Merge branch 'arch/nohz' of git://git.kernel.org/pub/scm/linux/kernel/git/frederic...
[platform/kernel/linux-rpi.git] / fs / ext4 / super.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/super.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  Big-endian to little-endian byte-swapping/bitmaps by
17  *        David S. Miller (davem@caip.rutgers.edu), 1995
18  */
19
20 #include <linux/module.h>
21 #include <linux/string.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/cleancache.h>
43 #include <linux/uaccess.h>
44 #include <linux/iversion.h>
45 #include <linux/unicode.h>
46
47 #include <linux/kthread.h>
48 #include <linux/freezer.h>
49
50 #include "ext4.h"
51 #include "ext4_extents.h"       /* Needed for trace points definition */
52 #include "ext4_jbd2.h"
53 #include "xattr.h"
54 #include "acl.h"
55 #include "mballoc.h"
56 #include "fsmap.h"
57
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/ext4.h>
60
61 static struct ext4_lazy_init *ext4_li_info;
62 static struct mutex ext4_li_mtx;
63 static struct ratelimit_state ext4_mount_msg_ratelimit;
64
65 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
66                              unsigned long journal_devnum);
67 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
68 static int ext4_commit_super(struct super_block *sb, int sync);
69 static void ext4_mark_recovery_complete(struct super_block *sb,
70                                         struct ext4_super_block *es);
71 static void ext4_clear_journal_err(struct super_block *sb,
72                                    struct ext4_super_block *es);
73 static int ext4_sync_fs(struct super_block *sb, int wait);
74 static int ext4_remount(struct super_block *sb, int *flags, char *data);
75 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
76 static int ext4_unfreeze(struct super_block *sb);
77 static int ext4_freeze(struct super_block *sb);
78 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
79                        const char *dev_name, void *data);
80 static inline int ext2_feature_set_ok(struct super_block *sb);
81 static inline int ext3_feature_set_ok(struct super_block *sb);
82 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
83 static void ext4_destroy_lazyinit_thread(void);
84 static void ext4_unregister_li_request(struct super_block *sb);
85 static void ext4_clear_request_list(void);
86 static struct inode *ext4_get_journal_inode(struct super_block *sb,
87                                             unsigned int journal_inum);
88
89 /*
90  * Lock ordering
91  *
92  * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
93  * i_mmap_rwsem (inode->i_mmap_rwsem)!
94  *
95  * page fault path:
96  * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
97  *   page lock -> i_data_sem (rw)
98  *
99  * buffered write path:
100  * sb_start_write -> i_mutex -> mmap_sem
101  * sb_start_write -> i_mutex -> transaction start -> page lock ->
102  *   i_data_sem (rw)
103  *
104  * truncate:
105  * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock
106  * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start ->
107  *   i_data_sem (rw)
108  *
109  * direct IO:
110  * sb_start_write -> i_mutex -> mmap_sem
111  * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
112  *
113  * writepages:
114  * transaction start -> page lock(s) -> i_data_sem (rw)
115  */
116
117 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
118 static struct file_system_type ext2_fs_type = {
119         .owner          = THIS_MODULE,
120         .name           = "ext2",
121         .mount          = ext4_mount,
122         .kill_sb        = kill_block_super,
123         .fs_flags       = FS_REQUIRES_DEV,
124 };
125 MODULE_ALIAS_FS("ext2");
126 MODULE_ALIAS("ext2");
127 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
128 #else
129 #define IS_EXT2_SB(sb) (0)
130 #endif
131
132
133 static struct file_system_type ext3_fs_type = {
134         .owner          = THIS_MODULE,
135         .name           = "ext3",
136         .mount          = ext4_mount,
137         .kill_sb        = kill_block_super,
138         .fs_flags       = FS_REQUIRES_DEV,
139 };
140 MODULE_ALIAS_FS("ext3");
141 MODULE_ALIAS("ext3");
142 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
143
144 /*
145  * This works like sb_bread() except it uses ERR_PTR for error
146  * returns.  Currently with sb_bread it's impossible to distinguish
147  * between ENOMEM and EIO situations (since both result in a NULL
148  * return.
149  */
150 struct buffer_head *
151 ext4_sb_bread(struct super_block *sb, sector_t block, int op_flags)
152 {
153         struct buffer_head *bh = sb_getblk(sb, block);
154
155         if (bh == NULL)
156                 return ERR_PTR(-ENOMEM);
157         if (ext4_buffer_uptodate(bh))
158                 return bh;
159         ll_rw_block(REQ_OP_READ, REQ_META | op_flags, 1, &bh);
160         wait_on_buffer(bh);
161         if (buffer_uptodate(bh))
162                 return bh;
163         put_bh(bh);
164         return ERR_PTR(-EIO);
165 }
166
167 static int ext4_verify_csum_type(struct super_block *sb,
168                                  struct ext4_super_block *es)
169 {
170         if (!ext4_has_feature_metadata_csum(sb))
171                 return 1;
172
173         return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
174 }
175
176 static __le32 ext4_superblock_csum(struct super_block *sb,
177                                    struct ext4_super_block *es)
178 {
179         struct ext4_sb_info *sbi = EXT4_SB(sb);
180         int offset = offsetof(struct ext4_super_block, s_checksum);
181         __u32 csum;
182
183         csum = ext4_chksum(sbi, ~0, (char *)es, offset);
184
185         return cpu_to_le32(csum);
186 }
187
188 static int ext4_superblock_csum_verify(struct super_block *sb,
189                                        struct ext4_super_block *es)
190 {
191         if (!ext4_has_metadata_csum(sb))
192                 return 1;
193
194         return es->s_checksum == ext4_superblock_csum(sb, es);
195 }
196
197 void ext4_superblock_csum_set(struct super_block *sb)
198 {
199         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
200
201         if (!ext4_has_metadata_csum(sb))
202                 return;
203
204         es->s_checksum = ext4_superblock_csum(sb, es);
205 }
206
207 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
208                                struct ext4_group_desc *bg)
209 {
210         return le32_to_cpu(bg->bg_block_bitmap_lo) |
211                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
212                  (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
213 }
214
215 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
216                                struct ext4_group_desc *bg)
217 {
218         return le32_to_cpu(bg->bg_inode_bitmap_lo) |
219                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
220                  (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
221 }
222
223 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
224                               struct ext4_group_desc *bg)
225 {
226         return le32_to_cpu(bg->bg_inode_table_lo) |
227                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
228                  (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
229 }
230
231 __u32 ext4_free_group_clusters(struct super_block *sb,
232                                struct ext4_group_desc *bg)
233 {
234         return le16_to_cpu(bg->bg_free_blocks_count_lo) |
235                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
236                  (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
237 }
238
239 __u32 ext4_free_inodes_count(struct super_block *sb,
240                               struct ext4_group_desc *bg)
241 {
242         return le16_to_cpu(bg->bg_free_inodes_count_lo) |
243                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
244                  (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
245 }
246
247 __u32 ext4_used_dirs_count(struct super_block *sb,
248                               struct ext4_group_desc *bg)
249 {
250         return le16_to_cpu(bg->bg_used_dirs_count_lo) |
251                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
252                  (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
253 }
254
255 __u32 ext4_itable_unused_count(struct super_block *sb,
256                               struct ext4_group_desc *bg)
257 {
258         return le16_to_cpu(bg->bg_itable_unused_lo) |
259                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
260                  (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
261 }
262
263 void ext4_block_bitmap_set(struct super_block *sb,
264                            struct ext4_group_desc *bg, ext4_fsblk_t blk)
265 {
266         bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
267         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
268                 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
269 }
270
271 void ext4_inode_bitmap_set(struct super_block *sb,
272                            struct ext4_group_desc *bg, ext4_fsblk_t blk)
273 {
274         bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
275         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
276                 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
277 }
278
279 void ext4_inode_table_set(struct super_block *sb,
280                           struct ext4_group_desc *bg, ext4_fsblk_t blk)
281 {
282         bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
283         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
284                 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
285 }
286
287 void ext4_free_group_clusters_set(struct super_block *sb,
288                                   struct ext4_group_desc *bg, __u32 count)
289 {
290         bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
291         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
292                 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
293 }
294
295 void ext4_free_inodes_set(struct super_block *sb,
296                           struct ext4_group_desc *bg, __u32 count)
297 {
298         bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
299         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
300                 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
301 }
302
303 void ext4_used_dirs_set(struct super_block *sb,
304                           struct ext4_group_desc *bg, __u32 count)
305 {
306         bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
307         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
308                 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
309 }
310
311 void ext4_itable_unused_set(struct super_block *sb,
312                           struct ext4_group_desc *bg, __u32 count)
313 {
314         bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
315         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
316                 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
317 }
318
319 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi)
320 {
321         time64_t now = ktime_get_real_seconds();
322
323         now = clamp_val(now, 0, (1ull << 40) - 1);
324
325         *lo = cpu_to_le32(lower_32_bits(now));
326         *hi = upper_32_bits(now);
327 }
328
329 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
330 {
331         return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
332 }
333 #define ext4_update_tstamp(es, tstamp) \
334         __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
335 #define ext4_get_tstamp(es, tstamp) \
336         __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
337
338 static void __save_error_info(struct super_block *sb, const char *func,
339                             unsigned int line)
340 {
341         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
342
343         EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
344         if (bdev_read_only(sb->s_bdev))
345                 return;
346         es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
347         ext4_update_tstamp(es, s_last_error_time);
348         strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
349         es->s_last_error_line = cpu_to_le32(line);
350         if (es->s_last_error_errcode == 0)
351                 es->s_last_error_errcode = EXT4_ERR_EFSCORRUPTED;
352         if (!es->s_first_error_time) {
353                 es->s_first_error_time = es->s_last_error_time;
354                 es->s_first_error_time_hi = es->s_last_error_time_hi;
355                 strncpy(es->s_first_error_func, func,
356                         sizeof(es->s_first_error_func));
357                 es->s_first_error_line = cpu_to_le32(line);
358                 es->s_first_error_ino = es->s_last_error_ino;
359                 es->s_first_error_block = es->s_last_error_block;
360                 es->s_first_error_errcode = es->s_last_error_errcode;
361         }
362         /*
363          * Start the daily error reporting function if it hasn't been
364          * started already
365          */
366         if (!es->s_error_count)
367                 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
368         le32_add_cpu(&es->s_error_count, 1);
369 }
370
371 static void save_error_info(struct super_block *sb, const char *func,
372                             unsigned int line)
373 {
374         __save_error_info(sb, func, line);
375         ext4_commit_super(sb, 1);
376 }
377
378 /*
379  * The del_gendisk() function uninitializes the disk-specific data
380  * structures, including the bdi structure, without telling anyone
381  * else.  Once this happens, any attempt to call mark_buffer_dirty()
382  * (for example, by ext4_commit_super), will cause a kernel OOPS.
383  * This is a kludge to prevent these oops until we can put in a proper
384  * hook in del_gendisk() to inform the VFS and file system layers.
385  */
386 static int block_device_ejected(struct super_block *sb)
387 {
388         struct inode *bd_inode = sb->s_bdev->bd_inode;
389         struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
390
391         return bdi->dev == NULL;
392 }
393
394 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
395 {
396         struct super_block              *sb = journal->j_private;
397         struct ext4_sb_info             *sbi = EXT4_SB(sb);
398         int                             error = is_journal_aborted(journal);
399         struct ext4_journal_cb_entry    *jce;
400
401         BUG_ON(txn->t_state == T_FINISHED);
402
403         ext4_process_freed_data(sb, txn->t_tid);
404
405         spin_lock(&sbi->s_md_lock);
406         while (!list_empty(&txn->t_private_list)) {
407                 jce = list_entry(txn->t_private_list.next,
408                                  struct ext4_journal_cb_entry, jce_list);
409                 list_del_init(&jce->jce_list);
410                 spin_unlock(&sbi->s_md_lock);
411                 jce->jce_func(sb, jce, error);
412                 spin_lock(&sbi->s_md_lock);
413         }
414         spin_unlock(&sbi->s_md_lock);
415 }
416
417 static bool system_going_down(void)
418 {
419         return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
420                 || system_state == SYSTEM_RESTART;
421 }
422
423 /* Deal with the reporting of failure conditions on a filesystem such as
424  * inconsistencies detected or read IO failures.
425  *
426  * On ext2, we can store the error state of the filesystem in the
427  * superblock.  That is not possible on ext4, because we may have other
428  * write ordering constraints on the superblock which prevent us from
429  * writing it out straight away; and given that the journal is about to
430  * be aborted, we can't rely on the current, or future, transactions to
431  * write out the superblock safely.
432  *
433  * We'll just use the jbd2_journal_abort() error code to record an error in
434  * the journal instead.  On recovery, the journal will complain about
435  * that error until we've noted it down and cleared it.
436  */
437
438 static void ext4_handle_error(struct super_block *sb)
439 {
440         if (test_opt(sb, WARN_ON_ERROR))
441                 WARN_ON_ONCE(1);
442
443         if (sb_rdonly(sb))
444                 return;
445
446         if (!test_opt(sb, ERRORS_CONT)) {
447                 journal_t *journal = EXT4_SB(sb)->s_journal;
448
449                 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
450                 if (journal)
451                         jbd2_journal_abort(journal, -EIO);
452         }
453         /*
454          * We force ERRORS_RO behavior when system is rebooting. Otherwise we
455          * could panic during 'reboot -f' as the underlying device got already
456          * disabled.
457          */
458         if (test_opt(sb, ERRORS_RO) || system_going_down()) {
459                 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
460                 /*
461                  * Make sure updated value of ->s_mount_flags will be visible
462                  * before ->s_flags update
463                  */
464                 smp_wmb();
465                 sb->s_flags |= SB_RDONLY;
466         } else if (test_opt(sb, ERRORS_PANIC)) {
467                 if (EXT4_SB(sb)->s_journal &&
468                   !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
469                         return;
470                 panic("EXT4-fs (device %s): panic forced after error\n",
471                         sb->s_id);
472         }
473 }
474
475 #define ext4_error_ratelimit(sb)                                        \
476                 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state),     \
477                              "EXT4-fs error")
478
479 void __ext4_error(struct super_block *sb, const char *function,
480                   unsigned int line, const char *fmt, ...)
481 {
482         struct va_format vaf;
483         va_list args;
484
485         if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
486                 return;
487
488         trace_ext4_error(sb, function, line);
489         if (ext4_error_ratelimit(sb)) {
490                 va_start(args, fmt);
491                 vaf.fmt = fmt;
492                 vaf.va = &args;
493                 printk(KERN_CRIT
494                        "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
495                        sb->s_id, function, line, current->comm, &vaf);
496                 va_end(args);
497         }
498         save_error_info(sb, function, line);
499         ext4_handle_error(sb);
500 }
501
502 void __ext4_error_inode(struct inode *inode, const char *function,
503                         unsigned int line, ext4_fsblk_t block,
504                         const char *fmt, ...)
505 {
506         va_list args;
507         struct va_format vaf;
508         struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
509
510         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
511                 return;
512
513         trace_ext4_error(inode->i_sb, function, line);
514         es->s_last_error_ino = cpu_to_le32(inode->i_ino);
515         es->s_last_error_block = cpu_to_le64(block);
516         if (ext4_error_ratelimit(inode->i_sb)) {
517                 va_start(args, fmt);
518                 vaf.fmt = fmt;
519                 vaf.va = &args;
520                 if (block)
521                         printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
522                                "inode #%lu: block %llu: comm %s: %pV\n",
523                                inode->i_sb->s_id, function, line, inode->i_ino,
524                                block, current->comm, &vaf);
525                 else
526                         printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
527                                "inode #%lu: comm %s: %pV\n",
528                                inode->i_sb->s_id, function, line, inode->i_ino,
529                                current->comm, &vaf);
530                 va_end(args);
531         }
532         save_error_info(inode->i_sb, function, line);
533         ext4_handle_error(inode->i_sb);
534 }
535
536 void __ext4_error_file(struct file *file, const char *function,
537                        unsigned int line, ext4_fsblk_t block,
538                        const char *fmt, ...)
539 {
540         va_list args;
541         struct va_format vaf;
542         struct ext4_super_block *es;
543         struct inode *inode = file_inode(file);
544         char pathname[80], *path;
545
546         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
547                 return;
548
549         trace_ext4_error(inode->i_sb, function, line);
550         es = EXT4_SB(inode->i_sb)->s_es;
551         es->s_last_error_ino = cpu_to_le32(inode->i_ino);
552         if (ext4_error_ratelimit(inode->i_sb)) {
553                 path = file_path(file, pathname, sizeof(pathname));
554                 if (IS_ERR(path))
555                         path = "(unknown)";
556                 va_start(args, fmt);
557                 vaf.fmt = fmt;
558                 vaf.va = &args;
559                 if (block)
560                         printk(KERN_CRIT
561                                "EXT4-fs error (device %s): %s:%d: inode #%lu: "
562                                "block %llu: comm %s: path %s: %pV\n",
563                                inode->i_sb->s_id, function, line, inode->i_ino,
564                                block, current->comm, path, &vaf);
565                 else
566                         printk(KERN_CRIT
567                                "EXT4-fs error (device %s): %s:%d: inode #%lu: "
568                                "comm %s: path %s: %pV\n",
569                                inode->i_sb->s_id, function, line, inode->i_ino,
570                                current->comm, path, &vaf);
571                 va_end(args);
572         }
573         save_error_info(inode->i_sb, function, line);
574         ext4_handle_error(inode->i_sb);
575 }
576
577 const char *ext4_decode_error(struct super_block *sb, int errno,
578                               char nbuf[16])
579 {
580         char *errstr = NULL;
581
582         switch (errno) {
583         case -EFSCORRUPTED:
584                 errstr = "Corrupt filesystem";
585                 break;
586         case -EFSBADCRC:
587                 errstr = "Filesystem failed CRC";
588                 break;
589         case -EIO:
590                 errstr = "IO failure";
591                 break;
592         case -ENOMEM:
593                 errstr = "Out of memory";
594                 break;
595         case -EROFS:
596                 if (!sb || (EXT4_SB(sb)->s_journal &&
597                             EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
598                         errstr = "Journal has aborted";
599                 else
600                         errstr = "Readonly filesystem";
601                 break;
602         default:
603                 /* If the caller passed in an extra buffer for unknown
604                  * errors, textualise them now.  Else we just return
605                  * NULL. */
606                 if (nbuf) {
607                         /* Check for truncated error codes... */
608                         if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
609                                 errstr = nbuf;
610                 }
611                 break;
612         }
613
614         return errstr;
615 }
616
617 void ext4_set_errno(struct super_block *sb, int err)
618 {
619         if (err < 0)
620                 err = -err;
621
622         switch (err) {
623         case EIO:
624                 err = EXT4_ERR_EIO;
625                 break;
626         case ENOMEM:
627                 err = EXT4_ERR_ENOMEM;
628                 break;
629         case EFSBADCRC:
630                 err = EXT4_ERR_EFSBADCRC;
631                 break;
632         case EFSCORRUPTED:
633                 err = EXT4_ERR_EFSCORRUPTED;
634                 break;
635         case ENOSPC:
636                 err = EXT4_ERR_ENOSPC;
637                 break;
638         case ENOKEY:
639                 err = EXT4_ERR_ENOKEY;
640                 break;
641         case EROFS:
642                 err = EXT4_ERR_EROFS;
643                 break;
644         case EFBIG:
645                 err = EXT4_ERR_EFBIG;
646                 break;
647         case EEXIST:
648                 err = EXT4_ERR_EEXIST;
649                 break;
650         case ERANGE:
651                 err = EXT4_ERR_ERANGE;
652                 break;
653         case EOVERFLOW:
654                 err = EXT4_ERR_EOVERFLOW;
655                 break;
656         case EBUSY:
657                 err = EXT4_ERR_EBUSY;
658                 break;
659         case ENOTDIR:
660                 err = EXT4_ERR_ENOTDIR;
661                 break;
662         case ENOTEMPTY:
663                 err = EXT4_ERR_ENOTEMPTY;
664                 break;
665         case ESHUTDOWN:
666                 err = EXT4_ERR_ESHUTDOWN;
667                 break;
668         case EFAULT:
669                 err = EXT4_ERR_EFAULT;
670                 break;
671         default:
672                 err = EXT4_ERR_UNKNOWN;
673         }
674         EXT4_SB(sb)->s_es->s_last_error_errcode = err;
675 }
676
677 /* __ext4_std_error decodes expected errors from journaling functions
678  * automatically and invokes the appropriate error response.  */
679
680 void __ext4_std_error(struct super_block *sb, const char *function,
681                       unsigned int line, int errno)
682 {
683         char nbuf[16];
684         const char *errstr;
685
686         if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
687                 return;
688
689         /* Special case: if the error is EROFS, and we're not already
690          * inside a transaction, then there's really no point in logging
691          * an error. */
692         if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
693                 return;
694
695         if (ext4_error_ratelimit(sb)) {
696                 errstr = ext4_decode_error(sb, errno, nbuf);
697                 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
698                        sb->s_id, function, line, errstr);
699         }
700
701         ext4_set_errno(sb, -errno);
702         save_error_info(sb, function, line);
703         ext4_handle_error(sb);
704 }
705
706 /*
707  * ext4_abort is a much stronger failure handler than ext4_error.  The
708  * abort function may be used to deal with unrecoverable failures such
709  * as journal IO errors or ENOMEM at a critical moment in log management.
710  *
711  * We unconditionally force the filesystem into an ABORT|READONLY state,
712  * unless the error response on the fs has been set to panic in which
713  * case we take the easy way out and panic immediately.
714  */
715
716 void __ext4_abort(struct super_block *sb, const char *function,
717                 unsigned int line, const char *fmt, ...)
718 {
719         struct va_format vaf;
720         va_list args;
721
722         if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
723                 return;
724
725         save_error_info(sb, function, line);
726         va_start(args, fmt);
727         vaf.fmt = fmt;
728         vaf.va = &args;
729         printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n",
730                sb->s_id, function, line, &vaf);
731         va_end(args);
732
733         if (sb_rdonly(sb) == 0) {
734                 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
735                 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
736                 /*
737                  * Make sure updated value of ->s_mount_flags will be visible
738                  * before ->s_flags update
739                  */
740                 smp_wmb();
741                 sb->s_flags |= SB_RDONLY;
742                 if (EXT4_SB(sb)->s_journal)
743                         jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
744                 save_error_info(sb, function, line);
745         }
746         if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
747                 if (EXT4_SB(sb)->s_journal &&
748                   !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
749                         return;
750                 panic("EXT4-fs panic from previous error\n");
751         }
752 }
753
754 void __ext4_msg(struct super_block *sb,
755                 const char *prefix, const char *fmt, ...)
756 {
757         struct va_format vaf;
758         va_list args;
759
760         if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
761                 return;
762
763         va_start(args, fmt);
764         vaf.fmt = fmt;
765         vaf.va = &args;
766         printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
767         va_end(args);
768 }
769
770 #define ext4_warning_ratelimit(sb)                                      \
771                 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \
772                              "EXT4-fs warning")
773
774 void __ext4_warning(struct super_block *sb, const char *function,
775                     unsigned int line, const char *fmt, ...)
776 {
777         struct va_format vaf;
778         va_list args;
779
780         if (!ext4_warning_ratelimit(sb))
781                 return;
782
783         va_start(args, fmt);
784         vaf.fmt = fmt;
785         vaf.va = &args;
786         printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
787                sb->s_id, function, line, &vaf);
788         va_end(args);
789 }
790
791 void __ext4_warning_inode(const struct inode *inode, const char *function,
792                           unsigned int line, const char *fmt, ...)
793 {
794         struct va_format vaf;
795         va_list args;
796
797         if (!ext4_warning_ratelimit(inode->i_sb))
798                 return;
799
800         va_start(args, fmt);
801         vaf.fmt = fmt;
802         vaf.va = &args;
803         printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
804                "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
805                function, line, inode->i_ino, current->comm, &vaf);
806         va_end(args);
807 }
808
809 void __ext4_grp_locked_error(const char *function, unsigned int line,
810                              struct super_block *sb, ext4_group_t grp,
811                              unsigned long ino, ext4_fsblk_t block,
812                              const char *fmt, ...)
813 __releases(bitlock)
814 __acquires(bitlock)
815 {
816         struct va_format vaf;
817         va_list args;
818         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
819
820         if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
821                 return;
822
823         trace_ext4_error(sb, function, line);
824         es->s_last_error_ino = cpu_to_le32(ino);
825         es->s_last_error_block = cpu_to_le64(block);
826         __save_error_info(sb, function, line);
827
828         if (ext4_error_ratelimit(sb)) {
829                 va_start(args, fmt);
830                 vaf.fmt = fmt;
831                 vaf.va = &args;
832                 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
833                        sb->s_id, function, line, grp);
834                 if (ino)
835                         printk(KERN_CONT "inode %lu: ", ino);
836                 if (block)
837                         printk(KERN_CONT "block %llu:",
838                                (unsigned long long) block);
839                 printk(KERN_CONT "%pV\n", &vaf);
840                 va_end(args);
841         }
842
843         if (test_opt(sb, WARN_ON_ERROR))
844                 WARN_ON_ONCE(1);
845
846         if (test_opt(sb, ERRORS_CONT)) {
847                 ext4_commit_super(sb, 0);
848                 return;
849         }
850
851         ext4_unlock_group(sb, grp);
852         ext4_commit_super(sb, 1);
853         ext4_handle_error(sb);
854         /*
855          * We only get here in the ERRORS_RO case; relocking the group
856          * may be dangerous, but nothing bad will happen since the
857          * filesystem will have already been marked read/only and the
858          * journal has been aborted.  We return 1 as a hint to callers
859          * who might what to use the return value from
860          * ext4_grp_locked_error() to distinguish between the
861          * ERRORS_CONT and ERRORS_RO case, and perhaps return more
862          * aggressively from the ext4 function in question, with a
863          * more appropriate error code.
