slob: No need to zero mapping since it is no longer in use
[platform/adaptation/renesas_rcar/renesas_kernel.git] / fs / ext4 / super.c
1 /*
2  *  linux/fs/ext4/super.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Big-endian to little-endian byte-swapping/bitmaps by
16  *        David S. Miller (davem@caip.rutgers.edu), 1995
17  */
18
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/jbd2.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/proc_fs.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/cleancache.h>
42 #include <asm/uaccess.h>
43
44 #include <linux/kthread.h>
45 #include <linux/freezer.h>
46
47 #include "ext4.h"
48 #include "ext4_extents.h"
49 #include "ext4_jbd2.h"
50 #include "xattr.h"
51 #include "acl.h"
52 #include "mballoc.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/ext4.h>
56
57 static struct proc_dir_entry *ext4_proc_root;
58 static struct kset *ext4_kset;
59 static struct ext4_lazy_init *ext4_li_info;
60 static struct mutex ext4_li_mtx;
61 static struct ext4_features *ext4_feat;
62
63 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
64                              unsigned long journal_devnum);
65 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
66 static int ext4_commit_super(struct super_block *sb, int sync);
67 static void ext4_mark_recovery_complete(struct super_block *sb,
68                                         struct ext4_super_block *es);
69 static void ext4_clear_journal_err(struct super_block *sb,
70                                    struct ext4_super_block *es);
71 static int ext4_sync_fs(struct super_block *sb, int wait);
72 static const char *ext4_decode_error(struct super_block *sb, int errno,
73                                      char nbuf[16]);
74 static int ext4_remount(struct super_block *sb, int *flags, char *data);
75 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
76 static int ext4_unfreeze(struct super_block *sb);
77 static void ext4_write_super(struct super_block *sb);
78 static int ext4_freeze(struct super_block *sb);
79 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
80                        const char *dev_name, void *data);
81 static inline int ext2_feature_set_ok(struct super_block *sb);
82 static inline int ext3_feature_set_ok(struct super_block *sb);
83 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
84 static void ext4_destroy_lazyinit_thread(void);
85 static void ext4_unregister_li_request(struct super_block *sb);
86 static void ext4_clear_request_list(void);
87
88 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
89 static struct file_system_type ext2_fs_type = {
90         .owner          = THIS_MODULE,
91         .name           = "ext2",
92         .mount          = ext4_mount,
93         .kill_sb        = kill_block_super,
94         .fs_flags       = FS_REQUIRES_DEV,
95 };
96 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
97 #else
98 #define IS_EXT2_SB(sb) (0)
99 #endif
100
101
102 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
103 static struct file_system_type ext3_fs_type = {
104         .owner          = THIS_MODULE,
105         .name           = "ext3",
106         .mount          = ext4_mount,
107         .kill_sb        = kill_block_super,
108         .fs_flags       = FS_REQUIRES_DEV,
109 };
110 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
111 #else
112 #define IS_EXT3_SB(sb) (0)
113 #endif
114
115 static int ext4_verify_csum_type(struct super_block *sb,
116                                  struct ext4_super_block *es)
117 {
118         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
119                                         EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
120                 return 1;
121
122         return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
123 }
124
125 static __le32 ext4_superblock_csum(struct super_block *sb,
126                                    struct ext4_super_block *es)
127 {
128         struct ext4_sb_info *sbi = EXT4_SB(sb);
129         int offset = offsetof(struct ext4_super_block, s_checksum);
130         __u32 csum;
131
132         csum = ext4_chksum(sbi, ~0, (char *)es, offset);
133
134         return cpu_to_le32(csum);
135 }
136
137 int ext4_superblock_csum_verify(struct super_block *sb,
138                                 struct ext4_super_block *es)
139 {
140         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
141                                        EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
142                 return 1;
143
144         return es->s_checksum == ext4_superblock_csum(sb, es);
145 }
146
147 void ext4_superblock_csum_set(struct super_block *sb,
148                               struct ext4_super_block *es)
149 {
150         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
151                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
152                 return;
153
154         es->s_checksum = ext4_superblock_csum(sb, es);
155 }
156
157 void *ext4_kvmalloc(size_t size, gfp_t flags)
158 {
159         void *ret;
160
161         ret = kmalloc(size, flags);
162         if (!ret)
163                 ret = __vmalloc(size, flags, PAGE_KERNEL);
164         return ret;
165 }
166
167 void *ext4_kvzalloc(size_t size, gfp_t flags)
168 {
169         void *ret;
170
171         ret = kzalloc(size, flags);
172         if (!ret)
173                 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
174         return ret;
175 }
176
177 void ext4_kvfree(void *ptr)
178 {
179         if (is_vmalloc_addr(ptr))
180                 vfree(ptr);
181         else
182                 kfree(ptr);
183
184 }
185
186 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
187                                struct ext4_group_desc *bg)
188 {
189         return le32_to_cpu(bg->bg_block_bitmap_lo) |
190                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
191                  (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
192 }
193
194 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
195                                struct ext4_group_desc *bg)
196 {
197         return le32_to_cpu(bg->bg_inode_bitmap_lo) |
198                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
199                  (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
200 }
201
202 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
203                               struct ext4_group_desc *bg)
204 {
205         return le32_to_cpu(bg->bg_inode_table_lo) |
206                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
207                  (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
208 }
209
210 __u32 ext4_free_group_clusters(struct super_block *sb,
211                                struct ext4_group_desc *bg)
212 {
213         return le16_to_cpu(bg->bg_free_blocks_count_lo) |
214                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
215                  (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
216 }
217
218 __u32 ext4_free_inodes_count(struct super_block *sb,
219                               struct ext4_group_desc *bg)
220 {
221         return le16_to_cpu(bg->bg_free_inodes_count_lo) |
222                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
223                  (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
224 }
225
226 __u32 ext4_used_dirs_count(struct super_block *sb,
227                               struct ext4_group_desc *bg)
228 {
229         return le16_to_cpu(bg->bg_used_dirs_count_lo) |
230                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
231                  (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
232 }
233
234 __u32 ext4_itable_unused_count(struct super_block *sb,
235                               struct ext4_group_desc *bg)
236 {
237         return le16_to_cpu(bg->bg_itable_unused_lo) |
238                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
239                  (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
240 }
241
242 void ext4_block_bitmap_set(struct super_block *sb,
243                            struct ext4_group_desc *bg, ext4_fsblk_t blk)
244 {
245         bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
246         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
247                 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
248 }
249
250 void ext4_inode_bitmap_set(struct super_block *sb,
251                            struct ext4_group_desc *bg, ext4_fsblk_t blk)
252 {
253         bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
254         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
255                 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
256 }
257
258 void ext4_inode_table_set(struct super_block *sb,
259                           struct ext4_group_desc *bg, ext4_fsblk_t blk)
260 {
261         bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
262         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
263                 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
264 }
265
266 void ext4_free_group_clusters_set(struct super_block *sb,
267                                   struct ext4_group_desc *bg, __u32 count)
268 {
269         bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
270         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
271                 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
272 }
273
274 void ext4_free_inodes_set(struct super_block *sb,
275                           struct ext4_group_desc *bg, __u32 count)
276 {
277         bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
278         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
279                 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
280 }
281
282 void ext4_used_dirs_set(struct super_block *sb,
283                           struct ext4_group_desc *bg, __u32 count)
284 {
285         bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
286         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
287                 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
288 }
289
290 void ext4_itable_unused_set(struct super_block *sb,
291                           struct ext4_group_desc *bg, __u32 count)
292 {
293         bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
294         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
295                 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
296 }
297
298
299 /* Just increment the non-pointer handle value */
300 static handle_t *ext4_get_nojournal(void)
301 {
302         handle_t *handle = current->journal_info;
303         unsigned long ref_cnt = (unsigned long)handle;
304
305         BUG_ON(ref_cnt >= EXT4_NOJOURNAL_MAX_REF_COUNT);
306
307         ref_cnt++;
308         handle = (handle_t *)ref_cnt;
309
310         current->journal_info = handle;
311         return handle;
312 }
313
314
315 /* Decrement the non-pointer handle value */
316 static void ext4_put_nojournal(handle_t *handle)
317 {
318         unsigned long ref_cnt = (unsigned long)handle;
319
320         BUG_ON(ref_cnt == 0);
321
322         ref_cnt--;
323         handle = (handle_t *)ref_cnt;
324
325         current->journal_info = handle;
326 }
327
328 /*
329  * Wrappers for jbd2_journal_start/end.
330  *
331  * The only special thing we need to do here is to make sure that all
332  * journal_end calls result in the superblock being marked dirty, so
333  * that sync() will call the filesystem's write_super callback if
334  * appropriate.
335  *
336  * To avoid j_barrier hold in userspace when a user calls freeze(),
337  * ext4 prevents a new handle from being started by s_frozen, which
338  * is in an upper layer.
339  */
340 handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks)
341 {
342         journal_t *journal;
343         handle_t  *handle;
344
345         trace_ext4_journal_start(sb, nblocks, _RET_IP_);
346         if (sb->s_flags & MS_RDONLY)
347                 return ERR_PTR(-EROFS);
348
349         journal = EXT4_SB(sb)->s_journal;
350         handle = ext4_journal_current_handle();
351
352         /*
353          * If a handle has been started, it should be allowed to
354          * finish, otherwise deadlock could happen between freeze
355          * and others(e.g. truncate) due to the restart of the
356          * journal handle if the filesystem is forzen and active
357          * handles are not stopped.
358          */
359         if (!handle)
360                 vfs_check_frozen(sb, SB_FREEZE_TRANS);
361
362         if (!journal)
363                 return ext4_get_nojournal();
364         /*
365          * Special case here: if the journal has aborted behind our
366          * backs (eg. EIO in the commit thread), then we still need to
367          * take the FS itself readonly cleanly.
368          */
369         if (is_journal_aborted(journal)) {
370                 ext4_abort(sb, "Detected aborted journal");
371                 return ERR_PTR(-EROFS);
372         }
373         return jbd2_journal_start(journal, nblocks);
374 }
375
376 /*
377  * The only special thing we need to do here is to make sure that all
378  * jbd2_journal_stop calls result in the superblock being marked dirty, so
379  * that sync() will call the filesystem's write_super callback if
380  * appropriate.
381  */
382 int __ext4_journal_stop(const char *where, unsigned int line, handle_t *handle)
383 {
384         struct super_block *sb;
385         int err;
386         int rc;
387
388         if (!ext4_handle_valid(handle)) {
389                 ext4_put_nojournal(handle);
390                 return 0;
391         }
392         sb = handle->h_transaction->t_journal->j_private;
393         err = handle->h_err;
394         rc = jbd2_journal_stop(handle);
395
396         if (!err)
397                 err = rc;
398         if (err)
399                 __ext4_std_error(sb, where, line, err);
400         return err;
401 }
402
403 void ext4_journal_abort_handle(const char *caller, unsigned int line,
404                                const char *err_fn, struct buffer_head *bh,
405                                handle_t *handle, int err)
406 {
407         char nbuf[16];
408         const char *errstr = ext4_decode_error(NULL, err, nbuf);
409
410         BUG_ON(!ext4_handle_valid(handle));
411
412         if (bh)
413                 BUFFER_TRACE(bh, "abort");
414
415         if (!handle->h_err)
416                 handle->h_err = err;
417
418         if (is_handle_aborted(handle))
419                 return;
420
421         printk(KERN_ERR "EXT4-fs: %s:%d: aborting transaction: %s in %s\n",
422                caller, line, errstr, err_fn);
423
424         jbd2_journal_abort_handle(handle);
425 }
426
427 static void __save_error_info(struct super_block *sb, const char *func,
428                             unsigned int line)
429 {
430         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
431
432         EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
433         es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
434         es->s_last_error_time = cpu_to_le32(get_seconds());
435         strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
436         es->s_last_error_line = cpu_to_le32(line);
437         if (!es->s_first_error_time) {
438                 es->s_first_error_time = es->s_last_error_time;
439                 strncpy(es->s_first_error_func, func,
440                         sizeof(es->s_first_error_func));
441                 es->s_first_error_line = cpu_to_le32(line);
442                 es->s_first_error_ino = es->s_last_error_ino;
443                 es->s_first_error_block = es->s_last_error_block;
444         }
445         /*
446          * Start the daily error reporting function if it hasn't been
447          * started already
448          */
449         if (!es->s_error_count)
450                 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
451         es->s_error_count = cpu_to_le32(le32_to_cpu(es->s_error_count) + 1);
452 }
453
454 static void save_error_info(struct super_block *sb, const char *func,
455                             unsigned int line)
456 {
457         __save_error_info(sb, func, line);
458         ext4_commit_super(sb, 1);
459 }
460
461 /*
462  * The del_gendisk() function uninitializes the disk-specific data
463  * structures, including the bdi structure, without telling anyone
464  * else.  Once this happens, any attempt to call mark_buffer_dirty()
465  * (for example, by ext4_commit_super), will cause a kernel OOPS.
466  * This is a kludge to prevent these oops until we can put in a proper
467  * hook in del_gendisk() to inform the VFS and file system layers.
468  */
469 static int block_device_ejected(struct super_block *sb)
470 {
471         struct inode *bd_inode = sb->s_bdev->bd_inode;
472         struct backing_dev_info *bdi = bd_inode->i_mapping->backing_dev_info;
473
474         return bdi->dev == NULL;
475 }
476
477 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
478 {
479         struct super_block              *sb = journal->j_private;
480         struct ext4_sb_info             *sbi = EXT4_SB(sb);
481         int                             error = is_journal_aborted(journal);
482         struct ext4_journal_cb_entry    *jce, *tmp;
483
484         spin_lock(&sbi->s_md_lock);
485         list_for_each_entry_safe(jce, tmp, &txn->t_private_list, jce_list) {
486                 list_del_init(&jce->jce_list);
487                 spin_unlock(&sbi->s_md_lock);
488                 jce->jce_func(sb, jce, error);
489                 spin_lock(&sbi->s_md_lock);
490         }
491         spin_unlock(&sbi->s_md_lock);
492 }
493
494 /* Deal with the reporting of failure conditions on a filesystem such as
495  * inconsistencies detected or read IO failures.
496  *
497  * On ext2, we can store the error state of the filesystem in the
498  * superblock.  That is not possible on ext4, because we may have other
499  * write ordering constraints on the superblock which prevent us from
500  * writing it out straight away; and given that the journal is about to
501  * be aborted, we can't rely on the current, or future, transactions to
502  * write out the superblock safely.
503  *
504  * We'll just use the jbd2_journal_abort() error code to record an error in
505  * the journal instead.  On recovery, the journal will complain about
506  * that error until we've noted it down and cleared it.
507  */
508
509 static void ext4_handle_error(struct super_block *sb)
510 {
511         if (sb->s_flags & MS_RDONLY)
512                 return;
513
514         if (!test_opt(sb, ERRORS_CONT)) {
515                 journal_t *journal = EXT4_SB(sb)->s_journal;
516
517                 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
518                 if (journal)
519                         jbd2_journal_abort(journal, -EIO);
520         }
521         if (test_opt(sb, ERRORS_RO)) {
522                 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
523                 sb->s_flags |= MS_RDONLY;
524         }
525         if (test_opt(sb, ERRORS_PANIC))
526                 panic("EXT4-fs (device %s): panic forced after error\n",
527                         sb->s_id);
528 }
529
530 void __ext4_error(struct super_block *sb, const char *function,
531                   unsigned int line, const char *fmt, ...)
532 {
533         struct va_format vaf;
534         va_list args;
535
536         va_start(args, fmt);
537         vaf.fmt = fmt;
538         vaf.va = &args;
539         printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
540                sb->s_id, function, line, current->comm, &vaf);
541         va_end(args);
542         save_error_info(sb, function, line);
543
544         ext4_handle_error(sb);
545 }
546
547 void ext4_error_inode(struct inode *inode, const char *function,
548                       unsigned int line, ext4_fsblk_t block,
549                       const char *fmt, ...)
550 {
551         va_list args;
552         struct va_format vaf;
553         struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
554
555         es->s_last_error_ino = cpu_to_le32(inode->i_ino);
556         es->s_last_error_block = cpu_to_le64(block);
557         save_error_info(inode->i_sb, function, line);
558         va_start(args, fmt);
559         vaf.fmt = fmt;
560         vaf.va = &args;
561         if (block)
562                 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
563                        "inode #%lu: block %llu: comm %s: %pV\n",
564                        inode->i_sb->s_id, function, line, inode->i_ino,
565                        block, current->comm, &vaf);
566         else
567                 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
568                        "inode #%lu: comm %s: %pV\n",
569                        inode->i_sb->s_id, function, line, inode->i_ino,
570                        current->comm, &vaf);
571         va_end(args);
572
573         ext4_handle_error(inode->i_sb);
574 }
575
576 void ext4_error_file(struct file *file, const char *function,
577                      unsigned int line, ext4_fsblk_t block,
578                      const char *fmt, ...)
579 {
580         va_list args;
581         struct va_format vaf;
582         struct ext4_super_block *es;
583         struct inode *inode = file->f_dentry->d_inode;
584         char pathname[80], *path;
585
586         es = EXT4_SB(inode->i_sb)->s_es;
587         es->s_last_error_ino = cpu_to_le32(inode->i_ino);
588         save_error_info(inode->i_sb, function, line);
589         path = d_path(&(file->f_path), pathname, sizeof(pathname));
590         if (IS_ERR(path))
591                 path = "(unknown)";
592         va_start(args, fmt);
593         vaf.fmt = fmt;
594         vaf.va = &args;
595         if (block)
596                 printk(KERN_CRIT
597                        "EXT4-fs error (device %s): %s:%d: inode #%lu: "
598                        "block %llu: comm %s: path %s: %pV\n",
599                        inode->i_sb->s_id, function, line, inode->i_ino,
600                        block, current->comm, path, &vaf);
601         else
602                 printk(KERN_CRIT
603                        "EXT4-fs error (device %s): %s:%d: inode #%lu: "
604                        "comm %s: path %s: %pV\n",
605                        inode->i_sb->s_id, function, line, inode->i_ino,
606                        current->comm, path, &vaf);
607         va_end(args);
608
609         ext4_handle_error(inode->i_sb);
610 }
611
612 static const char *ext4_decode_error(struct super_block *sb, int errno,
613                                      char nbuf[16])
614 {
615         char *errstr = NULL;
616
617         switch (errno) {
618         case -EIO:
619                 errstr = "IO failure";
620                 break;
621         case -ENOMEM:
622                 errstr = "Out of memory";
623                 break;
624         case -EROFS:
625                 if (!sb || (EXT4_SB(sb)->s_journal &&
626                             EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
627                         errstr = "Journal has aborted";
628                 else
629                         errstr = "Readonly filesystem";
630                 break;
631         default:
632                 /* If the caller passed in an extra buffer for unknown
633                  * errors, textualise them now.  Else we just return
634                  * NULL. */
635                 if (nbuf) {
636                         /* Check for truncated error codes... */
637                         if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
638                                 errstr = nbuf;
639                 }
640                 break;
641         }
642
643         return errstr;
644 }
645
646 /* __ext4_std_error decodes expected errors from journaling functions
647  * automatically and invokes the appropriate error response.  */
648
649 void __ext4_std_error(struct super_block *sb, const char *function,
650                       unsigned int line, int errno)
651 {
652         char nbuf[16];
653         const char *errstr;
654
655         /* Special case: if the error is EROFS, and we're not already
656          * inside a transaction, then there's really no point in logging
657          * an error. */
658         if (errno == -EROFS && journal_current_handle() == NULL &&
659             (sb->s_flags & MS_RDONLY))
660                 return;
661
662         errstr = ext4_decode_error(sb, errno, nbuf);
663         printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
664                sb->s_id, function, line, errstr);
665         save_error_info(sb, function, line);
666
667         ext4_handle_error(sb);
668 }
669
670 /*
671  * ext4_abort is a much stronger failure handler than ext4_error.  The
672  * abort function may be used to deal with unrecoverable failures such
673  * as journal IO errors or ENOMEM at a critical moment in log management.
674  *
675  * We unconditionally force the filesystem into an ABORT|READONLY state,
676  * unless the error response on the fs has been set to panic in which
677  * case we take the easy way out and panic immediately.
678  */
679
680 void __ext4_abort(struct super_block *sb, const char *function,
681                 unsigned int line, const char *fmt, ...)
682 {
683         va_list args;
684
685         save_error_info(sb, function, line);
686         va_start(args, fmt);
687         printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
688                function, line);
689         vprintk(fmt, args);
690         printk("\n");
691         va_end(args);
692
693         if ((sb->s_flags & MS_RDONLY) == 0) {
694                 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
695                 sb->s_flags |= MS_RDONLY;
696                 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
697                 if (EXT4_SB(sb)->s_journal)
698                         jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
699                 save_error_info(sb, function, line);
700         }
701         if (test_opt(sb, ERRORS_PANIC))
702                 panic("EXT4-fs panic from previous error\n");
703 }
704
705 void ext4_msg(struct super_block *sb, const char *prefix, const char *fmt, ...)
706 {
707         struct va_format vaf;
708         va_list args;
709
710         va_start(args, fmt);
711         vaf.fmt = fmt;
712         vaf.va = &args;
713         printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
714         va_end(args);
715 }
716
717 void __ext4_warning(struct super_block *sb, const char *function,
718                     unsigned int line, const char *fmt, ...)
