_format vaf;
715 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
717 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
720 es->s_last_error_ino = cpu_to_le32(ino);
721 es->s_last_error_block = cpu_to_le64(block);
722 __save_error_info(sb, function, line);
724 if (ext4_error_ratelimit(sb)) {
728 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
729 sb->s_id, function, line, grp);
731 printk(KERN_CONT "inode %lu: ", ino);
733 printk(KERN_CONT "block %llu:",
734 (unsigned long long) block);
735 printk(KERN_CONT "%pV\n", &vaf);
739 if (test_opt(sb, ERRORS_CONT)) {
740 ext4_commit_super(sb, 0);
744 ext4_unlock_group(sb, grp);
745 ext4_commit_super(sb, 1);
746 ext4_handle_error(sb);
748 * We only get here in the ERRORS_RO case; relocking the group
749 * may be dangerous, but nothing bad will happen since the
750 * filesystem will have already been marked read/only and the
751 * journal has been aborted. We return 1 as a hint to callers
752 * who might what to use the return value from
753 * ext4_grp_locked_error() to distinguish between the
754 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
755 * aggressively from the ext4 function in question, with a
756 * more appropriate error code.
758 ext4_lock_group(sb, grp);
762 void ext4_update_dynamic_rev(struct super_block *sb)
764 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
766 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
770 "updating to rev %d because of new feature flag, "
771 "running e2fsck is recommended",
774 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
775 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
776 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
777 /* leave es->s_feature_*compat flags alone */
778 /* es->s_uuid will be set by e2fsck if empty */
781 * The rest of the superblock fields should be zero, and if not it
782 * means they are likely already in use, so leave them alone. We
783 * can leave it up to e2fsck to clean up any inconsistencies there.
788 * Open the external journal device
790 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
792 struct block_device *bdev;
793 char b[BDEVNAME_SIZE];
795 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
801 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
802 __bdevname(dev, b), PTR_ERR(bdev));
807 * Release the journal device
809 static void ext4_blkdev_put(struct block_device *bdev)
811 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
814 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
816 struct block_device *bdev;
817 bdev = sbi->journal_bdev;
819 ext4_blkdev_put(bdev);
820 sbi->journal_bdev = NULL;
824 static inline struct inode *orphan_list_entry(struct list_head *l)
826 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
829 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
833 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
834 le32_to_cpu(sbi->s_es->s_last_orphan));
836 printk(KERN_ERR "sb_info orphan list:\n");
837 list_for_each(l, &sbi->s_orphan) {
838 struct inode *inode = orphan_list_entry(l);
840 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
841 inode->i_sb->s_id, inode->i_ino, inode,
842 inode->i_mode, inode->i_nlink,
848 static int ext4_quota_off(struct super_block *sb, int type);
850 static inline void ext4_quota_off_umount(struct super_block *sb)
854 /* Use our quota_off function to clear inode flags etc. */
855 for (type = 0; type < EXT4_MAXQUOTAS; type++)
856 ext4_quota_off(sb, type);
859 static inline void ext4_quota_off_umount(struct super_block *sb)
864 static void ext4_put_super(struct super_block *sb)
866 struct ext4_sb_info *sbi = EXT4_SB(sb);
867 struct ext4_super_block *es = sbi->s_es;
871 ext4_unregister_li_request(sb);
872 ext4_quota_off_umount(sb);
874 flush_workqueue(sbi->rsv_conversion_wq);
875 destroy_workqueue(sbi->rsv_conversion_wq);
877 if (sbi->s_journal) {
878 aborted = is_journal_aborted(sbi->s_journal);
879 err = jbd2_journal_destroy(sbi->s_journal);
880 sbi->s_journal = NULL;
881 if ((err < 0) && !aborted)
882 ext4_abort(sb, "Couldn't clean up the journal");
885 ext4_unregister_sysfs(sb);
886 ext4_es_unregister_shrinker(sbi);
887 del_timer_sync(&sbi->s_err_report);
888 ext4_release_system_zone(sb);
890 ext4_ext_release(sb);
892 if (!sb_rdonly(sb) && !aborted) {
893 ext4_clear_feature_journal_needs_recovery(sb);
894 es->s_state = cpu_to_le16(sbi->s_mount_state);
897 ext4_commit_super(sb, 1);
899 for (i = 0; i < sbi->s_gdb_count; i++)
900 brelse(sbi->s_group_desc[i]);
901 kvfree(sbi->s_group_desc);
902 kvfree(sbi->s_flex_groups);
903 percpu_counter_destroy(&sbi->s_freeclusters_counter);
904 percpu_counter_destroy(&sbi->s_freeinodes_counter);
905 percpu_counter_destroy(&sbi->s_dirs_counter);
906 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
907 percpu_free_rwsem(&sbi->s_journal_flag_rwsem);
909 for (i = 0; i < EXT4_MAXQUOTAS; i++)
910 kfree(sbi->s_qf_names[i]);
913 /* Debugging code just in case the in-memory inode orphan list
914 * isn't empty. The on-disk one can be non-empty if we've
915 * detected an error and taken the fs readonly, but the
916 * in-memory list had better be clean by this point. */
917 if (!list_empty(&sbi->s_orphan))
918 dump_orphan_list(sb, sbi);
919 J_ASSERT(list_empty(&sbi->s_orphan));
921 sync_blockdev(sb->s_bdev);
922 invalidate_bdev(sb->s_bdev);
923 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
925 * Invalidate the journal device's buffers. We don't want them
926 * floating about in memory - the physical journal device may
927 * hotswapped, and it breaks the `ro-after' testing code.
929 sync_blockdev(sbi->journal_bdev);
930 invalidate_bdev(sbi->journal_bdev);
931 ext4_blkdev_remove(sbi);
933 if (sbi->s_ea_inode_cache) {
934 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
935 sbi->s_ea_inode_cache = NULL;
937 if (sbi->s_ea_block_cache) {
938 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
939 sbi->s_ea_block_cache = NULL;
942 kthread_stop(sbi->s_mmp_tsk);
944 sb->s_fs_info = NULL;
946 * Now that we are completely done shutting down the
947 * superblock, we need to actually destroy the kobject.
949 kobject_put(&sbi->s_kobj);
950 wait_for_completion(&sbi->s_kobj_unregister);
951 if (sbi->s_chksum_driver)
952 crypto_free_shash(sbi->s_chksum_driver);
953 kfree(sbi->s_blockgroup_lock);
954 fs_put_dax(sbi->s_daxdev);
958 static struct kmem_cache *ext4_inode_cachep;
961 * Called inside transaction, so use GFP_NOFS
963 static struct inode *ext4_alloc_inode(struct super_block *sb)
965 struct ext4_inode_info *ei;
967 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
971 ei->vfs_inode.i_version = 1;
972 spin_lock_init(&ei->i_raw_lock);
973 INIT_LIST_HEAD(&ei->i_prealloc_list);
974 spin_lock_init(&ei->i_prealloc_lock);
975 ext4_es_init_tree(&ei->i_es_tree);
976 rwlock_init(&ei->i_es_lock);
977 INIT_LIST_HEAD(&ei->i_es_list);
980 ei->i_es_shrink_lblk = 0;
981 ei->i_reserved_data_blocks = 0;
982 ei->i_da_metadata_calc_len = 0;
983 ei->i_da_metadata_calc_last_lblock = 0;
984 spin_lock_init(&(ei->i_block_reservation_lock));
986 ei->i_reserved_quota = 0;
987 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
990 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
991 spin_lock_init(&ei->i_completed_io_lock);
993 ei->i_datasync_tid = 0;
994 atomic_set(&ei->i_unwritten, 0);
995 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
996 return &ei->vfs_inode;
999 static int ext4_drop_inode(struct inode *inode)
1001 int drop = generic_drop_inode(inode);
1003 trace_ext4_drop_inode(inode, drop);
1007 static void ext4_i_callback(struct rcu_head *head)
1009 struct inode *inode = container_of(head, struct inode, i_rcu);
1010 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1013 static void ext4_destroy_inode(struct inode *inode)
1015 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1016 ext4_msg(inode->i_sb, KERN_ERR,
1017 "Inode %lu (%p): orphan list check failed!",
1018 inode->i_ino, EXT4_I(inode));
1019 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1020 EXT4_I(inode), sizeof(struct ext4_inode_info),
1024 call_rcu(&inode->i_rcu, ext4_i_callback);
1027 static void init_once(void *foo)
1029 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1031 INIT_LIST_HEAD(&ei->i_orphan);
1032 init_rwsem(&ei->xattr_sem);
1033 init_rwsem(&ei->i_data_sem);
1034 init_rwsem(&ei->i_mmap_sem);
1035 inode_init_once(&ei->vfs_inode);
1038 static int __init init_inodecache(void)
1040 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
1041 sizeof(struct ext4_inode_info),
1042 0, (SLAB_RECLAIM_ACCOUNT|
1043 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
1045 if (ext4_inode_cachep == NULL)
1050 static void destroy_inodecache(void)
1053 * Make sure all delayed rcu free inodes are flushed before we
1057 kmem_cache_destroy(ext4_inode_cachep);
1060 void ext4_clear_inode(struct inode *inode)
1062 invalidate_inode_buffers(inode);
1065 ext4_discard_preallocations(inode);
1066 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1067 if (EXT4_I(inode)->jinode) {
1068 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1069 EXT4_I(inode)->jinode);
1070 jbd2_free_inode(EXT4_I(inode)->jinode);
1071 EXT4_I(inode)->jinode = NULL;
1073 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1074 fscrypt_put_encryption_info(inode, NULL);
1078 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1079 u64 ino, u32 generation)
1081 struct inode *inode;
1083 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1084 return ERR_PTR(-ESTALE);
1085 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1086 return ERR_PTR(-ESTALE);
1088 /* iget isn't really right if the inode is currently unallocated!!
1090 * ext4_read_inode will return a bad_inode if the inode had been
1091 * deleted, so we should be safe.
1093 * Currently we don't know the generation for parent directory, so
1094 * a generation of 0 means "accept any"
1096 inode = ext4_iget_normal(sb, ino);
1098 return ERR_CAST(inode);
1099 if (generation && inode->i_generation != generation) {
1101 return ERR_PTR(-ESTALE);
1107 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1108 int fh_len, int fh_type)
1110 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1111 ext4_nfs_get_inode);
1114 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1115 int fh_len, int fh_type)
1117 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1118 ext4_nfs_get_inode);
1122 * Try to release metadata pages (indirect blocks, directories) which are
1123 * mapped via the block device. Since these pages could have journal heads
1124 * which would prevent try_to_free_buffers() from freeing them, we must use
1125 * jbd2 layer's try_to_free_buffers() function to release them.
1127 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1130 journal_t *journal = EXT4_SB(sb)->s_journal;
1132 WARN_ON(PageChecked(page));
1133 if (!page_has_buffers(page))
1136 return jbd2_journal_try_to_free_buffers(journal, page,
1137 wait & ~__GFP_DIRECT_RECLAIM);
1138 return try_to_free_buffers(page);
1141 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1142 static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1144 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1145 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1148 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1151 handle_t *handle = fs_data;
1152 int res, res2, credits, retries = 0;
1155 * Encrypting the root directory is not allowed because e2fsck expects
1156 * lost+found to exist and be unencrypted, and encrypting the root
1157 * directory would imply encrypting the lost+found directory as well as
1158 * the filename "lost+found" itself.
1160 if (inode->i_ino == EXT4_ROOT_INO)
1163 res = ext4_convert_inline_data(inode);
1168 * If a journal handle was specified, then the encryption context is
1169 * being set on a new inode via inheritance and is part of a larger
1170 * transaction to create the inode. Otherwise the encryption context is
1171 * being set on an existing inode in its own transaction. Only in the
1172 * latter case should the "retry on ENOSPC" logic be used.