864          */
865         ext4_lock_group(sb, grp);
866         return;
867 }
868
869 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
870                                      ext4_group_t group,
871                                      unsigned int flags)
872 {
873         struct ext4_sb_info *sbi = EXT4_SB(sb);
874         struct ext4_group_info *grp = ext4_get_group_info(sb, group);
875         struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
876         int ret;
877
878         if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
879                 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
880                                             &grp->bb_state);
881                 if (!ret)
882                         percpu_counter_sub(&sbi->s_freeclusters_counter,
883                                            grp->bb_free);
884         }
885
886         if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
887                 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
888                                             &grp->bb_state);
889                 if (!ret && gdp) {
890                         int count;
891
892                         count = ext4_free_inodes_count(sb, gdp);
893                         percpu_counter_sub(&sbi->s_freeinodes_counter,
894                                            count);
895                 }
896         }
897 }
898
899 void ext4_update_dynamic_rev(struct super_block *sb)
900 {
901         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
902
903         if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
904                 return;
905
906         ext4_warning(sb,
907                      "updating to rev %d because of new feature flag, "
908                      "running e2fsck is recommended",
909                      EXT4_DYNAMIC_REV);
910
911         es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
912         es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
913         es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
914         /* leave es->s_feature_*compat flags alone */
915         /* es->s_uuid will be set by e2fsck if empty */
916
917         /*
918          * The rest of the superblock fields should be zero, and if not it
919          * means they are likely already in use, so leave them alone.  We
920          * can leave it up to e2fsck to clean up any inconsistencies there.
921          */
922 }
923
924 /*
925  * Open the external journal device
926  */
927 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
928 {
929         struct block_device *bdev;
930         char b[BDEVNAME_SIZE];
931
932         bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
933         if (IS_ERR(bdev))
934                 goto fail;
935         return bdev;
936
937 fail:
938         ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
939                         __bdevname(dev, b), PTR_ERR(bdev));
940         return NULL;
941 }
942
943 /*
944  * Release the journal device
945  */
946 static void ext4_blkdev_put(struct block_device *bdev)
947 {
948         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
949 }
950
951 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
952 {
953         struct block_device *bdev;
954         bdev = sbi->journal_bdev;
955         if (bdev) {
956                 ext4_blkdev_put(bdev);
957                 sbi->journal_bdev = NULL;
958         }
959 }
960
961 static inline struct inode *orphan_list_entry(struct list_head *l)
962 {
963         return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
964 }
965
966 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
967 {
968         struct list_head *l;
969
970         ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
971                  le32_to_cpu(sbi->s_es->s_last_orphan));
972
973         printk(KERN_ERR "sb_info orphan list:\n");
974         list_for_each(l, &sbi->s_orphan) {
975                 struct inode *inode = orphan_list_entry(l);
976                 printk(KERN_ERR "  "
977                        "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
978                        inode->i_sb->s_id, inode->i_ino, inode,
979                        inode->i_mode, inode->i_nlink,
980                        NEXT_ORPHAN(inode));
981         }
982 }
983
984 #ifdef CONFIG_QUOTA
985 static int ext4_quota_off(struct super_block *sb, int type);
986
987 static inline void ext4_quota_off_umount(struct super_block *sb)
988 {
989         int type;
990
991         /* Use our quota_off function to clear inode flags etc. */
992         for (type = 0; type < EXT4_MAXQUOTAS; type++)
993                 ext4_quota_off(sb, type);
994 }
995
996 /*
997  * This is a helper function which is used in the mount/remount
998  * codepaths (which holds s_umount) to fetch the quota file name.
999  */
1000 static inline char *get_qf_name(struct super_block *sb,
1001                                 struct ext4_sb_info *sbi,
1002                                 int type)
1003 {
1004         return rcu_dereference_protected(sbi->s_qf_names[type],
1005                                          lockdep_is_held(&sb->s_umount));
1006 }
1007 #else
1008 static inline void ext4_quota_off_umount(struct super_block *sb)
1009 {
1010 }
1011 #endif
1012
1013 static void ext4_put_super(struct super_block *sb)
1014 {
1015         struct ext4_sb_info *sbi = EXT4_SB(sb);
1016         struct ext4_super_block *es = sbi->s_es;
1017         int aborted = 0;
1018         int i, err;
1019
1020         ext4_unregister_li_request(sb);
1021         ext4_quota_off_umount(sb);
1022
1023         destroy_workqueue(sbi->rsv_conversion_wq);
1024
1025         if (sbi->s_journal) {
1026                 aborted = is_journal_aborted(sbi->s_journal);
1027                 err = jbd2_journal_destroy(sbi->s_journal);
1028                 sbi->s_journal = NULL;
1029                 if ((err < 0) && !aborted) {
1030                         ext4_set_errno(sb, -err);
1031                         ext4_abort(sb, "Couldn't clean up the journal");
1032                 }
1033         }
1034
1035         ext4_unregister_sysfs(sb);
1036         ext4_es_unregister_shrinker(sbi);
1037         del_timer_sync(&sbi->s_err_report);
1038         ext4_release_system_zone(sb);
1039         ext4_mb_release(sb);
1040         ext4_ext_release(sb);
1041
1042         if (!sb_rdonly(sb) && !aborted) {
1043                 ext4_clear_feature_journal_needs_recovery(sb);
1044                 es->s_state = cpu_to_le16(sbi->s_mount_state);
1045         }
1046         if (!sb_rdonly(sb))
1047                 ext4_commit_super(sb, 1);
1048
1049         for (i = 0; i < sbi->s_gdb_count; i++)
1050                 brelse(sbi->s_group_desc[i]);
1051         kvfree(sbi->s_group_desc);
1052         kvfree(sbi->s_flex_groups);
1053         percpu_counter_destroy(&sbi->s_freeclusters_counter);
1054         percpu_counter_destroy(&sbi->s_freeinodes_counter);
1055         percpu_counter_destroy(&sbi->s_dirs_counter);
1056         percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1057         percpu_free_rwsem(&sbi->s_journal_flag_rwsem);
1058 #ifdef CONFIG_QUOTA
1059         for (i = 0; i < EXT4_MAXQUOTAS; i++)
1060                 kfree(get_qf_name(sb, sbi, i));
1061 #endif
1062
1063         /* Debugging code just in case the in-memory inode orphan list
1064          * isn't empty.  The on-disk one can be non-empty if we've
1065          * detected an error and taken the fs readonly, but the
1066          * in-memory list had better be clean by this point. */
1067         if (!list_empty(&sbi->s_orphan))
1068                 dump_orphan_list(sb, sbi);
1069         J_ASSERT(list_empty(&sbi->s_orphan));
1070
1071         sync_blockdev(sb->s_bdev);
1072         invalidate_bdev(sb->s_bdev);
1073         if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
1074                 /*
1075                  * Invalidate the journal device's buffers.  We don't want them
1076                  * floating about in memory - the physical journal device may
1077                  * hotswapped, and it breaks the `ro-after' testing code.
1078                  */
1079                 sync_blockdev(sbi->journal_bdev);
1080                 invalidate_bdev(sbi->journal_bdev);
1081                 ext4_blkdev_remove(sbi);
1082         }
1083
1084         ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1085         sbi->s_ea_inode_cache = NULL;
1086
1087         ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1088         sbi->s_ea_block_cache = NULL;
1089
1090         if (sbi->s_mmp_tsk)
1091                 kthread_stop(sbi->s_mmp_tsk);
1092         brelse(sbi->s_sbh);
1093         sb->s_fs_info = NULL;
1094         /*
1095          * Now that we are completely done shutting down the
1096          * superblock, we need to actually destroy the kobject.
1097          */
1098         kobject_put(&sbi->s_kobj);
1099         wait_for_completion(&sbi->s_kobj_unregister);
1100         if (sbi->s_chksum_driver)
1101                 crypto_free_shash(sbi->s_chksum_driver);
1102         kfree(sbi->s_blockgroup_lock);
1103         fs_put_dax(sbi->s_daxdev);
1104 #ifdef CONFIG_UNICODE
1105         utf8_unload(sbi->s_encoding);
1106 #endif
1107         kfree(sbi);
1108 }
1109
1110 static struct kmem_cache *ext4_inode_cachep;
1111
1112 /*
1113  * Called inside transaction, so use GFP_NOFS
1114  */
1115 static struct inode *ext4_alloc_inode(struct super_block *sb)
1116 {
1117         struct ext4_inode_info *ei;
1118
1119         ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
1120         if (!ei)
1121                 return NULL;
1122
1123         inode_set_iversion(&ei->vfs_inode, 1);
1124         spin_lock_init(&ei->i_raw_lock);
1125         INIT_LIST_HEAD(&ei->i_prealloc_list);
1126         spin_lock_init(&ei->i_prealloc_lock);
1127         ext4_es_init_tree(&ei->i_es_tree);
1128         rwlock_init(&ei->i_es_lock);
1129         INIT_LIST_HEAD(&ei->i_es_list);
1130         ei->i_es_all_nr = 0;
1131         ei->i_es_shk_nr = 0;
1132         ei->i_es_shrink_lblk = 0;
1133         ei->i_reserved_data_blocks = 0;
1134         spin_lock_init(&(ei->i_block_reservation_lock));
1135         ext4_init_pending_tree(&ei->i_pending_tree);
1136 #ifdef CONFIG_QUOTA
1137         ei->i_reserved_quota = 0;
1138         memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1139 #endif
1140         ei->jinode = NULL;
1141         INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1142         spin_lock_init(&ei->i_completed_io_lock);
1143         ei->i_sync_tid = 0;
1144         ei->i_datasync_tid = 0;
1145         atomic_set(&ei->i_unwritten, 0);
1146         INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1147         return &ei->vfs_inode;
1148 }
1149
1150 static int ext4_drop_inode(struct inode *inode)
1151 {
1152         int drop = generic_drop_inode(inode);
1153
1154         if (!drop)
1155                 drop = fscrypt_drop_inode(inode);
1156
1157         trace_ext4_drop_inode(inode, drop);
1158         return drop;
1159 }
1160
1161 static void ext4_free_in_core_inode(struct inode *inode)
1162 {
1163         fscrypt_free_inode(inode);
1164         kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1165 }
1166
1167 static void ext4_destroy_inode(struct inode *inode)
1168 {
1169         if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1170                 ext4_msg(inode->i_sb, KERN_ERR,
1171                          "Inode %lu (%p): orphan list check failed!",
1172                          inode->i_ino, EXT4_I(inode));
1173                 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1174                                 EXT4_I(inode), sizeof(struct ext4_inode_info),
1175                                 true);
1176                 dump_stack();
1177         }
1178 }
1179
1180 static void init_once(void *foo)
1181 {
1182         struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1183
1184         INIT_LIST_HEAD(&ei->i_orphan);
1185         init_rwsem(&ei->xattr_sem);
1186         init_rwsem(&ei->i_data_sem);
1187         init_rwsem(&ei->i_mmap_sem);
1188         inode_init_once(&ei->vfs_inode);
1189 }
1190
1191 static int __init init_inodecache(void)
1192 {
1193         ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1194                                 sizeof(struct ext4_inode_info), 0,
1195                                 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1196                                         SLAB_ACCOUNT),
1197                                 offsetof(struct ext4_inode_info, i_data),
1198                                 sizeof_field(struct ext4_inode_info, i_data),
1199                                 init_once);
1200         if (ext4_inode_cachep == NULL)
1201                 return -ENOMEM;
1202         return 0;
1203 }
1204
1205 static void destroy_inodecache(void)
1206 {
1207         /*
1208          * Make sure all delayed rcu free inodes are flushed before we
1209          * destroy cache.
1210          */
1211         rcu_barrier();
1212         kmem_cache_destroy(ext4_inode_cachep);
1213 }
1214
1215 void ext4_clear_inode(struct inode *inode)
1216 {
1217         invalidate_inode_buffers(inode);
1218         clear_inode(inode);
1219         ext4_discard_preallocations(inode);
1220         ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1221         dquot_drop(inode);
1222         if (EXT4_I(inode)->jinode) {
1223                 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1224                                                EXT4_I(inode)->jinode);
1225                 jbd2_free_inode(EXT4_I(inode)->jinode);
1226                 EXT4_I(inode)->jinode = NULL;
1227         }
1228         fscrypt_put_encryption_info(inode);
1229         fsverity_cleanup_inode(inode);
1230 }
1231
1232 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1233                                         u64 ino, u32 generation)
1234 {
1235         struct inode *inode;
1236
1237         /*
1238          * Currently we don't know the generation for parent directory, so
1239          * a generation of 0 means "accept any"
1240          */
1241         inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1242         if (IS_ERR(inode))
1243                 return ERR_CAST(inode);
1244         if (generation && inode->i_generation != generation) {
1245                 iput(inode);
1246                 return ERR_PTR(-ESTALE);
1247         }
1248
1249         return inode;
1250 }
1251
1252 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1253                                         int fh_len, int fh_type)
1254 {
1255         return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1256                                     ext4_nfs_get_inode);
1257 }
1258
1259 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1260                                         int fh_len, int fh_type)
1261 {
1262         return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1263                                     ext4_nfs_get_inode);
1264 }
1265
1266 static int ext4_nfs_commit_metadata(struct inode *inode)
1267 {
1268         struct writeback_control wbc = {
1269                 .sync_mode = WB_SYNC_ALL
1270         };
1271
1272         trace_ext4_nfs_commit_metadata(inode);
1273         return ext4_write_inode(inode, &wbc);
1274 }
1275
1276 /*
1277  * Try to release metadata pages (indirect blocks, directories) which are
1278  * mapped via the block device.  Since these pages could have journal heads
1279  * which would prevent try_to_free_buffers() from freeing them, we must use
1280  * jbd2 layer's try_to_free_buffers() function to release them.
1281  */
1282 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1283                                  gfp_t wait)
1284 {
1285         journal_t *journal = EXT4_SB(sb)->s_journal;
1286
1287         WARN_ON(PageChecked(page));
1288         if (!page_has_buffers(page))
1289                 return 0;
1290         if (journal)
1291                 return jbd2_journal_try_to_free_buffers(journal, page,
1292                                                 wait & ~__GFP_DIRECT_RECLAIM);
1293         return try_to_free_buffers(page);
1294 }
1295
1296 #ifdef CONFIG_FS_ENCRYPTION
1297 static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1298 {
1299         return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1300                                  EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1301 }
1302
1303 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1304                                                         void *fs_data)
1305 {
1306         handle_t *handle = fs_data;
1307         int res, res2, credits, retries = 0;
1308
1309         /*
1310          * Encrypting the root directory is not allowed because e2fsck expects
1311          * lost+found to exist and be unencrypted, and encrypting the root
1312          * directory would imply encrypting the lost+found directory as well as
1313          * the filename "lost+found" itself.
1314          */
1315         if (inode->i_ino == EXT4_ROOT_INO)
1316                 return -EPERM;
1317
1318         if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode)))
1319                 return -EINVAL;
1320
1321         res = ext4_convert_inline_data(inode);
1322         if (res)
1323                 return res;
1324
1325         /*
1326          * If a journal handle was specified, then the encryption context is
1327          * being set on a new inode via inheritance and is part of a larger
1328          * transaction to create the inode.  Otherwise the encryption context is
1329          * being set on an existing inode in its own transaction.  Only in the
1330          * latter case should the "retry on ENOSPC" logic be used.
1331          */
1332
1333         if (handle) {
1334                 res = ext4_xattr_set_handle(handle, inode,
1335                                             EXT4_XATTR_INDEX_ENCRYPTION,
1336                                             EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1337                                             ctx, len, 0);
1338                 if (!res) {
1339                         ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1340                         ext4_clear_inode_state(inode,
1341                                         EXT4_STATE_MAY_INLINE_DATA);
1342                         /*
1343                          * Update inode->i_flags - S_ENCRYPTED will be enabled,
1344                          * S_DAX may be disabled
1345                          */
1346                         ext4_set_inode_flags(inode);
1347                 }
1348                 return res;
1349         }
1350
1351         res = dquot_initialize(inode);
1352         if (res)
1353                 return res;
1354 retry:
1355         res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1356                                      &credits);
1357         if (res)
1358                 return res;
1359
1360         handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1361         if (IS_ERR(handle))
1362                 return PTR_ERR(handle);
1363
1364         res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1365                                     EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1366                                     ctx, len, 0);
1367         if (!res) {
1368                 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1369                 /*
1370                  * Update inode->i_flags - S_ENCRYPTED will be enabled,
1371                  * S_DAX may be disabled
1372                  */
1373                 ext4_set_inode_flags(inode);
1374                 res = ext4_mark_inode_dirty(handle, inode);
1375                 if (res)
1376                         EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1377         }
1378         res2 = ext4_journal_stop(handle);
1379
1380         if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1381                 goto retry;
1382         if (!res)
1383                 res = res2;
1384         return res;
1385 }
1386
1387 static bool ext4_dummy_context(struct inode *inode)
1388 {
1389         return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb));
1390 }
1391
1392 static bool ext4_has_stable_inodes(struct super_block *sb)
1393 {
1394         return ext4_has_feature_stable_inodes(sb);
1395 }
1396
1397 static void ext4_get_ino_and_lblk_bits(struct super_block *sb,
1398                                        int *ino_bits_ret, int *lblk_bits_ret)
1399 {
1400         *ino_bits_ret = 8 * sizeof(EXT4_SB(sb)->s_es->s_inodes_count);
1401         *lblk_bits_ret = 8 * sizeof(ext4_lblk_t);
1402 }
1403
1404 static const struct fscrypt_operations ext4_cryptops = {
1405         .key_prefix             = "ext4:",
1406         .get_context            = ext4_get_context,
1407         .set_context            = ext4_set_context,
1408         .dummy_context          = ext4_dummy_context,
1409         .empty_dir              = ext4_empty_dir,
1410         .max_namelen            = EXT4_NAME_LEN,
1411         .has_stable_inodes      = ext4_has_stable_inodes,
1412         .get_ino_and_lblk_bits  = ext4_get_ino_and_lblk_bits,
1413 };
1414 #endif
1415
1416 #ifdef CONFIG_QUOTA
1417 static const char * const quotatypes[] = INITQFNAMES;
1418 #define QTYPE2NAME(t) (quotatypes[t])
1419
1420 static int ext4_write_dquot(struct dquot *dquot);
1421 static int ext4_acquire_dquot(struct dquot *dquot);
1422 static int ext4_release_dquot(struct dquot *dquot);
1423 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1424 static int ext4_write_info(struct super_block *sb, int type);
1425 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1426                          const struct path *path);
1427 static int ext4_quota_on_mount(struct super_block *sb, int type);
1428 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1429                                size_t len, loff_t off);
1430 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1431                                 const char *data, size_t len, loff_t off);
1432 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1433                              unsigned int flags);
1434 static int ext4_enable_quotas(struct super_block *sb);
1435
1436 static struct dquot **ext4_get_dquots(struct inode *inode)
1437 {
1438         return EXT4_I(inode)->i_dquot;
1439 }
1440
1441 static const struct dquot_operations ext4_quota_operations = {
1442         .get_reserved_space     = ext4_get_reserved_space,
1443         .write_dquot            = ext4_write_dquot,
1444         .acquire_dquot          = ext4_acquire_dquot,
1445         .release_dquot          = ext4_release_dquot,
1446         .mark_dirty             = ext4_mark_dquot_dirty,
1447         .write_info             = ext4_write_info,
1448         .alloc_dquot            = dquot_alloc,
1449         .destroy_dquot          = dquot_destroy,
1450         .get_projid             = ext4_get_projid,
1451         .get_inode_usage        = ext4_get_inode_usage,
1452         .get_next_id            = dquot_get_next_id,
1453 };
1454
1455 static const struct quotactl_ops ext4_qctl_operations = {
1456         .quota_on       = ext4_quota_on,
1457         .quota_off      = ext4_quota_off,
1458         .quota_sync     = dquot_quota_sync,
1459         .get_state      = dquot_get_state,
1460         .set_info       = dquot_set_dqinfo,
1461         .get_dqblk      = dquot_get_dqblk,
1462         .set_dqblk      = dquot_set_dqblk,
1463         .get_nextdqblk  = dquot_get_next_dqblk,
1464 };
1465 #endif
1466
1467 static const struct super_operations ext4_sops = {
1468         .alloc_inode    = ext4_alloc_inode,
1469         .free_inode     = ext4_free_in_core_inode,
1470         .destroy_inode  = ext4_destroy_inode,
1471         .write_inode    = ext4_write_inode,
1472         .dirty_inode    = ext4_dirty_inode,
1473         .drop_inode     = ext4_drop_inode,
1474         .evict_inode    = ext4_evict_inode,
1475         .put_super      = ext4_put_super,
1476         .sync_fs        = ext4_sync_fs,
1477         .freeze_fs      = ext4_freeze,
1478         .unfreeze_fs    = ext4_unfreeze,
1479         .statfs         = ext4_statfs,
1480         .remount_fs     = ext4_remount,
1481         .show_options   = ext4_show_options,
1482 #ifdef CONFIG_QUOTA
1483         .quota_read     = ext4_quota_read,
1484         .quota_write    = ext4_quota_write,
1485         .get_dquots     = ext4_get_dquots,
1486 #endif
1487         .bdev_try_to_free_page = bdev_try_to_free_page,
1488 };
1489
1490 static const struct export_operations ext4_export_ops = {
1491         .fh_to_dentry = ext4_fh_to_dentry,
1492         .fh_to_parent = ext4_fh_to_parent,
1493         .get_parent = ext4_get_parent,
1494         .commit_metadata = ext4_nfs_commit_metadata,
1495 };
1496
1497 enum {
1498         Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1499         Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1500         Opt_nouid32, Opt_debug, Opt_removed,
1501         Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1502         Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1503         Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1504         Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1505         Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1506         Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1507         Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1508         Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1509         Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1510         Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax,
1511         Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1512         Opt_nowarn_on_error, Opt_mblk_io_submit,
1513         Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1514         Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1515         Opt_inode_readahead_blks, Opt_journal_ioprio,
1516         Opt_dioread_nolock, Opt_dioread_lock,
1517         Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1518         Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1519 };
1520
1521 static const match_table_t tokens = {
1522         {Opt_bsd_df, "bsddf"},
1523         {Opt_minix_df, "minixdf"},
1524         {Opt_grpid, "grpid"},
1525         {Opt_grpid, "bsdgroups"},
1526         {Opt_nogrpid, "nogrpid"},
1527         {Opt_nogrpid, "sysvgroups"},
1528         {Opt_resgid, "resgid=%u"},
1529         {Opt_resuid, "resuid=%u"},
1530         {Opt_sb, "sb=%u"},
1531         {Opt_err_cont, "errors=continue"},
1532         {Opt_err_panic, "errors=panic"},
1533         {Opt_err_ro, "errors=remount-ro"},
1534         {Opt_nouid32, "nouid32"},
1535         {Opt_debug, "debug"},
1536         {Opt_removed, "oldalloc"},
1537         {Opt_removed, "orlov"},
1538         {Opt_user_xattr, "user_xattr"},
1539         {Opt_nouser_xattr, "nouser_xattr"},
1540         {Opt_acl, "acl"},
1541         {Opt_noacl, "noacl"},
1542         {Opt_noload, "norecovery"},
1543         {Opt_noload, "noload"},
1544         {Opt_removed, "nobh"},
1545         {Opt_removed, "bh"},
1546         {Opt_commit, "commit=%u"},
1547         {Opt_min_batch_time, "min_batch_time=%u"},
1548         {Opt_max_batch_time, "max_batch_time=%u"},