719 {
720         struct va_format vaf;
721         va_list args;
722
723         va_start(args, fmt);
724         vaf.fmt = fmt;
725         vaf.va = &args;
726         printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
727                sb->s_id, function, line, &vaf);
728         va_end(args);
729 }
730
731 void __ext4_grp_locked_error(const char *function, unsigned int line,
732                              struct super_block *sb, ext4_group_t grp,
733                              unsigned long ino, ext4_fsblk_t block,
734                              const char *fmt, ...)
735 __releases(bitlock)
736 __acquires(bitlock)
737 {
738         struct va_format vaf;
739         va_list args;
740         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
741
742         es->s_last_error_ino = cpu_to_le32(ino);
743         es->s_last_error_block = cpu_to_le64(block);
744         __save_error_info(sb, function, line);
745
746         va_start(args, fmt);
747
748         vaf.fmt = fmt;
749         vaf.va = &args;
750         printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
751                sb->s_id, function, line, grp);
752         if (ino)
753                 printk(KERN_CONT "inode %lu: ", ino);
754         if (block)
755                 printk(KERN_CONT "block %llu:", (unsigned long long) block);
756         printk(KERN_CONT "%pV\n", &vaf);
757         va_end(args);
758
759         if (test_opt(sb, ERRORS_CONT)) {
760                 ext4_commit_super(sb, 0);
761                 return;
762         }
763
764         ext4_unlock_group(sb, grp);
765         ext4_handle_error(sb);
766         /*
767          * We only get here in the ERRORS_RO case; relocking the group
768          * may be dangerous, but nothing bad will happen since the
769          * filesystem will have already been marked read/only and the
770          * journal has been aborted.  We return 1 as a hint to callers
771          * who might what to use the return value from
772          * ext4_grp_locked_error() to distinguish between the
773          * ERRORS_CONT and ERRORS_RO case, and perhaps return more
774          * aggressively from the ext4 function in question, with a
775          * more appropriate error code.
776          */
777         ext4_lock_group(sb, grp);
778         return;
779 }
780
781 void ext4_update_dynamic_rev(struct super_block *sb)
782 {
783         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
784
785         if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
786                 return;
787
788         ext4_warning(sb,
789                      "updating to rev %d because of new feature flag, "
790                      "running e2fsck is recommended",
791                      EXT4_DYNAMIC_REV);
792
793         es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
794         es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
795         es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
796         /* leave es->s_feature_*compat flags alone */
797         /* es->s_uuid will be set by e2fsck if empty */
798
799         /*
800          * The rest of the superblock fields should be zero, and if not it
801          * means they are likely already in use, so leave them alone.  We
802          * can leave it up to e2fsck to clean up any inconsistencies there.
803          */
804 }
805
806 /*
807  * Open the external journal device
808  */
809 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
810 {
811         struct block_device *bdev;
812         char b[BDEVNAME_SIZE];
813
814         bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
815         if (IS_ERR(bdev))
816                 goto fail;
817         return bdev;
818
819 fail:
820         ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
821                         __bdevname(dev, b), PTR_ERR(bdev));
822         return NULL;
823 }
824
825 /*
826  * Release the journal device
827  */
828 static int ext4_blkdev_put(struct block_device *bdev)
829 {
830         return blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
831 }
832
833 static int ext4_blkdev_remove(struct ext4_sb_info *sbi)
834 {
835         struct block_device *bdev;
836         int ret = -ENODEV;
837
838         bdev = sbi->journal_bdev;
839         if (bdev) {
840                 ret = ext4_blkdev_put(bdev);
841                 sbi->journal_bdev = NULL;
842         }
843         return ret;
844 }
845
846 static inline struct inode *orphan_list_entry(struct list_head *l)
847 {
848         return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
849 }
850
851 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
852 {
853         struct list_head *l;
854
855         ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
856                  le32_to_cpu(sbi->s_es->s_last_orphan));
857
858         printk(KERN_ERR "sb_info orphan list:\n");
859         list_for_each(l, &sbi->s_orphan) {
860                 struct inode *inode = orphan_list_entry(l);
861                 printk(KERN_ERR "  "
862                        "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
863                        inode->i_sb->s_id, inode->i_ino, inode,
864                        inode->i_mode, inode->i_nlink,
865                        NEXT_ORPHAN(inode));
866         }
867 }
868
869 static void ext4_put_super(struct super_block *sb)
870 {
871         struct ext4_sb_info *sbi = EXT4_SB(sb);
872         struct ext4_super_block *es = sbi->s_es;
873         int i, err;
874
875         ext4_unregister_li_request(sb);
876         dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
877
878         flush_workqueue(sbi->dio_unwritten_wq);
879         destroy_workqueue(sbi->dio_unwritten_wq);
880
881         lock_super(sb);
882         if (sbi->s_journal) {
883                 err = jbd2_journal_destroy(sbi->s_journal);
884                 sbi->s_journal = NULL;
885                 if (err < 0)
886                         ext4_abort(sb, "Couldn't clean up the journal");
887         }
888
889         del_timer(&sbi->s_err_report);
890         ext4_release_system_zone(sb);
891         ext4_mb_release(sb);
892         ext4_ext_release(sb);
893         ext4_xattr_put_super(sb);
894
895         if (!(sb->s_flags & MS_RDONLY)) {
896                 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
897                 es->s_state = cpu_to_le16(sbi->s_mount_state);
898         }
899         if (sb->s_dirt || !(sb->s_flags & MS_RDONLY))
900                 ext4_commit_super(sb, 1);
901
902         if (sbi->s_proc) {
903                 remove_proc_entry("options", sbi->s_proc);
904                 remove_proc_entry(sb->s_id, ext4_proc_root);
905         }
906         kobject_del(&sbi->s_kobj);
907
908         for (i = 0; i < sbi->s_gdb_count; i++)
909                 brelse(sbi->s_group_desc[i]);
910         ext4_kvfree(sbi->s_group_desc);
911         ext4_kvfree(sbi->s_flex_groups);
912         percpu_counter_destroy(&sbi->s_freeclusters_counter);
913         percpu_counter_destroy(&sbi->s_freeinodes_counter);
914         percpu_counter_destroy(&sbi->s_dirs_counter);
915         percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
916         brelse(sbi->s_sbh);
917 #ifdef CONFIG_QUOTA
918         for (i = 0; i < MAXQUOTAS; i++)
919                 kfree(sbi->s_qf_names[i]);
920 #endif
921
922         /* Debugging code just in case the in-memory inode orphan list
923          * isn't empty.  The on-disk one can be non-empty if we've
924          * detected an error and taken the fs readonly, but the
925          * in-memory list had better be clean by this point. */
926         if (!list_empty(&sbi->s_orphan))
927                 dump_orphan_list(sb, sbi);
928         J_ASSERT(list_empty(&sbi->s_orphan));
929
930         invalidate_bdev(sb->s_bdev);
931         if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
932                 /*
933                  * Invalidate the journal device's buffers.  We don't want them
934                  * floating about in memory - the physical journal device may
935                  * hotswapped, and it breaks the `ro-after' testing code.
936                  */
937                 sync_blockdev(sbi->journal_bdev);
938                 invalidate_bdev(sbi->journal_bdev);
939                 ext4_blkdev_remove(sbi);
940         }
941         if (sbi->s_mmp_tsk)
942                 kthread_stop(sbi->s_mmp_tsk);
943         sb->s_fs_info = NULL;
944         /*
945          * Now that we are completely done shutting down the
946          * superblock, we need to actually destroy the kobject.
947          */
948         unlock_super(sb);
949         kobject_put(&sbi->s_kobj);
950         wait_for_completion(&sbi->s_kobj_unregister);
951         if (sbi->s_chksum_driver)
952                 crypto_free_shash(sbi->s_chksum_driver);
953         kfree(sbi->s_blockgroup_lock);
954         kfree(sbi);
955 }
956
957 static struct kmem_cache *ext4_inode_cachep;
958
959 /*
960  * Called inside transaction, so use GFP_NOFS
961  */
962 static struct inode *ext4_alloc_inode(struct super_block *sb)
963 {
964         struct ext4_inode_info *ei;
965
966         ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
967         if (!ei)
968                 return NULL;
969
970         ei->vfs_inode.i_version = 1;
971         ei->vfs_inode.i_data.writeback_index = 0;
972         memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache));
973         INIT_LIST_HEAD(&ei->i_prealloc_list);
974         spin_lock_init(&ei->i_prealloc_lock);
975         ei->i_reserved_data_blocks = 0;
976         ei->i_reserved_meta_blocks = 0;
977         ei->i_allocated_meta_blocks = 0;
978         ei->i_da_metadata_calc_len = 0;
979         spin_lock_init(&(ei->i_block_reservation_lock));
980 #ifdef CONFIG_QUOTA
981         ei->i_reserved_quota = 0;
982 #endif
983         ei->jinode = NULL;
984         INIT_LIST_HEAD(&ei->i_completed_io_list);
985         spin_lock_init(&ei->i_completed_io_lock);
986         ei->cur_aio_dio = NULL;
987         ei->i_sync_tid = 0;
988         ei->i_datasync_tid = 0;
989         atomic_set(&ei->i_ioend_count, 0);
990         atomic_set(&ei->i_aiodio_unwritten, 0);
991
992         return &ei->vfs_inode;
993 }
994
995 static int ext4_drop_inode(struct inode *inode)
996 {
997         int drop = generic_drop_inode(inode);
998
999         trace_ext4_drop_inode(inode, drop);
1000         return drop;
1001 }
1002
1003 static void ext4_i_callback(struct rcu_head *head)
1004 {
1005         struct inode *inode = container_of(head, struct inode, i_rcu);
1006         kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1007 }
1008
1009 static void ext4_destroy_inode(struct inode *inode)
1010 {
1011         if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1012                 ext4_msg(inode->i_sb, KERN_ERR,
1013                          "Inode %lu (%p): orphan list check failed!",
1014                          inode->i_ino, EXT4_I(inode));
1015                 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1016                                 EXT4_I(inode), sizeof(struct ext4_inode_info),
1017                                 true);
1018                 dump_stack();
1019         }
1020         call_rcu(&inode->i_rcu, ext4_i_callback);
1021 }
1022
1023 static void init_once(void *foo)
1024 {
1025         struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1026
1027         INIT_LIST_HEAD(&ei->i_orphan);
1028 #ifdef CONFIG_EXT4_FS_XATTR
1029         init_rwsem(&ei->xattr_sem);
1030 #endif
1031         init_rwsem(&ei->i_data_sem);
1032         inode_init_once(&ei->vfs_inode);
1033 }
1034
1035 static int init_inodecache(void)
1036 {
1037         ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
1038                                              sizeof(struct ext4_inode_info),
1039                                              0, (SLAB_RECLAIM_ACCOUNT|
1040                                                 SLAB_MEM_SPREAD),
1041                                              init_once);
1042         if (ext4_inode_cachep == NULL)
1043                 return -ENOMEM;
1044         return 0;
1045 }
1046
1047 static void destroy_inodecache(void)
1048 {
1049         kmem_cache_destroy(ext4_inode_cachep);
1050 }
1051
1052 void ext4_clear_inode(struct inode *inode)
1053 {
1054         invalidate_inode_buffers(inode);
1055         clear_inode(inode);
1056         dquot_drop(inode);
1057         ext4_discard_preallocations(inode);
1058         if (EXT4_I(inode)->jinode) {
1059                 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1060                                                EXT4_I(inode)->jinode);
1061                 jbd2_free_inode(EXT4_I(inode)->jinode);
1062                 EXT4_I(inode)->jinode = NULL;
1063         }
1064 }
1065
1066 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1067                                         u64 ino, u32 generation)
1068 {
1069         struct inode *inode;
1070
1071         if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1072                 return ERR_PTR(-ESTALE);
1073         if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1074                 return ERR_PTR(-ESTALE);
1075
1076         /* iget isn't really right if the inode is currently unallocated!!
1077          *
1078          * ext4_read_inode will return a bad_inode if the inode had been
1079          * deleted, so we should be safe.
1080          *
1081          * Currently we don't know the generation for parent directory, so
1082          * a generation of 0 means "accept any"
1083          */
1084         inode = ext4_iget(sb, ino);
1085         if (IS_ERR(inode))
1086                 return ERR_CAST(inode);
1087         if (generation && inode->i_generation != generation) {
1088                 iput(inode);
1089                 return ERR_PTR(-ESTALE);
1090         }
1091
1092         return inode;
1093 }
1094
1095 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1096                                         int fh_len, int fh_type)
1097 {
1098         return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1099                                     ext4_nfs_get_inode);
1100 }
1101
1102 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1103                                         int fh_len, int fh_type)
1104 {
1105         return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1106                                     ext4_nfs_get_inode);
1107 }
1108
1109 /*
1110  * Try to release metadata pages (indirect blocks, directories) which are
1111  * mapped via the block device.  Since these pages could have journal heads
1112  * which would prevent try_to_free_buffers() from freeing them, we must use
1113  * jbd2 layer's try_to_free_buffers() function to release them.
1114  */
1115 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1116                                  gfp_t wait)
1117 {
1118         journal_t *journal = EXT4_SB(sb)->s_journal;
1119
1120         WARN_ON(PageChecked(page));
1121         if (!page_has_buffers(page))
1122                 return 0;
1123         if (journal)
1124                 return jbd2_journal_try_to_free_buffers(journal, page,
1125                                                         wait & ~__GFP_WAIT);
1126         return try_to_free_buffers(page);
1127 }
1128
1129 #ifdef CONFIG_QUOTA
1130 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1131 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1132
1133 static int ext4_write_dquot(struct dquot *dquot);
1134 static int ext4_acquire_dquot(struct dquot *dquot);
1135 static int ext4_release_dquot(struct dquot *dquot);
1136 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1137 static int ext4_write_info(struct super_block *sb, int type);
1138 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1139                          struct path *path);
1140 static int ext4_quota_off(struct super_block *sb, int type);
1141 static int ext4_quota_on_mount(struct super_block *sb, int type);
1142 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1143                                size_t len, loff_t off);
1144 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1145                                 const char *data, size_t len, loff_t off);
1146
1147 static const struct dquot_operations ext4_quota_operations = {
1148         .get_reserved_space = ext4_get_reserved_space,
1149         .write_dquot    = ext4_write_dquot,
1150         .acquire_dquot  = ext4_acquire_dquot,
1151         .release_dquot  = ext4_release_dquot,
1152         .mark_dirty     = ext4_mark_dquot_dirty,
1153         .write_info     = ext4_write_info,
1154         .alloc_dquot    = dquot_alloc,
1155         .destroy_dquot  = dquot_destroy,
1156 };
1157
1158 static const struct quotactl_ops ext4_qctl_operations = {
1159         .quota_on       = ext4_quota_on,
1160         .quota_off      = ext4_quota_off,
1161         .quota_sync     = dquot_quota_sync,
1162         .get_info       = dquot_get_dqinfo,
1163         .set_info       = dquot_set_dqinfo,
1164         .get_dqblk      = dquot_get_dqblk,
1165         .set_dqblk      = dquot_set_dqblk
1166 };
1167 #endif
1168
1169 static const struct super_operations ext4_sops = {
1170         .alloc_inode    = ext4_alloc_inode,
1171         .destroy_inode  = ext4_destroy_inode,
1172         .write_inode    = ext4_write_inode,
1173         .dirty_inode    = ext4_dirty_inode,
1174         .drop_inode     = ext4_drop_inode,
1175         .evict_inode    = ext4_evict_inode,
1176         .put_super      = ext4_put_super,
1177         .sync_fs        = ext4_sync_fs,
1178         .freeze_fs      = ext4_freeze,
1179         .unfreeze_fs    = ext4_unfreeze,
1180         .statfs         = ext4_statfs,
1181         .remount_fs     = ext4_remount,
1182         .show_options   = ext4_show_options,
1183 #ifdef CONFIG_QUOTA
1184         .quota_read     = ext4_quota_read,
1185         .quota_write    = ext4_quota_write,
1186 #endif
1187         .bdev_try_to_free_page = bdev_try_to_free_page,
1188 };
1189
1190 static const struct super_operations ext4_nojournal_sops = {
1191         .alloc_inode    = ext4_alloc_inode,
1192         .destroy_inode  = ext4_destroy_inode,
1193         .write_inode    = ext4_write_inode,
1194         .dirty_inode    = ext4_dirty_inode,
1195         .drop_inode     = ext4_drop_inode,
1196         .evict_inode    = ext4_evict_inode,
1197         .write_super    = ext4_write_super,
1198         .put_super      = ext4_put_super,
1199         .statfs         = ext4_statfs,
1200         .remount_fs     = ext4_remount,
1201         .show_options   = ext4_show_options,
1202 #ifdef CONFIG_QUOTA
1203         .quota_read     = ext4_quota_read,
1204         .quota_write    = ext4_quota_write,
1205 #endif
1206         .bdev_try_to_free_page = bdev_try_to_free_page,
1207 };
1208
1209 static const struct export_operations ext4_export_ops = {
1210         .fh_to_dentry = ext4_fh_to_dentry,
1211         .fh_to_parent = ext4_fh_to_parent,
1212         .get_parent = ext4_get_parent,
1213 };
1214
1215 enum {
1216         Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1217         Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1218         Opt_nouid32, Opt_debug, Opt_removed,
1219         Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1220         Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1221         Opt_commit, Opt_min_batch_time, Opt_max_batch_time,
1222         Opt_journal_dev, Opt_journal_checksum, Opt_journal_async_commit,
1223         Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1224         Opt_data_err_abort, Opt_data_err_ignore,
1225         Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1226         Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1227         Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1228         Opt_usrquota, Opt_grpquota, Opt_i_version,
1229         Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1230         Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1231         Opt_inode_readahead_blks, Opt_journal_ioprio,
1232         Opt_dioread_nolock, Opt_dioread_lock,
1233         Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1234 };
1235
1236 static const match_table_t tokens = {
1237         {Opt_bsd_df, "bsddf"},
1238         {Opt_minix_df, "minixdf"},
1239         {Opt_grpid, "grpid"},
1240         {Opt_grpid, "bsdgroups"},
1241         {Opt_nogrpid, "nogrpid"},
1242         {Opt_nogrpid, "sysvgroups"},
1243         {Opt_resgid, "resgid=%u"},
1244         {Opt_resuid, "resuid=%u"},
1245         {Opt_sb, "sb=%u"},
1246         {Opt_err_cont, "errors=continue"},
1247         {Opt_err_panic, "errors=panic"},
1248         {Opt_err_ro, "errors=remount-ro"},
1249         {Opt_nouid32, "nouid32"},
1250         {Opt_debug, "debug"},
1251         {Opt_removed, "oldalloc"},
1252         {Opt_removed, "orlov"},
1253         {Opt_user_xattr, "user_xattr"},
1254         {Opt_nouser_xattr, "nouser_xattr"},
1255         {Opt_acl, "acl"},
1256         {Opt_noacl, "noacl"},
1257         {Opt_noload, "norecovery"},
1258         {Opt_noload, "noload"},
1259         {Opt_removed, "nobh"},
1260         {Opt_removed, "bh"},
1261         {Opt_commit, "commit=%u"},
1262         {Opt_min_batch_time, "min_batch_time=%u"},
1263         {Opt_max_batch_time, "max_batch_time=%u"},
1264         {Opt_journal_dev, "journal_dev=%u"},
1265         {Opt_journal_checksum, "journal_checksum"},
1266         {Opt_journal_async_commit, "journal_async_commit"},
1267         {Opt_abort, "abort"},
1268         {Opt_data_journal, "data=journal"},
1269         {Opt_data_ordered, "data=ordered"},
1270         {Opt_data_writeback, "data=writeback"},
1271         {Opt_data_err_abort, "data_err=abort"},
1272         {Opt_data_err_ignore, "data_err=ignore"},
1273         {Opt_offusrjquota, "usrjquota="},
1274         {Opt_usrjquota, "usrjquota=%s"},
1275         {Opt_offgrpjquota, "grpjquota="},
1276         {Opt_grpjquota, "grpjquota=%s"},
1277         {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1278         {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1279         {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1280         {Opt_grpquota, "grpquota"},
1281         {Opt_noquota, "noquota"},
1282         {Opt_quota, "quota"},
1283         {Opt_usrquota, "usrquota"},
1284         {Opt_barrier, "barrier=%u"},
1285         {Opt_barrier, "barrier"},
1286         {Opt_nobarrier, "nobarrier"},
1287         {Opt_i_version, "i_version"},
1288         {Opt_stripe, "stripe=%u"},
1289         {Opt_delalloc, "delalloc"},
1290         {Opt_nodelalloc, "nodelalloc"},
1291         {Opt_mblk_io_submit, "mblk_io_submit"},
1292         {Opt_nomblk_io_submit, "nomblk_io_submit"},
1293         {Opt_block_validity, "block_validity"},
1294         {Opt_noblock_validity, "noblock_validity"},
1295         {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1296         {Opt_journal_ioprio, "journal_ioprio=%u"},
1297         {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1298         {Opt_auto_da_alloc, "auto_da_alloc"},
1299         {Opt_noauto_da_alloc, "noauto_da_alloc"},
1300         {Opt_dioread_nolock, "dioread_nolock"},
1301         {Opt_dioread_lock, "dioread_lock"},
1302         {Opt_discard, "discard"},
1303         {Opt_nodiscard, "nodiscard"},
1304         {Opt_init_itable, "init_itable=%u"},
1305         {Opt_init_itable, "init_itable"},
1306         {Opt_noinit_itable, "noinit_itable"},
1307         {Opt_removed, "check=none"},    /* mount option from ext2/3 */
1308         {Opt_removed, "nocheck"},       /* mount option from ext2/3 */
1309         {Opt_removed, "reservation"},   /* mount option from ext2/3 */
1310         {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1311         {Opt_removed, "journal=%u"},    /* mount option from ext2/3 */
1312         {Opt_err, NULL},
1313 };
1314
1315 static ext4_fsblk_t get_sb_block(void **data)
1316 {
1317         ext4_fsblk_t    sb_block;
1318         char            *options = (char *) *data;
1319
1320         if (!options || strncmp(options, "sb=", 3) != 0)
1321                 return 1;       /* Default location */
1322
1323         options += 3;
1324         /* TODO: use simple_strtoll with >32bit ext4 */
1325         sb_block = simple_strtoul(options, &options, 0);
1326         if (*options && *options != ',') {
1327                 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1328                        (char *) *data);
1329                 return 1;
1330         }
1331         if (*options == ',')
1332                 options++;
1333         *data = (void *) options;
1334
1335         return sb_block;
1336 }
1337
1338 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1339 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1340         "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1341
1342 #ifdef CONFIG_QUOTA
1343 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1344 {
1345         struct ext4_sb_info *sbi = EXT4_SB(sb);
1346         char *qname;
1347
1348         if (sb_any_quota_loaded(sb) &&
1349                 !sbi->s_qf_names[qtype]) {
1350                 ext4_msg(sb, KERN_ERR,
1351                         "Cannot change journaled "
1352                         "quota options when quota turned on");
1353                 return -1;
1354         }
1355         qname = match_strdup(args);
1356         if (!qname) {
1357                 ext4_msg(sb, KERN_ERR,
1358                         "Not enough memory for storing quotafile name");
1359                 return -1;
1360         }
1361         if (sbi->s_qf_names[qtype] &&
1362                 strcmp(sbi->s_qf_names[qtype], qname)) {
1363                 ext4_msg(sb, KERN_ERR,
1364                         "%s quota file already specified", QTYPE2NAME(qtype));
1365                 kfree(qname);
1366                 return -1;
1367         }
1368         sbi->s_qf_names[qtype] = qname;
1369         if (strchr(sbi->s_qf_names[qtype], '/')) {
1370                 ext4_msg(sb, KERN_ERR,
1371                         "quotafile must be on filesystem root");
1372                 kfree(sbi->s_qf_names[qtype]);
1373                 sbi->s_qf_names[qtype] = NULL;
1374                 return -1;
1375         }
1376         set_opt(sb, QUOTA);
1377         return 1;
1378 }
1379
1380 static int clear_qf_name(struct super_block *sb, int qtype)
1381 {
1382
1383         struct ext4_sb_info *sbi = EXT4_SB(sb);
1384
1385         if (sb_any_quota_loaded(sb) &&
1386                 sbi->s_qf_names[qtype]) {
1387                 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1388                         " when quota turned on");
1389                 return -1;
1390         }
1391         /*
1392          * The space will be released later when all options are confirmed
1393          * to be correct
1394          */
1395         sbi->s_qf_names[qtype] = NULL;
1396         return 1;
1397 }
1398 #endif
1399
1400 #define MOPT_SET        0x0001
1401 #define MOPT_CLEAR      0x0002
1402 #define MOPT_NOSUPPORT  0x0004
1403 #define MOPT_EXPLICIT   0x0008
1404 #define MOPT_CLEAR_ERR  0x0010
1405 #define MOPT_GTE0       0x0020
1406 #ifdef CONFIG_QUOTA
1407 #define MOPT_Q          0
1408 #define MOPT_QFMT       0x0040
1409 #else
1410 #define MOPT_Q          MOPT_NOSUPPORT
1411 #define MOPT_QFMT       MOPT_NOSUPPORT
1412 #endif
1413 #define MOPT_DATAJ      0x0080
1414
1415 static const struct mount_opts {
1416         int     token;
1417         int     mount_opt;
1418         int     flags;
1419 } ext4_mount_opts[] = {
1420         {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1421         {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1422         {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1423         {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1424         {Opt_mblk_io_submit, EXT4_MOUNT_MBLK_IO_SUBMIT, MOPT_SET},
1425         {Opt_nomblk_io_submit, EXT4_MOUNT_MBLK_IO_SUBMIT, MOPT_CLEAR},
1426         {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1427         {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1428         {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, MOPT_SET},
1429         {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, MOPT_CLEAR},
1430         {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1431         {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1432         {Opt_delalloc, EXT4_MOUNT_DELALLOC, MOPT_SET | MOPT_EXPLICIT},
1433         {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, MOPT_CLEAR | MOPT_EXPLICIT},
1434         {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, MOPT_SET},
1435         {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1436                                     EXT4_MOUNT_JOURNAL_CHECKSUM), MOPT_SET},
1437         {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_SET},
1438         {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1439         {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1440         {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1441         {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_SET},
1442         {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_CLEAR},
1443         {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1444         {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1445         {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1446         {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1447         {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1448         {Opt_commit, 0, MOPT_GTE0},
1449         {Opt_max_batch_time, 0, MOPT_GTE0},
1450         {Opt_min_batch_time, 0, MOPT_GTE0},
1451         {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1452         {Opt_init_itable, 0, MOPT_GTE0},
1453         {Opt_stripe, 0, MOPT_GTE0},
1454         {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_DATAJ},
1455         {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_DATAJ},
1456         {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, MOPT_DATAJ},
1457 #ifdef CONFIG_EXT4_FS_XATTR