1176 res = ext4_xattr_set_handle(handle, inode,
1177 EXT4_XATTR_INDEX_ENCRYPTION,
1178 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1181 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1182 ext4_clear_inode_state(inode,
1183 EXT4_STATE_MAY_INLINE_DATA);
1185 * Update inode->i_flags - e.g. S_DAX may get disabled
1187 ext4_set_inode_flags(inode);
1192 res = dquot_initialize(inode);
1196 res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1201 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1203 return PTR_ERR(handle);
1205 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1206 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1209 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1210 /* Update inode->i_flags - e.g. S_DAX may get disabled */
1211 ext4_set_inode_flags(inode);
1212 res = ext4_mark_inode_dirty(handle, inode);
1214 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1216 res2 = ext4_journal_stop(handle);
1218 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1225 static bool ext4_dummy_context(struct inode *inode)
1227 return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb));
1230 static unsigned ext4_max_namelen(struct inode *inode)
1232 return S_ISLNK(inode->i_mode) ? inode->i_sb->s_blocksize :
1236 static const struct fscrypt_operations ext4_cryptops = {
1237 .key_prefix = "ext4:",
1238 .get_context = ext4_get_context,
1239 .set_context = ext4_set_context,
1240 .dummy_context = ext4_dummy_context,
1241 .is_encrypted = ext4_encrypted_inode,
1242 .empty_dir = ext4_empty_dir,
1243 .max_namelen = ext4_max_namelen,
1246 static const struct fscrypt_operations ext4_cryptops = {
1247 .is_encrypted = ext4_encrypted_inode,
1252 static const char * const quotatypes[] = INITQFNAMES;
1253 #define QTYPE2NAME(t) (quotatypes[t])
1255 static int ext4_write_dquot(struct dquot *dquot);
1256 static int ext4_acquire_dquot(struct dquot *dquot);
1257 static int ext4_release_dquot(struct dquot *dquot);
1258 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1259 static int ext4_write_info(struct super_block *sb, int type);
1260 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1261 const struct path *path);
1262 static int ext4_quota_on_mount(struct super_block *sb, int type);
1263 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1264 size_t len, loff_t off);
1265 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1266 const char *data, size_t len, loff_t off);
1267 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1268 unsigned int flags);
1269 static int ext4_enable_quotas(struct super_block *sb);
1270 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid);
1272 static struct dquot **ext4_get_dquots(struct inode *inode)
1274 return EXT4_I(inode)->i_dquot;
1277 static const struct dquot_operations ext4_quota_operations = {
1278 .get_reserved_space = ext4_get_reserved_space,
1279 .write_dquot = ext4_write_dquot,
1280 .acquire_dquot = ext4_acquire_dquot,
1281 .release_dquot = ext4_release_dquot,
1282 .mark_dirty = ext4_mark_dquot_dirty,
1283 .write_info = ext4_write_info,
1284 .alloc_dquot = dquot_alloc,
1285 .destroy_dquot = dquot_destroy,
1286 .get_projid = ext4_get_projid,
1287 .get_inode_usage = ext4_get_inode_usage,
1288 .get_next_id = ext4_get_next_id,
1291 static const struct quotactl_ops ext4_qctl_operations = {
1292 .quota_on = ext4_quota_on,
1293 .quota_off = ext4_quota_off,
1294 .quota_sync = dquot_quota_sync,
1295 .get_state = dquot_get_state,
1296 .set_info = dquot_set_dqinfo,
1297 .get_dqblk = dquot_get_dqblk,
1298 .set_dqblk = dquot_set_dqblk,
1299 .get_nextdqblk = dquot_get_next_dqblk,
1303 static const struct super_operations ext4_sops = {
1304 .alloc_inode = ext4_alloc_inode,
1305 .destroy_inode = ext4_destroy_inode,
1306 .write_inode = ext4_write_inode,
1307 .dirty_inode = ext4_dirty_inode,
1308 .drop_inode = ext4_drop_inode,
1309 .evict_inode = ext4_evict_inode,
1310 .put_super = ext4_put_super,
1311 .sync_fs = ext4_sync_fs,
1312 .freeze_fs = ext4_freeze,
1313 .unfreeze_fs = ext4_unfreeze,
1314 .statfs = ext4_statfs,
1315 .remount_fs = ext4_remount,
1316 .show_options = ext4_show_options,
1318 .quota_read = ext4_quota_read,
1319 .quota_write = ext4_quota_write,
1320 .get_dquots = ext4_get_dquots,
1322 .bdev_try_to_free_page = bdev_try_to_free_page,
1325 static const struct export_operations ext4_export_ops = {
1326 .fh_to_dentry = ext4_fh_to_dentry,
1327 .fh_to_parent = ext4_fh_to_parent,
1328 .get_parent = ext4_get_parent,
1332 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1333 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1334 Opt_nouid32, Opt_debug, Opt_removed,
1335 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1336 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1337 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1338 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1339 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1340 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1341 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1342 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1343 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1344 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax,
1345 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1346 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1347 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1348 Opt_inode_readahead_blks, Opt_journal_ioprio,
1349 Opt_dioread_nolock, Opt_dioread_lock,
1350 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1351 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1354 static const match_table_t tokens = {
1355 {Opt_bsd_df, "bsddf"},
1356 {Opt_minix_df, "minixdf"},
1357 {Opt_grpid, "grpid"},
1358 {Opt_grpid, "bsdgroups"},
1359 {Opt_nogrpid, "nogrpid"},
1360 {Opt_nogrpid, "sysvgroups"},
1361 {Opt_resgid, "resgid=%u"},
1362 {Opt_resuid, "resuid=%u"},
1364 {Opt_err_cont, "errors=continue"},
1365 {Opt_err_panic, "errors=panic"},
1366 {Opt_err_ro, "errors=remount-ro"},
1367 {Opt_nouid32, "nouid32"},
1368 {Opt_debug, "debug"},
1369 {Opt_removed, "oldalloc"},
1370 {Opt_removed, "orlov"},
1371 {Opt_user_xattr, "user_xattr"},
1372 {Opt_nouser_xattr, "nouser_xattr"},
1374 {Opt_noacl, "noacl"},
1375 {Opt_noload, "norecovery"},
1376 {Opt_noload, "noload"},
1377 {Opt_removed, "nobh"},
1378 {Opt_removed, "bh"},
1379 {Opt_commit, "commit=%u"},
1380 {Opt_min_batch_time, "min_batch_time=%u"},
1381 {Opt_max_batch_time, "max_batch_time=%u"},
1382 {Opt_journal_dev, "journal_dev=%u"},
1383 {Opt_journal_path, "journal_path=%s"},
1384 {Opt_journal_checksum, "journal_checksum"},
1385 {Opt_nojournal_checksum, "nojournal_checksum"},
1386 {Opt_journal_async_commit, "journal_async_commit"},
1387 {Opt_abort, "abort"},
1388 {Opt_data_journal, "data=journal"},
1389 {Opt_data_ordered, "data=ordered"},
1390 {Opt_data_writeback, "data=writeback"},
1391 {Opt_data_err_abort, "data_err=abort"},
1392 {Opt_data_err_ignore, "data_err=ignore"},
1393 {Opt_offusrjquota, "usrjquota="},
1394 {Opt_usrjquota, "usrjquota=%s"},
1395 {Opt_offgrpjquota, "grpjquota="},
1396 {Opt_grpjquota, "grpjquota=%s"},
1397 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1398 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1399 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1400 {Opt_grpquota, "grpquota"},
1401 {Opt_noquota, "noquota"},
1402 {Opt_quota, "quota"},
1403 {Opt_usrquota, "usrquota"},
1404 {Opt_prjquota, "prjquota"},
1405 {Opt_barrier, "barrier=%u"},
1406 {Opt_barrier, "barrier"},
1407 {Opt_nobarrier, "nobarrier"},
1408 {Opt_i_version, "i_version"},
1410 {Opt_stripe, "stripe=%u"},
1411 {Opt_delalloc, "delalloc"},
1412 {Opt_lazytime, "lazytime"},
1413 {Opt_nolazytime, "nolazytime"},
1414 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1415 {Opt_nodelalloc, "nodelalloc"},
1416 {Opt_removed, "mblk_io_submit"},
1417 {Opt_removed, "nomblk_io_submit"},
1418 {Opt_block_validity, "block_validity"},
1419 {Opt_noblock_validity, "noblock_validity"},
1420 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1421 {Opt_journal_ioprio, "journal_ioprio=%u"},
1422 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1423 {Opt_auto_da_alloc, "auto_da_alloc"},
1424 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1425 {Opt_dioread_nolock, "dioread_nolock"},
1426 {Opt_dioread_lock, "dioread_lock"},
1427 {Opt_discard, "discard"},
1428 {Opt_nodiscard, "nodiscard"},
1429 {Opt_init_itable, "init_itable=%u"},
1430 {Opt_init_itable, "init_itable"},
1431 {Opt_noinit_itable, "noinit_itable"},
1432 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1433 {Opt_test_dummy_encryption, "test_dummy_encryption"},
1434 {Opt_nombcache, "nombcache"},
1435 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */
1436 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1437 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1438 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1439 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1440 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1444 static ext4_fsblk_t get_sb_block(void **data)
1446 ext4_fsblk_t sb_block;
1447 char *options = (char *) *data;
1449 if (!options || strncmp(options, "sb=", 3) != 0)
1450 return 1; /* Default location */
1453 /* TODO: use simple_strtoll with >32bit ext4 */
1454 sb_block = simple_strtoul(options, &options, 0);
1455 if (*options && *options != ',') {
1456 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1460 if (*options == ',')
1462 *data = (void *) options;
1467 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1468 static const char deprecated_msg[] =
1469 "Mount option \"%s\" will be removed by %s\n"
1470 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1473 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1475 struct ext4_sb_info *sbi = EXT4_SB(sb);
1479 if (sb_any_quota_loaded(sb) &&
1480 !sbi->s_qf_names[qtype]) {
1481 ext4_msg(sb, KERN_ERR,
1482 "Cannot change journaled "
1483 "quota options when quota turned on");
1486 if (ext4_has_feature_quota(sb)) {
1487 ext4_msg(sb, KERN_INFO, "Journaled quota options "
1488 "ignored when QUOTA feature is enabled");
1491 qname = match_strdup(args);
1493 ext4_msg(sb, KERN_ERR,
1494 "Not enough memory for storing quotafile name");
1497 if (sbi->s_qf_names[qtype]) {
1498 if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1501 ext4_msg(sb, KERN_ERR,
1502 "%s quota file already specified",
1506 if (strchr(qname, '/')) {
1507 ext4_msg(sb, KERN_ERR,
1508 "quotafile must be on filesystem root");
1511 sbi->s_qf_names[qtype] = qname;
1519 static int clear_qf_name(struct super_block *sb, int qtype)
1522 struct ext4_sb_info *sbi = EXT4_SB(sb);
1524 if (sb_any_quota_loaded(sb) &&
1525 sbi->s_qf_names[qtype]) {
1526 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1527 " when quota turned on");
1530 kfree(sbi->s_qf_names[qtype]);
1531 sbi->s_qf_names[qtype] = NULL;
1536 #define MOPT_SET 0x0001
1537 #define MOPT_CLEAR 0x0002
1538 #define MOPT_NOSUPPORT 0x0004
1539 #define MOPT_EXPLICIT 0x0008
1540 #define MOPT_CLEAR_ERR 0x0010
1541 #define MOPT_GTE0 0x0020
1544 #define MOPT_QFMT 0x0040
1546 #define MOPT_Q MOPT_NOSUPPORT
1547 #define MOPT_QFMT MOPT_NOSUPPORT
1549 #define MOPT_DATAJ 0x0080
1550 #define MOPT_NO_EXT2 0x0100
1551 #define MOPT_NO_EXT3 0x0200
1552 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1553 #define MOPT_STRING 0x0400
1555 static const struct mount_opts {
1559 } ext4_mount_opts[] = {
1560 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1561 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1562 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1563 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1564 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1565 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1566 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1567 MOPT_EXT4_ONLY | MOPT_SET},
1568 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1569 MOPT_EXT4_ONLY | MOPT_CLEAR},
1570 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1571 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1572 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1573 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1574 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1575 MOPT_EXT4_ONLY | MOPT_CLEAR},
1576 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1577 MOPT_EXT4_ONLY | MOPT_CLEAR},
1578 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1579 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1580 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1581 EXT4_MOUNT_JOURNAL_CHECKSUM),
1582 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1583 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1584 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1585 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1586 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1587 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1589 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1591 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1592 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1593 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1594 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1595 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1596 {Opt_commit, 0, MOPT_GTE0},
1597 {Opt_max_batch_time, 0, MOPT_GTE0},
1598 {Opt_min_batch_time, 0, MOPT_GTE0},
1599 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1600 {Opt_init_itable, 0, MOPT_GTE0},
1601 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1602 {Opt_stripe, 0, MOPT_GTE0},
1603 {Opt_resuid, 0, MOPT_GTE0},
1604 {Opt_resgid, 0, MOPT_GTE0},
1605 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1606 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1607 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1608 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1609 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1610 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1611 MOPT_NO_EXT2 | MOPT_DATAJ},
1612 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1613 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1614 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1615 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1616 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1618 {Opt_acl, 0, MOPT_NOSUPPORT},
1619 {Opt_noacl, 0, MOPT_NOSUPPORT},
1621 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1622 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1623 {Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1624 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1625 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1627 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1629 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1631 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1632 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1633 MOPT_CLEAR | MOPT_Q},
1634 {Opt_usrjquota, 0, MOPT_Q},
1635 {Opt_grpjquota, 0, MOPT_Q},
1636 {Opt_offusrjquota, 0, MOPT_Q},
1637 {Opt_offgrpjquota, 0, MOPT_Q},
1638 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1639 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1640 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1641 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1642 {Opt_test_dummy_encryption, 0, MOPT_GTE0},
1643 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1647 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1648 substring_t *args, unsigned long *journal_devnum,
1649 unsigned int *journal_ioprio, int is_remount)
1651 struct ext4_sb_info *sbi = EXT4_SB(sb);
1652 const struct mount_opts *m;
1658 if (token == Opt_usrjquota)
1659 return set_qf_name(sb, USRQUOTA, &args[0]);
1660 else if (token == Opt_grpjquota)
1661 return set_qf_name(sb, GRPQUOTA, &args[0]);
1662 else if (token == Opt_offusrjquota)
1663 return clear_qf_name(sb, USRQUOTA);
1664 else if (token == Opt_offgrpjquota)
1665 return clear_qf_name(sb, GRPQUOTA);
1669 case Opt_nouser_xattr:
1670 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1673 return 1; /* handled by get_sb_block() */
1675 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1678 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1681 sb->s_flags |= SB_I_VERSION;
1684 sb->s_flags |= MS_LAZYTIME;
1686 case Opt_nolazytime:
1687 sb->s_flags &= ~MS_LAZYTIME;
1691 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1692 if (token == m->token)
1695 if (m->token == Opt_err) {
1696 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1697 "or missing value", opt);
1701 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1702 ext4_msg(sb, KERN_ERR,
1703 "Mount option \"%s\" incompatible with ext2", opt);
1706 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1707 ext4_msg(sb, KERN_ERR,
1708 "Mount option \"%s\" incompatible with ext3", opt);
1712 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1714 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1716 if (m->flags & MOPT_EXPLICIT) {
1717 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1718 set_opt2(sb, EXPLICIT_DELALLOC);
1719 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1720 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
1724 if (m->flags & MOPT_CLEAR_ERR)
1725 clear_opt(sb, ERRORS_MASK);
1726 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1727 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1728 "options when quota turned on");
1732 if (m->flags & MOPT_NOSUPPORT) {
1733 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1734 } else if (token == Opt_commit) {
1736 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1737 sbi->s_commit_interval = HZ * arg;
1738 } else if (token == Opt_debug_want_extra_isize) {
1739 sbi->s_want_extra_isize = arg;
1740 } else if (token == Opt_max_batch_time) {
1741 sbi->s_max_batch_time = arg;
1742 } else if (token == Opt_min_batch_time) {
1743 sbi->s_min_batch_time = arg;
1744 } else if (token == Opt_inode_readahead_blks) {
1745 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1746 ext4_msg(sb, KERN_ERR,
1747 "EXT4-fs: inode_readahead_blks must be "
1748 "0 or a power of 2 smaller than 2^31");
1751 sbi->s_inode_readahead_blks = arg;
1752 } else if (token == Opt_init_itable) {
1753 set_opt(sb, INIT_INODE_TABLE);
1755 arg = EXT4_DEF_LI_WAIT_MULT;
1756 sbi->s_li_wait_mult = arg;
1757 } else if (token == Opt_max_dir_size_kb) {
1758 sbi->s_max_dir_size_kb = arg;
1759 } else if (token == Opt_stripe) {
1760 sbi->s_stripe = arg;
1761 } else if (token == Opt_resuid) {
1762 uid = make_kuid(current_user_ns(), arg);
1763 if (!uid_valid(uid)) {
1764 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1767 sbi->s_resuid = uid;
1768 } else if (token == Opt_resgid) {
1769 gid = make_kgid(current_user_ns(), arg);
1770 if (!gid_valid(gid)) {
1771 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1774 sbi->s_resgid = gid;
1775 } else if (token == Opt_journal_dev) {
1777 ext4_msg(sb, KERN_ERR,
1778 "Cannot specify journal on remount");
1781 *journal_devnum = arg;
1782 } else if (token == Opt_journal_path) {
1784 struct inode *journal_inode;
1789 ext4_msg(sb, KERN_ERR,
1790 "Cannot specify journal on remount");
1793 journal_path = match_strdup(&args[0]);
1794 if (!journal_path) {
1795 ext4_msg(sb, KERN_ERR, "error: could not dup "
1796 "journal device string");
1800 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1802 ext4_msg(sb, KERN_ERR, "error: could not find "
1803 "journal device path: error %d", error);
1804 kfree(journal_path);
1808 journal_inode = d_inode(path.dentry);
1809 if (!S_ISBLK(journal_inode->i_mode)) {
1810 ext4_msg(sb, KERN_ERR, "error: journal path %s "
1811 "is not a block device", journal_path);
1813 kfree(journal_path);
1817 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
1819 kfree(journal_path);
1820 } else if (token == Opt_journal_ioprio) {
1822 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1827 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1828 } else if (token == Opt_test_dummy_encryption) {
1829 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1830 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1831 ext4_msg(sb, KERN_WARNING,
1832 "Test dummy encryption mode enabled");
1834 ext4_msg(sb, KERN_WARNING,
1835 "Test dummy encryption mount option ignored");
1837 } else if (m->flags & MOPT_DATAJ) {
1839 if (!sbi->s_journal)
1840 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1841 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1842 ext4_msg(sb, KERN_ERR,
1843 "Cannot change data mode on remount");
1847 clear_opt(sb, DATA_FLAGS);
1848 sbi->s_mount_opt |= m->mount_opt;
1851 } else if (m->flags & MOPT_QFMT) {
1852 if (sb_any_quota_loaded(sb) &&
1853 sbi->s_jquota_fmt != m->mount_opt) {
1854 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1855 "quota options when quota turned on");
1858 if (ext4_has_feature_quota(sb)) {
1859 ext4_msg(sb, KERN_INFO,
1860 "Quota format mount options ignored "
1861 "when QUOTA feature is enabled");
1864 sbi->s_jquota_fmt = m->mount_opt;
1866 } else if (token == Opt_dax) {
1867 #ifdef CONFIG_FS_DAX
1868 ext4_msg(sb, KERN_WARNING,
1869 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
1870 sbi->s_mount_opt |= m->mount_opt;
1872 ext4_msg(sb, KERN_INFO, "dax option not supported");
1875 } else if (token == Opt_data_err_abort) {
1876 sbi->s_mount_opt |= m->mount_opt;
1877 } else if (token == Opt_data_err_ignore) {
1878 sbi->s_mount_opt &= ~m->mount_opt;
1882 if (m->flags & MOPT_CLEAR)
1884 else if (unlikely(!(m->flags & MOPT_SET))) {
1885 ext4_msg(sb, KERN_WARNING,
1886 "buggy handling of option %s", opt);
1891 sbi->s_mount_opt |= m->mount_opt;
1893 sbi->s_mount_opt &= ~m->mount_opt;
1898 static int parse_options(char *options, struct super_block *sb,
1899 unsigned long *journal_devnum,
1900 unsigned int *journal_ioprio,
1903 struct ext4_sb_info *sbi = EXT4_SB(sb);
1905 substring_t args[MAX_OPT_ARGS];
1911 while ((p = strsep(&options, ",")) != NULL) {
1915 * Initialize args struct so we know whether arg was
1916 * found; some options take optional arguments.