1549         {Opt_journal_dev, "journal_dev=%u"},
1550         {Opt_journal_path, "journal_path=%s"},
1551         {Opt_journal_checksum, "journal_checksum"},
1552         {Opt_nojournal_checksum, "nojournal_checksum"},
1553         {Opt_journal_async_commit, "journal_async_commit"},
1554         {Opt_abort, "abort"},
1555         {Opt_data_journal, "data=journal"},
1556         {Opt_data_ordered, "data=ordered"},
1557         {Opt_data_writeback, "data=writeback"},
1558         {Opt_data_err_abort, "data_err=abort"},
1559         {Opt_data_err_ignore, "data_err=ignore"},
1560         {Opt_offusrjquota, "usrjquota="},
1561         {Opt_usrjquota, "usrjquota=%s"},
1562         {Opt_offgrpjquota, "grpjquota="},
1563         {Opt_grpjquota, "grpjquota=%s"},
1564         {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1565         {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1566         {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1567         {Opt_grpquota, "grpquota"},
1568         {Opt_noquota, "noquota"},
1569         {Opt_quota, "quota"},
1570         {Opt_usrquota, "usrquota"},
1571         {Opt_prjquota, "prjquota"},
1572         {Opt_barrier, "barrier=%u"},
1573         {Opt_barrier, "barrier"},
1574         {Opt_nobarrier, "nobarrier"},
1575         {Opt_i_version, "i_version"},
1576         {Opt_dax, "dax"},
1577         {Opt_stripe, "stripe=%u"},
1578         {Opt_delalloc, "delalloc"},
1579         {Opt_warn_on_error, "warn_on_error"},
1580         {Opt_nowarn_on_error, "nowarn_on_error"},
1581         {Opt_lazytime, "lazytime"},
1582         {Opt_nolazytime, "nolazytime"},
1583         {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1584         {Opt_nodelalloc, "nodelalloc"},
1585         {Opt_removed, "mblk_io_submit"},
1586         {Opt_removed, "nomblk_io_submit"},
1587         {Opt_block_validity, "block_validity"},
1588         {Opt_noblock_validity, "noblock_validity"},
1589         {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1590         {Opt_journal_ioprio, "journal_ioprio=%u"},
1591         {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1592         {Opt_auto_da_alloc, "auto_da_alloc"},
1593         {Opt_noauto_da_alloc, "noauto_da_alloc"},
1594         {Opt_dioread_nolock, "dioread_nolock"},
1595         {Opt_dioread_lock, "nodioread_nolock"},
1596         {Opt_dioread_lock, "dioread_lock"},
1597         {Opt_discard, "discard"},
1598         {Opt_nodiscard, "nodiscard"},
1599         {Opt_init_itable, "init_itable=%u"},
1600         {Opt_init_itable, "init_itable"},
1601         {Opt_noinit_itable, "noinit_itable"},
1602         {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1603         {Opt_test_dummy_encryption, "test_dummy_encryption"},
1604         {Opt_nombcache, "nombcache"},
1605         {Opt_nombcache, "no_mbcache"},  /* for backward compatibility */
1606         {Opt_removed, "check=none"},    /* mount option from ext2/3 */
1607         {Opt_removed, "nocheck"},       /* mount option from ext2/3 */
1608         {Opt_removed, "reservation"},   /* mount option from ext2/3 */
1609         {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1610         {Opt_removed, "journal=%u"},    /* mount option from ext2/3 */
1611         {Opt_err, NULL},
1612 };
1613
1614 static ext4_fsblk_t get_sb_block(void **data)
1615 {
1616         ext4_fsblk_t    sb_block;
1617         char            *options = (char *) *data;
1618
1619         if (!options || strncmp(options, "sb=", 3) != 0)
1620                 return 1;       /* Default location */
1621
1622         options += 3;
1623         /* TODO: use simple_strtoll with >32bit ext4 */
1624         sb_block = simple_strtoul(options, &options, 0);
1625         if (*options && *options != ',') {
1626                 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1627                        (char *) *data);
1628                 return 1;
1629         }
1630         if (*options == ',')
1631                 options++;
1632         *data = (void *) options;
1633
1634         return sb_block;
1635 }
1636
1637 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1638 static const char deprecated_msg[] =
1639         "Mount option \"%s\" will be removed by %s\n"
1640         "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1641
1642 #ifdef CONFIG_QUOTA
1643 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1644 {
1645         struct ext4_sb_info *sbi = EXT4_SB(sb);
1646         char *qname, *old_qname = get_qf_name(sb, sbi, qtype);
1647         int ret = -1;
1648
1649         if (sb_any_quota_loaded(sb) && !old_qname) {
1650                 ext4_msg(sb, KERN_ERR,
1651                         "Cannot change journaled "
1652                         "quota options when quota turned on");
1653                 return -1;
1654         }
1655         if (ext4_has_feature_quota(sb)) {
1656                 ext4_msg(sb, KERN_INFO, "Journaled quota options "
1657                          "ignored when QUOTA feature is enabled");
1658                 return 1;
1659         }
1660         qname = match_strdup(args);
1661         if (!qname) {
1662                 ext4_msg(sb, KERN_ERR,
1663                         "Not enough memory for storing quotafile name");
1664                 return -1;
1665         }
1666         if (old_qname) {
1667                 if (strcmp(old_qname, qname) == 0)
1668                         ret = 1;
1669                 else
1670                         ext4_msg(sb, KERN_ERR,
1671                                  "%s quota file already specified",
1672                                  QTYPE2NAME(qtype));
1673                 goto errout;
1674         }
1675         if (strchr(qname, '/')) {
1676                 ext4_msg(sb, KERN_ERR,
1677                         "quotafile must be on filesystem root");
1678                 goto errout;
1679         }
1680         rcu_assign_pointer(sbi->s_qf_names[qtype], qname);
1681         set_opt(sb, QUOTA);
1682         return 1;
1683 errout:
1684         kfree(qname);
1685         return ret;
1686 }
1687
1688 static int clear_qf_name(struct super_block *sb, int qtype)
1689 {
1690
1691         struct ext4_sb_info *sbi = EXT4_SB(sb);
1692         char *old_qname = get_qf_name(sb, sbi, qtype);
1693
1694         if (sb_any_quota_loaded(sb) && old_qname) {
1695                 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1696                         " when quota turned on");
1697                 return -1;
1698         }
1699         rcu_assign_pointer(sbi->s_qf_names[qtype], NULL);
1700         synchronize_rcu();
1701         kfree(old_qname);
1702         return 1;
1703 }
1704 #endif
1705
1706 #define MOPT_SET        0x0001
1707 #define MOPT_CLEAR      0x0002
1708 #define MOPT_NOSUPPORT  0x0004
1709 #define MOPT_EXPLICIT   0x0008
1710 #define MOPT_CLEAR_ERR  0x0010
1711 #define MOPT_GTE0       0x0020
1712 #ifdef CONFIG_QUOTA
1713 #define MOPT_Q          0
1714 #define MOPT_QFMT       0x0040
1715 #else
1716 #define MOPT_Q          MOPT_NOSUPPORT
1717 #define MOPT_QFMT       MOPT_NOSUPPORT
1718 #endif
1719 #define MOPT_DATAJ      0x0080
1720 #define MOPT_NO_EXT2    0x0100
1721 #define MOPT_NO_EXT3    0x0200
1722 #define MOPT_EXT4_ONLY  (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1723 #define MOPT_STRING     0x0400
1724
1725 static const struct mount_opts {
1726         int     token;
1727         int     mount_opt;
1728         int     flags;
1729 } ext4_mount_opts[] = {
1730         {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1731         {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1732         {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1733         {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1734         {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1735         {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1736         {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1737          MOPT_EXT4_ONLY | MOPT_SET},
1738         {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1739          MOPT_EXT4_ONLY | MOPT_CLEAR},
1740         {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1741         {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1742         {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1743          MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1744         {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1745          MOPT_EXT4_ONLY | MOPT_CLEAR},
1746         {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1747         {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1748         {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1749          MOPT_EXT4_ONLY | MOPT_CLEAR},
1750         {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1751          MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1752         {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1753                                     EXT4_MOUNT_JOURNAL_CHECKSUM),
1754          MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1755         {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1756         {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1757         {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1758         {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1759         {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1760          MOPT_NO_EXT2},
1761         {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1762          MOPT_NO_EXT2},
1763         {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1764         {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1765         {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1766         {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1767         {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1768         {Opt_commit, 0, MOPT_GTE0},
1769         {Opt_max_batch_time, 0, MOPT_GTE0},
1770         {Opt_min_batch_time, 0, MOPT_GTE0},
1771         {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1772         {Opt_init_itable, 0, MOPT_GTE0},
1773         {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1774         {Opt_stripe, 0, MOPT_GTE0},
1775         {Opt_resuid, 0, MOPT_GTE0},
1776         {Opt_resgid, 0, MOPT_GTE0},
1777         {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1778         {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1779         {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1780         {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1781         {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1782         {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1783          MOPT_NO_EXT2 | MOPT_DATAJ},
1784         {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1785         {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1786 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1787         {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1788         {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1789 #else
1790         {Opt_acl, 0, MOPT_NOSUPPORT},
1791         {Opt_noacl, 0, MOPT_NOSUPPORT},
1792 #endif
1793         {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1794         {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1795         {Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1796         {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1797         {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1798                                                         MOPT_SET | MOPT_Q},
1799         {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1800                                                         MOPT_SET | MOPT_Q},
1801         {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1802                                                         MOPT_SET | MOPT_Q},
1803         {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1804                        EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1805                                                         MOPT_CLEAR | MOPT_Q},
1806         {Opt_usrjquota, 0, MOPT_Q},
1807         {Opt_grpjquota, 0, MOPT_Q},
1808         {Opt_offusrjquota, 0, MOPT_Q},
1809         {Opt_offgrpjquota, 0, MOPT_Q},
1810         {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1811         {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1812         {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1813         {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1814         {Opt_test_dummy_encryption, 0, MOPT_GTE0},
1815         {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1816         {Opt_err, 0, 0}
1817 };
1818
1819 #ifdef CONFIG_UNICODE
1820 static const struct ext4_sb_encodings {
1821         __u16 magic;
1822         char *name;
1823         char *version;
1824 } ext4_sb_encoding_map[] = {
1825         {EXT4_ENC_UTF8_12_1, "utf8", "12.1.0"},
1826 };
1827
1828 static int ext4_sb_read_encoding(const struct ext4_super_block *es,
1829                                  const struct ext4_sb_encodings **encoding,
1830                                  __u16 *flags)
1831 {
1832         __u16 magic = le16_to_cpu(es->s_encoding);
1833         int i;
1834
1835         for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
1836                 if (magic == ext4_sb_encoding_map[i].magic)
1837                         break;
1838
1839         if (i >= ARRAY_SIZE(ext4_sb_encoding_map))
1840                 return -EINVAL;
1841
1842         *encoding = &ext4_sb_encoding_map[i];
1843         *flags = le16_to_cpu(es->s_encoding_flags);
1844
1845         return 0;
1846 }
1847 #endif
1848
1849 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1850                             substring_t *args, unsigned long *journal_devnum,
1851                             unsigned int *journal_ioprio, int is_remount)
1852 {
1853         struct ext4_sb_info *sbi = EXT4_SB(sb);
1854         const struct mount_opts *m;
1855         kuid_t uid;
1856         kgid_t gid;
1857         int arg = 0;
1858
1859 #ifdef CONFIG_QUOTA
1860         if (token == Opt_usrjquota)
1861                 return set_qf_name(sb, USRQUOTA, &args[0]);
1862         else if (token == Opt_grpjquota)
1863                 return set_qf_name(sb, GRPQUOTA, &args[0]);
1864         else if (token == Opt_offusrjquota)
1865                 return clear_qf_name(sb, USRQUOTA);
1866         else if (token == Opt_offgrpjquota)
1867                 return clear_qf_name(sb, GRPQUOTA);
1868 #endif
1869         switch (token) {
1870         case Opt_noacl:
1871         case Opt_nouser_xattr:
1872                 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1873                 break;
1874         case Opt_sb:
1875                 return 1;       /* handled by get_sb_block() */
1876         case Opt_removed:
1877                 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1878                 return 1;
1879         case Opt_abort:
1880                 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1881                 return 1;
1882         case Opt_i_version:
1883                 sb->s_flags |= SB_I_VERSION;
1884                 return 1;
1885         case Opt_lazytime:
1886                 sb->s_flags |= SB_LAZYTIME;
1887                 return 1;
1888         case Opt_nolazytime:
1889                 sb->s_flags &= ~SB_LAZYTIME;
1890                 return 1;
1891         }
1892
1893         for (m = ext4_mount_opts; m->token != Opt_err; m++)
1894                 if (token == m->token)
1895                         break;
1896
1897         if (m->token == Opt_err) {
1898                 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1899                          "or missing value", opt);
1900                 return -1;
1901         }
1902
1903         if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1904                 ext4_msg(sb, KERN_ERR,
1905                          "Mount option \"%s\" incompatible with ext2", opt);
1906                 return -1;
1907         }
1908         if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1909                 ext4_msg(sb, KERN_ERR,
1910                          "Mount option \"%s\" incompatible with ext3", opt);
1911                 return -1;
1912         }
1913
1914         if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1915                 return -1;
1916         if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1917                 return -1;
1918         if (m->flags & MOPT_EXPLICIT) {
1919                 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1920                         set_opt2(sb, EXPLICIT_DELALLOC);
1921                 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1922                         set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
1923                 } else
1924                         return -1;
1925         }
1926         if (m->flags & MOPT_CLEAR_ERR)
1927                 clear_opt(sb, ERRORS_MASK);
1928         if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1929                 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1930                          "options when quota turned on");
1931                 return -1;
1932         }
1933
1934         if (m->flags & MOPT_NOSUPPORT) {
1935                 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1936         } else if (token == Opt_commit) {
1937                 if (arg == 0)
1938                         arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1939                 else if (arg > INT_MAX / HZ) {
1940                         ext4_msg(sb, KERN_ERR,
1941                                  "Invalid commit interval %d, "
1942                                  "must be smaller than %d",
1943                                  arg, INT_MAX / HZ);
1944                         return -1;
1945                 }
1946                 sbi->s_commit_interval = HZ * arg;
1947         } else if (token == Opt_debug_want_extra_isize) {
1948                 if ((arg & 1) ||
1949                     (arg < 4) ||
1950                     (arg > (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE))) {
1951                         ext4_msg(sb, KERN_ERR,
1952                                  "Invalid want_extra_isize %d", arg);
1953                         return -1;
1954                 }
1955                 sbi->s_want_extra_isize = arg;
1956         } else if (token == Opt_max_batch_time) {
1957                 sbi->s_max_batch_time = arg;
1958         } else if (token == Opt_min_batch_time) {
1959                 sbi->s_min_batch_time = arg;
1960         } else if (token == Opt_inode_readahead_blks) {
1961                 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1962                         ext4_msg(sb, KERN_ERR,
1963                                  "EXT4-fs: inode_readahead_blks must be "
1964                                  "0 or a power of 2 smaller than 2^31");
1965                         return -1;
1966                 }
1967                 sbi->s_inode_readahead_blks = arg;
1968         } else if (token == Opt_init_itable) {
1969                 set_opt(sb, INIT_INODE_TABLE);
1970                 if (!args->from)
1971                         arg = EXT4_DEF_LI_WAIT_MULT;
1972                 sbi->s_li_wait_mult = arg;
1973         } else if (token == Opt_max_dir_size_kb) {
1974                 sbi->s_max_dir_size_kb = arg;
1975         } else if (token == Opt_stripe) {
1976                 sbi->s_stripe = arg;
1977         } else if (token == Opt_resuid) {
1978                 uid = make_kuid(current_user_ns(), arg);
1979                 if (!uid_valid(uid)) {
1980                         ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1981                         return -1;
1982                 }
1983                 sbi->s_resuid = uid;
1984         } else if (token == Opt_resgid) {
1985                 gid = make_kgid(current_user_ns(), arg);
1986                 if (!gid_valid(gid)) {
1987                         ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1988                         return -1;
1989                 }
1990                 sbi->s_resgid = gid;
1991         } else if (token == Opt_journal_dev) {
1992                 if (is_remount) {
1993                         ext4_msg(sb, KERN_ERR,
1994                                  "Cannot specify journal on remount");
1995                         return -1;
1996                 }
1997                 *journal_devnum = arg;
1998         } else if (token == Opt_journal_path) {
1999                 char *journal_path;
2000                 struct inode *journal_inode;
2001                 struct path path;
2002                 int error;
2003
2004                 if (is_remount) {
2005                         ext4_msg(sb, KERN_ERR,
2006                                  "Cannot specify journal on remount");
2007                         return -1;
2008                 }
2009                 journal_path = match_strdup(&args[0]);
2010                 if (!journal_path) {
2011                         ext4_msg(sb, KERN_ERR, "error: could not dup "
2012                                 "journal device string");
2013                         return -1;
2014                 }
2015
2016                 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
2017                 if (error) {
2018                         ext4_msg(sb, KERN_ERR, "error: could not find "
2019                                 "journal device path: error %d", error);
2020                         kfree(journal_path);
2021                         return -1;
2022                 }
2023
2024                 journal_inode = d_inode(path.dentry);
2025                 if (!S_ISBLK(journal_inode->i_mode)) {
2026                         ext4_msg(sb, KERN_ERR, "error: journal path %s "
2027                                 "is not a block device", journal_path);
2028                         path_put(&path);
2029                         kfree(journal_path);
2030                         return -1;
2031                 }
2032
2033                 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
2034                 path_put(&path);
2035                 kfree(journal_path);
2036         } else if (token == Opt_journal_ioprio) {
2037                 if (arg > 7) {
2038                         ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
2039                                  " (must be 0-7)");
2040                         return -1;
2041                 }
2042                 *journal_ioprio =
2043                         IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
2044         } else if (token == Opt_test_dummy_encryption) {
2045 #ifdef CONFIG_FS_ENCRYPTION
2046                 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
2047                 ext4_msg(sb, KERN_WARNING,
2048                          "Test dummy encryption mode enabled");
2049 #else
2050                 ext4_msg(sb, KERN_WARNING,
2051                          "Test dummy encryption mount option ignored");
2052 #endif
2053         } else if (m->flags & MOPT_DATAJ) {
2054                 if (is_remount) {
2055                         if (!sbi->s_journal)
2056                                 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
2057                         else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
2058                                 ext4_msg(sb, KERN_ERR,
2059                                          "Cannot change data mode on remount");
2060                                 return -1;
2061                         }
2062                 } else {
2063                         clear_opt(sb, DATA_FLAGS);
2064                         sbi->s_mount_opt |= m->mount_opt;
2065                 }
2066 #ifdef CONFIG_QUOTA
2067         } else if (m->flags & MOPT_QFMT) {
2068                 if (sb_any_quota_loaded(sb) &&
2069                     sbi->s_jquota_fmt != m->mount_opt) {
2070                         ext4_msg(sb, KERN_ERR, "Cannot change journaled "
2071                                  "quota options when quota turned on");
2072                         return -1;
2073                 }
2074                 if (ext4_has_feature_quota(sb)) {
2075                         ext4_msg(sb, KERN_INFO,
2076                                  "Quota format mount options ignored "
2077                                  "when QUOTA feature is enabled");
2078                         return 1;
2079                 }
2080                 sbi->s_jquota_fmt = m->mount_opt;
2081 #endif
2082         } else if (token == Opt_dax) {
2083 #ifdef CONFIG_FS_DAX
2084                 ext4_msg(sb, KERN_WARNING,
2085                 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
2086                 sbi->s_mount_opt |= m->mount_opt;
2087 #else
2088                 ext4_msg(sb, KERN_INFO, "dax option not supported");
2089                 return -1;
2090 #endif
2091         } else if (token == Opt_data_err_abort) {
2092                 sbi->s_mount_opt |= m->mount_opt;
2093         } else if (token == Opt_data_err_ignore) {
2094                 sbi->s_mount_opt &= ~m->mount_opt;
2095         } else {
2096                 if (!args->from)
2097                         arg = 1;
2098                 if (m->flags & MOPT_CLEAR)
2099                         arg = !arg;
2100                 else if (unlikely(!(m->flags & MOPT_SET))) {
2101                         ext4_msg(sb, KERN_WARNING,
2102                                  "buggy handling of option %s", opt);
2103                         WARN_ON(1);
2104                         return -1;
2105                 }
2106                 if (arg != 0)
2107                         sbi->s_mount_opt |= m->mount_opt;
2108                 else
2109                         sbi->s_mount_opt &= ~m->mount_opt;
2110         }
2111         return 1;
2112 }
2113
2114 static int parse_options(char *options, struct super_block *sb,
2115                          unsigned long *journal_devnum,
2116                          unsigned int *journal_ioprio,
2117                          int is_remount)
2118 {
2119         struct ext4_sb_info __maybe_unused *sbi = EXT4_SB(sb);
2120         char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name;
2121         substring_t args[MAX_OPT_ARGS];
2122         int token;
2123
2124         if (!options)
2125                 return 1;
2126
2127         while ((p = strsep(&options, ",")) != NULL) {
2128                 if (!*p)
2129                         continue;
2130                 /*
2131                  * Initialize args struct so we know whether arg was
2132                  * found; some options take optional arguments.
2133                  */
2134                 args[0].to = args[0].from = NULL;
2135                 token = match_token(p, tokens, args);
2136                 if (handle_mount_opt(sb, p, token, args, journal_devnum,
2137                                      journal_ioprio, is_remount) < 0)
2138                         return 0;
2139         }
2140 #ifdef CONFIG_QUOTA
2141         /*
2142          * We do the test below only for project quotas. 'usrquota' and
2143          * 'grpquota' mount options are allowed even without quota feature
2144          * to support legacy quotas in quota files.
