1 // SPDX-License-Identifier: GPL-2.0
3 * linux/fs/ext4/super.c
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
12 * linux/fs/minix/inode.c
14 * Copyright (C) 1991, 1992 Linus Torvalds
16 * Big-endian to little-endian byte-swapping/bitmaps by
17 * David S. Miller (davem@caip.rutgers.edu), 1995
20 #include <linux/module.h>
21 #include <linux/string.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/uaccess.h>
43 #include <linux/iversion.h>
44 #include <linux/unicode.h>
45 #include <linux/part_stat.h>
46 #include <linux/kthread.h>
47 #include <linux/freezer.h>
48 #include <linux/fsnotify.h>
49 #include <linux/fs_context.h>
50 #include <linux/fs_parser.h>
53 #include "ext4_extents.h" /* Needed for trace points definition */
54 #include "ext4_jbd2.h"
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/ext4.h>
63 static struct ext4_lazy_init *ext4_li_info;
64 static DEFINE_MUTEX(ext4_li_mtx);
65 static struct ratelimit_state ext4_mount_msg_ratelimit;
67 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
68 unsigned long journal_devnum);
69 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
70 static void ext4_update_super(struct super_block *sb);
71 static int ext4_commit_super(struct super_block *sb);
72 static int ext4_mark_recovery_complete(struct super_block *sb,
73 struct ext4_super_block *es);
74 static int ext4_clear_journal_err(struct super_block *sb,
75 struct ext4_super_block *es);
76 static int ext4_sync_fs(struct super_block *sb, int wait);
77 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
78 static int ext4_unfreeze(struct super_block *sb);
79 static int ext4_freeze(struct super_block *sb);
80 static inline int ext2_feature_set_ok(struct super_block *sb);
81 static inline int ext3_feature_set_ok(struct super_block *sb);
82 static void ext4_destroy_lazyinit_thread(void);
83 static void ext4_unregister_li_request(struct super_block *sb);
84 static void ext4_clear_request_list(void);
85 static struct inode *ext4_get_journal_inode(struct super_block *sb,
86 unsigned int journal_inum);
87 static int ext4_validate_options(struct fs_context *fc);
88 static int ext4_check_opt_consistency(struct fs_context *fc,
89 struct super_block *sb);
90 static int ext4_apply_options(struct fs_context *fc, struct super_block *sb);
91 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param);
92 static int ext4_get_tree(struct fs_context *fc);
93 static int ext4_reconfigure(struct fs_context *fc);
94 static void ext4_fc_free(struct fs_context *fc);
95 static int ext4_init_fs_context(struct fs_context *fc);
96 static const struct fs_parameter_spec ext4_param_specs[];
102 * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start
103 * -> page lock -> i_data_sem (rw)
105 * buffered write path:
106 * sb_start_write -> i_mutex -> mmap_lock
107 * sb_start_write -> i_mutex -> transaction start -> page lock ->
111 * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) ->
113 * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start ->
117 * sb_start_write -> i_mutex -> mmap_lock
118 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
121 * transaction start -> page lock(s) -> i_data_sem (rw)
124 static const struct fs_context_operations ext4_context_ops = {
125 .parse_param = ext4_parse_param,
126 .get_tree = ext4_get_tree,
127 .reconfigure = ext4_reconfigure,
128 .free = ext4_fc_free,
132 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
133 static struct file_system_type ext2_fs_type = {
134 .owner = THIS_MODULE,
136 .init_fs_context = ext4_init_fs_context,
137 .parameters = ext4_param_specs,
138 .kill_sb = kill_block_super,
139 .fs_flags = FS_REQUIRES_DEV,
141 MODULE_ALIAS_FS("ext2");
142 MODULE_ALIAS("ext2");
143 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
145 #define IS_EXT2_SB(sb) (0)
149 static struct file_system_type ext3_fs_type = {
150 .owner = THIS_MODULE,
152 .init_fs_context = ext4_init_fs_context,
153 .parameters = ext4_param_specs,
154 .kill_sb = kill_block_super,
155 .fs_flags = FS_REQUIRES_DEV,
157 MODULE_ALIAS_FS("ext3");
158 MODULE_ALIAS("ext3");
159 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
162 static inline void __ext4_read_bh(struct buffer_head *bh, int op_flags,
166 * buffer's verified bit is no longer valid after reading from
167 * disk again due to write out error, clear it to make sure we
168 * recheck the buffer contents.
170 clear_buffer_verified(bh);
172 bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
174 submit_bh(REQ_OP_READ, op_flags, bh);
177 void ext4_read_bh_nowait(struct buffer_head *bh, int op_flags,
180 BUG_ON(!buffer_locked(bh));
182 if (ext4_buffer_uptodate(bh)) {
186 __ext4_read_bh(bh, op_flags, end_io);
189 int ext4_read_bh(struct buffer_head *bh, int op_flags, bh_end_io_t *end_io)
191 BUG_ON(!buffer_locked(bh));
193 if (ext4_buffer_uptodate(bh)) {
198 __ext4_read_bh(bh, op_flags, end_io);
201 if (buffer_uptodate(bh))
206 int ext4_read_bh_lock(struct buffer_head *bh, int op_flags, bool wait)
208 if (trylock_buffer(bh)) {
210 return ext4_read_bh(bh, op_flags, NULL);
211 ext4_read_bh_nowait(bh, op_flags, NULL);
216 if (buffer_uptodate(bh))
224 * This works like __bread_gfp() except it uses ERR_PTR for error
225 * returns. Currently with sb_bread it's impossible to distinguish
226 * between ENOMEM and EIO situations (since both result in a NULL
229 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
230 sector_t block, int op_flags,
233 struct buffer_head *bh;
236 bh = sb_getblk_gfp(sb, block, gfp);
238 return ERR_PTR(-ENOMEM);
239 if (ext4_buffer_uptodate(bh))
242 ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
250 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
253 return __ext4_sb_bread_gfp(sb, block, op_flags, __GFP_MOVABLE);
256 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
259 return __ext4_sb_bread_gfp(sb, block, 0, 0);
262 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
264 struct buffer_head *bh = sb_getblk_gfp(sb, block, 0);
267 ext4_read_bh_lock(bh, REQ_RAHEAD, false);
272 static int ext4_verify_csum_type(struct super_block *sb,
273 struct ext4_super_block *es)
275 if (!ext4_has_feature_metadata_csum(sb))
278 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
281 __le32 ext4_superblock_csum(struct super_block *sb,
282 struct ext4_super_block *es)
284 struct ext4_sb_info *sbi = EXT4_SB(sb);
285 int offset = offsetof(struct ext4_super_block, s_checksum);
288 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
290 return cpu_to_le32(csum);
293 static int ext4_superblock_csum_verify(struct super_block *sb,
294 struct ext4_super_block *es)
296 if (!ext4_has_metadata_csum(sb))
299 return es->s_checksum == ext4_superblock_csum(sb, es);
302 void ext4_superblock_csum_set(struct super_block *sb)
304 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
306 if (!ext4_has_metadata_csum(sb))
309 es->s_checksum = ext4_superblock_csum(sb, es);
312 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
313 struct ext4_group_desc *bg)
315 return le32_to_cpu(bg->bg_block_bitmap_lo) |
316 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
317 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
320 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
321 struct ext4_group_desc *bg)
323 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
324 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
325 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
328 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
329 struct ext4_group_desc *bg)
331 return le32_to_cpu(bg->bg_inode_table_lo) |
332 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
333 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
336 __u32 ext4_free_group_clusters(struct super_block *sb,
337 struct ext4_group_desc *bg)
339 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
340 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
341 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
344 __u32 ext4_free_inodes_count(struct super_block *sb,
345 struct ext4_group_desc *bg)
347 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
348 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
349 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
352 __u32 ext4_used_dirs_count(struct super_block *sb,
353 struct ext4_group_desc *bg)
355 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
356 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
357 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
360 __u32 ext4_itable_unused_count(struct super_block *sb,
361 struct ext4_group_desc *bg)
363 return le16_to_cpu(bg->bg_itable_unused_lo) |
364 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
365 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
368 void ext4_block_bitmap_set(struct super_block *sb,
369 struct ext4_group_desc *bg, ext4_fsblk_t blk)
371 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
372 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
373 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
376 void ext4_inode_bitmap_set(struct super_block *sb,
377 struct ext4_group_desc *bg, ext4_fsblk_t blk)
379 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
380 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
381 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
384 void ext4_inode_table_set(struct super_block *sb,
385 struct ext4_group_desc *bg, ext4_fsblk_t blk)
387 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
388 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
389 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
392 void ext4_free_group_clusters_set(struct super_block *sb,
393 struct ext4_group_desc *bg, __u32 count)
395 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
396 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
397 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
400 void ext4_free_inodes_set(struct super_block *sb,
401 struct ext4_group_desc *bg, __u32 count)
403 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
404 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
405 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
408 void ext4_used_dirs_set(struct super_block *sb,
409 struct ext4_group_desc *bg, __u32 count)
411 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
412 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
413 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
416 void ext4_itable_unused_set(struct super_block *sb,
417 struct ext4_group_desc *bg, __u32 count)
419 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
420 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
421 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
424 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now)
426 now = clamp_val(now, 0, (1ull << 40) - 1);
428 *lo = cpu_to_le32(lower_32_bits(now));
429 *hi = upper_32_bits(now);
432 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
434 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
436 #define ext4_update_tstamp(es, tstamp) \
437 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \
438 ktime_get_real_seconds())
439 #define ext4_get_tstamp(es, tstamp) \
440 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
443 * The del_gendisk() function uninitializes the disk-specific data
444 * structures, including the bdi structure, without telling anyone
445 * else. Once this happens, any attempt to call mark_buffer_dirty()
446 * (for example, by ext4_commit_super), will cause a kernel OOPS.
447 * This is a kludge to prevent these oops until we can put in a proper
448 * hook in del_gendisk() to inform the VFS and file system layers.
450 static int block_device_ejected(struct super_block *sb)
452 struct inode *bd_inode = sb->s_bdev->bd_inode;
453 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
455 return bdi->dev == NULL;
458 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
460 struct super_block *sb = journal->j_private;
461 struct ext4_sb_info *sbi = EXT4_SB(sb);
462 int error = is_journal_aborted(journal);
463 struct ext4_journal_cb_entry *jce;
465 BUG_ON(txn->t_state == T_FINISHED);
467 ext4_process_freed_data(sb, txn->t_tid);
469 spin_lock(&sbi->s_md_lock);
470 while (!list_empty(&txn->t_private_list)) {
471 jce = list_entry(txn->t_private_list.next,
472 struct ext4_journal_cb_entry, jce_list);
473 list_del_init(&jce->jce_list);
474 spin_unlock(&sbi->s_md_lock);
475 jce->jce_func(sb, jce, error);
476 spin_lock(&sbi->s_md_lock);
478 spin_unlock(&sbi->s_md_lock);
482 * This writepage callback for write_cache_pages()
483 * takes care of a few cases after page cleaning.
485 * write_cache_pages() already checks for dirty pages
486 * and calls clear_page_dirty_for_io(), which we want,
487 * to write protect the pages.
489 * However, we may have to redirty a page (see below.)
491 static int ext4_journalled_writepage_callback(struct page *page,
492 struct writeback_control *wbc,
495 transaction_t *transaction = (transaction_t *) data;
496 struct buffer_head *bh, *head;
497 struct journal_head *jh;
499 bh = head = page_buffers(page);
502 * We have to redirty a page in these cases:
503 * 1) If buffer is dirty, it means the page was dirty because it
504 * contains a buffer that needs checkpointing. So the dirty bit
505 * needs to be preserved so that checkpointing writes the buffer
507 * 2) If buffer is not part of the committing transaction
508 * (we may have just accidentally come across this buffer because
509 * inode range tracking is not exact) or if the currently running
510 * transaction already contains this buffer as well, dirty bit
511 * needs to be preserved so that the buffer gets writeprotected
512 * properly on running transaction's commit.
515 if (buffer_dirty(bh) ||
516 (jh && (jh->b_transaction != transaction ||
517 jh->b_next_transaction))) {
518 redirty_page_for_writepage(wbc, page);
521 } while ((bh = bh->b_this_page) != head);
524 return AOP_WRITEPAGE_ACTIVATE;
527 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
529 struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
530 struct writeback_control wbc = {
531 .sync_mode = WB_SYNC_ALL,
532 .nr_to_write = LONG_MAX,
533 .range_start = jinode->i_dirty_start,
534 .range_end = jinode->i_dirty_end,
537 return write_cache_pages(mapping, &wbc,
538 ext4_journalled_writepage_callback,
539 jinode->i_transaction);
542 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
546 if (ext4_should_journal_data(jinode->i_vfs_inode))
547 ret = ext4_journalled_submit_inode_data_buffers(jinode);
549 ret = jbd2_journal_submit_inode_data_buffers(jinode);
554 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
558 if (!ext4_should_journal_data(jinode->i_vfs_inode))
559 ret = jbd2_journal_finish_inode_data_buffers(jinode);
564 static bool system_going_down(void)
566 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
567 || system_state == SYSTEM_RESTART;
570 struct ext4_err_translation {
575 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err }
577 static struct ext4_err_translation err_translation[] = {
578 EXT4_ERR_TRANSLATE(EIO),
579 EXT4_ERR_TRANSLATE(ENOMEM),
580 EXT4_ERR_TRANSLATE(EFSBADCRC),
581 EXT4_ERR_TRANSLATE(EFSCORRUPTED),
582 EXT4_ERR_TRANSLATE(ENOSPC),
583 EXT4_ERR_TRANSLATE(ENOKEY),
584 EXT4_ERR_TRANSLATE(EROFS),
585 EXT4_ERR_TRANSLATE(EFBIG),
586 EXT4_ERR_TRANSLATE(EEXIST),
587 EXT4_ERR_TRANSLATE(ERANGE),
588 EXT4_ERR_TRANSLATE(EOVERFLOW),
589 EXT4_ERR_TRANSLATE(EBUSY),
590 EXT4_ERR_TRANSLATE(ENOTDIR),
591 EXT4_ERR_TRANSLATE(ENOTEMPTY),
592 EXT4_ERR_TRANSLATE(ESHUTDOWN),
593 EXT4_ERR_TRANSLATE(EFAULT),
596 static int ext4_errno_to_code(int errno)
600 for (i = 0; i < ARRAY_SIZE(err_translation); i++)
601 if (err_translation[i].errno == errno)
602 return err_translation[i].code;
603 return EXT4_ERR_UNKNOWN;
606 static void save_error_info(struct super_block *sb, int error,
607 __u32 ino, __u64 block,
608 const char *func, unsigned int line)
610 struct ext4_sb_info *sbi = EXT4_SB(sb);
612 /* We default to EFSCORRUPTED error... */
614 error = EFSCORRUPTED;
616 spin_lock(&sbi->s_error_lock);
617 sbi->s_add_error_count++;
618 sbi->s_last_error_code = error;
619 sbi->s_last_error_line = line;
620 sbi->s_last_error_ino = ino;
621 sbi->s_last_error_block = block;
622 sbi->s_last_error_func = func;
623 sbi->s_last_error_time = ktime_get_real_seconds();
624 if (!sbi->s_first_error_time) {
625 sbi->s_first_error_code = error;
626 sbi->s_first_error_line = line;
627 sbi->s_first_error_ino = ino;
628 sbi->s_first_error_block = block;
629 sbi->s_first_error_func = func;
630 sbi->s_first_error_time = sbi->s_last_error_time;
632 spin_unlock(&sbi->s_error_lock);
635 /* Deal with the reporting of failure conditions on a filesystem such as
636 * inconsistencies detected or read IO failures.
638 * On ext2, we can store the error state of the filesystem in the
639 * superblock. That is not possible on ext4, because we may have other
640 * write ordering constraints on the superblock which prevent us from
641 * writing it out straight away; and given that the journal is about to
642 * be aborted, we can't rely on the current, or future, transactions to
643 * write out the superblock safely.
645 * We'll just use the jbd2_journal_abort() error code to record an error in
646 * the journal instead. On recovery, the journal will complain about
647 * that error until we've noted it down and cleared it.
649 * If force_ro is set, we unconditionally force the filesystem into an
650 * ABORT|READONLY state, unless the error response on the fs has been set to
651 * panic in which case we take the easy way out and panic immediately. This is
652 * used to deal with unrecoverable failures such as journal IO errors or ENOMEM
653 * at a critical moment in log management.
655 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error,
656 __u32 ino, __u64 block,
657 const char *func, unsigned int line)
659 journal_t *journal = EXT4_SB(sb)->s_journal;
660 bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT);
662 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
663 if (test_opt(sb, WARN_ON_ERROR))
666 if (!continue_fs && !sb_rdonly(sb)) {
667 ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED);
669 jbd2_journal_abort(journal, -EIO);
672 if (!bdev_read_only(sb->s_bdev)) {
673 save_error_info(sb, error, ino, block, func, line);
675 * In case the fs should keep running, we need to writeout
676 * superblock through the journal. Due to lock ordering
677 * constraints, it may not be safe to do it right here so we
678 * defer superblock flushing to a workqueue.
680 if (continue_fs && journal)
681 schedule_work(&EXT4_SB(sb)->s_error_work);
683 ext4_commit_super(sb);
687 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
688 * could panic during 'reboot -f' as the underlying device got already
691 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
692 panic("EXT4-fs (device %s): panic forced after error\n",
696 if (sb_rdonly(sb) || continue_fs)
699 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
701 * Make sure updated value of ->s_mount_flags will be visible before
705 sb->s_flags |= SB_RDONLY;
708 static void flush_stashed_error_work(struct work_struct *work)
710 struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info,
712 journal_t *journal = sbi->s_journal;
716 * If the journal is still running, we have to write out superblock
717 * through the journal to avoid collisions of other journalled sb
720 * We use directly jbd2 functions here to avoid recursing back into
721 * ext4 error handling code during handling of previous errors.
723 if (!sb_rdonly(sbi->s_sb) && journal) {
724 struct buffer_head *sbh = sbi->s_sbh;
725 handle = jbd2_journal_start(journal, 1);
728 if (jbd2_journal_get_write_access(handle, sbh)) {
729 jbd2_journal_stop(handle);
732 ext4_update_super(sbi->s_sb);
733 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
734 ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to "
735 "superblock detected");
736 clear_buffer_write_io_error(sbh);
737 set_buffer_uptodate(sbh);
740 if (jbd2_journal_dirty_metadata(handle, sbh)) {
741 jbd2_journal_stop(handle);
744 jbd2_journal_stop(handle);
745 ext4_notify_error_sysfs(sbi);
750 * Write through journal failed. Write sb directly to get error info
751 * out and hope for the best.
753 ext4_commit_super(sbi->s_sb);
754 ext4_notify_error_sysfs(sbi);
757 #define ext4_error_ratelimit(sb) \
758 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
761 void __ext4_error(struct super_block *sb, const char *function,
762 unsigned int line, bool force_ro, int error, __u64 block,
763 const char *fmt, ...)
765 struct va_format vaf;
768 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
771 trace_ext4_error(sb, function, line);
772 if (ext4_error_ratelimit(sb)) {
777 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
778 sb->s_id, function, line, current->comm, &vaf);
781 fsnotify_sb_error(sb, NULL, error ? error : EFSCORRUPTED);
783 ext4_handle_error(sb, force_ro, error, 0, block, function, line);
786 void __ext4_error_inode(struct inode *inode, const char *function,
787 unsigned int line, ext4_fsblk_t block, int error,
788 const char *fmt, ...)
791 struct va_format vaf;
793 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
796 trace_ext4_error(inode->i_sb, function, line);
797 if (ext4_error_ratelimit(inode->i_sb)) {
802 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
803 "inode #%lu: block %llu: comm %s: %pV\n",
804 inode->i_sb->s_id, function, line, inode->i_ino,
805 block, current->comm, &vaf);
807 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
808 "inode #%lu: comm %s: %pV\n",
809 inode->i_sb->s_id, function, line, inode->i_ino,
810 current->comm, &vaf);
813 fsnotify_sb_error(inode->i_sb, inode, error ? error : EFSCORRUPTED);
815 ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block,
819 void __ext4_error_file(struct file *file, const char *function,
820 unsigned int line, ext4_fsblk_t block,
821 const char *fmt, ...)
824 struct va_format vaf;
825 struct inode *inode = file_inode(file);
826 char pathname[80], *path;
828 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
831 trace_ext4_error(inode->i_sb, function, line);
832 if (ext4_error_ratelimit(inode->i_sb)) {
833 path = file_path(file, pathname, sizeof(pathname));
841 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
842 "block %llu: comm %s: path %s: %pV\n",
843 inode->i_sb->s_id, function, line, inode->i_ino,
844 block, current->comm, path, &vaf);
847 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
848 "comm %s: path %s: %pV\n",
849 inode->i_sb->s_id, function, line, inode->i_ino,
850 current->comm, path, &vaf);
853 fsnotify_sb_error(inode->i_sb, inode, EFSCORRUPTED);
855 ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block,
859 const char *ext4_decode_error(struct super_block *sb, int errno,
866 errstr = "Corrupt filesystem";
869 errstr = "Filesystem failed CRC";
872 errstr = "IO failure";
875 errstr = "Out of memory";
878 if (!sb || (EXT4_SB(sb)->s_journal &&
879 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
880 errstr = "Journal has aborted";
882 errstr = "Readonly filesystem";
885 /* If the caller passed in an extra buffer for unknown
886 * errors, textualise them now. Else we just return
889 /* Check for truncated error codes... */
890 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
899 /* __ext4_std_error decodes expected errors from journaling functions
900 * automatically and invokes the appropriate error response. */
902 void __ext4_std_error(struct super_block *sb, const char *function,
903 unsigned int line, int errno)
908 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
911 /* Special case: if the error is EROFS, and we're not already
912 * inside a transaction, then there's really no point in logging
914 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
917 if (ext4_error_ratelimit(sb)) {
918 errstr = ext4_decode_error(sb, errno, nbuf);
919 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
920 sb->s_id, function, line, errstr);
922 fsnotify_sb_error(sb, NULL, errno ? errno : EFSCORRUPTED);
924 ext4_handle_error(sb, false, -errno, 0, 0, function, line);
927 void __ext4_msg(struct super_block *sb,
928 const char *prefix, const char *fmt, ...)
930 struct va_format vaf;
934 atomic_inc(&EXT4_SB(sb)->s_msg_count);
935 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state),
944 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
946 printk("%sEXT4-fs: %pV\n", prefix, &vaf);
950 static int ext4_warning_ratelimit(struct super_block *sb)
952 atomic_inc(&EXT4_SB(sb)->s_warning_count);
953 return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
957 void __ext4_warning(struct super_block *sb, const char *function,
958 unsigned int line, const char *fmt, ...)