1918 args[0].to = args[0].from = NULL;
1919 token = match_token(p, tokens, args);
1920 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1921 journal_ioprio, is_remount) < 0)
1926 * We do the test below only for project quotas. 'usrquota' and
1927 * 'grpquota' mount options are allowed even without quota feature
1928 * to support legacy quotas in quota files.
1930 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
1931 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
1932 "Cannot enable project quota enforcement.");
1935 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1936 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1937 clear_opt(sb, USRQUOTA);
1939 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1940 clear_opt(sb, GRPQUOTA);
1942 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1943 ext4_msg(sb, KERN_ERR, "old and new quota "
1948 if (!sbi->s_jquota_fmt) {
1949 ext4_msg(sb, KERN_ERR, "journaled quota format "
1955 if (test_opt(sb, DIOREAD_NOLOCK)) {
1957 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1959 if (blocksize < PAGE_SIZE) {
1960 ext4_msg(sb, KERN_ERR, "can't mount with "
1961 "dioread_nolock if block size != PAGE_SIZE");
1968 static inline void ext4_show_quota_options(struct seq_file *seq,
1969 struct super_block *sb)
1971 #if defined(CONFIG_QUOTA)
1972 struct ext4_sb_info *sbi = EXT4_SB(sb);
1974 if (sbi->s_jquota_fmt) {
1977 switch (sbi->s_jquota_fmt) {
1988 seq_printf(seq, ",jqfmt=%s", fmtname);
1991 if (sbi->s_qf_names[USRQUOTA])
1992 seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]);
1994 if (sbi->s_qf_names[GRPQUOTA])
1995 seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]);
1999 static const char *token2str(int token)
2001 const struct match_token *t;
2003 for (t = tokens; t->token != Opt_err; t++)
2004 if (t->token == token && !strchr(t->pattern, '='))
2011 * - it's set to a non-default value OR
2012 * - if the per-sb default is different from the global default
2014 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2017 struct ext4_sb_info *sbi = EXT4_SB(sb);
2018 struct ext4_super_block *es = sbi->s_es;
2019 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
2020 const struct mount_opts *m;
2021 char sep = nodefs ? '\n' : ',';
2023 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2024 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2026 if (sbi->s_sb_block != 1)
2027 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2029 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2030 int want_set = m->flags & MOPT_SET;
2031 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2032 (m->flags & MOPT_CLEAR_ERR))
2034 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2035 continue; /* skip if same as the default */
2037 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2038 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2039 continue; /* select Opt_noFoo vs Opt_Foo */
2040 SEQ_OPTS_PRINT("%s", token2str(m->token));
2043 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2044 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2045 SEQ_OPTS_PRINT("resuid=%u",
2046 from_kuid_munged(&init_user_ns, sbi->s_resuid));
2047 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2048 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2049 SEQ_OPTS_PRINT("resgid=%u",
2050 from_kgid_munged(&init_user_ns, sbi->s_resgid));
2051 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2052 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2053 SEQ_OPTS_PUTS("errors=remount-ro");
2054 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2055 SEQ_OPTS_PUTS("errors=continue");
2056 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2057 SEQ_OPTS_PUTS("errors=panic");
2058 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2059 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2060 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2061 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2062 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2063 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2064 if (sb->s_flags & SB_I_VERSION)
2065 SEQ_OPTS_PUTS("i_version");
2066 if (nodefs || sbi->s_stripe)
2067 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2068 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
2069 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2070 SEQ_OPTS_PUTS("data=journal");
2071 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2072 SEQ_OPTS_PUTS("data=ordered");
2073 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2074 SEQ_OPTS_PUTS("data=writeback");
2077 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2078 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2079 sbi->s_inode_readahead_blks);
2081 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
2082 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2083 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2084 if (nodefs || sbi->s_max_dir_size_kb)
2085 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2086 if (test_opt(sb, DATA_ERR_ABORT))
2087 SEQ_OPTS_PUTS("data_err=abort");
2089 ext4_show_quota_options(seq, sb);
2093 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2095 return _ext4_show_options(seq, root->d_sb, 0);
2098 int ext4_seq_options_show(struct seq_file *seq, void *offset)
2100 struct super_block *sb = seq->private;
2103 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
2104 rc = _ext4_show_options(seq, sb, 1);
2105 seq_puts(seq, "\n");
2109 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2112 struct ext4_sb_info *sbi = EXT4_SB(sb);
2115 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2116 ext4_msg(sb, KERN_ERR, "revision level too high, "
2117 "forcing read-only mode");
2122 if (!(sbi->s_mount_state & EXT4_VALID_FS))
2123 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2124 "running e2fsck is recommended");
2125 else if (sbi->s_mount_state & EXT4_ERROR_FS)
2126 ext4_msg(sb, KERN_WARNING,
2127 "warning: mounting fs with errors, "
2128 "running e2fsck is recommended");
2129 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2130 le16_to_cpu(es->s_mnt_count) >=
2131 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2132 ext4_msg(sb, KERN_WARNING,
2133 "warning: maximal mount count reached, "
2134 "running e2fsck is recommended");
2135 else if (le32_to_cpu(es->s_checkinterval) &&
2136 (le32_to_cpu(es->s_lastcheck) +
2137 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
2138 ext4_msg(sb, KERN_WARNING,
2139 "warning: checktime reached, "
2140 "running e2fsck is recommended");
2141 if (!sbi->s_journal)
2142 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2143 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2144 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2145 le16_add_cpu(&es->s_mnt_count, 1);
2146 es->s_mtime = cpu_to_le32(get_seconds());
2147 ext4_update_dynamic_rev(sb);
2149 ext4_set_feature_journal_needs_recovery(sb);
2151 ext4_commit_super(sb, 1);
2153 if (test_opt(sb, DEBUG))
2154 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2155 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2157 sbi->s_groups_count,
2158 EXT4_BLOCKS_PER_GROUP(sb),
2159 EXT4_INODES_PER_GROUP(sb),
2160 sbi->s_mount_opt, sbi->s_mount_opt2);
2162 cleancache_init_fs(sb);
2166 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2168 struct ext4_sb_info *sbi = EXT4_SB(sb);
2169 struct flex_groups *new_groups;
2172 if (!sbi->s_log_groups_per_flex)
2175 size = ext4_flex_group(sbi, ngroup - 1) + 1;
2176 if (size <= sbi->s_flex_groups_allocated)
2179 size = roundup_pow_of_two(size * sizeof(struct flex_groups));
2180 new_groups = kvzalloc(size, GFP_KERNEL);
2182 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
2183 size / (int) sizeof(struct flex_groups));
2187 if (sbi->s_flex_groups) {
2188 memcpy(new_groups, sbi->s_flex_groups,
2189 (sbi->s_flex_groups_allocated *
2190 sizeof(struct flex_groups)));
2191 kvfree(sbi->s_flex_groups);
2193 sbi->s_flex_groups = new_groups;
2194 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
2198 static int ext4_fill_flex_info(struct super_block *sb)
2200 struct ext4_sb_info *sbi = EXT4_SB(sb);
2201 struct ext4_group_desc *gdp = NULL;
2202 ext4_group_t flex_group;
2205 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2206 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2207 sbi->s_log_groups_per_flex = 0;
2211 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2215 for (i = 0; i < sbi->s_groups_count; i++) {
2216 gdp = ext4_get_group_desc(sb, i, NULL);
2218 flex_group = ext4_flex_group(sbi, i);
2219 atomic_add(ext4_free_inodes_count(sb, gdp),
2220 &sbi->s_flex_groups[flex_group].free_inodes);
2221 atomic64_add(ext4_free_group_clusters(sb, gdp),
2222 &sbi->s_flex_groups[flex_group].free_clusters);
2223 atomic_add(ext4_used_dirs_count(sb, gdp),
2224 &sbi->s_flex_groups[flex_group].used_dirs);
2232 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2233 struct ext4_group_desc *gdp)
2235 int offset = offsetof(struct ext4_group_desc, bg_checksum);
2237 __le32 le_group = cpu_to_le32(block_group);
2238 struct ext4_sb_info *sbi = EXT4_SB(sb);
2240 if (ext4_has_metadata_csum(sbi->s_sb)) {
2241 /* Use new metadata_csum algorithm */
2243 __u16 dummy_csum = 0;
2245 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2247 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2248 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2249 sizeof(dummy_csum));
2250 offset += sizeof(dummy_csum);
2251 if (offset < sbi->s_desc_size)
2252 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2253 sbi->s_desc_size - offset);
2255 crc = csum32 & 0xFFFF;
2259 /* old crc16 code */
2260 if (!ext4_has_feature_gdt_csum(sb))
2263 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2264 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2265 crc = crc16(crc, (__u8 *)gdp, offset);
2266 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2267 /* for checksum of struct ext4_group_desc do the rest...*/
2268 if (ext4_has_feature_64bit(sb) &&
2269 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2270 crc = crc16(crc, (__u8 *)gdp + offset,
2271 le16_to_cpu(sbi->s_es->s_desc_size) -
2275 return cpu_to_le16(crc);
2278 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2279 struct ext4_group_desc *gdp)
2281 if (ext4_has_group_desc_csum(sb) &&
2282 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2288 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2289 struct ext4_group_desc *gdp)
2291 if (!ext4_has_group_desc_csum(sb))
2293 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2296 /* Called at mount-time, super-block is locked */
2297 static int ext4_check_descriptors(struct super_block *sb,
2298 ext4_fsblk_t sb_block,
2299 ext4_group_t *first_not_zeroed)
2301 struct ext4_sb_info *sbi = EXT4_SB(sb);
2302 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2303 ext4_fsblk_t last_block;
2304 ext4_fsblk_t block_bitmap;
2305 ext4_fsblk_t inode_bitmap;
2306 ext4_fsblk_t inode_table;
2307 int flexbg_flag = 0;
2308 ext4_group_t i, grp = sbi->s_groups_count;
2310 if (ext4_has_feature_flex_bg(sb))
2313 ext4_debug("Checking group descriptors");
2315 for (i = 0; i < sbi->s_groups_count; i++) {
2316 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2318 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2319 last_block = ext4_blocks_count(sbi->s_es) - 1;
2321 last_block = first_block +
2322 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2324 if ((grp == sbi->s_groups_count) &&
2325 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2328 block_bitmap = ext4_block_bitmap(sb, gdp);
2329 if (block_bitmap == sb_block) {
2330 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2331 "Block bitmap for group %u overlaps "
2336 if (block_bitmap < first_block || block_bitmap > last_block) {
2337 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2338 "Block bitmap for group %u not in group "
2339 "(block %llu)!", i, block_bitmap);
2342 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2343 if (inode_bitmap == sb_block) {
2344 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2345 "Inode bitmap for group %u overlaps "
2350 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2351 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2352 "Inode bitmap for group %u not in group "
2353 "(block %llu)!", i, inode_bitmap);
2356 inode_table = ext4_inode_table(sb, gdp);
2357 if (inode_table == sb_block) {
2358 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2359 "Inode table for group %u overlaps "
2364 if (inode_table < first_block ||
2365 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2366 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2367 "Inode table for group %u not in group "
2368 "(block %llu)!", i, inode_table);
2371 ext4_lock_group(sb, i);
2372 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2373 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2374 "Checksum for group %u failed (%u!=%u)",
2375 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2376 gdp)), le16_to_cpu(gdp->bg_checksum));
2377 if (!sb_rdonly(sb)) {
2378 ext4_unlock_group(sb, i);
2382 ext4_unlock_group(sb, i);
2384 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2386 if (NULL != first_not_zeroed)
2387 *first_not_zeroed = grp;
2391 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2392 * the superblock) which were deleted from all directories, but held open by
2393 * a process at the time of a crash. We walk the list and try to delete these
2394 * inodes at recovery time (only with a read-write filesystem).
2396 * In order to keep the orphan inode chain consistent during traversal (in
2397 * case of crash during recovery), we link each inode into the superblock
2398 * orphan list_head and handle it the same way as an inode deletion during
2399 * normal operation (which journals the operations for us).
2401 * We only do an iget() and an iput() on each inode, which is very safe if we
2402 * accidentally point at an in-use or already deleted inode. The worst that
2403 * can happen in this case is that we get a "bit already cleared" message from
2404 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2405 * e2fsck was run on this filesystem, and it must have already done the orphan
2406 * inode cleanup for us, so we can safely abort without any further action.
2408 static void ext4_orphan_cleanup(struct super_block *sb,
2409 struct ext4_super_block *es)
2411 unsigned int s_flags = sb->s_flags;
2412 int ret, nr_orphans = 0, nr_truncates = 0;
2414 int quota_update = 0;
2417 if (!es->s_last_orphan) {
2418 jbd_debug(4, "no orphan inodes to clean up\n");
2422 if (bdev_read_only(sb->s_bdev)) {
2423 ext4_msg(sb, KERN_ERR, "write access "
2424 "unavailable, skipping orphan cleanup");
2428 /* Check if feature set would not allow a r/w mount */
2429 if (!ext4_feature_set_ok(sb, 0)) {
2430 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2431 "unknown ROCOMPAT features");
2435 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2436 /* don't clear list on RO mount w/ errors */
2437 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2438 ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2439 "clearing orphan list.\n");
2440 es->s_last_orphan = 0;
2442 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2446 if (s_flags & MS_RDONLY) {
2447 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2448 sb->s_flags &= ~MS_RDONLY;
2451 /* Needed for iput() to work correctly and not trash data */
2452 sb->s_flags |= MS_ACTIVE;
2455 * Turn on quotas which were not enabled for read-only mounts if
2456 * filesystem has quota feature, so that they are updated correctly.
2458 if (ext4_has_feature_quota(sb) && (s_flags & MS_RDONLY)) {
2459 int ret = ext4_enable_quotas(sb);
2464 ext4_msg(sb, KERN_ERR,
2465 "Cannot turn on quotas: error %d", ret);
2468 /* Turn on journaled quotas used for old sytle */
2469 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2470 if (EXT4_SB(sb)->s_qf_names[i]) {
2471 int ret = ext4_quota_on_mount(sb, i);
2476 ext4_msg(sb, KERN_ERR,
2477 "Cannot turn on journaled "
2478 "quota: type %d: error %d", i, ret);
2483 while (es->s_last_orphan) {
2484 struct inode *inode;
2487 * We may have encountered an error during cleanup; if
2488 * so, skip the rest.
2490 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2491 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2492 es->s_last_orphan = 0;
2496 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2497 if (IS_ERR(inode)) {
2498 es->s_last_orphan = 0;
2502 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2503 dquot_initialize(inode);
2504 if (inode->i_nlink) {
2505 if (test_opt(sb, DEBUG))
2506 ext4_msg(sb, KERN_DEBUG,
2507 "%s: truncating inode %lu to %lld bytes",
2508 __func__, inode->i_ino, inode->i_size);
2509 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2510 inode->i_ino, inode->i_size);
2512 truncate_inode_pages(inode->i_mapping, inode->i_size);
2513 ret = ext4_truncate(inode);
2515 ext4_std_error(inode->i_sb, ret);
2516 inode_unlock(inode);
2519 if (test_opt(sb, DEBUG))
2520 ext4_msg(sb, KERN_DEBUG,
2521 "%s: deleting unreferenced inode %lu",
2522 __func__, inode->i_ino);
2523 jbd_debug(2, "deleting unreferenced inode %lu\n",
2527 iput(inode); /* The delete magic happens here! */
2530 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2533 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2534 PLURAL(nr_orphans));
2536 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2537 PLURAL(nr_truncates));
2539 /* Turn off quotas if they were enabled for orphan cleanup */
2541 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2542 if (sb_dqopt(sb)->files[i])
2543 dquot_quota_off(sb, i);
2547 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2551 * Maximal extent format file size.