2145          */
2146         if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
2147                 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
2148                          "Cannot enable project quota enforcement.");
2149                 return 0;
2150         }
2151         usr_qf_name = get_qf_name(sb, sbi, USRQUOTA);
2152         grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA);
2153         if (usr_qf_name || grp_qf_name) {
2154                 if (test_opt(sb, USRQUOTA) && usr_qf_name)
2155                         clear_opt(sb, USRQUOTA);
2156
2157                 if (test_opt(sb, GRPQUOTA) && grp_qf_name)
2158                         clear_opt(sb, GRPQUOTA);
2159
2160                 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
2161                         ext4_msg(sb, KERN_ERR, "old and new quota "
2162                                         "format mixing");
2163                         return 0;
2164                 }
2165
2166                 if (!sbi->s_jquota_fmt) {
2167                         ext4_msg(sb, KERN_ERR, "journaled quota format "
2168                                         "not specified");
2169                         return 0;
2170                 }
2171         }
2172 #endif
2173         return 1;
2174 }
2175
2176 static inline void ext4_show_quota_options(struct seq_file *seq,
2177                                            struct super_block *sb)
2178 {
2179 #if defined(CONFIG_QUOTA)
2180         struct ext4_sb_info *sbi = EXT4_SB(sb);
2181         char *usr_qf_name, *grp_qf_name;
2182
2183         if (sbi->s_jquota_fmt) {
2184                 char *fmtname = "";
2185
2186                 switch (sbi->s_jquota_fmt) {
2187                 case QFMT_VFS_OLD:
2188                         fmtname = "vfsold";
2189                         break;
2190                 case QFMT_VFS_V0:
2191                         fmtname = "vfsv0";
2192                         break;
2193                 case QFMT_VFS_V1:
2194                         fmtname = "vfsv1";
2195                         break;
2196                 }
2197                 seq_printf(seq, ",jqfmt=%s", fmtname);
2198         }
2199
2200         rcu_read_lock();
2201         usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2202         grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2203         if (usr_qf_name)
2204                 seq_show_option(seq, "usrjquota", usr_qf_name);
2205         if (grp_qf_name)
2206                 seq_show_option(seq, "grpjquota", grp_qf_name);
2207         rcu_read_unlock();
2208 #endif
2209 }
2210
2211 static const char *token2str(int token)
2212 {
2213         const struct match_token *t;
2214
2215         for (t = tokens; t->token != Opt_err; t++)
2216                 if (t->token == token && !strchr(t->pattern, '='))
2217                         break;
2218         return t->pattern;
2219 }
2220
2221 /*
2222  * Show an option if
2223  *  - it's set to a non-default value OR
2224  *  - if the per-sb default is different from the global default
2225  */
2226 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2227                               int nodefs)
2228 {
2229         struct ext4_sb_info *sbi = EXT4_SB(sb);
2230         struct ext4_super_block *es = sbi->s_es;
2231         int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2232         const struct mount_opts *m;
2233         char sep = nodefs ? '\n' : ',';
2234
2235 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2236 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2237
2238         if (sbi->s_sb_block != 1)
2239                 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2240
2241         for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2242                 int want_set = m->flags & MOPT_SET;
2243                 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2244                     (m->flags & MOPT_CLEAR_ERR))
2245                         continue;
2246                 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2247                         continue; /* skip if same as the default */
2248                 if ((want_set &&
2249                      (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2250                     (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2251                         continue; /* select Opt_noFoo vs Opt_Foo */
2252                 SEQ_OPTS_PRINT("%s", token2str(m->token));
2253         }
2254
2255         if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2256             le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2257                 SEQ_OPTS_PRINT("resuid=%u",
2258                                 from_kuid_munged(&init_user_ns, sbi->s_resuid));
2259         if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2260             le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2261                 SEQ_OPTS_PRINT("resgid=%u",
2262                                 from_kgid_munged(&init_user_ns, sbi->s_resgid));
2263         def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2264         if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2265                 SEQ_OPTS_PUTS("errors=remount-ro");
2266         if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2267                 SEQ_OPTS_PUTS("errors=continue");
2268         if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2269                 SEQ_OPTS_PUTS("errors=panic");
2270         if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2271                 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2272         if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2273                 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2274         if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2275                 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2276         if (sb->s_flags & SB_I_VERSION)
2277                 SEQ_OPTS_PUTS("i_version");
2278         if (nodefs || sbi->s_stripe)
2279                 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2280         if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2281                         (sbi->s_mount_opt ^ def_mount_opt)) {
2282                 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2283                         SEQ_OPTS_PUTS("data=journal");
2284                 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2285                         SEQ_OPTS_PUTS("data=ordered");
2286                 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2287                         SEQ_OPTS_PUTS("data=writeback");
2288         }
2289         if (nodefs ||
2290             sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2291                 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2292                                sbi->s_inode_readahead_blks);
2293
2294         if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2295                        (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2296                 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2297         if (nodefs || sbi->s_max_dir_size_kb)
2298                 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2299         if (test_opt(sb, DATA_ERR_ABORT))
2300                 SEQ_OPTS_PUTS("data_err=abort");
2301         if (DUMMY_ENCRYPTION_ENABLED(sbi))
2302                 SEQ_OPTS_PUTS("test_dummy_encryption");
2303
2304         ext4_show_quota_options(seq, sb);
2305         return 0;
2306 }
2307
2308 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2309 {
2310         return _ext4_show_options(seq, root->d_sb, 0);
2311 }
2312
2313 int ext4_seq_options_show(struct seq_file *seq, void *offset)
2314 {
2315         struct super_block *sb = seq->private;
2316         int rc;
2317
2318         seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
2319         rc = _ext4_show_options(seq, sb, 1);
2320         seq_puts(seq, "\n");
2321         return rc;
2322 }
2323
2324 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2325                             int read_only)
2326 {
2327         struct ext4_sb_info *sbi = EXT4_SB(sb);
2328         int err = 0;
2329
2330         if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2331                 ext4_msg(sb, KERN_ERR, "revision level too high, "
2332                          "forcing read-only mode");
2333                 err = -EROFS;
2334         }
2335         if (read_only)
2336                 goto done;
2337         if (!(sbi->s_mount_state & EXT4_VALID_FS))
2338                 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2339                          "running e2fsck is recommended");
2340         else if (sbi->s_mount_state & EXT4_ERROR_FS)
2341                 ext4_msg(sb, KERN_WARNING,
2342                          "warning: mounting fs with errors, "
2343                          "running e2fsck is recommended");
2344         else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2345                  le16_to_cpu(es->s_mnt_count) >=
2346                  (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2347                 ext4_msg(sb, KERN_WARNING,
2348                          "warning: maximal mount count reached, "
2349                          "running e2fsck is recommended");
2350         else if (le32_to_cpu(es->s_checkinterval) &&
2351                  (ext4_get_tstamp(es, s_lastcheck) +
2352                   le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
2353                 ext4_msg(sb, KERN_WARNING,
2354                          "warning: checktime reached, "
2355                          "running e2fsck is recommended");
2356         if (!sbi->s_journal)
2357                 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2358         if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2359                 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2360         le16_add_cpu(&es->s_mnt_count, 1);
2361         ext4_update_tstamp(es, s_mtime);
2362         if (sbi->s_journal)
2363                 ext4_set_feature_journal_needs_recovery(sb);
2364
2365         err = ext4_commit_super(sb, 1);
2366 done:
2367         if (test_opt(sb, DEBUG))
2368                 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2369                                 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2370                         sb->s_blocksize,
2371                         sbi->s_groups_count,
2372                         EXT4_BLOCKS_PER_GROUP(sb),
2373                         EXT4_INODES_PER_GROUP(sb),
2374                         sbi->s_mount_opt, sbi->s_mount_opt2);
2375
2376         cleancache_init_fs(sb);
2377         return err;
2378 }
2379
2380 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2381 {
2382         struct ext4_sb_info *sbi = EXT4_SB(sb);
2383         struct flex_groups *new_groups;
2384         int size;
2385
2386         if (!sbi->s_log_groups_per_flex)
2387                 return 0;
2388
2389         size = ext4_flex_group(sbi, ngroup - 1) + 1;
2390         if (size <= sbi->s_flex_groups_allocated)
2391                 return 0;
2392
2393         size = roundup_pow_of_two(size * sizeof(struct flex_groups));
2394         new_groups = kvzalloc(size, GFP_KERNEL);
2395         if (!new_groups) {
2396                 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
2397                          size / (int) sizeof(struct flex_groups));
2398                 return -ENOMEM;
2399         }
2400
2401         if (sbi->s_flex_groups) {
2402                 memcpy(new_groups, sbi->s_flex_groups,
2403                        (sbi->s_flex_groups_allocated *
2404                         sizeof(struct flex_groups)));
2405                 kvfree(sbi->s_flex_groups);
2406         }
2407         sbi->s_flex_groups = new_groups;
2408         sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
2409         return 0;
2410 }
2411
2412 static int ext4_fill_flex_info(struct super_block *sb)
2413 {
2414         struct ext4_sb_info *sbi = EXT4_SB(sb);
2415         struct ext4_group_desc *gdp = NULL;
2416         ext4_group_t flex_group;
2417         int i, err;
2418
2419         sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2420         if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2421                 sbi->s_log_groups_per_flex = 0;
2422                 return 1;
2423         }
2424
2425         err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2426         if (err)
2427                 goto failed;
2428
2429         for (i = 0; i < sbi->s_groups_count; i++) {
2430                 gdp = ext4_get_group_desc(sb, i, NULL);
2431
2432                 flex_group = ext4_flex_group(sbi, i);
2433                 atomic_add(ext4_free_inodes_count(sb, gdp),
2434                            &sbi->s_flex_groups[flex_group].free_inodes);
2435                 atomic64_add(ext4_free_group_clusters(sb, gdp),
2436                              &sbi->s_flex_groups[flex_group].free_clusters);
2437                 atomic_add(ext4_used_dirs_count(sb, gdp),
2438                            &sbi->s_flex_groups[flex_group].used_dirs);
2439         }
2440
2441         return 1;
2442 failed:
2443         return 0;
2444 }
2445
2446 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2447                                    struct ext4_group_desc *gdp)
2448 {
2449         int offset = offsetof(struct ext4_group_desc, bg_checksum);
2450         __u16 crc = 0;
2451         __le32 le_group = cpu_to_le32(block_group);
2452         struct ext4_sb_info *sbi = EXT4_SB(sb);
2453
2454         if (ext4_has_metadata_csum(sbi->s_sb)) {
2455                 /* Use new metadata_csum algorithm */
2456                 __u32 csum32;
2457                 __u16 dummy_csum = 0;
2458
2459                 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2460                                      sizeof(le_group));
2461                 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2462                 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2463                                      sizeof(dummy_csum));
2464                 offset += sizeof(dummy_csum);
2465                 if (offset < sbi->s_desc_size)
2466                         csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2467                                              sbi->s_desc_size - offset);
2468
2469                 crc = csum32 & 0xFFFF;
2470                 goto out;
2471         }
2472
2473         /* old crc16 code */
2474         if (!ext4_has_feature_gdt_csum(sb))
2475                 return 0;
2476
2477         crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2478         crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2479         crc = crc16(crc, (__u8 *)gdp, offset);
2480         offset += sizeof(gdp->bg_checksum); /* skip checksum */
2481         /* for checksum of struct ext4_group_desc do the rest...*/
2482         if (ext4_has_feature_64bit(sb) &&
2483             offset < le16_to_cpu(sbi->s_es->s_desc_size))
2484                 crc = crc16(crc, (__u8 *)gdp + offset,
2485                             le16_to_cpu(sbi->s_es->s_desc_size) -
2486                                 offset);
2487
2488 out:
2489         return cpu_to_le16(crc);
2490 }
2491
2492 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2493                                 struct ext4_group_desc *gdp)
2494 {
2495         if (ext4_has_group_desc_csum(sb) &&
2496             (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2497                 return 0;
2498
2499         return 1;
2500 }
2501
2502 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2503                               struct ext4_group_desc *gdp)
2504 {
2505         if (!ext4_has_group_desc_csum(sb))
2506                 return;
2507         gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2508 }
2509
2510 /* Called at mount-time, super-block is locked */
2511 static int ext4_check_descriptors(struct super_block *sb,
2512                                   ext4_fsblk_t sb_block,
2513                                   ext4_group_t *first_not_zeroed)
2514 {
2515         struct ext4_sb_info *sbi = EXT4_SB(sb);
2516         ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2517         ext4_fsblk_t last_block;
2518         ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
2519         ext4_fsblk_t block_bitmap;
2520         ext4_fsblk_t inode_bitmap;
2521         ext4_fsblk_t inode_table;
2522         int flexbg_flag = 0;
2523         ext4_group_t i, grp = sbi->s_groups_count;
2524
2525         if (ext4_has_feature_flex_bg(sb))
2526                 flexbg_flag = 1;
2527
2528         ext4_debug("Checking group descriptors");
2529
2530         for (i = 0; i < sbi->s_groups_count; i++) {
2531                 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2532
2533                 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2534                         last_block = ext4_blocks_count(sbi->s_es) - 1;
2535                 else
2536                         last_block = first_block +
2537                                 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2538
2539                 if ((grp == sbi->s_groups_count) &&
2540                    !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2541                         grp = i;
2542
2543                 block_bitmap = ext4_block_bitmap(sb, gdp);
2544                 if (block_bitmap == sb_block) {
2545                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2546                                  "Block bitmap for group %u overlaps "
2547                                  "superblock", i);
2548                         if (!sb_rdonly(sb))
2549                                 return 0;
2550                 }
2551                 if (block_bitmap >= sb_block + 1 &&
2552                     block_bitmap <= last_bg_block) {
2553                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2554                                  "Block bitmap for group %u overlaps "
2555                                  "block group descriptors", i);
2556                         if (!sb_rdonly(sb))
2557                                 return 0;
2558                 }
2559                 if (block_bitmap < first_block || block_bitmap > last_block) {
2560                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2561                                "Block bitmap for group %u not in group "
2562                                "(block %llu)!", i, block_bitmap);
2563                         return 0;
2564                 }
2565                 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2566                 if (inode_bitmap == sb_block) {
2567                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2568                                  "Inode bitmap for group %u overlaps "
2569                                  "superblock", i);
2570                         if (!sb_rdonly(sb))
2571                                 return 0;
2572                 }
2573                 if (inode_bitmap >= sb_block + 1 &&
2574                     inode_bitmap <= last_bg_block) {
2575                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2576                                  "Inode bitmap for group %u overlaps "
2577                                  "block group descriptors", i);
2578                         if (!sb_rdonly(sb))
2579                                 return 0;
2580                 }
2581                 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2582                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2583                                "Inode bitmap for group %u not in group "
2584                                "(block %llu)!", i, inode_bitmap);
2585                         return 0;
2586                 }
2587                 inode_table = ext4_inode_table(sb, gdp);
2588                 if (inode_table == sb_block) {
2589                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2590                                  "Inode table for group %u overlaps "
2591                                  "superblock", i);
2592                         if (!sb_rdonly(sb))
2593                                 return 0;
2594                 }
2595                 if (inode_table >= sb_block + 1 &&
2596                     inode_table <= last_bg_block) {
2597                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2598                                  "Inode table for group %u overlaps "
2599                                  "block group descriptors", i);
2600                         if (!sb_rdonly(sb))
2601                                 return 0;
2602                 }
2603                 if (inode_table < first_block ||
2604                     inode_table + sbi->s_itb_per_group - 1 > last_block) {
2605                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2606                                "Inode table for group %u not in group "
2607                                "(block %llu)!", i, inode_table);
2608                         return 0;
2609                 }
2610                 ext4_lock_group(sb, i);
2611                 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2612                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2613                                  "Checksum for group %u failed (%u!=%u)",
2614                                  i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2615                                      gdp)), le16_to_cpu(gdp->bg_checksum));
2616                         if (!sb_rdonly(sb)) {
2617                                 ext4_unlock_group(sb, i);
2618                                 return 0;
2619                         }
2620                 }
2621                 ext4_unlock_group(sb, i);
2622                 if (!flexbg_flag)
2623                         first_block += EXT4_BLOCKS_PER_GROUP(sb);
2624         }
2625         if (NULL != first_not_zeroed)
2626                 *first_not_zeroed = grp;
2627         return 1;
2628 }
2629
2630 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2631  * the superblock) which were deleted from all directories, but held open by
2632  * a process at the time of a crash.  We walk the list and try to delete these
2633  * inodes at recovery time (only with a read-write filesystem).
2634  *
2635  * In order to keep the orphan inode chain consistent during traversal (in
2636  * case of crash during recovery), we link each inode into the superblock
2637  * orphan list_head and handle it the same way as an inode deletion during
2638  * normal operation (which journals the operations for us).
2639  *
2640  * We only do an iget() and an iput() on each inode, which is very safe if we
2641  * accidentally point at an in-use or already deleted inode.  The worst that
2642  * can happen in this case is that we get a "bit already cleared" message from
2643  * ext4_free_inode().  The only reason we would point at a wrong inode is if
2644  * e2fsck was run on this filesystem, and it must have already done the orphan
2645  * inode cleanup for us, so we can safely abort without any further action.
2646  */
2647 static void ext4_orphan_cleanup(struct super_block *sb,
2648                                 struct ext4_super_block *es)
2649 {
2650         unsigned int s_flags = sb->s_flags;
2651         int ret, nr_orphans = 0, nr_truncates = 0;
2652 #ifdef CONFIG_QUOTA
2653         int quota_update = 0;
2654         int i;
2655 #endif
2656         if (!es->s_last_orphan) {
2657                 jbd_debug(4, "no orphan inodes to clean up\n");
2658                 return;
2659         }
2660
2661         if (bdev_read_only(sb->s_bdev)) {
2662                 ext4_msg(sb, KERN_ERR, "write access "
2663                         "unavailable, skipping orphan cleanup");
2664                 return;
2665         }
2666
2667         /* Check if feature set would not allow a r/w mount */
2668         if (!ext4_feature_set_ok(sb, 0)) {
2669                 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2670                          "unknown ROCOMPAT features");
2671                 return;
2672         }
2673
2674         if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2675                 /* don't clear list on RO mount w/ errors */
2676                 if (es->s_last_orphan && !(s_flags & SB_RDONLY)) {
2677                         ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2678                                   "clearing orphan list.\n");
2679                         es->s_last_orphan = 0;
2680                 }
2681                 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2682                 return;
2683         }
2684
2685         if (s_flags & SB_RDONLY) {
2686                 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2687                 sb->s_flags &= ~SB_RDONLY;
2688         }
2689 #ifdef CONFIG_QUOTA
2690         /* Needed for iput() to work correctly and not trash data */
2691         sb->s_flags |= SB_ACTIVE;
2692
2693         /*
2694          * Turn on quotas which were not enabled for read-only mounts if
2695          * filesystem has quota feature, so that they are updated correctly.
2696          */
2697         if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) {
2698                 int ret = ext4_enable_quotas(sb);
2699
2700                 if (!ret)
2701                         quota_update = 1;
2702                 else
2703                         ext4_msg(sb, KERN_ERR,
2704                                 "Cannot turn on quotas: error %d", ret);
2705         }
2706
2707         /* Turn on journaled quotas used for old sytle */
2708         for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2709                 if (EXT4_SB(sb)->s_qf_names[i]) {
2710                         int ret = ext4_quota_on_mount(sb, i);
2711
2712                         if (!ret)
2713                                 quota_update = 1;
2714                         else
2715                                 ext4_msg(sb, KERN_ERR,
2716                                         "Cannot turn on journaled "
2717                                         "quota: type %d: error %d", i, ret);
2718                 }
2719         }
2720 #endif
2721
2722         while (es->s_last_orphan) {
2723                 struct inode *inode;
2724
2725                 /*
2726                  * We may have encountered an error during cleanup; if
2727                  * so, skip the rest.
2728                  */
2729                 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2730                         jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2731                         es->s_last_orphan = 0;
2732                         break;
2733                 }
2734
2735                 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2736                 if (IS_ERR(inode)) {
2737                         es->s_last_orphan = 0;
2738                         break;
2739                 }
2740
2741                 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2742                 dquot_initialize(inode);
2743                 if (inode->i_nlink) {
2744                         if (test_opt(sb, DEBUG))
2745                                 ext4_msg(sb, KERN_DEBUG,
2746                                         "%s: truncating inode %lu to %lld bytes",
2747                                         __func__, inode->i_ino, inode->i_size);
2748                         jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2749                                   inode->i_ino, inode->i_size);
2750                         inode_lock(inode);
2751                         truncate_inode_pages(inode->i_mapping, inode->i_size);
2752                         ret = ext4_truncate(inode);
2753                         if (ret)
2754                                 ext4_std_error(inode->i_sb, ret);
2755                         inode_unlock(inode);
2756                         nr_truncates++;
2757                 } else {
2758                         if (test_opt(sb, DEBUG))
2759                                 ext4_msg(sb, KERN_DEBUG,
2760                                         "%s: deleting unreferenced inode %lu",
2761                                         __func__, inode->i_ino);
2762                         jbd_debug(2, "deleting unreferenced inode %lu\n",
2763                                   inode->i_ino);
2764                         nr_orphans++;
2765                 }
2766                 iput(inode);  /* The delete magic happens here! */
2767         }
2768
2769 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2770
2771         if (nr_orphans)
2772                 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2773                        PLURAL(nr_orphans));
2774         if (nr_truncates)
2775                 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2776                        PLURAL(nr_truncates));
2777 #ifdef CONFIG_QUOTA
2778         /* Turn off quotas if they were enabled for orphan cleanup */
2779         if (quota_update) {
2780                 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2781                         if (sb_dqopt(sb)->files[i])
2782                                 dquot_quota_off(sb, i);
2783                 }
2784         }
2785 #endif
2786         sb->s_flags = s_flags; /* Restore SB_RDONLY status */
2787 }
2788
2789 /*
2790  * Maximal extent format file size.
2791  * Resulting logical blkno at s_maxbytes must fit in our on-disk
2792  * extent format containers, within a sector_t, and within i_blocks
2793  * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
2794  * so that won't be a limiting factor.
2795  *
2796  * However there is other limiting factor. We do store extents in the form
2797  * of starting block and length, hence the resulting length of the extent
2798  * covering maximum file size must fit into on-disk format containers as
2799  * well. Given that length is always by 1 unit bigger than max unit (because
2800  * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2801  *
2802  * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2803  */
2804 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2805 {
2806         loff_t res;
2807         loff_t upper_limit = MAX_LFS_FILESIZE;
2808
2809         BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
2810
2811         if (!has_huge_files) {
2812                 upper_limit = (1LL << 32) - 1;
2813
2814                 /* total blocks in file system block size */
2815                 upper_limit >>= (blkbits - 9);
2816                 upper_limit <<= blkbits;
2817         }
2818
2819         /*
2820          * 32-bit extent-start container, ee_block. We lower the maxbytes
2821          * by one fs block, so ee_len can cover the extent of maximum file
2822          * size
2823          */
2824         res = (1LL << 32) - 1;
2825         res <<= blkbits;
2826
2827         /* Sanity check against vm- & vfs- imposed limits */
2828         if (res > upper_limit)
2829                 res = upper_limit;
2830
2831         return res;
2832 }
2833
2834 /*
2835  * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
2836  * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2837  * We need to be 1 filesystem block less than the 2^48 sector limit.
2838  */
2839 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2840 {
2841         loff_t res = EXT4_NDIR_BLOCKS;
2842         int meta_blocks;
2843         loff_t upper_limit;
2844         /* This is calculated to be the largest file size for a dense, block
2845          * mapped file such that the file's total number of 512-byte sectors,
2846          * including data and all indirect blocks, does not exceed (2^48 - 1).
2847          *
2848          * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2849          * number of 512-byte sectors of the file.
2850          */
2851
2852         if (!has_huge_files) {
2853                 /*
2854                  * !has_huge_files or implies that the inode i_block field
2855                  * represents total file blocks in 2^32 512-byte sectors ==
2856                  * size of vfs inode i_blocks * 8
2857                  */
2858                 upper_limit = (1LL << 32) - 1;
2859
2860                 /* total blocks in file system block size */
2861                 upper_limit >>= (bits - 9);
2862
2863         } else {
2864                 /*
2865                  * We use 48 bit ext4_inode i_blocks
2866                  * With EXT4_HUGE_FILE_FL set the i_blocks
2867                  * represent total number of blocks in
2868                  * file system block size
2869                  */
2870                 upper_limit = (1LL << 48) - 1;
2871
2872         }
2873
2874         /* indirect blocks */
2875         meta_blocks = 1;
2876         /* double indirect blocks */
2877         meta_blocks += 1 + (1LL << (bits-2));
2878         /* tripple indirect blocks */
2879         meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2880
2881         upper_limit -= meta_blocks;
2882         upper_limit <<= bits;
2883
2884         res += 1LL << (bits-2);
2885         res += 1LL << (2*(bits-2));
2886         res += 1LL << (3*(bits-2));
2887         res <<= bits;
2888         if (res > upper_limit)
2889                 res = upper_limit;
2890
2891         if (res > MAX_LFS_FILESIZE)
2892                 res = MAX_LFS_FILESIZE;
2893
2894         return res;
2895 }
2896
2897 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2898                                    ext4_fsblk_t logical_sb_block, int nr)
2899 {
2900         struct ext4_sb_info *sbi = EXT4_SB(sb);
2901         ext4_group_t bg, first_meta_bg;
2902         int has_super = 0;
2903
2904         first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2905
2906         if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
2907                 return logical_sb_block + nr + 1;
2908         bg = sbi->s_desc_per_block * nr;
2909         if (ext4_bg_has_super(sb, bg))
2910                 has_super = 1;
2911
2912         /*
2913          * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2914          * block 2, not 1.  If s_first_data_block == 0 (bigalloc is enabled
2915          * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2916          * compensate.
2917          */
2918         if (sb->s_blocksize == 1024 && nr == 0 &&
2919             le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
2920                 has_super++;
2921
2922         return (has_super + ext4_group_first_block_no(sb, bg));
2923 }
2924
2925 /**
2926  * ext4_get_stripe_size: Get the stripe size.
2927  * @sbi: In memory super block info
2928  *
2929  * If we have specified it via mount option, then
2930  * use the mount option value. If the value specified at mount time is
2931  * greater than the blocks per group use the super block value.
2932  * If the super block value is greater than blocks per group return 0.
2933  * Allocator needs it be less than blocks per group.
2934  *
2935  */
2936 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2937 {
2938         unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2939         unsigned long stripe_width =
2940                         le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2941         int ret;
2942
2943         if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2944                 ret = sbi->s_stripe;
2945         else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
2946                 ret = stripe_width;
2947         else if (stride && stride <= sbi->s_blocks_per_group)
2948                 ret = stride;
2949         else
2950                 ret = 0;
2951
2952         /*
2953          * If the stripe width is 1, this makes no sense and
2954          * we set it to 0 to turn off stripe handling code.
2955          */
2956         if (ret <= 1)
2957                 ret = 0;
2958
2959         return ret;
2960 }
2961
2962 /*
2963  * Check whether this filesystem can be mounted based on
2964  * the features present and the RDONLY/RDWR mount requested.
2965  * Returns 1 if this filesystem can be mounted as requested,
2966  * 0 if it cannot be.
2967  */
2968 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2969 {
2970         if (ext4_has_unknown_ext4_incompat_features(sb)) {
2971                 ext4_msg(sb, KERN_ERR,
2972                         "Couldn't mount because of "
2973                         "unsupported optional features (%x)",
2974                         (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2975                         ~EXT4_FEATURE_INCOMPAT_SUPP));
2976                 return 0;
2977         }
2978
2979 #ifndef CONFIG_UNICODE
2980         if (ext4_has_feature_casefold(sb)) {
2981                 ext4_msg(sb, KERN_ERR,
2982                          "Filesystem with casefold feature cannot be "
2983                          "mounted without CONFIG_UNICODE");
2984                 return 0;
2985         }
2986 #endif
2987
2988         if (readonly)
2989                 return 1;
2990
2991         if (ext4_has_feature_readonly(sb)) {
2992                 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2993                 sb->s_flags |= SB_RDONLY;
2994                 return 1;
2995         }
2996
2997         /* Check that feature set is OK for a read-write mount */
2998         if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
2999                 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3000                          "unsupported optional features (%x)",
3001                          (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3002                                 ~EXT4_FEATURE_RO_COMPAT_SUPP));
3003                 return 0;
3004         }
3005         if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3006                 ext4_msg(sb, KERN_ERR,
3007                          "Can't support bigalloc feature without "
3008                          "extents feature\n");
3009                 return 0;
3010         }
3011
3012 #ifndef CONFIG_QUOTA
3013         if (ext4_has_feature_quota(sb) && !readonly) {
3014                 ext4_msg(sb, KERN_ERR,
3015                          "Filesystem with quota feature cannot be mounted RDWR "
3016                          "without CONFIG_QUOTA");
3017                 return 0;
3018         }
3019         if (ext4_has_feature_project(sb) && !readonly) {
3020                 ext4_msg(sb, KERN_ERR,
3021                          "Filesystem with project quota feature cannot be mounted RDWR "
3022                          "without CONFIG_QUOTA");
3023                 return 0;
3024         }
3025 #endif  /* CONFIG_QUOTA */
3026         return 1;
3027 }
3028
3029 /*
3030  * This function is called once a day if we have errors logged
3031  * on the file system
3032  */
3033 static void print_daily_error_info(struct timer_list *t)
3034 {
3035         struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3036         struct super_block *sb = sbi->s_sb;
3037         struct ext4_super_block *es = sbi->s_es;
3038
3039         if (es->s_error_count)
3040                 /* fsck newer than v1.41.13 is needed to clean this condition. */
3041                 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3042                          le32_to_cpu(es->s_error_count));
3043         if (es->s_first_error_time) {
3044                 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3045                        sb->s_id,
3046                        ext4_get_tstamp(es, s_first_error_time),
3047                        (int) sizeof(es->s_first_error_func),
3048                        es->s_first_error_func,
3049                        le32_to_cpu(es->s_first_error_line));
3050                 if (es->s_first_error_ino)
3051                         printk(KERN_CONT ": inode %u",
3052                                le32_to_cpu(es->s_first_error_ino));
3053                 if (es->s_first_error_block)
3054                         printk(KERN_CONT ": block %llu", (unsigned long long)
3055                                le64_to_cpu(es->s_first_error_block));
3056                 printk(KERN_CONT "\n");
3057         }
3058         if (es->s_last_error_time) {
3059                 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3060                        sb->s_id,
3061                        ext4_get_tstamp(es, s_last_error_time),
3062                        (int) sizeof(es->s_last_error_func),
3063                        es->s_last_error_func,
3064                        le32_to_cpu(es->s_last_error_line));
3065                 if (es->s_last_error_ino)
3066                         printk(KERN_CONT ": inode %u",
3067                                le32_to_cpu(es->s_last_error_ino));
3068                 if (es->s_last_error_block)
3069                         printk(KERN_CONT ": block %llu", (unsigned long long)
3070                                le64_to_cpu(es->s_last_error_block));
3071                 printk(KERN_CONT "\n");
3072         }
3073         mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
3074 }
3075
3076 /* Find next suitable group and run ext4_init_inode_table */
3077 static int ext4_run_li_request(struct ext4_li_request *elr)
3078 {
3079         struct ext4_group_desc *gdp = NULL;
3080         ext4_group_t group, ngroups;
3081         struct super_block *sb;
3082         unsigned long timeout = 0;
3083         int ret = 0;
3084
3085         sb = elr->lr_super;
3086         ngroups = EXT4_SB(sb)->s_groups_count;
3087
3088         for (group = elr->lr_next_group; group < ngroups; group++) {
3089                 gdp = ext4_get_group_desc(sb, group, NULL);
3090                 if (!gdp) {
3091                         ret = 1;
3092                         break;
3093                 }
3094
3095                 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3096                         break;
3097         }
3098
3099         if (group >= ngroups)
3100                 ret = 1;
3101
3102         if (!ret) {
3103                 timeout = jiffies;
3104                 ret = ext4_init_inode_table(sb, group,
3105                                             elr->lr_timeout ? 0 : 1);
3106                 if (elr->lr_timeout == 0) {
3107                         timeout = (jiffies - timeout) *
3108                                   elr->lr_sbi->s_li_wait_mult;
3109                         elr->lr_timeout = timeout;
3110                 }
3111                 elr->lr_next_sched = jiffies + elr->lr_timeout;
3112                 elr->lr_next_group = group + 1;
3113         }
3114         return ret;
3115 }
3116
3117 /*
3118  * Remove lr_request from the list_request and free the
3119  * request structure. Should be called with li_list_mtx held
3120  */
3121 static void ext4_remove_li_request(struct ext4_li_request *elr)
3122 {
3123         struct ext4_sb_info *sbi;
3124
3125         if (!elr)
3126                 return;
3127
3128         sbi = elr->lr_sbi;
3129
3130         list_del(&elr->lr_request);
3131         sbi->s_li_request = NULL;
3132         kfree(elr);
3133 }
3134
3135 static void ext4_unregister_li_request(struct super_block *sb)
3136 {
3137         mutex_lock(&ext4_li_mtx);
3138         if (!ext4_li_info) {
3139                 mutex_unlock(&ext4_li_mtx);
3140                 return;
3141         }
3142
3143         mutex_lock(&ext4_li_info->li_list_mtx);
3144         ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3145         mutex_unlock(&ext4_li_info->li_list_mtx);
3146         mutex_unlock(&ext4_li_mtx);
3147 }
3148
3149 static struct task_struct *ext4_lazyinit_task;
3150
3151 /*
3152  * This is the function where ext4lazyinit thread lives. It walks
3153  * through the request list searching for next scheduled filesystem.