1458         {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1459         {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1460 #else
1461         {Opt_user_xattr, 0, MOPT_NOSUPPORT},
1462         {Opt_nouser_xattr, 0, MOPT_NOSUPPORT},
1463 #endif
1464 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1465         {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1466         {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1467 #else
1468         {Opt_acl, 0, MOPT_NOSUPPORT},
1469         {Opt_noacl, 0, MOPT_NOSUPPORT},
1470 #endif
1471         {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1472         {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1473         {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1474         {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1475                                                         MOPT_SET | MOPT_Q},
1476         {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1477                                                         MOPT_SET | MOPT_Q},
1478         {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1479                        EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q},
1480         {Opt_usrjquota, 0, MOPT_Q},
1481         {Opt_grpjquota, 0, MOPT_Q},
1482         {Opt_offusrjquota, 0, MOPT_Q},
1483         {Opt_offgrpjquota, 0, MOPT_Q},
1484         {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1485         {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1486         {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1487         {Opt_err, 0, 0}
1488 };
1489
1490 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1491                             substring_t *args, unsigned long *journal_devnum,
1492                             unsigned int *journal_ioprio, int is_remount)
1493 {
1494         struct ext4_sb_info *sbi = EXT4_SB(sb);
1495         const struct mount_opts *m;
1496         kuid_t uid;
1497         kgid_t gid;
1498         int arg = 0;
1499
1500 #ifdef CONFIG_QUOTA
1501         if (token == Opt_usrjquota)
1502                 return set_qf_name(sb, USRQUOTA, &args[0]);
1503         else if (token == Opt_grpjquota)
1504                 return set_qf_name(sb, GRPQUOTA, &args[0]);
1505         else if (token == Opt_offusrjquota)
1506                 return clear_qf_name(sb, USRQUOTA);
1507         else if (token == Opt_offgrpjquota)
1508                 return clear_qf_name(sb, GRPQUOTA);
1509 #endif
1510         if (args->from && match_int(args, &arg))
1511                 return -1;
1512         switch (token) {
1513         case Opt_noacl:
1514         case Opt_nouser_xattr:
1515                 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1516                 break;
1517         case Opt_sb:
1518                 return 1;       /* handled by get_sb_block() */
1519         case Opt_removed:
1520                 ext4_msg(sb, KERN_WARNING,
1521                          "Ignoring removed %s option", opt);
1522                 return 1;
1523         case Opt_resuid:
1524                 uid = make_kuid(current_user_ns(), arg);
1525                 if (!uid_valid(uid)) {
1526                         ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1527                         return -1;
1528                 }
1529                 sbi->s_resuid = uid;
1530                 return 1;
1531         case Opt_resgid:
1532                 gid = make_kgid(current_user_ns(), arg);
1533                 if (!gid_valid(gid)) {
1534                         ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1535                         return -1;
1536                 }
1537                 sbi->s_resgid = gid;
1538                 return 1;
1539         case Opt_abort:
1540                 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1541                 return 1;
1542         case Opt_i_version:
1543                 sb->s_flags |= MS_I_VERSION;
1544                 return 1;
1545         case Opt_journal_dev:
1546                 if (is_remount) {
1547                         ext4_msg(sb, KERN_ERR,
1548                                  "Cannot specify journal on remount");
1549                         return -1;
1550                 }
1551                 *journal_devnum = arg;
1552                 return 1;
1553         case Opt_journal_ioprio:
1554                 if (arg < 0 || arg > 7)
1555                         return -1;
1556                 *journal_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1557                 return 1;
1558         }
1559
1560         for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1561                 if (token != m->token)
1562                         continue;
1563                 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1564                         return -1;
1565                 if (m->flags & MOPT_EXPLICIT)
1566                         set_opt2(sb, EXPLICIT_DELALLOC);
1567                 if (m->flags & MOPT_CLEAR_ERR)
1568                         clear_opt(sb, ERRORS_MASK);
1569                 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1570                         ext4_msg(sb, KERN_ERR, "Cannot change quota "
1571                                  "options when quota turned on");
1572                         return -1;
1573                 }
1574
1575                 if (m->flags & MOPT_NOSUPPORT) {
1576                         ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1577                 } else if (token == Opt_commit) {
1578                         if (arg == 0)
1579                                 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1580                         sbi->s_commit_interval = HZ * arg;
1581                 } else if (token == Opt_max_batch_time) {
1582                         if (arg == 0)
1583                                 arg = EXT4_DEF_MAX_BATCH_TIME;
1584                         sbi->s_max_batch_time = arg;
1585                 } else if (token == Opt_min_batch_time) {
1586                         sbi->s_min_batch_time = arg;
1587                 } else if (token == Opt_inode_readahead_blks) {
1588                         if (arg > (1 << 30))
1589                                 return -1;
1590                         if (arg && !is_power_of_2(arg)) {
1591                                 ext4_msg(sb, KERN_ERR,
1592                                          "EXT4-fs: inode_readahead_blks"
1593                                          " must be a power of 2");
1594                                 return -1;
1595                         }
1596                         sbi->s_inode_readahead_blks = arg;
1597                 } else if (token == Opt_init_itable) {
1598                         set_opt(sb, INIT_INODE_TABLE);
1599                         if (!args->from)
1600                                 arg = EXT4_DEF_LI_WAIT_MULT;
1601                         sbi->s_li_wait_mult = arg;
1602                 } else if (token == Opt_stripe) {
1603                         sbi->s_stripe = arg;
1604                 } else if (m->flags & MOPT_DATAJ) {
1605                         if (is_remount) {
1606                                 if (!sbi->s_journal)
1607                                         ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1608                                 else if (test_opt(sb, DATA_FLAGS) !=
1609                                          m->mount_opt) {
1610                                         ext4_msg(sb, KERN_ERR,
1611                                          "Cannot change data mode on remount");
1612                                         return -1;
1613                                 }
1614                         } else {
1615                                 clear_opt(sb, DATA_FLAGS);
1616                                 sbi->s_mount_opt |= m->mount_opt;
1617                         }
1618 #ifdef CONFIG_QUOTA
1619                 } else if (m->flags & MOPT_QFMT) {
1620                         if (sb_any_quota_loaded(sb) &&
1621                             sbi->s_jquota_fmt != m->mount_opt) {
1622                                 ext4_msg(sb, KERN_ERR, "Cannot "
1623                                          "change journaled quota options "
1624                                          "when quota turned on");
1625                                 return -1;
1626                         }
1627                         sbi->s_jquota_fmt = m->mount_opt;
1628 #endif
1629                 } else {
1630                         if (!args->from)
1631                                 arg = 1;
1632                         if (m->flags & MOPT_CLEAR)
1633                                 arg = !arg;
1634                         else if (unlikely(!(m->flags & MOPT_SET))) {
1635                                 ext4_msg(sb, KERN_WARNING,
1636                                          "buggy handling of option %s", opt);
1637                                 WARN_ON(1);
1638                                 return -1;
1639                         }
1640                         if (arg != 0)
1641                                 sbi->s_mount_opt |= m->mount_opt;
1642                         else
1643                                 sbi->s_mount_opt &= ~m->mount_opt;
1644                 }
1645                 return 1;
1646         }
1647         ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1648                  "or missing value", opt);
1649         return -1;
1650 }
1651
1652 static int parse_options(char *options, struct super_block *sb,
1653                          unsigned long *journal_devnum,
1654                          unsigned int *journal_ioprio,
1655                          int is_remount)
1656 {
1657 #ifdef CONFIG_QUOTA
1658         struct ext4_sb_info *sbi = EXT4_SB(sb);
1659 #endif
1660         char *p;
1661         substring_t args[MAX_OPT_ARGS];
1662         int token;
1663
1664         if (!options)
1665                 return 1;
1666
1667         while ((p = strsep(&options, ",")) != NULL) {
1668                 if (!*p)
1669                         continue;
1670                 /*
1671                  * Initialize args struct so we know whether arg was
1672                  * found; some options take optional arguments.
1673                  */
1674                 args[0].to = args[0].from = 0;
1675                 token = match_token(p, tokens, args);
1676                 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1677                                      journal_ioprio, is_remount) < 0)
1678                         return 0;
1679         }
1680 #ifdef CONFIG_QUOTA
1681         if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1682                 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1683                         clear_opt(sb, USRQUOTA);
1684
1685                 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1686                         clear_opt(sb, GRPQUOTA);
1687
1688                 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1689                         ext4_msg(sb, KERN_ERR, "old and new quota "
1690                                         "format mixing");
1691                         return 0;
1692                 }
1693
1694                 if (!sbi->s_jquota_fmt) {
1695                         ext4_msg(sb, KERN_ERR, "journaled quota format "
1696                                         "not specified");
1697                         return 0;
1698                 }
1699         } else {
1700                 if (sbi->s_jquota_fmt) {
1701                         ext4_msg(sb, KERN_ERR, "journaled quota format "
1702                                         "specified with no journaling "
1703                                         "enabled");
1704                         return 0;
1705                 }
1706         }
1707 #endif
1708         return 1;
1709 }
1710
1711 static inline void ext4_show_quota_options(struct seq_file *seq,
1712                                            struct super_block *sb)
1713 {
1714 #if defined(CONFIG_QUOTA)
1715         struct ext4_sb_info *sbi = EXT4_SB(sb);
1716
1717         if (sbi->s_jquota_fmt) {
1718                 char *fmtname = "";
1719
1720                 switch (sbi->s_jquota_fmt) {
1721                 case QFMT_VFS_OLD:
1722                         fmtname = "vfsold";
1723                         break;
1724                 case QFMT_VFS_V0:
1725                         fmtname = "vfsv0";
1726                         break;
1727                 case QFMT_VFS_V1:
1728                         fmtname = "vfsv1";
1729                         break;
1730                 }
1731                 seq_printf(seq, ",jqfmt=%s", fmtname);
1732         }
1733
1734         if (sbi->s_qf_names[USRQUOTA])
1735                 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
1736
1737         if (sbi->s_qf_names[GRPQUOTA])
1738                 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
1739
1740         if (test_opt(sb, USRQUOTA))
1741                 seq_puts(seq, ",usrquota");
1742
1743         if (test_opt(sb, GRPQUOTA))
1744                 seq_puts(seq, ",grpquota");
1745 #endif
1746 }
1747
1748 static const char *token2str(int token)
1749 {
1750         static const struct match_token *t;
1751
1752         for (t = tokens; t->token != Opt_err; t++)
1753                 if (t->token == token && !strchr(t->pattern, '='))
1754                         break;
1755         return t->pattern;
1756 }
1757
1758 /*
1759  * Show an option if
1760  *  - it's set to a non-default value OR
1761  *  - if the per-sb default is different from the global default
1762  */
1763 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1764                               int nodefs)
1765 {
1766         struct ext4_sb_info *sbi = EXT4_SB(sb);
1767         struct ext4_super_block *es = sbi->s_es;
1768         int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1769         const struct mount_opts *m;
1770         char sep = nodefs ? '\n' : ',';
1771
1772 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1773 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1774
1775         if (sbi->s_sb_block != 1)
1776                 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1777
1778         for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1779                 int want_set = m->flags & MOPT_SET;
1780                 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1781                     (m->flags & MOPT_CLEAR_ERR))
1782                         continue;
1783                 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1784                         continue; /* skip if same as the default */
1785                 if ((want_set &&
1786                      (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1787                     (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1788                         continue; /* select Opt_noFoo vs Opt_Foo */
1789                 SEQ_OPTS_PRINT("%s", token2str(m->token));
1790         }
1791
1792         if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
1793             le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1794                 SEQ_OPTS_PRINT("resuid=%u",
1795                                 from_kuid_munged(&init_user_ns, sbi->s_resuid));
1796         if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
1797             le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1798                 SEQ_OPTS_PRINT("resgid=%u",
1799                                 from_kgid_munged(&init_user_ns, sbi->s_resgid));
1800         def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1801         if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1802                 SEQ_OPTS_PUTS("errors=remount-ro");
1803         if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1804                 SEQ_OPTS_PUTS("errors=continue");
1805         if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1806                 SEQ_OPTS_PUTS("errors=panic");
1807         if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
1808                 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
1809         if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
1810                 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
1811         if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
1812                 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
1813         if (sb->s_flags & MS_I_VERSION)
1814                 SEQ_OPTS_PUTS("i_version");
1815         if (nodefs || sbi->s_stripe)
1816                 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
1817         if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
1818                 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1819                         SEQ_OPTS_PUTS("data=journal");
1820                 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1821                         SEQ_OPTS_PUTS("data=ordered");
1822                 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1823                         SEQ_OPTS_PUTS("data=writeback");
1824         }
1825         if (nodefs ||
1826             sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1827                 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
1828                                sbi->s_inode_readahead_blks);
1829
1830         if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
1831                        (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
1832                 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
1833
1834         ext4_show_quota_options(seq, sb);
1835         return 0;
1836 }
1837
1838 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
1839 {
1840         return _ext4_show_options(seq, root->d_sb, 0);
1841 }
1842
1843 static int options_seq_show(struct seq_file *seq, void *offset)
1844 {
1845         struct super_block *sb = seq->private;
1846         int rc;
1847
1848         seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
1849         rc = _ext4_show_options(seq, sb, 1);
1850         seq_puts(seq, "\n");
1851         return rc;
1852 }
1853
1854 static int options_open_fs(struct inode *inode, struct file *file)
1855 {
1856         return single_open(file, options_seq_show, PDE(inode)->data);
1857 }
1858
1859 static const struct file_operations ext4_seq_options_fops = {
1860         .owner = THIS_MODULE,
1861         .open = options_open_fs,
1862         .read = seq_read,
1863         .llseek = seq_lseek,
1864         .release = single_release,
1865 };
1866
1867 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1868                             int read_only)
1869 {
1870         struct ext4_sb_info *sbi = EXT4_SB(sb);
1871         int res = 0;
1872
1873         if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1874                 ext4_msg(sb, KERN_ERR, "revision level too high, "
1875                          "forcing read-only mode");
1876                 res = MS_RDONLY;
1877         }
1878         if (read_only)
1879                 goto done;
1880         if (!(sbi->s_mount_state & EXT4_VALID_FS))
1881                 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1882                          "running e2fsck is recommended");
1883         else if ((sbi->s_mount_state & EXT4_ERROR_FS))
1884                 ext4_msg(sb, KERN_WARNING,
1885                          "warning: mounting fs with errors, "
1886                          "running e2fsck is recommended");
1887         else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1888                  le16_to_cpu(es->s_mnt_count) >=
1889                  (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1890                 ext4_msg(sb, KERN_WARNING,
1891                          "warning: maximal mount count reached, "
1892                          "running e2fsck is recommended");
1893         else if (le32_to_cpu(es->s_checkinterval) &&
1894                 (le32_to_cpu(es->s_lastcheck) +
1895                         le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1896                 ext4_msg(sb, KERN_WARNING,
1897                          "warning: checktime reached, "
1898                          "running e2fsck is recommended");
1899         if (!sbi->s_journal)
1900                 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1901         if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1902                 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1903         le16_add_cpu(&es->s_mnt_count, 1);
1904         es->s_mtime = cpu_to_le32(get_seconds());
1905         ext4_update_dynamic_rev(sb);
1906         if (sbi->s_journal)
1907                 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1908
1909         ext4_commit_super(sb, 1);
1910 done:
1911         if (test_opt(sb, DEBUG))
1912                 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1913                                 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1914                         sb->s_blocksize,
1915                         sbi->s_groups_count,
1916                         EXT4_BLOCKS_PER_GROUP(sb),
1917                         EXT4_INODES_PER_GROUP(sb),
1918                         sbi->s_mount_opt, sbi->s_mount_opt2);
1919
1920         cleancache_init_fs(sb);
1921         return res;
1922 }
1923
1924 static int ext4_fill_flex_info(struct super_block *sb)
1925 {
1926         struct ext4_sb_info *sbi = EXT4_SB(sb);
1927         struct ext4_group_desc *gdp = NULL;
1928         ext4_group_t flex_group_count;
1929         ext4_group_t flex_group;
1930         unsigned int groups_per_flex = 0;
1931         size_t size;
1932         int i;
1933
1934         sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1935         if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
1936                 sbi->s_log_groups_per_flex = 0;
1937                 return 1;
1938         }
1939         groups_per_flex = 1 << sbi->s_log_groups_per_flex;
1940
1941         /* We allocate both existing and potentially added groups */
1942         flex_group_count = ((sbi->s_groups_count + groups_per_flex - 1) +
1943                         ((le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) + 1) <<
1944                               EXT4_DESC_PER_BLOCK_BITS(sb))) / groups_per_flex;
1945         size = flex_group_count * sizeof(struct flex_groups);
1946         sbi->s_flex_groups = ext4_kvzalloc(size, GFP_KERNEL);
1947         if (sbi->s_flex_groups == NULL) {
1948                 ext4_msg(sb, KERN_ERR, "not enough memory for %u flex groups",
1949                          flex_group_count);
1950                 goto failed;
1951         }
1952
1953         for (i = 0; i < sbi->s_groups_count; i++) {
1954                 gdp = ext4_get_group_desc(sb, i, NULL);
1955
1956                 flex_group = ext4_flex_group(sbi, i);
1957                 atomic_add(ext4_free_inodes_count(sb, gdp),
1958                            &sbi->s_flex_groups[flex_group].free_inodes);
1959                 atomic_add(ext4_free_group_clusters(sb, gdp),
1960                            &sbi->s_flex_groups[flex_group].free_clusters);
1961                 atomic_add(ext4_used_dirs_count(sb, gdp),
1962                            &sbi->s_flex_groups[flex_group].used_dirs);
1963         }
1964
1965         return 1;
1966 failed:
1967         return 0;
1968 }
1969
1970 static __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
1971                                    struct ext4_group_desc *gdp)
1972 {
1973         int offset;
1974         __u16 crc = 0;
1975         __le32 le_group = cpu_to_le32(block_group);
1976
1977         if ((sbi->s_es->s_feature_ro_compat &
1978              cpu_to_le32(EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))) {
1979                 /* Use new metadata_csum algorithm */
1980                 __u16 old_csum;
1981                 __u32 csum32;
1982
1983                 old_csum = gdp->bg_checksum;
1984                 gdp->bg_checksum = 0;
1985                 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
1986                                      sizeof(le_group));
1987                 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp,
1988                                      sbi->s_desc_size);
1989                 gdp->bg_checksum = old_csum;
1990
1991                 crc = csum32 & 0xFFFF;
1992                 goto out;
1993         }
1994
1995         /* old crc16 code */
1996         offset = offsetof(struct ext4_group_desc, bg_checksum);
1997
1998         crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
1999         crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2000         crc = crc16(crc, (__u8 *)gdp, offset);
2001         offset += sizeof(gdp->bg_checksum); /* skip checksum */
2002         /* for checksum of struct ext4_group_desc do the rest...*/
2003         if ((sbi->s_es->s_feature_incompat &
2004              cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
2005             offset < le16_to_cpu(sbi->s_es->s_desc_size))
2006                 crc = crc16(crc, (__u8 *)gdp + offset,
2007                             le16_to_cpu(sbi->s_es->s_desc_size) -
2008                                 offset);
2009
2010 out:
2011         return cpu_to_le16(crc);
2012 }
2013
2014 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2015                                 struct ext4_group_desc *gdp)
2016 {
2017         if (ext4_has_group_desc_csum(sb) &&
2018             (gdp->bg_checksum != ext4_group_desc_csum(EXT4_SB(sb),
2019                                                       block_group, gdp)))
2020                 return 0;
2021
2022         return 1;
2023 }
2024
2025 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2026                               struct ext4_group_desc *gdp)
2027 {
2028         if (!ext4_has_group_desc_csum(sb))
2029                 return;
2030         gdp->bg_checksum = ext4_group_desc_csum(EXT4_SB(sb), block_group, gdp);
2031 }
2032
2033 /* Called at mount-time, super-block is locked */
2034 static int ext4_check_descriptors(struct super_block *sb,
2035                                   ext4_group_t *first_not_zeroed)
2036 {
2037         struct ext4_sb_info *sbi = EXT4_SB(sb);
2038         ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2039         ext4_fsblk_t last_block;
2040         ext4_fsblk_t block_bitmap;
2041         ext4_fsblk_t inode_bitmap;
2042         ext4_fsblk_t inode_table;
2043         int flexbg_flag = 0;
2044         ext4_group_t i, grp = sbi->s_groups_count;
2045
2046         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
2047                 flexbg_flag = 1;
2048
2049         ext4_debug("Checking group descriptors");
2050
2051         for (i = 0; i < sbi->s_groups_count; i++) {
2052                 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2053
2054                 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2055                         last_block = ext4_blocks_count(sbi->s_es) - 1;
2056                 else
2057                         last_block = first_block +
2058                                 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2059
2060                 if ((grp == sbi->s_groups_count) &&
2061                    !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2062                         grp = i;
2063
2064                 block_bitmap = ext4_block_bitmap(sb, gdp);
2065                 if (block_bitmap < first_block || block_bitmap > last_block) {
2066                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2067                                "Block bitmap for group %u not in group "
2068                                "(block %llu)!", i, block_bitmap);
2069                         return 0;
2070                 }
2071                 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2072                 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2073                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2074                                "Inode bitmap for group %u not in group "
2075                                "(block %llu)!", i, inode_bitmap);
2076                         return 0;
2077                 }
2078                 inode_table = ext4_inode_table(sb, gdp);
2079                 if (inode_table < first_block ||
2080                     inode_table + sbi->s_itb_per_group - 1 > last_block) {
2081                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2082                                "Inode table for group %u not in group "
2083                                "(block %llu)!", i, inode_table);
2084                         return 0;
2085                 }
2086                 ext4_lock_group(sb, i);
2087                 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2088                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2089                                  "Checksum for group %u failed (%u!=%u)",
2090                                  i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
2091                                      gdp)), le16_to_cpu(gdp->bg_checksum));
2092                         if (!(sb->s_flags & MS_RDONLY)) {
2093                                 ext4_unlock_group(sb, i);
2094                                 return 0;
2095                         }
2096                 }
2097                 ext4_unlock_group(sb, i);
2098                 if (!flexbg_flag)
2099                         first_block += EXT4_BLOCKS_PER_GROUP(sb);
2100         }
2101         if (NULL != first_not_zeroed)
2102                 *first_not_zeroed = grp;
2103
2104         ext4_free_blocks_count_set(sbi->s_es,
2105                                    EXT4_C2B(sbi, ext4_count_free_clusters(sb)));
2106         sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb));
2107         return 1;
2108 }
2109
2110 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2111  * the superblock) which were deleted from all directories, but held open by
2112  * a process at the time of a crash.  We walk the list and try to delete these
2113  * inodes at recovery time (only with a read-write filesystem).