2552 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2553 * extent format containers, within a sector_t, and within i_blocks
2554 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2555 * so that won't be a limiting factor.
2557 * However there is other limiting factor. We do store extents in the form
2558 * of starting block and length, hence the resulting length of the extent
2559 * covering maximum file size must fit into on-disk format containers as
2560 * well. Given that length is always by 1 unit bigger than max unit (because
2561 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2563 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2565 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2568 loff_t upper_limit = MAX_LFS_FILESIZE;
2570 /* small i_blocks in vfs inode? */
2571 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2573 * CONFIG_LBDAF is not enabled implies the inode
2574 * i_block represent total blocks in 512 bytes
2575 * 32 == size of vfs inode i_blocks * 8
2577 upper_limit = (1LL << 32) - 1;
2579 /* total blocks in file system block size */
2580 upper_limit >>= (blkbits - 9);
2581 upper_limit <<= blkbits;
2585 * 32-bit extent-start container, ee_block. We lower the maxbytes
2586 * by one fs block, so ee_len can cover the extent of maximum file
2589 res = (1LL << 32) - 1;
2592 /* Sanity check against vm- & vfs- imposed limits */
2593 if (res > upper_limit)
2600 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2601 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2602 * We need to be 1 filesystem block less than the 2^48 sector limit.
2604 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2606 loff_t res = EXT4_NDIR_BLOCKS;
2609 /* This is calculated to be the largest file size for a dense, block
2610 * mapped file such that the file's total number of 512-byte sectors,
2611 * including data and all indirect blocks, does not exceed (2^48 - 1).
2613 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2614 * number of 512-byte sectors of the file.
2617 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2619 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2620 * the inode i_block field represents total file blocks in
2621 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2623 upper_limit = (1LL << 32) - 1;
2625 /* total blocks in file system block size */
2626 upper_limit >>= (bits - 9);
2630 * We use 48 bit ext4_inode i_blocks
2631 * With EXT4_HUGE_FILE_FL set the i_blocks
2632 * represent total number of blocks in
2633 * file system block size
2635 upper_limit = (1LL << 48) - 1;
2639 /* indirect blocks */
2641 /* double indirect blocks */
2642 meta_blocks += 1 + (1LL << (bits-2));
2643 /* tripple indirect blocks */
2644 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2646 upper_limit -= meta_blocks;
2647 upper_limit <<= bits;
2649 res += 1LL << (bits-2);
2650 res += 1LL << (2*(bits-2));
2651 res += 1LL << (3*(bits-2));
2653 if (res > upper_limit)
2656 if (res > MAX_LFS_FILESIZE)
2657 res = MAX_LFS_FILESIZE;
2662 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2663 ext4_fsblk_t logical_sb_block, int nr)
2665 struct ext4_sb_info *sbi = EXT4_SB(sb);
2666 ext4_group_t bg, first_meta_bg;
2669 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2671 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
2672 return logical_sb_block + nr + 1;
2673 bg = sbi->s_desc_per_block * nr;
2674 if (ext4_bg_has_super(sb, bg))
2678 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2679 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
2680 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2683 if (sb->s_blocksize == 1024 && nr == 0 &&
2684 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0)
2687 return (has_super + ext4_group_first_block_no(sb, bg));
2691 * ext4_get_stripe_size: Get the stripe size.
2692 * @sbi: In memory super block info
2694 * If we have specified it via mount option, then
2695 * use the mount option value. If the value specified at mount time is
2696 * greater than the blocks per group use the super block value.
2697 * If the super block value is greater than blocks per group return 0.
2698 * Allocator needs it be less than blocks per group.
2701 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2703 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2704 unsigned long stripe_width =
2705 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2708 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2709 ret = sbi->s_stripe;
2710 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
2712 else if (stride && stride <= sbi->s_blocks_per_group)
2718 * If the stripe width is 1, this makes no sense and
2719 * we set it to 0 to turn off stripe handling code.
2728 * Check whether this filesystem can be mounted based on
2729 * the features present and the RDONLY/RDWR mount requested.
2730 * Returns 1 if this filesystem can be mounted as requested,
2731 * 0 if it cannot be.
2733 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2735 if (ext4_has_unknown_ext4_incompat_features(sb)) {
2736 ext4_msg(sb, KERN_ERR,
2737 "Couldn't mount because of "
2738 "unsupported optional features (%x)",
2739 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2740 ~EXT4_FEATURE_INCOMPAT_SUPP));
2747 if (ext4_has_feature_readonly(sb)) {
2748 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2749 sb->s_flags |= MS_RDONLY;
2753 /* Check that feature set is OK for a read-write mount */
2754 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
2755 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2756 "unsupported optional features (%x)",
2757 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2758 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2762 * Large file size enabled file system can only be mounted
2763 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2765 if (ext4_has_feature_huge_file(sb)) {
2766 if (sizeof(blkcnt_t) < sizeof(u64)) {
2767 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2768 "cannot be mounted RDWR without "
2773 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
2774 ext4_msg(sb, KERN_ERR,
2775 "Can't support bigalloc feature without "
2776 "extents feature\n");
2780 #ifndef CONFIG_QUOTA
2781 if (ext4_has_feature_quota(sb) && !readonly) {
2782 ext4_msg(sb, KERN_ERR,
2783 "Filesystem with quota feature cannot be mounted RDWR "
2784 "without CONFIG_QUOTA");
2787 if (ext4_has_feature_project(sb) && !readonly) {
2788 ext4_msg(sb, KERN_ERR,
2789 "Filesystem with project quota feature cannot be mounted RDWR "
2790 "without CONFIG_QUOTA");
2793 #endif /* CONFIG_QUOTA */
2798 * This function is called once a day if we have errors logged
2799 * on the file system
2801 static void print_daily_error_info(unsigned long arg)
2803 struct super_block *sb = (struct super_block *) arg;
2804 struct ext4_sb_info *sbi;
2805 struct ext4_super_block *es;
2810 if (es->s_error_count)
2811 /* fsck newer than v1.41.13 is needed to clean this condition. */
2812 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2813 le32_to_cpu(es->s_error_count));
2814 if (es->s_first_error_time) {
2815 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d",
2816 sb->s_id, le32_to_cpu(es->s_first_error_time),
2817 (int) sizeof(es->s_first_error_func),
2818 es->s_first_error_func,
2819 le32_to_cpu(es->s_first_error_line));
2820 if (es->s_first_error_ino)
2821 printk(KERN_CONT ": inode %u",
2822 le32_to_cpu(es->s_first_error_ino));
2823 if (es->s_first_error_block)
2824 printk(KERN_CONT ": block %llu", (unsigned long long)
2825 le64_to_cpu(es->s_first_error_block));
2826 printk(KERN_CONT "\n");
2828 if (es->s_last_error_time) {
2829 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d",
2830 sb->s_id, le32_to_cpu(es->s_last_error_time),
2831 (int) sizeof(es->s_last_error_func),
2832 es->s_last_error_func,
2833 le32_to_cpu(es->s_last_error_line));
2834 if (es->s_last_error_ino)
2835 printk(KERN_CONT ": inode %u",
2836 le32_to_cpu(es->s_last_error_ino));
2837 if (es->s_last_error_block)
2838 printk(KERN_CONT ": block %llu", (unsigned long long)
2839 le64_to_cpu(es->s_last_error_block));
2840 printk(KERN_CONT "\n");
2842 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2845 /* Find next suitable group and run ext4_init_inode_table */
2846 static int ext4_run_li_request(struct ext4_li_request *elr)
2848 struct ext4_group_desc *gdp = NULL;
2849 ext4_group_t group, ngroups;
2850 struct super_block *sb;
2851 unsigned long timeout = 0;
2855 ngroups = EXT4_SB(sb)->s_groups_count;
2857 for (group = elr->lr_next_group; group < ngroups; group++) {
2858 gdp = ext4_get_group_desc(sb, group, NULL);
2864 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2868 if (group >= ngroups)
2873 ret = ext4_init_inode_table(sb, group,
2874 elr->lr_timeout ? 0 : 1);
2875 if (elr->lr_timeout == 0) {
2876 timeout = (jiffies - timeout) *
2877 elr->lr_sbi->s_li_wait_mult;
2878 elr->lr_timeout = timeout;
2880 elr->lr_next_sched = jiffies + elr->lr_timeout;
2881 elr->lr_next_group = group + 1;
2887 * Remove lr_request from the list_request and free the
2888 * request structure. Should be called with li_list_mtx held
2890 static void ext4_remove_li_request(struct ext4_li_request *elr)
2892 struct ext4_sb_info *sbi;
2899 list_del(&elr->lr_request);
2900 sbi->s_li_request = NULL;
2904 static void ext4_unregister_li_request(struct super_block *sb)
2906 mutex_lock(&ext4_li_mtx);
2907 if (!ext4_li_info) {
2908 mutex_unlock(&ext4_li_mtx);
2912 mutex_lock(&ext4_li_info->li_list_mtx);
2913 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2914 mutex_unlock(&ext4_li_info->li_list_mtx);
2915 mutex_unlock(&ext4_li_mtx);
2918 static struct task_struct *ext4_lazyinit_task;
2921 * This is the function where ext4lazyinit thread lives. It walks
2922 * through the request list searching for next scheduled filesystem.
2923 * When such a fs is found, run the lazy initialization request
2924 * (ext4_rn_li_request) and keep track of the time spend in this
2925 * function. Based on that time we compute next schedule time of
2926 * the request. When walking through the list is complete, compute
2927 * next waking time and put itself into sleep.
2929 static int ext4_lazyinit_thread(void *arg)
2931 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2932 struct list_head *pos, *n;
2933 struct ext4_li_request *elr;
2934 unsigned long next_wakeup, cur;
2936 BUG_ON(NULL == eli);
2940 next_wakeup = MAX_JIFFY_OFFSET;
2942 mutex_lock(&eli->li_list_mtx);
2943 if (list_empty(&eli->li_request_list)) {
2944 mutex_unlock(&eli->li_list_mtx);
2947 list_for_each_safe(pos, n, &eli->li_request_list) {
2950 elr = list_entry(pos, struct ext4_li_request,
2953 if (time_before(jiffies, elr->lr_next_sched)) {
2954 if (time_before(elr->lr_next_sched, next_wakeup))
2955 next_wakeup = elr->lr_next_sched;
2958 if (down_read_trylock(&elr->lr_super->s_umount)) {
2959 if (sb_start_write_trylock(elr->lr_super)) {
2962 * We hold sb->s_umount, sb can not
2963 * be removed from the list, it is
2964 * now safe to drop li_list_mtx
2966 mutex_unlock(&eli->li_list_mtx);
2967 err = ext4_run_li_request(elr);
2968 sb_end_write(elr->lr_super);
2969 mutex_lock(&eli->li_list_mtx);
2972 up_read((&elr->lr_super->s_umount));
2974 /* error, remove the lazy_init job */
2976 ext4_remove_li_request(elr);
2980 elr->lr_next_sched = jiffies +
2982 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
2984 if (time_before(elr->lr_next_sched, next_wakeup))
2985 next_wakeup = elr->lr_next_sched;
2987 mutex_unlock(&eli->li_list_mtx);
2992 if ((time_after_eq(cur, next_wakeup)) ||
2993 (MAX_JIFFY_OFFSET == next_wakeup)) {
2998 schedule_timeout_interruptible(next_wakeup - cur);
3000 if (kthread_should_stop()) {
3001 ext4_clear_request_list();
3008 * It looks like the request list is empty, but we need
3009 * to check it under the li_list_mtx lock, to prevent any
3010 * additions into it, and of course we should lock ext4_li_mtx
3011 * to atomically free the list and ext4_li_info, because at
3012 * this point another ext4 filesystem could be registering
3015 mutex_lock(&ext4_li_mtx);
3016 mutex_lock(&eli->li_list_mtx);
3017 if (!list_empty(&eli->li_request_list)) {
3018 mutex_unlock(&eli->li_list_mtx);
3019 mutex_unlock(&ext4_li_mtx);
3022 mutex_unlock(&eli->li_list_mtx);
3023 kfree(ext4_li_info);
3024 ext4_li_info = NULL;
3025 mutex_unlock(&ext4_li_mtx);
3030 static void ext4_clear_request_list(void)
3032 struct list_head *pos, *n;
3033 struct ext4_li_request *elr;
3035 mutex_lock(&ext4_li_info->li_list_mtx);
3036 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3037 elr = list_entry(pos, struct ext4_li_request,
3039 ext4_remove_li_request(elr);
3041 mutex_unlock(&ext4_li_info->li_list_mtx);
3044 static int ext4_run_lazyinit_thread(void)
3046 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3047 ext4_li_info, "ext4lazyinit");
3048 if (IS_ERR(ext4_lazyinit_task)) {
3049 int err = PTR_ERR(ext4_lazyinit_task);
3050 ext4_clear_request_list();
3051 kfree(ext4_li_info);
3052 ext4_li_info = NULL;
3053 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3054 "initialization thread\n",
3058 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3063 * Check whether it make sense to run itable init. thread or not.
3064 * If there is at least one uninitialized inode table, return
3065 * corresponding group number, else the loop goes through all
3066 * groups and return total number of groups.
3068 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3070 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3071 struct ext4_group_desc *gdp = NULL;
3073 for (group = 0; group < ngroups; group++) {
3074 gdp = ext4_get_group_desc(sb, group, NULL);
3078 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3085 static int ext4_li_info_new(void)
3087 struct ext4_lazy_init *eli = NULL;
3089 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3093 INIT_LIST_HEAD(&eli->li_request_list);
3094 mutex_init(&eli->li_list_mtx);
3096 eli->li_state |= EXT4_LAZYINIT_QUIT;
3103 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3106 struct ext4_sb_info *sbi = EXT4_SB(sb);
3107 struct ext4_li_request *elr;
3109 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3115 elr->lr_next_group = start;
3118 * Randomize first schedule time of the request to
3119 * spread the inode table initialization requests
3122 elr->lr_next_sched = jiffies + (prandom_u32() %
3123 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3127 int ext4_register_li_request(struct super_block *sb,
3128 ext4_group_t first_not_zeroed)
3130 struct ext4_sb_info *sbi = EXT4_SB(sb);
3131 struct ext4_li_request *elr = NULL;
3132 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3135 mutex_lock(&ext4_li_mtx);
3136 if (sbi->s_li_request != NULL) {
3138 * Reset timeout so it can be computed again, because
3139 * s_li_wait_mult might have changed.
3141 sbi->s_li_request->lr_timeout = 0;
3145 if (first_not_zeroed == ngroups || sb_rdonly(sb) ||
3146 !test_opt(sb, INIT_INODE_TABLE))
3149 elr = ext4_li_request_new(sb, first_not_zeroed);
3155 if (NULL == ext4_li_info) {
3156 ret = ext4_li_info_new();
3161 mutex_lock(&ext4_li_info->li_list_mtx);
3162 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3163 mutex_unlock(&ext4_li_info->li_list_mtx);
3165 sbi->s_li_request = elr;
3167 * set elr to NULL here since it has been inserted to
3168 * the request_list and the removal and free of it is
3169 * handled by ext4_clear_request_list from now on.
3173 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3174 ret = ext4_run_lazyinit_thread();
3179 mutex_unlock(&ext4_li_mtx);
3186 * We do not need to lock anything since this is called on
3189 static void ext4_destroy_lazyinit_thread(void)
3192 * If thread exited earlier
3193 * there's nothing to be done.