3154  * When such a fs is found, run the lazy initialization request
3155  * (ext4_rn_li_request) and keep track of the time spend in this
3156  * function. Based on that time we compute next schedule time of
3157  * the request. When walking through the list is complete, compute
3158  * next waking time and put itself into sleep.
3159  */
3160 static int ext4_lazyinit_thread(void *arg)
3161 {
3162         struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
3163         struct list_head *pos, *n;
3164         struct ext4_li_request *elr;
3165         unsigned long next_wakeup, cur;
3166
3167         BUG_ON(NULL == eli);
3168
3169 cont_thread:
3170         while (true) {
3171                 next_wakeup = MAX_JIFFY_OFFSET;
3172
3173                 mutex_lock(&eli->li_list_mtx);
3174                 if (list_empty(&eli->li_request_list)) {
3175                         mutex_unlock(&eli->li_list_mtx);
3176                         goto exit_thread;
3177                 }
3178                 list_for_each_safe(pos, n, &eli->li_request_list) {
3179                         int err = 0;
3180                         int progress = 0;
3181                         elr = list_entry(pos, struct ext4_li_request,
3182                                          lr_request);
3183
3184                         if (time_before(jiffies, elr->lr_next_sched)) {
3185                                 if (time_before(elr->lr_next_sched, next_wakeup))
3186                                         next_wakeup = elr->lr_next_sched;
3187                                 continue;
3188                         }
3189                         if (down_read_trylock(&elr->lr_super->s_umount)) {
3190                                 if (sb_start_write_trylock(elr->lr_super)) {
3191                                         progress = 1;
3192                                         /*
3193                                          * We hold sb->s_umount, sb can not
3194                                          * be removed from the list, it is
3195                                          * now safe to drop li_list_mtx
3196                                          */
3197                                         mutex_unlock(&eli->li_list_mtx);
3198                                         err = ext4_run_li_request(elr);
3199                                         sb_end_write(elr->lr_super);
3200                                         mutex_lock(&eli->li_list_mtx);
3201                                         n = pos->next;
3202                                 }
3203                                 up_read((&elr->lr_super->s_umount));
3204                         }
3205                         /* error, remove the lazy_init job */
3206                         if (err) {
3207                                 ext4_remove_li_request(elr);
3208                                 continue;
3209                         }
3210                         if (!progress) {
3211                                 elr->lr_next_sched = jiffies +
3212                                         (prandom_u32()
3213                                          % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3214                         }
3215                         if (time_before(elr->lr_next_sched, next_wakeup))
3216                                 next_wakeup = elr->lr_next_sched;
3217                 }
3218                 mutex_unlock(&eli->li_list_mtx);
3219
3220                 try_to_freeze();
3221
3222                 cur = jiffies;
3223                 if ((time_after_eq(cur, next_wakeup)) ||
3224                     (MAX_JIFFY_OFFSET == next_wakeup)) {
3225                         cond_resched();
3226                         continue;
3227                 }
3228
3229                 schedule_timeout_interruptible(next_wakeup - cur);
3230
3231                 if (kthread_should_stop()) {
3232                         ext4_clear_request_list();
3233                         goto exit_thread;
3234                 }
3235         }
3236
3237 exit_thread:
3238         /*
3239          * It looks like the request list is empty, but we need
3240          * to check it under the li_list_mtx lock, to prevent any
3241          * additions into it, and of course we should lock ext4_li_mtx
3242          * to atomically free the list and ext4_li_info, because at
3243          * this point another ext4 filesystem could be registering
3244          * new one.
3245          */
3246         mutex_lock(&ext4_li_mtx);
3247         mutex_lock(&eli->li_list_mtx);
3248         if (!list_empty(&eli->li_request_list)) {
3249                 mutex_unlock(&eli->li_list_mtx);
3250                 mutex_unlock(&ext4_li_mtx);
3251                 goto cont_thread;
3252         }
3253         mutex_unlock(&eli->li_list_mtx);
3254         kfree(ext4_li_info);
3255         ext4_li_info = NULL;
3256         mutex_unlock(&ext4_li_mtx);
3257
3258         return 0;
3259 }
3260
3261 static void ext4_clear_request_list(void)
3262 {
3263         struct list_head *pos, *n;
3264         struct ext4_li_request *elr;
3265
3266         mutex_lock(&ext4_li_info->li_list_mtx);
3267         list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3268                 elr = list_entry(pos, struct ext4_li_request,
3269                                  lr_request);
3270                 ext4_remove_li_request(elr);
3271         }
3272         mutex_unlock(&ext4_li_info->li_list_mtx);
3273 }
3274
3275 static int ext4_run_lazyinit_thread(void)
3276 {
3277         ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3278                                          ext4_li_info, "ext4lazyinit");
3279         if (IS_ERR(ext4_lazyinit_task)) {
3280                 int err = PTR_ERR(ext4_lazyinit_task);
3281                 ext4_clear_request_list();
3282                 kfree(ext4_li_info);
3283                 ext4_li_info = NULL;
3284                 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3285                                  "initialization thread\n",
3286                                  err);
3287                 return err;
3288         }
3289         ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3290         return 0;
3291 }
3292
3293 /*
3294  * Check whether it make sense to run itable init. thread or not.
3295  * If there is at least one uninitialized inode table, return
3296  * corresponding group number, else the loop goes through all
3297  * groups and return total number of groups.
3298  */
3299 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3300 {
3301         ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3302         struct ext4_group_desc *gdp = NULL;
3303
3304         if (!ext4_has_group_desc_csum(sb))
3305                 return ngroups;
3306
3307         for (group = 0; group < ngroups; group++) {
3308                 gdp = ext4_get_group_desc(sb, group, NULL);
3309                 if (!gdp)
3310                         continue;
3311
3312                 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3313                         break;
3314         }
3315
3316         return group;
3317 }
3318
3319 static int ext4_li_info_new(void)
3320 {
3321         struct ext4_lazy_init *eli = NULL;
3322
3323         eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3324         if (!eli)
3325                 return -ENOMEM;
3326
3327         INIT_LIST_HEAD(&eli->li_request_list);
3328         mutex_init(&eli->li_list_mtx);
3329
3330         eli->li_state |= EXT4_LAZYINIT_QUIT;
3331
3332         ext4_li_info = eli;
3333
3334         return 0;
3335 }
3336
3337 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3338                                             ext4_group_t start)
3339 {
3340         struct ext4_sb_info *sbi = EXT4_SB(sb);
3341         struct ext4_li_request *elr;
3342
3343         elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3344         if (!elr)
3345                 return NULL;
3346
3347         elr->lr_super = sb;
3348         elr->lr_sbi = sbi;
3349         elr->lr_next_group = start;
3350
3351         /*
3352          * Randomize first schedule time of the request to
3353          * spread the inode table initialization requests
3354          * better.
3355          */
3356         elr->lr_next_sched = jiffies + (prandom_u32() %
3357                                 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3358         return elr;
3359 }
3360
3361 int ext4_register_li_request(struct super_block *sb,
3362                              ext4_group_t first_not_zeroed)
3363 {
3364         struct ext4_sb_info *sbi = EXT4_SB(sb);
3365         struct ext4_li_request *elr = NULL;
3366         ext4_group_t ngroups = sbi->s_groups_count;
3367         int ret = 0;
3368
3369         mutex_lock(&ext4_li_mtx);
3370         if (sbi->s_li_request != NULL) {
3371                 /*
3372                  * Reset timeout so it can be computed again, because
3373                  * s_li_wait_mult might have changed.
3374                  */
3375                 sbi->s_li_request->lr_timeout = 0;
3376                 goto out;
3377         }
3378
3379         if (first_not_zeroed == ngroups || sb_rdonly(sb) ||
3380             !test_opt(sb, INIT_INODE_TABLE))
3381                 goto out;
3382
3383         elr = ext4_li_request_new(sb, first_not_zeroed);
3384         if (!elr) {
3385                 ret = -ENOMEM;
3386                 goto out;
3387         }
3388
3389         if (NULL == ext4_li_info) {
3390                 ret = ext4_li_info_new();
3391                 if (ret)
3392                         goto out;
3393         }
3394
3395         mutex_lock(&ext4_li_info->li_list_mtx);
3396         list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3397         mutex_unlock(&ext4_li_info->li_list_mtx);
3398
3399         sbi->s_li_request = elr;
3400         /*
3401          * set elr to NULL here since it has been inserted to
3402          * the request_list and the removal and free of it is
3403          * handled by ext4_clear_request_list from now on.
3404          */
3405         elr = NULL;
3406
3407         if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3408                 ret = ext4_run_lazyinit_thread();
3409                 if (ret)
3410                         goto out;
3411         }
3412 out:
3413         mutex_unlock(&ext4_li_mtx);
3414         if (ret)
3415                 kfree(elr);
3416         return ret;
3417 }
3418
3419 /*
3420  * We do not need to lock anything since this is called on
3421  * module unload.
3422  */
3423 static void ext4_destroy_lazyinit_thread(void)
3424 {
3425         /*
3426          * If thread exited earlier
3427          * there's nothing to be done.
3428          */
3429         if (!ext4_li_info || !ext4_lazyinit_task)
3430                 return;
3431
3432         kthread_stop(ext4_lazyinit_task);
3433 }
3434
3435 static int set_journal_csum_feature_set(struct super_block *sb)
3436 {
3437         int ret = 1;
3438         int compat, incompat;
3439         struct ext4_sb_info *sbi = EXT4_SB(sb);
3440
3441         if (ext4_has_metadata_csum(sb)) {
3442                 /* journal checksum v3 */
3443                 compat = 0;
3444                 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3445         } else {
3446                 /* journal checksum v1 */
3447                 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3448                 incompat = 0;
3449         }
3450
3451         jbd2_journal_clear_features(sbi->s_journal,
3452                         JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3453                         JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3454                         JBD2_FEATURE_INCOMPAT_CSUM_V2);
3455         if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3456                 ret = jbd2_journal_set_features(sbi->s_journal,
3457                                 compat, 0,
3458                                 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3459                                 incompat);
3460         } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3461                 ret = jbd2_journal_set_features(sbi->s_journal,
3462                                 compat, 0,
3463                                 incompat);
3464                 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3465                                 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3466         } else {
3467                 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3468                                 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3469         }
3470
3471         return ret;
3472 }
3473
3474 /*
3475  * Note: calculating the overhead so we can be compatible with
3476  * historical BSD practice is quite difficult in the face of
3477  * clusters/bigalloc.  This is because multiple metadata blocks from
3478  * different block group can end up in the same allocation cluster.
3479  * Calculating the exact overhead in the face of clustered allocation
3480  * requires either O(all block bitmaps) in memory or O(number of block
3481  * groups**2) in time.  We will still calculate the superblock for
3482  * older file systems --- and if we come across with a bigalloc file
3483  * system with zero in s_overhead_clusters the estimate will be close to
3484  * correct especially for very large cluster sizes --- but for newer
3485  * file systems, it's better to calculate this figure once at mkfs
3486  * time, and store it in the superblock.  If the superblock value is
3487  * present (even for non-bigalloc file systems), we will use it.
3488  */
3489 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3490                           char *buf)
3491 {
3492         struct ext4_sb_info     *sbi = EXT4_SB(sb);
3493         struct ext4_group_desc  *gdp;
3494         ext4_fsblk_t            first_block, last_block, b;
3495         ext4_group_t            i, ngroups = ext4_get_groups_count(sb);
3496         int                     s, j, count = 0;
3497
3498         if (!ext4_has_feature_bigalloc(sb))
3499                 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3500                         sbi->s_itb_per_group + 2);
3501
3502         first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3503                 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3504         last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3505         for (i = 0; i < ngroups; i++) {
3506                 gdp = ext4_get_group_desc(sb, i, NULL);
3507                 b = ext4_block_bitmap(sb, gdp);
3508                 if (b >= first_block && b <= last_block) {
3509                         ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3510                         count++;
3511                 }
3512                 b = ext4_inode_bitmap(sb, gdp);
3513                 if (b >= first_block && b <= last_block) {
3514                         ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3515                         count++;
3516                 }
3517                 b = ext4_inode_table(sb, gdp);
3518                 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3519                         for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3520                                 int c = EXT4_B2C(sbi, b - first_block);
3521                                 ext4_set_bit(c, buf);
3522                                 count++;
3523                         }
3524                 if (i != grp)
3525                         continue;
3526                 s = 0;
3527                 if (ext4_bg_has_super(sb, grp)) {
3528                         ext4_set_bit(s++, buf);
3529                         count++;
3530                 }
3531                 j = ext4_bg_num_gdb(sb, grp);
3532                 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3533                         ext4_error(sb, "Invalid number of block group "
3534                                    "descriptor blocks: %d", j);
3535                         j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3536                 }
3537                 count += j;
3538                 for (; j > 0; j--)
3539                         ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3540         }
3541         if (!count)
3542                 return 0;
3543         return EXT4_CLUSTERS_PER_GROUP(sb) -
3544                 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3545 }
3546
3547 /*
3548  * Compute the overhead and stash it in sbi->s_overhead
3549  */
3550 int ext4_calculate_overhead(struct super_block *sb)
3551 {
3552         struct ext4_sb_info *sbi = EXT4_SB(sb);
3553         struct ext4_super_block *es = sbi->s_es;
3554         struct inode *j_inode;
3555         unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3556         ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3557         ext4_fsblk_t overhead = 0;
3558         char *buf = (char *) get_zeroed_page(GFP_NOFS);
3559
3560         if (!buf)
3561                 return -ENOMEM;
3562
3563         /*
3564          * Compute the overhead (FS structures).  This is constant
3565          * for a given filesystem unless the number of block groups
3566          * changes so we cache the previous value until it does.
3567          */
3568
3569         /*
3570          * All of the blocks before first_data_block are overhead
3571          */
3572         overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3573
3574         /*
3575          * Add the overhead found in each block group
3576          */
3577         for (i = 0; i < ngroups; i++) {
3578                 int blks;
3579
3580                 blks = count_overhead(sb, i, buf);
3581                 overhead += blks;
3582                 if (blks)
3583                         memset(buf, 0, PAGE_SIZE);
3584                 cond_resched();
3585         }
3586
3587         /*
3588          * Add the internal journal blocks whether the journal has been
3589          * loaded or not
3590          */
3591         if (sbi->s_journal && !sbi->journal_bdev)
3592                 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3593         else if (ext4_has_feature_journal(sb) && !sbi->s_journal) {
3594                 j_inode = ext4_get_journal_inode(sb, j_inum);
3595                 if (j_inode) {
3596                         j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3597                         overhead += EXT4_NUM_B2C(sbi, j_blocks);
3598                         iput(j_inode);
3599                 } else {
3600                         ext4_msg(sb, KERN_ERR, "can't get journal size");
3601                 }
3602         }
3603         sbi->s_overhead = overhead;
3604         smp_wmb();
3605         free_page((unsigned long) buf);
3606         return 0;
3607 }
3608
3609 static void ext4_set_resv_clusters(struct super_block *sb)
3610 {
3611         ext4_fsblk_t resv_clusters;
3612         struct ext4_sb_info *sbi = EXT4_SB(sb);
3613
3614         /*
3615          * There's no need to reserve anything when we aren't using extents.
3616          * The space estimates are exact, there are no unwritten extents,
3617          * hole punching doesn't need new metadata... This is needed especially
3618          * to keep ext2/3 backward compatibility.
3619          */
3620         if (!ext4_has_feature_extents(sb))
3621                 return;
3622         /*
3623          * By default we reserve 2% or 4096 clusters, whichever is smaller.
3624          * This should cover the situations where we can not afford to run
3625          * out of space like for example punch hole, or converting
3626          * unwritten extents in delalloc path. In most cases such
3627          * allocation would require 1, or 2 blocks, higher numbers are
3628          * very rare.
3629          */
3630         resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3631                          sbi->s_cluster_bits);
3632
3633         do_div(resv_clusters, 50);
3634         resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3635
3636         atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3637 }
3638
3639 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3640 {
3641         struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev);
3642         char *orig_data = kstrdup(data, GFP_KERNEL);
3643         struct buffer_head *bh;
3644         struct ext4_super_block *es = NULL;
3645         struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3646         ext4_fsblk_t block;
3647         ext4_fsblk_t sb_block = get_sb_block(&data);
3648         ext4_fsblk_t logical_sb_block;
3649         unsigned long offset = 0;
3650         unsigned long journal_devnum = 0;
3651         unsigned long def_mount_opts;
3652         struct inode *root;
3653         const char *descr;
3654         int ret = -ENOMEM;
3655         int blocksize, clustersize;
3656         unsigned int db_count;
3657         unsigned int i;
3658         int needs_recovery, has_huge_files, has_bigalloc;
3659         __u64 blocks_count;
3660         int err = 0;
3661         unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3662         ext4_group_t first_not_zeroed;
3663
3664         if ((data && !orig_data) || !sbi)
3665                 goto out_free_base;
3666
3667         sbi->s_daxdev = dax_dev;
3668         sbi->s_blockgroup_lock =
3669                 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3670         if (!sbi->s_blockgroup_lock)
3671                 goto out_free_base;
3672
3673         sb->s_fs_info = sbi;
3674         sbi->s_sb = sb;
3675         sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3676         sbi->s_sb_block = sb_block;
3677         if (sb->s_bdev->bd_part)
3678                 sbi->s_sectors_written_start =
3679                         part_stat_read(sb->s_bdev->bd_part, sectors[STAT_WRITE]);
3680
3681         /* Cleanup superblock name */
3682         strreplace(sb->s_id, '/', '!');
3683
3684         /* -EINVAL is default */
3685         ret = -EINVAL;
3686         blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3687         if (!blocksize) {
3688                 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3689                 goto out_fail;
3690         }
3691
3692         /*
3693          * The ext4 superblock will not be buffer aligned for other than 1kB
3694          * block sizes.  We need to calculate the offset from buffer start.
3695          */
3696         if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3697                 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3698                 offset = do_div(logical_sb_block, blocksize);
3699         } else {
3700                 logical_sb_block = sb_block;
3701         }
3702
3703         if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3704                 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3705                 goto out_fail;
3706         }
3707         /*
3708          * Note: s_es must be initialized as soon as possible because
3709          *       some ext4 macro-instructions depend on its value
3710          */
3711         es = (struct ext4_super_block *) (bh->b_data + offset);
3712         sbi->s_es = es;
3713         sb->s_magic = le16_to_cpu(es->s_magic);
3714         if (sb->s_magic != EXT4_SUPER_MAGIC)
3715                 goto cantfind_ext4;
3716         sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3717
3718         /* Warn if metadata_csum and gdt_csum are both set. */
3719         if (ext4_has_feature_metadata_csum(sb) &&
3720             ext4_has_feature_gdt_csum(sb))
3721                 ext4_warning(sb, "metadata_csum and uninit_bg are "
3722                              "redundant flags; please run fsck.");
3723
3724         /* Check for a known checksum algorithm */
3725         if (!ext4_verify_csum_type(sb, es)) {
3726                 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3727                          "unknown checksum algorithm.");
3728                 silent = 1;
3729                 goto cantfind_ext4;
3730         }
3731
3732         /* Load the checksum driver */
3733         sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3734         if (IS_ERR(sbi->s_chksum_driver)) {
3735                 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3736                 ret = PTR_ERR(sbi->s_chksum_driver);
3737                 sbi->s_chksum_driver = NULL;
3738                 goto failed_mount;
3739         }
3740
3741         /* Check superblock checksum */
3742         if (!ext4_superblock_csum_verify(sb, es)) {
3743                 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3744                          "invalid superblock checksum.  Run e2fsck?");
3745                 silent = 1;
3746                 ret = -EFSBADCRC;
3747                 goto cantfind_ext4;
3748         }
3749
3750         /* Precompute checksum seed for all metadata */
3751         if (ext4_has_feature_csum_seed(sb))
3752                 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3753         else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
3754                 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3755                                                sizeof(es->s_uuid));
3756
3757         /* Set defaults before we parse the mount options */
3758         def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3759         set_opt(sb, INIT_INODE_TABLE);
3760         if (def_mount_opts & EXT4_DEFM_DEBUG)
3761                 set_opt(sb, DEBUG);
3762         if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3763                 set_opt(sb, GRPID);
3764         if (def_mount_opts & EXT4_DEFM_UID16)
3765                 set_opt(sb, NO_UID32);
3766         /* xattr user namespace & acls are now defaulted on */
3767         set_opt(sb, XATTR_USER);
3768         set_opt(sb, DIOREAD_NOLOCK);
3769 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3770         set_opt(sb, POSIX_ACL);
3771 #endif
3772         /* don't forget to enable journal_csum when metadata_csum is enabled. */
3773         if (ext4_has_metadata_csum(sb))
3774                 set_opt(sb, JOURNAL_CHECKSUM);
3775
3776         if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3777                 set_opt(sb, JOURNAL_DATA);
3778         else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3779                 set_opt(sb, ORDERED_DATA);
3780         else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3781                 set_opt(sb, WRITEBACK_DATA);
3782
3783         if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3784                 set_opt(sb, ERRORS_PANIC);
3785         else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3786                 set_opt(sb, ERRORS_CONT);
3787         else
3788                 set_opt(sb, ERRORS_RO);
3789         /* block_validity enabled by default; disable with noblock_validity */
3790         set_opt(sb, BLOCK_VALIDITY);
3791         if (def_mount_opts & EXT4_DEFM_DISCARD)
3792                 set_opt(sb, DISCARD);
3793
3794         sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3795         sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3796         sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3797         sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3798         sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3799
3800         if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3801                 set_opt(sb, BARRIER);
3802
3803         /*
3804          * enable delayed allocation by default
3805          * Use -o nodelalloc to turn it off
3806          */
3807         if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3808             ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3809                 set_opt(sb, DELALLOC);
3810
3811         /*
3812          * set default s_li_wait_mult for lazyinit, for the case there is
3813          * no mount option specified.
3814          */
3815         sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3816
3817         if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3818                 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3819                 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3820         } else {
3821                 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3822                 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3823                 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
3824                         ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
3825                                  sbi->s_first_ino);
3826                         goto failed_mount;
3827                 }
3828                 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3829                     (!is_power_of_2(sbi->s_inode_size)) ||
3830                     (sbi->s_inode_size > blocksize)) {
3831                         ext4_msg(sb, KERN_ERR,
3832                                "unsupported inode size: %d",
3833                                sbi->s_inode_size);
3834                         goto failed_mount;
3835                 }
3836                 /*
3837                  * i_atime_extra is the last extra field available for
3838                  * [acm]times in struct ext4_inode. Checking for that
3839                  * field should suffice to ensure we have extra space
3840                  * for all three.