960 struct va_format vaf;
963 if (!ext4_warning_ratelimit(sb))
969 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
970 sb->s_id, function, line, &vaf);
974 void __ext4_warning_inode(const struct inode *inode, const char *function,
975 unsigned int line, const char *fmt, ...)
977 struct va_format vaf;
980 if (!ext4_warning_ratelimit(inode->i_sb))
986 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
987 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
988 function, line, inode->i_ino, current->comm, &vaf);
992 void __ext4_grp_locked_error(const char *function, unsigned int line,
993 struct super_block *sb, ext4_group_t grp,
994 unsigned long ino, ext4_fsblk_t block,
995 const char *fmt, ...)
999 struct va_format vaf;
1002 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
1005 trace_ext4_error(sb, function, line);
1006 if (ext4_error_ratelimit(sb)) {
1007 va_start(args, fmt);
1010 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
1011 sb->s_id, function, line, grp);
1013 printk(KERN_CONT "inode %lu: ", ino);
1015 printk(KERN_CONT "block %llu:",
1016 (unsigned long long) block);
1017 printk(KERN_CONT "%pV\n", &vaf);
1021 if (test_opt(sb, ERRORS_CONT)) {
1022 if (test_opt(sb, WARN_ON_ERROR))
1024 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
1025 if (!bdev_read_only(sb->s_bdev)) {
1026 save_error_info(sb, EFSCORRUPTED, ino, block, function,
1028 schedule_work(&EXT4_SB(sb)->s_error_work);
1032 ext4_unlock_group(sb, grp);
1033 ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line);
1035 * We only get here in the ERRORS_RO case; relocking the group
1036 * may be dangerous, but nothing bad will happen since the
1037 * filesystem will have already been marked read/only and the
1038 * journal has been aborted. We return 1 as a hint to callers
1039 * who might what to use the return value from
1040 * ext4_grp_locked_error() to distinguish between the
1041 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
1042 * aggressively from the ext4 function in question, with a
1043 * more appropriate error code.
1045 ext4_lock_group(sb, grp);
1049 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
1053 struct ext4_sb_info *sbi = EXT4_SB(sb);
1054 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1055 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
1058 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
1059 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1062 percpu_counter_sub(&sbi->s_freeclusters_counter,
1066 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
1067 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
1072 count = ext4_free_inodes_count(sb, gdp);
1073 percpu_counter_sub(&sbi->s_freeinodes_counter,
1079 void ext4_update_dynamic_rev(struct super_block *sb)
1081 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1083 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
1087 "updating to rev %d because of new feature flag, "
1088 "running e2fsck is recommended",
1091 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
1092 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
1093 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
1094 /* leave es->s_feature_*compat flags alone */
1095 /* es->s_uuid will be set by e2fsck if empty */
1098 * The rest of the superblock fields should be zero, and if not it
1099 * means they are likely already in use, so leave them alone. We
1100 * can leave it up to e2fsck to clean up any inconsistencies there.
1105 * Open the external journal device
1107 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
1109 struct block_device *bdev;
1111 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
1117 ext4_msg(sb, KERN_ERR,
1118 "failed to open journal device unknown-block(%u,%u) %ld",
1119 MAJOR(dev), MINOR(dev), PTR_ERR(bdev));
1124 * Release the journal device
1126 static void ext4_blkdev_put(struct block_device *bdev)
1128 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1131 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
1133 struct block_device *bdev;
1134 bdev = sbi->s_journal_bdev;
1136 ext4_blkdev_put(bdev);
1137 sbi->s_journal_bdev = NULL;
1141 static inline struct inode *orphan_list_entry(struct list_head *l)
1143 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
1146 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
1148 struct list_head *l;
1150 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
1151 le32_to_cpu(sbi->s_es->s_last_orphan));
1153 printk(KERN_ERR "sb_info orphan list:\n");
1154 list_for_each(l, &sbi->s_orphan) {
1155 struct inode *inode = orphan_list_entry(l);
1157 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
1158 inode->i_sb->s_id, inode->i_ino, inode,
1159 inode->i_mode, inode->i_nlink,
1160 NEXT_ORPHAN(inode));
1165 static int ext4_quota_off(struct super_block *sb, int type);
1167 static inline void ext4_quota_off_umount(struct super_block *sb)
1171 /* Use our quota_off function to clear inode flags etc. */
1172 for (type = 0; type < EXT4_MAXQUOTAS; type++)
1173 ext4_quota_off(sb, type);
1177 * This is a helper function which is used in the mount/remount
1178 * codepaths (which holds s_umount) to fetch the quota file name.
1180 static inline char *get_qf_name(struct super_block *sb,
1181 struct ext4_sb_info *sbi,
1184 return rcu_dereference_protected(sbi->s_qf_names[type],
1185 lockdep_is_held(&sb->s_umount));
1188 static inline void ext4_quota_off_umount(struct super_block *sb)
1193 static void ext4_put_super(struct super_block *sb)
1195 struct ext4_sb_info *sbi = EXT4_SB(sb);
1196 struct ext4_super_block *es = sbi->s_es;
1197 struct buffer_head **group_desc;
1198 struct flex_groups **flex_groups;
1202 ext4_unregister_li_request(sb);
1203 ext4_quota_off_umount(sb);
1205 flush_work(&sbi->s_error_work);
1206 destroy_workqueue(sbi->rsv_conversion_wq);
1207 ext4_release_orphan_info(sb);
1210 * Unregister sysfs before destroying jbd2 journal.
1211 * Since we could still access attr_journal_task attribute via sysfs
1212 * path which could have sbi->s_journal->j_task as NULL
1214 ext4_unregister_sysfs(sb);
1216 if (sbi->s_journal) {
1217 aborted = is_journal_aborted(sbi->s_journal);
1218 err = jbd2_journal_destroy(sbi->s_journal);
1219 sbi->s_journal = NULL;
1220 if ((err < 0) && !aborted) {
1221 ext4_abort(sb, -err, "Couldn't clean up the journal");
1225 ext4_es_unregister_shrinker(sbi);
1226 del_timer_sync(&sbi->s_err_report);
1227 ext4_release_system_zone(sb);
1228 ext4_mb_release(sb);
1229 ext4_ext_release(sb);
1231 if (!sb_rdonly(sb) && !aborted) {
1232 ext4_clear_feature_journal_needs_recovery(sb);
1233 ext4_clear_feature_orphan_present(sb);
1234 es->s_state = cpu_to_le16(sbi->s_mount_state);
1237 ext4_commit_super(sb);
1240 group_desc = rcu_dereference(sbi->s_group_desc);
1241 for (i = 0; i < sbi->s_gdb_count; i++)
1242 brelse(group_desc[i]);
1244 flex_groups = rcu_dereference(sbi->s_flex_groups);
1246 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1247 kvfree(flex_groups[i]);
1248 kvfree(flex_groups);
1251 percpu_counter_destroy(&sbi->s_freeclusters_counter);
1252 percpu_counter_destroy(&sbi->s_freeinodes_counter);
1253 percpu_counter_destroy(&sbi->s_dirs_counter);
1254 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1255 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
1256 percpu_free_rwsem(&sbi->s_writepages_rwsem);
1258 for (i = 0; i < EXT4_MAXQUOTAS; i++)
1259 kfree(get_qf_name(sb, sbi, i));
1262 /* Debugging code just in case the in-memory inode orphan list
1263 * isn't empty. The on-disk one can be non-empty if we've
1264 * detected an error and taken the fs readonly, but the
1265 * in-memory list had better be clean by this point. */
1266 if (!list_empty(&sbi->s_orphan))
1267 dump_orphan_list(sb, sbi);
1268 ASSERT(list_empty(&sbi->s_orphan));
1270 sync_blockdev(sb->s_bdev);
1271 invalidate_bdev(sb->s_bdev);
1272 if (sbi->s_journal_bdev && sbi->s_journal_bdev != sb->s_bdev) {
1274 * Invalidate the journal device's buffers. We don't want them
1275 * floating about in memory - the physical journal device may
1276 * hotswapped, and it breaks the `ro-after' testing code.
1278 sync_blockdev(sbi->s_journal_bdev);
1279 invalidate_bdev(sbi->s_journal_bdev);
1280 ext4_blkdev_remove(sbi);
1283 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1284 sbi->s_ea_inode_cache = NULL;
1286 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1287 sbi->s_ea_block_cache = NULL;
1289 ext4_stop_mmpd(sbi);
1292 sb->s_fs_info = NULL;
1294 * Now that we are completely done shutting down the
1295 * superblock, we need to actually destroy the kobject.
1297 kobject_put(&sbi->s_kobj);
1298 wait_for_completion(&sbi->s_kobj_unregister);
1299 if (sbi->s_chksum_driver)
1300 crypto_free_shash(sbi->s_chksum_driver);
1301 kfree(sbi->s_blockgroup_lock);
1302 fs_put_dax(sbi->s_daxdev);
1303 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1304 #if IS_ENABLED(CONFIG_UNICODE)
1305 utf8_unload(sb->s_encoding);
1310 static struct kmem_cache *ext4_inode_cachep;
1313 * Called inside transaction, so use GFP_NOFS
1315 static struct inode *ext4_alloc_inode(struct super_block *sb)
1317 struct ext4_inode_info *ei;
1319 ei = alloc_inode_sb(sb, ext4_inode_cachep, GFP_NOFS);
1323 inode_set_iversion(&ei->vfs_inode, 1);
1324 spin_lock_init(&ei->i_raw_lock);
1325 INIT_LIST_HEAD(&ei->i_prealloc_list);
1326 atomic_set(&ei->i_prealloc_active, 0);
1327 spin_lock_init(&ei->i_prealloc_lock);
1328 ext4_es_init_tree(&ei->i_es_tree);
1329 rwlock_init(&ei->i_es_lock);
1330 INIT_LIST_HEAD(&ei->i_es_list);
1331 ei->i_es_all_nr = 0;
1332 ei->i_es_shk_nr = 0;
1333 ei->i_es_shrink_lblk = 0;
1334 ei->i_reserved_data_blocks = 0;
1335 spin_lock_init(&(ei->i_block_reservation_lock));
1336 ext4_init_pending_tree(&ei->i_pending_tree);
1338 ei->i_reserved_quota = 0;
1339 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1342 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1343 spin_lock_init(&ei->i_completed_io_lock);
1345 ei->i_datasync_tid = 0;
1346 atomic_set(&ei->i_unwritten, 0);
1347 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1348 ext4_fc_init_inode(&ei->vfs_inode);
1349 mutex_init(&ei->i_fc_lock);
1350 return &ei->vfs_inode;
1353 static int ext4_drop_inode(struct inode *inode)
1355 int drop = generic_drop_inode(inode);
1358 drop = fscrypt_drop_inode(inode);
1360 trace_ext4_drop_inode(inode, drop);
1364 static void ext4_free_in_core_inode(struct inode *inode)
1366 fscrypt_free_inode(inode);
1367 if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
1368 pr_warn("%s: inode %ld still in fc list",
1369 __func__, inode->i_ino);
1371 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1374 static void ext4_destroy_inode(struct inode *inode)
1376 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1377 ext4_msg(inode->i_sb, KERN_ERR,
1378 "Inode %lu (%p): orphan list check failed!",
1379 inode->i_ino, EXT4_I(inode));
1380 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1381 EXT4_I(inode), sizeof(struct ext4_inode_info),
1386 if (EXT4_I(inode)->i_reserved_data_blocks)
1387 ext4_msg(inode->i_sb, KERN_ERR,
1388 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!",
1389 inode->i_ino, EXT4_I(inode),
1390 EXT4_I(inode)->i_reserved_data_blocks);
1393 static void init_once(void *foo)
1395 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1397 INIT_LIST_HEAD(&ei->i_orphan);
1398 init_rwsem(&ei->xattr_sem);
1399 init_rwsem(&ei->i_data_sem);
1400 inode_init_once(&ei->vfs_inode);
1401 ext4_fc_init_inode(&ei->vfs_inode);
1404 static int __init init_inodecache(void)
1406 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1407 sizeof(struct ext4_inode_info), 0,
1408 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1410 offsetof(struct ext4_inode_info, i_data),
1411 sizeof_field(struct ext4_inode_info, i_data),
1413 if (ext4_inode_cachep == NULL)
1418 static void destroy_inodecache(void)
1421 * Make sure all delayed rcu free inodes are flushed before we
1425 kmem_cache_destroy(ext4_inode_cachep);
1428 void ext4_clear_inode(struct inode *inode)
1431 invalidate_inode_buffers(inode);
1433 ext4_discard_preallocations(inode, 0);
1434 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1436 if (EXT4_I(inode)->jinode) {
1437 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1438 EXT4_I(inode)->jinode);
1439 jbd2_free_inode(EXT4_I(inode)->jinode);
1440 EXT4_I(inode)->jinode = NULL;
1442 fscrypt_put_encryption_info(inode);
1443 fsverity_cleanup_inode(inode);
1446 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1447 u64 ino, u32 generation)
1449 struct inode *inode;
1452 * Currently we don't know the generation for parent directory, so
1453 * a generation of 0 means "accept any"
1455 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1457 return ERR_CAST(inode);
1458 if (generation && inode->i_generation != generation) {
1460 return ERR_PTR(-ESTALE);
1466 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1467 int fh_len, int fh_type)
1469 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1470 ext4_nfs_get_inode);
1473 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1474 int fh_len, int fh_type)
1476 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1477 ext4_nfs_get_inode);
1480 static int ext4_nfs_commit_metadata(struct inode *inode)
1482 struct writeback_control wbc = {
1483 .sync_mode = WB_SYNC_ALL
1486 trace_ext4_nfs_commit_metadata(inode);
1487 return ext4_write_inode(inode, &wbc);
1490 #ifdef CONFIG_FS_ENCRYPTION
1491 static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1493 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1494 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1497 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1500 handle_t *handle = fs_data;
1501 int res, res2, credits, retries = 0;
1504 * Encrypting the root directory is not allowed because e2fsck expects
1505 * lost+found to exist and be unencrypted, and encrypting the root
1506 * directory would imply encrypting the lost+found directory as well as
1507 * the filename "lost+found" itself.
1509 if (inode->i_ino == EXT4_ROOT_INO)
1512 if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode)))
1515 if (ext4_test_inode_flag(inode, EXT4_INODE_DAX))
1518 res = ext4_convert_inline_data(inode);
1523 * If a journal handle was specified, then the encryption context is
1524 * being set on a new inode via inheritance and is part of a larger
1525 * transaction to create the inode. Otherwise the encryption context is
1526 * being set on an existing inode in its own transaction. Only in the
1527 * latter case should the "retry on ENOSPC" logic be used.
1531 res = ext4_xattr_set_handle(handle, inode,
1532 EXT4_XATTR_INDEX_ENCRYPTION,
1533 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1536 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1537 ext4_clear_inode_state(inode,
1538 EXT4_STATE_MAY_INLINE_DATA);
1540 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1541 * S_DAX may be disabled
1543 ext4_set_inode_flags(inode, false);
1548 res = dquot_initialize(inode);
1552 res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1557 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1559 return PTR_ERR(handle);
1561 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1562 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1565 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1567 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1568 * S_DAX may be disabled
1570 ext4_set_inode_flags(inode, false);
1571 res = ext4_mark_inode_dirty(handle, inode);
1573 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1575 res2 = ext4_journal_stop(handle);
1577 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1584 static const union fscrypt_policy *ext4_get_dummy_policy(struct super_block *sb)
1586 return EXT4_SB(sb)->s_dummy_enc_policy.policy;
1589 static bool ext4_has_stable_inodes(struct super_block *sb)
1591 return ext4_has_feature_stable_inodes(sb);
1594 static void ext4_get_ino_and_lblk_bits(struct super_block *sb,
1595 int *ino_bits_ret, int *lblk_bits_ret)
1597 *ino_bits_ret = 8 * sizeof(EXT4_SB(sb)->s_es->s_inodes_count);
1598 *lblk_bits_ret = 8 * sizeof(ext4_lblk_t);
1601 static const struct fscrypt_operations ext4_cryptops = {
1602 .key_prefix = "ext4:",
1603 .get_context = ext4_get_context,
1604 .set_context = ext4_set_context,
1605 .get_dummy_policy = ext4_get_dummy_policy,
1606 .empty_dir = ext4_empty_dir,
1607 .has_stable_inodes = ext4_has_stable_inodes,
1608 .get_ino_and_lblk_bits = ext4_get_ino_and_lblk_bits,
1613 static const char * const quotatypes[] = INITQFNAMES;
1614 #define QTYPE2NAME(t) (quotatypes[t])
1616 static int ext4_write_dquot(struct dquot *dquot);
1617 static int ext4_acquire_dquot(struct dquot *dquot);
1618 static int ext4_release_dquot(struct dquot *dquot);
1619 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1620 static int ext4_write_info(struct super_block *sb, int type);
1621 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1622 const struct path *path);
1623 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1624 size_t len, loff_t off);
1625 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1626 const char *data, size_t len, loff_t off);
1627 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1628 unsigned int flags);
1630 static struct dquot **ext4_get_dquots(struct inode *inode)
1632 return EXT4_I(inode)->i_dquot;
1635 static const struct dquot_operations ext4_quota_operations = {
1636 .get_reserved_space = ext4_get_reserved_space,
1637 .write_dquot = ext4_write_dquot,
1638 .acquire_dquot = ext4_acquire_dquot,
1639 .release_dquot = ext4_release_dquot,
1640 .mark_dirty = ext4_mark_dquot_dirty,
1641 .write_info = ext4_write_info,
1642 .alloc_dquot = dquot_alloc,
1643 .destroy_dquot = dquot_destroy,
1644 .get_projid = ext4_get_projid,
1645 .get_inode_usage = ext4_get_inode_usage,
1646 .get_next_id = dquot_get_next_id,
1649 static const struct quotactl_ops ext4_qctl_operations = {
1650 .quota_on = ext4_quota_on,
1651 .quota_off = ext4_quota_off,
1652 .quota_sync = dquot_quota_sync,
1653 .get_state = dquot_get_state,
1654 .set_info = dquot_set_dqinfo,
1655 .get_dqblk = dquot_get_dqblk,
1656 .set_dqblk = dquot_set_dqblk,
1657 .get_nextdqblk = dquot_get_next_dqblk,
1661 static const struct super_operations ext4_sops = {
1662 .alloc_inode = ext4_alloc_inode,
1663 .free_inode = ext4_free_in_core_inode,
1664 .destroy_inode = ext4_destroy_inode,
1665 .write_inode = ext4_write_inode,
1666 .dirty_inode = ext4_dirty_inode,
1667 .drop_inode = ext4_drop_inode,
1668 .evict_inode = ext4_evict_inode,
1669 .put_super = ext4_put_super,
1670 .sync_fs = ext4_sync_fs,
1671 .freeze_fs = ext4_freeze,
1672 .unfreeze_fs = ext4_unfreeze,
1673 .statfs = ext4_statfs,
1674 .show_options = ext4_show_options,
1676 .quota_read = ext4_quota_read,
1677 .quota_write = ext4_quota_write,
1678 .get_dquots = ext4_get_dquots,
1682 static const struct export_operations ext4_export_ops = {
1683 .fh_to_dentry = ext4_fh_to_dentry,
1684 .fh_to_parent = ext4_fh_to_parent,
1685 .get_parent = ext4_get_parent,
1686 .commit_metadata = ext4_nfs_commit_metadata,
1690 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1691 Opt_resgid, Opt_resuid, Opt_sb,
1692 Opt_nouid32, Opt_debug, Opt_removed,
1693 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1694 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1695 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1696 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1697 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1698 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1700 Opt_usrjquota, Opt_grpjquota, Opt_quota,
1701 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1702 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version,
1703 Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1704 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1705 Opt_nowarn_on_error, Opt_mblk_io_submit, Opt_debug_want_extra_isize,
1706 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1707 Opt_inode_readahead_blks, Opt_journal_ioprio,
1708 Opt_dioread_nolock, Opt_dioread_lock,
1709 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1710 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1711 Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan,
1712 Opt_errors, Opt_data, Opt_data_err, Opt_jqfmt, Opt_dax_type,
1713 #ifdef CONFIG_EXT4_DEBUG
1714 Opt_fc_debug_max_replay, Opt_fc_debug_force
1718 static const struct constant_table ext4_param_errors[] = {
1719 {"continue", EXT4_MOUNT_ERRORS_CONT},
1720 {"panic", EXT4_MOUNT_ERRORS_PANIC},
1721 {"remount-ro", EXT4_MOUNT_ERRORS_RO},
1725 static const struct constant_table ext4_param_data[] = {
1726 {"journal", EXT4_MOUNT_JOURNAL_DATA},
1727 {"ordered", EXT4_MOUNT_ORDERED_DATA},
1728 {"writeback", EXT4_MOUNT_WRITEBACK_DATA},
1732 static const struct constant_table ext4_param_data_err[] = {
1733 {"abort", Opt_data_err_abort},