3195 if (!ext4_li_info || !ext4_lazyinit_task)
3198 kthread_stop(ext4_lazyinit_task);
3201 static int set_journal_csum_feature_set(struct super_block *sb)
3204 int compat, incompat;
3205 struct ext4_sb_info *sbi = EXT4_SB(sb);
3207 if (ext4_has_metadata_csum(sb)) {
3208 /* journal checksum v3 */
3210 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3212 /* journal checksum v1 */
3213 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3217 jbd2_journal_clear_features(sbi->s_journal,
3218 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3219 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3220 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3221 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3222 ret = jbd2_journal_set_features(sbi->s_journal,
3224 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3226 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3227 ret = jbd2_journal_set_features(sbi->s_journal,
3230 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3231 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3233 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3234 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3241 * Note: calculating the overhead so we can be compatible with
3242 * historical BSD practice is quite difficult in the face of
3243 * clusters/bigalloc. This is because multiple metadata blocks from
3244 * different block group can end up in the same allocation cluster.
3245 * Calculating the exact overhead in the face of clustered allocation
3246 * requires either O(all block bitmaps) in memory or O(number of block
3247 * groups**2) in time. We will still calculate the superblock for
3248 * older file systems --- and if we come across with a bigalloc file
3249 * system with zero in s_overhead_clusters the estimate will be close to
3250 * correct especially for very large cluster sizes --- but for newer
3251 * file systems, it's better to calculate this figure once at mkfs
3252 * time, and store it in the superblock. If the superblock value is
3253 * present (even for non-bigalloc file systems), we will use it.
3255 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3258 struct ext4_sb_info *sbi = EXT4_SB(sb);
3259 struct ext4_group_desc *gdp;
3260 ext4_fsblk_t first_block, last_block, b;
3261 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3262 int s, j, count = 0;
3264 if (!ext4_has_feature_bigalloc(sb))
3265 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3266 sbi->s_itb_per_group + 2);
3268 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3269 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3270 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3271 for (i = 0; i < ngroups; i++) {
3272 gdp = ext4_get_group_desc(sb, i, NULL);
3273 b = ext4_block_bitmap(sb, gdp);
3274 if (b >= first_block && b <= last_block) {
3275 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3278 b = ext4_inode_bitmap(sb, gdp);
3279 if (b >= first_block && b <= last_block) {
3280 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3283 b = ext4_inode_table(sb, gdp);
3284 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3285 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3286 int c = EXT4_B2C(sbi, b - first_block);
3287 ext4_set_bit(c, buf);
3293 if (ext4_bg_has_super(sb, grp)) {
3294 ext4_set_bit(s++, buf);
3297 j = ext4_bg_num_gdb(sb, grp);
3298 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3299 ext4_error(sb, "Invalid number of block group "
3300 "descriptor blocks: %d", j);
3301 j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3305 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3309 return EXT4_CLUSTERS_PER_GROUP(sb) -
3310 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3314 * Compute the overhead and stash it in sbi->s_overhead
3316 int ext4_calculate_overhead(struct super_block *sb)
3318 struct ext4_sb_info *sbi = EXT4_SB(sb);
3319 struct ext4_super_block *es = sbi->s_es;
3320 struct inode *j_inode;
3321 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3322 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3323 ext4_fsblk_t overhead = 0;
3324 char *buf = (char *) get_zeroed_page(GFP_NOFS);
3330 * Compute the overhead (FS structures). This is constant
3331 * for a given filesystem unless the number of block groups
3332 * changes so we cache the previous value until it does.
3336 * All of the blocks before first_data_block are overhead
3338 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3341 * Add the overhead found in each block group
3343 for (i = 0; i < ngroups; i++) {
3346 blks = count_overhead(sb, i, buf);
3349 memset(buf, 0, PAGE_SIZE);
3354 * Add the internal journal blocks whether the journal has been
3357 if (sbi->s_journal && !sbi->journal_bdev)
3358 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3359 else if (ext4_has_feature_journal(sb) && !sbi->s_journal) {
3360 j_inode = ext4_get_journal_inode(sb, j_inum);
3362 j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3363 overhead += EXT4_NUM_B2C(sbi, j_blocks);
3366 ext4_msg(sb, KERN_ERR, "can't get journal size");
3369 sbi->s_overhead = overhead;
3371 free_page((unsigned long) buf);
3375 static void ext4_set_resv_clusters(struct super_block *sb)
3377 ext4_fsblk_t resv_clusters;
3378 struct ext4_sb_info *sbi = EXT4_SB(sb);
3381 * There's no need to reserve anything when we aren't using extents.
3382 * The space estimates are exact, there are no unwritten extents,
3383 * hole punching doesn't need new metadata... This is needed especially
3384 * to keep ext2/3 backward compatibility.
3386 if (!ext4_has_feature_extents(sb))
3389 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3390 * This should cover the situations where we can not afford to run
3391 * out of space like for example punch hole, or converting
3392 * unwritten extents in delalloc path. In most cases such
3393 * allocation would require 1, or 2 blocks, higher numbers are
3396 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3397 sbi->s_cluster_bits);
3399 do_div(resv_clusters, 50);
3400 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3402 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3405 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3407 struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev);
3408 char *orig_data = kstrdup(data, GFP_KERNEL);
3409 struct buffer_head *bh;
3410 struct ext4_super_block *es = NULL;
3411 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3413 ext4_fsblk_t sb_block = get_sb_block(&data);
3414 ext4_fsblk_t logical_sb_block;
3415 unsigned long offset = 0;
3416 unsigned long journal_devnum = 0;
3417 unsigned long def_mount_opts;
3421 int blocksize, clustersize;
3422 unsigned int db_count;
3424 int needs_recovery, has_huge_files, has_bigalloc;
3427 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3428 ext4_group_t first_not_zeroed;
3430 if ((data && !orig_data) || !sbi)
3433 sbi->s_daxdev = dax_dev;
3434 sbi->s_blockgroup_lock =
3435 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3436 if (!sbi->s_blockgroup_lock)
3439 sb->s_fs_info = sbi;
3441 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3442 sbi->s_sb_block = sb_block;
3443 if (sb->s_bdev->bd_part)
3444 sbi->s_sectors_written_start =
3445 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3447 /* Cleanup superblock name */
3448 strreplace(sb->s_id, '/', '!');
3450 /* -EINVAL is default */
3452 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3454 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3459 * The ext4 superblock will not be buffer aligned for other than 1kB
3460 * block sizes. We need to calculate the offset from buffer start.
3462 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3463 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3464 offset = do_div(logical_sb_block, blocksize);
3466 logical_sb_block = sb_block;
3469 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3470 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3474 * Note: s_es must be initialized as soon as possible because
3475 * some ext4 macro-instructions depend on its value
3477 es = (struct ext4_super_block *) (bh->b_data + offset);
3479 sb->s_magic = le16_to_cpu(es->s_magic);
3480 if (sb->s_magic != EXT4_SUPER_MAGIC)
3482 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3484 /* Warn if metadata_csum and gdt_csum are both set. */
3485 if (ext4_has_feature_metadata_csum(sb) &&
3486 ext4_has_feature_gdt_csum(sb))
3487 ext4_warning(sb, "metadata_csum and uninit_bg are "
3488 "redundant flags; please run fsck.");
3490 /* Check for a known checksum algorithm */
3491 if (!ext4_verify_csum_type(sb, es)) {
3492 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3493 "unknown checksum algorithm.");
3498 /* Load the checksum driver */
3499 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3500 if (IS_ERR(sbi->s_chksum_driver)) {
3501 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3502 ret = PTR_ERR(sbi->s_chksum_driver);
3503 sbi->s_chksum_driver = NULL;
3507 /* Check superblock checksum */
3508 if (!ext4_superblock_csum_verify(sb, es)) {
3509 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3510 "invalid superblock checksum. Run e2fsck?");
3516 /* Precompute checksum seed for all metadata */
3517 if (ext4_has_feature_csum_seed(sb))
3518 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3519 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
3520 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3521 sizeof(es->s_uuid));
3523 /* Set defaults before we parse the mount options */
3524 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3525 set_opt(sb, INIT_INODE_TABLE);
3526 if (def_mount_opts & EXT4_DEFM_DEBUG)
3528 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3530 if (def_mount_opts & EXT4_DEFM_UID16)
3531 set_opt(sb, NO_UID32);
3532 /* xattr user namespace & acls are now defaulted on */
3533 set_opt(sb, XATTR_USER);
3534 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3535 set_opt(sb, POSIX_ACL);
3537 /* don't forget to enable journal_csum when metadata_csum is enabled. */
3538 if (ext4_has_metadata_csum(sb))
3539 set_opt(sb, JOURNAL_CHECKSUM);
3541 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3542 set_opt(sb, JOURNAL_DATA);
3543 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3544 set_opt(sb, ORDERED_DATA);
3545 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3546 set_opt(sb, WRITEBACK_DATA);
3548 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3549 set_opt(sb, ERRORS_PANIC);
3550 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3551 set_opt(sb, ERRORS_CONT);
3553 set_opt(sb, ERRORS_RO);
3554 /* block_validity enabled by default; disable with noblock_validity */
3555 set_opt(sb, BLOCK_VALIDITY);
3556 if (def_mount_opts & EXT4_DEFM_DISCARD)
3557 set_opt(sb, DISCARD);
3559 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3560 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3561 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3562 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3563 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3565 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3566 set_opt(sb, BARRIER);
3569 * enable delayed allocation by default
3570 * Use -o nodelalloc to turn it off
3572 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3573 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3574 set_opt(sb, DELALLOC);
3577 * set default s_li_wait_mult for lazyinit, for the case there is
3578 * no mount option specified.
3580 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3582 if (sbi->s_es->s_mount_opts[0]) {
3583 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
3584 sizeof(sbi->s_es->s_mount_opts),
3588 if (!parse_options(s_mount_opts, sb, &journal_devnum,
3589 &journal_ioprio, 0)) {
3590 ext4_msg(sb, KERN_WARNING,
3591 "failed to parse options in superblock: %s",
3594 kfree(s_mount_opts);
3596 sbi->s_def_mount_opt = sbi->s_mount_opt;
3597 if (!parse_options((char *) data, sb, &journal_devnum,
3598 &journal_ioprio, 0))
3601 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3602 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3603 "with data=journal disables delayed "
3604 "allocation and O_DIRECT support!\n");
3605 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3606 ext4_msg(sb, KERN_ERR, "can't mount with "
3607 "both data=journal and delalloc");
3610 if (test_opt(sb, DIOREAD_NOLOCK)) {
3611 ext4_msg(sb, KERN_ERR, "can't mount with "
3612 "both data=journal and dioread_nolock");
3615 if (test_opt(sb, DAX)) {
3616 ext4_msg(sb, KERN_ERR, "can't mount with "
3617 "both data=journal and dax");
3620 if (ext4_has_feature_encrypt(sb)) {
3621 ext4_msg(sb, KERN_WARNING,
3622 "encrypted files will use data=ordered "
3623 "instead of data journaling mode");
3625 if (test_opt(sb, DELALLOC))
3626 clear_opt(sb, DELALLOC);
3628 sb->s_iflags |= SB_I_CGROUPWB;
3631 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3632 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3634 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3635 (ext4_has_compat_features(sb) ||
3636 ext4_has_ro_compat_features(sb) ||
3637 ext4_has_incompat_features(sb)))
3638 ext4_msg(sb, KERN_WARNING,
3639 "feature flags set on rev 0 fs, "
3640 "running e2fsck is recommended");
3642 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3643 set_opt2(sb, HURD_COMPAT);
3644 if (ext4_has_feature_64bit(sb)) {
3645 ext4_msg(sb, KERN_ERR,
3646 "The Hurd can't support 64-bit file systems");
3651 * ea_inode feature uses l_i_version field which is not
3652 * available in HURD_COMPAT mode.
3654 if (ext4_has_feature_ea_inode(sb)) {
3655 ext4_msg(sb, KERN_ERR,
3656 "ea_inode feature is not supported for Hurd");
3661 if (IS_EXT2_SB(sb)) {
3662 if (ext2_feature_set_ok(sb))
3663 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3664 "using the ext4 subsystem");
3666 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3667 "to feature incompatibilities");
3672 if (IS_EXT3_SB(sb)) {
3673 if (ext3_feature_set_ok(sb))
3674 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3675 "using the ext4 subsystem");
3677 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3678 "to feature incompatibilities");
3684 * Check feature flags regardless of the revision level, since we
3685 * previously didn't change the revision level when setting the flags,
3686 * so there is a chance incompat flags are set on a rev 0 filesystem.
3688 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
3691 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3692 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3693 blocksize > EXT4_MAX_BLOCK_SIZE) {
3694 ext4_msg(sb, KERN_ERR,
3695 "Unsupported filesystem blocksize %d (%d log_block_size)",
3696 blocksize, le32_to_cpu(es->s_log_block_size));
3699 if (le32_to_cpu(es->s_log_block_size) >
3700 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3701 ext4_msg(sb, KERN_ERR,
3702 "Invalid log block size: %u",
3703 le32_to_cpu(es->s_log_block_size));
3707 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
3708 ext4_msg(sb, KERN_ERR,
3709 "Number of reserved GDT blocks insanely large: %d",
3710 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
3714 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
3715 if (ext4_has_feature_inline_data(sb)) {
3716 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
3717 " that may contain inline data");
3720 err = bdev_dax_supported(sb, blocksize);
3725 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
3726 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
3727 es->s_encryption_level);
3731 if (sb->s_blocksize != blocksize) {
3732 /* Validate the filesystem blocksize */
3733 if (!sb_set_blocksize(sb, blocksize)) {
3734 ext4_msg(sb, KERN_ERR, "bad block size %d",
3740 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3741 offset = do_div(logical_sb_block, blocksize);
3742 bh = sb_bread_unmovable(sb, logical_sb_block);
3744 ext4_msg(sb, KERN_ERR,
3745 "Can't read superblock on 2nd try");
3748 es = (struct ext4_super_block *)(bh->b_data + offset);
3750 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3751 ext4_msg(sb, KERN_ERR,
3752 "Magic mismatch, very weird!");
3757 has_huge_files = ext4_has_feature_huge_file(sb);
3758 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3760 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3762 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3763 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3764 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3766 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3767 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3768 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3769 (!is_power_of_2(sbi->s_inode_size)) ||
3770 (sbi->s_inode_size > blocksize)) {
3771 ext4_msg(sb, KERN_ERR,
3772 "unsupported inode size: %d",
3776 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3777 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3780 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3781 if (ext4_has_feature_64bit(sb)) {
3782 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3783 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3784 !is_power_of_2(sbi->s_desc_size)) {
3785 ext4_msg(sb, KERN_ERR,
3786 "unsupported descriptor size %lu",
3791 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3793 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3794 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3796 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3797 if (sbi->s_inodes_per_block == 0)
3799 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
3800 sbi->s_inodes_per_group > blocksize * 8) {
3801 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
3802 sbi->s_blocks_per_group);
3805 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3806 sbi->s_inodes_per_block;
3807 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3809 sbi->s_mount_state = le16_to_cpu(es->s_state);
3810 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3811 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3813 for (i = 0; i < 4; i++)
3814 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3815 sbi->s_def_hash_version = es->s_def_hash_version;
3816 if (ext4_has_feature_dir_index(sb)) {
3817 i = le32_to_cpu(es->s_flags);
3818 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3819 sbi->s_hash_unsigned = 3;
3820 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3821 #ifdef __CHAR_UNSIGNED__
3824 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3825 sbi->s_hash_unsigned = 3;
3829 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3834 /* Handle clustersize */
3835 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3836 has_bigalloc = ext4_has_feature_bigalloc(sb);
3838 if (clustersize < blocksize) {
3839 ext4_msg(sb, KERN_ERR,
3840 "cluster size (%d) smaller than "
3841 "block size (%d)", clustersize, blocksize);
3844 if (le32_to_cpu(es->s_log_cluster_size) >
3845 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3846 ext4_msg(sb, KERN_ERR,
3847 "Invalid log cluster size: %u",
3848 le32_to_cpu(es->s_log_cluster_size));
3851 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3852 le32_to_cpu(es->s_log_block_size);
3853 sbi->s_clusters_per_group =
3854 le32_to_cpu(es->s_clusters_per_group);
3855 if (sbi->s_clusters_per_group > blocksize * 8) {
3856 ext4_msg(sb, KERN_ERR,
3857 "#clusters per group too big: %lu",
3858 sbi->s_clusters_per_group);
3861 if (sbi->s_blocks_per_group !=
3862 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3863 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3864 "clusters per group (%lu) inconsistent",
3865 sbi->s_blocks_per_group,
3866 sbi->s_clusters_per_group);
3870 if (clustersize != blocksize) {
3871 ext4_warning(sb, "fragment/cluster size (%d) != "
3872 "block size (%d)", clustersize,
3874 clustersize = blocksize;
3876 if (sbi->s_blocks_per_group > blocksize * 8) {
3877 ext4_msg(sb, KERN_ERR,
3878 "#blocks per group too big: %lu",
3879 sbi->s_blocks_per_group);
3882 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3883 sbi->s_cluster_bits = 0;
3885 sbi->s_cluster_ratio = clustersize / blocksize;
3887 /* Do we have standard group size of clustersize * 8 blocks ? */
3888 if (sbi->s_blocks_per_group == clustersize << 3)
3889 set_opt2(sb, STD_GROUP_SIZE);
3892 * Test whether we have more sectors than will fit in sector_t,
3893 * and whether the max offset is addressable by the page cache.