3841                  */
3842                 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
3843                         sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
3844                         sb->s_time_gran = 1;
3845                         sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
3846                 } else {
3847                         sb->s_time_gran = NSEC_PER_SEC;
3848                         sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
3849                 }
3850                 sb->s_time_min = EXT4_TIMESTAMP_MIN;
3851         }
3852         if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3853                 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3854                         EXT4_GOOD_OLD_INODE_SIZE;
3855                 if (ext4_has_feature_extra_isize(sb)) {
3856                         unsigned v, max = (sbi->s_inode_size -
3857                                            EXT4_GOOD_OLD_INODE_SIZE);
3858
3859                         v = le16_to_cpu(es->s_want_extra_isize);
3860                         if (v > max) {
3861                                 ext4_msg(sb, KERN_ERR,
3862                                          "bad s_want_extra_isize: %d", v);
3863                                 goto failed_mount;
3864                         }
3865                         if (sbi->s_want_extra_isize < v)
3866                                 sbi->s_want_extra_isize = v;
3867
3868                         v = le16_to_cpu(es->s_min_extra_isize);
3869                         if (v > max) {
3870                                 ext4_msg(sb, KERN_ERR,
3871                                          "bad s_min_extra_isize: %d", v);
3872                                 goto failed_mount;
3873                         }
3874                         if (sbi->s_want_extra_isize < v)
3875                                 sbi->s_want_extra_isize = v;
3876                 }
3877         }
3878
3879         if (sbi->s_es->s_mount_opts[0]) {
3880                 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
3881                                               sizeof(sbi->s_es->s_mount_opts),
3882                                               GFP_KERNEL);
3883                 if (!s_mount_opts)
3884                         goto failed_mount;
3885                 if (!parse_options(s_mount_opts, sb, &journal_devnum,
3886                                    &journal_ioprio, 0)) {
3887                         ext4_msg(sb, KERN_WARNING,
3888                                  "failed to parse options in superblock: %s",
3889                                  s_mount_opts);
3890                 }
3891                 kfree(s_mount_opts);
3892         }
3893         sbi->s_def_mount_opt = sbi->s_mount_opt;
3894         if (!parse_options((char *) data, sb, &journal_devnum,
3895                            &journal_ioprio, 0))
3896                 goto failed_mount;
3897
3898 #ifdef CONFIG_UNICODE
3899         if (ext4_has_feature_casefold(sb) && !sbi->s_encoding) {
3900                 const struct ext4_sb_encodings *encoding_info;
3901                 struct unicode_map *encoding;
3902                 __u16 encoding_flags;
3903
3904                 if (ext4_has_feature_encrypt(sb)) {
3905                         ext4_msg(sb, KERN_ERR,
3906                                  "Can't mount with encoding and encryption");
3907                         goto failed_mount;
3908                 }
3909
3910                 if (ext4_sb_read_encoding(es, &encoding_info,
3911                                           &encoding_flags)) {
3912                         ext4_msg(sb, KERN_ERR,
3913                                  "Encoding requested by superblock is unknown");
3914                         goto failed_mount;
3915                 }
3916
3917                 encoding = utf8_load(encoding_info->version);
3918                 if (IS_ERR(encoding)) {
3919                         ext4_msg(sb, KERN_ERR,
3920                                  "can't mount with superblock charset: %s-%s "
3921                                  "not supported by the kernel. flags: 0x%x.",
3922                                  encoding_info->name, encoding_info->version,
3923                                  encoding_flags);
3924                         goto failed_mount;
3925                 }
3926                 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
3927                          "%s-%s with flags 0x%hx", encoding_info->name,
3928                          encoding_info->version?:"\b", encoding_flags);
3929
3930                 sbi->s_encoding = encoding;
3931                 sbi->s_encoding_flags = encoding_flags;
3932         }
3933 #endif
3934
3935         if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3936                 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with data=journal disables delayed allocation, dioread_nolock, and O_DIRECT support!\n");
3937                 clear_opt(sb, DIOREAD_NOLOCK);
3938                 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3939                         ext4_msg(sb, KERN_ERR, "can't mount with "
3940                                  "both data=journal and delalloc");
3941                         goto failed_mount;
3942                 }
3943                 if (test_opt(sb, DIOREAD_NOLOCK)) {
3944                         ext4_msg(sb, KERN_ERR, "can't mount with "
3945                                  "both data=journal and dioread_nolock");
3946                         goto failed_mount;
3947                 }
3948                 if (test_opt(sb, DAX)) {
3949                         ext4_msg(sb, KERN_ERR, "can't mount with "
3950                                  "both data=journal and dax");
3951                         goto failed_mount;
3952                 }
3953                 if (ext4_has_feature_encrypt(sb)) {
3954                         ext4_msg(sb, KERN_WARNING,
3955                                  "encrypted files will use data=ordered "
3956                                  "instead of data journaling mode");
3957                 }
3958                 if (test_opt(sb, DELALLOC))
3959                         clear_opt(sb, DELALLOC);
3960         } else {
3961                 sb->s_iflags |= SB_I_CGROUPWB;
3962         }
3963
3964         sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
3965                 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
3966
3967         if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3968             (ext4_has_compat_features(sb) ||
3969              ext4_has_ro_compat_features(sb) ||
3970              ext4_has_incompat_features(sb)))
3971                 ext4_msg(sb, KERN_WARNING,
3972                        "feature flags set on rev 0 fs, "
3973                        "running e2fsck is recommended");
3974
3975         if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3976                 set_opt2(sb, HURD_COMPAT);
3977                 if (ext4_has_feature_64bit(sb)) {
3978                         ext4_msg(sb, KERN_ERR,
3979                                  "The Hurd can't support 64-bit file systems");
3980                         goto failed_mount;
3981                 }
3982
3983                 /*
3984                  * ea_inode feature uses l_i_version field which is not
3985                  * available in HURD_COMPAT mode.
3986                  */
3987                 if (ext4_has_feature_ea_inode(sb)) {
3988                         ext4_msg(sb, KERN_ERR,
3989                                  "ea_inode feature is not supported for Hurd");
3990                         goto failed_mount;
3991                 }
3992         }
3993
3994         if (IS_EXT2_SB(sb)) {
3995                 if (ext2_feature_set_ok(sb))
3996                         ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3997                                  "using the ext4 subsystem");
3998                 else {
3999                         /*
4000                          * If we're probing be silent, if this looks like
4001                          * it's actually an ext[34] filesystem.
4002                          */
4003                         if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4004                                 goto failed_mount;
4005                         ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4006                                  "to feature incompatibilities");
4007                         goto failed_mount;
4008                 }
4009         }
4010
4011         if (IS_EXT3_SB(sb)) {
4012                 if (ext3_feature_set_ok(sb))
4013                         ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4014                                  "using the ext4 subsystem");
4015                 else {
4016                         /*
4017                          * If we're probing be silent, if this looks like
4018                          * it's actually an ext4 filesystem.
4019                          */
4020                         if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4021                                 goto failed_mount;
4022                         ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4023                                  "to feature incompatibilities");
4024                         goto failed_mount;
4025                 }
4026         }
4027
4028         /*
4029          * Check feature flags regardless of the revision level, since we
4030          * previously didn't change the revision level when setting the flags,
4031          * so there is a chance incompat flags are set on a rev 0 filesystem.
4032          */
4033         if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4034                 goto failed_mount;
4035
4036         blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
4037         if (blocksize < EXT4_MIN_BLOCK_SIZE ||
4038             blocksize > EXT4_MAX_BLOCK_SIZE) {
4039                 ext4_msg(sb, KERN_ERR,
4040                        "Unsupported filesystem blocksize %d (%d log_block_size)",
4041                          blocksize, le32_to_cpu(es->s_log_block_size));
4042                 goto failed_mount;
4043         }
4044         if (le32_to_cpu(es->s_log_block_size) >
4045             (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4046                 ext4_msg(sb, KERN_ERR,
4047                          "Invalid log block size: %u",
4048                          le32_to_cpu(es->s_log_block_size));
4049                 goto failed_mount;
4050         }
4051         if (le32_to_cpu(es->s_log_cluster_size) >
4052             (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4053                 ext4_msg(sb, KERN_ERR,
4054                          "Invalid log cluster size: %u",
4055                          le32_to_cpu(es->s_log_cluster_size));
4056                 goto failed_mount;
4057         }
4058
4059         if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
4060                 ext4_msg(sb, KERN_ERR,
4061                          "Number of reserved GDT blocks insanely large: %d",
4062                          le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4063                 goto failed_mount;
4064         }
4065
4066         if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
4067                 if (ext4_has_feature_inline_data(sb)) {
4068                         ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4069                                         " that may contain inline data");
4070                         goto failed_mount;
4071                 }
4072                 if (!bdev_dax_supported(sb->s_bdev, blocksize)) {
4073                         ext4_msg(sb, KERN_ERR,
4074                                 "DAX unsupported by block device.");
4075                         goto failed_mount;
4076                 }
4077         }
4078
4079         if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4080                 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4081                          es->s_encryption_level);
4082                 goto failed_mount;
4083         }
4084
4085         if (sb->s_blocksize != blocksize) {
4086                 /* Validate the filesystem blocksize */
4087                 if (!sb_set_blocksize(sb, blocksize)) {
4088                         ext4_msg(sb, KERN_ERR, "bad block size %d",
4089                                         blocksize);
4090                         goto failed_mount;
4091                 }
4092
4093                 brelse(bh);
4094                 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
4095                 offset = do_div(logical_sb_block, blocksize);
4096                 bh = sb_bread_unmovable(sb, logical_sb_block);
4097                 if (!bh) {
4098                         ext4_msg(sb, KERN_ERR,
4099                                "Can't read superblock on 2nd try");
4100                         goto failed_mount;
4101                 }
4102                 es = (struct ext4_super_block *)(bh->b_data + offset);
4103                 sbi->s_es = es;
4104                 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
4105                         ext4_msg(sb, KERN_ERR,
4106                                "Magic mismatch, very weird!");
4107                         goto failed_mount;
4108                 }
4109         }
4110
4111         has_huge_files = ext4_has_feature_huge_file(sb);
4112         sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
4113                                                       has_huge_files);
4114         sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
4115
4116         sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
4117         if (ext4_has_feature_64bit(sb)) {
4118                 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
4119                     sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
4120                     !is_power_of_2(sbi->s_desc_size)) {
4121                         ext4_msg(sb, KERN_ERR,
4122                                "unsupported descriptor size %lu",
4123                                sbi->s_desc_size);
4124                         goto failed_mount;
4125                 }
4126         } else
4127                 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
4128
4129         sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
4130         sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
4131
4132         sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
4133         if (sbi->s_inodes_per_block == 0)
4134                 goto cantfind_ext4;
4135         if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
4136             sbi->s_inodes_per_group > blocksize * 8) {
4137                 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
4138                          sbi->s_blocks_per_group);
4139                 goto failed_mount;
4140         }
4141         sbi->s_itb_per_group = sbi->s_inodes_per_group /
4142                                         sbi->s_inodes_per_block;
4143         sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
4144         sbi->s_sbh = bh;
4145         sbi->s_mount_state = le16_to_cpu(es->s_state);
4146         sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
4147         sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
4148
4149         for (i = 0; i < 4; i++)
4150                 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
4151         sbi->s_def_hash_version = es->s_def_hash_version;
4152         if (ext4_has_feature_dir_index(sb)) {
4153                 i = le32_to_cpu(es->s_flags);
4154                 if (i & EXT2_FLAGS_UNSIGNED_HASH)
4155                         sbi->s_hash_unsigned = 3;
4156                 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
4157 #ifdef __CHAR_UNSIGNED__
4158                         if (!sb_rdonly(sb))
4159                                 es->s_flags |=
4160                                         cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
4161                         sbi->s_hash_unsigned = 3;
4162 #else
4163                         if (!sb_rdonly(sb))
4164                                 es->s_flags |=
4165                                         cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
4166 #endif
4167                 }
4168         }
4169
4170         /* Handle clustersize */
4171         clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4172         has_bigalloc = ext4_has_feature_bigalloc(sb);
4173         if (has_bigalloc) {
4174                 if (clustersize < blocksize) {
4175                         ext4_msg(sb, KERN_ERR,
4176                                  "cluster size (%d) smaller than "
4177                                  "block size (%d)", clustersize, blocksize);
4178                         goto failed_mount;
4179                 }
4180                 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4181                         le32_to_cpu(es->s_log_block_size);
4182                 sbi->s_clusters_per_group =
4183                         le32_to_cpu(es->s_clusters_per_group);
4184                 if (sbi->s_clusters_per_group > blocksize * 8) {
4185                         ext4_msg(sb, KERN_ERR,
4186                                  "#clusters per group too big: %lu",
4187                                  sbi->s_clusters_per_group);
4188                         goto failed_mount;
4189                 }
4190                 if (sbi->s_blocks_per_group !=
4191                     (sbi->s_clusters_per_group * (clustersize / blocksize))) {
4192                         ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4193                                  "clusters per group (%lu) inconsistent",
4194                                  sbi->s_blocks_per_group,
4195                                  sbi->s_clusters_per_group);
4196                         goto failed_mount;
4197                 }
4198         } else {
4199                 if (clustersize != blocksize) {
4200                         ext4_msg(sb, KERN_ERR,
4201                                  "fragment/cluster size (%d) != "
4202                                  "block size (%d)", clustersize, blocksize);
4203                         goto failed_mount;
4204                 }
4205                 if (sbi->s_blocks_per_group > blocksize * 8) {
4206                         ext4_msg(sb, KERN_ERR,
4207                                  "#blocks per group too big: %lu",
4208                                  sbi->s_blocks_per_group);
4209                         goto failed_mount;
4210                 }
4211                 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4212                 sbi->s_cluster_bits = 0;
4213         }
4214         sbi->s_cluster_ratio = clustersize / blocksize;
4215
4216         /* Do we have standard group size of clustersize * 8 blocks ? */
4217         if (sbi->s_blocks_per_group == clustersize << 3)
4218                 set_opt2(sb, STD_GROUP_SIZE);
4219
4220         /*
4221          * Test whether we have more sectors than will fit in sector_t,
4222          * and whether the max offset is addressable by the page cache.
4223          */
4224         err = generic_check_addressable(sb->s_blocksize_bits,
4225                                         ext4_blocks_count(es));
4226         if (err) {
4227                 ext4_msg(sb, KERN_ERR, "filesystem"
4228                          " too large to mount safely on this system");
4229                 goto failed_mount;
4230         }
4231
4232         if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
4233                 goto cantfind_ext4;
4234
4235         /* check blocks count against device size */
4236         blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
4237         if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4238                 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4239                        "exceeds size of device (%llu blocks)",
4240                        ext4_blocks_count(es), blocks_count);
4241                 goto failed_mount;
4242         }
4243
4244         /*
4245          * It makes no sense for the first data block to be beyond the end
4246          * of the filesystem.
4247          */
4248         if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4249                 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4250                          "block %u is beyond end of filesystem (%llu)",
4251                          le32_to_cpu(es->s_first_data_block),
4252                          ext4_blocks_count(es));
4253                 goto failed_mount;
4254         }
4255         if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4256             (sbi->s_cluster_ratio == 1)) {
4257                 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4258                          "block is 0 with a 1k block and cluster size");
4259                 goto failed_mount;
4260         }
4261
4262         blocks_count = (ext4_blocks_count(es) -
4263                         le32_to_cpu(es->s_first_data_block) +
4264                         EXT4_BLOCKS_PER_GROUP(sb) - 1);
4265         do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4266         if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4267                 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
4268                        "(block count %llu, first data block %u, "
4269                        "blocks per group %lu)", sbi->s_groups_count,
4270                        ext4_blocks_count(es),
4271                        le32_to_cpu(es->s_first_data_block),
4272                        EXT4_BLOCKS_PER_GROUP(sb));
4273                 goto failed_mount;
4274         }
4275         sbi->s_groups_count = blocks_count;
4276         sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4277                         (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4278         if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4279             le32_to_cpu(es->s_inodes_count)) {
4280                 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4281                          le32_to_cpu(es->s_inodes_count),
4282                          ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4283                 ret = -EINVAL;
4284                 goto failed_mount;
4285         }
4286         db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4287                    EXT4_DESC_PER_BLOCK(sb);
4288         if (ext4_has_feature_meta_bg(sb)) {
4289                 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4290                         ext4_msg(sb, KERN_WARNING,
4291                                  "first meta block group too large: %u "
4292                                  "(group descriptor block count %u)",
4293                                  le32_to_cpu(es->s_first_meta_bg), db_count);
4294                         goto failed_mount;
4295                 }
4296         }
4297         sbi->s_group_desc = kvmalloc_array(db_count,
4298                                            sizeof(struct buffer_head *),
4299                                            GFP_KERNEL);
4300         if (sbi->s_group_desc == NULL) {
4301                 ext4_msg(sb, KERN_ERR, "not enough memory");
4302                 ret = -ENOMEM;
4303                 goto failed_mount;
4304         }
4305
4306         bgl_lock_init(sbi->s_blockgroup_lock);
4307
4308         /* Pre-read the descriptors into the buffer cache */
4309         for (i = 0; i < db_count; i++) {
4310                 block = descriptor_loc(sb, logical_sb_block, i);
4311                 sb_breadahead(sb, block);
4312         }
4313
4314         for (i = 0; i < db_count; i++) {
4315                 block = descriptor_loc(sb, logical_sb_block, i);
4316                 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
4317                 if (!sbi->s_group_desc[i]) {
4318                         ext4_msg(sb, KERN_ERR,
4319                                "can't read group descriptor %d", i);
4320                         db_count = i;
4321                         goto failed_mount2;
4322                 }
4323         }
4324         sbi->s_gdb_count = db_count;
4325         if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
4326                 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4327                 ret = -EFSCORRUPTED;
4328                 goto failed_mount2;
4329         }
4330
4331         timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
4332
4333         /* Register extent status tree shrinker */
4334         if (ext4_es_register_shrinker(sbi))
4335                 goto failed_mount3;
4336
4337         sbi->s_stripe = ext4_get_stripe_size(sbi);
4338         sbi->s_extent_max_zeroout_kb = 32;
4339
4340         /*
4341          * set up enough so that it can read an inode
4342          */
4343         sb->s_op = &ext4_sops;
4344         sb->s_export_op = &ext4_export_ops;
4345         sb->s_xattr = ext4_xattr_handlers;
4346 #ifdef CONFIG_FS_ENCRYPTION
4347         sb->s_cop = &ext4_cryptops;
4348 #endif
4349 #ifdef CONFIG_FS_VERITY
4350         sb->s_vop = &ext4_verityops;
4351 #endif
4352 #ifdef CONFIG_QUOTA
4353         sb->dq_op = &ext4_quota_operations;
4354         if (ext4_has_feature_quota(sb))
4355                 sb->s_qcop = &dquot_quotactl_sysfile_ops;
4356         else
4357                 sb->s_qcop = &ext4_qctl_operations;
4358         sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4359 #endif
4360         memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4361
4362         INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4363         mutex_init(&sbi->s_orphan_lock);
4364
4365         sb->s_root = NULL;
4366
4367         needs_recovery = (es->s_last_orphan != 0 ||
4368                           ext4_has_feature_journal_needs_recovery(sb));
4369
4370         if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb))
4371                 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
4372                         goto failed_mount3a;
4373
4374         /*
4375          * The first inode we look at is the journal inode.  Don't try
4376          * root first: it may be modified in the journal!
4377          */
4378         if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4379                 err = ext4_load_journal(sb, es, journal_devnum);
4380                 if (err)
4381                         goto failed_mount3a;
4382         } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
4383                    ext4_has_feature_journal_needs_recovery(sb)) {
4384                 ext4_msg(sb, KERN_ERR, "required journal recovery "
4385                        "suppressed and not mounted read-only");
4386                 goto failed_mount_wq;
4387         } else {
4388                 /* Nojournal mode, all journal mount options are illegal */
4389                 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4390                         ext4_msg(sb, KERN_ERR, "can't mount with "
4391                                  "journal_checksum, fs mounted w/o journal");
4392                         goto failed_mount_wq;
4393                 }
4394                 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4395                         ext4_msg(sb, KERN_ERR, "can't mount with "
4396                                  "journal_async_commit, fs mounted w/o journal");
4397                         goto failed_mount_wq;
4398                 }
4399                 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4400                         ext4_msg(sb, KERN_ERR, "can't mount with "
4401                                  "commit=%lu, fs mounted w/o journal",
4402                                  sbi->s_commit_interval / HZ);
4403                         goto failed_mount_wq;
4404                 }
4405                 if (EXT4_MOUNT_DATA_FLAGS &
4406                     (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4407                         ext4_msg(sb, KERN_ERR, "can't mount with "
4408                                  "data=, fs mounted w/o journal");
4409                         goto failed_mount_wq;
4410                 }
4411                 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
4412                 clear_opt(sb, JOURNAL_CHECKSUM);
4413                 clear_opt(sb, DATA_FLAGS);
4414                 sbi->s_journal = NULL;
4415                 needs_recovery = 0;
4416                 goto no_journal;
4417         }
4418
4419         if (ext4_has_feature_64bit(sb) &&
4420             !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4421                                        JBD2_FEATURE_INCOMPAT_64BIT)) {
4422                 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4423                 goto failed_mount_wq;
4424         }
4425
4426         if (!set_journal_csum_feature_set(sb)) {
4427                 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4428                          "feature set");
4429                 goto failed_mount_wq;
4430         }
4431
4432         /* We have now updated the journal if required, so we can
4433          * validate the data journaling mode. */
4434         switch (test_opt(sb, DATA_FLAGS)) {
4435         case 0:
4436                 /* No mode set, assume a default based on the journal
4437                  * capabilities: ORDERED_DATA if the journal can
4438                  * cope, else JOURNAL_DATA
4439                  */
4440                 if (jbd2_journal_check_available_features
4441                     (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4442                         set_opt(sb, ORDERED_DATA);
4443                         sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4444                 } else {
4445                         set_opt(sb, JOURNAL_DATA);
4446                         sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4447                 }
4448                 break;
4449
4450         case EXT4_MOUNT_ORDERED_DATA:
4451         case EXT4_MOUNT_WRITEBACK_DATA:
4452                 if (!jbd2_journal_check_available_features
4453                     (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4454                         ext4_msg(sb, KERN_ERR, "Journal does not support "
4455                                "requested data journaling mode");
4456                         goto failed_mount_wq;
4457                 }
4458         default:
4459                 break;
4460         }
4461
4462         if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4463             test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4464                 ext4_msg(sb, KERN_ERR, "can't mount with "
4465                         "journal_async_commit in data=ordered mode");
4466                 goto failed_mount_wq;
4467         }
4468
4469         set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4470
4471         sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4472
4473 no_journal:
4474         if (!test_opt(sb, NO_MBCACHE)) {
4475                 sbi->s_ea_block_cache = ext4_xattr_create_cache();
4476                 if (!sbi->s_ea_block_cache) {
4477                         ext4_msg(sb, KERN_ERR,
4478                                  "Failed to create ea_block_cache");
4479                         goto failed_mount_wq;
4480                 }
4481
4482                 if (ext4_has_feature_ea_inode(sb)) {
4483                         sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4484                         if (!sbi->s_ea_inode_cache) {
4485                                 ext4_msg(sb, KERN_ERR,
4486                                          "Failed to create ea_inode_cache");
4487                                 goto failed_mount_wq;
4488                         }
4489                 }
4490         }
4491
4492         if (ext4_has_feature_verity(sb) && blocksize != PAGE_SIZE) {
4493                 ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity");
4494                 goto failed_mount_wq;
4495         }
4496
4497         if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) &&
4498             !ext4_has_feature_encrypt(sb)) {
4499                 ext4_set_feature_encrypt(sb);
4500                 ext4_commit_super(sb, 1);
4501         }
4502
4503         /*
4504          * Get the # of file system overhead blocks from the
4505          * superblock if present.
4506          */
4507         if (es->s_overhead_clusters)
4508                 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4509         else {
4510                 err = ext4_calculate_overhead(sb);
4511                 if (err)
4512                         goto failed_mount_wq;
4513         }
4514
4515         /*
4516          * The maximum number of concurrent works can be high and
4517          * concurrency isn't really necessary.  Limit it to 1.
4518          */
4519         EXT4_SB(sb)->rsv_conversion_wq =
4520                 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4521         if (!EXT4_SB(sb)->rsv_conversion_wq) {
4522                 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4523                 ret = -ENOMEM;
4524                 goto failed_mount4;
4525         }
4526
4527         /*
4528          * The jbd2_journal_load will have done any necessary log recovery,
4529          * so we can safely mount the rest of the filesystem now.
4530          */
4531
4532         root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
4533         if (IS_ERR(root)) {
4534                 ext4_msg(sb, KERN_ERR, "get root inode failed");
4535                 ret = PTR_ERR(root);
4536                 root = NULL;
4537                 goto failed_mount4;
4538         }
4539         if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4540                 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4541                 iput(root);
4542                 goto failed_mount4;
4543         }
4544
4545 #ifdef CONFIG_UNICODE
4546         if (sbi->s_encoding)
4547                 sb->s_d_op = &ext4_dentry_ops;
4548 #endif
4549
4550         sb->s_root = d_make_root(root);
4551         if (!sb->s_root) {
4552                 ext4_msg(sb, KERN_ERR, "get root dentry failed");
4553                 ret = -ENOMEM;
4554                 goto failed_mount4;
4555         }
4556
4557         ret = ext4_setup_super(sb, es, sb_rdonly(sb));
4558         if (ret == -EROFS) {
4559                 sb->s_flags |= SB_RDONLY;
4560                 ret = 0;
4561         } else if (ret)
4562                 goto failed_mount4a;
4563
4564         ext4_set_resv_clusters(sb);
4565
4566         err = ext4_setup_system_zone(sb);
4567         if (err) {
4568                 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4569                          "zone (%d)", err);
4570                 goto failed_mount4a;
4571         }
4572
4573         ext4_ext_init(sb);
4574         err = ext4_mb_init(sb);
4575         if (err) {
4576                 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4577                          err);
4578                 goto failed_mount5;
4579         }
4580
4581         block = ext4_count_free_clusters(sb);
4582         ext4_free_blocks_count_set(sbi->s_es, 
4583                                    EXT4_C2B(sbi, block));
4584         ext4_superblock_csum_set(sb);
4585         err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4586                                   GFP_KERNEL);
4587         if (!err) {
4588                 unsigned long freei = ext4_count_free_inodes(sb);
4589                 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4590                 ext4_superblock_csum_set(sb);
4591                 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4592                                           GFP_KERNEL);
4593         }
4594         if (!err)
4595                 err = percpu_counter_init(&sbi->s_dirs_counter,
4596                                           ext4_count_dirs(sb), GFP_KERNEL);
4597         if (!err)
4598                 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4599                                           GFP_KERNEL);
4600         if (!err)
4601                 err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem);
4602
4603         if (err) {
4604                 ext4_msg(sb, KERN_ERR, "insufficient memory");
4605                 goto failed_mount6;
4606         }
4607
4608         if (ext4_has_feature_flex_bg(sb))
4609                 if (!ext4_fill_flex_info(sb)) {
4610                         ext4_msg(sb, KERN_ERR,
4611                                "unable to initialize "
4612                                "flex_bg meta info!");
4613                         goto failed_mount6;
4614                 }
4615
4616         err = ext4_register_li_request(sb, first_not_zeroed);
4617         if (err)
4618                 goto failed_mount6;
4619
4620         err = ext4_register_sysfs(sb);
4621         if (err)
4622                 goto failed_mount7;
4623
4624 #ifdef CONFIG_QUOTA
4625         /* Enable quota usage during mount. */
4626         if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
4627                 err = ext4_enable_quotas(sb);
4628                 if (err)
4629                         goto failed_mount8;
4630         }
4631 #endif  /* CONFIG_QUOTA */
4632
4633         EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4634         ext4_orphan_cleanup(sb, es);
4635         EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4636         if (needs_recovery) {
4637                 ext4_msg(sb, KERN_INFO, "recovery complete");
4638                 ext4_mark_recovery_complete(sb, es);
4639         }
4640         if (EXT4_SB(sb)->s_journal) {
4641                 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4642                         descr = " journalled data mode";
4643                 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4644                         descr = " ordered data mode";
4645                 else
4646                         descr = " writeback data mode";
4647         } else
4648                 descr = "out journal";
4649
4650         if (test_opt(sb, DISCARD)) {
4651                 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4652                 if (!blk_queue_discard(q))
4653                         ext4_msg(sb, KERN_WARNING,
4654                                  "mounting with \"discard\" option, but "
4655                                  "the device does not support discard");
4656         }
4657
4658         if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
4659                 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4660                          "Opts: %.*s%s%s", descr,
4661                          (int) sizeof(sbi->s_es->s_mount_opts),
4662                          sbi->s_es->s_mount_opts,
4663                          *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4664
4665         if (es->s_error_count)
4666                 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4667
4668         /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4669         ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4670         ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4671         ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4672
4673         kfree(orig_data);
4674         return 0;
4675
4676 cantfind_ext4:
4677         if (!silent)
4678                 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4679         goto failed_mount;
4680
4681 #ifdef CONFIG_QUOTA
4682 failed_mount8:
4683         ext4_unregister_sysfs(sb);
4684 #endif
4685 failed_mount7:
4686         ext4_unregister_li_request(sb);
4687 failed_mount6:
4688         ext4_mb_release(sb);
4689         if (sbi->s_flex_groups)
4690                 kvfree(sbi->s_flex_groups);
4691         percpu_counter_destroy(&sbi->s_freeclusters_counter);
4692         percpu_counter_destroy(&sbi->s_freeinodes_counter);
4693         percpu_counter_destroy(&sbi->s_dirs_counter);
4694         percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4695         percpu_free_rwsem(&sbi->s_journal_flag_rwsem);
4696 failed_mount5:
4697         ext4_ext_release(sb);
4698         ext4_release_system_zone(sb);
4699 failed_mount4a:
4700         dput(sb->s_root);
4701         sb->s_root = NULL;
4702 failed_mount4:
4703         ext4_msg(sb, KERN_ERR, "mount failed");
4704         if (EXT4_SB(sb)->rsv_conversion_wq)
4705                 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4706 failed_mount_wq:
4707         ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
4708         sbi->s_ea_inode_cache = NULL;
4709
4710         ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
4711         sbi->s_ea_block_cache = NULL;
4712
4713         if (sbi->s_journal) {
4714                 jbd2_journal_destroy(sbi->s_journal);
4715                 sbi->s_journal = NULL;
4716         }
4717 failed_mount3a:
4718         ext4_es_unregister_shrinker(sbi);
4719 failed_mount3:
4720         del_timer_sync(&sbi->s_err_report);
4721         if (sbi->s_mmp_tsk)
4722                 kthread_stop(sbi->s_mmp_tsk);
4723 failed_mount2:
4724         for (i = 0; i < db_count; i++)
4725                 brelse(sbi->s_group_desc[i]);
4726         kvfree(sbi->s_group_desc);
4727 failed_mount:
4728         if (sbi->s_chksum_driver)
4729                 crypto_free_shash(sbi->s_chksum_driver);
4730
4731 #ifdef CONFIG_UNICODE
4732         utf8_unload(sbi->s_encoding);
4733 #endif
4734
4735 #ifdef CONFIG_QUOTA
4736         for (i = 0; i < EXT4_MAXQUOTAS; i++)
4737                 kfree(get_qf_name(sb, sbi, i));
4738 #endif
4739         ext4_blkdev_remove(sbi);
4740         brelse(bh);
4741 out_fail:
4742         sb->s_fs_info = NULL;
4743         kfree(sbi->s_blockgroup_lock);
4744 out_free_base:
4745         kfree(sbi);
4746         kfree(orig_data);
4747         fs_put_dax(dax_dev);
4748         return err ? err : ret;
4749 }
4750
4751 /*
4752  * Setup any per-fs journal parameters now.  We'll do this both on
4753  * initial mount, once the journal has been initialised but before we've
4754  * done any recovery; and again on any subsequent remount.