1734 {"ignore", Opt_data_err_ignore},
1738 static const struct constant_table ext4_param_jqfmt[] = {
1739 {"vfsold", QFMT_VFS_OLD},
1740 {"vfsv0", QFMT_VFS_V0},
1741 {"vfsv1", QFMT_VFS_V1},
1745 static const struct constant_table ext4_param_dax[] = {
1746 {"always", Opt_dax_always},
1747 {"inode", Opt_dax_inode},
1748 {"never", Opt_dax_never},
1752 /* String parameter that allows empty argument */
1753 #define fsparam_string_empty(NAME, OPT) \
1754 __fsparam(fs_param_is_string, NAME, OPT, fs_param_can_be_empty, NULL)
1757 * Mount option specification
1758 * We don't use fsparam_flag_no because of the way we set the
1759 * options and the way we show them in _ext4_show_options(). To
1760 * keep the changes to a minimum, let's keep the negative options
1763 static const struct fs_parameter_spec ext4_param_specs[] = {
1764 fsparam_flag ("bsddf", Opt_bsd_df),
1765 fsparam_flag ("minixdf", Opt_minix_df),
1766 fsparam_flag ("grpid", Opt_grpid),
1767 fsparam_flag ("bsdgroups", Opt_grpid),
1768 fsparam_flag ("nogrpid", Opt_nogrpid),
1769 fsparam_flag ("sysvgroups", Opt_nogrpid),
1770 fsparam_u32 ("resgid", Opt_resgid),
1771 fsparam_u32 ("resuid", Opt_resuid),
1772 fsparam_u32 ("sb", Opt_sb),
1773 fsparam_enum ("errors", Opt_errors, ext4_param_errors),
1774 fsparam_flag ("nouid32", Opt_nouid32),
1775 fsparam_flag ("debug", Opt_debug),
1776 fsparam_flag ("oldalloc", Opt_removed),
1777 fsparam_flag ("orlov", Opt_removed),
1778 fsparam_flag ("user_xattr", Opt_user_xattr),
1779 fsparam_flag ("nouser_xattr", Opt_nouser_xattr),
1780 fsparam_flag ("acl", Opt_acl),
1781 fsparam_flag ("noacl", Opt_noacl),
1782 fsparam_flag ("norecovery", Opt_noload),
1783 fsparam_flag ("noload", Opt_noload),
1784 fsparam_flag ("bh", Opt_removed),
1785 fsparam_flag ("nobh", Opt_removed),
1786 fsparam_u32 ("commit", Opt_commit),
1787 fsparam_u32 ("min_batch_time", Opt_min_batch_time),
1788 fsparam_u32 ("max_batch_time", Opt_max_batch_time),
1789 fsparam_u32 ("journal_dev", Opt_journal_dev),
1790 fsparam_bdev ("journal_path", Opt_journal_path),
1791 fsparam_flag ("journal_checksum", Opt_journal_checksum),
1792 fsparam_flag ("nojournal_checksum", Opt_nojournal_checksum),
1793 fsparam_flag ("journal_async_commit",Opt_journal_async_commit),
1794 fsparam_flag ("abort", Opt_abort),
1795 fsparam_enum ("data", Opt_data, ext4_param_data),
1796 fsparam_enum ("data_err", Opt_data_err,
1797 ext4_param_data_err),
1798 fsparam_string_empty
1799 ("usrjquota", Opt_usrjquota),
1800 fsparam_string_empty
1801 ("grpjquota", Opt_grpjquota),
1802 fsparam_enum ("jqfmt", Opt_jqfmt, ext4_param_jqfmt),
1803 fsparam_flag ("grpquota", Opt_grpquota),
1804 fsparam_flag ("quota", Opt_quota),
1805 fsparam_flag ("noquota", Opt_noquota),
1806 fsparam_flag ("usrquota", Opt_usrquota),
1807 fsparam_flag ("prjquota", Opt_prjquota),
1808 fsparam_flag ("barrier", Opt_barrier),
1809 fsparam_u32 ("barrier", Opt_barrier),
1810 fsparam_flag ("nobarrier", Opt_nobarrier),
1811 fsparam_flag ("i_version", Opt_i_version),
1812 fsparam_flag ("dax", Opt_dax),
1813 fsparam_enum ("dax", Opt_dax_type, ext4_param_dax),
1814 fsparam_u32 ("stripe", Opt_stripe),
1815 fsparam_flag ("delalloc", Opt_delalloc),
1816 fsparam_flag ("nodelalloc", Opt_nodelalloc),
1817 fsparam_flag ("warn_on_error", Opt_warn_on_error),
1818 fsparam_flag ("nowarn_on_error", Opt_nowarn_on_error),
1819 fsparam_u32 ("debug_want_extra_isize",
1820 Opt_debug_want_extra_isize),
1821 fsparam_flag ("mblk_io_submit", Opt_removed),
1822 fsparam_flag ("nomblk_io_submit", Opt_removed),
1823 fsparam_flag ("block_validity", Opt_block_validity),
1824 fsparam_flag ("noblock_validity", Opt_noblock_validity),
1825 fsparam_u32 ("inode_readahead_blks",
1826 Opt_inode_readahead_blks),
1827 fsparam_u32 ("journal_ioprio", Opt_journal_ioprio),
1828 fsparam_u32 ("auto_da_alloc", Opt_auto_da_alloc),
1829 fsparam_flag ("auto_da_alloc", Opt_auto_da_alloc),
1830 fsparam_flag ("noauto_da_alloc", Opt_noauto_da_alloc),
1831 fsparam_flag ("dioread_nolock", Opt_dioread_nolock),
1832 fsparam_flag ("nodioread_nolock", Opt_dioread_lock),
1833 fsparam_flag ("dioread_lock", Opt_dioread_lock),
1834 fsparam_flag ("discard", Opt_discard),
1835 fsparam_flag ("nodiscard", Opt_nodiscard),
1836 fsparam_u32 ("init_itable", Opt_init_itable),
1837 fsparam_flag ("init_itable", Opt_init_itable),
1838 fsparam_flag ("noinit_itable", Opt_noinit_itable),
1839 #ifdef CONFIG_EXT4_DEBUG
1840 fsparam_flag ("fc_debug_force", Opt_fc_debug_force),
1841 fsparam_u32 ("fc_debug_max_replay", Opt_fc_debug_max_replay),
1843 fsparam_u32 ("max_dir_size_kb", Opt_max_dir_size_kb),
1844 fsparam_flag ("test_dummy_encryption",
1845 Opt_test_dummy_encryption),
1846 fsparam_string ("test_dummy_encryption",
1847 Opt_test_dummy_encryption),
1848 fsparam_flag ("inlinecrypt", Opt_inlinecrypt),
1849 fsparam_flag ("nombcache", Opt_nombcache),
1850 fsparam_flag ("no_mbcache", Opt_nombcache), /* for backward compatibility */
1851 fsparam_flag ("prefetch_block_bitmaps",
1853 fsparam_flag ("no_prefetch_block_bitmaps",
1854 Opt_no_prefetch_block_bitmaps),
1855 fsparam_s32 ("mb_optimize_scan", Opt_mb_optimize_scan),
1856 fsparam_string ("check", Opt_removed), /* mount option from ext2/3 */
1857 fsparam_flag ("nocheck", Opt_removed), /* mount option from ext2/3 */
1858 fsparam_flag ("reservation", Opt_removed), /* mount option from ext2/3 */
1859 fsparam_flag ("noreservation", Opt_removed), /* mount option from ext2/3 */
1860 fsparam_u32 ("journal", Opt_removed), /* mount option from ext2/3 */
1864 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1865 #define DEFAULT_MB_OPTIMIZE_SCAN (-1)
1867 static const char deprecated_msg[] =
1868 "Mount option \"%s\" will be removed by %s\n"
1869 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1871 #define MOPT_SET 0x0001
1872 #define MOPT_CLEAR 0x0002
1873 #define MOPT_NOSUPPORT 0x0004
1874 #define MOPT_EXPLICIT 0x0008
1877 #define MOPT_QFMT 0x0010
1879 #define MOPT_Q MOPT_NOSUPPORT
1880 #define MOPT_QFMT MOPT_NOSUPPORT
1882 #define MOPT_NO_EXT2 0x0020
1883 #define MOPT_NO_EXT3 0x0040
1884 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1885 #define MOPT_SKIP 0x0080
1886 #define MOPT_2 0x0100
1888 static const struct mount_opts {
1892 } ext4_mount_opts[] = {
1893 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1894 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1895 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1896 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1897 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1898 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1899 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1900 MOPT_EXT4_ONLY | MOPT_SET},
1901 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1902 MOPT_EXT4_ONLY | MOPT_CLEAR},
1903 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1904 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1905 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1906 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1907 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1908 MOPT_EXT4_ONLY | MOPT_CLEAR},
1909 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1910 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1911 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1912 MOPT_EXT4_ONLY | MOPT_CLEAR},
1913 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1914 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1915 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1916 EXT4_MOUNT_JOURNAL_CHECKSUM),
1917 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1918 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1919 {Opt_data_err, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_NO_EXT2},
1920 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1921 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1922 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1923 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1924 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1925 {Opt_dax_type, 0, MOPT_EXT4_ONLY},
1926 {Opt_journal_dev, 0, MOPT_NO_EXT2},
1927 {Opt_journal_path, 0, MOPT_NO_EXT2},
1928 {Opt_journal_ioprio, 0, MOPT_NO_EXT2},
1929 {Opt_data, 0, MOPT_NO_EXT2},
1930 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1931 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1932 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1933 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1934 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1936 {Opt_acl, 0, MOPT_NOSUPPORT},
1937 {Opt_noacl, 0, MOPT_NOSUPPORT},
1939 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1940 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1941 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1942 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1944 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1946 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1948 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1949 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1950 MOPT_CLEAR | MOPT_Q},
1951 {Opt_usrjquota, 0, MOPT_Q},
1952 {Opt_grpjquota, 0, MOPT_Q},
1953 {Opt_jqfmt, 0, MOPT_QFMT},
1954 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1955 {Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS,
1957 #ifdef CONFIG_EXT4_DEBUG
1958 {Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
1959 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
1964 #if IS_ENABLED(CONFIG_UNICODE)
1965 static const struct ext4_sb_encodings {
1968 unsigned int version;
1969 } ext4_sb_encoding_map[] = {
1970 {EXT4_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)},
1973 static const struct ext4_sb_encodings *
1974 ext4_sb_read_encoding(const struct ext4_super_block *es)
1976 __u16 magic = le16_to_cpu(es->s_encoding);
1979 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
1980 if (magic == ext4_sb_encoding_map[i].magic)
1981 return &ext4_sb_encoding_map[i];
1987 static int ext4_set_test_dummy_encryption(struct super_block *sb, char *arg)
1989 #ifdef CONFIG_FS_ENCRYPTION
1990 struct ext4_sb_info *sbi = EXT4_SB(sb);
1993 err = fscrypt_set_test_dummy_encryption(sb, arg,
1994 &sbi->s_dummy_enc_policy);
1996 ext4_msg(sb, KERN_WARNING,
1997 "Error while setting test dummy encryption [%d]", err);
2000 ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
2005 #define EXT4_SPEC_JQUOTA (1 << 0)
2006 #define EXT4_SPEC_JQFMT (1 << 1)
2007 #define EXT4_SPEC_DATAJ (1 << 2)
2008 #define EXT4_SPEC_SB_BLOCK (1 << 3)
2009 #define EXT4_SPEC_JOURNAL_DEV (1 << 4)
2010 #define EXT4_SPEC_JOURNAL_IOPRIO (1 << 5)
2011 #define EXT4_SPEC_DUMMY_ENCRYPTION (1 << 6)
2012 #define EXT4_SPEC_s_want_extra_isize (1 << 7)
2013 #define EXT4_SPEC_s_max_batch_time (1 << 8)
2014 #define EXT4_SPEC_s_min_batch_time (1 << 9)
2015 #define EXT4_SPEC_s_inode_readahead_blks (1 << 10)
2016 #define EXT4_SPEC_s_li_wait_mult (1 << 11)
2017 #define EXT4_SPEC_s_max_dir_size_kb (1 << 12)
2018 #define EXT4_SPEC_s_stripe (1 << 13)
2019 #define EXT4_SPEC_s_resuid (1 << 14)
2020 #define EXT4_SPEC_s_resgid (1 << 15)
2021 #define EXT4_SPEC_s_commit_interval (1 << 16)
2022 #define EXT4_SPEC_s_fc_debug_max_replay (1 << 17)
2023 #define EXT4_SPEC_s_sb_block (1 << 18)
2024 #define EXT4_SPEC_mb_optimize_scan (1 << 19)
2026 struct ext4_fs_context {
2027 char *s_qf_names[EXT4_MAXQUOTAS];
2028 char *test_dummy_enc_arg;
2029 int s_jquota_fmt; /* Format of quota to use */
2030 #ifdef CONFIG_EXT4_DEBUG
2031 int s_fc_debug_max_replay;
2033 unsigned short qname_spec;
2034 unsigned long vals_s_flags; /* Bits to set in s_flags */
2035 unsigned long mask_s_flags; /* Bits changed in s_flags */
2036 unsigned long journal_devnum;
2037 unsigned long s_commit_interval;
2038 unsigned long s_stripe;
2039 unsigned int s_inode_readahead_blks;
2040 unsigned int s_want_extra_isize;
2041 unsigned int s_li_wait_mult;
2042 unsigned int s_max_dir_size_kb;
2043 unsigned int journal_ioprio;
2044 unsigned int vals_s_mount_opt;
2045 unsigned int mask_s_mount_opt;
2046 unsigned int vals_s_mount_opt2;
2047 unsigned int mask_s_mount_opt2;
2048 unsigned long vals_s_mount_flags;
2049 unsigned long mask_s_mount_flags;
2050 unsigned int opt_flags; /* MOPT flags */
2052 u32 s_max_batch_time;
2053 u32 s_min_batch_time;
2056 ext4_fsblk_t s_sb_block;
2059 static void ext4_fc_free(struct fs_context *fc)
2061 struct ext4_fs_context *ctx = fc->fs_private;
2067 for (i = 0; i < EXT4_MAXQUOTAS; i++)
2068 kfree(ctx->s_qf_names[i]);
2070 kfree(ctx->test_dummy_enc_arg);
2074 int ext4_init_fs_context(struct fs_context *fc)
2076 struct ext4_fs_context *ctx;
2078 ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2082 fc->fs_private = ctx;
2083 fc->ops = &ext4_context_ops;
2090 * Note the name of the specified quota file.
2092 static int note_qf_name(struct fs_context *fc, int qtype,
2093 struct fs_parameter *param)
2095 struct ext4_fs_context *ctx = fc->fs_private;
2098 if (param->size < 1) {
2099 ext4_msg(NULL, KERN_ERR, "Missing quota name");
2102 if (strchr(param->string, '/')) {
2103 ext4_msg(NULL, KERN_ERR,
2104 "quotafile must be on filesystem root");
2107 if (ctx->s_qf_names[qtype]) {
2108 if (strcmp(ctx->s_qf_names[qtype], param->string) != 0) {
2109 ext4_msg(NULL, KERN_ERR,
2110 "%s quota file already specified",
2117 qname = kmemdup_nul(param->string, param->size, GFP_KERNEL);
2119 ext4_msg(NULL, KERN_ERR,
2120 "Not enough memory for storing quotafile name");
2123 ctx->s_qf_names[qtype] = qname;
2124 ctx->qname_spec |= 1 << qtype;
2125 ctx->spec |= EXT4_SPEC_JQUOTA;
2130 * Clear the name of the specified quota file.
2132 static int unnote_qf_name(struct fs_context *fc, int qtype)
2134 struct ext4_fs_context *ctx = fc->fs_private;
2136 if (ctx->s_qf_names[qtype])
2137 kfree(ctx->s_qf_names[qtype]);
2139 ctx->s_qf_names[qtype] = NULL;
2140 ctx->qname_spec |= 1 << qtype;
2141 ctx->spec |= EXT4_SPEC_JQUOTA;
2146 #define EXT4_SET_CTX(name) \
2147 static inline void ctx_set_##name(struct ext4_fs_context *ctx, \
2148 unsigned long flag) \
2150 ctx->mask_s_##name |= flag; \
2151 ctx->vals_s_##name |= flag; \
2154 #define EXT4_CLEAR_CTX(name) \
2155 static inline void ctx_clear_##name(struct ext4_fs_context *ctx, \
2156 unsigned long flag) \
2158 ctx->mask_s_##name |= flag; \
2159 ctx->vals_s_##name &= ~flag; \
2162 #define EXT4_TEST_CTX(name) \
2163 static inline unsigned long \
2164 ctx_test_##name(struct ext4_fs_context *ctx, unsigned long flag) \
2166 return (ctx->vals_s_##name & flag); \
2169 EXT4_SET_CTX(flags); /* set only */
2170 EXT4_SET_CTX(mount_opt);
2171 EXT4_CLEAR_CTX(mount_opt);
2172 EXT4_TEST_CTX(mount_opt);
2173 EXT4_SET_CTX(mount_opt2);
2174 EXT4_CLEAR_CTX(mount_opt2);
2175 EXT4_TEST_CTX(mount_opt2);
2177 static inline void ctx_set_mount_flag(struct ext4_fs_context *ctx, int bit)
2179 set_bit(bit, &ctx->mask_s_mount_flags);
2180 set_bit(bit, &ctx->vals_s_mount_flags);
2183 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param)
2185 struct ext4_fs_context *ctx = fc->fs_private;
2186 struct fs_parse_result result;
2187 const struct mount_opts *m;
2193 token = fs_parse(fc, ext4_param_specs, param, &result);
2196 is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2198 for (m = ext4_mount_opts; m->token != Opt_err; m++)
2199 if (token == m->token)
2202 ctx->opt_flags |= m->flags;
2204 if (m->flags & MOPT_EXPLICIT) {
2205 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
2206 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_EXPLICIT_DELALLOC);
2207 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
2208 ctx_set_mount_opt2(ctx,
2209 EXT4_MOUNT2_EXPLICIT_JOURNAL_CHECKSUM);
2214 if (m->flags & MOPT_NOSUPPORT) {
2215 ext4_msg(NULL, KERN_ERR, "%s option not supported",
2223 if (!*param->string)
2224 return unnote_qf_name(fc, USRQUOTA);
2226 return note_qf_name(fc, USRQUOTA, param);
2228 if (!*param->string)
2229 return unnote_qf_name(fc, GRPQUOTA);
2231 return note_qf_name(fc, GRPQUOTA, param);
2234 case Opt_nouser_xattr:
2235 ext4_msg(NULL, KERN_WARNING, deprecated_msg, param->key, "3.5");
2238 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2239 ext4_msg(NULL, KERN_WARNING,
2240 "Ignoring %s option on remount", param->key);
2242 ctx->s_sb_block = result.uint_32;
2243 ctx->spec |= EXT4_SPEC_s_sb_block;
2247 ext4_msg(NULL, KERN_WARNING, "Ignoring removed %s option",
2251 ctx_set_mount_flag(ctx, EXT4_MF_FS_ABORTED);
2254 ext4_msg(NULL, KERN_WARNING, deprecated_msg, param->key, "5.20");
2255 ext4_msg(NULL, KERN_WARNING, "Use iversion instead\n");
2256 ctx_set_flags(ctx, SB_I_VERSION);
2258 case Opt_inlinecrypt:
2259 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
2260 ctx_set_flags(ctx, SB_INLINECRYPT);
2262 ext4_msg(NULL, KERN_ERR, "inline encryption not supported");
2266 ctx_clear_mount_opt(ctx, EXT4_MOUNT_ERRORS_MASK);
2267 ctx_set_mount_opt(ctx, result.uint_32);
2271 ctx->s_jquota_fmt = result.uint_32;
2272 ctx->spec |= EXT4_SPEC_JQFMT;
2276 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2277 ctx_set_mount_opt(ctx, result.uint_32);
2278 ctx->spec |= EXT4_SPEC_DATAJ;
2281 if (result.uint_32 == 0)
2282 ctx->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE;
2283 else if (result.uint_32 > INT_MAX / HZ) {
2284 ext4_msg(NULL, KERN_ERR,
2285 "Invalid commit interval %d, "
2286 "must be smaller than %d",
2287 result.uint_32, INT_MAX / HZ);
2290 ctx->s_commit_interval = HZ * result.uint_32;
2291 ctx->spec |= EXT4_SPEC_s_commit_interval;
2293 case Opt_debug_want_extra_isize:
2294 if ((result.uint_32 & 1) || (result.uint_32 < 4)) {
2295 ext4_msg(NULL, KERN_ERR,
2296 "Invalid want_extra_isize %d", result.uint_32);
2299 ctx->s_want_extra_isize = result.uint_32;
2300 ctx->spec |= EXT4_SPEC_s_want_extra_isize;
2302 case Opt_max_batch_time:
2303 ctx->s_max_batch_time = result.uint_32;
2304 ctx->spec |= EXT4_SPEC_s_max_batch_time;
2306 case Opt_min_batch_time:
2307 ctx->s_min_batch_time = result.uint_32;
2308 ctx->spec |= EXT4_SPEC_s_min_batch_time;
2310 case Opt_inode_readahead_blks:
2311 if (result.uint_32 &&
2312 (result.uint_32 > (1 << 30) ||
2313 !is_power_of_2(result.uint_32))) {
2314 ext4_msg(NULL, KERN_ERR,
2315 "EXT4-fs: inode_readahead_blks must be "
2316 "0 or a power of 2 smaller than 2^31");
2319 ctx->s_inode_readahead_blks = result.uint_32;
2320 ctx->spec |= EXT4_SPEC_s_inode_readahead_blks;
2322 case Opt_init_itable:
2323 ctx_set_mount_opt(ctx, EXT4_MOUNT_INIT_INODE_TABLE);
2324 ctx->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
2325 if (param->type == fs_value_is_string)
2326 ctx->s_li_wait_mult = result.uint_32;
2327 ctx->spec |= EXT4_SPEC_s_li_wait_mult;
2329 case Opt_max_dir_size_kb:
2330 ctx->s_max_dir_size_kb = result.uint_32;
2331 ctx->spec |= EXT4_SPEC_s_max_dir_size_kb;
2333 #ifdef CONFIG_EXT4_DEBUG
2334 case Opt_fc_debug_max_replay:
2335 ctx->s_fc_debug_max_replay = result.uint_32;
2336 ctx->spec |= EXT4_SPEC_s_fc_debug_max_replay;
2340 ctx->s_stripe = result.uint_32;
2341 ctx->spec |= EXT4_SPEC_s_stripe;
2344 uid = make_kuid(current_user_ns(), result.uint_32);
2345 if (!uid_valid(uid)) {
2346 ext4_msg(NULL, KERN_ERR, "Invalid uid value %d",
2350 ctx->s_resuid = uid;
2351 ctx->spec |= EXT4_SPEC_s_resuid;
2354 gid = make_kgid(current_user_ns(), result.uint_32);
2355 if (!gid_valid(gid)) {
2356 ext4_msg(NULL, KERN_ERR, "Invalid gid value %d",
2360 ctx->s_resgid = gid;
2361 ctx->spec |= EXT4_SPEC_s_resgid;
2363 case Opt_journal_dev:
2365 ext4_msg(NULL, KERN_ERR,
2366 "Cannot specify journal on remount");
2369 ctx->journal_devnum = result.uint_32;
2370 ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2372 case Opt_journal_path:
2374 struct inode *journal_inode;
2379 ext4_msg(NULL, KERN_ERR,
2380 "Cannot specify journal on remount");
2384 error = fs_lookup_param(fc, param, 1, &path);
2386 ext4_msg(NULL, KERN_ERR, "error: could not find "
2387 "journal device path");
2391 journal_inode = d_inode(path.dentry);
2392 ctx->journal_devnum = new_encode_dev(journal_inode->i_rdev);
2393 ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2397 case Opt_journal_ioprio:
2398 if (result.uint_32 > 7) {
2399 ext4_msg(NULL, KERN_ERR, "Invalid journal IO priority"
2403 ctx->journal_ioprio =
2404 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, result.uint_32);
2405 ctx->spec |= EXT4_SPEC_JOURNAL_IOPRIO;
2407 case Opt_test_dummy_encryption:
2408 #ifdef CONFIG_FS_ENCRYPTION
2409 if (param->type == fs_value_is_flag) {
2410 ctx->spec |= EXT4_SPEC_DUMMY_ENCRYPTION;
2411 ctx->test_dummy_enc_arg = NULL;
2414 if (*param->string &&
2415 !(!strcmp(param->string, "v1") ||
2416 !strcmp(param->string, "v2"))) {
2417 ext4_msg(NULL, KERN_WARNING,
2418 "Value of option \"%s\" is unrecognized",
2422 ctx->spec |= EXT4_SPEC_DUMMY_ENCRYPTION;
2423 ctx->test_dummy_enc_arg = kmemdup_nul(param->string, param->size,
2426 ext4_msg(NULL, KERN_WARNING,
2427 "Test dummy encryption mount option ignored");
2432 #ifdef CONFIG_FS_DAX
2434 int type = (token == Opt_dax) ?