2114  *
2115  * In order to keep the orphan inode chain consistent during traversal (in
2116  * case of crash during recovery), we link each inode into the superblock
2117  * orphan list_head and handle it the same way as an inode deletion during
2118  * normal operation (which journals the operations for us).
2119  *
2120  * We only do an iget() and an iput() on each inode, which is very safe if we
2121  * accidentally point at an in-use or already deleted inode.  The worst that
2122  * can happen in this case is that we get a "bit already cleared" message from
2123  * ext4_free_inode().  The only reason we would point at a wrong inode is if
2124  * e2fsck was run on this filesystem, and it must have already done the orphan
2125  * inode cleanup for us, so we can safely abort without any further action.
2126  */
2127 static void ext4_orphan_cleanup(struct super_block *sb,
2128                                 struct ext4_super_block *es)
2129 {
2130         unsigned int s_flags = sb->s_flags;
2131         int nr_orphans = 0, nr_truncates = 0;
2132 #ifdef CONFIG_QUOTA
2133         int i;
2134 #endif
2135         if (!es->s_last_orphan) {
2136                 jbd_debug(4, "no orphan inodes to clean up\n");
2137                 return;
2138         }
2139
2140         if (bdev_read_only(sb->s_bdev)) {
2141                 ext4_msg(sb, KERN_ERR, "write access "
2142                         "unavailable, skipping orphan cleanup");
2143                 return;
2144         }
2145
2146         /* Check if feature set would not allow a r/w mount */
2147         if (!ext4_feature_set_ok(sb, 0)) {
2148                 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2149                          "unknown ROCOMPAT features");
2150                 return;
2151         }
2152
2153         if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2154                 if (es->s_last_orphan)
2155                         jbd_debug(1, "Errors on filesystem, "
2156                                   "clearing orphan list.\n");
2157                 es->s_last_orphan = 0;
2158                 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2159                 return;
2160         }
2161
2162         if (s_flags & MS_RDONLY) {
2163                 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2164                 sb->s_flags &= ~MS_RDONLY;
2165         }
2166 #ifdef CONFIG_QUOTA
2167         /* Needed for iput() to work correctly and not trash data */
2168         sb->s_flags |= MS_ACTIVE;
2169         /* Turn on quotas so that they are updated correctly */
2170         for (i = 0; i < MAXQUOTAS; i++) {
2171                 if (EXT4_SB(sb)->s_qf_names[i]) {
2172                         int ret = ext4_quota_on_mount(sb, i);
2173                         if (ret < 0)
2174                                 ext4_msg(sb, KERN_ERR,
2175                                         "Cannot turn on journaled "
2176                                         "quota: error %d", ret);
2177                 }
2178         }
2179 #endif
2180
2181         while (es->s_last_orphan) {
2182                 struct inode *inode;
2183
2184                 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2185                 if (IS_ERR(inode)) {
2186                         es->s_last_orphan = 0;
2187                         break;
2188                 }
2189
2190                 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2191                 dquot_initialize(inode);
2192                 if (inode->i_nlink) {
2193                         ext4_msg(sb, KERN_DEBUG,
2194                                 "%s: truncating inode %lu to %lld bytes",
2195                                 __func__, inode->i_ino, inode->i_size);
2196                         jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2197                                   inode->i_ino, inode->i_size);
2198                         ext4_truncate(inode);
2199                         nr_truncates++;
2200                 } else {
2201                         ext4_msg(sb, KERN_DEBUG,
2202                                 "%s: deleting unreferenced inode %lu",
2203                                 __func__, inode->i_ino);
2204                         jbd_debug(2, "deleting unreferenced inode %lu\n",
2205                                   inode->i_ino);
2206                         nr_orphans++;
2207                 }
2208                 iput(inode);  /* The delete magic happens here! */
2209         }
2210
2211 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2212
2213         if (nr_orphans)
2214                 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2215                        PLURAL(nr_orphans));
2216         if (nr_truncates)
2217                 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2218                        PLURAL(nr_truncates));
2219 #ifdef CONFIG_QUOTA
2220         /* Turn quotas off */
2221         for (i = 0; i < MAXQUOTAS; i++) {
2222                 if (sb_dqopt(sb)->files[i])
2223                         dquot_quota_off(sb, i);
2224         }
2225 #endif
2226         sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2227 }
2228
2229 /*
2230  * Maximal extent format file size.
2231  * Resulting logical blkno at s_maxbytes must fit in our on-disk
2232  * extent format containers, within a sector_t, and within i_blocks
2233  * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
2234  * so that won't be a limiting factor.
2235  *
2236  * However there is other limiting factor. We do store extents in the form
2237  * of starting block and length, hence the resulting length of the extent
2238  * covering maximum file size must fit into on-disk format containers as
2239  * well. Given that length is always by 1 unit bigger than max unit (because
2240  * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2241  *
2242  * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2243  */
2244 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2245 {
2246         loff_t res;
2247         loff_t upper_limit = MAX_LFS_FILESIZE;
2248
2249         /* small i_blocks in vfs inode? */
2250         if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2251                 /*
2252                  * CONFIG_LBDAF is not enabled implies the inode
2253                  * i_block represent total blocks in 512 bytes
2254                  * 32 == size of vfs inode i_blocks * 8
2255                  */
2256                 upper_limit = (1LL << 32) - 1;
2257
2258                 /* total blocks in file system block size */
2259                 upper_limit >>= (blkbits - 9);
2260                 upper_limit <<= blkbits;
2261         }
2262
2263         /*
2264          * 32-bit extent-start container, ee_block. We lower the maxbytes
2265          * by one fs block, so ee_len can cover the extent of maximum file
2266          * size
2267          */
2268         res = (1LL << 32) - 1;
2269         res <<= blkbits;
2270
2271         /* Sanity check against vm- & vfs- imposed limits */
2272         if (res > upper_limit)
2273                 res = upper_limit;
2274
2275         return res;
2276 }
2277
2278 /*
2279  * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
2280  * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2281  * We need to be 1 filesystem block less than the 2^48 sector limit.
2282  */
2283 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2284 {
2285         loff_t res = EXT4_NDIR_BLOCKS;
2286         int meta_blocks;
2287         loff_t upper_limit;
2288         /* This is calculated to be the largest file size for a dense, block
2289          * mapped file such that the file's total number of 512-byte sectors,
2290          * including data and all indirect blocks, does not exceed (2^48 - 1).
2291          *
2292          * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2293          * number of 512-byte sectors of the file.
2294          */
2295
2296         if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2297                 /*
2298                  * !has_huge_files or CONFIG_LBDAF not enabled implies that
2299                  * the inode i_block field represents total file blocks in
2300                  * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2301                  */
2302                 upper_limit = (1LL << 32) - 1;
2303
2304                 /* total blocks in file system block size */
2305                 upper_limit >>= (bits - 9);
2306
2307         } else {
2308                 /*
2309                  * We use 48 bit ext4_inode i_blocks
2310                  * With EXT4_HUGE_FILE_FL set the i_blocks
2311                  * represent total number of blocks in
2312                  * file system block size
2313                  */
2314                 upper_limit = (1LL << 48) - 1;
2315
2316         }
2317
2318         /* indirect blocks */
2319         meta_blocks = 1;
2320         /* double indirect blocks */
2321         meta_blocks += 1 + (1LL << (bits-2));
2322         /* tripple indirect blocks */
2323         meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2324
2325         upper_limit -= meta_blocks;
2326         upper_limit <<= bits;
2327
2328         res += 1LL << (bits-2);
2329         res += 1LL << (2*(bits-2));
2330         res += 1LL << (3*(bits-2));
2331         res <<= bits;
2332         if (res > upper_limit)
2333                 res = upper_limit;
2334
2335         if (res > MAX_LFS_FILESIZE)
2336                 res = MAX_LFS_FILESIZE;
2337
2338         return res;
2339 }
2340
2341 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2342                                    ext4_fsblk_t logical_sb_block, int nr)
2343 {
2344         struct ext4_sb_info *sbi = EXT4_SB(sb);
2345         ext4_group_t bg, first_meta_bg;
2346         int has_super = 0;
2347
2348         first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2349
2350         if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2351             nr < first_meta_bg)
2352                 return logical_sb_block + nr + 1;
2353         bg = sbi->s_desc_per_block * nr;
2354         if (ext4_bg_has_super(sb, bg))
2355                 has_super = 1;
2356
2357         return (has_super + ext4_group_first_block_no(sb, bg));
2358 }
2359
2360 /**
2361  * ext4_get_stripe_size: Get the stripe size.
2362  * @sbi: In memory super block info
2363  *
2364  * If we have specified it via mount option, then
2365  * use the mount option value. If the value specified at mount time is
2366  * greater than the blocks per group use the super block value.
2367  * If the super block value is greater than blocks per group return 0.
2368  * Allocator needs it be less than blocks per group.
2369  *
2370  */
2371 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2372 {
2373         unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2374         unsigned long stripe_width =
2375                         le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2376         int ret;
2377
2378         if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2379                 ret = sbi->s_stripe;
2380         else if (stripe_width <= sbi->s_blocks_per_group)
2381                 ret = stripe_width;
2382         else if (stride <= sbi->s_blocks_per_group)
2383                 ret = stride;
2384         else
2385                 ret = 0;
2386
2387         /*
2388          * If the stripe width is 1, this makes no sense and
2389          * we set it to 0 to turn off stripe handling code.
2390          */
2391         if (ret <= 1)
2392                 ret = 0;
2393
2394         return ret;
2395 }
2396
2397 /* sysfs supprt */
2398
2399 struct ext4_attr {
2400         struct attribute attr;
2401         ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2402         ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2403                          const char *, size_t);
2404         int offset;
2405 };
2406
2407 static int parse_strtoul(const char *buf,
2408                 unsigned long max, unsigned long *value)
2409 {
2410         char *endp;
2411
2412         *value = simple_strtoul(skip_spaces(buf), &endp, 0);
2413         endp = skip_spaces(endp);
2414         if (*endp || *value > max)
2415                 return -EINVAL;
2416
2417         return 0;
2418 }
2419
2420 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2421                                               struct ext4_sb_info *sbi,
2422                                               char *buf)
2423 {
2424         return snprintf(buf, PAGE_SIZE, "%llu\n",
2425                 (s64) EXT4_C2B(sbi,
2426                         percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
2427 }
2428
2429 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2430                                          struct ext4_sb_info *sbi, char *buf)
2431 {
2432         struct super_block *sb = sbi->s_buddy_cache->i_sb;
2433
2434         if (!sb->s_bdev->bd_part)
2435                 return snprintf(buf, PAGE_SIZE, "0\n");
2436         return snprintf(buf, PAGE_SIZE, "%lu\n",
2437                         (part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2438                          sbi->s_sectors_written_start) >> 1);
2439 }
2440
2441 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2442                                           struct ext4_sb_info *sbi, char *buf)
2443 {
2444         struct super_block *sb = sbi->s_buddy_cache->i_sb;
2445
2446         if (!sb->s_bdev->bd_part)
2447                 return snprintf(buf, PAGE_SIZE, "0\n");
2448         return snprintf(buf, PAGE_SIZE, "%llu\n",
2449                         (unsigned long long)(sbi->s_kbytes_written +
2450                         ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2451                           EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2452 }
2453
2454 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2455                                           struct ext4_sb_info *sbi,
2456                                           const char *buf, size_t count)
2457 {
2458         unsigned long t;
2459
2460         if (parse_strtoul(buf, 0x40000000, &t))
2461                 return -EINVAL;
2462
2463         if (t && !is_power_of_2(t))
2464                 return -EINVAL;
2465
2466         sbi->s_inode_readahead_blks = t;
2467         return count;
2468 }
2469
2470 static ssize_t sbi_ui_show(struct ext4_attr *a,
2471                            struct ext4_sb_info *sbi, char *buf)
2472 {
2473         unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2474
2475         return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2476 }
2477
2478 static ssize_t sbi_ui_store(struct ext4_attr *a,
2479                             struct ext4_sb_info *sbi,
2480                             const char *buf, size_t count)
2481 {
2482         unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2483         unsigned long t;
2484
2485         if (parse_strtoul(buf, 0xffffffff, &t))
2486                 return -EINVAL;
2487         *ui = t;
2488         return count;
2489 }
2490
2491 static ssize_t trigger_test_error(struct ext4_attr *a,
2492                                   struct ext4_sb_info *sbi,
2493                                   const char *buf, size_t count)
2494 {
2495         int len = count;
2496
2497         if (!capable(CAP_SYS_ADMIN))
2498                 return -EPERM;
2499
2500         if (len && buf[len-1] == '\n')
2501                 len--;
2502
2503         if (len)
2504                 ext4_error(sbi->s_sb, "%.*s", len, buf);
2505         return count;
2506 }
2507
2508 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2509 static struct ext4_attr ext4_attr_##_name = {                   \
2510         .attr = {.name = __stringify(_name), .mode = _mode },   \
2511         .show   = _show,                                        \
2512         .store  = _store,                                       \
2513         .offset = offsetof(struct ext4_sb_info, _elname),       \
2514 }
2515 #define EXT4_ATTR(name, mode, show, store) \
2516 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2517
2518 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL)
2519 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2520 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2521 #define EXT4_RW_ATTR_SBI_UI(name, elname)       \
2522         EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2523 #define ATTR_LIST(name) &ext4_attr_##name.attr
2524
2525 EXT4_RO_ATTR(delayed_allocation_blocks);
2526 EXT4_RO_ATTR(session_write_kbytes);
2527 EXT4_RO_ATTR(lifetime_write_kbytes);
2528 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2529                  inode_readahead_blks_store, s_inode_readahead_blks);
2530 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2531 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2532 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2533 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2534 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2535 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2536 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2537 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump);
2538 EXT4_ATTR(trigger_fs_error, 0200, NULL, trigger_test_error);
2539
2540 static struct attribute *ext4_attrs[] = {
2541         ATTR_LIST(delayed_allocation_blocks),
2542         ATTR_LIST(session_write_kbytes),
2543         ATTR_LIST(lifetime_write_kbytes),
2544         ATTR_LIST(inode_readahead_blks),
2545         ATTR_LIST(inode_goal),
2546         ATTR_LIST(mb_stats),
2547         ATTR_LIST(mb_max_to_scan),
2548         ATTR_LIST(mb_min_to_scan),
2549         ATTR_LIST(mb_order2_req),
2550         ATTR_LIST(mb_stream_req),
2551         ATTR_LIST(mb_group_prealloc),
2552         ATTR_LIST(max_writeback_mb_bump),
2553         ATTR_LIST(trigger_fs_error),
2554         NULL,
2555 };
2556
2557 /* Features this copy of ext4 supports */
2558 EXT4_INFO_ATTR(lazy_itable_init);
2559 EXT4_INFO_ATTR(batched_discard);
2560
2561 static struct attribute *ext4_feat_attrs[] = {
2562         ATTR_LIST(lazy_itable_init),
2563         ATTR_LIST(batched_discard),
2564         NULL,
2565 };
2566
2567 static ssize_t ext4_attr_show(struct kobject *kobj,
2568                               struct attribute *attr, char *buf)
2569 {
2570         struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2571                                                 s_kobj);
2572         struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2573
2574         return a->show ? a->show(a, sbi, buf) : 0;
2575 }
2576
2577 static ssize_t ext4_attr_store(struct kobject *kobj,
2578                                struct attribute *attr,
2579                                const char *buf, size_t len)
2580 {
2581         struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2582                                                 s_kobj);
2583         struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2584
2585         return a->store ? a->store(a, sbi, buf, len) : 0;
2586 }
2587
2588 static void ext4_sb_release(struct kobject *kobj)
2589 {
2590         struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2591                                                 s_kobj);
2592         complete(&sbi->s_kobj_unregister);
2593 }
2594
2595 static const struct sysfs_ops ext4_attr_ops = {
2596         .show   = ext4_attr_show,
2597         .store  = ext4_attr_store,
2598 };
2599
2600 static struct kobj_type ext4_ktype = {
2601         .default_attrs  = ext4_attrs,
2602         .sysfs_ops      = &ext4_attr_ops,
2603         .release        = ext4_sb_release,
2604 };
2605
2606 static void ext4_feat_release(struct kobject *kobj)
2607 {
2608         complete(&ext4_feat->f_kobj_unregister);
2609 }
2610
2611 static struct kobj_type ext4_feat_ktype = {
2612         .default_attrs  = ext4_feat_attrs,
2613         .sysfs_ops      = &ext4_attr_ops,
2614         .release        = ext4_feat_release,
2615 };
2616
2617 /*
2618  * Check whether this filesystem can be mounted based on
2619  * the features present and the RDONLY/RDWR mount requested.