3895 err = generic_check_addressable(sb->s_blocksize_bits,
3896 ext4_blocks_count(es));
3898 ext4_msg(sb, KERN_ERR, "filesystem"
3899 " too large to mount safely on this system");
3900 if (sizeof(sector_t) < 8)
3901 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3905 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3908 /* check blocks count against device size */
3909 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3910 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3911 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3912 "exceeds size of device (%llu blocks)",
3913 ext4_blocks_count(es), blocks_count);
3918 * It makes no sense for the first data block to be beyond the end
3919 * of the filesystem.
3921 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3922 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3923 "block %u is beyond end of filesystem (%llu)",
3924 le32_to_cpu(es->s_first_data_block),
3925 ext4_blocks_count(es));
3928 blocks_count = (ext4_blocks_count(es) -
3929 le32_to_cpu(es->s_first_data_block) +
3930 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3931 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3932 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3933 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3934 "(block count %llu, first data block %u, "
3935 "blocks per group %lu)", sbi->s_groups_count,
3936 ext4_blocks_count(es),
3937 le32_to_cpu(es->s_first_data_block),
3938 EXT4_BLOCKS_PER_GROUP(sb));
3941 sbi->s_groups_count = blocks_count;
3942 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3943 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3944 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3945 EXT4_DESC_PER_BLOCK(sb);
3946 if (ext4_has_feature_meta_bg(sb)) {
3947 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
3948 ext4_msg(sb, KERN_WARNING,
3949 "first meta block group too large: %u "
3950 "(group descriptor block count %u)",
3951 le32_to_cpu(es->s_first_meta_bg), db_count);
3955 sbi->s_group_desc = kvmalloc(db_count *
3956 sizeof(struct buffer_head *),
3958 if (sbi->s_group_desc == NULL) {
3959 ext4_msg(sb, KERN_ERR, "not enough memory");
3964 bgl_lock_init(sbi->s_blockgroup_lock);
3966 /* Pre-read the descriptors into the buffer cache */
3967 for (i = 0; i < db_count; i++) {
3968 block = descriptor_loc(sb, logical_sb_block, i);
3969 sb_breadahead(sb, block);
3972 for (i = 0; i < db_count; i++) {
3973 block = descriptor_loc(sb, logical_sb_block, i);
3974 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
3975 if (!sbi->s_group_desc[i]) {
3976 ext4_msg(sb, KERN_ERR,
3977 "can't read group descriptor %d", i);
3982 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
3983 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3984 ret = -EFSCORRUPTED;
3988 sbi->s_gdb_count = db_count;
3989 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3990 spin_lock_init(&sbi->s_next_gen_lock);
3992 setup_timer(&sbi->s_err_report, print_daily_error_info,
3993 (unsigned long) sb);
3995 /* Register extent status tree shrinker */
3996 if (ext4_es_register_shrinker(sbi))
3999 sbi->s_stripe = ext4_get_stripe_size(sbi);
4000 sbi->s_extent_max_zeroout_kb = 32;
4003 * set up enough so that it can read an inode
4005 sb->s_op = &ext4_sops;
4006 sb->s_export_op = &ext4_export_ops;
4007 sb->s_xattr = ext4_xattr_handlers;
4008 sb->s_cop = &ext4_cryptops;
4010 sb->dq_op = &ext4_quota_operations;
4011 if (ext4_has_feature_quota(sb))
4012 sb->s_qcop = &dquot_quotactl_sysfile_ops;
4014 sb->s_qcop = &ext4_qctl_operations;
4015 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4017 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4019 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4020 mutex_init(&sbi->s_orphan_lock);
4024 needs_recovery = (es->s_last_orphan != 0 ||
4025 ext4_has_feature_journal_needs_recovery(sb));
4027 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb))
4028 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
4029 goto failed_mount3a;
4032 * The first inode we look at is the journal inode. Don't try
4033 * root first: it may be modified in the journal!
4035 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4036 err = ext4_load_journal(sb, es, journal_devnum);
4038 goto failed_mount3a;
4039 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
4040 ext4_has_feature_journal_needs_recovery(sb)) {
4041 ext4_msg(sb, KERN_ERR, "required journal recovery "
4042 "suppressed and not mounted read-only");
4043 goto failed_mount_wq;
4045 /* Nojournal mode, all journal mount options are illegal */
4046 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4047 ext4_msg(sb, KERN_ERR, "can't mount with "
4048 "journal_checksum, fs mounted w/o journal");
4049 goto failed_mount_wq;
4051 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4052 ext4_msg(sb, KERN_ERR, "can't mount with "
4053 "journal_async_commit, fs mounted w/o journal");
4054 goto failed_mount_wq;
4056 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4057 ext4_msg(sb, KERN_ERR, "can't mount with "
4058 "commit=%lu, fs mounted w/o journal",
4059 sbi->s_commit_interval / HZ);
4060 goto failed_mount_wq;
4062 if (EXT4_MOUNT_DATA_FLAGS &
4063 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4064 ext4_msg(sb, KERN_ERR, "can't mount with "
4065 "data=, fs mounted w/o journal");
4066 goto failed_mount_wq;
4068 sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM;
4069 clear_opt(sb, JOURNAL_CHECKSUM);
4070 clear_opt(sb, DATA_FLAGS);
4071 sbi->s_journal = NULL;
4076 if (ext4_has_feature_64bit(sb) &&
4077 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4078 JBD2_FEATURE_INCOMPAT_64BIT)) {
4079 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4080 goto failed_mount_wq;
4083 if (!set_journal_csum_feature_set(sb)) {
4084 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4086 goto failed_mount_wq;
4089 /* We have now updated the journal if required, so we can
4090 * validate the data journaling mode. */
4091 switch (test_opt(sb, DATA_FLAGS)) {
4093 /* No mode set, assume a default based on the journal
4094 * capabilities: ORDERED_DATA if the journal can
4095 * cope, else JOURNAL_DATA
4097 if (jbd2_journal_check_available_features
4098 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
4099 set_opt(sb, ORDERED_DATA);
4101 set_opt(sb, JOURNAL_DATA);
4104 case EXT4_MOUNT_ORDERED_DATA:
4105 case EXT4_MOUNT_WRITEBACK_DATA:
4106 if (!jbd2_journal_check_available_features
4107 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4108 ext4_msg(sb, KERN_ERR, "Journal does not support "
4109 "requested data journaling mode");
4110 goto failed_mount_wq;
4116 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4117 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4118 ext4_msg(sb, KERN_ERR, "can't mount with "
4119 "journal_async_commit in data=ordered mode");
4120 goto failed_mount_wq;
4123 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4125 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4128 if (!test_opt(sb, NO_MBCACHE)) {
4129 sbi->s_ea_block_cache = ext4_xattr_create_cache();
4130 if (!sbi->s_ea_block_cache) {
4131 ext4_msg(sb, KERN_ERR,
4132 "Failed to create ea_block_cache");
4133 goto failed_mount_wq;
4136 if (ext4_has_feature_ea_inode(sb)) {
4137 sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4138 if (!sbi->s_ea_inode_cache) {
4139 ext4_msg(sb, KERN_ERR,
4140 "Failed to create ea_inode_cache");
4141 goto failed_mount_wq;
4146 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) &&
4147 (blocksize != PAGE_SIZE)) {
4148 ext4_msg(sb, KERN_ERR,
4149 "Unsupported blocksize for fs encryption");
4150 goto failed_mount_wq;
4153 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) &&
4154 !ext4_has_feature_encrypt(sb)) {
4155 ext4_set_feature_encrypt(sb);
4156 ext4_commit_super(sb, 1);
4160 * Get the # of file system overhead blocks from the
4161 * superblock if present.
4163 if (es->s_overhead_clusters)
4164 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4166 err = ext4_calculate_overhead(sb);
4168 goto failed_mount_wq;
4172 * The maximum number of concurrent works can be high and
4173 * concurrency isn't really necessary. Limit it to 1.
4175 EXT4_SB(sb)->rsv_conversion_wq =
4176 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4177 if (!EXT4_SB(sb)->rsv_conversion_wq) {
4178 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4184 * The jbd2_journal_load will have done any necessary log recovery,
4185 * so we can safely mount the rest of the filesystem now.
4188 root = ext4_iget(sb, EXT4_ROOT_INO);
4190 ext4_msg(sb, KERN_ERR, "get root inode failed");
4191 ret = PTR_ERR(root);
4195 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4196 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4200 sb->s_root = d_make_root(root);
4202 ext4_msg(sb, KERN_ERR, "get root dentry failed");
4207 if (ext4_setup_super(sb, es, sb_rdonly(sb)))
4208 sb->s_flags |= MS_RDONLY;
4210 /* determine the minimum size of new large inodes, if present */
4211 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE &&
4212 sbi->s_want_extra_isize == 0) {
4213 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4214 EXT4_GOOD_OLD_INODE_SIZE;
4215 if (ext4_has_feature_extra_isize(sb)) {
4216 if (sbi->s_want_extra_isize <
4217 le16_to_cpu(es->s_want_extra_isize))
4218 sbi->s_want_extra_isize =
4219 le16_to_cpu(es->s_want_extra_isize);
4220 if (sbi->s_want_extra_isize <
4221 le16_to_cpu(es->s_min_extra_isize))
4222 sbi->s_want_extra_isize =
4223 le16_to_cpu(es->s_min_extra_isize);
4226 /* Check if enough inode space is available */
4227 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
4228 sbi->s_inode_size) {
4229 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4230 EXT4_GOOD_OLD_INODE_SIZE;
4231 ext4_msg(sb, KERN_INFO, "required extra inode space not"
4235 ext4_set_resv_clusters(sb);
4237 err = ext4_setup_system_zone(sb);
4239 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4241 goto failed_mount4a;
4245 err = ext4_mb_init(sb);
4247 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4252 block = ext4_count_free_clusters(sb);
4253 ext4_free_blocks_count_set(sbi->s_es,
4254 EXT4_C2B(sbi, block));
4255 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4258 unsigned long freei = ext4_count_free_inodes(sb);
4259 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4260 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4264 err = percpu_counter_init(&sbi->s_dirs_counter,
4265 ext4_count_dirs(sb), GFP_KERNEL);
4267 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4270 err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem);
4273 ext4_msg(sb, KERN_ERR, "insufficient memory");
4277 if (ext4_has_feature_flex_bg(sb))
4278 if (!ext4_fill_flex_info(sb)) {
4279 ext4_msg(sb, KERN_ERR,
4280 "unable to initialize "
4281 "flex_bg meta info!");
4285 err = ext4_register_li_request(sb, first_not_zeroed);
4289 err = ext4_register_sysfs(sb);
4294 /* Enable quota usage during mount. */
4295 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
4296 err = ext4_enable_quotas(sb);
4300 #endif /* CONFIG_QUOTA */
4302 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4303 ext4_orphan_cleanup(sb, es);
4304 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4305 if (needs_recovery) {
4306 ext4_msg(sb, KERN_INFO, "recovery complete");
4307 ext4_mark_recovery_complete(sb, es);
4309 if (EXT4_SB(sb)->s_journal) {
4310 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4311 descr = " journalled data mode";
4312 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4313 descr = " ordered data mode";
4315 descr = " writeback data mode";
4317 descr = "out journal";
4319 if (test_opt(sb, DISCARD)) {
4320 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4321 if (!blk_queue_discard(q))
4322 ext4_msg(sb, KERN_WARNING,
4323 "mounting with \"discard\" option, but "
4324 "the device does not support discard");
4327 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
4328 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4329 "Opts: %.*s%s%s", descr,
4330 (int) sizeof(sbi->s_es->s_mount_opts),
4331 sbi->s_es->s_mount_opts,
4332 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4334 if (es->s_error_count)
4335 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4337 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4338 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4339 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4340 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4347 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4352 ext4_unregister_sysfs(sb);
4355 ext4_unregister_li_request(sb);
4357 ext4_mb_release(sb);
4358 if (sbi->s_flex_groups)
4359 kvfree(sbi->s_flex_groups);
4360 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4361 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4362 percpu_counter_destroy(&sbi->s_dirs_counter);
4363 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4365 ext4_ext_release(sb);
4366 ext4_release_system_zone(sb);
4371 ext4_msg(sb, KERN_ERR, "mount failed");
4372 if (EXT4_SB(sb)->rsv_conversion_wq)
4373 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4375 if (sbi->s_ea_inode_cache) {
4376 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
4377 sbi->s_ea_inode_cache = NULL;
4379 if (sbi->s_ea_block_cache) {
4380 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
4381 sbi->s_ea_block_cache = NULL;
4383 if (sbi->s_journal) {
4384 jbd2_journal_destroy(sbi->s_journal);
4385 sbi->s_journal = NULL;
4388 ext4_es_unregister_shrinker(sbi);
4390 del_timer_sync(&sbi->s_err_report);
4392 kthread_stop(sbi->s_mmp_tsk);
4394 for (i = 0; i < db_count; i++)
4395 brelse(sbi->s_group_desc[i]);
4396 kvfree(sbi->s_group_desc);
4398 if (sbi->s_chksum_driver)
4399 crypto_free_shash(sbi->s_chksum_driver);
4401 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4402 kfree(sbi->s_qf_names[i]);
4404 ext4_blkdev_remove(sbi);
4407 sb->s_fs_info = NULL;
4408 kfree(sbi->s_blockgroup_lock);
4412 fs_put_dax(dax_dev);
4413 return err ? err : ret;
4417 * Setup any per-fs journal parameters now. We'll do this both on
4418 * initial mount, once the journal has been initialised but before we've
4419 * done any recovery; and again on any subsequent remount.
4421 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4423 struct ext4_sb_info *sbi = EXT4_SB(sb);
4425 journal->j_commit_interval = sbi->s_commit_interval;
4426 journal->j_min_batch_time = sbi->s_min_batch_time;
4427 journal->j_max_batch_time = sbi->s_max_batch_time;
4429 write_lock(&journal->j_state_lock);
4430 if (test_opt(sb, BARRIER))
4431 journal->j_flags |= JBD2_BARRIER;
4433 journal->j_flags &= ~JBD2_BARRIER;
4434 if (test_opt(sb, DATA_ERR_ABORT))
4435 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4437 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4438 write_unlock(&journal->j_state_lock);
4441 static struct inode *ext4_get_journal_inode(struct super_block *sb,
4442 unsigned int journal_inum)
4444 struct inode *journal_inode;
4447 * Test for the existence of a valid inode on disk. Bad things
4448 * happen if we iget() an unused inode, as the subsequent iput()
4449 * will try to delete it.