2435 Opt_dax : result.uint_32;
2439 case Opt_dax_always:
2440 ctx_set_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2441 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2444 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2445 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2448 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2449 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2450 /* Strictly for printing options */
2451 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE);
2457 ext4_msg(NULL, KERN_INFO, "dax option not supported");
2461 if (result.uint_32 == Opt_data_err_abort)
2462 ctx_set_mount_opt(ctx, m->mount_opt);
2463 else if (result.uint_32 == Opt_data_err_ignore)
2464 ctx_clear_mount_opt(ctx, m->mount_opt);
2466 case Opt_mb_optimize_scan:
2467 if (result.int_32 == 1) {
2468 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2469 ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2470 } else if (result.int_32 == 0) {
2471 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2472 ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2474 ext4_msg(NULL, KERN_WARNING,
2475 "mb_optimize_scan should be set to 0 or 1.");
2482 * At this point we should only be getting options requiring MOPT_SET,
2483 * or MOPT_CLEAR. Anything else is a bug
2485 if (m->token == Opt_err) {
2486 ext4_msg(NULL, KERN_WARNING, "buggy handling of option %s",
2493 unsigned int set = 0;
2495 if ((param->type == fs_value_is_flag) ||
2499 if (m->flags & MOPT_CLEAR)
2501 else if (unlikely(!(m->flags & MOPT_SET))) {
2502 ext4_msg(NULL, KERN_WARNING,
2503 "buggy handling of option %s",
2508 if (m->flags & MOPT_2) {
2510 ctx_set_mount_opt2(ctx, m->mount_opt);
2512 ctx_clear_mount_opt2(ctx, m->mount_opt);
2515 ctx_set_mount_opt(ctx, m->mount_opt);
2517 ctx_clear_mount_opt(ctx, m->mount_opt);
2524 static int parse_options(struct fs_context *fc, char *options)
2526 struct fs_parameter param;
2533 while ((key = strsep(&options, ",")) != NULL) {
2536 char *value = strchr(key, '=');
2538 param.type = fs_value_is_flag;
2539 param.string = NULL;
2546 v_len = strlen(value);
2547 param.string = kmemdup_nul(value, v_len,
2551 param.type = fs_value_is_string;
2557 ret = ext4_parse_param(fc, ¶m);
2559 kfree(param.string);
2565 ret = ext4_validate_options(fc);
2572 static int parse_apply_sb_mount_options(struct super_block *sb,
2573 struct ext4_fs_context *m_ctx)
2575 struct ext4_sb_info *sbi = EXT4_SB(sb);
2576 char *s_mount_opts = NULL;
2577 struct ext4_fs_context *s_ctx = NULL;
2578 struct fs_context *fc = NULL;
2581 if (!sbi->s_es->s_mount_opts[0])
2584 s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
2585 sizeof(sbi->s_es->s_mount_opts),
2590 fc = kzalloc(sizeof(struct fs_context), GFP_KERNEL);
2594 s_ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2598 fc->fs_private = s_ctx;
2599 fc->s_fs_info = sbi;
2601 ret = parse_options(fc, s_mount_opts);
2605 ret = ext4_check_opt_consistency(fc, sb);
2608 ext4_msg(sb, KERN_WARNING,
2609 "failed to parse options in superblock: %s",
2615 if (s_ctx->spec & EXT4_SPEC_JOURNAL_DEV)
2616 m_ctx->journal_devnum = s_ctx->journal_devnum;
2617 if (s_ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)
2618 m_ctx->journal_ioprio = s_ctx->journal_ioprio;
2620 ret = ext4_apply_options(fc, sb);
2625 kfree(s_mount_opts);
2629 static void ext4_apply_quota_options(struct fs_context *fc,
2630 struct super_block *sb)
2633 bool quota_feature = ext4_has_feature_quota(sb);
2634 struct ext4_fs_context *ctx = fc->fs_private;
2635 struct ext4_sb_info *sbi = EXT4_SB(sb);
2642 if (ctx->spec & EXT4_SPEC_JQUOTA) {
2643 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2644 if (!(ctx->qname_spec & (1 << i)))
2647 qname = ctx->s_qf_names[i]; /* May be NULL */
2650 ctx->s_qf_names[i] = NULL;
2651 qname = rcu_replace_pointer(sbi->s_qf_names[i], qname,
2652 lockdep_is_held(&sb->s_umount));
2658 if (ctx->spec & EXT4_SPEC_JQFMT)
2659 sbi->s_jquota_fmt = ctx->s_jquota_fmt;
2664 * Check quota settings consistency.
2666 static int ext4_check_quota_consistency(struct fs_context *fc,
2667 struct super_block *sb)
2670 struct ext4_fs_context *ctx = fc->fs_private;
2671 struct ext4_sb_info *sbi = EXT4_SB(sb);
2672 bool quota_feature = ext4_has_feature_quota(sb);
2673 bool quota_loaded = sb_any_quota_loaded(sb);
2674 bool usr_qf_name, grp_qf_name, usrquota, grpquota;
2678 * We do the test below only for project quotas. 'usrquota' and
2679 * 'grpquota' mount options are allowed even without quota feature
2680 * to support legacy quotas in quota files.
2682 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_PRJQUOTA) &&
2683 !ext4_has_feature_project(sb)) {
2684 ext4_msg(NULL, KERN_ERR, "Project quota feature not enabled. "
2685 "Cannot enable project quota enforcement.");
2689 quota_flags = EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
2690 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA;
2692 ctx->mask_s_mount_opt & quota_flags &&
2693 !ctx_test_mount_opt(ctx, quota_flags))
2694 goto err_quota_change;
2696 if (ctx->spec & EXT4_SPEC_JQUOTA) {
2698 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2699 if (!(ctx->qname_spec & (1 << i)))
2703 !!sbi->s_qf_names[i] != !!ctx->s_qf_names[i])
2704 goto err_jquota_change;
2706 if (sbi->s_qf_names[i] && ctx->s_qf_names[i] &&
2707 strcmp(get_qf_name(sb, sbi, i),
2708 ctx->s_qf_names[i]) != 0)
2709 goto err_jquota_specified;
2712 if (quota_feature) {
2713 ext4_msg(NULL, KERN_INFO,
2714 "Journaled quota options ignored when "
2715 "QUOTA feature is enabled");
2720 if (ctx->spec & EXT4_SPEC_JQFMT) {
2721 if (sbi->s_jquota_fmt != ctx->s_jquota_fmt && quota_loaded)
2722 goto err_jquota_change;
2723 if (quota_feature) {
2724 ext4_msg(NULL, KERN_INFO, "Quota format mount options "
2725 "ignored when QUOTA feature is enabled");
2730 /* Make sure we don't mix old and new quota format */
2731 usr_qf_name = (get_qf_name(sb, sbi, USRQUOTA) ||
2732 ctx->s_qf_names[USRQUOTA]);
2733 grp_qf_name = (get_qf_name(sb, sbi, GRPQUOTA) ||
2734 ctx->s_qf_names[GRPQUOTA]);
2736 usrquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2737 test_opt(sb, USRQUOTA));
2739 grpquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) ||
2740 test_opt(sb, GRPQUOTA));
2743 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2747 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2751 if (usr_qf_name || grp_qf_name) {
2752 if (usrquota || grpquota) {
2753 ext4_msg(NULL, KERN_ERR, "old and new quota "
2758 if (!(ctx->spec & EXT4_SPEC_JQFMT || sbi->s_jquota_fmt)) {
2759 ext4_msg(NULL, KERN_ERR, "journaled quota format "
2768 ext4_msg(NULL, KERN_ERR,
2769 "Cannot change quota options when quota turned on");
2772 ext4_msg(NULL, KERN_ERR, "Cannot change journaled quota "
2773 "options when quota turned on");
2775 err_jquota_specified:
2776 ext4_msg(NULL, KERN_ERR, "%s quota file already specified",
2784 static int ext4_check_opt_consistency(struct fs_context *fc,
2785 struct super_block *sb)
2787 struct ext4_fs_context *ctx = fc->fs_private;
2788 struct ext4_sb_info *sbi = fc->s_fs_info;
2789 int is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2791 if ((ctx->opt_flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
2792 ext4_msg(NULL, KERN_ERR,
2793 "Mount option(s) incompatible with ext2");
2796 if ((ctx->opt_flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
2797 ext4_msg(NULL, KERN_ERR,
2798 "Mount option(s) incompatible with ext3");
2802 if (ctx->s_want_extra_isize >
2803 (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE)) {
2804 ext4_msg(NULL, KERN_ERR,
2805 "Invalid want_extra_isize %d",
2806 ctx->s_want_extra_isize);
2810 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DIOREAD_NOLOCK)) {
2812 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2813 if (blocksize < PAGE_SIZE)
2814 ext4_msg(NULL, KERN_WARNING, "Warning: mounting with an "
2815 "experimental mount option 'dioread_nolock' "
2816 "for blocksize < PAGE_SIZE");
2819 #ifdef CONFIG_FS_ENCRYPTION
2821 * This mount option is just for testing, and it's not worthwhile to
2822 * implement the extra complexity (e.g. RCU protection) that would be
2823 * needed to allow it to be set or changed during remount. We do allow
2824 * it to be specified during remount, but only if there is no change.
2826 if ((ctx->spec & EXT4_SPEC_DUMMY_ENCRYPTION) &&
2827 is_remount && !sbi->s_dummy_enc_policy.policy) {
2828 ext4_msg(NULL, KERN_WARNING,
2829 "Can't set test_dummy_encryption on remount");
2834 if ((ctx->spec & EXT4_SPEC_DATAJ) && is_remount) {
2835 if (!sbi->s_journal) {
2836 ext4_msg(NULL, KERN_WARNING,
2837 "Remounting file system with no journal "
2838 "so ignoring journalled data option");
2839 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2840 } else if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS) !=
2841 test_opt(sb, DATA_FLAGS)) {
2842 ext4_msg(NULL, KERN_ERR, "Cannot change data mode "
2849 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2850 (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) {
2851 ext4_msg(NULL, KERN_ERR, "can't mount with "
2852 "both data=journal and dax");
2856 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2857 (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2858 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2859 fail_dax_change_remount:
2860 ext4_msg(NULL, KERN_ERR, "can't change "
2861 "dax mount option while remounting");
2863 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER) &&
2864 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2865 (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) {
2866 goto fail_dax_change_remount;
2867 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE) &&
2868 ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2869 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2870 !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) {
2871 goto fail_dax_change_remount;
2875 return ext4_check_quota_consistency(fc, sb);
2878 static int ext4_apply_options(struct fs_context *fc, struct super_block *sb)
2880 struct ext4_fs_context *ctx = fc->fs_private;
2881 struct ext4_sb_info *sbi = fc->s_fs_info;
2884 sbi->s_mount_opt &= ~ctx->mask_s_mount_opt;
2885 sbi->s_mount_opt |= ctx->vals_s_mount_opt;
2886 sbi->s_mount_opt2 &= ~ctx->mask_s_mount_opt2;
2887 sbi->s_mount_opt2 |= ctx->vals_s_mount_opt2;
2888 sbi->s_mount_flags &= ~ctx->mask_s_mount_flags;
2889 sbi->s_mount_flags |= ctx->vals_s_mount_flags;
2890 sb->s_flags &= ~ctx->mask_s_flags;
2891 sb->s_flags |= ctx->vals_s_flags;
2894 * i_version differs from common mount option iversion so we have
2895 * to let vfs know that it was set, otherwise it would get cleared
2898 if (ctx->mask_s_flags & SB_I_VERSION)
2899 fc->sb_flags |= SB_I_VERSION;
2901 #define APPLY(X) ({ if (ctx->spec & EXT4_SPEC_##X) sbi->X = ctx->X; })
2902 APPLY(s_commit_interval);
2904 APPLY(s_max_batch_time);
2905 APPLY(s_min_batch_time);
2906 APPLY(s_want_extra_isize);
2907 APPLY(s_inode_readahead_blks);
2908 APPLY(s_max_dir_size_kb);
2909 APPLY(s_li_wait_mult);
2913 #ifdef CONFIG_EXT4_DEBUG
2914 APPLY(s_fc_debug_max_replay);
2917 ext4_apply_quota_options(fc, sb);
2919 if (ctx->spec & EXT4_SPEC_DUMMY_ENCRYPTION)
2920 ret = ext4_set_test_dummy_encryption(sb, ctx->test_dummy_enc_arg);
2926 static int ext4_validate_options(struct fs_context *fc)
2929 struct ext4_fs_context *ctx = fc->fs_private;
2930 char *usr_qf_name, *grp_qf_name;
2932 usr_qf_name = ctx->s_qf_names[USRQUOTA];
2933 grp_qf_name = ctx->s_qf_names[GRPQUOTA];
2935 if (usr_qf_name || grp_qf_name) {
2936 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) && usr_qf_name)
2937 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2939 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) && grp_qf_name)
2940 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2942 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2943 ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA)) {
2944 ext4_msg(NULL, KERN_ERR, "old and new quota "
2953 static inline void ext4_show_quota_options(struct seq_file *seq,
2954 struct super_block *sb)
2956 #if defined(CONFIG_QUOTA)
2957 struct ext4_sb_info *sbi = EXT4_SB(sb);
2958 char *usr_qf_name, *grp_qf_name;
2960 if (sbi->s_jquota_fmt) {
2963 switch (sbi->s_jquota_fmt) {
2974 seq_printf(seq, ",jqfmt=%s", fmtname);
2978 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2979 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2981 seq_show_option(seq, "usrjquota", usr_qf_name);
2983 seq_show_option(seq, "grpjquota", grp_qf_name);
2988 static const char *token2str(int token)
2990 const struct fs_parameter_spec *spec;
2992 for (spec = ext4_param_specs; spec->name != NULL; spec++)
2993 if (spec->opt == token && !spec->type)
3000 * - it's set to a non-default value OR
3001 * - if the per-sb default is different from the global default
3003 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
3006 struct ext4_sb_info *sbi = EXT4_SB(sb);
3007 struct ext4_super_block *es = sbi->s_es;
3008 int def_errors, def_mount_opt = sbi->s_def_mount_opt;
3009 const struct mount_opts *m;
3010 char sep = nodefs ? '\n' : ',';
3012 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
3013 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
3015 if (sbi->s_sb_block != 1)
3016 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
3018 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
3019 int want_set = m->flags & MOPT_SET;
3020 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
3021 m->flags & MOPT_SKIP)
3023 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
3024 continue; /* skip if same as the default */
3026 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
3027 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
3028 continue; /* select Opt_noFoo vs Opt_Foo */
3029 SEQ_OPTS_PRINT("%s", token2str(m->token));
3032 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
3033 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
3034 SEQ_OPTS_PRINT("resuid=%u",
3035 from_kuid_munged(&init_user_ns, sbi->s_resuid));
3036 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
3037 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
3038 SEQ_OPTS_PRINT("resgid=%u",
3039 from_kgid_munged(&init_user_ns, sbi->s_resgid));
3040 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
3041 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
3042 SEQ_OPTS_PUTS("errors=remount-ro");
3043 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
3044 SEQ_OPTS_PUTS("errors=continue");
3045 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
3046 SEQ_OPTS_PUTS("errors=panic");
3047 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
3048 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
3049 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
3050 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
3051 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
3052 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
3053 if (sb->s_flags & SB_I_VERSION)
3054 SEQ_OPTS_PUTS("i_version");
3055 if (nodefs || sbi->s_stripe)
3056 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
3057 if (nodefs || EXT4_MOUNT_DATA_FLAGS &
3058 (sbi->s_mount_opt ^ def_mount_opt)) {
3059 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
3060 SEQ_OPTS_PUTS("data=journal");
3061 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
3062 SEQ_OPTS_PUTS("data=ordered");
3063 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
3064 SEQ_OPTS_PUTS("data=writeback");
3067 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
3068 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
3069 sbi->s_inode_readahead_blks);
3071 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
3072 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
3073 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
3074 if (nodefs || sbi->s_max_dir_size_kb)
3075 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
3076 if (test_opt(sb, DATA_ERR_ABORT))
3077 SEQ_OPTS_PUTS("data_err=abort");
3079 fscrypt_show_test_dummy_encryption(seq, sep, sb);
3081 if (sb->s_flags & SB_INLINECRYPT)
3082 SEQ_OPTS_PUTS("inlinecrypt");
3084 if (test_opt(sb, DAX_ALWAYS)) {
3086 SEQ_OPTS_PUTS("dax");
3088 SEQ_OPTS_PUTS("dax=always");
3089 } else if (test_opt2(sb, DAX_NEVER)) {
3090 SEQ_OPTS_PUTS("dax=never");
3091 } else if (test_opt2(sb, DAX_INODE)) {
3092 SEQ_OPTS_PUTS("dax=inode");
3094 ext4_show_quota_options(seq, sb);
3098 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
3100 return _ext4_show_options(seq, root->d_sb, 0);
3103 int ext4_seq_options_show(struct seq_file *seq, void *offset)
3105 struct super_block *sb = seq->private;
3108 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
3109 rc = _ext4_show_options(seq, sb, 1);
3110 seq_puts(seq, "\n");
3114 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
3117 struct ext4_sb_info *sbi = EXT4_SB(sb);
3120 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
3121 ext4_msg(sb, KERN_ERR, "revision level too high, "
3122 "forcing read-only mode");
3128 if (!(sbi->s_mount_state & EXT4_VALID_FS))
3129 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
3130 "running e2fsck is recommended");
3131 else if (sbi->s_mount_state & EXT4_ERROR_FS)
3132 ext4_msg(sb, KERN_WARNING,
3133 "warning: mounting fs with errors, "
3134 "running e2fsck is recommended");
3135 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
3136 le16_to_cpu(es->s_mnt_count) >=
3137 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
3138 ext4_msg(sb, KERN_WARNING,
3139 "warning: maximal mount count reached, "
3140 "running e2fsck is recommended");
3141 else if (le32_to_cpu(es->s_checkinterval) &&
3142 (ext4_get_tstamp(es, s_lastcheck) +
3143 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
3144 ext4_msg(sb, KERN_WARNING,
3145 "warning: checktime reached, "
3146 "running e2fsck is recommended");
3147 if (!sbi->s_journal)
3148 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
3149 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
3150 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
3151 le16_add_cpu(&es->s_mnt_count, 1);
3152 ext4_update_tstamp(es, s_mtime);
3153 if (sbi->s_journal) {
3154 ext4_set_feature_journal_needs_recovery(sb);
3155 if (ext4_has_feature_orphan_file(sb))
3156 ext4_set_feature_orphan_present(sb);
3159 err = ext4_commit_super(sb);
3161 if (test_opt(sb, DEBUG))
3162 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
3163 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
3165 sbi->s_groups_count,
3166 EXT4_BLOCKS_PER_GROUP(sb),
3167 EXT4_INODES_PER_GROUP(sb),
3168 sbi->s_mount_opt, sbi->s_mount_opt2);
3172 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
3174 struct ext4_sb_info *sbi = EXT4_SB(sb);
3175 struct flex_groups **old_groups, **new_groups;
3178 if (!sbi->s_log_groups_per_flex)
3181 size = ext4_flex_group(sbi, ngroup - 1) + 1;
3182 if (size <= sbi->s_flex_groups_allocated)
3185 new_groups = kvzalloc(roundup_pow_of_two(size *
3186 sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
3188 ext4_msg(sb, KERN_ERR,
3189 "not enough memory for %d flex group pointers", size);
3192 for (i = sbi->s_flex_groups_allocated; i < size; i++) {
3193 new_groups[i] = kvzalloc(roundup_pow_of_two(
3194 sizeof(struct flex_groups)),
3196 if (!new_groups[i]) {
3197 for (j = sbi->s_flex_groups_allocated; j < i; j++)
3198 kvfree(new_groups[j]);
3200 ext4_msg(sb, KERN_ERR,
3201 "not enough memory for %d flex groups", size);
3206 old_groups = rcu_dereference(sbi->s_flex_groups);
3208 memcpy(new_groups, old_groups,
3209 (sbi->s_flex_groups_allocated *
3210 sizeof(struct flex_groups *)));
3212 rcu_assign_pointer(sbi->s_flex_groups, new_groups);
3213 sbi->s_flex_groups_allocated = size;
3215 ext4_kvfree_array_rcu(old_groups);
3219 static int ext4_fill_flex_info(struct super_block *sb)
3221 struct ext4_sb_info *sbi = EXT4_SB(sb);
3222 struct ext4_group_desc *gdp = NULL;
3223 struct flex_groups *fg;
3224 ext4_group_t flex_group;
3227 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
3228 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
3229 sbi->s_log_groups_per_flex = 0;
3233 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
3237 for (i = 0; i < sbi->s_groups_count; i++) {
3238 gdp = ext4_get_group_desc(sb, i, NULL);
3240 flex_group = ext4_flex_group(sbi, i);
3241 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
3242 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
3243 atomic64_add(ext4_free_group_clusters(sb, gdp),
3244 &fg->free_clusters);
3245 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
3253 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
3254 struct ext4_group_desc *gdp)
3256 int offset = offsetof(struct ext4_group_desc, bg_checksum);
3258 __le32 le_group = cpu_to_le32(block_group);
3259 struct ext4_sb_info *sbi = EXT4_SB(sb);
3261 if (ext4_has_metadata_csum(sbi->s_sb)) {
3262 /* Use new metadata_csum algorithm */
3264 __u16 dummy_csum = 0;
3266 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
3268 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
3269 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
3270 sizeof(dummy_csum));
3271 offset += sizeof(dummy_csum);
3272 if (offset < sbi->s_desc_size)
3273 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
3274 sbi->s_desc_size - offset);
3276 crc = csum32 & 0xFFFF;
3280 /* old crc16 code */
3281 if (!ext4_has_feature_gdt_csum(sb))
3284 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
3285 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
3286 crc = crc16(crc, (__u8 *)gdp, offset);
3287 offset += sizeof(gdp->bg_checksum); /* skip checksum */
3288 /* for checksum of struct ext4_group_desc do the rest...*/
3289 if (ext4_has_feature_64bit(sb) &&
3290 offset < le16_to_cpu(sbi->s_es->s_desc_size))
3291 crc = crc16(crc, (__u8 *)gdp + offset,
3292 le16_to_cpu(sbi->s_es->s_desc_size) -
3296 return cpu_to_le16(crc);
3299 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
3300 struct ext4_group_desc *gdp)
3302 if (ext4_has_group_desc_csum(sb) &&
3303 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
3309 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
3310 struct ext4_group_desc *gdp)
3312 if (!ext4_has_group_desc_csum(sb))
3314 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
3317 /* Called at mount-time, super-block is locked */
3318 static int ext4_check_descriptors(struct super_block *sb,
3319 ext4_fsblk_t sb_block,
3320 ext4_group_t *first_not_zeroed)
3322 struct ext4_sb_info *sbi = EXT4_SB(sb);
3323 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
3324 ext4_fsblk_t last_block;
3325 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
3326 ext4_fsblk_t block_bitmap;
3327 ext4_fsblk_t inode_bitmap;
3328 ext4_fsblk_t inode_table;
3329 int flexbg_flag = 0;
3330 ext4_group_t i, grp = sbi->s_groups_count;
3332 if (ext4_has_feature_flex_bg(sb))
3335 ext4_debug("Checking group descriptors");
3337 for (i = 0; i < sbi->s_groups_count; i++) {
3338 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
3340 if (i == sbi->s_groups_count - 1 || flexbg_flag)
3341 last_block = ext4_blocks_count(sbi->s_es) - 1;
3343 last_block = first_block +
3344 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
3346 if ((grp == sbi->s_groups_count) &&
3347 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3350 block_bitmap = ext4_block_bitmap(sb, gdp);
3351 if (block_bitmap == sb_block) {
3352 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3353 "Block bitmap for group %u overlaps "
3358 if (block_bitmap >= sb_block + 1 &&
3359 block_bitmap <= last_bg_block) {
3360 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3361 "Block bitmap for group %u overlaps "
3362 "block group descriptors", i);
3366 if (block_bitmap < first_block || block_bitmap > last_block) {
3367 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3368 "Block bitmap for group %u not in group "
3369 "(block %llu)!", i, block_bitmap);
3372 inode_bitmap = ext4_inode_bitmap(sb, gdp);
3373 if (inode_bitmap == sb_block) {
3374 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3375 "Inode bitmap for group %u overlaps "
3380 if (inode_bitmap >= sb_block + 1 &&
3381 inode_bitmap <= last_bg_block) {
3382 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3383 "Inode bitmap for group %u overlaps "
3384 "block group descriptors", i);
3388 if (inode_bitmap < first_block || inode_bitmap > last_block) {
3389 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3390 "Inode bitmap for group %u not in group "
3391 "(block %llu)!", i, inode_bitmap);
3394 inode_table = ext4_inode_table(sb, gdp);
3395 if (inode_table == sb_block) {
3396 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3397 "Inode table for group %u overlaps "
3402 if (inode_table >= sb_block + 1 &&
3403 inode_table <= last_bg_block) {
3404 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3405 "Inode table for group %u overlaps "
3406 "block group descriptors", i);
3410 if (inode_table < first_block ||
3411 inode_table + sbi->s_itb_per_group - 1 > last_block) {
3412 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3413 "Inode table for group %u not in group "
3414 "(block %llu)!", i, inode_table);
3417 ext4_lock_group(sb, i);
3418 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
3419 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3420 "Checksum for group %u failed (%u!=%u)",
3421 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
3422 gdp)), le16_to_cpu(gdp->bg_checksum));
3423 if (!sb_rdonly(sb)) {
3424 ext4_unlock_group(sb, i);
3428 ext4_unlock_group(sb, i);
3430 first_block += EXT4_BLOCKS_PER_GROUP(sb);
3432 if (NULL != first_not_zeroed)
3433 *first_not_zeroed = grp;
3438 * Maximal extent format file size.