2620  * Returns 1 if this filesystem can be mounted as requested,
2621  * 0 if it cannot be.
2622  */
2623 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2624 {
2625         if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2626                 ext4_msg(sb, KERN_ERR,
2627                         "Couldn't mount because of "
2628                         "unsupported optional features (%x)",
2629                         (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2630                         ~EXT4_FEATURE_INCOMPAT_SUPP));
2631                 return 0;
2632         }
2633
2634         if (readonly)
2635                 return 1;
2636
2637         /* Check that feature set is OK for a read-write mount */
2638         if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2639                 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2640                          "unsupported optional features (%x)",
2641                          (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2642                                 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2643                 return 0;
2644         }
2645         /*
2646          * Large file size enabled file system can only be mounted
2647          * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2648          */
2649         if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2650                 if (sizeof(blkcnt_t) < sizeof(u64)) {
2651                         ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2652                                  "cannot be mounted RDWR without "
2653                                  "CONFIG_LBDAF");
2654                         return 0;
2655                 }
2656         }
2657         if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) &&
2658             !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2659                 ext4_msg(sb, KERN_ERR,
2660                          "Can't support bigalloc feature without "
2661                          "extents feature\n");
2662                 return 0;
2663         }
2664         return 1;
2665 }
2666
2667 /*
2668  * This function is called once a day if we have errors logged
2669  * on the file system
2670  */
2671 static void print_daily_error_info(unsigned long arg)
2672 {
2673         struct super_block *sb = (struct super_block *) arg;
2674         struct ext4_sb_info *sbi;
2675         struct ext4_super_block *es;
2676
2677         sbi = EXT4_SB(sb);
2678         es = sbi->s_es;
2679
2680         if (es->s_error_count)
2681                 ext4_msg(sb, KERN_NOTICE, "error count: %u",
2682                          le32_to_cpu(es->s_error_count));
2683         if (es->s_first_error_time) {
2684                 printk(KERN_NOTICE "EXT4-fs (%s): initial error at %u: %.*s:%d",
2685                        sb->s_id, le32_to_cpu(es->s_first_error_time),
2686                        (int) sizeof(es->s_first_error_func),
2687                        es->s_first_error_func,
2688                        le32_to_cpu(es->s_first_error_line));
2689                 if (es->s_first_error_ino)
2690                         printk(": inode %u",
2691                                le32_to_cpu(es->s_first_error_ino));
2692                 if (es->s_first_error_block)
2693                         printk(": block %llu", (unsigned long long)
2694                                le64_to_cpu(es->s_first_error_block));
2695                 printk("\n");
2696         }
2697         if (es->s_last_error_time) {
2698                 printk(KERN_NOTICE "EXT4-fs (%s): last error at %u: %.*s:%d",
2699                        sb->s_id, le32_to_cpu(es->s_last_error_time),
2700                        (int) sizeof(es->s_last_error_func),
2701                        es->s_last_error_func,
2702                        le32_to_cpu(es->s_last_error_line));
2703                 if (es->s_last_error_ino)
2704                         printk(": inode %u",
2705                                le32_to_cpu(es->s_last_error_ino));
2706                 if (es->s_last_error_block)
2707                         printk(": block %llu", (unsigned long long)
2708                                le64_to_cpu(es->s_last_error_block));
2709                 printk("\n");
2710         }
2711         mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
2712 }
2713
2714 /* Find next suitable group and run ext4_init_inode_table */
2715 static int ext4_run_li_request(struct ext4_li_request *elr)
2716 {
2717         struct ext4_group_desc *gdp = NULL;
2718         ext4_group_t group, ngroups;
2719         struct super_block *sb;
2720         unsigned long timeout = 0;
2721         int ret = 0;
2722
2723         sb = elr->lr_super;
2724         ngroups = EXT4_SB(sb)->s_groups_count;
2725
2726         for (group = elr->lr_next_group; group < ngroups; group++) {
2727                 gdp = ext4_get_group_desc(sb, group, NULL);
2728                 if (!gdp) {
2729                         ret = 1;
2730                         break;
2731                 }
2732
2733                 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2734                         break;
2735         }
2736
2737         if (group == ngroups)
2738                 ret = 1;
2739
2740         if (!ret) {
2741                 timeout = jiffies;
2742                 ret = ext4_init_inode_table(sb, group,
2743                                             elr->lr_timeout ? 0 : 1);
2744                 if (elr->lr_timeout == 0) {
2745                         timeout = (jiffies - timeout) *
2746                                   elr->lr_sbi->s_li_wait_mult;
2747                         elr->lr_timeout = timeout;
2748                 }
2749                 elr->lr_next_sched = jiffies + elr->lr_timeout;
2750                 elr->lr_next_group = group + 1;
2751         }
2752
2753         return ret;
2754 }
2755
2756 /*
2757  * Remove lr_request from the list_request and free the
2758  * request structure. Should be called with li_list_mtx held
2759  */
2760 static void ext4_remove_li_request(struct ext4_li_request *elr)
2761 {
2762         struct ext4_sb_info *sbi;
2763
2764         if (!elr)
2765                 return;
2766
2767         sbi = elr->lr_sbi;
2768
2769         list_del(&elr->lr_request);
2770         sbi->s_li_request = NULL;
2771         kfree(elr);
2772 }
2773
2774 static void ext4_unregister_li_request(struct super_block *sb)
2775 {
2776         mutex_lock(&ext4_li_mtx);
2777         if (!ext4_li_info) {
2778                 mutex_unlock(&ext4_li_mtx);
2779                 return;
2780         }
2781
2782         mutex_lock(&ext4_li_info->li_list_mtx);
2783         ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2784         mutex_unlock(&ext4_li_info->li_list_mtx);
2785         mutex_unlock(&ext4_li_mtx);
2786 }
2787
2788 static struct task_struct *ext4_lazyinit_task;
2789
2790 /*
2791  * This is the function where ext4lazyinit thread lives. It walks
2792  * through the request list searching for next scheduled filesystem.
2793  * When such a fs is found, run the lazy initialization request
2794  * (ext4_rn_li_request) and keep track of the time spend in this
2795  * function. Based on that time we compute next schedule time of
2796  * the request. When walking through the list is complete, compute
2797  * next waking time and put itself into sleep.
2798  */
2799 static int ext4_lazyinit_thread(void *arg)
2800 {
2801         struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2802         struct list_head *pos, *n;
2803         struct ext4_li_request *elr;
2804         unsigned long next_wakeup, cur;
2805
2806         BUG_ON(NULL == eli);
2807
2808 cont_thread:
2809         while (true) {
2810                 next_wakeup = MAX_JIFFY_OFFSET;
2811
2812                 mutex_lock(&eli->li_list_mtx);
2813                 if (list_empty(&eli->li_request_list)) {
2814                         mutex_unlock(&eli->li_list_mtx);
2815                         goto exit_thread;
2816                 }
2817
2818                 list_for_each_safe(pos, n, &eli->li_request_list) {
2819                         elr = list_entry(pos, struct ext4_li_request,
2820                                          lr_request);
2821
2822                         if (time_after_eq(jiffies, elr->lr_next_sched)) {
2823                                 if (ext4_run_li_request(elr) != 0) {
2824                                         /* error, remove the lazy_init job */
2825                                         ext4_remove_li_request(elr);
2826                                         continue;
2827                                 }
2828                         }
2829
2830                         if (time_before(elr->lr_next_sched, next_wakeup))
2831                                 next_wakeup = elr->lr_next_sched;
2832                 }
2833                 mutex_unlock(&eli->li_list_mtx);
2834
2835                 try_to_freeze();
2836
2837                 cur = jiffies;
2838                 if ((time_after_eq(cur, next_wakeup)) ||
2839                     (MAX_JIFFY_OFFSET == next_wakeup)) {
2840                         cond_resched();
2841                         continue;
2842                 }
2843
2844                 schedule_timeout_interruptible(next_wakeup - cur);
2845
2846                 if (kthread_should_stop()) {
2847                         ext4_clear_request_list();
2848                         goto exit_thread;
2849                 }
2850         }
2851
2852 exit_thread:
2853         /*
2854          * It looks like the request list is empty, but we need
2855          * to check it under the li_list_mtx lock, to prevent any
2856          * additions into it, and of course we should lock ext4_li_mtx
2857          * to atomically free the list and ext4_li_info, because at
2858          * this point another ext4 filesystem could be registering
2859          * new one.
2860          */
2861         mutex_lock(&ext4_li_mtx);
2862         mutex_lock(&eli->li_list_mtx);
2863         if (!list_empty(&eli->li_request_list)) {
2864                 mutex_unlock(&eli->li_list_mtx);
2865                 mutex_unlock(&ext4_li_mtx);
2866                 goto cont_thread;
2867         }
2868         mutex_unlock(&eli->li_list_mtx);
2869         kfree(ext4_li_info);
2870         ext4_li_info = NULL;
2871         mutex_unlock(&ext4_li_mtx);
2872
2873         return 0;
2874 }
2875
2876 static void ext4_clear_request_list(void)
2877 {
2878         struct list_head *pos, *n;
2879         struct ext4_li_request *elr;
2880
2881         mutex_lock(&ext4_li_info->li_list_mtx);
2882         list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2883                 elr = list_entry(pos, struct ext4_li_request,
2884                                  lr_request);
2885                 ext4_remove_li_request(elr);
2886         }
2887         mutex_unlock(&ext4_li_info->li_list_mtx);
2888 }
2889
2890 static int ext4_run_lazyinit_thread(void)
2891 {
2892         ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
2893                                          ext4_li_info, "ext4lazyinit");
2894         if (IS_ERR(ext4_lazyinit_task)) {
2895                 int err = PTR_ERR(ext4_lazyinit_task);
2896                 ext4_clear_request_list();
2897                 kfree(ext4_li_info);
2898                 ext4_li_info = NULL;
2899                 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
2900                                  "initialization thread\n",
2901                                  err);
2902                 return err;
2903         }
2904         ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2905         return 0;
2906 }
2907
2908 /*
2909  * Check whether it make sense to run itable init. thread or not.
2910  * If there is at least one uninitialized inode table, return
2911  * corresponding group number, else the loop goes through all
2912  * groups and return total number of groups.
2913  */
2914 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
2915 {
2916         ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
2917         struct ext4_group_desc *gdp = NULL;
2918
2919         for (group = 0; group < ngroups; group++) {
2920                 gdp = ext4_get_group_desc(sb, group, NULL);
2921                 if (!gdp)
2922                         continue;
2923
2924                 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2925                         break;
2926         }
2927
2928         return group;
2929 }
2930
2931 static int ext4_li_info_new(void)
2932 {
2933         struct ext4_lazy_init *eli = NULL;
2934
2935         eli = kzalloc(sizeof(*eli), GFP_KERNEL);
2936         if (!eli)
2937                 return -ENOMEM;
2938
2939         INIT_LIST_HEAD(&eli->li_request_list);
2940         mutex_init(&eli->li_list_mtx);
2941
2942         eli->li_state |= EXT4_LAZYINIT_QUIT;
2943
2944         ext4_li_info = eli;
2945
2946         return 0;
2947 }
2948
2949 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
2950                                             ext4_group_t start)
2951 {
2952         struct ext4_sb_info *sbi = EXT4_SB(sb);
2953         struct ext4_li_request *elr;
2954         unsigned long rnd;
2955
2956         elr = kzalloc(sizeof(*elr), GFP_KERNEL);
2957         if (!elr)
2958                 return NULL;
2959
2960         elr->lr_super = sb;
2961         elr->lr_sbi = sbi;
2962         elr->lr_next_group = start;
2963
2964         /*
2965          * Randomize first schedule time of the request to
2966          * spread the inode table initialization requests
2967          * better.
2968          */
2969         get_random_bytes(&rnd, sizeof(rnd));
2970         elr->lr_next_sched = jiffies + (unsigned long)rnd %
2971                              (EXT4_DEF_LI_MAX_START_DELAY * HZ);
2972
2973         return elr;
2974 }
2975
2976 static int ext4_register_li_request(struct super_block *sb,
2977                                     ext4_group_t first_not_zeroed)
2978 {
2979         struct ext4_sb_info *sbi = EXT4_SB(sb);
2980         struct ext4_li_request *elr;
2981         ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
2982         int ret = 0;
2983
2984         if (sbi->s_li_request != NULL) {
2985                 /*
2986                  * Reset timeout so it can be computed again, because
2987                  * s_li_wait_mult might have changed.
2988                  */
2989                 sbi->s_li_request->lr_timeout = 0;
2990                 return 0;
2991         }
2992
2993         if (first_not_zeroed == ngroups ||
2994             (sb->s_flags & MS_RDONLY) ||
2995             !test_opt(sb, INIT_INODE_TABLE))
2996                 return 0;
2997
2998         elr = ext4_li_request_new(sb, first_not_zeroed);
2999         if (!elr)
3000                 return -ENOMEM;
3001
3002         mutex_lock(&ext4_li_mtx);
3003
3004         if (NULL == ext4_li_info) {
3005                 ret = ext4_li_info_new();
3006                 if (ret)
3007                         goto out;
3008         }
3009
3010         mutex_lock(&ext4_li_info->li_list_mtx);
3011         list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3012         mutex_unlock(&ext4_li_info->li_list_mtx);
3013
3014         sbi->s_li_request = elr;
3015         /*
3016          * set elr to NULL here since it has been inserted to
3017          * the request_list and the removal and free of it is
3018          * handled by ext4_clear_request_list from now on.
3019          */
3020         elr = NULL;
3021
3022         if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3023                 ret = ext4_run_lazyinit_thread();
3024                 if (ret)
3025                         goto out;
3026         }
3027 out:
3028         mutex_unlock(&ext4_li_mtx);
3029         if (ret)
3030                 kfree(elr);
3031         return ret;
3032 }
3033
3034 /*
3035  * We do not need to lock anything since this is called on
3036  * module unload.
3037  */
3038 static void ext4_destroy_lazyinit_thread(void)
3039 {
3040         /*
3041          * If thread exited earlier
3042          * there's nothing to be done.
3043          */
3044         if (!ext4_li_info || !ext4_lazyinit_task)
3045                 return;
3046
3047         kthread_stop(ext4_lazyinit_task);
3048 }
3049
3050 static int set_journal_csum_feature_set(struct super_block *sb)
3051 {
3052         int ret = 1;
3053         int compat, incompat;
3054         struct ext4_sb_info *sbi = EXT4_SB(sb);
3055
3056         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3057                                        EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3058                 /* journal checksum v2 */
3059                 compat = 0;
3060                 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V2;
3061         } else {
3062                 /* journal checksum v1 */
3063                 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3064                 incompat = 0;
3065         }
3066
3067         if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3068                 ret = jbd2_journal_set_features(sbi->s_journal,
3069                                 compat, 0,
3070                                 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3071                                 incompat);
3072         } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3073                 ret = jbd2_journal_set_features(sbi->s_journal,
3074                                 compat, 0,
3075                                 incompat);
3076                 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3077                                 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3078         } else {
3079                 jbd2_journal_clear_features(sbi->s_journal,
3080                                 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3081                                 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3082                                 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3083         }
3084
3085         return ret;
3086 }
3087
3088 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3089 {
3090         char *orig_data = kstrdup(data, GFP_KERNEL);
3091         struct buffer_head *bh;
3092         struct ext4_super_block *es = NULL;
3093         struct ext4_sb_info *sbi;
3094         ext4_fsblk_t block;
3095         ext4_fsblk_t sb_block = get_sb_block(&data);
3096         ext4_fsblk_t logical_sb_block;
3097         unsigned long offset = 0;
3098         unsigned long journal_devnum = 0;
3099         unsigned long def_mount_opts;
3100         struct inode *root;
3101         char *cp;
3102         const char *descr;
3103         int ret = -ENOMEM;
3104         int blocksize, clustersize;
3105         unsigned int db_count;
3106         unsigned int i;
3107         int needs_recovery, has_huge_files, has_bigalloc;
3108         __u64 blocks_count;
3109         int err;
3110         unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3111         ext4_group_t first_not_zeroed;
3112
3113         sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3114         if (!sbi)
3115                 goto out_free_orig;
3116
3117         sbi->s_blockgroup_lock =
3118                 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3119         if (!sbi->s_blockgroup_lock) {
3120                 kfree(sbi);
3121                 goto out_free_orig;
3122         }
3123         sb->s_fs_info = sbi;
3124         sbi->s_sb = sb;
3125         sbi->s_mount_opt = 0;
3126         sbi->s_resuid = make_kuid(&init_user_ns, EXT4_DEF_RESUID);
3127         sbi->s_resgid = make_kgid(&init_user_ns, EXT4_DEF_RESGID);
3128         sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3129         sbi->s_sb_block = sb_block;
3130         if (sb->s_bdev->bd_part)
3131                 sbi->s_sectors_written_start =
3132                         part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3133
3134         /* Cleanup superblock name */
3135         for (cp = sb->s_id; (cp = strchr(cp, '/'));)
3136                 *cp = '!';
3137
3138         ret = -EINVAL;
3139         blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3140         if (!blocksize) {
3141                 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3142                 goto out_fail;
3143         }
3144
3145         /*
3146          * The ext4 superblock will not be buffer aligned for other than 1kB
3147          * block sizes.  We need to calculate the offset from buffer start.
3148          */
3149         if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3150                 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3151                 offset = do_div(logical_sb_block, blocksize);
3152         } else {
3153                 logical_sb_block = sb_block;
3154         }
3155
3156         if (!(bh = sb_bread(sb, logical_sb_block))) {
3157                 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3158                 goto out_fail;
3159         }
3160         /*
3161          * Note: s_es must be initialized as soon as possible because
3162          *       some ext4 macro-instructions depend on its value
3163          */
3164         es = (struct ext4_super_block *) (bh->b_data + offset);
3165         sbi->s_es = es;
3166         sb->s_magic = le16_to_cpu(es->s_magic);
3167         if (sb->s_magic != EXT4_SUPER_MAGIC)
3168                 goto cantfind_ext4;
3169         sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3170
3171         /* Warn if metadata_csum and gdt_csum are both set. */
3172         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3173                                        EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
3174             EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3175                 ext4_warning(sb, KERN_INFO "metadata_csum and uninit_bg are "
3176                              "redundant flags; please run fsck.");
3177
3178         /* Check for a known checksum algorithm */
3179         if (!ext4_verify_csum_type(sb, es)) {
3180                 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3181                          "unknown checksum algorithm.");
3182                 silent = 1;
3183                 goto cantfind_ext4;
3184         }
3185
3186         /* Load the checksum driver */
3187         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3188                                        EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3189                 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3190                 if (IS_ERR(sbi->s_chksum_driver)) {
3191                         ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3192                         ret = PTR_ERR(sbi->s_chksum_driver);
3193                         sbi->s_chksum_driver = NULL;
3194                         goto failed_mount;
3195                 }
3196         }
3197
3198         /* Check superblock checksum */
3199         if (!ext4_superblock_csum_verify(sb, es)) {
3200                 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3201                          "invalid superblock checksum.  Run e2fsck?");
3202                 silent = 1;
3203                 goto cantfind_ext4;
3204         }
3205
3206         /* Precompute checksum seed for all metadata */
3207         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3208                         EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
3209                 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3210                                                sizeof(es->s_uuid));
3211
3212         /* Set defaults before we parse the mount options */
3213         def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3214         set_opt(sb, INIT_INODE_TABLE);
3215         if (def_mount_opts & EXT4_DEFM_DEBUG)
3216                 set_opt(sb, DEBUG);
3217         if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3218                 set_opt(sb, GRPID);
3219         if (def_mount_opts & EXT4_DEFM_UID16)
3220                 set_opt(sb, NO_UID32);
3221         /* xattr user namespace & acls are now defaulted on */
3222 #ifdef CONFIG_EXT4_FS_XATTR
3223         set_opt(sb, XATTR_USER);
3224 #endif
3225 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3226         set_opt(sb, POSIX_ACL);
3227 #endif
3228         set_opt(sb, MBLK_IO_SUBMIT);
3229         if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3230                 set_opt(sb, JOURNAL_DATA);
3231         else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3232                 set_opt(sb, ORDERED_DATA);
3233         else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3234                 set_opt(sb, WRITEBACK_DATA);
3235
3236         if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3237                 set_opt(sb, ERRORS_PANIC);
3238         else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3239                 set_opt(sb, ERRORS_CONT);
3240         else
3241                 set_opt(sb, ERRORS_RO);
3242         if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY)
3243                 set_opt(sb, BLOCK_VALIDITY);
3244         if (def_mount_opts & EXT4_DEFM_DISCARD)
3245                 set_opt(sb, DISCARD);
3246
3247         sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3248         sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3249         sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3250         sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3251         sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3252
3253         if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3254                 set_opt(sb, BARRIER);
3255
3256         /*
3257          * enable delayed allocation by default
3258          * Use -o nodelalloc to turn it off
3259          */
3260         if (!IS_EXT3_SB(sb) &&
3261             ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3262                 set_opt(sb, DELALLOC);
3263
3264         /*
3265          * set default s_li_wait_mult for lazyinit, for the case there is
3266          * no mount option specified.