4755  */
4756 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4757 {
4758         struct ext4_sb_info *sbi = EXT4_SB(sb);
4759
4760         journal->j_commit_interval = sbi->s_commit_interval;
4761         journal->j_min_batch_time = sbi->s_min_batch_time;
4762         journal->j_max_batch_time = sbi->s_max_batch_time;
4763
4764         write_lock(&journal->j_state_lock);
4765         if (test_opt(sb, BARRIER))
4766                 journal->j_flags |= JBD2_BARRIER;
4767         else
4768                 journal->j_flags &= ~JBD2_BARRIER;
4769         if (test_opt(sb, DATA_ERR_ABORT))
4770                 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4771         else
4772                 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4773         write_unlock(&journal->j_state_lock);
4774 }
4775
4776 static struct inode *ext4_get_journal_inode(struct super_block *sb,
4777                                              unsigned int journal_inum)
4778 {
4779         struct inode *journal_inode;
4780
4781         /*
4782          * Test for the existence of a valid inode on disk.  Bad things
4783          * happen if we iget() an unused inode, as the subsequent iput()
4784          * will try to delete it.
4785          */
4786         journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
4787         if (IS_ERR(journal_inode)) {
4788                 ext4_msg(sb, KERN_ERR, "no journal found");
4789                 return NULL;
4790         }
4791         if (!journal_inode->i_nlink) {
4792                 make_bad_inode(journal_inode);
4793                 iput(journal_inode);
4794                 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4795                 return NULL;
4796         }
4797
4798         jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4799                   journal_inode, journal_inode->i_size);
4800         if (!S_ISREG(journal_inode->i_mode)) {
4801                 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4802                 iput(journal_inode);
4803                 return NULL;
4804         }
4805         return journal_inode;
4806 }
4807
4808 static journal_t *ext4_get_journal(struct super_block *sb,
4809                                    unsigned int journal_inum)
4810 {
4811         struct inode *journal_inode;
4812         journal_t *journal;
4813
4814         BUG_ON(!ext4_has_feature_journal(sb));
4815
4816         journal_inode = ext4_get_journal_inode(sb, journal_inum);
4817         if (!journal_inode)
4818                 return NULL;
4819
4820         journal = jbd2_journal_init_inode(journal_inode);
4821         if (!journal) {
4822                 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4823                 iput(journal_inode);
4824                 return NULL;
4825         }
4826         journal->j_private = sb;
4827         ext4_init_journal_params(sb, journal);
4828         return journal;
4829 }
4830
4831 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4832                                        dev_t j_dev)
4833 {
4834         struct buffer_head *bh;
4835         journal_t *journal;
4836         ext4_fsblk_t start;
4837         ext4_fsblk_t len;
4838         int hblock, blocksize;
4839         ext4_fsblk_t sb_block;
4840         unsigned long offset;
4841         struct ext4_super_block *es;
4842         struct block_device *bdev;
4843
4844         BUG_ON(!ext4_has_feature_journal(sb));
4845
4846         bdev = ext4_blkdev_get(j_dev, sb);
4847         if (bdev == NULL)
4848                 return NULL;
4849
4850         blocksize = sb->s_blocksize;
4851         hblock = bdev_logical_block_size(bdev);
4852         if (blocksize < hblock) {
4853                 ext4_msg(sb, KERN_ERR,
4854                         "blocksize too small for journal device");
4855                 goto out_bdev;
4856         }
4857
4858         sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4859         offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4860         set_blocksize(bdev, blocksize);
4861         if (!(bh = __bread(bdev, sb_block, blocksize))) {
4862                 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4863                        "external journal");
4864                 goto out_bdev;
4865         }
4866
4867         es = (struct ext4_super_block *) (bh->b_data + offset);
4868         if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4869             !(le32_to_cpu(es->s_feature_incompat) &
4870               EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4871                 ext4_msg(sb, KERN_ERR, "external journal has "
4872                                         "bad superblock");
4873                 brelse(bh);
4874                 goto out_bdev;
4875         }
4876
4877         if ((le32_to_cpu(es->s_feature_ro_compat) &
4878              EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4879             es->s_checksum != ext4_superblock_csum(sb, es)) {
4880                 ext4_msg(sb, KERN_ERR, "external journal has "
4881                                        "corrupt superblock");
4882                 brelse(bh);
4883                 goto out_bdev;
4884         }
4885
4886         if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4887                 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4888                 brelse(bh);
4889                 goto out_bdev;
4890         }
4891
4892         len = ext4_blocks_count(es);
4893         start = sb_block + 1;
4894         brelse(bh);     /* we're done with the superblock */
4895
4896         journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4897                                         start, len, blocksize);
4898         if (!journal) {
4899                 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4900                 goto out_bdev;
4901         }
4902         journal->j_private = sb;
4903         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4904         wait_on_buffer(journal->j_sb_buffer);
4905         if (!buffer_uptodate(journal->j_sb_buffer)) {
4906                 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4907                 goto out_journal;
4908         }
4909         if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4910                 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4911                                         "user (unsupported) - %d",
4912                         be32_to_cpu(journal->j_superblock->s_nr_users));
4913                 goto out_journal;
4914         }
4915         EXT4_SB(sb)->journal_bdev = bdev;
4916         ext4_init_journal_params(sb, journal);
4917         return journal;
4918
4919 out_journal:
4920         jbd2_journal_destroy(journal);
4921 out_bdev:
4922         ext4_blkdev_put(bdev);
4923         return NULL;
4924 }
4925
4926 static int ext4_load_journal(struct super_block *sb,
4927                              struct ext4_super_block *es,
4928                              unsigned long journal_devnum)
4929 {
4930         journal_t *journal;
4931         unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4932         dev_t journal_dev;
4933         int err = 0;
4934         int really_read_only;
4935
4936         BUG_ON(!ext4_has_feature_journal(sb));
4937
4938         if (journal_devnum &&
4939             journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4940                 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4941                         "numbers have changed");
4942                 journal_dev = new_decode_dev(journal_devnum);
4943         } else
4944                 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4945
4946         really_read_only = bdev_read_only(sb->s_bdev);
4947
4948         /*
4949          * Are we loading a blank journal or performing recovery after a
4950          * crash?  For recovery, we need to check in advance whether we
4951          * can get read-write access to the device.
4952          */
4953         if (ext4_has_feature_journal_needs_recovery(sb)) {
4954                 if (sb_rdonly(sb)) {
4955                         ext4_msg(sb, KERN_INFO, "INFO: recovery "
4956                                         "required on readonly filesystem");
4957                         if (really_read_only) {
4958                                 ext4_msg(sb, KERN_ERR, "write access "
4959                                         "unavailable, cannot proceed "
4960                                         "(try mounting with noload)");
4961                                 return -EROFS;
4962                         }
4963                         ext4_msg(sb, KERN_INFO, "write access will "
4964                                "be enabled during recovery");
4965                 }
4966         }
4967
4968         if (journal_inum && journal_dev) {
4969                 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4970                        "and inode journals!");
4971                 return -EINVAL;
4972         }
4973
4974         if (journal_inum) {
4975                 if (!(journal = ext4_get_journal(sb, journal_inum)))
4976                         return -EINVAL;
4977         } else {
4978                 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4979                         return -EINVAL;
4980         }
4981
4982         if (!(journal->j_flags & JBD2_BARRIER))
4983                 ext4_msg(sb, KERN_INFO, "barriers disabled");
4984
4985         if (!ext4_has_feature_journal_needs_recovery(sb))
4986                 err = jbd2_journal_wipe(journal, !really_read_only);
4987         if (!err) {
4988                 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4989                 if (save)
4990                         memcpy(save, ((char *) es) +
4991                                EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4992                 err = jbd2_journal_load(journal);
4993                 if (save)
4994                         memcpy(((char *) es) + EXT4_S_ERR_START,
4995                                save, EXT4_S_ERR_LEN);
4996                 kfree(save);
4997         }
4998
4999         if (err) {
5000                 ext4_msg(sb, KERN_ERR, "error loading journal");
5001                 jbd2_journal_destroy(journal);
5002                 return err;
5003         }
5004
5005         EXT4_SB(sb)->s_journal = journal;
5006         ext4_clear_journal_err(sb, es);
5007
5008         if (!really_read_only && journal_devnum &&
5009             journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5010                 es->s_journal_dev = cpu_to_le32(journal_devnum);
5011
5012                 /* Make sure we flush the recovery flag to disk. */
5013                 ext4_commit_super(sb, 1);
5014         }
5015
5016         return 0;
5017 }
5018
5019 static int ext4_commit_super(struct super_block *sb, int sync)
5020 {
5021         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
5022         struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
5023         int error = 0;
5024
5025         if (!sbh || block_device_ejected(sb))
5026                 return error;
5027
5028         /*
5029          * The superblock bh should be mapped, but it might not be if the
5030          * device was hot-removed. Not much we can do but fail the I/O.
5031          */
5032         if (!buffer_mapped(sbh))
5033                 return error;
5034
5035         /*
5036          * If the file system is mounted read-only, don't update the
5037          * superblock write time.  This avoids updating the superblock
5038          * write time when we are mounting the root file system
5039          * read/only but we need to replay the journal; at that point,
5040          * for people who are east of GMT and who make their clock
5041          * tick in localtime for Windows bug-for-bug compatibility,
5042          * the clock is set in the future, and this will cause e2fsck
5043          * to complain and force a full file system check.
5044          */
5045         if (!(sb->s_flags & SB_RDONLY))
5046                 ext4_update_tstamp(es, s_wtime);
5047         if (sb->s_bdev->bd_part)
5048                 es->s_kbytes_written =
5049                         cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
5050                             ((part_stat_read(sb->s_bdev->bd_part,
5051                                              sectors[STAT_WRITE]) -
5052                               EXT4_SB(sb)->s_sectors_written_start) >> 1));
5053         else
5054                 es->s_kbytes_written =
5055                         cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
5056         if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
5057                 ext4_free_blocks_count_set(es,
5058                         EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
5059                                 &EXT4_SB(sb)->s_freeclusters_counter)));
5060         if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
5061                 es->s_free_inodes_count =
5062                         cpu_to_le32(percpu_counter_sum_positive(
5063                                 &EXT4_SB(sb)->s_freeinodes_counter));
5064         BUFFER_TRACE(sbh, "marking dirty");
5065         ext4_superblock_csum_set(sb);
5066         if (sync)
5067                 lock_buffer(sbh);
5068         if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
5069                 /*
5070                  * Oh, dear.  A previous attempt to write the
5071                  * superblock failed.  This could happen because the
5072                  * USB device was yanked out.  Or it could happen to
5073                  * be a transient write error and maybe the block will
5074                  * be remapped.  Nothing we can do but to retry the
5075                  * write and hope for the best.
5076                  */
5077                 ext4_msg(sb, KERN_ERR, "previous I/O error to "
5078                        "superblock detected");
5079                 clear_buffer_write_io_error(sbh);
5080                 set_buffer_uptodate(sbh);
5081         }
5082         mark_buffer_dirty(sbh);
5083         if (sync) {
5084                 unlock_buffer(sbh);
5085                 error = __sync_dirty_buffer(sbh,
5086                         REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
5087                 if (buffer_write_io_error(sbh)) {
5088                         ext4_msg(sb, KERN_ERR, "I/O error while writing "
5089                                "superblock");
5090                         clear_buffer_write_io_error(sbh);
5091                         set_buffer_uptodate(sbh);
5092                 }
5093         }
5094         return error;
5095 }
5096
5097 /*
5098  * Have we just finished recovery?  If so, and if we are mounting (or
5099  * remounting) the filesystem readonly, then we will end up with a
5100  * consistent fs on disk.  Record that fact.
5101  */
5102 static void ext4_mark_recovery_complete(struct super_block *sb,
5103                                         struct ext4_super_block *es)
5104 {
5105         journal_t *journal = EXT4_SB(sb)->s_journal;
5106
5107         if (!ext4_has_feature_journal(sb)) {
5108                 BUG_ON(journal != NULL);
5109                 return;
5110         }
5111         jbd2_journal_lock_updates(journal);
5112         if (jbd2_journal_flush(journal) < 0)
5113                 goto out;
5114
5115         if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) {
5116                 ext4_clear_feature_journal_needs_recovery(sb);
5117                 ext4_commit_super(sb, 1);
5118         }
5119
5120 out:
5121         jbd2_journal_unlock_updates(journal);
5122 }
5123
5124 /*
5125  * If we are mounting (or read-write remounting) a filesystem whose journal
5126  * has recorded an error from a previous lifetime, move that error to the
5127  * main filesystem now.
5128  */
5129 static void ext4_clear_journal_err(struct super_block *sb,
5130                                    struct ext4_super_block *es)
5131 {
5132         journal_t *journal;
5133         int j_errno;
5134         const char *errstr;
5135
5136         BUG_ON(!ext4_has_feature_journal(sb));
5137
5138         journal = EXT4_SB(sb)->s_journal;
5139
5140         /*
5141          * Now check for any error status which may have been recorded in the
5142          * journal by a prior ext4_error() or ext4_abort()
5143          */
5144
5145         j_errno = jbd2_journal_errno(journal);
5146         if (j_errno) {
5147                 char nbuf[16];
5148
5149                 errstr = ext4_decode_error(sb, j_errno, nbuf);
5150                 ext4_warning(sb, "Filesystem error recorded "
5151                              "from previous mount: %s", errstr);
5152                 ext4_warning(sb, "Marking fs in need of filesystem check.");
5153
5154                 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
5155                 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5156                 ext4_commit_super(sb, 1);
5157
5158                 jbd2_journal_clear_err(journal);
5159                 jbd2_journal_update_sb_errno(journal);
5160         }
5161 }
5162
5163 /*
5164  * Force the running and committing transactions to commit,
5165  * and wait on the commit.
5166  */
5167 int ext4_force_commit(struct super_block *sb)
5168 {
5169         journal_t *journal;
5170
5171         if (sb_rdonly(sb))
5172                 return 0;
5173
5174         journal = EXT4_SB(sb)->s_journal;
5175         return ext4_journal_force_commit(journal);
5176 }
5177
5178 static int ext4_sync_fs(struct super_block *sb, int wait)
5179 {
5180         int ret = 0;
5181         tid_t target;
5182         bool needs_barrier = false;
5183         struct ext4_sb_info *sbi = EXT4_SB(sb);
5184
5185         if (unlikely(ext4_forced_shutdown(sbi)))
5186                 return 0;
5187
5188         trace_ext4_sync_fs(sb, wait);
5189         flush_workqueue(sbi->rsv_conversion_wq);
5190         /*
5191          * Writeback quota in non-journalled quota case - journalled quota has
5192          * no dirty dquots
5193          */
5194         dquot_writeback_dquots(sb, -1);
5195         /*
5196          * Data writeback is possible w/o journal transaction, so barrier must
5197          * being sent at the end of the function. But we can skip it if
5198          * transaction_commit will do it for us.
5199          */
5200         if (sbi->s_journal) {
5201                 target = jbd2_get_latest_transaction(sbi->s_journal);
5202                 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
5203                     !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
5204                         needs_barrier = true;
5205
5206                 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
5207                         if (wait)
5208                                 ret = jbd2_log_wait_commit(sbi->s_journal,
5209                                                            target);
5210                 }
5211         } else if (wait && test_opt(sb, BARRIER))
5212                 needs_barrier = true;
5213         if (needs_barrier) {
5214                 int err;
5215                 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
5216                 if (!ret)
5217                         ret = err;
5218         }
5219
5220         return ret;
5221 }
5222
5223 /*
5224  * LVM calls this function before a (read-only) snapshot is created.  This
5225  * gives us a chance to flush the journal completely and mark the fs clean.
5226  *
5227  * Note that only this function cannot bring a filesystem to be in a clean
5228  * state independently. It relies on upper layer to stop all data & metadata
5229  * modifications.
5230  */
5231 static int ext4_freeze(struct super_block *sb)
5232 {
5233         int error = 0;
5234         journal_t *journal;
5235
5236         if (sb_rdonly(sb))
5237                 return 0;
5238
5239         journal = EXT4_SB(sb)->s_journal;
5240
5241         if (journal) {
5242                 /* Now we set up the journal barrier. */
5243                 jbd2_journal_lock_updates(journal);
5244
5245                 /*
5246                  * Don't clear the needs_recovery flag if we failed to
5247                  * flush the journal.
5248                  */
5249                 error = jbd2_journal_flush(journal);
5250                 if (error < 0)
5251                         goto out;
5252
5253                 /* Journal blocked and flushed, clear needs_recovery flag. */
5254                 ext4_clear_feature_journal_needs_recovery(sb);
5255         }
5256
5257         error = ext4_commit_super(sb, 1);
5258 out:
5259         if (journal)
5260                 /* we rely on upper layer to stop further updates */
5261                 jbd2_journal_unlock_updates(journal);
5262         return error;
5263 }
5264
5265 /*
5266  * Called by LVM after the snapshot is done.  We need to reset the RECOVER
5267  * flag here, even though the filesystem is not technically dirty yet.
5268  */
5269 static int ext4_unfreeze(struct super_block *sb)
5270 {
5271         if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
5272                 return 0;
5273
5274         if (EXT4_SB(sb)->s_journal) {
5275                 /* Reset the needs_recovery flag before the fs is unlocked. */
5276                 ext4_set_feature_journal_needs_recovery(sb);
5277         }
5278
5279         ext4_commit_super(sb, 1);
5280         return 0;
5281 }
5282
5283 /*
5284  * Structure to save mount options for ext4_remount's benefit
5285  */
5286 struct ext4_mount_options {
5287         unsigned long s_mount_opt;
5288         unsigned long s_mount_opt2;
5289         kuid_t s_resuid;
5290         kgid_t s_resgid;
5291         unsigned long s_commit_interval;
5292         u32 s_min_batch_time, s_max_batch_time;
5293 #ifdef CONFIG_QUOTA
5294         int s_jquota_fmt;
5295         char *s_qf_names[EXT4_MAXQUOTAS];
5296 #endif
5297 };
5298
5299 static int ext4_remount(struct super_block *sb, int *flags, char *data)
5300 {
5301         struct ext4_super_block *es;
5302         struct ext4_sb_info *sbi = EXT4_SB(sb);
5303         unsigned long old_sb_flags;
5304         struct ext4_mount_options old_opts;
5305         int enable_quota = 0;
5306         ext4_group_t g;
5307         unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5308         int err = 0;
5309 #ifdef CONFIG_QUOTA
5310         int i, j;
5311         char *to_free[EXT4_MAXQUOTAS];
5312 #endif
5313         char *orig_data = kstrdup(data, GFP_KERNEL);
5314
5315         if (data && !orig_data)
5316                 return -ENOMEM;
5317
5318         /* Store the original options */
5319         old_sb_flags = sb->s_flags;
5320         old_opts.s_mount_opt = sbi->s_mount_opt;
5321         old_opts.s_mount_opt2 = sbi->s_mount_opt2;
5322         old_opts.s_resuid = sbi->s_resuid;
5323         old_opts.s_resgid = sbi->s_resgid;
5324         old_opts.s_commit_interval = sbi->s_commit_interval;
5325         old_opts.s_min_batch_time = sbi->s_min_batch_time;
5326         old_opts.s_max_batch_time = sbi->s_max_batch_time;
5327 #ifdef CONFIG_QUOTA
5328         old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
5329         for (i = 0; i < EXT4_MAXQUOTAS; i++)
5330                 if (sbi->s_qf_names[i]) {
5331                         char *qf_name = get_qf_name(sb, sbi, i);
5332
5333                         old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
5334                         if (!old_opts.s_qf_names[i]) {
5335                                 for (j = 0; j < i; j++)
5336                                         kfree(old_opts.s_qf_names[j]);
5337                                 kfree(orig_data);
5338                                 return -ENOMEM;
5339                         }
5340                 } else
5341                         old_opts.s_qf_names[i] = NULL;
5342 #endif
5343         if (sbi->s_journal && sbi->s_journal->j_task->io_context)
5344                 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
5345
5346         if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
5347                 err = -EINVAL;
5348                 goto restore_opts;
5349         }
5350
5351         if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
5352             test_opt(sb, JOURNAL_CHECKSUM)) {
5353                 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
5354                          "during remount not supported; ignoring");
5355                 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
5356         }
5357
5358         if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
5359                 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5360                         ext4_msg(sb, KERN_ERR, "can't mount with "
5361                                  "both data=journal and delalloc");
5362                         err = -EINVAL;
5363                         goto restore_opts;
5364                 }
5365                 if (test_opt(sb, DIOREAD_NOLOCK)) {
5366                         ext4_msg(sb, KERN_ERR, "can't mount with "
5367                                  "both data=journal and dioread_nolock");
5368                         err = -EINVAL;
5369                         goto restore_opts;
5370                 }
5371                 if (test_opt(sb, DAX)) {
5372                         ext4_msg(sb, KERN_ERR, "can't mount with "
5373                                  "both data=journal and dax");
5374                         err = -EINVAL;
5375                         goto restore_opts;
5376                 }
5377         } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5378                 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5379                         ext4_msg(sb, KERN_ERR, "can't mount with "
5380                                 "journal_async_commit in data=ordered mode");
5381                         err = -EINVAL;
5382                         goto restore_opts;
5383                 }
5384         }
5385
5386         if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5387                 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5388                 err = -EINVAL;
5389                 goto restore_opts;
5390         }
5391
5392         if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
5393                 ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
5394                         "dax flag with busy inodes while remounting");
5395                 sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
5396         }
5397
5398         if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
5399                 ext4_abort(sb, "Abort forced by user");
5400
5401         sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5402                 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5403
5404         es = sbi->s_es;
5405
5406         if (sbi->s_journal) {
5407                 ext4_init_journal_params(sb, sbi->s_journal);
5408                 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
5409         }
5410
5411         if (*flags & SB_LAZYTIME)
5412                 sb->s_flags |= SB_LAZYTIME;
5413
5414         if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) {
5415                 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
5416                         err = -EROFS;
5417                         goto restore_opts;
5418                 }
5419
5420                 if (*flags & SB_RDONLY) {
5421                         err = sync_filesystem(sb);
5422                         if (err < 0)
5423                                 goto restore_opts;
5424                         err = dquot_suspend(sb, -1);
5425                         if (err < 0)
5426                                 goto restore_opts;
5427
5428                         /*
5429                          * First of all, the unconditional stuff we have to do
5430                          * to disable replay of the journal when we next remount
5431                          */
5432                         sb->s_flags |= SB_RDONLY;
5433
5434                         /*
5435                          * OK, test if we are remounting a valid rw partition
5436                          * readonly, and if so set the rdonly flag and then
5437                          * mark the partition as valid again.