3439 * Resulting logical blkno at s_maxbytes must fit in our on-disk
3440 * extent format containers, within a sector_t, and within i_blocks
3441 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
3442 * so that won't be a limiting factor.
3444 * However there is other limiting factor. We do store extents in the form
3445 * of starting block and length, hence the resulting length of the extent
3446 * covering maximum file size must fit into on-disk format containers as
3447 * well. Given that length is always by 1 unit bigger than max unit (because
3448 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
3450 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
3452 static loff_t ext4_max_size(int blkbits, int has_huge_files)
3455 loff_t upper_limit = MAX_LFS_FILESIZE;
3457 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
3459 if (!has_huge_files) {
3460 upper_limit = (1LL << 32) - 1;
3462 /* total blocks in file system block size */
3463 upper_limit >>= (blkbits - 9);
3464 upper_limit <<= blkbits;
3468 * 32-bit extent-start container, ee_block. We lower the maxbytes
3469 * by one fs block, so ee_len can cover the extent of maximum file
3472 res = (1LL << 32) - 1;
3475 /* Sanity check against vm- & vfs- imposed limits */
3476 if (res > upper_limit)
3483 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
3484 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
3485 * We need to be 1 filesystem block less than the 2^48 sector limit.
3487 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
3489 loff_t upper_limit, res = EXT4_NDIR_BLOCKS;
3491 unsigned int ppb = 1 << (bits - 2);
3494 * This is calculated to be the largest file size for a dense, block
3495 * mapped file such that the file's total number of 512-byte sectors,
3496 * including data and all indirect blocks, does not exceed (2^48 - 1).
3498 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3499 * number of 512-byte sectors of the file.
3501 if (!has_huge_files) {
3503 * !has_huge_files or implies that the inode i_block field
3504 * represents total file blocks in 2^32 512-byte sectors ==
3505 * size of vfs inode i_blocks * 8
3507 upper_limit = (1LL << 32) - 1;
3509 /* total blocks in file system block size */
3510 upper_limit >>= (bits - 9);
3514 * We use 48 bit ext4_inode i_blocks
3515 * With EXT4_HUGE_FILE_FL set the i_blocks
3516 * represent total number of blocks in
3517 * file system block size
3519 upper_limit = (1LL << 48) - 1;
3523 /* Compute how many blocks we can address by block tree */
3526 res += ((loff_t)ppb) * ppb * ppb;
3527 /* Compute how many metadata blocks are needed */
3529 meta_blocks += 1 + ppb;
3530 meta_blocks += 1 + ppb + ppb * ppb;
3531 /* Does block tree limit file size? */
3532 if (res + meta_blocks <= upper_limit)
3536 /* How many metadata blocks are needed for addressing upper_limit? */
3537 upper_limit -= EXT4_NDIR_BLOCKS;
3538 /* indirect blocks */
3541 /* double indirect blocks */
3542 if (upper_limit < ppb * ppb) {
3543 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb);
3547 meta_blocks += 1 + ppb;
3548 upper_limit -= ppb * ppb;
3549 /* tripple indirect blocks for the rest */
3550 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb) +
3551 DIV_ROUND_UP_ULL(upper_limit, ppb*ppb);
3555 if (res > MAX_LFS_FILESIZE)
3556 res = MAX_LFS_FILESIZE;
3561 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3562 ext4_fsblk_t logical_sb_block, int nr)
3564 struct ext4_sb_info *sbi = EXT4_SB(sb);
3565 ext4_group_t bg, first_meta_bg;
3568 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3570 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3571 return logical_sb_block + nr + 1;
3572 bg = sbi->s_desc_per_block * nr;
3573 if (ext4_bg_has_super(sb, bg))
3577 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3578 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
3579 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3582 if (sb->s_blocksize == 1024 && nr == 0 &&
3583 le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3586 return (has_super + ext4_group_first_block_no(sb, bg));
3590 * ext4_get_stripe_size: Get the stripe size.
3591 * @sbi: In memory super block info
3593 * If we have specified it via mount option, then
3594 * use the mount option value. If the value specified at mount time is
3595 * greater than the blocks per group use the super block value.
3596 * If the super block value is greater than blocks per group return 0.
3597 * Allocator needs it be less than blocks per group.
3600 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3602 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3603 unsigned long stripe_width =
3604 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3607 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3608 ret = sbi->s_stripe;
3609 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3611 else if (stride && stride <= sbi->s_blocks_per_group)
3617 * If the stripe width is 1, this makes no sense and
3618 * we set it to 0 to turn off stripe handling code.
3627 * Check whether this filesystem can be mounted based on
3628 * the features present and the RDONLY/RDWR mount requested.
3629 * Returns 1 if this filesystem can be mounted as requested,
3630 * 0 if it cannot be.
3632 int ext4_feature_set_ok(struct super_block *sb, int readonly)
3634 if (ext4_has_unknown_ext4_incompat_features(sb)) {
3635 ext4_msg(sb, KERN_ERR,
3636 "Couldn't mount because of "
3637 "unsupported optional features (%x)",
3638 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3639 ~EXT4_FEATURE_INCOMPAT_SUPP));
3643 #if !IS_ENABLED(CONFIG_UNICODE)
3644 if (ext4_has_feature_casefold(sb)) {
3645 ext4_msg(sb, KERN_ERR,
3646 "Filesystem with casefold feature cannot be "
3647 "mounted without CONFIG_UNICODE");
3655 if (ext4_has_feature_readonly(sb)) {
3656 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3657 sb->s_flags |= SB_RDONLY;
3661 /* Check that feature set is OK for a read-write mount */
3662 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3663 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3664 "unsupported optional features (%x)",
3665 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3666 ~EXT4_FEATURE_RO_COMPAT_SUPP));
3669 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3670 ext4_msg(sb, KERN_ERR,
3671 "Can't support bigalloc feature without "
3672 "extents feature\n");
3676 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3677 if (!readonly && (ext4_has_feature_quota(sb) ||
3678 ext4_has_feature_project(sb))) {
3679 ext4_msg(sb, KERN_ERR,
3680 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3683 #endif /* CONFIG_QUOTA */
3688 * This function is called once a day if we have errors logged
3689 * on the file system
3691 static void print_daily_error_info(struct timer_list *t)
3693 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3694 struct super_block *sb = sbi->s_sb;
3695 struct ext4_super_block *es = sbi->s_es;
3697 if (es->s_error_count)
3698 /* fsck newer than v1.41.13 is needed to clean this condition. */
3699 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3700 le32_to_cpu(es->s_error_count));
3701 if (es->s_first_error_time) {
3702 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3704 ext4_get_tstamp(es, s_first_error_time),
3705 (int) sizeof(es->s_first_error_func),
3706 es->s_first_error_func,
3707 le32_to_cpu(es->s_first_error_line));
3708 if (es->s_first_error_ino)
3709 printk(KERN_CONT ": inode %u",
3710 le32_to_cpu(es->s_first_error_ino));
3711 if (es->s_first_error_block)
3712 printk(KERN_CONT ": block %llu", (unsigned long long)
3713 le64_to_cpu(es->s_first_error_block));
3714 printk(KERN_CONT "\n");
3716 if (es->s_last_error_time) {
3717 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3719 ext4_get_tstamp(es, s_last_error_time),
3720 (int) sizeof(es->s_last_error_func),
3721 es->s_last_error_func,
3722 le32_to_cpu(es->s_last_error_line));
3723 if (es->s_last_error_ino)
3724 printk(KERN_CONT ": inode %u",
3725 le32_to_cpu(es->s_last_error_ino));
3726 if (es->s_last_error_block)
3727 printk(KERN_CONT ": block %llu", (unsigned long long)
3728 le64_to_cpu(es->s_last_error_block));
3729 printk(KERN_CONT "\n");
3731 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
3734 /* Find next suitable group and run ext4_init_inode_table */
3735 static int ext4_run_li_request(struct ext4_li_request *elr)
3737 struct ext4_group_desc *gdp = NULL;
3738 struct super_block *sb = elr->lr_super;
3739 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3740 ext4_group_t group = elr->lr_next_group;
3741 unsigned int prefetch_ios = 0;
3745 if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3746 elr->lr_next_group = ext4_mb_prefetch(sb, group,
3747 EXT4_SB(sb)->s_mb_prefetch, &prefetch_ios);
3749 ext4_mb_prefetch_fini(sb, elr->lr_next_group,
3751 trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group,
3753 if (group >= elr->lr_next_group) {
3755 if (elr->lr_first_not_zeroed != ngroups &&
3756 !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) {
3757 elr->lr_next_group = elr->lr_first_not_zeroed;
3758 elr->lr_mode = EXT4_LI_MODE_ITABLE;
3765 for (; group < ngroups; group++) {
3766 gdp = ext4_get_group_desc(sb, group, NULL);
3772 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3776 if (group >= ngroups)
3780 start_time = ktime_get_real_ns();
3781 ret = ext4_init_inode_table(sb, group,
3782 elr->lr_timeout ? 0 : 1);
3783 trace_ext4_lazy_itable_init(sb, group);
3784 if (elr->lr_timeout == 0) {
3785 elr->lr_timeout = nsecs_to_jiffies((ktime_get_real_ns() - start_time) *
3786 EXT4_SB(elr->lr_super)->s_li_wait_mult);
3788 elr->lr_next_sched = jiffies + elr->lr_timeout;
3789 elr->lr_next_group = group + 1;
3795 * Remove lr_request from the list_request and free the
3796 * request structure. Should be called with li_list_mtx held
3798 static void ext4_remove_li_request(struct ext4_li_request *elr)
3803 list_del(&elr->lr_request);
3804 EXT4_SB(elr->lr_super)->s_li_request = NULL;
3808 static void ext4_unregister_li_request(struct super_block *sb)
3810 mutex_lock(&ext4_li_mtx);
3811 if (!ext4_li_info) {
3812 mutex_unlock(&ext4_li_mtx);
3816 mutex_lock(&ext4_li_info->li_list_mtx);
3817 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3818 mutex_unlock(&ext4_li_info->li_list_mtx);
3819 mutex_unlock(&ext4_li_mtx);
3822 static struct task_struct *ext4_lazyinit_task;
3825 * This is the function where ext4lazyinit thread lives. It walks
3826 * through the request list searching for next scheduled filesystem.
3827 * When such a fs is found, run the lazy initialization request
3828 * (ext4_rn_li_request) and keep track of the time spend in this
3829 * function. Based on that time we compute next schedule time of
3830 * the request. When walking through the list is complete, compute
3831 * next waking time and put itself into sleep.
3833 static int ext4_lazyinit_thread(void *arg)
3835 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
3836 struct list_head *pos, *n;
3837 struct ext4_li_request *elr;
3838 unsigned long next_wakeup, cur;
3840 BUG_ON(NULL == eli);
3844 next_wakeup = MAX_JIFFY_OFFSET;
3846 mutex_lock(&eli->li_list_mtx);
3847 if (list_empty(&eli->li_request_list)) {
3848 mutex_unlock(&eli->li_list_mtx);
3851 list_for_each_safe(pos, n, &eli->li_request_list) {
3854 elr = list_entry(pos, struct ext4_li_request,
3857 if (time_before(jiffies, elr->lr_next_sched)) {
3858 if (time_before(elr->lr_next_sched, next_wakeup))
3859 next_wakeup = elr->lr_next_sched;
3862 if (down_read_trylock(&elr->lr_super->s_umount)) {
3863 if (sb_start_write_trylock(elr->lr_super)) {
3866 * We hold sb->s_umount, sb can not
3867 * be removed from the list, it is
3868 * now safe to drop li_list_mtx
3870 mutex_unlock(&eli->li_list_mtx);
3871 err = ext4_run_li_request(elr);
3872 sb_end_write(elr->lr_super);
3873 mutex_lock(&eli->li_list_mtx);
3876 up_read((&elr->lr_super->s_umount));
3878 /* error, remove the lazy_init job */
3880 ext4_remove_li_request(elr);
3884 elr->lr_next_sched = jiffies +
3886 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3888 if (time_before(elr->lr_next_sched, next_wakeup))
3889 next_wakeup = elr->lr_next_sched;
3891 mutex_unlock(&eli->li_list_mtx);
3896 if ((time_after_eq(cur, next_wakeup)) ||
3897 (MAX_JIFFY_OFFSET == next_wakeup)) {
3902 schedule_timeout_interruptible(next_wakeup - cur);
3904 if (kthread_should_stop()) {
3905 ext4_clear_request_list();
3912 * It looks like the request list is empty, but we need
3913 * to check it under the li_list_mtx lock, to prevent any
3914 * additions into it, and of course we should lock ext4_li_mtx
3915 * to atomically free the list and ext4_li_info, because at
3916 * this point another ext4 filesystem could be registering
3919 mutex_lock(&ext4_li_mtx);
3920 mutex_lock(&eli->li_list_mtx);
3921 if (!list_empty(&eli->li_request_list)) {
3922 mutex_unlock(&eli->li_list_mtx);
3923 mutex_unlock(&ext4_li_mtx);
3926 mutex_unlock(&eli->li_list_mtx);
3927 kfree(ext4_li_info);
3928 ext4_li_info = NULL;
3929 mutex_unlock(&ext4_li_mtx);
3934 static void ext4_clear_request_list(void)
3936 struct list_head *pos, *n;
3937 struct ext4_li_request *elr;
3939 mutex_lock(&ext4_li_info->li_list_mtx);
3940 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3941 elr = list_entry(pos, struct ext4_li_request,
3943 ext4_remove_li_request(elr);
3945 mutex_unlock(&ext4_li_info->li_list_mtx);
3948 static int ext4_run_lazyinit_thread(void)
3950 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3951 ext4_li_info, "ext4lazyinit");
3952 if (IS_ERR(ext4_lazyinit_task)) {
3953 int err = PTR_ERR(ext4_lazyinit_task);
3954 ext4_clear_request_list();
3955 kfree(ext4_li_info);
3956 ext4_li_info = NULL;
3957 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3958 "initialization thread\n",
3962 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3967 * Check whether it make sense to run itable init. thread or not.
3968 * If there is at least one uninitialized inode table, return
3969 * corresponding group number, else the loop goes through all
3970 * groups and return total number of groups.
3972 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3974 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3975 struct ext4_group_desc *gdp = NULL;
3977 if (!ext4_has_group_desc_csum(sb))
3980 for (group = 0; group < ngroups; group++) {
3981 gdp = ext4_get_group_desc(sb, group, NULL);
3985 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3992 static int ext4_li_info_new(void)
3994 struct ext4_lazy_init *eli = NULL;
3996 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
4000 INIT_LIST_HEAD(&eli->li_request_list);
4001 mutex_init(&eli->li_list_mtx);
4003 eli->li_state |= EXT4_LAZYINIT_QUIT;
4010 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
4013 struct ext4_li_request *elr;
4015 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
4020 elr->lr_first_not_zeroed = start;
4021 if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) {
4022 elr->lr_mode = EXT4_LI_MODE_ITABLE;
4023 elr->lr_next_group = start;
4025 elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
4029 * Randomize first schedule time of the request to
4030 * spread the inode table initialization requests
4033 elr->lr_next_sched = jiffies + (prandom_u32() %
4034 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
4038 int ext4_register_li_request(struct super_block *sb,
4039 ext4_group_t first_not_zeroed)
4041 struct ext4_sb_info *sbi = EXT4_SB(sb);
4042 struct ext4_li_request *elr = NULL;
4043 ext4_group_t ngroups = sbi->s_groups_count;
4046 mutex_lock(&ext4_li_mtx);
4047 if (sbi->s_li_request != NULL) {
4049 * Reset timeout so it can be computed again, because
4050 * s_li_wait_mult might have changed.
4052 sbi->s_li_request->lr_timeout = 0;
4056 if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) &&
4057 (first_not_zeroed == ngroups || sb_rdonly(sb) ||
4058 !test_opt(sb, INIT_INODE_TABLE)))
4061 elr = ext4_li_request_new(sb, first_not_zeroed);
4067 if (NULL == ext4_li_info) {
4068 ret = ext4_li_info_new();
4073 mutex_lock(&ext4_li_info->li_list_mtx);
4074 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
4075 mutex_unlock(&ext4_li_info->li_list_mtx);
4077 sbi->s_li_request = elr;
4079 * set elr to NULL here since it has been inserted to
4080 * the request_list and the removal and free of it is
4081 * handled by ext4_clear_request_list from now on.
4085 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
4086 ret = ext4_run_lazyinit_thread();
4091 mutex_unlock(&ext4_li_mtx);
4098 * We do not need to lock anything since this is called on
4101 static void ext4_destroy_lazyinit_thread(void)
4104 * If thread exited earlier
4105 * there's nothing to be done.
4107 if (!ext4_li_info || !ext4_lazyinit_task)
4110 kthread_stop(ext4_lazyinit_task);
4113 static int set_journal_csum_feature_set(struct super_block *sb)
4116 int compat, incompat;
4117 struct ext4_sb_info *sbi = EXT4_SB(sb);
4119 if (ext4_has_metadata_csum(sb)) {
4120 /* journal checksum v3 */
4122 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
4124 /* journal checksum v1 */
4125 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
4129 jbd2_journal_clear_features(sbi->s_journal,
4130 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
4131 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
4132 JBD2_FEATURE_INCOMPAT_CSUM_V2);
4133 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4134 ret = jbd2_journal_set_features(sbi->s_journal,
4136 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
4138 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
4139 ret = jbd2_journal_set_features(sbi->s_journal,
4142 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4143 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4145 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4146 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4153 * Note: calculating the overhead so we can be compatible with
4154 * historical BSD practice is quite difficult in the face of
4155 * clusters/bigalloc. This is because multiple metadata blocks from
4156 * different block group can end up in the same allocation cluster.
4157 * Calculating the exact overhead in the face of clustered allocation
4158 * requires either O(all block bitmaps) in memory or O(number of block
4159 * groups**2) in time. We will still calculate the superblock for
4160 * older file systems --- and if we come across with a bigalloc file
4161 * system with zero in s_overhead_clusters the estimate will be close to
4162 * correct especially for very large cluster sizes --- but for newer
4163 * file systems, it's better to calculate this figure once at mkfs
4164 * time, and store it in the superblock. If the superblock value is
4165 * present (even for non-bigalloc file systems), we will use it.