3267          */
3268         sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3269
3270         if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3271                            &journal_devnum, &journal_ioprio, 0)) {
3272                 ext4_msg(sb, KERN_WARNING,
3273                          "failed to parse options in superblock: %s",
3274                          sbi->s_es->s_mount_opts);
3275         }
3276         sbi->s_def_mount_opt = sbi->s_mount_opt;
3277         if (!parse_options((char *) data, sb, &journal_devnum,
3278                            &journal_ioprio, 0))
3279                 goto failed_mount;
3280
3281         if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3282                 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3283                             "with data=journal disables delayed "
3284                             "allocation and O_DIRECT support!\n");
3285                 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3286                         ext4_msg(sb, KERN_ERR, "can't mount with "
3287                                  "both data=journal and delalloc");
3288                         goto failed_mount;
3289                 }
3290                 if (test_opt(sb, DIOREAD_NOLOCK)) {
3291                         ext4_msg(sb, KERN_ERR, "can't mount with "
3292                                  "both data=journal and delalloc");
3293                         goto failed_mount;
3294                 }
3295                 if (test_opt(sb, DELALLOC))
3296                         clear_opt(sb, DELALLOC);
3297         }
3298
3299         blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3300         if (test_opt(sb, DIOREAD_NOLOCK)) {
3301                 if (blocksize < PAGE_SIZE) {
3302                         ext4_msg(sb, KERN_ERR, "can't mount with "
3303                                  "dioread_nolock if block size != PAGE_SIZE");
3304                         goto failed_mount;
3305                 }
3306         }
3307
3308         sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3309                 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3310
3311         if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3312             (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
3313              EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
3314              EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
3315                 ext4_msg(sb, KERN_WARNING,
3316                        "feature flags set on rev 0 fs, "
3317                        "running e2fsck is recommended");
3318
3319         if (IS_EXT2_SB(sb)) {
3320                 if (ext2_feature_set_ok(sb))
3321                         ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3322                                  "using the ext4 subsystem");
3323                 else {
3324                         ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3325                                  "to feature incompatibilities");
3326                         goto failed_mount;
3327                 }
3328         }
3329
3330         if (IS_EXT3_SB(sb)) {
3331                 if (ext3_feature_set_ok(sb))
3332                         ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3333                                  "using the ext4 subsystem");
3334                 else {
3335                         ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3336                                  "to feature incompatibilities");
3337                         goto failed_mount;
3338                 }
3339         }
3340
3341         /*
3342          * Check feature flags regardless of the revision level, since we
3343          * previously didn't change the revision level when setting the flags,
3344          * so there is a chance incompat flags are set on a rev 0 filesystem.
3345          */
3346         if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3347                 goto failed_mount;
3348
3349         if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3350             blocksize > EXT4_MAX_BLOCK_SIZE) {
3351                 ext4_msg(sb, KERN_ERR,
3352                        "Unsupported filesystem blocksize %d", blocksize);
3353                 goto failed_mount;
3354         }
3355
3356         if (sb->s_blocksize != blocksize) {
3357                 /* Validate the filesystem blocksize */
3358                 if (!sb_set_blocksize(sb, blocksize)) {
3359                         ext4_msg(sb, KERN_ERR, "bad block size %d",
3360                                         blocksize);
3361                         goto failed_mount;
3362                 }
3363
3364                 brelse(bh);
3365                 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3366                 offset = do_div(logical_sb_block, blocksize);
3367                 bh = sb_bread(sb, logical_sb_block);
3368                 if (!bh) {
3369                         ext4_msg(sb, KERN_ERR,
3370                                "Can't read superblock on 2nd try");
3371                         goto failed_mount;
3372                 }
3373                 es = (struct ext4_super_block *)(bh->b_data + offset);
3374                 sbi->s_es = es;
3375                 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3376                         ext4_msg(sb, KERN_ERR,
3377                                "Magic mismatch, very weird!");
3378                         goto failed_mount;
3379                 }
3380         }
3381
3382         has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3383                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3384         sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3385                                                       has_huge_files);
3386         sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3387
3388         if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3389                 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3390                 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3391         } else {
3392                 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3393                 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3394                 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3395                     (!is_power_of_2(sbi->s_inode_size)) ||
3396                     (sbi->s_inode_size > blocksize)) {
3397                         ext4_msg(sb, KERN_ERR,
3398                                "unsupported inode size: %d",
3399                                sbi->s_inode_size);
3400                         goto failed_mount;
3401                 }
3402                 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3403                         sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3404         }
3405
3406         sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3407         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
3408                 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3409                     sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3410                     !is_power_of_2(sbi->s_desc_size)) {
3411                         ext4_msg(sb, KERN_ERR,
3412                                "unsupported descriptor size %lu",
3413                                sbi->s_desc_size);
3414                         goto failed_mount;
3415                 }
3416         } else
3417                 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3418
3419         sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3420         sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3421         if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3422                 goto cantfind_ext4;
3423
3424         sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3425         if (sbi->s_inodes_per_block == 0)
3426                 goto cantfind_ext4;
3427         sbi->s_itb_per_group = sbi->s_inodes_per_group /
3428                                         sbi->s_inodes_per_block;
3429         sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3430         sbi->s_sbh = bh;
3431         sbi->s_mount_state = le16_to_cpu(es->s_state);
3432         sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3433         sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3434
3435         for (i = 0; i < 4; i++)
3436                 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3437         sbi->s_def_hash_version = es->s_def_hash_version;
3438         i = le32_to_cpu(es->s_flags);
3439         if (i & EXT2_FLAGS_UNSIGNED_HASH)
3440                 sbi->s_hash_unsigned = 3;
3441         else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3442 #ifdef __CHAR_UNSIGNED__
3443                 es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3444                 sbi->s_hash_unsigned = 3;
3445 #else
3446                 es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3447 #endif
3448         }
3449
3450         /* Handle clustersize */
3451         clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3452         has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3453                                 EXT4_FEATURE_RO_COMPAT_BIGALLOC);
3454         if (has_bigalloc) {
3455                 if (clustersize < blocksize) {
3456                         ext4_msg(sb, KERN_ERR,
3457                                  "cluster size (%d) smaller than "
3458                                  "block size (%d)", clustersize, blocksize);
3459                         goto failed_mount;
3460                 }
3461                 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3462                         le32_to_cpu(es->s_log_block_size);
3463                 sbi->s_clusters_per_group =
3464                         le32_to_cpu(es->s_clusters_per_group);
3465                 if (sbi->s_clusters_per_group > blocksize * 8) {
3466                         ext4_msg(sb, KERN_ERR,
3467                                  "#clusters per group too big: %lu",
3468                                  sbi->s_clusters_per_group);
3469                         goto failed_mount;
3470                 }
3471                 if (sbi->s_blocks_per_group !=
3472                     (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3473                         ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3474                                  "clusters per group (%lu) inconsistent",
3475                                  sbi->s_blocks_per_group,
3476                                  sbi->s_clusters_per_group);
3477                         goto failed_mount;
3478                 }
3479         } else {
3480                 if (clustersize != blocksize) {
3481                         ext4_warning(sb, "fragment/cluster size (%d) != "
3482                                      "block size (%d)", clustersize,
3483                                      blocksize);
3484                         clustersize = blocksize;
3485                 }
3486                 if (sbi->s_blocks_per_group > blocksize * 8) {
3487                         ext4_msg(sb, KERN_ERR,
3488                                  "#blocks per group too big: %lu",
3489                                  sbi->s_blocks_per_group);
3490                         goto failed_mount;
3491                 }
3492                 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3493                 sbi->s_cluster_bits = 0;
3494         }
3495         sbi->s_cluster_ratio = clustersize / blocksize;
3496
3497         if (sbi->s_inodes_per_group > blocksize * 8) {
3498                 ext4_msg(sb, KERN_ERR,
3499                        "#inodes per group too big: %lu",
3500                        sbi->s_inodes_per_group);
3501                 goto failed_mount;
3502         }
3503
3504         /*
3505          * Test whether we have more sectors than will fit in sector_t,
3506          * and whether the max offset is addressable by the page cache.
3507          */
3508         err = generic_check_addressable(sb->s_blocksize_bits,
3509                                         ext4_blocks_count(es));
3510         if (err) {
3511                 ext4_msg(sb, KERN_ERR, "filesystem"
3512                          " too large to mount safely on this system");
3513                 if (sizeof(sector_t) < 8)
3514                         ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3515                 ret = err;
3516                 goto failed_mount;
3517         }
3518
3519         if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3520                 goto cantfind_ext4;
3521
3522         /* check blocks count against device size */
3523         blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3524         if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3525                 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3526                        "exceeds size of device (%llu blocks)",
3527                        ext4_blocks_count(es), blocks_count);
3528                 goto failed_mount;
3529         }
3530
3531         /*
3532          * It makes no sense for the first data block to be beyond the end
3533          * of the filesystem.
3534          */
3535         if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3536                 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3537                          "block %u is beyond end of filesystem (%llu)",
3538                          le32_to_cpu(es->s_first_data_block),
3539                          ext4_blocks_count(es));
3540                 goto failed_mount;
3541         }
3542         blocks_count = (ext4_blocks_count(es) -
3543                         le32_to_cpu(es->s_first_data_block) +
3544                         EXT4_BLOCKS_PER_GROUP(sb) - 1);
3545         do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3546         if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3547                 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3548                        "(block count %llu, first data block %u, "
3549                        "blocks per group %lu)", sbi->s_groups_count,
3550                        ext4_blocks_count(es),
3551                        le32_to_cpu(es->s_first_data_block),
3552                        EXT4_BLOCKS_PER_GROUP(sb));
3553                 goto failed_mount;
3554         }
3555         sbi->s_groups_count = blocks_count;
3556         sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3557                         (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3558         db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3559                    EXT4_DESC_PER_BLOCK(sb);
3560         sbi->s_group_desc = ext4_kvmalloc(db_count *
3561                                           sizeof(struct buffer_head *),
3562                                           GFP_KERNEL);
3563         if (sbi->s_group_desc == NULL) {
3564                 ext4_msg(sb, KERN_ERR, "not enough memory");
3565                 ret = -ENOMEM;
3566                 goto failed_mount;
3567         }
3568
3569         if (ext4_proc_root)
3570                 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
3571
3572         if (sbi->s_proc)
3573                 proc_create_data("options", S_IRUGO, sbi->s_proc,
3574                                  &ext4_seq_options_fops, sb);
3575
3576         bgl_lock_init(sbi->s_blockgroup_lock);
3577
3578         for (i = 0; i < db_count; i++) {
3579                 block = descriptor_loc(sb, logical_sb_block, i);
3580                 sbi->s_group_desc[i] = sb_bread(sb, block);
3581                 if (!sbi->s_group_desc[i]) {
3582                         ext4_msg(sb, KERN_ERR,
3583                                "can't read group descriptor %d", i);
3584                         db_count = i;
3585                         goto failed_mount2;
3586                 }
3587         }
3588         if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3589                 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3590                 goto failed_mount2;
3591         }
3592         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
3593                 if (!ext4_fill_flex_info(sb)) {
3594                         ext4_msg(sb, KERN_ERR,
3595                                "unable to initialize "
3596                                "flex_bg meta info!");
3597                         goto failed_mount2;
3598                 }
3599
3600         sbi->s_gdb_count = db_count;
3601         get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3602         spin_lock_init(&sbi->s_next_gen_lock);
3603
3604         init_timer(&sbi->s_err_report);
3605         sbi->s_err_report.function = print_daily_error_info;
3606         sbi->s_err_report.data = (unsigned long) sb;
3607
3608         err = percpu_counter_init(&sbi->s_freeclusters_counter,
3609                         ext4_count_free_clusters(sb));
3610         if (!err) {
3611                 err = percpu_counter_init(&sbi->s_freeinodes_counter,
3612                                 ext4_count_free_inodes(sb));
3613         }
3614         if (!err) {
3615                 err = percpu_counter_init(&sbi->s_dirs_counter,
3616                                 ext4_count_dirs(sb));
3617         }
3618         if (!err) {
3619                 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0);
3620         }
3621         if (err) {
3622                 ext4_msg(sb, KERN_ERR, "insufficient memory");
3623                 ret = err;
3624                 goto failed_mount3;
3625         }
3626
3627         sbi->s_stripe = ext4_get_stripe_size(sbi);
3628         sbi->s_max_writeback_mb_bump = 128;
3629
3630         /*
3631          * set up enough so that it can read an inode
3632          */
3633         if (!test_opt(sb, NOLOAD) &&
3634             EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
3635                 sb->s_op = &ext4_sops;
3636         else
3637                 sb->s_op = &ext4_nojournal_sops;
3638         sb->s_export_op = &ext4_export_ops;
3639         sb->s_xattr = ext4_xattr_handlers;
3640 #ifdef CONFIG_QUOTA
3641         sb->s_qcop = &ext4_qctl_operations;
3642         sb->dq_op = &ext4_quota_operations;
3643 #endif
3644         memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3645
3646         INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3647         mutex_init(&sbi->s_orphan_lock);
3648         sbi->s_resize_flags = 0;
3649
3650         sb->s_root = NULL;
3651
3652         needs_recovery = (es->s_last_orphan != 0 ||
3653                           EXT4_HAS_INCOMPAT_FEATURE(sb,
3654                                     EXT4_FEATURE_INCOMPAT_RECOVER));
3655
3656         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) &&
3657             !(sb->s_flags & MS_RDONLY))
3658                 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3659                         goto failed_mount3;
3660
3661         /*
3662          * The first inode we look at is the journal inode.  Don't try
3663          * root first: it may be modified in the journal!
3664          */
3665         if (!test_opt(sb, NOLOAD) &&
3666             EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
3667                 if (ext4_load_journal(sb, es, journal_devnum))
3668                         goto failed_mount3;
3669         } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3670               EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3671                 ext4_msg(sb, KERN_ERR, "required journal recovery "
3672                        "suppressed and not mounted read-only");
3673                 goto failed_mount_wq;
3674         } else {
3675                 clear_opt(sb, DATA_FLAGS);
3676                 sbi->s_journal = NULL;
3677                 needs_recovery = 0;
3678                 goto no_journal;
3679         }
3680
3681         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT) &&
3682             !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3683                                        JBD2_FEATURE_INCOMPAT_64BIT)) {
3684                 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3685                 goto failed_mount_wq;
3686         }
3687
3688         if (!set_journal_csum_feature_set(sb)) {
3689                 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
3690                          "feature set");
3691                 goto failed_mount_wq;
3692         }
3693
3694         /* We have now updated the journal if required, so we can
3695          * validate the data journaling mode. */
3696         switch (test_opt(sb, DATA_FLAGS)) {
3697         case 0:
3698                 /* No mode set, assume a default based on the journal
3699                  * capabilities: ORDERED_DATA if the journal can
3700                  * cope, else JOURNAL_DATA
3701                  */
3702                 if (jbd2_journal_check_available_features
3703                     (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3704                         set_opt(sb, ORDERED_DATA);
3705                 else
3706                         set_opt(sb, JOURNAL_DATA);
3707                 break;
3708
3709         case EXT4_MOUNT_ORDERED_DATA:
3710         case EXT4_MOUNT_WRITEBACK_DATA:
3711                 if (!jbd2_journal_check_available_features
3712                     (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
3713                         ext4_msg(sb, KERN_ERR, "Journal does not support "
3714                                "requested data journaling mode");
3715                         goto failed_mount_wq;
3716                 }
3717         default:
3718                 break;
3719         }
3720         set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3721
3722         sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
3723
3724         /*
3725          * The journal may have updated the bg summary counts, so we
3726          * need to update the global counters.
3727          */
3728         percpu_counter_set(&sbi->s_freeclusters_counter,
3729                            ext4_count_free_clusters(sb));
3730         percpu_counter_set(&sbi->s_freeinodes_counter,
3731                            ext4_count_free_inodes(sb));
3732         percpu_counter_set(&sbi->s_dirs_counter,
3733                            ext4_count_dirs(sb));
3734         percpu_counter_set(&sbi->s_dirtyclusters_counter, 0);
3735
3736 no_journal:
3737         /*
3738          * The maximum number of concurrent works can be high and
3739          * concurrency isn't really necessary.  Limit it to 1.
3740          */
3741         EXT4_SB(sb)->dio_unwritten_wq =
3742                 alloc_workqueue("ext4-dio-unwritten", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3743         if (!EXT4_SB(sb)->dio_unwritten_wq) {
3744                 printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n");
3745                 goto failed_mount_wq;
3746         }
3747
3748         /*
3749          * The jbd2_journal_load will have done any necessary log recovery,
3750          * so we can safely mount the rest of the filesystem now.
3751          */
3752
3753         root = ext4_iget(sb, EXT4_ROOT_INO);
3754         if (IS_ERR(root)) {
3755                 ext4_msg(sb, KERN_ERR, "get root inode failed");
3756                 ret = PTR_ERR(root);
3757                 root = NULL;
3758                 goto failed_mount4;
3759         }
3760         if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
3761                 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
3762                 iput(root);
3763                 goto failed_mount4;
3764         }
3765         sb->s_root = d_make_root(root);
3766         if (!sb->s_root) {
3767                 ext4_msg(sb, KERN_ERR, "get root dentry failed");
3768                 ret = -ENOMEM;
3769                 goto failed_mount4;
3770         }
3771
3772         if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
3773                 sb->s_flags |= MS_RDONLY;
3774
3775         /* determine the minimum size of new large inodes, if present */
3776         if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3777                 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3778                                                      EXT4_GOOD_OLD_INODE_SIZE;
3779                 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3780                                        EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
3781                         if (sbi->s_want_extra_isize <
3782                             le16_to_cpu(es->s_want_extra_isize))
3783                                 sbi->s_want_extra_isize =
3784                                         le16_to_cpu(es->s_want_extra_isize);
3785                         if (sbi->s_want_extra_isize <
3786                             le16_to_cpu(es->s_min_extra_isize))
3787                                 sbi->s_want_extra_isize =
3788                                         le16_to_cpu(es->s_min_extra_isize);
3789                 }
3790         }
3791         /* Check if enough inode space is available */
3792         if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
3793                                                         sbi->s_inode_size) {
3794                 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3795                                                        EXT4_GOOD_OLD_INODE_SIZE;
3796                 ext4_msg(sb, KERN_INFO, "required extra inode space not"
3797                          "available");
3798         }
3799
3800         err = ext4_setup_system_zone(sb);
3801         if (err) {
3802                 ext4_msg(sb, KERN_ERR, "failed to initialize system "
3803                          "zone (%d)", err);
3804                 goto failed_mount4a;
3805         }
3806
3807         ext4_ext_init(sb);
3808         err = ext4_mb_init(sb);
3809         if (err) {
3810                 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
3811                          err);
3812                 goto failed_mount5;
3813         }
3814
3815         err = ext4_register_li_request(sb, first_not_zeroed);
3816         if (err)
3817                 goto failed_mount6;
3818
3819         sbi->s_kobj.kset = ext4_kset;
3820         init_completion(&sbi->s_kobj_unregister);
3821         err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
3822                                    "%s", sb->s_id);
3823         if (err)
3824                 goto failed_mount7;
3825
3826         EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
3827         ext4_orphan_cleanup(sb, es);
3828         EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
3829         if (needs_recovery) {
3830                 ext4_msg(sb, KERN_INFO, "recovery complete");
3831                 ext4_mark_recovery_complete(sb, es);
3832         }
3833         if (EXT4_SB(sb)->s_journal) {
3834                 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
3835                         descr = " journalled data mode";
3836                 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
3837                         descr = " ordered data mode";
3838                 else
3839                         descr = " writeback data mode";
3840         } else
3841                 descr = "out journal";
3842
3843         ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
3844                  "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
3845                  *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
3846
3847         if (es->s_error_count)
3848                 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
3849
3850         kfree(orig_data);
3851         return 0;
3852
3853 cantfind_ext4:
3854         if (!silent)
3855                 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
3856         goto failed_mount;
3857
3858 failed_mount7:
3859         ext4_unregister_li_request(sb);
3860 failed_mount6:
3861         ext4_mb_release(sb);
3862 failed_mount5:
3863         ext4_ext_release(sb);
3864         ext4_release_system_zone(sb);
3865 failed_mount4a:
3866         dput(sb->s_root);
3867         sb->s_root = NULL;
3868 failed_mount4:
3869         ext4_msg(sb, KERN_ERR, "mount failed");
3870         destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq);
3871 failed_mount_wq:
3872         if (sbi->s_journal) {
3873                 jbd2_journal_destroy(sbi->s_journal);
3874                 sbi->s_journal = NULL;
3875         }
3876 failed_mount3:
3877         del_timer(&sbi->s_err_report);
3878         if (sbi->s_flex_groups)
3879                 ext4_kvfree(sbi->s_flex_groups);
3880         percpu_counter_destroy(&sbi->s_freeclusters_counter);
3881         percpu_counter_destroy(&sbi->s_freeinodes_counter);
3882         percpu_counter_destroy(&sbi->s_dirs_counter);
3883         percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
3884         if (sbi->s_mmp_tsk)
3885                 kthread_stop(sbi->s_mmp_tsk);
3886 failed_mount2:
3887         for (i = 0; i < db_count; i++)
3888                 brelse(sbi->s_group_desc[i]);
3889         ext4_kvfree(sbi->s_group_desc);
3890 failed_mount:
3891         if (sbi->s_chksum_driver)
3892                 crypto_free_shash(sbi->s_chksum_driver);
3893         if (sbi->s_proc) {
3894                 remove_proc_entry("options", sbi->s_proc);
3895                 remove_proc_entry(sb->s_id, ext4_proc_root);
3896         }
3897 #ifdef CONFIG_QUOTA
3898         for (i = 0; i < MAXQUOTAS; i++)
3899                 kfree(sbi->s_qf_names[i]);
3900 #endif
3901         ext4_blkdev_remove(sbi);
3902         brelse(bh);
3903 out_fail:
3904         sb->s_fs_info = NULL;
3905         kfree(sbi->s_blockgroup_lock);
3906         kfree(sbi);
3907 out_free_orig:
3908         kfree(orig_data);
3909         return ret;
3910 }
3911
3912 /*
3913  * Setup any per-fs journal parameters now.  We'll do this both on
3914  * initial mount, once the journal has been initialised but before we've
3915  * done any recovery; and again on any subsequent remount.