5438                          */
5439                         if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5440                             (sbi->s_mount_state & EXT4_VALID_FS))
5441                                 es->s_state = cpu_to_le16(sbi->s_mount_state);
5442
5443                         if (sbi->s_journal)
5444                                 ext4_mark_recovery_complete(sb, es);
5445                         if (sbi->s_mmp_tsk)
5446                                 kthread_stop(sbi->s_mmp_tsk);
5447                 } else {
5448                         /* Make sure we can mount this feature set readwrite */
5449                         if (ext4_has_feature_readonly(sb) ||
5450                             !ext4_feature_set_ok(sb, 0)) {
5451                                 err = -EROFS;
5452                                 goto restore_opts;
5453                         }
5454                         /*
5455                          * Make sure the group descriptor checksums
5456                          * are sane.  If they aren't, refuse to remount r/w.
5457                          */
5458                         for (g = 0; g < sbi->s_groups_count; g++) {
5459                                 struct ext4_group_desc *gdp =
5460                                         ext4_get_group_desc(sb, g, NULL);
5461
5462                                 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5463                                         ext4_msg(sb, KERN_ERR,
5464                "ext4_remount: Checksum for group %u failed (%u!=%u)",
5465                 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
5466                                                le16_to_cpu(gdp->bg_checksum));
5467                                         err = -EFSBADCRC;
5468                                         goto restore_opts;
5469                                 }
5470                         }
5471
5472                         /*
5473                          * If we have an unprocessed orphan list hanging
5474                          * around from a previously readonly bdev mount,
5475                          * require a full umount/remount for now.
5476                          */
5477                         if (es->s_last_orphan) {
5478                                 ext4_msg(sb, KERN_WARNING, "Couldn't "
5479                                        "remount RDWR because of unprocessed "
5480                                        "orphan inode list.  Please "
5481                                        "umount/remount instead");
5482                                 err = -EINVAL;
5483                                 goto restore_opts;
5484                         }
5485
5486                         /*
5487                          * Mounting a RDONLY partition read-write, so reread
5488                          * and store the current valid flag.  (It may have
5489                          * been changed by e2fsck since we originally mounted
5490                          * the partition.)
5491                          */
5492                         if (sbi->s_journal)
5493                                 ext4_clear_journal_err(sb, es);
5494                         sbi->s_mount_state = le16_to_cpu(es->s_state);
5495
5496                         err = ext4_setup_super(sb, es, 0);
5497                         if (err)
5498                                 goto restore_opts;
5499
5500                         sb->s_flags &= ~SB_RDONLY;
5501                         if (ext4_has_feature_mmp(sb))
5502                                 if (ext4_multi_mount_protect(sb,
5503                                                 le64_to_cpu(es->s_mmp_block))) {
5504                                         err = -EROFS;
5505                                         goto restore_opts;
5506                                 }
5507                         enable_quota = 1;
5508                 }
5509         }
5510
5511         /*
5512          * Reinitialize lazy itable initialization thread based on
5513          * current settings
5514          */
5515         if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
5516                 ext4_unregister_li_request(sb);
5517         else {
5518                 ext4_group_t first_not_zeroed;
5519                 first_not_zeroed = ext4_has_uninit_itable(sb);
5520                 ext4_register_li_request(sb, first_not_zeroed);
5521         }
5522
5523         ext4_setup_system_zone(sb);
5524         if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
5525                 err = ext4_commit_super(sb, 1);
5526                 if (err)
5527                         goto restore_opts;
5528         }
5529
5530 #ifdef CONFIG_QUOTA
5531         /* Release old quota file names */
5532         for (i = 0; i < EXT4_MAXQUOTAS; i++)
5533                 kfree(old_opts.s_qf_names[i]);
5534         if (enable_quota) {
5535                 if (sb_any_quota_suspended(sb))
5536                         dquot_resume(sb, -1);
5537                 else if (ext4_has_feature_quota(sb)) {
5538                         err = ext4_enable_quotas(sb);
5539                         if (err)
5540                                 goto restore_opts;
5541                 }
5542         }
5543 #endif
5544
5545         *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
5546         ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5547         kfree(orig_data);
5548         return 0;
5549
5550 restore_opts:
5551         sb->s_flags = old_sb_flags;
5552         sbi->s_mount_opt = old_opts.s_mount_opt;
5553         sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5554         sbi->s_resuid = old_opts.s_resuid;
5555         sbi->s_resgid = old_opts.s_resgid;
5556         sbi->s_commit_interval = old_opts.s_commit_interval;
5557         sbi->s_min_batch_time = old_opts.s_min_batch_time;
5558         sbi->s_max_batch_time = old_opts.s_max_batch_time;
5559 #ifdef CONFIG_QUOTA
5560         sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5561         for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5562                 to_free[i] = get_qf_name(sb, sbi, i);
5563                 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
5564         }
5565         synchronize_rcu();
5566         for (i = 0; i < EXT4_MAXQUOTAS; i++)
5567                 kfree(to_free[i]);
5568 #endif
5569         kfree(orig_data);
5570         return err;
5571 }
5572
5573 #ifdef CONFIG_QUOTA
5574 static int ext4_statfs_project(struct super_block *sb,
5575                                kprojid_t projid, struct kstatfs *buf)
5576 {
5577         struct kqid qid;
5578         struct dquot *dquot;
5579         u64 limit;
5580         u64 curblock;
5581
5582         qid = make_kqid_projid(projid);
5583         dquot = dqget(sb, qid);
5584         if (IS_ERR(dquot))
5585                 return PTR_ERR(dquot);
5586         spin_lock(&dquot->dq_dqb_lock);
5587
5588         limit = 0;
5589         if (dquot->dq_dqb.dqb_bsoftlimit &&
5590             (!limit || dquot->dq_dqb.dqb_bsoftlimit < limit))
5591                 limit = dquot->dq_dqb.dqb_bsoftlimit;
5592         if (dquot->dq_dqb.dqb_bhardlimit &&
5593             (!limit || dquot->dq_dqb.dqb_bhardlimit < limit))
5594                 limit = dquot->dq_dqb.dqb_bhardlimit;
5595         limit >>= sb->s_blocksize_bits;
5596
5597         if (limit && buf->f_blocks > limit) {
5598                 curblock = (dquot->dq_dqb.dqb_curspace +
5599                             dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
5600                 buf->f_blocks = limit;
5601                 buf->f_bfree = buf->f_bavail =
5602                         (buf->f_blocks > curblock) ?
5603                          (buf->f_blocks - curblock) : 0;
5604         }
5605
5606         limit = 0;
5607         if (dquot->dq_dqb.dqb_isoftlimit &&
5608             (!limit || dquot->dq_dqb.dqb_isoftlimit < limit))
5609                 limit = dquot->dq_dqb.dqb_isoftlimit;
5610         if (dquot->dq_dqb.dqb_ihardlimit &&
5611             (!limit || dquot->dq_dqb.dqb_ihardlimit < limit))
5612                 limit = dquot->dq_dqb.dqb_ihardlimit;
5613
5614         if (limit && buf->f_files > limit) {
5615                 buf->f_files = limit;
5616                 buf->f_ffree =
5617                         (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
5618                          (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
5619         }
5620
5621         spin_unlock(&dquot->dq_dqb_lock);
5622         dqput(dquot);
5623         return 0;
5624 }
5625 #endif
5626
5627 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5628 {
5629         struct super_block *sb = dentry->d_sb;
5630         struct ext4_sb_info *sbi = EXT4_SB(sb);
5631         struct ext4_super_block *es = sbi->s_es;
5632         ext4_fsblk_t overhead = 0, resv_blocks;
5633         u64 fsid;
5634         s64 bfree;
5635         resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5636
5637         if (!test_opt(sb, MINIX_DF))
5638                 overhead = sbi->s_overhead;
5639
5640         buf->f_type = EXT4_SUPER_MAGIC;
5641         buf->f_bsize = sb->s_blocksize;
5642         buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5643         bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5644                 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5645         /* prevent underflow in case that few free space is available */
5646         buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5647         buf->f_bavail = buf->f_bfree -
5648                         (ext4_r_blocks_count(es) + resv_blocks);
5649         if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5650                 buf->f_bavail = 0;
5651         buf->f_files = le32_to_cpu(es->s_inodes_count);
5652         buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5653         buf->f_namelen = EXT4_NAME_LEN;
5654         fsid = le64_to_cpup((void *)es->s_uuid) ^
5655                le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5656         buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5657         buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5658
5659 #ifdef CONFIG_QUOTA
5660         if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
5661             sb_has_quota_limits_enabled(sb, PRJQUOTA))
5662                 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
5663 #endif
5664         return 0;
5665 }
5666
5667
5668 #ifdef CONFIG_QUOTA
5669
5670 /*
5671  * Helper functions so that transaction is started before we acquire dqio_sem
5672  * to keep correct lock ordering of transaction > dqio_sem
5673  */
5674 static inline struct inode *dquot_to_inode(struct dquot *dquot)
5675 {
5676         return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5677 }
5678
5679 static int ext4_write_dquot(struct dquot *dquot)
5680 {
5681         int ret, err;
5682         handle_t *handle;
5683         struct inode *inode;
5684
5685         inode = dquot_to_inode(dquot);
5686         handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5687                                     EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5688         if (IS_ERR(handle))
5689                 return PTR_ERR(handle);
5690         ret = dquot_commit(dquot);
5691         err = ext4_journal_stop(handle);
5692         if (!ret)
5693                 ret = err;
5694         return ret;
5695 }
5696
5697 static int ext4_acquire_dquot(struct dquot *dquot)
5698 {
5699         int ret, err;
5700         handle_t *handle;
5701
5702         handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5703                                     EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5704         if (IS_ERR(handle))
5705                 return PTR_ERR(handle);
5706         ret = dquot_acquire(dquot);
5707         err = ext4_journal_stop(handle);
5708         if (!ret)
5709                 ret = err;
5710         return ret;
5711 }
5712
5713 static int ext4_release_dquot(struct dquot *dquot)
5714 {
5715         int ret, err;
5716         handle_t *handle;
5717
5718         handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5719                                     EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5720         if (IS_ERR(handle)) {
5721                 /* Release dquot anyway to avoid endless cycle in dqput() */
5722                 dquot_release(dquot);
5723                 return PTR_ERR(handle);
5724         }
5725         ret = dquot_release(dquot);
5726         err = ext4_journal_stop(handle);
5727         if (!ret)
5728                 ret = err;
5729         return ret;
5730 }
5731
5732 static int ext4_mark_dquot_dirty(struct dquot *dquot)
5733 {
5734         struct super_block *sb = dquot->dq_sb;
5735         struct ext4_sb_info *sbi = EXT4_SB(sb);
5736
5737         /* Are we journaling quotas? */
5738         if (ext4_has_feature_quota(sb) ||
5739             sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5740                 dquot_mark_dquot_dirty(dquot);
5741                 return ext4_write_dquot(dquot);
5742         } else {
5743                 return dquot_mark_dquot_dirty(dquot);
5744         }
5745 }
5746
5747 static int ext4_write_info(struct super_block *sb, int type)
5748 {
5749         int ret, err;
5750         handle_t *handle;
5751
5752         /* Data block + inode block */
5753         handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5754         if (IS_ERR(handle))
5755                 return PTR_ERR(handle);
5756         ret = dquot_commit_info(sb, type);
5757         err = ext4_journal_stop(handle);
5758         if (!ret)
5759                 ret = err;
5760         return ret;
5761 }
5762
5763 /*
5764  * Turn on quotas during mount time - we need to find
5765  * the quota file and such...
5766  */
5767 static int ext4_quota_on_mount(struct super_block *sb, int type)
5768 {
5769         return dquot_quota_on_mount(sb, get_qf_name(sb, EXT4_SB(sb), type),
5770                                         EXT4_SB(sb)->s_jquota_fmt, type);
5771 }
5772
5773 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
5774 {
5775         struct ext4_inode_info *ei = EXT4_I(inode);
5776
5777         /* The first argument of lockdep_set_subclass has to be
5778          * *exactly* the same as the argument to init_rwsem() --- in
5779          * this case, in init_once() --- or lockdep gets unhappy
5780          * because the name of the lock is set using the
5781          * stringification of the argument to init_rwsem().
5782          */
5783         (void) ei;      /* shut up clang warning if !CONFIG_LOCKDEP */
5784         lockdep_set_subclass(&ei->i_data_sem, subclass);
5785 }
5786
5787 /*
5788  * Standard function to be called on quota_on
5789  */
5790 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5791                          const struct path *path)
5792 {
5793         int err;
5794
5795         if (!test_opt(sb, QUOTA))
5796                 return -EINVAL;
5797
5798         /* Quotafile not on the same filesystem? */
5799         if (path->dentry->d_sb != sb)
5800                 return -EXDEV;
5801         /* Journaling quota? */
5802         if (EXT4_SB(sb)->s_qf_names[type]) {
5803                 /* Quotafile not in fs root? */
5804                 if (path->dentry->d_parent != sb->s_root)
5805                         ext4_msg(sb, KERN_WARNING,
5806                                 "Quota file not on filesystem root. "
5807                                 "Journaled quota will not work");
5808                 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
5809         } else {
5810                 /*
5811                  * Clear the flag just in case mount options changed since
5812                  * last time.
5813                  */
5814                 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
5815         }
5816
5817         /*
5818          * When we journal data on quota file, we have to flush journal to see
5819          * all updates to the file when we bypass pagecache...
5820          */
5821         if (EXT4_SB(sb)->s_journal &&
5822             ext4_should_journal_data(d_inode(path->dentry))) {
5823                 /*
5824                  * We don't need to lock updates but journal_flush() could
5825                  * otherwise be livelocked...
5826                  */
5827                 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5828                 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5829                 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5830                 if (err)
5831                         return err;
5832         }
5833
5834         lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
5835         err = dquot_quota_on(sb, type, format_id, path);
5836         if (err) {
5837                 lockdep_set_quota_inode(path->dentry->d_inode,
5838                                              I_DATA_SEM_NORMAL);
5839         } else {
5840                 struct inode *inode = d_inode(path->dentry);
5841                 handle_t *handle;
5842
5843                 /*
5844                  * Set inode flags to prevent userspace from messing with quota
5845                  * files. If this fails, we return success anyway since quotas
5846                  * are already enabled and this is not a hard failure.
5847                  */
5848                 inode_lock(inode);
5849                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5850                 if (IS_ERR(handle))
5851                         goto unlock_inode;
5852                 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
5853                 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
5854                                 S_NOATIME | S_IMMUTABLE);
5855                 ext4_mark_inode_dirty(handle, inode);
5856                 ext4_journal_stop(handle);
5857         unlock_inode:
5858                 inode_unlock(inode);
5859         }
5860         return err;
5861 }
5862
5863 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5864                              unsigned int flags)
5865 {
5866         int err;
5867         struct inode *qf_inode;
5868         unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5869                 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5870                 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5871                 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5872         };
5873
5874         BUG_ON(!ext4_has_feature_quota(sb));
5875
5876         if (!qf_inums[type])
5877                 return -EPERM;
5878
5879         qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
5880         if (IS_ERR(qf_inode)) {
5881                 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5882                 return PTR_ERR(qf_inode);
5883         }
5884
5885         /* Don't account quota for quota files to avoid recursion */
5886         qf_inode->i_flags |= S_NOQUOTA;
5887         lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
5888         err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
5889         if (err)
5890                 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
5891         iput(qf_inode);
5892
5893         return err;
5894 }
5895
5896 /* Enable usage tracking for all quota types. */
5897 static int ext4_enable_quotas(struct super_block *sb)
5898 {
5899         int type, err = 0;
5900         unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5901                 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5902                 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5903                 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5904         };
5905         bool quota_mopt[EXT4_MAXQUOTAS] = {
5906                 test_opt(sb, USRQUOTA),
5907                 test_opt(sb, GRPQUOTA),
5908                 test_opt(sb, PRJQUOTA),
5909         };
5910
5911         sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
5912         for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5913                 if (qf_inums[type]) {
5914                         err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5915                                 DQUOT_USAGE_ENABLED |
5916                                 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
5917                         if (err) {
5918                                 ext4_warning(sb,
5919                                         "Failed to enable quota tracking "
5920                                         "(type=%d, err=%d). Please run "
5921                                         "e2fsck to fix.", type, err);
5922                                 for (type--; type >= 0; type--)
5923                                         dquot_quota_off(sb, type);
5924
5925                                 return err;
5926                         }
5927                 }
5928         }
5929         return 0;
5930 }
5931
5932 static int ext4_quota_off(struct super_block *sb, int type)
5933 {
5934         struct inode *inode = sb_dqopt(sb)->files[type];
5935         handle_t *handle;
5936         int err;
5937
5938         /* Force all delayed allocation blocks to be allocated.
5939          * Caller already holds s_umount sem */
5940         if (test_opt(sb, DELALLOC))
5941                 sync_filesystem(sb);
5942
5943         if (!inode || !igrab(inode))
5944                 goto out;
5945
5946         err = dquot_quota_off(sb, type);
5947         if (err || ext4_has_feature_quota(sb))
5948                 goto out_put;
5949
5950         inode_lock(inode);
5951         /*
5952          * Update modification times of quota files when userspace can
5953          * start looking at them. If we fail, we return success anyway since
5954          * this is not a hard failure and quotas are already disabled.
5955          */
5956         handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5957         if (IS_ERR(handle))
5958                 goto out_unlock;
5959         EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
5960         inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
5961         inode->i_mtime = inode->i_ctime = current_time(inode);
5962         ext4_mark_inode_dirty(handle, inode);
5963         ext4_journal_stop(handle);
5964 out_unlock:
5965         inode_unlock(inode);
5966 out_put:
5967         lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
5968         iput(inode);
5969         return err;
5970 out:
5971         return dquot_quota_off(sb, type);
5972 }
5973
5974 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5975  * acquiring the locks... As quota files are never truncated and quota code
5976  * itself serializes the operations (and no one else should touch the files)
5977  * we don't have to be afraid of races */
5978 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5979                                size_t len, loff_t off)
5980 {
5981         struct inode *inode = sb_dqopt(sb)->files[type];
5982         ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5983         int offset = off & (sb->s_blocksize - 1);
5984         int tocopy;
5985         size_t toread;
5986         struct buffer_head *bh;
5987         loff_t i_size = i_size_read(inode);
5988
5989         if (off > i_size)
5990                 return 0;
5991         if (off+len > i_size)
5992                 len = i_size-off;
5993         toread = len;
5994         while (toread > 0) {
5995                 tocopy = sb->s_blocksize - offset < toread ?
5996                                 sb->s_blocksize - offset : toread;
5997                 bh = ext4_bread(NULL, inode, blk, 0);
5998                 if (IS_ERR(bh))
5999                         return PTR_ERR(bh);
6000                 if (!bh)        /* A hole? */
6001                         memset(data, 0, tocopy);
6002                 else
6003                         memcpy(data, bh->b_data+offset, tocopy);
6004                 brelse(bh);
6005                 offset = 0;
6006                 toread -= tocopy;
6007                 data += tocopy;
6008                 blk++;
6009         }
6010         return len;
6011 }
6012
6013 /* Write to quotafile (we know the transaction is already started and has
6014  * enough credits) */
6015 static ssize_t ext4_quota_write(struct super_block *sb, int type,
6016                                 const char *data, size_t len, loff_t off)
6017 {
6018         struct inode *inode = sb_dqopt(sb)->files[type];
6019         ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6020         int err, offset = off & (sb->s_blocksize - 1);
6021         int retries = 0;
6022         struct buffer_head *bh;
6023         handle_t *handle = journal_current_handle();
6024
6025         if (EXT4_SB(sb)->s_journal && !handle) {
6026                 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6027                         " cancelled because transaction is not started",
6028                         (unsigned long long)off, (unsigned long long)len);
6029                 return -EIO;
6030         }
6031         /*
6032          * Since we account only one data block in transaction credits,
6033          * then it is impossible to cross a block boundary.
6034          */
6035         if (sb->s_blocksize - offset < len) {
6036                 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6037                         " cancelled because not block aligned",
6038                         (unsigned long long)off, (unsigned long long)len);
6039                 return -EIO;
6040         }
6041
6042         do {
6043                 bh = ext4_bread(handle, inode, blk,
6044                                 EXT4_GET_BLOCKS_CREATE |
6045                                 EXT4_GET_BLOCKS_METADATA_NOFAIL);
6046         } while (PTR_ERR(bh) == -ENOSPC &&
6047                  ext4_should_retry_alloc(inode->i_sb, &retries));
6048         if (IS_ERR(bh))
6049                 return PTR_ERR(bh);
6050         if (!bh)
6051                 goto out;
6052         BUFFER_TRACE(bh, "get write access");
6053         err = ext4_journal_get_write_access(handle, bh);
6054         if (err) {
6055                 brelse(bh);
6056                 return err;
6057         }
6058         lock_buffer(bh);
6059         memcpy(bh->b_data+offset, data, len);
6060         flush_dcache_page(bh->b_page);
6061         unlock_buffer(bh);
6062         err = ext4_handle_dirty_metadata(handle, NULL, bh);
6063         brelse(bh);
6064 out:
6065         if (inode->i_size < off + len) {
6066                 i_size_write(inode, off + len);
6067                 EXT4_I(inode)->i_disksize = inode->i_size;
6068                 ext4_mark_inode_dirty(handle, inode);
6069         }
6070         return len;
6071 }
6072 #endif
6073
6074 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
6075                        const char *dev_name, void *data)
6076 {
6077         return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
6078 }
6079
6080 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
6081 static inline void register_as_ext2(void)
6082 {
6083         int err = register_filesystem(&ext2_fs_type);
6084         if (err)
6085                 printk(KERN_WARNING
6086                        "EXT4-fs: Unable to register as ext2 (%d)\n", err);
6087 }
6088
6089 static inline void unregister_as_ext2(void)
6090 {
6091         unregister_filesystem(&ext2_fs_type);
6092 }
6093
6094 static inline int ext2_feature_set_ok(struct super_block *sb)
6095 {
6096         if (ext4_has_unknown_ext2_incompat_features(sb))
6097                 return 0;
6098         if (sb_rdonly(sb))
6099                 return 1;
6100         if (ext4_has_unknown_ext2_ro_compat_features(sb))
6101                 return 0;
6102         return 1;
6103 }
6104 #else
6105 static inline void register_as_ext2(void) { }
6106 static inline void unregister_as_ext2(void) { }
6107 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
6108 #endif
6109
6110 static inline void register_as_ext3(void)
6111 {
6112         int err = register_filesystem(&ext3_fs_type);
6113         if (err)
6114                 printk(KERN_WARNING
6115                        "EXT4-fs: Unable to register as ext3 (%d)\n", err);
6116 }
6117
6118 static inline void unregister_as_ext3(void)
6119 {
6120         unregister_filesystem(&ext3_fs_type);
6121 }
6122
6123 static inline int ext3_feature_set_ok(struct super_block *sb)
6124 {
6125         if (ext4_has_unknown_ext3_incompat_features(sb))
6126                 return 0;
6127         if (!ext4_has_feature_journal(sb))
6128                 return 0;
6129         if (sb_rdonly(sb))
6130                 return 1;
6131         if (ext4_has_unknown_ext3_ro_compat_features(sb))
6132                 return 0;
6133         return 1;
6134 }
6135
6136 static struct file_system_type ext4_fs_type = {
6137         .owner          = THIS_MODULE,
6138         .name           = "ext4",
6139         .mount          = ext4_mount,
6140         .kill_sb        = kill_block_super,
6141         .fs_flags       = FS_REQUIRES_DEV,
6142 };
6143 MODULE_ALIAS_FS("ext4");
6144
6145 /* Shared across all ext4 file systems */
6146 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
6147
6148 static int __init ext4_init_fs(void)
6149 {
6150         int i, err;
6151
6152         ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
6153         ext4_li_info = NULL;
6154         mutex_init(&ext4_li_mtx);
6155
6156         /* Build-time check for flags consistency */
6157         ext4_check_flag_values();
6158
6159         for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
6160                 init_waitqueue_head(&ext4__ioend_wq[i]);
6161
6162         err = ext4_init_es();
6163         if (err)
6164                 return err;
6165
6166         err = ext4_init_pending();
6167         if (err)
6168                 goto out7;
6169
6170         err = ext4_init_post_read_processing();
6171         if (err)
6172                 goto out6;
6173
6174         err = ext4_init_pageio();
6175         if (err)
6176                 goto out5;
6177
6178         err = ext4_init_system_zone();
6179         if (err)
6180                 goto out4;
6181
6182         err = ext4_init_sysfs();
6183         if (err)
6184                 goto out3;
6185
6186         err = ext4_init_mballoc();
6187         if (err)
6188                 goto out2;
6189         err = init_inodecache();
6190         if (err)
6191                 goto out1;
6192         register_as_ext3();
6193         register_as_ext2();
6194         err = register_filesystem(&ext4_fs_type);
6195         if (err)
6196                 goto out;
6197
6198         return 0;
6199 out:
6200         unregister_as_ext2();
6201         unregister_as_ext3();
6202         destroy_inodecache();
6203 out1:
6204         ext4_exit_mballoc();
6205 out2:
6206         ext4_exit_sysfs();
6207 out3:
6208         ext4_exit_system_zone();
6209 out4:
6210         ext4_exit_pageio();
6211 out5:
6212         ext4_exit_post_read_processing();
6213 out6:
6214         ext4_exit_pending();
6215 out7:
6216         ext4_exit_es();
6217
6218         return err;
6219 }
6220
6221 static void __exit ext4_exit_fs(void)
6222 {
6223         ext4_destroy_lazyinit_thread();
6224         unregister_as_ext2();
6225         unregister_as_ext3();
6226         unregister_filesystem(&ext4_fs_type);
6227         destroy_inodecache();
6228         ext4_exit_mballoc();
6229         ext4_exit_sysfs();
6230         ext4_exit_system_zone();
6231         ext4_exit_pageio();
6232         ext4_exit_post_read_processing();
6233         ext4_exit_es();
6234         ext4_exit_pending();
6235 }
6236
6237 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
6238 MODULE_DESCRIPTION("Fourth Extended Filesystem");
6239 MODULE_LICENSE("GPL");
6240 MODULE_SOFTDEP("pre: crc32c");
6241 module_init(ext4_init_fs)
6242 module_exit(ext4_exit_fs)