4167 static int count_overhead(struct super_block *sb, ext4_group_t grp,
4170 struct ext4_sb_info *sbi = EXT4_SB(sb);
4171 struct ext4_group_desc *gdp;
4172 ext4_fsblk_t first_block, last_block, b;
4173 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4174 int s, j, count = 0;
4176 if (!ext4_has_feature_bigalloc(sb))
4177 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
4178 sbi->s_itb_per_group + 2);
4180 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
4181 (grp * EXT4_BLOCKS_PER_GROUP(sb));
4182 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
4183 for (i = 0; i < ngroups; i++) {
4184 gdp = ext4_get_group_desc(sb, i, NULL);
4185 b = ext4_block_bitmap(sb, gdp);
4186 if (b >= first_block && b <= last_block) {
4187 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4190 b = ext4_inode_bitmap(sb, gdp);
4191 if (b >= first_block && b <= last_block) {
4192 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4195 b = ext4_inode_table(sb, gdp);
4196 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
4197 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
4198 int c = EXT4_B2C(sbi, b - first_block);
4199 ext4_set_bit(c, buf);
4205 if (ext4_bg_has_super(sb, grp)) {
4206 ext4_set_bit(s++, buf);
4209 j = ext4_bg_num_gdb(sb, grp);
4210 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
4211 ext4_error(sb, "Invalid number of block group "
4212 "descriptor blocks: %d", j);
4213 j = EXT4_BLOCKS_PER_GROUP(sb) - s;
4217 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
4221 return EXT4_CLUSTERS_PER_GROUP(sb) -
4222 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
4226 * Compute the overhead and stash it in sbi->s_overhead
4228 int ext4_calculate_overhead(struct super_block *sb)
4230 struct ext4_sb_info *sbi = EXT4_SB(sb);
4231 struct ext4_super_block *es = sbi->s_es;
4232 struct inode *j_inode;
4233 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
4234 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4235 ext4_fsblk_t overhead = 0;
4236 char *buf = (char *) get_zeroed_page(GFP_NOFS);
4242 * Compute the overhead (FS structures). This is constant
4243 * for a given filesystem unless the number of block groups
4244 * changes so we cache the previous value until it does.
4248 * All of the blocks before first_data_block are overhead
4250 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
4253 * Add the overhead found in each block group
4255 for (i = 0; i < ngroups; i++) {
4258 blks = count_overhead(sb, i, buf);
4261 memset(buf, 0, PAGE_SIZE);
4266 * Add the internal journal blocks whether the journal has been
4269 if (sbi->s_journal && !sbi->s_journal_bdev)
4270 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
4271 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
4272 /* j_inum for internal journal is non-zero */
4273 j_inode = ext4_get_journal_inode(sb, j_inum);
4275 j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
4276 overhead += EXT4_NUM_B2C(sbi, j_blocks);
4279 ext4_msg(sb, KERN_ERR, "can't get journal size");
4282 sbi->s_overhead = overhead;
4284 free_page((unsigned long) buf);
4288 static void ext4_set_resv_clusters(struct super_block *sb)
4290 ext4_fsblk_t resv_clusters;
4291 struct ext4_sb_info *sbi = EXT4_SB(sb);
4294 * There's no need to reserve anything when we aren't using extents.
4295 * The space estimates are exact, there are no unwritten extents,
4296 * hole punching doesn't need new metadata... This is needed especially
4297 * to keep ext2/3 backward compatibility.
4299 if (!ext4_has_feature_extents(sb))
4302 * By default we reserve 2% or 4096 clusters, whichever is smaller.
4303 * This should cover the situations where we can not afford to run
4304 * out of space like for example punch hole, or converting
4305 * unwritten extents in delalloc path. In most cases such
4306 * allocation would require 1, or 2 blocks, higher numbers are
4309 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
4310 sbi->s_cluster_bits);
4312 do_div(resv_clusters, 50);
4313 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
4315 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
4318 static const char *ext4_quota_mode(struct super_block *sb)
4321 if (!ext4_quota_capable(sb))
4324 if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb))
4325 return "journalled";
4333 static void ext4_setup_csum_trigger(struct super_block *sb,
4334 enum ext4_journal_trigger_type type,
4336 struct jbd2_buffer_trigger_type *type,
4337 struct buffer_head *bh,
4341 struct ext4_sb_info *sbi = EXT4_SB(sb);
4343 sbi->s_journal_triggers[type].sb = sb;
4344 sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger;
4347 static void ext4_free_sbi(struct ext4_sb_info *sbi)
4352 kfree(sbi->s_blockgroup_lock);
4353 fs_put_dax(sbi->s_daxdev);
4357 static struct ext4_sb_info *ext4_alloc_sbi(struct super_block *sb)
4359 struct ext4_sb_info *sbi;
4361 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
4365 sbi->s_daxdev = fs_dax_get_by_bdev(sb->s_bdev, &sbi->s_dax_part_off);
4367 sbi->s_blockgroup_lock =
4368 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
4370 if (!sbi->s_blockgroup_lock)
4373 sb->s_fs_info = sbi;
4377 fs_put_dax(sbi->s_daxdev);
4382 static int __ext4_fill_super(struct fs_context *fc, struct super_block *sb)
4384 struct buffer_head *bh, **group_desc;
4385 struct ext4_super_block *es = NULL;
4386 struct ext4_sb_info *sbi = EXT4_SB(sb);
4387 struct flex_groups **flex_groups;
4389 ext4_fsblk_t logical_sb_block;
4390 unsigned long offset = 0;
4391 unsigned long def_mount_opts;
4394 int blocksize, clustersize;
4395 unsigned int db_count;
4397 int needs_recovery, has_huge_files;
4400 ext4_group_t first_not_zeroed;
4401 struct ext4_fs_context *ctx = fc->fs_private;
4402 int silent = fc->sb_flags & SB_SILENT;
4404 /* Set defaults for the variables that will be set during parsing */
4405 ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4407 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
4408 sbi->s_sectors_written_start =
4409 part_stat_read(sb->s_bdev, sectors[STAT_WRITE]);
4411 /* -EINVAL is default */
4413 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
4415 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
4420 * The ext4 superblock will not be buffer aligned for other than 1kB
4421 * block sizes. We need to calculate the offset from buffer start.
4423 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
4424 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
4425 offset = do_div(logical_sb_block, blocksize);
4427 logical_sb_block = sbi->s_sb_block;
4430 bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
4432 ext4_msg(sb, KERN_ERR, "unable to read superblock");
4437 * Note: s_es must be initialized as soon as possible because
4438 * some ext4 macro-instructions depend on its value
4440 es = (struct ext4_super_block *) (bh->b_data + offset);
4442 sb->s_magic = le16_to_cpu(es->s_magic);
4443 if (sb->s_magic != EXT4_SUPER_MAGIC)
4445 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
4447 /* Warn if metadata_csum and gdt_csum are both set. */
4448 if (ext4_has_feature_metadata_csum(sb) &&
4449 ext4_has_feature_gdt_csum(sb))
4450 ext4_warning(sb, "metadata_csum and uninit_bg are "
4451 "redundant flags; please run fsck.");
4453 /* Check for a known checksum algorithm */
4454 if (!ext4_verify_csum_type(sb, es)) {
4455 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4456 "unknown checksum algorithm.");
4460 ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE,
4461 ext4_orphan_file_block_trigger);
4463 /* Load the checksum driver */
4464 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
4465 if (IS_ERR(sbi->s_chksum_driver)) {
4466 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
4467 ret = PTR_ERR(sbi->s_chksum_driver);
4468 sbi->s_chksum_driver = NULL;
4472 /* Check superblock checksum */
4473 if (!ext4_superblock_csum_verify(sb, es)) {
4474 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4475 "invalid superblock checksum. Run e2fsck?");
4481 /* Precompute checksum seed for all metadata */
4482 if (ext4_has_feature_csum_seed(sb))
4483 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
4484 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
4485 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
4486 sizeof(es->s_uuid));
4488 /* Set defaults before we parse the mount options */
4489 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
4490 set_opt(sb, INIT_INODE_TABLE);
4491 if (def_mount_opts & EXT4_DEFM_DEBUG)
4493 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
4495 if (def_mount_opts & EXT4_DEFM_UID16)
4496 set_opt(sb, NO_UID32);
4497 /* xattr user namespace & acls are now defaulted on */
4498 set_opt(sb, XATTR_USER);
4499 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4500 set_opt(sb, POSIX_ACL);
4502 if (ext4_has_feature_fast_commit(sb))
4503 set_opt2(sb, JOURNAL_FAST_COMMIT);
4504 /* don't forget to enable journal_csum when metadata_csum is enabled. */
4505 if (ext4_has_metadata_csum(sb))
4506 set_opt(sb, JOURNAL_CHECKSUM);
4508 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
4509 set_opt(sb, JOURNAL_DATA);
4510 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
4511 set_opt(sb, ORDERED_DATA);
4512 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
4513 set_opt(sb, WRITEBACK_DATA);
4515 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
4516 set_opt(sb, ERRORS_PANIC);
4517 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
4518 set_opt(sb, ERRORS_CONT);
4520 set_opt(sb, ERRORS_RO);
4521 /* block_validity enabled by default; disable with noblock_validity */
4522 set_opt(sb, BLOCK_VALIDITY);
4523 if (def_mount_opts & EXT4_DEFM_DISCARD)
4524 set_opt(sb, DISCARD);
4526 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
4527 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
4528 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
4529 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
4530 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
4532 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
4533 set_opt(sb, BARRIER);
4536 * enable delayed allocation by default
4537 * Use -o nodelalloc to turn it off
4539 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
4540 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
4541 set_opt(sb, DELALLOC);
4544 * set default s_li_wait_mult for lazyinit, for the case there is
4545 * no mount option specified.
4547 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
4549 if (le32_to_cpu(es->s_log_block_size) >
4550 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4551 ext4_msg(sb, KERN_ERR,
4552 "Invalid log block size: %u",
4553 le32_to_cpu(es->s_log_block_size));
4556 if (le32_to_cpu(es->s_log_cluster_size) >
4557 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4558 ext4_msg(sb, KERN_ERR,
4559 "Invalid log cluster size: %u",
4560 le32_to_cpu(es->s_log_cluster_size));
4564 blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
4566 if (blocksize == PAGE_SIZE)
4567 set_opt(sb, DIOREAD_NOLOCK);
4569 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4570 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4571 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4573 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4574 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4575 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4576 ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4580 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4581 (!is_power_of_2(sbi->s_inode_size)) ||
4582 (sbi->s_inode_size > blocksize)) {
4583 ext4_msg(sb, KERN_ERR,
4584 "unsupported inode size: %d",
4586 ext4_msg(sb, KERN_ERR, "blocksize: %d", blocksize);
4590 * i_atime_extra is the last extra field available for
4591 * [acm]times in struct ext4_inode. Checking for that
4592 * field should suffice to ensure we have extra space
4595 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4596 sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4597 sb->s_time_gran = 1;
4598 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4600 sb->s_time_gran = NSEC_PER_SEC;
4601 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4603 sb->s_time_min = EXT4_TIMESTAMP_MIN;
4605 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4606 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4607 EXT4_GOOD_OLD_INODE_SIZE;
4608 if (ext4_has_feature_extra_isize(sb)) {
4609 unsigned v, max = (sbi->s_inode_size -
4610 EXT4_GOOD_OLD_INODE_SIZE);
4612 v = le16_to_cpu(es->s_want_extra_isize);
4614 ext4_msg(sb, KERN_ERR,
4615 "bad s_want_extra_isize: %d", v);
4618 if (sbi->s_want_extra_isize < v)
4619 sbi->s_want_extra_isize = v;
4621 v = le16_to_cpu(es->s_min_extra_isize);
4623 ext4_msg(sb, KERN_ERR,
4624 "bad s_min_extra_isize: %d", v);
4627 if (sbi->s_want_extra_isize < v)
4628 sbi->s_want_extra_isize = v;
4632 err = parse_apply_sb_mount_options(sb, ctx);
4636 sbi->s_def_mount_opt = sbi->s_mount_opt;
4638 err = ext4_check_opt_consistency(fc, sb);
4642 err = ext4_apply_options(fc, sb);
4646 #if IS_ENABLED(CONFIG_UNICODE)
4647 if (ext4_has_feature_casefold(sb) && !sb->s_encoding) {
4648 const struct ext4_sb_encodings *encoding_info;
4649 struct unicode_map *encoding;
4650 __u16 encoding_flags = le16_to_cpu(es->s_encoding_flags);
4652 encoding_info = ext4_sb_read_encoding(es);
4653 if (!encoding_info) {
4654 ext4_msg(sb, KERN_ERR,
4655 "Encoding requested by superblock is unknown");
4659 encoding = utf8_load(encoding_info->version);
4660 if (IS_ERR(encoding)) {
4661 ext4_msg(sb, KERN_ERR,
4662 "can't mount with superblock charset: %s-%u.%u.%u "
4663 "not supported by the kernel. flags: 0x%x.",
4664 encoding_info->name,
4665 unicode_major(encoding_info->version),
4666 unicode_minor(encoding_info->version),
4667 unicode_rev(encoding_info->version),
4671 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4672 "%s-%u.%u.%u with flags 0x%hx", encoding_info->name,
4673 unicode_major(encoding_info->version),
4674 unicode_minor(encoding_info->version),
4675 unicode_rev(encoding_info->version),
4678 sb->s_encoding = encoding;
4679 sb->s_encoding_flags = encoding_flags;
4683 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4684 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with data=journal disables delayed allocation, dioread_nolock, O_DIRECT and fast_commit support!\n");
4685 /* can't mount with both data=journal and dioread_nolock. */
4686 clear_opt(sb, DIOREAD_NOLOCK);
4687 clear_opt2(sb, JOURNAL_FAST_COMMIT);
4688 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4689 ext4_msg(sb, KERN_ERR, "can't mount with "
4690 "both data=journal and delalloc");
4693 if (test_opt(sb, DAX_ALWAYS)) {
4694 ext4_msg(sb, KERN_ERR, "can't mount with "
4695 "both data=journal and dax");
4698 if (ext4_has_feature_encrypt(sb)) {
4699 ext4_msg(sb, KERN_WARNING,
4700 "encrypted files will use data=ordered "
4701 "instead of data journaling mode");
4703 if (test_opt(sb, DELALLOC))
4704 clear_opt(sb, DELALLOC);
4706 sb->s_iflags |= SB_I_CGROUPWB;
4709 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
4710 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
4712 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4713 (ext4_has_compat_features(sb) ||
4714 ext4_has_ro_compat_features(sb) ||
4715 ext4_has_incompat_features(sb)))
4716 ext4_msg(sb, KERN_WARNING,
4717 "feature flags set on rev 0 fs, "
4718 "running e2fsck is recommended");
4720 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4721 set_opt2(sb, HURD_COMPAT);
4722 if (ext4_has_feature_64bit(sb)) {
4723 ext4_msg(sb, KERN_ERR,
4724 "The Hurd can't support 64-bit file systems");
4729 * ea_inode feature uses l_i_version field which is not
4730 * available in HURD_COMPAT mode.
4732 if (ext4_has_feature_ea_inode(sb)) {
4733 ext4_msg(sb, KERN_ERR,
4734 "ea_inode feature is not supported for Hurd");
4739 if (IS_EXT2_SB(sb)) {
4740 if (ext2_feature_set_ok(sb))
4741 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4742 "using the ext4 subsystem");
4745 * If we're probing be silent, if this looks like
4746 * it's actually an ext[34] filesystem.
4748 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4750 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4751 "to feature incompatibilities");
4756 if (IS_EXT3_SB(sb)) {
4757 if (ext3_feature_set_ok(sb))
4758 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4759 "using the ext4 subsystem");
4762 * If we're probing be silent, if this looks like
4763 * it's actually an ext4 filesystem.
4765 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4767 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4768 "to feature incompatibilities");
4774 * Check feature flags regardless of the revision level, since we
4775 * previously didn't change the revision level when setting the flags,
4776 * so there is a chance incompat flags are set on a rev 0 filesystem.
4778 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4781 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
4782 ext4_msg(sb, KERN_ERR,
4783 "Number of reserved GDT blocks insanely large: %d",
4784 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4788 if (sbi->s_daxdev) {
4789 if (blocksize == PAGE_SIZE)
4790 set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
4792 ext4_msg(sb, KERN_ERR, "unsupported blocksize for DAX\n");
4795 if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
4796 if (ext4_has_feature_inline_data(sb)) {
4797 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4798 " that may contain inline data");
4801 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
4802 ext4_msg(sb, KERN_ERR,
4803 "DAX unsupported by block device.");
4808 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4809 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4810 es->s_encryption_level);
4814 if (sb->s_blocksize != blocksize) {
4816 * bh must be released before kill_bdev(), otherwise
4817 * it won't be freed and its page also. kill_bdev()
4818 * is called by sb_set_blocksize().
4821 /* Validate the filesystem blocksize */
4822 if (!sb_set_blocksize(sb, blocksize)) {
4823 ext4_msg(sb, KERN_ERR, "bad block size %d",
4829 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
4830 offset = do_div(logical_sb_block, blocksize);
4831 bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
4833 ext4_msg(sb, KERN_ERR,
4834 "Can't read superblock on 2nd try");
4839 es = (struct ext4_super_block *)(bh->b_data + offset);
4841 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
4842 ext4_msg(sb, KERN_ERR,
4843 "Magic mismatch, very weird!");
4848 has_huge_files = ext4_has_feature_huge_file(sb);
4849 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
4851 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
4853 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
4854 if (ext4_has_feature_64bit(sb)) {
4855 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
4856 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
4857 !is_power_of_2(sbi->s_desc_size)) {
4858 ext4_msg(sb, KERN_ERR,
4859 "unsupported descriptor size %lu",
4864 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
4866 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
4867 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
4869 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
4870 if (sbi->s_inodes_per_block == 0)
4872 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
4873 sbi->s_inodes_per_group > blocksize * 8) {
4874 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
4875 sbi->s_inodes_per_group);
4878 sbi->s_itb_per_group = sbi->s_inodes_per_group /
4879 sbi->s_inodes_per_block;
4880 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
4882 sbi->s_mount_state = le16_to_cpu(es->s_state);
4883 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
4884 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
4886 for (i = 0; i < 4; i++)
4887 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
4888 sbi->s_def_hash_version = es->s_def_hash_version;
4889 if (ext4_has_feature_dir_index(sb)) {
4890 i = le32_to_cpu(es->s_flags);
4891 if (i & EXT2_FLAGS_UNSIGNED_HASH)
4892 sbi->s_hash_unsigned = 3;
4893 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
4894 #ifdef __CHAR_UNSIGNED__
4897 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
4898 sbi->s_hash_unsigned = 3;
4902 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
4907 /* Handle clustersize */
4908 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4909 if (ext4_has_feature_bigalloc(sb)) {
4910 if (clustersize < blocksize) {
4911 ext4_msg(sb, KERN_ERR,
4912 "cluster size (%d) smaller than "
4913 "block size (%d)", clustersize, blocksize);
4916 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4917 le32_to_cpu(es->s_log_block_size);
4918 sbi->s_clusters_per_group =
4919 le32_to_cpu(es->s_clusters_per_group);
4920 if (sbi->s_clusters_per_group > blocksize * 8) {
4921 ext4_msg(sb, KERN_ERR,
4922 "#clusters per group too big: %lu",
4923 sbi->s_clusters_per_group);
4926 if (sbi->s_blocks_per_group !=
4927 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
4928 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4929 "clusters per group (%lu) inconsistent",
4930 sbi->s_blocks_per_group,
4931 sbi->s_clusters_per_group);
4935 if (clustersize != blocksize) {
4936 ext4_msg(sb, KERN_ERR,
4937 "fragment/cluster size (%d) != "
4938 "block size (%d)", clustersize, blocksize);
4941 if (sbi->s_blocks_per_group > blocksize * 8) {
4942 ext4_msg(sb, KERN_ERR,
4943 "#blocks per group too big: %lu",
4944 sbi->s_blocks_per_group);
4947 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4948 sbi->s_cluster_bits = 0;
4950 sbi->s_cluster_ratio = clustersize / blocksize;
4952 /* Do we have standard group size of clustersize * 8 blocks ? */
4953 if (sbi->s_blocks_per_group == clustersize << 3)
4954 set_opt2(sb, STD_GROUP_SIZE);
4957 * Test whether we have more sectors than will fit in sector_t,
4958 * and whether the max offset is addressable by the page cache.
4960 err = generic_check_addressable(sb->s_blocksize_bits,
4961 ext4_blocks_count(es));
4963 ext4_msg(sb, KERN_ERR, "filesystem"
4964 " too large to mount safely on this system");
4968 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
4971 /* check blocks count against device size */
4972 blocks_count = sb_bdev_nr_blocks(sb);
4973 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4974 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4975 "exceeds size of device (%llu blocks)",
4976 ext4_blocks_count(es), blocks_count);
4981 * It makes no sense for the first data block to be beyond the end
4982 * of the filesystem.