4451 journal_inode = ext4_iget(sb, journal_inum);
4452 if (IS_ERR(journal_inode)) {
4453 ext4_msg(sb, KERN_ERR, "no journal found");
4456 if (!journal_inode->i_nlink) {
4457 make_bad_inode(journal_inode);
4458 iput(journal_inode);
4459 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4463 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4464 journal_inode, journal_inode->i_size);
4465 if (!S_ISREG(journal_inode->i_mode)) {
4466 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4467 iput(journal_inode);
4470 return journal_inode;
4473 static journal_t *ext4_get_journal(struct super_block *sb,
4474 unsigned int journal_inum)
4476 struct inode *journal_inode;
4479 BUG_ON(!ext4_has_feature_journal(sb));
4481 journal_inode = ext4_get_journal_inode(sb, journal_inum);
4485 journal = jbd2_journal_init_inode(journal_inode);
4487 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4488 iput(journal_inode);
4491 journal->j_private = sb;
4492 ext4_init_journal_params(sb, journal);
4496 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4499 struct buffer_head *bh;
4503 int hblock, blocksize;
4504 ext4_fsblk_t sb_block;
4505 unsigned long offset;
4506 struct ext4_super_block *es;
4507 struct block_device *bdev;
4509 BUG_ON(!ext4_has_feature_journal(sb));
4511 bdev = ext4_blkdev_get(j_dev, sb);
4515 blocksize = sb->s_blocksize;
4516 hblock = bdev_logical_block_size(bdev);
4517 if (blocksize < hblock) {
4518 ext4_msg(sb, KERN_ERR,
4519 "blocksize too small for journal device");
4523 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4524 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4525 set_blocksize(bdev, blocksize);
4526 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4527 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4528 "external journal");
4532 es = (struct ext4_super_block *) (bh->b_data + offset);
4533 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4534 !(le32_to_cpu(es->s_feature_incompat) &
4535 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4536 ext4_msg(sb, KERN_ERR, "external journal has "
4542 if ((le32_to_cpu(es->s_feature_ro_compat) &
4543 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4544 es->s_checksum != ext4_superblock_csum(sb, es)) {
4545 ext4_msg(sb, KERN_ERR, "external journal has "
4546 "corrupt superblock");
4551 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4552 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4557 len = ext4_blocks_count(es);
4558 start = sb_block + 1;
4559 brelse(bh); /* we're done with the superblock */
4561 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4562 start, len, blocksize);
4564 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4567 journal->j_private = sb;
4568 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4569 wait_on_buffer(journal->j_sb_buffer);
4570 if (!buffer_uptodate(journal->j_sb_buffer)) {
4571 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4574 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4575 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4576 "user (unsupported) - %d",
4577 be32_to_cpu(journal->j_superblock->s_nr_users));
4580 EXT4_SB(sb)->journal_bdev = bdev;
4581 ext4_init_journal_params(sb, journal);
4585 jbd2_journal_destroy(journal);
4587 ext4_blkdev_put(bdev);
4591 static int ext4_load_journal(struct super_block *sb,
4592 struct ext4_super_block *es,
4593 unsigned long journal_devnum)
4596 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4599 int really_read_only;
4601 BUG_ON(!ext4_has_feature_journal(sb));
4603 if (journal_devnum &&
4604 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4605 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4606 "numbers have changed");
4607 journal_dev = new_decode_dev(journal_devnum);
4609 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4611 really_read_only = bdev_read_only(sb->s_bdev);
4614 * Are we loading a blank journal or performing recovery after a
4615 * crash? For recovery, we need to check in advance whether we
4616 * can get read-write access to the device.
4618 if (ext4_has_feature_journal_needs_recovery(sb)) {
4619 if (sb_rdonly(sb)) {
4620 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4621 "required on readonly filesystem");
4622 if (really_read_only) {
4623 ext4_msg(sb, KERN_ERR, "write access "
4624 "unavailable, cannot proceed");
4627 ext4_msg(sb, KERN_INFO, "write access will "
4628 "be enabled during recovery");
4632 if (journal_inum && journal_dev) {
4633 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4634 "and inode journals!");
4639 if (!(journal = ext4_get_journal(sb, journal_inum)))
4642 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4646 if (!(journal->j_flags & JBD2_BARRIER))
4647 ext4_msg(sb, KERN_INFO, "barriers disabled");
4649 if (!ext4_has_feature_journal_needs_recovery(sb))
4650 err = jbd2_journal_wipe(journal, !really_read_only);
4652 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4654 memcpy(save, ((char *) es) +
4655 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4656 err = jbd2_journal_load(journal);
4658 memcpy(((char *) es) + EXT4_S_ERR_START,
4659 save, EXT4_S_ERR_LEN);
4664 ext4_msg(sb, KERN_ERR, "error loading journal");
4665 jbd2_journal_destroy(journal);
4669 EXT4_SB(sb)->s_journal = journal;
4670 ext4_clear_journal_err(sb, es);
4672 if (!really_read_only && journal_devnum &&
4673 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4674 es->s_journal_dev = cpu_to_le32(journal_devnum);
4676 /* Make sure we flush the recovery flag to disk. */
4677 ext4_commit_super(sb, 1);
4683 static int ext4_commit_super(struct super_block *sb, int sync)
4685 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4686 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4689 if (!sbh || block_device_ejected(sb))
4692 * If the file system is mounted read-only, don't update the
4693 * superblock write time. This avoids updating the superblock
4694 * write time when we are mounting the root file system
4695 * read/only but we need to replay the journal; at that point,
4696 * for people who are east of GMT and who make their clock
4697 * tick in localtime for Windows bug-for-bug compatibility,
4698 * the clock is set in the future, and this will cause e2fsck
4699 * to complain and force a full file system check.
4701 if (!(sb->s_flags & MS_RDONLY))
4702 es->s_wtime = cpu_to_le32(get_seconds());
4703 if (sb->s_bdev->bd_part)
4704 es->s_kbytes_written =
4705 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4706 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4707 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4709 es->s_kbytes_written =
4710 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4711 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
4712 ext4_free_blocks_count_set(es,
4713 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4714 &EXT4_SB(sb)->s_freeclusters_counter)));
4715 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
4716 es->s_free_inodes_count =
4717 cpu_to_le32(percpu_counter_sum_positive(
4718 &EXT4_SB(sb)->s_freeinodes_counter));
4719 BUFFER_TRACE(sbh, "marking dirty");
4720 ext4_superblock_csum_set(sb);
4723 if (buffer_write_io_error(sbh)) {
4725 * Oh, dear. A previous attempt to write the
4726 * superblock failed. This could happen because the
4727 * USB device was yanked out. Or it could happen to
4728 * be a transient write error and maybe the block will
4729 * be remapped. Nothing we can do but to retry the
4730 * write and hope for the best.
4732 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4733 "superblock detected");
4734 clear_buffer_write_io_error(sbh);
4735 set_buffer_uptodate(sbh);
4737 mark_buffer_dirty(sbh);
4740 error = __sync_dirty_buffer(sbh,
4741 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
4745 error = buffer_write_io_error(sbh);
4747 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4749 clear_buffer_write_io_error(sbh);
4750 set_buffer_uptodate(sbh);
4757 * Have we just finished recovery? If so, and if we are mounting (or
4758 * remounting) the filesystem readonly, then we will end up with a
4759 * consistent fs on disk. Record that fact.
4761 static void ext4_mark_recovery_complete(struct super_block *sb,
4762 struct ext4_super_block *es)
4764 journal_t *journal = EXT4_SB(sb)->s_journal;
4766 if (!ext4_has_feature_journal(sb)) {
4767 BUG_ON(journal != NULL);
4770 jbd2_journal_lock_updates(journal);
4771 if (jbd2_journal_flush(journal) < 0)
4774 if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) {
4775 ext4_clear_feature_journal_needs_recovery(sb);
4776 ext4_commit_super(sb, 1);
4780 jbd2_journal_unlock_updates(journal);
4784 * If we are mounting (or read-write remounting) a filesystem whose journal
4785 * has recorded an error from a previous lifetime, move that error to the
4786 * main filesystem now.
4788 static void ext4_clear_journal_err(struct super_block *sb,
4789 struct ext4_super_block *es)
4795 BUG_ON(!ext4_has_feature_journal(sb));
4797 journal = EXT4_SB(sb)->s_journal;
4800 * Now check for any error status which may have been recorded in the
4801 * journal by a prior ext4_error() or ext4_abort()
4804 j_errno = jbd2_journal_errno(journal);
4808 errstr = ext4_decode_error(sb, j_errno, nbuf);
4809 ext4_warning(sb, "Filesystem error recorded "
4810 "from previous mount: %s", errstr);
4811 ext4_warning(sb, "Marking fs in need of filesystem check.");
4813 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4814 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4815 ext4_commit_super(sb, 1);
4817 jbd2_journal_clear_err(journal);
4818 jbd2_journal_update_sb_errno(journal);
4823 * Force the running and committing transactions to commit,
4824 * and wait on the commit.
4826 int ext4_force_commit(struct super_block *sb)
4833 journal = EXT4_SB(sb)->s_journal;
4834 return ext4_journal_force_commit(journal);
4837 static int ext4_sync_fs(struct super_block *sb, int wait)
4841 bool needs_barrier = false;
4842 struct ext4_sb_info *sbi = EXT4_SB(sb);
4844 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
4847 trace_ext4_sync_fs(sb, wait);
4848 flush_workqueue(sbi->rsv_conversion_wq);
4850 * Writeback quota in non-journalled quota case - journalled quota has
4853 dquot_writeback_dquots(sb, -1);
4855 * Data writeback is possible w/o journal transaction, so barrier must
4856 * being sent at the end of the function. But we can skip it if
4857 * transaction_commit will do it for us.
4859 if (sbi->s_journal) {
4860 target = jbd2_get_latest_transaction(sbi->s_journal);
4861 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
4862 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
4863 needs_barrier = true;
4865 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4867 ret = jbd2_log_wait_commit(sbi->s_journal,
4870 } else if (wait && test_opt(sb, BARRIER))
4871 needs_barrier = true;
4872 if (needs_barrier) {
4874 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4883 * LVM calls this function before a (read-only) snapshot is created. This
4884 * gives us a chance to flush the journal completely and mark the fs clean.
4886 * Note that only this function cannot bring a filesystem to be in a clean
4887 * state independently. It relies on upper layer to stop all data & metadata
4890 static int ext4_freeze(struct super_block *sb)
4898 journal = EXT4_SB(sb)->s_journal;
4901 /* Now we set up the journal barrier. */
4902 jbd2_journal_lock_updates(journal);
4905 * Don't clear the needs_recovery flag if we failed to
4906 * flush the journal.
4908 error = jbd2_journal_flush(journal);
4912 /* Journal blocked and flushed, clear needs_recovery flag. */
4913 ext4_clear_feature_journal_needs_recovery(sb);
4916 error = ext4_commit_super(sb, 1);
4919 /* we rely on upper layer to stop further updates */
4920 jbd2_journal_unlock_updates(journal);
4925 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4926 * flag here, even though the filesystem is not technically dirty yet.
4928 static int ext4_unfreeze(struct super_block *sb)
4930 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
4933 if (EXT4_SB(sb)->s_journal) {
4934 /* Reset the needs_recovery flag before the fs is unlocked. */
4935 ext4_set_feature_journal_needs_recovery(sb);
4938 ext4_commit_super(sb, 1);
4943 * Structure to save mount options for ext4_remount's benefit
4945 struct ext4_mount_options {
4946 unsigned long s_mount_opt;
4947 unsigned long s_mount_opt2;
4950 unsigned long s_commit_interval;
4951 u32 s_min_batch_time, s_max_batch_time;
4954 char *s_qf_names[EXT4_MAXQUOTAS];
4958 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4960 struct ext4_super_block *es;
4961 struct ext4_sb_info *sbi = EXT4_SB(sb);
4962 unsigned long old_sb_flags;
4963 struct ext4_mount_options old_opts;
4964 int enable_quota = 0;
4966 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4971 char *orig_data = kstrdup(data, GFP_KERNEL);
4973 /* Store the original options */
4974 old_sb_flags = sb->s_flags;
4975 old_opts.s_mount_opt = sbi->s_mount_opt;
4976 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4977 old_opts.s_resuid = sbi->s_resuid;
4978 old_opts.s_resgid = sbi->s_resgid;
4979 old_opts.s_commit_interval = sbi->s_commit_interval;
4980 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4981 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4983 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4984 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4985 if (sbi->s_qf_names[i]) {
4986 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
4988 if (!old_opts.s_qf_names[i]) {
4989 for (j = 0; j < i; j++)
4990 kfree(old_opts.s_qf_names[j]);
4995 old_opts.s_qf_names[i] = NULL;
4997 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4998 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
5000 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
5005 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
5006 test_opt(sb, JOURNAL_CHECKSUM)) {
5007 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
5008 "during remount not supported; ignoring");
5009 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
5012 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
5013 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5014 ext4_msg(sb, KERN_ERR, "can't mount with "
5015 "both data=journal and delalloc");
5019 if (test_opt(sb, DIOREAD_NOLOCK)) {
5020 ext4_msg(sb, KERN_ERR, "can't mount with "
5021 "both data=journal and dioread_nolock");
5025 if (test_opt(sb, DAX)) {
5026 ext4_msg(sb, KERN_ERR, "can't mount with "
5027 "both data=journal and dax");
5031 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5032 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5033 ext4_msg(sb, KERN_ERR, "can't mount with "
5034 "journal_async_commit in data=ordered mode");
5040 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5041 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5046 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
5047 ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
5048 "dax flag with busy inodes while remounting");
5049 sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
5052 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
5053 ext4_abort(sb, "Abort forced by user");
5055 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
5056 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
5060 if (sbi->s_journal) {
5061 ext4_init_journal_params(sb, sbi->s_journal);
5062 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
5065 if (*flags & MS_LAZYTIME)
5066 sb->s_flags |= MS_LAZYTIME;
5068 if ((bool)(*flags & MS_RDONLY) != sb_rdonly(sb)) {
5069 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
5074 if (*flags & MS_RDONLY) {
5075 err = sync_filesystem(sb);
5078 err = dquot_suspend(sb, -1);
5083 * First of all, the unconditional stuff we have to do
5084 * to disable replay of the journal when we next remount
5086 sb->s_flags |= MS_RDONLY;
5089 * OK, test if we are remounting a valid rw partition
5090 * readonly, and if so set the rdonly flag and then
5091 * mark the partition as valid again.
5093 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5094 (sbi->s_mount_state & EXT4_VALID_FS))
5095 es->s_state = cpu_to_le16(sbi->s_mount_state);
5098 ext4_mark_recovery_complete(sb, es);
5100 /* Make sure we can mount this feature set readwrite */
5101 if (ext4_has_feature_readonly(sb) ||
5102 !ext4_feature_set_ok(sb, 0)) {
5107 * Make sure the group descriptor checksums
5108 * are sane. If they aren't, refuse to remount r/w.
5110 for (g = 0; g < sbi->s_groups_count; g++) {
5111 struct ext4_group_desc *gdp =
5112 ext4_get_group_desc(sb, g, NULL);
5114 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5115 ext4_msg(sb, KERN_ERR,
5116 "ext4_remount: Checksum for group %u failed (%u!=%u)",
5117 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
5118 le16_to_cpu(gdp->bg_checksum));
5125 * If we have an unprocessed orphan list hanging
5126 * around from a previously readonly bdev mount,
5127 * require a full umount/remount for now.