3916  */
3917 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
3918 {
3919         struct ext4_sb_info *sbi = EXT4_SB(sb);
3920
3921         journal->j_commit_interval = sbi->s_commit_interval;
3922         journal->j_min_batch_time = sbi->s_min_batch_time;
3923         journal->j_max_batch_time = sbi->s_max_batch_time;
3924
3925         write_lock(&journal->j_state_lock);
3926         if (test_opt(sb, BARRIER))
3927                 journal->j_flags |= JBD2_BARRIER;
3928         else
3929                 journal->j_flags &= ~JBD2_BARRIER;
3930         if (test_opt(sb, DATA_ERR_ABORT))
3931                 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
3932         else
3933                 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
3934         write_unlock(&journal->j_state_lock);
3935 }
3936
3937 static journal_t *ext4_get_journal(struct super_block *sb,
3938                                    unsigned int journal_inum)
3939 {
3940         struct inode *journal_inode;
3941         journal_t *journal;
3942
3943         BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3944
3945         /* First, test for the existence of a valid inode on disk.  Bad
3946          * things happen if we iget() an unused inode, as the subsequent
3947          * iput() will try to delete it. */
3948
3949         journal_inode = ext4_iget(sb, journal_inum);
3950         if (IS_ERR(journal_inode)) {
3951                 ext4_msg(sb, KERN_ERR, "no journal found");
3952                 return NULL;
3953         }
3954         if (!journal_inode->i_nlink) {
3955                 make_bad_inode(journal_inode);
3956                 iput(journal_inode);
3957                 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
3958                 return NULL;
3959         }
3960
3961         jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
3962                   journal_inode, journal_inode->i_size);
3963         if (!S_ISREG(journal_inode->i_mode)) {
3964                 ext4_msg(sb, KERN_ERR, "invalid journal inode");
3965                 iput(journal_inode);
3966                 return NULL;
3967         }
3968
3969         journal = jbd2_journal_init_inode(journal_inode);
3970         if (!journal) {
3971                 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
3972                 iput(journal_inode);
3973                 return NULL;
3974         }
3975         journal->j_private = sb;
3976         ext4_init_journal_params(sb, journal);
3977         return journal;
3978 }
3979
3980 static journal_t *ext4_get_dev_journal(struct super_block *sb,
3981                                        dev_t j_dev)
3982 {
3983         struct buffer_head *bh;
3984         journal_t *journal;
3985         ext4_fsblk_t start;
3986         ext4_fsblk_t len;
3987         int hblock, blocksize;
3988         ext4_fsblk_t sb_block;
3989         unsigned long offset;
3990         struct ext4_super_block *es;
3991         struct block_device *bdev;
3992
3993         BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3994
3995         bdev = ext4_blkdev_get(j_dev, sb);
3996         if (bdev == NULL)
3997                 return NULL;
3998
3999         blocksize = sb->s_blocksize;
4000         hblock = bdev_logical_block_size(bdev);
4001         if (blocksize < hblock) {
4002                 ext4_msg(sb, KERN_ERR,
4003                         "blocksize too small for journal device");
4004                 goto out_bdev;
4005         }
4006
4007         sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4008         offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4009         set_blocksize(bdev, blocksize);
4010         if (!(bh = __bread(bdev, sb_block, blocksize))) {
4011                 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4012                        "external journal");
4013                 goto out_bdev;
4014         }
4015
4016         es = (struct ext4_super_block *) (bh->b_data + offset);
4017         if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4018             !(le32_to_cpu(es->s_feature_incompat) &
4019               EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4020                 ext4_msg(sb, KERN_ERR, "external journal has "
4021                                         "bad superblock");
4022                 brelse(bh);
4023                 goto out_bdev;
4024         }
4025
4026         if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4027                 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4028                 brelse(bh);
4029                 goto out_bdev;
4030         }
4031
4032         len = ext4_blocks_count(es);
4033         start = sb_block + 1;
4034         brelse(bh);     /* we're done with the superblock */
4035
4036         journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4037                                         start, len, blocksize);
4038         if (!journal) {
4039                 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4040                 goto out_bdev;
4041         }
4042         journal->j_private = sb;
4043         ll_rw_block(READ, 1, &journal->j_sb_buffer);
4044         wait_on_buffer(journal->j_sb_buffer);
4045         if (!buffer_uptodate(journal->j_sb_buffer)) {
4046                 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4047                 goto out_journal;
4048         }
4049         if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4050                 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4051                                         "user (unsupported) - %d",
4052                         be32_to_cpu(journal->j_superblock->s_nr_users));
4053                 goto out_journal;
4054         }
4055         EXT4_SB(sb)->journal_bdev = bdev;
4056         ext4_init_journal_params(sb, journal);
4057         return journal;
4058
4059 out_journal:
4060         jbd2_journal_destroy(journal);
4061 out_bdev:
4062         ext4_blkdev_put(bdev);
4063         return NULL;
4064 }
4065
4066 static int ext4_load_journal(struct super_block *sb,
4067                              struct ext4_super_block *es,
4068                              unsigned long journal_devnum)
4069 {
4070         journal_t *journal;
4071         unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4072         dev_t journal_dev;
4073         int err = 0;
4074         int really_read_only;
4075
4076         BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4077
4078         if (journal_devnum &&
4079             journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4080                 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4081                         "numbers have changed");
4082                 journal_dev = new_decode_dev(journal_devnum);
4083         } else
4084                 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4085
4086         really_read_only = bdev_read_only(sb->s_bdev);
4087
4088         /*
4089          * Are we loading a blank journal or performing recovery after a
4090          * crash?  For recovery, we need to check in advance whether we
4091          * can get read-write access to the device.
4092          */
4093         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
4094                 if (sb->s_flags & MS_RDONLY) {
4095                         ext4_msg(sb, KERN_INFO, "INFO: recovery "
4096                                         "required on readonly filesystem");
4097                         if (really_read_only) {
4098                                 ext4_msg(sb, KERN_ERR, "write access "
4099                                         "unavailable, cannot proceed");
4100                                 return -EROFS;
4101                         }
4102                         ext4_msg(sb, KERN_INFO, "write access will "
4103                                "be enabled during recovery");
4104                 }
4105         }
4106
4107         if (journal_inum && journal_dev) {
4108                 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4109                        "and inode journals!");
4110                 return -EINVAL;
4111         }
4112
4113         if (journal_inum) {
4114                 if (!(journal = ext4_get_journal(sb, journal_inum)))
4115                         return -EINVAL;
4116         } else {
4117                 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4118                         return -EINVAL;
4119         }
4120
4121         if (!(journal->j_flags & JBD2_BARRIER))
4122                 ext4_msg(sb, KERN_INFO, "barriers disabled");
4123
4124         if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
4125                 err = jbd2_journal_wipe(journal, !really_read_only);
4126         if (!err) {
4127                 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4128                 if (save)
4129                         memcpy(save, ((char *) es) +
4130                                EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4131                 err = jbd2_journal_load(journal);
4132                 if (save)
4133                         memcpy(((char *) es) + EXT4_S_ERR_START,
4134                                save, EXT4_S_ERR_LEN);
4135                 kfree(save);
4136         }
4137
4138         if (err) {
4139                 ext4_msg(sb, KERN_ERR, "error loading journal");
4140                 jbd2_journal_destroy(journal);
4141                 return err;
4142         }
4143
4144         EXT4_SB(sb)->s_journal = journal;
4145         ext4_clear_journal_err(sb, es);
4146
4147         if (!really_read_only && journal_devnum &&
4148             journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4149                 es->s_journal_dev = cpu_to_le32(journal_devnum);
4150
4151                 /* Make sure we flush the recovery flag to disk. */
4152                 ext4_commit_super(sb, 1);
4153         }
4154
4155         return 0;
4156 }
4157
4158 static int ext4_commit_super(struct super_block *sb, int sync)
4159 {
4160         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4161         struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4162         int error = 0;
4163
4164         if (!sbh || block_device_ejected(sb))
4165                 return error;
4166         if (buffer_write_io_error(sbh)) {
4167                 /*
4168                  * Oh, dear.  A previous attempt to write the
4169                  * superblock failed.  This could happen because the
4170                  * USB device was yanked out.  Or it could happen to
4171                  * be a transient write error and maybe the block will
4172                  * be remapped.  Nothing we can do but to retry the
4173                  * write and hope for the best.
4174                  */
4175                 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4176                        "superblock detected");
4177                 clear_buffer_write_io_error(sbh);
4178                 set_buffer_uptodate(sbh);
4179         }
4180         /*
4181          * If the file system is mounted read-only, don't update the
4182          * superblock write time.  This avoids updating the superblock
4183          * write time when we are mounting the root file system
4184          * read/only but we need to replay the journal; at that point,
4185          * for people who are east of GMT and who make their clock
4186          * tick in localtime for Windows bug-for-bug compatibility,
4187          * the clock is set in the future, and this will cause e2fsck
4188          * to complain and force a full file system check.
4189          */
4190         if (!(sb->s_flags & MS_RDONLY))
4191                 es->s_wtime = cpu_to_le32(get_seconds());
4192         if (sb->s_bdev->bd_part)
4193                 es->s_kbytes_written =
4194                         cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4195                             ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4196                               EXT4_SB(sb)->s_sectors_written_start) >> 1));
4197         else
4198                 es->s_kbytes_written =
4199                         cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4200         ext4_free_blocks_count_set(es,
4201                         EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4202                                 &EXT4_SB(sb)->s_freeclusters_counter)));
4203         es->s_free_inodes_count =
4204                 cpu_to_le32(percpu_counter_sum_positive(
4205                                 &EXT4_SB(sb)->s_freeinodes_counter));
4206         sb->s_dirt = 0;
4207         BUFFER_TRACE(sbh, "marking dirty");
4208         ext4_superblock_csum_set(sb, es);
4209         mark_buffer_dirty(sbh);
4210         if (sync) {
4211                 error = sync_dirty_buffer(sbh);
4212                 if (error)
4213                         return error;
4214
4215                 error = buffer_write_io_error(sbh);
4216                 if (error) {
4217                         ext4_msg(sb, KERN_ERR, "I/O error while writing "
4218                                "superblock");
4219                         clear_buffer_write_io_error(sbh);
4220                         set_buffer_uptodate(sbh);
4221                 }
4222         }
4223         return error;
4224 }
4225
4226 /*
4227  * Have we just finished recovery?  If so, and if we are mounting (or
4228  * remounting) the filesystem readonly, then we will end up with a
4229  * consistent fs on disk.  Record that fact.
4230  */
4231 static void ext4_mark_recovery_complete(struct super_block *sb,
4232                                         struct ext4_super_block *es)
4233 {
4234         journal_t *journal = EXT4_SB(sb)->s_journal;
4235
4236         if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4237                 BUG_ON(journal != NULL);
4238                 return;
4239         }
4240         jbd2_journal_lock_updates(journal);
4241         if (jbd2_journal_flush(journal) < 0)
4242                 goto out;
4243
4244         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
4245             sb->s_flags & MS_RDONLY) {
4246                 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4247                 ext4_commit_super(sb, 1);
4248         }
4249
4250 out:
4251         jbd2_journal_unlock_updates(journal);
4252 }
4253
4254 /*
4255  * If we are mounting (or read-write remounting) a filesystem whose journal
4256  * has recorded an error from a previous lifetime, move that error to the
4257  * main filesystem now.
4258  */
4259 static void ext4_clear_journal_err(struct super_block *sb,
4260                                    struct ext4_super_block *es)
4261 {
4262         journal_t *journal;
4263         int j_errno;
4264         const char *errstr;
4265
4266         BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4267
4268         journal = EXT4_SB(sb)->s_journal;
4269
4270         /*
4271          * Now check for any error status which may have been recorded in the
4272          * journal by a prior ext4_error() or ext4_abort()
4273          */
4274
4275         j_errno = jbd2_journal_errno(journal);
4276         if (j_errno) {
4277                 char nbuf[16];
4278
4279                 errstr = ext4_decode_error(sb, j_errno, nbuf);
4280                 ext4_warning(sb, "Filesystem error recorded "
4281                              "from previous mount: %s", errstr);
4282                 ext4_warning(sb, "Marking fs in need of filesystem check.");
4283
4284                 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4285                 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4286                 ext4_commit_super(sb, 1);
4287
4288                 jbd2_journal_clear_err(journal);
4289         }
4290 }
4291
4292 /*
4293  * Force the running and committing transactions to commit,
4294  * and wait on the commit.
4295  */
4296 int ext4_force_commit(struct super_block *sb)
4297 {
4298         journal_t *journal;
4299         int ret = 0;
4300
4301         if (sb->s_flags & MS_RDONLY)
4302                 return 0;
4303
4304         journal = EXT4_SB(sb)->s_journal;
4305         if (journal) {
4306                 vfs_check_frozen(sb, SB_FREEZE_TRANS);
4307                 ret = ext4_journal_force_commit(journal);
4308         }
4309
4310         return ret;
4311 }
4312
4313 static void ext4_write_super(struct super_block *sb)
4314 {
4315         lock_super(sb);
4316         ext4_commit_super(sb, 1);
4317         unlock_super(sb);
4318 }
4319
4320 static int ext4_sync_fs(struct super_block *sb, int wait)
4321 {
4322         int ret = 0;
4323         tid_t target;
4324         struct ext4_sb_info *sbi = EXT4_SB(sb);
4325
4326         trace_ext4_sync_fs(sb, wait);
4327         flush_workqueue(sbi->dio_unwritten_wq);
4328         if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4329                 if (wait)
4330                         jbd2_log_wait_commit(sbi->s_journal, target);
4331         }
4332         return ret;
4333 }
4334
4335 /*
4336  * LVM calls this function before a (read-only) snapshot is created.  This
4337  * gives us a chance to flush the journal completely and mark the fs clean.
4338  *
4339  * Note that only this function cannot bring a filesystem to be in a clean
4340  * state independently, because ext4 prevents a new handle from being started
4341  * by @sb->s_frozen, which stays in an upper layer.  It thus needs help from
4342  * the upper layer.
4343  */
4344 static int ext4_freeze(struct super_block *sb)
4345 {
4346         int error = 0;
4347         journal_t *journal;
4348
4349         if (sb->s_flags & MS_RDONLY)
4350                 return 0;
4351
4352         journal = EXT4_SB(sb)->s_journal;
4353
4354         /* Now we set up the journal barrier. */
4355         jbd2_journal_lock_updates(journal);
4356
4357         /*
4358          * Don't clear the needs_recovery flag if we failed to flush
4359          * the journal.
4360          */
4361         error = jbd2_journal_flush(journal);
4362         if (error < 0)
4363                 goto out;
4364
4365         /* Journal blocked and flushed, clear needs_recovery flag. */
4366         EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4367         error = ext4_commit_super(sb, 1);
4368 out:
4369         /* we rely on s_frozen to stop further updates */
4370         jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4371         return error;
4372 }
4373
4374 /*
4375  * Called by LVM after the snapshot is done.  We need to reset the RECOVER
4376  * flag here, even though the filesystem is not technically dirty yet.
4377  */
4378 static int ext4_unfreeze(struct super_block *sb)
4379 {
4380         if (sb->s_flags & MS_RDONLY)
4381                 return 0;
4382
4383         lock_super(sb);
4384         /* Reset the needs_recovery flag before the fs is unlocked. */
4385         EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4386         ext4_commit_super(sb, 1);
4387         unlock_super(sb);
4388         return 0;
4389 }
4390
4391 /*
4392  * Structure to save mount options for ext4_remount's benefit
4393  */
4394 struct ext4_mount_options {
4395         unsigned long s_mount_opt;
4396         unsigned long s_mount_opt2;
4397         kuid_t s_resuid;
4398         kgid_t s_resgid;
4399         unsigned long s_commit_interval;
4400         u32 s_min_batch_time, s_max_batch_time;
4401 #ifdef CONFIG_QUOTA
4402         int s_jquota_fmt;
4403         char *s_qf_names[MAXQUOTAS];
4404 #endif
4405 };
4406
4407 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4408 {
4409         struct ext4_super_block *es;
4410         struct ext4_sb_info *sbi = EXT4_SB(sb);
4411         unsigned long old_sb_flags;
4412         struct ext4_mount_options old_opts;
4413         int enable_quota = 0;
4414         ext4_group_t g;
4415         unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4416         int err = 0;
4417 #ifdef CONFIG_QUOTA
4418         int i;
4419 #endif
4420         char *orig_data = kstrdup(data, GFP_KERNEL);
4421
4422         /* Store the original options */
4423         lock_super(sb);
4424         old_sb_flags = sb->s_flags;
4425         old_opts.s_mount_opt = sbi->s_mount_opt;
4426         old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4427         old_opts.s_resuid = sbi->s_resuid;
4428         old_opts.s_resgid = sbi->s_resgid;
4429         old_opts.s_commit_interval = sbi->s_commit_interval;
4430         old_opts.s_min_batch_time = sbi->s_min_batch_time;
4431         old_opts.s_max_batch_time = sbi->s_max_batch_time;
4432 #ifdef CONFIG_QUOTA
4433         old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4434         for (i = 0; i < MAXQUOTAS; i++)
4435                 old_opts.s_qf_names[i] = sbi->s_qf_names[i];
4436 #endif
4437         if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4438                 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4439
4440         /*
4441          * Allow the "check" option to be passed as a remount option.
4442          */
4443         if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4444                 err = -EINVAL;
4445                 goto restore_opts;
4446         }
4447
4448         if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4449                 ext4_abort(sb, "Abort forced by user");
4450
4451         sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4452                 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4453
4454         es = sbi->s_es;
4455
4456         if (sbi->s_journal) {
4457                 ext4_init_journal_params(sb, sbi->s_journal);
4458                 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4459         }
4460
4461         if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4462                 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4463                         err = -EROFS;
4464                         goto restore_opts;
4465                 }
4466
4467                 if (*flags & MS_RDONLY) {
4468                         err = dquot_suspend(sb, -1);
4469                         if (err < 0)
4470                                 goto restore_opts;
4471
4472                         /*
4473                          * First of all, the unconditional stuff we have to do
4474                          * to disable replay of the journal when we next remount
4475                          */
4476                         sb->s_flags |= MS_RDONLY;
4477
4478                         /*
4479                          * OK, test if we are remounting a valid rw partition
4480                          * readonly, and if so set the rdonly flag and then
4481                          * mark the partition as valid again.
4482                          */
4483                         if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4484                             (sbi->s_mount_state & EXT4_VALID_FS))
4485                                 es->s_state = cpu_to_le16(sbi->s_mount_state);
4486
4487                         if (sbi->s_journal)
4488                                 ext4_mark_recovery_complete(sb, es);
4489                 } else {
4490                         /* Make sure we can mount this feature set readwrite */
4491                         if (!ext4_feature_set_ok(sb, 0)) {
4492                                 err = -EROFS;
4493                                 goto restore_opts;
4494                         }
4495                         /*
4496                          * Make sure the group descriptor checksums
4497                          * are sane.  If they aren't, refuse to remount r/w.
4498                          */
4499                         for (g = 0; g < sbi->s_groups_count; g++) {
4500                                 struct ext4_group_desc *gdp =
4501                                         ext4_get_group_desc(sb, g, NULL);
4502
4503                                 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
4504                                         ext4_msg(sb, KERN_ERR,
4505                "ext4_remount: Checksum for group %u failed (%u!=%u)",
4506                 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
4507                                                le16_to_cpu(gdp->bg_checksum));
4508                                         err = -EINVAL;
4509                                         goto restore_opts;
4510                                 }
4511                         }
4512
4513                         /*
4514                          * If we have an unprocessed orphan list hanging
4515                          * around from a previously readonly bdev mount,
4516                          * require a full umount/remount for now.