4984 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4985 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4986 "block %u is beyond end of filesystem (%llu)",
4987 le32_to_cpu(es->s_first_data_block),
4988 ext4_blocks_count(es));
4991 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4992 (sbi->s_cluster_ratio == 1)) {
4993 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4994 "block is 0 with a 1k block and cluster size");
4998 blocks_count = (ext4_blocks_count(es) -
4999 le32_to_cpu(es->s_first_data_block) +
5000 EXT4_BLOCKS_PER_GROUP(sb) - 1);
5001 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
5002 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
5003 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
5004 "(block count %llu, first data block %u, "
5005 "blocks per group %lu)", blocks_count,
5006 ext4_blocks_count(es),
5007 le32_to_cpu(es->s_first_data_block),
5008 EXT4_BLOCKS_PER_GROUP(sb));
5011 sbi->s_groups_count = blocks_count;
5012 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
5013 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
5014 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
5015 le32_to_cpu(es->s_inodes_count)) {
5016 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
5017 le32_to_cpu(es->s_inodes_count),
5018 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
5022 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
5023 EXT4_DESC_PER_BLOCK(sb);
5024 if (ext4_has_feature_meta_bg(sb)) {
5025 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
5026 ext4_msg(sb, KERN_WARNING,
5027 "first meta block group too large: %u "
5028 "(group descriptor block count %u)",
5029 le32_to_cpu(es->s_first_meta_bg), db_count);
5033 rcu_assign_pointer(sbi->s_group_desc,
5034 kvmalloc_array(db_count,
5035 sizeof(struct buffer_head *),
5037 if (sbi->s_group_desc == NULL) {
5038 ext4_msg(sb, KERN_ERR, "not enough memory");
5043 bgl_lock_init(sbi->s_blockgroup_lock);
5045 /* Pre-read the descriptors into the buffer cache */
5046 for (i = 0; i < db_count; i++) {
5047 block = descriptor_loc(sb, logical_sb_block, i);
5048 ext4_sb_breadahead_unmovable(sb, block);
5051 for (i = 0; i < db_count; i++) {
5052 struct buffer_head *bh;
5054 block = descriptor_loc(sb, logical_sb_block, i);
5055 bh = ext4_sb_bread_unmovable(sb, block);
5057 ext4_msg(sb, KERN_ERR,
5058 "can't read group descriptor %d", i);
5064 rcu_dereference(sbi->s_group_desc)[i] = bh;
5067 sbi->s_gdb_count = db_count;
5068 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
5069 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
5070 ret = -EFSCORRUPTED;
5074 timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
5075 spin_lock_init(&sbi->s_error_lock);
5076 INIT_WORK(&sbi->s_error_work, flush_stashed_error_work);
5078 /* Register extent status tree shrinker */
5079 if (ext4_es_register_shrinker(sbi))
5082 sbi->s_stripe = ext4_get_stripe_size(sbi);
5083 sbi->s_extent_max_zeroout_kb = 32;
5086 * set up enough so that it can read an inode
5088 sb->s_op = &ext4_sops;
5089 sb->s_export_op = &ext4_export_ops;
5090 sb->s_xattr = ext4_xattr_handlers;
5091 #ifdef CONFIG_FS_ENCRYPTION
5092 sb->s_cop = &ext4_cryptops;
5094 #ifdef CONFIG_FS_VERITY
5095 sb->s_vop = &ext4_verityops;
5098 sb->dq_op = &ext4_quota_operations;
5099 if (ext4_has_feature_quota(sb))
5100 sb->s_qcop = &dquot_quotactl_sysfile_ops;
5102 sb->s_qcop = &ext4_qctl_operations;
5103 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
5105 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
5107 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
5108 mutex_init(&sbi->s_orphan_lock);
5110 /* Initialize fast commit stuff */
5111 atomic_set(&sbi->s_fc_subtid, 0);
5112 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
5113 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
5114 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
5115 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
5116 sbi->s_fc_bytes = 0;
5117 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
5118 sbi->s_fc_ineligible_tid = 0;
5119 spin_lock_init(&sbi->s_fc_lock);
5120 memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
5121 sbi->s_fc_replay_state.fc_regions = NULL;
5122 sbi->s_fc_replay_state.fc_regions_size = 0;
5123 sbi->s_fc_replay_state.fc_regions_used = 0;
5124 sbi->s_fc_replay_state.fc_regions_valid = 0;
5125 sbi->s_fc_replay_state.fc_modified_inodes = NULL;
5126 sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
5127 sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
5131 needs_recovery = (es->s_last_orphan != 0 ||
5132 ext4_has_feature_orphan_present(sb) ||
5133 ext4_has_feature_journal_needs_recovery(sb));
5135 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb))
5136 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
5137 goto failed_mount3a;
5140 * The first inode we look at is the journal inode. Don't try
5141 * root first: it may be modified in the journal!
5143 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
5144 err = ext4_load_journal(sb, es, ctx->journal_devnum);
5146 goto failed_mount3a;
5147 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
5148 ext4_has_feature_journal_needs_recovery(sb)) {
5149 ext4_msg(sb, KERN_ERR, "required journal recovery "
5150 "suppressed and not mounted read-only");
5151 goto failed_mount_wq;
5153 /* Nojournal mode, all journal mount options are illegal */
5154 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
5155 ext4_msg(sb, KERN_ERR, "can't mount with "
5156 "journal_checksum, fs mounted w/o journal");
5157 goto failed_mount_wq;
5159 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5160 ext4_msg(sb, KERN_ERR, "can't mount with "
5161 "journal_async_commit, fs mounted w/o journal");
5162 goto failed_mount_wq;
5164 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
5165 ext4_msg(sb, KERN_ERR, "can't mount with "
5166 "commit=%lu, fs mounted w/o journal",
5167 sbi->s_commit_interval / HZ);
5168 goto failed_mount_wq;
5170 if (EXT4_MOUNT_DATA_FLAGS &
5171 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
5172 ext4_msg(sb, KERN_ERR, "can't mount with "
5173 "data=, fs mounted w/o journal");
5174 goto failed_mount_wq;
5176 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
5177 clear_opt(sb, JOURNAL_CHECKSUM);
5178 clear_opt(sb, DATA_FLAGS);
5179 clear_opt2(sb, JOURNAL_FAST_COMMIT);
5180 sbi->s_journal = NULL;
5185 if (ext4_has_feature_64bit(sb) &&
5186 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
5187 JBD2_FEATURE_INCOMPAT_64BIT)) {
5188 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
5189 goto failed_mount_wq;
5192 if (!set_journal_csum_feature_set(sb)) {
5193 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
5195 goto failed_mount_wq;
5198 if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
5199 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
5200 JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
5201 ext4_msg(sb, KERN_ERR,
5202 "Failed to set fast commit journal feature");
5203 goto failed_mount_wq;
5206 /* We have now updated the journal if required, so we can
5207 * validate the data journaling mode. */
5208 switch (test_opt(sb, DATA_FLAGS)) {
5210 /* No mode set, assume a default based on the journal
5211 * capabilities: ORDERED_DATA if the journal can
5212 * cope, else JOURNAL_DATA
5214 if (jbd2_journal_check_available_features
5215 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
5216 set_opt(sb, ORDERED_DATA);
5217 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
5219 set_opt(sb, JOURNAL_DATA);
5220 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
5224 case EXT4_MOUNT_ORDERED_DATA:
5225 case EXT4_MOUNT_WRITEBACK_DATA:
5226 if (!jbd2_journal_check_available_features
5227 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
5228 ext4_msg(sb, KERN_ERR, "Journal does not support "
5229 "requested data journaling mode");
5230 goto failed_mount_wq;
5237 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
5238 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5239 ext4_msg(sb, KERN_ERR, "can't mount with "
5240 "journal_async_commit in data=ordered mode");
5241 goto failed_mount_wq;
5244 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
5246 sbi->s_journal->j_submit_inode_data_buffers =
5247 ext4_journal_submit_inode_data_buffers;
5248 sbi->s_journal->j_finish_inode_data_buffers =
5249 ext4_journal_finish_inode_data_buffers;
5252 if (!test_opt(sb, NO_MBCACHE)) {
5253 sbi->s_ea_block_cache = ext4_xattr_create_cache();
5254 if (!sbi->s_ea_block_cache) {
5255 ext4_msg(sb, KERN_ERR,
5256 "Failed to create ea_block_cache");
5257 goto failed_mount_wq;
5260 if (ext4_has_feature_ea_inode(sb)) {
5261 sbi->s_ea_inode_cache = ext4_xattr_create_cache();
5262 if (!sbi->s_ea_inode_cache) {
5263 ext4_msg(sb, KERN_ERR,
5264 "Failed to create ea_inode_cache");
5265 goto failed_mount_wq;
5270 if (ext4_has_feature_verity(sb) && blocksize != PAGE_SIZE) {
5271 ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity");
5272 goto failed_mount_wq;
5275 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) &&
5276 !ext4_has_feature_encrypt(sb)) {
5277 ext4_set_feature_encrypt(sb);
5278 ext4_commit_super(sb);
5282 * Get the # of file system overhead blocks from the
5283 * superblock if present.
5285 if (es->s_overhead_clusters)
5286 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
5288 err = ext4_calculate_overhead(sb);
5290 goto failed_mount_wq;
5294 * The maximum number of concurrent works can be high and
5295 * concurrency isn't really necessary. Limit it to 1.
5297 EXT4_SB(sb)->rsv_conversion_wq =
5298 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
5299 if (!EXT4_SB(sb)->rsv_conversion_wq) {
5300 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
5306 * The jbd2_journal_load will have done any necessary log recovery,
5307 * so we can safely mount the rest of the filesystem now.
5310 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
5312 ext4_msg(sb, KERN_ERR, "get root inode failed");
5313 ret = PTR_ERR(root);
5317 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
5318 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
5323 sb->s_root = d_make_root(root);
5325 ext4_msg(sb, KERN_ERR, "get root dentry failed");
5330 ret = ext4_setup_super(sb, es, sb_rdonly(sb));
5331 if (ret == -EROFS) {
5332 sb->s_flags |= SB_RDONLY;
5335 goto failed_mount4a;
5337 ext4_set_resv_clusters(sb);
5339 if (test_opt(sb, BLOCK_VALIDITY)) {
5340 err = ext4_setup_system_zone(sb);
5342 ext4_msg(sb, KERN_ERR, "failed to initialize system "
5344 goto failed_mount4a;
5347 ext4_fc_replay_cleanup(sb);
5352 * Enable optimize_scan if number of groups is > threshold. This can be
5353 * turned off by passing "mb_optimize_scan=0". This can also be
5354 * turned on forcefully by passing "mb_optimize_scan=1".
5356 if (!(ctx->spec & EXT4_SPEC_mb_optimize_scan)) {
5357 if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD)
5358 set_opt2(sb, MB_OPTIMIZE_SCAN);
5360 clear_opt2(sb, MB_OPTIMIZE_SCAN);
5363 err = ext4_mb_init(sb);
5365 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
5371 * We can only set up the journal commit callback once
5372 * mballoc is initialized
5375 sbi->s_journal->j_commit_callback =
5376 ext4_journal_commit_callback;
5378 block = ext4_count_free_clusters(sb);
5379 ext4_free_blocks_count_set(sbi->s_es,
5380 EXT4_C2B(sbi, block));
5381 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
5384 unsigned long freei = ext4_count_free_inodes(sb);
5385 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
5386 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
5390 * Update the checksum after updating free space/inode
5391 * counters. Otherwise the superblock can have an incorrect
5392 * checksum in the buffer cache until it is written out and
5393 * e2fsprogs programs trying to open a file system immediately
5394 * after it is mounted can fail.
5396 ext4_superblock_csum_set(sb);
5398 err = percpu_counter_init(&sbi->s_dirs_counter,
5399 ext4_count_dirs(sb), GFP_KERNEL);
5401 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
5404 err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0,
5407 err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
5410 ext4_msg(sb, KERN_ERR, "insufficient memory");
5414 if (ext4_has_feature_flex_bg(sb))
5415 if (!ext4_fill_flex_info(sb)) {
5416 ext4_msg(sb, KERN_ERR,
5417 "unable to initialize "
5418 "flex_bg meta info!");
5423 err = ext4_register_li_request(sb, first_not_zeroed);
5427 err = ext4_register_sysfs(sb);
5431 err = ext4_init_orphan_info(sb);
5435 /* Enable quota usage during mount. */
5436 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
5437 err = ext4_enable_quotas(sb);
5441 #endif /* CONFIG_QUOTA */
5444 * Save the original bdev mapping's wb_err value which could be
5445 * used to detect the metadata async write error.
5447 spin_lock_init(&sbi->s_bdev_wb_lock);
5448 errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err,
5449 &sbi->s_bdev_wb_err);
5450 sb->s_bdev->bd_super = sb;
5451 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
5452 ext4_orphan_cleanup(sb, es);
5453 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
5454 if (needs_recovery) {
5455 ext4_msg(sb, KERN_INFO, "recovery complete");
5456 err = ext4_mark_recovery_complete(sb, es);
5461 if (test_opt(sb, DISCARD)) {
5462 struct request_queue *q = bdev_get_queue(sb->s_bdev);
5463 if (!blk_queue_discard(q))
5464 ext4_msg(sb, KERN_WARNING,
5465 "mounting with \"discard\" option, but "
5466 "the device does not support discard");
5469 if (es->s_error_count)
5470 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
5472 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
5473 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
5474 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
5475 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
5476 atomic_set(&sbi->s_warning_count, 0);
5477 atomic_set(&sbi->s_msg_count, 0);
5483 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5487 ext4_release_orphan_info(sb);
5489 ext4_unregister_sysfs(sb);
5490 kobject_put(&sbi->s_kobj);
5492 ext4_unregister_li_request(sb);
5494 ext4_mb_release(sb);
5496 flex_groups = rcu_dereference(sbi->s_flex_groups);
5498 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
5499 kvfree(flex_groups[i]);
5500 kvfree(flex_groups);
5503 percpu_counter_destroy(&sbi->s_freeclusters_counter);
5504 percpu_counter_destroy(&sbi->s_freeinodes_counter);
5505 percpu_counter_destroy(&sbi->s_dirs_counter);
5506 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
5507 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
5508 percpu_free_rwsem(&sbi->s_writepages_rwsem);
5510 ext4_ext_release(sb);
5511 ext4_release_system_zone(sb);
5516 ext4_msg(sb, KERN_ERR, "mount failed");
5517 if (EXT4_SB(sb)->rsv_conversion_wq)
5518 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
5520 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
5521 sbi->s_ea_inode_cache = NULL;
5523 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
5524 sbi->s_ea_block_cache = NULL;
5526 if (sbi->s_journal) {
5527 /* flush s_error_work before journal destroy. */
5528 flush_work(&sbi->s_error_work);
5529 jbd2_journal_destroy(sbi->s_journal);
5530 sbi->s_journal = NULL;
5533 ext4_es_unregister_shrinker(sbi);
5535 /* flush s_error_work before sbi destroy */
5536 flush_work(&sbi->s_error_work);
5537 del_timer_sync(&sbi->s_err_report);
5538 ext4_stop_mmpd(sbi);
5541 group_desc = rcu_dereference(sbi->s_group_desc);
5542 for (i = 0; i < db_count; i++)
5543 brelse(group_desc[i]);
5547 if (sbi->s_chksum_driver)
5548 crypto_free_shash(sbi->s_chksum_driver);
5550 #if IS_ENABLED(CONFIG_UNICODE)
5551 utf8_unload(sb->s_encoding);
5555 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5556 kfree(get_qf_name(sb, sbi, i));
5558 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
5559 /* ext4_blkdev_remove() calls kill_bdev(), release bh before it. */
5561 ext4_blkdev_remove(sbi);
5563 sb->s_fs_info = NULL;
5564 return err ? err : ret;
5567 static int ext4_fill_super(struct super_block *sb, struct fs_context *fc)
5569 struct ext4_fs_context *ctx = fc->fs_private;
5570 struct ext4_sb_info *sbi;
5574 sbi = ext4_alloc_sbi(sb);
5578 fc->s_fs_info = sbi;
5580 /* Cleanup superblock name */
5581 strreplace(sb->s_id, '/', '!');
5583 sbi->s_sb_block = 1; /* Default super block location */
5584 if (ctx->spec & EXT4_SPEC_s_sb_block)
5585 sbi->s_sb_block = ctx->s_sb_block;
5587 ret = __ext4_fill_super(fc, sb);
5591 if (sbi->s_journal) {
5592 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
5593 descr = " journalled data mode";
5594 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
5595 descr = " ordered data mode";
5597 descr = " writeback data mode";
5599 descr = "out journal";
5601 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
5602 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
5603 "Quota mode: %s.", descr, ext4_quota_mode(sb));
5609 fc->s_fs_info = NULL;
5613 static int ext4_get_tree(struct fs_context *fc)
5615 return get_tree_bdev(fc, ext4_fill_super);
5619 * Setup any per-fs journal parameters now. We'll do this both on
5620 * initial mount, once the journal has been initialised but before we've
5621 * done any recovery; and again on any subsequent remount.
5623 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
5625 struct ext4_sb_info *sbi = EXT4_SB(sb);
5627 journal->j_commit_interval = sbi->s_commit_interval;
5628 journal->j_min_batch_time = sbi->s_min_batch_time;
5629 journal->j_max_batch_time = sbi->s_max_batch_time;
5630 ext4_fc_init(sb, journal);
5632 write_lock(&journal->j_state_lock);
5633 if (test_opt(sb, BARRIER))
5634 journal->j_flags |= JBD2_BARRIER;
5636 journal->j_flags &= ~JBD2_BARRIER;
5637 if (test_opt(sb, DATA_ERR_ABORT))
5638 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
5640 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
5641 write_unlock(&journal->j_state_lock);
5644 static struct inode *ext4_get_journal_inode(struct super_block *sb,
5645 unsigned int journal_inum)
5647 struct inode *journal_inode;
5650 * Test for the existence of a valid inode on disk. Bad things
5651 * happen if we iget() an unused inode, as the subsequent iput()
5652 * will try to delete it.
5654 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
5655 if (IS_ERR(journal_inode)) {
5656 ext4_msg(sb, KERN_ERR, "no journal found");
5659 if (!journal_inode->i_nlink) {
5660 make_bad_inode(journal_inode);
5661 iput(journal_inode);
5662 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
5666 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
5667 journal_inode, journal_inode->i_size);
5668 if (!S_ISREG(journal_inode->i_mode)) {
5669 ext4_msg(sb, KERN_ERR, "invalid journal inode");
5670 iput(journal_inode);
5673 return journal_inode;
5676 static journal_t *ext4_get_journal(struct super_block *sb,
5677 unsigned int journal_inum)
5679 struct inode *journal_inode;
5682 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5685 journal_inode = ext4_get_journal_inode(sb, journal_inum);
5689 journal = jbd2_journal_init_inode(journal_inode);
5691 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5692 iput(journal_inode);
5695 journal->j_private = sb;
5696 ext4_init_journal_params(sb, journal);
5700 static journal_t *ext4_get_dev_journal(struct super_block *sb,
5703 struct buffer_head *bh;
5707 int hblock, blocksize;
5708 ext4_fsblk_t sb_block;
5709 unsigned long offset;
5710 struct ext4_super_block *es;
5711 struct block_device *bdev;
5713 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5716 bdev = ext4_blkdev_get(j_dev, sb);
5720 blocksize = sb->s_blocksize;
5721 hblock = bdev_logical_block_size(bdev);
5722 if (blocksize < hblock) {
5723 ext4_msg(sb, KERN_ERR,
5724 "blocksize too small for journal device");
5728 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5729 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5730 set_blocksize(bdev, blocksize);
5731 if (!(bh = __bread(bdev, sb_block, blocksize))) {
5732 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5733 "external journal");
5737 es = (struct ext4_super_block *) (bh->b_data + offset);
5738 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5739 !(le32_to_cpu(es->s_feature_incompat) &
5740 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5741 ext4_msg(sb, KERN_ERR, "external journal has "
5747 if ((le32_to_cpu(es->s_feature_ro_compat) &
5748 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5749 es->s_checksum != ext4_superblock_csum(sb, es)) {
5750 ext4_msg(sb, KERN_ERR, "external journal has "
5751 "corrupt superblock");
5756 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5757 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5762 len = ext4_blocks_count(es);
5763 start = sb_block + 1;
5764 brelse(bh); /* we're done with the superblock */
5766 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
5767 start, len, blocksize);
5769 ext4_msg(sb, KERN_ERR, "failed to create device journal");
5772 journal->j_private = sb;
5773 if (ext4_read_bh_lock(journal->j_sb_buffer, REQ_META | REQ_PRIO, true)) {
5774 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
5777 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5778 ext4_msg(sb, KERN_ERR, "External journal has more than one "
5779 "user (unsupported) - %d",
5780 be32_to_cpu(journal->j_superblock->s_nr_users));
5783 EXT4_SB(sb)->s_journal_bdev = bdev;
5784 ext4_init_journal_params(sb, journal);
5788 jbd2_journal_destroy(journal);
5790 ext4_blkdev_put(bdev);
5794 static int ext4_load_journal(struct super_block *sb,
5795 struct ext4_super_block *es,
5796 unsigned long journal_devnum)
5799 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5802 int really_read_only;
5805 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5806 return -EFSCORRUPTED;
5808 if (journal_devnum &&
5809 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5810 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
5811 "numbers have changed");
5812 journal_dev = new_decode_dev(journal_devnum);
5814 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
5816 if (journal_inum && journal_dev) {
5817 ext4_msg(sb, KERN_ERR,
5818 "filesystem has both journal inode and journal device!");
5823 journal = ext4_get_journal(sb, journal_inum);
5827 journal = ext4_get_dev_journal(sb, journal_dev);
5832 journal_dev_ro = bdev_read_only(journal->j_dev);
5833 really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
5835 if (journal_dev_ro && !sb_rdonly(sb)) {
5836 ext4_msg(sb, KERN_ERR,
5837 "journal device read-only, try mounting with '-o ro'");
5843 * Are we loading a blank journal or performing recovery after a
5844 * crash? For recovery, we need to check in advance whether we
5845 * can get read-write access to the device.
5847 if (ext4_has_feature_journal_needs_recovery(sb)) {
5848 if (sb_rdonly(sb)) {
5849 ext4_msg(sb, KERN_INFO, "INFO: recovery "
5850 "required on readonly filesystem");
5851 if (really_read_only) {
5852 ext4_msg(sb, KERN_ERR, "write access "
5853 "unavailable, cannot proceed "
5854 "(try mounting with noload)");
5858 ext4_msg(sb, KERN_INFO, "write access will "
5859 "be enabled during recovery");
5863 if (!(journal->j_flags & JBD2_BARRIER))
5864 ext4_msg(sb, KERN_INFO, "barriers disabled");
5866 if (!ext4_has_feature_journal_needs_recovery(sb))
5867 err = jbd2_journal_wipe(journal, !really_read_only);
5869 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
5871 memcpy(save, ((char *) es) +
5872 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
5873 err = jbd2_journal_load(journal);
5875 memcpy(((char *) es) + EXT4_S_ERR_START,
5876 save, EXT4_S_ERR_LEN);
5881 ext4_msg(sb, KERN_ERR, "error loading journal");
5885 EXT4_SB(sb)->s_journal = journal;
5886 err = ext4_clear_journal_err(sb, es);
5888 EXT4_SB(sb)->s_journal = NULL;
5889 jbd2_journal_destroy(journal);
5893 if (!really_read_only && journal_devnum &&
5894 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5895 es->s_journal_dev = cpu_to_le32(journal_devnum);
5897 /* Make sure we flush the recovery flag to disk. */
5898 ext4_commit_super(sb);
5904 jbd2_journal_destroy(journal);
5908 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */
5909 static void ext4_update_super(struct super_block *sb)
5911 struct ext4_sb_info *sbi = EXT4_SB(sb);
5912 struct ext4_super_block *es = sbi->s_es;
5913 struct buffer_head *sbh = sbi->s_sbh;
5917 * If the file system is mounted read-only, don't update the
5918 * superblock write time. This avoids updating the superblock
5919 * write time when we are mounting the root file system
5920 * read/only but we need to replay the journal; at that point,
5921 * for people who are east of GMT and who make their clock
5922 * tick in localtime for Windows bug-for-bug compatibility,
5923 * the clock is set in the future, and this will cause e2fsck
5924 * to complain and force a full file system check.