5129 if (es->s_last_orphan) {
5130 ext4_msg(sb, KERN_WARNING, "Couldn't "
5131 "remount RDWR because of unprocessed "
5132 "orphan inode list. Please "
5133 "umount/remount instead");
5139 * Mounting a RDONLY partition read-write, so reread
5140 * and store the current valid flag. (It may have
5141 * been changed by e2fsck since we originally mounted
5145 ext4_clear_journal_err(sb, es);
5146 sbi->s_mount_state = le16_to_cpu(es->s_state);
5147 if (!ext4_setup_super(sb, es, 0))
5148 sb->s_flags &= ~MS_RDONLY;
5149 if (ext4_has_feature_mmp(sb))
5150 if (ext4_multi_mount_protect(sb,
5151 le64_to_cpu(es->s_mmp_block))) {
5160 * Reinitialize lazy itable initialization thread based on
5163 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
5164 ext4_unregister_li_request(sb);
5166 ext4_group_t first_not_zeroed;
5167 first_not_zeroed = ext4_has_uninit_itable(sb);
5168 ext4_register_li_request(sb, first_not_zeroed);
5171 ext4_setup_system_zone(sb);
5172 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
5173 ext4_commit_super(sb, 1);
5176 /* Release old quota file names */
5177 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5178 kfree(old_opts.s_qf_names[i]);
5180 if (sb_any_quota_suspended(sb))
5181 dquot_resume(sb, -1);
5182 else if (ext4_has_feature_quota(sb)) {
5183 err = ext4_enable_quotas(sb);
5190 *flags = (*flags & ~MS_LAZYTIME) | (sb->s_flags & MS_LAZYTIME);
5191 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5196 sb->s_flags = old_sb_flags;
5197 sbi->s_mount_opt = old_opts.s_mount_opt;
5198 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5199 sbi->s_resuid = old_opts.s_resuid;
5200 sbi->s_resgid = old_opts.s_resgid;
5201 sbi->s_commit_interval = old_opts.s_commit_interval;
5202 sbi->s_min_batch_time = old_opts.s_min_batch_time;
5203 sbi->s_max_batch_time = old_opts.s_max_batch_time;
5205 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5206 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5207 kfree(sbi->s_qf_names[i]);
5208 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
5216 static int ext4_statfs_project(struct super_block *sb,
5217 kprojid_t projid, struct kstatfs *buf)
5220 struct dquot *dquot;
5224 qid = make_kqid_projid(projid);
5225 dquot = dqget(sb, qid);
5227 return PTR_ERR(dquot);
5228 spin_lock(&dquot->dq_dqb_lock);
5230 limit = (dquot->dq_dqb.dqb_bsoftlimit ?
5231 dquot->dq_dqb.dqb_bsoftlimit :
5232 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
5233 if (limit && buf->f_blocks > limit) {
5234 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
5235 buf->f_blocks = limit;
5236 buf->f_bfree = buf->f_bavail =
5237 (buf->f_blocks > curblock) ?
5238 (buf->f_blocks - curblock) : 0;
5241 limit = dquot->dq_dqb.dqb_isoftlimit ?
5242 dquot->dq_dqb.dqb_isoftlimit :
5243 dquot->dq_dqb.dqb_ihardlimit;
5244 if (limit && buf->f_files > limit) {
5245 buf->f_files = limit;
5247 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
5248 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
5251 spin_unlock(&dquot->dq_dqb_lock);
5257 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5259 struct super_block *sb = dentry->d_sb;
5260 struct ext4_sb_info *sbi = EXT4_SB(sb);
5261 struct ext4_super_block *es = sbi->s_es;
5262 ext4_fsblk_t overhead = 0, resv_blocks;
5265 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5267 if (!test_opt(sb, MINIX_DF))
5268 overhead = sbi->s_overhead;
5270 buf->f_type = EXT4_SUPER_MAGIC;
5271 buf->f_bsize = sb->s_blocksize;
5272 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5273 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5274 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5275 /* prevent underflow in case that few free space is available */
5276 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5277 buf->f_bavail = buf->f_bfree -
5278 (ext4_r_blocks_count(es) + resv_blocks);
5279 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5281 buf->f_files = le32_to_cpu(es->s_inodes_count);
5282 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5283 buf->f_namelen = EXT4_NAME_LEN;
5284 fsid = le64_to_cpup((void *)es->s_uuid) ^
5285 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5286 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5287 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5290 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
5291 sb_has_quota_limits_enabled(sb, PRJQUOTA))
5292 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
5301 * Helper functions so that transaction is started before we acquire dqio_sem
5302 * to keep correct lock ordering of transaction > dqio_sem
5304 static inline struct inode *dquot_to_inode(struct dquot *dquot)
5306 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5309 static int ext4_write_dquot(struct dquot *dquot)
5313 struct inode *inode;
5315 inode = dquot_to_inode(dquot);
5316 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5317 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5319 return PTR_ERR(handle);
5320 ret = dquot_commit(dquot);
5321 err = ext4_journal_stop(handle);
5327 static int ext4_acquire_dquot(struct dquot *dquot)
5332 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5333 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5335 return PTR_ERR(handle);
5336 ret = dquot_acquire(dquot);
5337 err = ext4_journal_stop(handle);
5343 static int ext4_release_dquot(struct dquot *dquot)
5348 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5349 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5350 if (IS_ERR(handle)) {
5351 /* Release dquot anyway to avoid endless cycle in dqput() */
5352 dquot_release(dquot);
5353 return PTR_ERR(handle);
5355 ret = dquot_release(dquot);
5356 err = ext4_journal_stop(handle);
5362 static int ext4_mark_dquot_dirty(struct dquot *dquot)
5364 struct super_block *sb = dquot->dq_sb;
5365 struct ext4_sb_info *sbi = EXT4_SB(sb);
5367 /* Are we journaling quotas? */
5368 if (ext4_has_feature_quota(sb) ||
5369 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5370 dquot_mark_dquot_dirty(dquot);
5371 return ext4_write_dquot(dquot);
5373 return dquot_mark_dquot_dirty(dquot);
5377 static int ext4_write_info(struct super_block *sb, int type)
5382 /* Data block + inode block */
5383 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5385 return PTR_ERR(handle);
5386 ret = dquot_commit_info(sb, type);
5387 err = ext4_journal_stop(handle);
5394 * Turn on quotas during mount time - we need to find
5395 * the quota file and such...
5397 static int ext4_quota_on_mount(struct super_block *sb, int type)
5399 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
5400 EXT4_SB(sb)->s_jquota_fmt, type);
5403 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
5405 struct ext4_inode_info *ei = EXT4_I(inode);
5407 /* The first argument of lockdep_set_subclass has to be
5408 * *exactly* the same as the argument to init_rwsem() --- in
5409 * this case, in init_once() --- or lockdep gets unhappy
5410 * because the name of the lock is set using the
5411 * stringification of the argument to init_rwsem().
5413 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
5414 lockdep_set_subclass(&ei->i_data_sem, subclass);
5418 * Standard function to be called on quota_on
5420 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5421 const struct path *path)
5425 if (!test_opt(sb, QUOTA))
5428 /* Quotafile not on the same filesystem? */
5429 if (path->dentry->d_sb != sb)
5431 /* Journaling quota? */
5432 if (EXT4_SB(sb)->s_qf_names[type]) {
5433 /* Quotafile not in fs root? */
5434 if (path->dentry->d_parent != sb->s_root)
5435 ext4_msg(sb, KERN_WARNING,
5436 "Quota file not on filesystem root. "
5437 "Journaled quota will not work");
5438 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
5441 * Clear the flag just in case mount options changed since
5444 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
5448 * When we journal data on quota file, we have to flush journal to see
5449 * all updates to the file when we bypass pagecache...
5451 if (EXT4_SB(sb)->s_journal &&
5452 ext4_should_journal_data(d_inode(path->dentry))) {
5454 * We don't need to lock updates but journal_flush() could
5455 * otherwise be livelocked...
5457 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5458 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5459 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5464 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
5465 err = dquot_quota_on(sb, type, format_id, path);
5467 lockdep_set_quota_inode(path->dentry->d_inode,
5470 struct inode *inode = d_inode(path->dentry);
5474 * Set inode flags to prevent userspace from messing with quota
5475 * files. If this fails, we return success anyway since quotas
5476 * are already enabled and this is not a hard failure.
5479 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5482 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
5483 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
5484 S_NOATIME | S_IMMUTABLE);
5485 ext4_mark_inode_dirty(handle, inode);
5486 ext4_journal_stop(handle);
5488 inode_unlock(inode);
5493 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5497 struct inode *qf_inode;
5498 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5499 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5500 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5501 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5504 BUG_ON(!ext4_has_feature_quota(sb));
5506 if (!qf_inums[type])
5509 qf_inode = ext4_iget(sb, qf_inums[type]);
5510 if (IS_ERR(qf_inode)) {
5511 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5512 return PTR_ERR(qf_inode);
5515 /* Don't account quota for quota files to avoid recursion */
5516 qf_inode->i_flags |= S_NOQUOTA;
5517 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
5518 err = dquot_enable(qf_inode, type, format_id, flags);
5521 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
5526 /* Enable usage tracking for all quota types. */
5527 static int ext4_enable_quotas(struct super_block *sb)
5530 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5531 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5532 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5533 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5535 bool quota_mopt[EXT4_MAXQUOTAS] = {
5536 test_opt(sb, USRQUOTA),
5537 test_opt(sb, GRPQUOTA),
5538 test_opt(sb, PRJQUOTA),
5541 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
5542 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5543 if (qf_inums[type]) {
5544 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5545 DQUOT_USAGE_ENABLED |
5546 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
5548 for (type--; type >= 0; type--)
5549 dquot_quota_off(sb, type);
5552 "Failed to enable quota tracking "
5553 "(type=%d, err=%d). Please run "
5554 "e2fsck to fix.", type, err);
5562 static int ext4_quota_off(struct super_block *sb, int type)
5564 struct inode *inode = sb_dqopt(sb)->files[type];
5568 /* Force all delayed allocation blocks to be allocated.
5569 * Caller already holds s_umount sem */
5570 if (test_opt(sb, DELALLOC))
5571 sync_filesystem(sb);
5573 if (!inode || !igrab(inode))
5576 err = dquot_quota_off(sb, type);
5577 if (err || ext4_has_feature_quota(sb))
5582 * Update modification times of quota files when userspace can
5583 * start looking at them. If we fail, we return success anyway since
5584 * this is not a hard failure and quotas are already disabled.
5586 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5589 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
5590 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
5591 inode->i_mtime = inode->i_ctime = current_time(inode);
5592 ext4_mark_inode_dirty(handle, inode);
5593 ext4_journal_stop(handle);
5595 inode_unlock(inode);
5597 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
5601 return dquot_quota_off(sb, type);
5604 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5605 * acquiring the locks... As quota files are never truncated and quota code
5606 * itself serializes the operations (and no one else should touch the files)
5607 * we don't have to be afraid of races */
5608 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5609 size_t len, loff_t off)
5611 struct inode *inode = sb_dqopt(sb)->files[type];
5612 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5613 int offset = off & (sb->s_blocksize - 1);
5616 struct buffer_head *bh;
5617 loff_t i_size = i_size_read(inode);
5621 if (off+len > i_size)
5624 while (toread > 0) {
5625 tocopy = sb->s_blocksize - offset < toread ?
5626 sb->s_blocksize - offset : toread;
5627 bh = ext4_bread(NULL, inode, blk, 0);
5630 if (!bh) /* A hole? */
5631 memset(data, 0, tocopy);
5633 memcpy(data, bh->b_data+offset, tocopy);
5643 /* Write to quotafile (we know the transaction is already started and has
5644 * enough credits) */
5645 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5646 const char *data, size_t len, loff_t off)
5648 struct inode *inode = sb_dqopt(sb)->files[type];
5649 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5650 int err, offset = off & (sb->s_blocksize - 1);
5652 struct buffer_head *bh;
5653 handle_t *handle = journal_current_handle();
5655 if (EXT4_SB(sb)->s_journal && !handle) {
5656 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5657 " cancelled because transaction is not started",
5658 (unsigned long long)off, (unsigned long long)len);
5662 * Since we account only one data block in transaction credits,
5663 * then it is impossible to cross a block boundary.
5665 if (sb->s_blocksize - offset < len) {
5666 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5667 " cancelled because not block aligned",
5668 (unsigned long long)off, (unsigned long long)len);
5673 bh = ext4_bread(handle, inode, blk,
5674 EXT4_GET_BLOCKS_CREATE |
5675 EXT4_GET_BLOCKS_METADATA_NOFAIL);
5676 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) &&
5677 ext4_should_retry_alloc(inode->i_sb, &retries));
5682 BUFFER_TRACE(bh, "get write access");
5683 err = ext4_journal_get_write_access(handle, bh);
5689 memcpy(bh->b_data+offset, data, len);
5690 flush_dcache_page(bh->b_page);
5692 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5695 if (inode->i_size < off + len) {
5696 i_size_write(inode, off + len);
5697 EXT4_I(inode)->i_disksize = inode->i_size;
5698 ext4_mark_inode_dirty(handle, inode);
5703 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid)
5705 const struct quota_format_ops *ops;
5707 if (!sb_has_quota_loaded(sb, qid->type))
5709 ops = sb_dqopt(sb)->ops[qid->type];
5710 if (!ops || !ops->get_next_id)
5712 return dquot_get_next_id(sb, qid);
5716 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5717 const char *dev_name, void *data)
5719 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5722 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
5723 static inline void register_as_ext2(void)
5725 int err = register_filesystem(&ext2_fs_type);
5728 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5731 static inline void unregister_as_ext2(void)
5733 unregister_filesystem(&ext2_fs_type);
5736 static inline int ext2_feature_set_ok(struct super_block *sb)
5738 if (ext4_has_unknown_ext2_incompat_features(sb))
5742 if (ext4_has_unknown_ext2_ro_compat_features(sb))
5747 static inline void register_as_ext2(void) { }
5748 static inline void unregister_as_ext2(void) { }
5749 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5752 static inline void register_as_ext3(void)
5754 int err = register_filesystem(&ext3_fs_type);
5757 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5760 static inline void unregister_as_ext3(void)
5762 unregister_filesystem(&ext3_fs_type);
5765 static inline int ext3_feature_set_ok(struct super_block *sb)
5767 if (ext4_has_unknown_ext3_incompat_features(sb))
5769 if (!ext4_has_feature_journal(sb))
5773 if (ext4_has_unknown_ext3_ro_compat_features(sb))
5778 static struct file_system_type ext4_fs_type = {
5779 .owner = THIS_MODULE,
5781 .mount = ext4_mount,
5782 .kill_sb = kill_block_super,
5783 .fs_flags = FS_REQUIRES_DEV,
5785 MODULE_ALIAS_FS("ext4");
5787 /* Shared across all ext4 file systems */
5788 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5790 static int __init ext4_init_fs(void)
5794 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
5795 ext4_li_info = NULL;
5796 mutex_init(&ext4_li_mtx);
5798 /* Build-time check for flags consistency */
5799 ext4_check_flag_values();
5801 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
5802 init_waitqueue_head(&ext4__ioend_wq[i]);
5804 err = ext4_init_es();
5808 err = ext4_init_pageio();
5812 err = ext4_init_system_zone();
5816 err = ext4_init_sysfs();
5820 err = ext4_init_mballoc();
5823 err = init_inodecache();
5828 err = register_filesystem(&ext4_fs_type);
5834 unregister_as_ext2();
5835 unregister_as_ext3();
5836 destroy_inodecache();
5838 ext4_exit_mballoc();
5842 ext4_exit_system_zone();
5851 static void __exit ext4_exit_fs(void)
5853 ext4_destroy_lazyinit_thread();
5854 unregister_as_ext2();
5855 unregister_as_ext3();
5856 unregister_filesystem(&ext4_fs_type);
5857 destroy_inodecache();
5858 ext4_exit_mballoc();
5860 ext4_exit_system_zone();
5865 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5866 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5867 MODULE_LICENSE("GPL");
5868 module_init(ext4_init_fs)
5869 module_exit(ext4_exit_fs)