4517                          */
4518                         if (es->s_last_orphan) {
4519                                 ext4_msg(sb, KERN_WARNING, "Couldn't "
4520                                        "remount RDWR because of unprocessed "
4521                                        "orphan inode list.  Please "
4522                                        "umount/remount instead");
4523                                 err = -EINVAL;
4524                                 goto restore_opts;
4525                         }
4526
4527                         /*
4528                          * Mounting a RDONLY partition read-write, so reread
4529                          * and store the current valid flag.  (It may have
4530                          * been changed by e2fsck since we originally mounted
4531                          * the partition.)
4532                          */
4533                         if (sbi->s_journal)
4534                                 ext4_clear_journal_err(sb, es);
4535                         sbi->s_mount_state = le16_to_cpu(es->s_state);
4536                         if (!ext4_setup_super(sb, es, 0))
4537                                 sb->s_flags &= ~MS_RDONLY;
4538                         if (EXT4_HAS_INCOMPAT_FEATURE(sb,
4539                                                      EXT4_FEATURE_INCOMPAT_MMP))
4540                                 if (ext4_multi_mount_protect(sb,
4541                                                 le64_to_cpu(es->s_mmp_block))) {
4542                                         err = -EROFS;
4543                                         goto restore_opts;
4544                                 }
4545                         enable_quota = 1;
4546                 }
4547         }
4548
4549         /*
4550          * Reinitialize lazy itable initialization thread based on
4551          * current settings
4552          */
4553         if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4554                 ext4_unregister_li_request(sb);
4555         else {
4556                 ext4_group_t first_not_zeroed;
4557                 first_not_zeroed = ext4_has_uninit_itable(sb);
4558                 ext4_register_li_request(sb, first_not_zeroed);
4559         }
4560
4561         ext4_setup_system_zone(sb);
4562         if (sbi->s_journal == NULL)
4563                 ext4_commit_super(sb, 1);
4564
4565 #ifdef CONFIG_QUOTA
4566         /* Release old quota file names */
4567         for (i = 0; i < MAXQUOTAS; i++)
4568                 if (old_opts.s_qf_names[i] &&
4569                     old_opts.s_qf_names[i] != sbi->s_qf_names[i])
4570                         kfree(old_opts.s_qf_names[i]);
4571 #endif
4572         unlock_super(sb);
4573         if (enable_quota)
4574                 dquot_resume(sb, -1);
4575
4576         ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
4577         kfree(orig_data);
4578         return 0;
4579
4580 restore_opts:
4581         sb->s_flags = old_sb_flags;
4582         sbi->s_mount_opt = old_opts.s_mount_opt;
4583         sbi->s_mount_opt2 = old_opts.s_mount_opt2;
4584         sbi->s_resuid = old_opts.s_resuid;
4585         sbi->s_resgid = old_opts.s_resgid;
4586         sbi->s_commit_interval = old_opts.s_commit_interval;
4587         sbi->s_min_batch_time = old_opts.s_min_batch_time;
4588         sbi->s_max_batch_time = old_opts.s_max_batch_time;
4589 #ifdef CONFIG_QUOTA
4590         sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
4591         for (i = 0; i < MAXQUOTAS; i++) {
4592                 if (sbi->s_qf_names[i] &&
4593                     old_opts.s_qf_names[i] != sbi->s_qf_names[i])
4594                         kfree(sbi->s_qf_names[i]);
4595                 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
4596         }
4597 #endif
4598         unlock_super(sb);
4599         kfree(orig_data);
4600         return err;
4601 }
4602
4603 /*
4604  * Note: calculating the overhead so we can be compatible with
4605  * historical BSD practice is quite difficult in the face of
4606  * clusters/bigalloc.  This is because multiple metadata blocks from
4607  * different block group can end up in the same allocation cluster.
4608  * Calculating the exact overhead in the face of clustered allocation
4609  * requires either O(all block bitmaps) in memory or O(number of block
4610  * groups**2) in time.  We will still calculate the superblock for
4611  * older file systems --- and if we come across with a bigalloc file
4612  * system with zero in s_overhead_clusters the estimate will be close to
4613  * correct especially for very large cluster sizes --- but for newer
4614  * file systems, it's better to calculate this figure once at mkfs
4615  * time, and store it in the superblock.  If the superblock value is
4616  * present (even for non-bigalloc file systems), we will use it.
4617  */
4618 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
4619 {
4620         struct super_block *sb = dentry->d_sb;
4621         struct ext4_sb_info *sbi = EXT4_SB(sb);
4622         struct ext4_super_block *es = sbi->s_es;
4623         struct ext4_group_desc *gdp;
4624         u64 fsid;
4625         s64 bfree;
4626
4627         if (test_opt(sb, MINIX_DF)) {
4628                 sbi->s_overhead_last = 0;
4629         } else if (es->s_overhead_clusters) {
4630                 sbi->s_overhead_last = le32_to_cpu(es->s_overhead_clusters);
4631         } else if (sbi->s_blocks_last != ext4_blocks_count(es)) {
4632                 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4633                 ext4_fsblk_t overhead = 0;
4634
4635                 /*
4636                  * Compute the overhead (FS structures).  This is constant
4637                  * for a given filesystem unless the number of block groups
4638                  * changes so we cache the previous value until it does.
4639                  */
4640
4641                 /*
4642                  * All of the blocks before first_data_block are
4643                  * overhead
4644                  */
4645                 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
4646
4647                 /*
4648                  * Add the overhead found in each block group
4649                  */
4650                 for (i = 0; i < ngroups; i++) {
4651                         gdp = ext4_get_group_desc(sb, i, NULL);
4652                         overhead += ext4_num_overhead_clusters(sb, i, gdp);
4653                         cond_resched();
4654                 }
4655                 sbi->s_overhead_last = overhead;
4656                 smp_wmb();
4657                 sbi->s_blocks_last = ext4_blocks_count(es);
4658         }
4659
4660         buf->f_type = EXT4_SUPER_MAGIC;
4661         buf->f_bsize = sb->s_blocksize;
4662         buf->f_blocks = (ext4_blocks_count(es) -
4663                          EXT4_C2B(sbi, sbi->s_overhead_last));
4664         bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
4665                 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
4666         /* prevent underflow in case that few free space is available */
4667         buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
4668         buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es);
4669         if (buf->f_bfree < ext4_r_blocks_count(es))
4670                 buf->f_bavail = 0;
4671         buf->f_files = le32_to_cpu(es->s_inodes_count);
4672         buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
4673         buf->f_namelen = EXT4_NAME_LEN;
4674         fsid = le64_to_cpup((void *)es->s_uuid) ^
4675                le64_to_cpup((void *)es->s_uuid + sizeof(u64));
4676         buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
4677         buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
4678
4679         return 0;
4680 }
4681
4682 /* Helper function for writing quotas on sync - we need to start transaction
4683  * before quota file is locked for write. Otherwise the are possible deadlocks:
4684  * Process 1                         Process 2
4685  * ext4_create()                     quota_sync()
4686  *   jbd2_journal_start()                  write_dquot()
4687  *   dquot_initialize()                         down(dqio_mutex)
4688  *     down(dqio_mutex)                    jbd2_journal_start()
4689  *
4690  */
4691
4692 #ifdef CONFIG_QUOTA
4693
4694 static inline struct inode *dquot_to_inode(struct dquot *dquot)
4695 {
4696         return sb_dqopt(dquot->dq_sb)->files[dquot->dq_type];
4697 }
4698
4699 static int ext4_write_dquot(struct dquot *dquot)
4700 {
4701         int ret, err;
4702         handle_t *handle;
4703         struct inode *inode;
4704
4705         inode = dquot_to_inode(dquot);
4706         handle = ext4_journal_start(inode,
4707                                     EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
4708         if (IS_ERR(handle))
4709                 return PTR_ERR(handle);
4710         ret = dquot_commit(dquot);
4711         err = ext4_journal_stop(handle);
4712         if (!ret)
4713                 ret = err;
4714         return ret;
4715 }
4716
4717 static int ext4_acquire_dquot(struct dquot *dquot)
4718 {
4719         int ret, err;
4720         handle_t *handle;
4721
4722         handle = ext4_journal_start(dquot_to_inode(dquot),
4723                                     EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
4724         if (IS_ERR(handle))
4725                 return PTR_ERR(handle);
4726         ret = dquot_acquire(dquot);
4727         err = ext4_journal_stop(handle);
4728         if (!ret)
4729                 ret = err;
4730         return ret;
4731 }
4732
4733 static int ext4_release_dquot(struct dquot *dquot)
4734 {
4735         int ret, err;
4736         handle_t *handle;
4737
4738         handle = ext4_journal_start(dquot_to_inode(dquot),
4739                                     EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
4740         if (IS_ERR(handle)) {
4741                 /* Release dquot anyway to avoid endless cycle in dqput() */
4742                 dquot_release(dquot);
4743                 return PTR_ERR(handle);
4744         }
4745         ret = dquot_release(dquot);
4746         err = ext4_journal_stop(handle);
4747         if (!ret)
4748                 ret = err;
4749         return ret;
4750 }
4751
4752 static int ext4_mark_dquot_dirty(struct dquot *dquot)
4753 {
4754         /* Are we journaling quotas? */
4755         if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] ||
4756             EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) {
4757                 dquot_mark_dquot_dirty(dquot);
4758                 return ext4_write_dquot(dquot);
4759         } else {
4760                 return dquot_mark_dquot_dirty(dquot);
4761         }
4762 }
4763
4764 static int ext4_write_info(struct super_block *sb, int type)
4765 {
4766         int ret, err;
4767         handle_t *handle;
4768
4769         /* Data block + inode block */
4770         handle = ext4_journal_start(sb->s_root->d_inode, 2);
4771         if (IS_ERR(handle))
4772                 return PTR_ERR(handle);
4773         ret = dquot_commit_info(sb, type);
4774         err = ext4_journal_stop(handle);
4775         if (!ret)
4776                 ret = err;
4777         return ret;
4778 }
4779
4780 /*
4781  * Turn on quotas during mount time - we need to find
4782  * the quota file and such...
4783  */
4784 static int ext4_quota_on_mount(struct super_block *sb, int type)
4785 {
4786         return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
4787                                         EXT4_SB(sb)->s_jquota_fmt, type);
4788 }
4789
4790 /*
4791  * Standard function to be called on quota_on
4792  */
4793 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
4794                          struct path *path)
4795 {
4796         int err;
4797
4798         if (!test_opt(sb, QUOTA))
4799                 return -EINVAL;
4800
4801         /* Quotafile not on the same filesystem? */
4802         if (path->dentry->d_sb != sb)
4803                 return -EXDEV;
4804         /* Journaling quota? */
4805         if (EXT4_SB(sb)->s_qf_names[type]) {
4806                 /* Quotafile not in fs root? */
4807                 if (path->dentry->d_parent != sb->s_root)
4808                         ext4_msg(sb, KERN_WARNING,
4809                                 "Quota file not on filesystem root. "
4810                                 "Journaled quota will not work");
4811         }
4812
4813         /*
4814          * When we journal data on quota file, we have to flush journal to see
4815          * all updates to the file when we bypass pagecache...
4816          */
4817         if (EXT4_SB(sb)->s_journal &&
4818             ext4_should_journal_data(path->dentry->d_inode)) {
4819                 /*
4820                  * We don't need to lock updates but journal_flush() could
4821                  * otherwise be livelocked...
4822                  */
4823                 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
4824                 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
4825                 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4826                 if (err)
4827                         return err;
4828         }
4829
4830         return dquot_quota_on(sb, type, format_id, path);
4831 }
4832
4833 static int ext4_quota_off(struct super_block *sb, int type)
4834 {
4835         struct inode *inode = sb_dqopt(sb)->files[type];
4836         handle_t *handle;
4837
4838         /* Force all delayed allocation blocks to be allocated.
4839          * Caller already holds s_umount sem */
4840         if (test_opt(sb, DELALLOC))
4841                 sync_filesystem(sb);
4842
4843         if (!inode)
4844                 goto out;
4845
4846         /* Update modification times of quota files when userspace can
4847          * start looking at them */
4848         handle = ext4_journal_start(inode, 1);
4849         if (IS_ERR(handle))
4850                 goto out;
4851         inode->i_mtime = inode->i_ctime = CURRENT_TIME;
4852         ext4_mark_inode_dirty(handle, inode);
4853         ext4_journal_stop(handle);
4854
4855 out:
4856         return dquot_quota_off(sb, type);
4857 }
4858
4859 /* Read data from quotafile - avoid pagecache and such because we cannot afford
4860  * acquiring the locks... As quota files are never truncated and quota code
4861  * itself serializes the operations (and no one else should touch the files)
4862  * we don't have to be afraid of races */
4863 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
4864                                size_t len, loff_t off)
4865 {
4866         struct inode *inode = sb_dqopt(sb)->files[type];
4867         ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
4868         int err = 0;
4869         int offset = off & (sb->s_blocksize - 1);
4870         int tocopy;
4871         size_t toread;
4872         struct buffer_head *bh;
4873         loff_t i_size = i_size_read(inode);
4874
4875         if (off > i_size)
4876                 return 0;
4877         if (off+len > i_size)
4878                 len = i_size-off;
4879         toread = len;
4880         while (toread > 0) {
4881                 tocopy = sb->s_blocksize - offset < toread ?
4882                                 sb->s_blocksize - offset : toread;
4883                 bh = ext4_bread(NULL, inode, blk, 0, &err);
4884                 if (err)
4885                         return err;
4886                 if (!bh)        /* A hole? */
4887                         memset(data, 0, tocopy);
4888                 else
4889                         memcpy(data, bh->b_data+offset, tocopy);
4890                 brelse(bh);
4891                 offset = 0;
4892                 toread -= tocopy;
4893                 data += tocopy;
4894                 blk++;
4895         }
4896         return len;
4897 }
4898
4899 /* Write to quotafile (we know the transaction is already started and has
4900  * enough credits) */
4901 static ssize_t ext4_quota_write(struct super_block *sb, int type,
4902                                 const char *data, size_t len, loff_t off)
4903 {
4904         struct inode *inode = sb_dqopt(sb)->files[type];
4905         ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
4906         int err = 0;
4907         int offset = off & (sb->s_blocksize - 1);
4908         struct buffer_head *bh;
4909         handle_t *handle = journal_current_handle();
4910
4911         if (EXT4_SB(sb)->s_journal && !handle) {
4912                 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
4913                         " cancelled because transaction is not started",
4914                         (unsigned long long)off, (unsigned long long)len);
4915                 return -EIO;
4916         }
4917         /*
4918          * Since we account only one data block in transaction credits,
4919          * then it is impossible to cross a block boundary.
4920          */
4921         if (sb->s_blocksize - offset < len) {
4922                 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
4923                         " cancelled because not block aligned",
4924                         (unsigned long long)off, (unsigned long long)len);
4925                 return -EIO;
4926         }
4927
4928         bh = ext4_bread(handle, inode, blk, 1, &err);
4929         if (!bh)
4930                 goto out;
4931         err = ext4_journal_get_write_access(handle, bh);
4932         if (err) {
4933                 brelse(bh);
4934                 goto out;
4935         }
4936         lock_buffer(bh);
4937         memcpy(bh->b_data+offset, data, len);
4938         flush_dcache_page(bh->b_page);
4939         unlock_buffer(bh);
4940         err = ext4_handle_dirty_metadata(handle, NULL, bh);
4941         brelse(bh);
4942 out:
4943         if (err)
4944                 return err;
4945         if (inode->i_size < off + len) {
4946                 i_size_write(inode, off + len);
4947                 EXT4_I(inode)->i_disksize = inode->i_size;
4948                 ext4_mark_inode_dirty(handle, inode);
4949         }
4950         return len;
4951 }
4952
4953 #endif
4954
4955 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
4956                        const char *dev_name, void *data)
4957 {
4958         return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
4959 }
4960
4961 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
4962 static inline void register_as_ext2(void)
4963 {
4964         int err = register_filesystem(&ext2_fs_type);
4965         if (err)
4966                 printk(KERN_WARNING
4967                        "EXT4-fs: Unable to register as ext2 (%d)\n", err);
4968 }
4969
4970 static inline void unregister_as_ext2(void)
4971 {
4972         unregister_filesystem(&ext2_fs_type);
4973 }
4974
4975 static inline int ext2_feature_set_ok(struct super_block *sb)
4976 {
4977         if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP))
4978                 return 0;
4979         if (sb->s_flags & MS_RDONLY)
4980                 return 1;
4981         if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP))
4982                 return 0;
4983         return 1;
4984 }
4985 MODULE_ALIAS("ext2");
4986 #else
4987 static inline void register_as_ext2(void) { }
4988 static inline void unregister_as_ext2(void) { }
4989 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
4990 #endif
4991
4992 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
4993 static inline void register_as_ext3(void)
4994 {
4995         int err = register_filesystem(&ext3_fs_type);
4996         if (err)
4997                 printk(KERN_WARNING
4998                        "EXT4-fs: Unable to register as ext3 (%d)\n", err);
4999 }
5000
5001 static inline void unregister_as_ext3(void)
5002 {
5003         unregister_filesystem(&ext3_fs_type);
5004 }
5005
5006 static inline int ext3_feature_set_ok(struct super_block *sb)
5007 {
5008         if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP))
5009                 return 0;
5010         if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
5011                 return 0;
5012         if (sb->s_flags & MS_RDONLY)
5013                 return 1;
5014         if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP))
5015                 return 0;
5016         return 1;
5017 }
5018 MODULE_ALIAS("ext3");
5019 #else
5020 static inline void register_as_ext3(void) { }
5021 static inline void unregister_as_ext3(void) { }
5022 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; }
5023 #endif
5024
5025 static struct file_system_type ext4_fs_type = {
5026         .owner          = THIS_MODULE,
5027         .name           = "ext4",
5028         .mount          = ext4_mount,
5029         .kill_sb        = kill_block_super,
5030         .fs_flags       = FS_REQUIRES_DEV,
5031 };
5032
5033 static int __init ext4_init_feat_adverts(void)
5034 {
5035         struct ext4_features *ef;
5036         int ret = -ENOMEM;
5037
5038         ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL);
5039         if (!ef)
5040                 goto out;
5041
5042         ef->f_kobj.kset = ext4_kset;
5043         init_completion(&ef->f_kobj_unregister);
5044         ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL,
5045                                    "features");
5046         if (ret) {
5047                 kfree(ef);
5048                 goto out;
5049         }
5050
5051         ext4_feat = ef;
5052         ret = 0;
5053 out:
5054         return ret;
5055 }
5056
5057 static void ext4_exit_feat_adverts(void)
5058 {
5059         kobject_put(&ext4_feat->f_kobj);
5060         wait_for_completion(&ext4_feat->f_kobj_unregister);
5061         kfree(ext4_feat);
5062 }
5063
5064 /* Shared across all ext4 file systems */
5065 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5066 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ];
5067
5068 static int __init ext4_init_fs(void)
5069 {
5070         int i, err;
5071
5072         ext4_li_info = NULL;
5073         mutex_init(&ext4_li_mtx);
5074
5075         ext4_check_flag_values();
5076
5077         for (i = 0; i < EXT4_WQ_HASH_SZ; i++) {
5078                 mutex_init(&ext4__aio_mutex[i]);
5079                 init_waitqueue_head(&ext4__ioend_wq[i]);
5080         }
5081
5082         err = ext4_init_pageio();
5083         if (err)
5084                 return err;
5085         err = ext4_init_system_zone();
5086         if (err)
5087                 goto out6;
5088         ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
5089         if (!ext4_kset)
5090                 goto out5;
5091         ext4_proc_root = proc_mkdir("fs/ext4", NULL);
5092
5093         err = ext4_init_feat_adverts();
5094         if (err)
5095                 goto out4;
5096
5097         err = ext4_init_mballoc();
5098         if (err)
5099                 goto out3;
5100
5101         err = ext4_init_xattr();
5102         if (err)
5103                 goto out2;
5104         err = init_inodecache();
5105         if (err)
5106                 goto out1;
5107         register_as_ext3();
5108         register_as_ext2();
5109         err = register_filesystem(&ext4_fs_type);
5110         if (err)
5111                 goto out;
5112
5113         return 0;
5114 out:
5115         unregister_as_ext2();
5116         unregister_as_ext3();
5117         destroy_inodecache();
5118 out1:
5119         ext4_exit_xattr();
5120 out2:
5121         ext4_exit_mballoc();
5122 out3:
5123         ext4_exit_feat_adverts();
5124 out4:
5125         if (ext4_proc_root)
5126                 remove_proc_entry("fs/ext4", NULL);
5127         kset_unregister(ext4_kset);
5128 out5:
5129         ext4_exit_system_zone();
5130 out6:
5131         ext4_exit_pageio();
5132         return err;
5133 }
5134
5135 static void __exit ext4_exit_fs(void)
5136 {
5137         ext4_destroy_lazyinit_thread();
5138         unregister_as_ext2();
5139         unregister_as_ext3();
5140         unregister_filesystem(&ext4_fs_type);
5141         destroy_inodecache();
5142         ext4_exit_xattr();
5143         ext4_exit_mballoc();
5144         ext4_exit_feat_adverts();
5145         remove_proc_entry("fs/ext4", NULL);
5146         kset_unregister(ext4_kset);
5147         ext4_exit_system_zone();
5148         ext4_exit_pageio();
5149 }
5150
5151 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5152 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5153 MODULE_LICENSE("GPL");
5154 module_init(ext4_init_fs)
5155 module_exit(ext4_exit_fs)