5926 if (!(sb->s_flags & SB_RDONLY))
5927 ext4_update_tstamp(es, s_wtime);
5928 es->s_kbytes_written =
5929 cpu_to_le64(sbi->s_kbytes_written +
5930 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
5931 sbi->s_sectors_written_start) >> 1));
5932 if (percpu_counter_initialized(&sbi->s_freeclusters_counter))
5933 ext4_free_blocks_count_set(es,
5934 EXT4_C2B(sbi, percpu_counter_sum_positive(
5935 &sbi->s_freeclusters_counter)));
5936 if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
5937 es->s_free_inodes_count =
5938 cpu_to_le32(percpu_counter_sum_positive(
5939 &sbi->s_freeinodes_counter));
5940 /* Copy error information to the on-disk superblock */
5941 spin_lock(&sbi->s_error_lock);
5942 if (sbi->s_add_error_count > 0) {
5943 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5944 if (!es->s_first_error_time && !es->s_first_error_time_hi) {
5945 __ext4_update_tstamp(&es->s_first_error_time,
5946 &es->s_first_error_time_hi,
5947 sbi->s_first_error_time);
5948 strncpy(es->s_first_error_func, sbi->s_first_error_func,
5949 sizeof(es->s_first_error_func));
5950 es->s_first_error_line =
5951 cpu_to_le32(sbi->s_first_error_line);
5952 es->s_first_error_ino =
5953 cpu_to_le32(sbi->s_first_error_ino);
5954 es->s_first_error_block =
5955 cpu_to_le64(sbi->s_first_error_block);
5956 es->s_first_error_errcode =
5957 ext4_errno_to_code(sbi->s_first_error_code);
5959 __ext4_update_tstamp(&es->s_last_error_time,
5960 &es->s_last_error_time_hi,
5961 sbi->s_last_error_time);
5962 strncpy(es->s_last_error_func, sbi->s_last_error_func,
5963 sizeof(es->s_last_error_func));
5964 es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line);
5965 es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino);
5966 es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block);
5967 es->s_last_error_errcode =
5968 ext4_errno_to_code(sbi->s_last_error_code);
5970 * Start the daily error reporting function if it hasn't been
5973 if (!es->s_error_count)
5974 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);
5975 le32_add_cpu(&es->s_error_count, sbi->s_add_error_count);
5976 sbi->s_add_error_count = 0;
5978 spin_unlock(&sbi->s_error_lock);
5980 ext4_superblock_csum_set(sb);
5984 static int ext4_commit_super(struct super_block *sb)
5986 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
5991 if (block_device_ejected(sb))
5994 ext4_update_super(sb);
5996 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
5998 * Oh, dear. A previous attempt to write the
5999 * superblock failed. This could happen because the
6000 * USB device was yanked out. Or it could happen to
6001 * be a transient write error and maybe the block will
6002 * be remapped. Nothing we can do but to retry the
6003 * write and hope for the best.
6005 ext4_msg(sb, KERN_ERR, "previous I/O error to "
6006 "superblock detected");
6007 clear_buffer_write_io_error(sbh);
6008 set_buffer_uptodate(sbh);
6010 BUFFER_TRACE(sbh, "marking dirty");
6011 mark_buffer_dirty(sbh);
6012 error = __sync_dirty_buffer(sbh,
6013 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
6014 if (buffer_write_io_error(sbh)) {
6015 ext4_msg(sb, KERN_ERR, "I/O error while writing "
6017 clear_buffer_write_io_error(sbh);
6018 set_buffer_uptodate(sbh);
6024 * Have we just finished recovery? If so, and if we are mounting (or
6025 * remounting) the filesystem readonly, then we will end up with a
6026 * consistent fs on disk. Record that fact.
6028 static int ext4_mark_recovery_complete(struct super_block *sb,
6029 struct ext4_super_block *es)
6032 journal_t *journal = EXT4_SB(sb)->s_journal;
6034 if (!ext4_has_feature_journal(sb)) {
6035 if (journal != NULL) {
6036 ext4_error(sb, "Journal got removed while the fs was "
6038 return -EFSCORRUPTED;
6042 jbd2_journal_lock_updates(journal);
6043 err = jbd2_journal_flush(journal, 0);
6047 if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) ||
6048 ext4_has_feature_orphan_present(sb))) {
6049 if (!ext4_orphan_file_empty(sb)) {
6050 ext4_error(sb, "Orphan file not empty on read-only fs.");
6051 err = -EFSCORRUPTED;
6054 ext4_clear_feature_journal_needs_recovery(sb);
6055 ext4_clear_feature_orphan_present(sb);
6056 ext4_commit_super(sb);
6059 jbd2_journal_unlock_updates(journal);
6064 * If we are mounting (or read-write remounting) a filesystem whose journal
6065 * has recorded an error from a previous lifetime, move that error to the
6066 * main filesystem now.
6068 static int ext4_clear_journal_err(struct super_block *sb,
6069 struct ext4_super_block *es)
6075 if (!ext4_has_feature_journal(sb)) {
6076 ext4_error(sb, "Journal got removed while the fs was mounted!");
6077 return -EFSCORRUPTED;
6080 journal = EXT4_SB(sb)->s_journal;
6083 * Now check for any error status which may have been recorded in the
6084 * journal by a prior ext4_error() or ext4_abort()
6087 j_errno = jbd2_journal_errno(journal);
6091 errstr = ext4_decode_error(sb, j_errno, nbuf);
6092 ext4_warning(sb, "Filesystem error recorded "
6093 "from previous mount: %s", errstr);
6094 ext4_warning(sb, "Marking fs in need of filesystem check.");
6096 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
6097 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6098 ext4_commit_super(sb);
6100 jbd2_journal_clear_err(journal);
6101 jbd2_journal_update_sb_errno(journal);
6107 * Force the running and committing transactions to commit,
6108 * and wait on the commit.
6110 int ext4_force_commit(struct super_block *sb)
6117 journal = EXT4_SB(sb)->s_journal;
6118 return ext4_journal_force_commit(journal);
6121 static int ext4_sync_fs(struct super_block *sb, int wait)
6125 bool needs_barrier = false;
6126 struct ext4_sb_info *sbi = EXT4_SB(sb);
6128 if (unlikely(ext4_forced_shutdown(sbi)))
6131 trace_ext4_sync_fs(sb, wait);
6132 flush_workqueue(sbi->rsv_conversion_wq);
6134 * Writeback quota in non-journalled quota case - journalled quota has
6137 dquot_writeback_dquots(sb, -1);
6139 * Data writeback is possible w/o journal transaction, so barrier must
6140 * being sent at the end of the function. But we can skip it if
6141 * transaction_commit will do it for us.
6143 if (sbi->s_journal) {
6144 target = jbd2_get_latest_transaction(sbi->s_journal);
6145 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
6146 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
6147 needs_barrier = true;
6149 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
6151 ret = jbd2_log_wait_commit(sbi->s_journal,
6154 } else if (wait && test_opt(sb, BARRIER))
6155 needs_barrier = true;
6156 if (needs_barrier) {
6158 err = blkdev_issue_flush(sb->s_bdev);
6167 * LVM calls this function before a (read-only) snapshot is created. This
6168 * gives us a chance to flush the journal completely and mark the fs clean.
6170 * Note that only this function cannot bring a filesystem to be in a clean
6171 * state independently. It relies on upper layer to stop all data & metadata
6174 static int ext4_freeze(struct super_block *sb)
6182 journal = EXT4_SB(sb)->s_journal;
6185 /* Now we set up the journal barrier. */
6186 jbd2_journal_lock_updates(journal);
6189 * Don't clear the needs_recovery flag if we failed to
6190 * flush the journal.
6192 error = jbd2_journal_flush(journal, 0);
6196 /* Journal blocked and flushed, clear needs_recovery flag. */
6197 ext4_clear_feature_journal_needs_recovery(sb);
6198 if (ext4_orphan_file_empty(sb))
6199 ext4_clear_feature_orphan_present(sb);
6202 error = ext4_commit_super(sb);
6205 /* we rely on upper layer to stop further updates */
6206 jbd2_journal_unlock_updates(journal);
6211 * Called by LVM after the snapshot is done. We need to reset the RECOVER
6212 * flag here, even though the filesystem is not technically dirty yet.
6214 static int ext4_unfreeze(struct super_block *sb)
6216 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
6219 if (EXT4_SB(sb)->s_journal) {
6220 /* Reset the needs_recovery flag before the fs is unlocked. */
6221 ext4_set_feature_journal_needs_recovery(sb);
6222 if (ext4_has_feature_orphan_file(sb))
6223 ext4_set_feature_orphan_present(sb);
6226 ext4_commit_super(sb);
6231 * Structure to save mount options for ext4_remount's benefit
6233 struct ext4_mount_options {
6234 unsigned long s_mount_opt;
6235 unsigned long s_mount_opt2;
6238 unsigned long s_commit_interval;
6239 u32 s_min_batch_time, s_max_batch_time;
6242 char *s_qf_names[EXT4_MAXQUOTAS];
6246 static int __ext4_remount(struct fs_context *fc, struct super_block *sb)
6248 struct ext4_fs_context *ctx = fc->fs_private;
6249 struct ext4_super_block *es;
6250 struct ext4_sb_info *sbi = EXT4_SB(sb);
6251 unsigned long old_sb_flags;
6252 struct ext4_mount_options old_opts;
6256 int enable_quota = 0;
6258 char *to_free[EXT4_MAXQUOTAS];
6261 ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
6263 /* Store the original options */
6264 old_sb_flags = sb->s_flags;
6265 old_opts.s_mount_opt = sbi->s_mount_opt;
6266 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
6267 old_opts.s_resuid = sbi->s_resuid;
6268 old_opts.s_resgid = sbi->s_resgid;
6269 old_opts.s_commit_interval = sbi->s_commit_interval;
6270 old_opts.s_min_batch_time = sbi->s_min_batch_time;
6271 old_opts.s_max_batch_time = sbi->s_max_batch_time;
6273 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
6274 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6275 if (sbi->s_qf_names[i]) {
6276 char *qf_name = get_qf_name(sb, sbi, i);
6278 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
6279 if (!old_opts.s_qf_names[i]) {
6280 for (j = 0; j < i; j++)
6281 kfree(old_opts.s_qf_names[j]);
6285 old_opts.s_qf_names[i] = NULL;
6287 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
6288 ctx->journal_ioprio =
6289 sbi->s_journal->j_task->io_context->ioprio;
6291 ext4_apply_options(fc, sb);
6293 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
6294 test_opt(sb, JOURNAL_CHECKSUM)) {
6295 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
6296 "during remount not supported; ignoring");
6297 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
6300 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
6301 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
6302 ext4_msg(sb, KERN_ERR, "can't mount with "
6303 "both data=journal and delalloc");
6307 if (test_opt(sb, DIOREAD_NOLOCK)) {
6308 ext4_msg(sb, KERN_ERR, "can't mount with "
6309 "both data=journal and dioread_nolock");
6313 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
6314 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
6315 ext4_msg(sb, KERN_ERR, "can't mount with "
6316 "journal_async_commit in data=ordered mode");
6322 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
6323 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
6328 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
6329 ext4_abort(sb, ESHUTDOWN, "Abort forced by user");
6331 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
6332 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
6336 if (sbi->s_journal) {
6337 ext4_init_journal_params(sb, sbi->s_journal);
6338 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
6341 /* Flush outstanding errors before changing fs state */
6342 flush_work(&sbi->s_error_work);
6344 if ((bool)(fc->sb_flags & SB_RDONLY) != sb_rdonly(sb)) {
6345 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) {
6350 if (fc->sb_flags & SB_RDONLY) {
6351 err = sync_filesystem(sb);
6354 err = dquot_suspend(sb, -1);
6359 * First of all, the unconditional stuff we have to do
6360 * to disable replay of the journal when we next remount
6362 sb->s_flags |= SB_RDONLY;
6365 * OK, test if we are remounting a valid rw partition
6366 * readonly, and if so set the rdonly flag and then
6367 * mark the partition as valid again.
6369 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
6370 (sbi->s_mount_state & EXT4_VALID_FS))
6371 es->s_state = cpu_to_le16(sbi->s_mount_state);
6373 if (sbi->s_journal) {
6375 * We let remount-ro finish even if marking fs
6376 * as clean failed...
6378 ext4_mark_recovery_complete(sb, es);
6381 /* Make sure we can mount this feature set readwrite */
6382 if (ext4_has_feature_readonly(sb) ||
6383 !ext4_feature_set_ok(sb, 0)) {
6388 * Make sure the group descriptor checksums
6389 * are sane. If they aren't, refuse to remount r/w.
6391 for (g = 0; g < sbi->s_groups_count; g++) {
6392 struct ext4_group_desc *gdp =
6393 ext4_get_group_desc(sb, g, NULL);
6395 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
6396 ext4_msg(sb, KERN_ERR,
6397 "ext4_remount: Checksum for group %u failed (%u!=%u)",
6398 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
6399 le16_to_cpu(gdp->bg_checksum));
6406 * If we have an unprocessed orphan list hanging
6407 * around from a previously readonly bdev mount,
6408 * require a full umount/remount for now.
6410 if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) {
6411 ext4_msg(sb, KERN_WARNING, "Couldn't "
6412 "remount RDWR because of unprocessed "
6413 "orphan inode list. Please "
6414 "umount/remount instead");
6420 * Mounting a RDONLY partition read-write, so reread
6421 * and store the current valid flag. (It may have
6422 * been changed by e2fsck since we originally mounted
6425 if (sbi->s_journal) {
6426 err = ext4_clear_journal_err(sb, es);
6430 sbi->s_mount_state = le16_to_cpu(es->s_state);
6432 err = ext4_setup_super(sb, es, 0);
6436 sb->s_flags &= ~SB_RDONLY;
6437 if (ext4_has_feature_mmp(sb))
6438 if (ext4_multi_mount_protect(sb,
6439 le64_to_cpu(es->s_mmp_block))) {
6450 * Reinitialize lazy itable initialization thread based on
6453 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
6454 ext4_unregister_li_request(sb);
6456 ext4_group_t first_not_zeroed;
6457 first_not_zeroed = ext4_has_uninit_itable(sb);
6458 ext4_register_li_request(sb, first_not_zeroed);
6462 * Handle creation of system zone data early because it can fail.
6463 * Releasing of existing data is done when we are sure remount will
6466 if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
6467 err = ext4_setup_system_zone(sb);
6472 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
6473 err = ext4_commit_super(sb);
6479 /* Release old quota file names */
6480 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6481 kfree(old_opts.s_qf_names[i]);
6483 if (sb_any_quota_suspended(sb))
6484 dquot_resume(sb, -1);
6485 else if (ext4_has_feature_quota(sb)) {
6486 err = ext4_enable_quotas(sb);
6492 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6493 ext4_release_system_zone(sb);
6495 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6496 ext4_stop_mmpd(sbi);
6501 sb->s_flags = old_sb_flags;
6502 sbi->s_mount_opt = old_opts.s_mount_opt;
6503 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
6504 sbi->s_resuid = old_opts.s_resuid;
6505 sbi->s_resgid = old_opts.s_resgid;
6506 sbi->s_commit_interval = old_opts.s_commit_interval;
6507 sbi->s_min_batch_time = old_opts.s_min_batch_time;
6508 sbi->s_max_batch_time = old_opts.s_max_batch_time;
6509 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6510 ext4_release_system_zone(sb);
6512 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
6513 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
6514 to_free[i] = get_qf_name(sb, sbi, i);
6515 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
6518 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6521 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6522 ext4_stop_mmpd(sbi);
6526 static int ext4_reconfigure(struct fs_context *fc)
6528 struct super_block *sb = fc->root->d_sb;
6531 fc->s_fs_info = EXT4_SB(sb);
6533 ret = ext4_check_opt_consistency(fc, sb);
6537 ret = __ext4_remount(fc, sb);
6541 ext4_msg(sb, KERN_INFO, "re-mounted. Quota mode: %s.",
6542 ext4_quota_mode(sb));
6548 static int ext4_statfs_project(struct super_block *sb,
6549 kprojid_t projid, struct kstatfs *buf)
6552 struct dquot *dquot;
6556 qid = make_kqid_projid(projid);
6557 dquot = dqget(sb, qid);
6559 return PTR_ERR(dquot);
6560 spin_lock(&dquot->dq_dqb_lock);
6562 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
6563 dquot->dq_dqb.dqb_bhardlimit);
6564 limit >>= sb->s_blocksize_bits;
6566 if (limit && buf->f_blocks > limit) {
6567 curblock = (dquot->dq_dqb.dqb_curspace +
6568 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
6569 buf->f_blocks = limit;
6570 buf->f_bfree = buf->f_bavail =
6571 (buf->f_blocks > curblock) ?
6572 (buf->f_blocks - curblock) : 0;
6575 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
6576 dquot->dq_dqb.dqb_ihardlimit);
6577 if (limit && buf->f_files > limit) {
6578 buf->f_files = limit;
6580 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
6581 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
6584 spin_unlock(&dquot->dq_dqb_lock);
6590 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
6592 struct super_block *sb = dentry->d_sb;
6593 struct ext4_sb_info *sbi = EXT4_SB(sb);
6594 struct ext4_super_block *es = sbi->s_es;
6595 ext4_fsblk_t overhead = 0, resv_blocks;
6597 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
6599 if (!test_opt(sb, MINIX_DF))
6600 overhead = sbi->s_overhead;
6602 buf->f_type = EXT4_SUPER_MAGIC;
6603 buf->f_bsize = sb->s_blocksize;
6604 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
6605 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
6606 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
6607 /* prevent underflow in case that few free space is available */
6608 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
6609 buf->f_bavail = buf->f_bfree -
6610 (ext4_r_blocks_count(es) + resv_blocks);
6611 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
6613 buf->f_files = le32_to_cpu(es->s_inodes_count);
6614 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
6615 buf->f_namelen = EXT4_NAME_LEN;
6616 buf->f_fsid = uuid_to_fsid(es->s_uuid);
6619 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
6620 sb_has_quota_limits_enabled(sb, PRJQUOTA))
6621 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
6630 * Helper functions so that transaction is started before we acquire dqio_sem
6631 * to keep correct lock ordering of transaction > dqio_sem
6633 static inline struct inode *dquot_to_inode(struct dquot *dquot)
6635 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
6638 static int ext4_write_dquot(struct dquot *dquot)
6642 struct inode *inode;
6644 inode = dquot_to_inode(dquot);
6645 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
6646 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
6648 return PTR_ERR(handle);
6649 ret = dquot_commit(dquot);
6650 err = ext4_journal_stop(handle);
6656 static int ext4_acquire_dquot(struct dquot *dquot)
6661 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6662 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
6664 return PTR_ERR(handle);
6665 ret = dquot_acquire(dquot);
6666 err = ext4_journal_stop(handle);
6672 static int ext4_release_dquot(struct dquot *dquot)
6677 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6678 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
6679 if (IS_ERR(handle)) {
6680 /* Release dquot anyway to avoid endless cycle in dqput() */
6681 dquot_release(dquot);
6682 return PTR_ERR(handle);
6684 ret = dquot_release(dquot);
6685 err = ext4_journal_stop(handle);
6691 static int ext4_mark_dquot_dirty(struct dquot *dquot)
6693 struct super_block *sb = dquot->dq_sb;
6695 if (ext4_is_quota_journalled(sb)) {
6696 dquot_mark_dquot_dirty(dquot);
6697 return ext4_write_dquot(dquot);
6699 return dquot_mark_dquot_dirty(dquot);
6703 static int ext4_write_info(struct super_block *sb, int type)
6708 /* Data block + inode block */
6709 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
6711 return PTR_ERR(handle);
6712 ret = dquot_commit_info(sb, type);
6713 err = ext4_journal_stop(handle);
6719 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
6721 struct ext4_inode_info *ei = EXT4_I(inode);
6723 /* The first argument of lockdep_set_subclass has to be
6724 * *exactly* the same as the argument to init_rwsem() --- in
6725 * this case, in init_once() --- or lockdep gets unhappy
6726 * because the name of the lock is set using the
6727 * stringification of the argument to init_rwsem().
6729 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
6730 lockdep_set_subclass(&ei->i_data_sem, subclass);
6734 * Standard function to be called on quota_on
6736 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
6737 const struct path *path)
6741 if (!test_opt(sb, QUOTA))
6744 /* Quotafile not on the same filesystem? */
6745 if (path->dentry->d_sb != sb)
6748 /* Quota already enabled for this file? */
6749 if (IS_NOQUOTA(d_inode(path->dentry)))
6752 /* Journaling quota? */
6753 if (EXT4_SB(sb)->s_qf_names[type]) {
6754 /* Quotafile not in fs root? */
6755 if (path->dentry->d_parent != sb->s_root)
6756 ext4_msg(sb, KERN_WARNING,
6757 "Quota file not on filesystem root. "
6758 "Journaled quota will not work");
6759 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
6762 * Clear the flag just in case mount options changed since
6765 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
6769 * When we journal data on quota file, we have to flush journal to see
6770 * all updates to the file when we bypass pagecache...
6772 if (EXT4_SB(sb)->s_journal &&
6773 ext4_should_journal_data(d_inode(path->dentry))) {
6775 * We don't need to lock updates but journal_flush() could
6776 * otherwise be livelocked...
6778 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
6779 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal, 0);
6780 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
6785 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
6786 err = dquot_quota_on(sb, type, format_id, path);
6788 struct inode *inode = d_inode(path->dentry);
6792 * Set inode flags to prevent userspace from messing with quota
6793 * files. If this fails, we return success anyway since quotas
6794 * are already enabled and this is not a hard failure.
6797 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6800 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
6801 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
6802 S_NOATIME | S_IMMUTABLE);
6803 err = ext4_mark_inode_dirty(handle, inode);
6804 ext4_journal_stop(handle);
6806 inode_unlock(inode);
6808 dquot_quota_off(sb, type);
6811 lockdep_set_quota_inode(path->dentry->d_inode,
6816 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
6820 struct inode *qf_inode;
6821 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6822 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6823 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6824 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6827 BUG_ON(!ext4_has_feature_quota(sb));
6829 if (!qf_inums[type])
6832 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
6833 if (IS_ERR(qf_inode)) {
6834 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
6835 return PTR_ERR(qf_inode);
6838 /* Don't account quota for quota files to avoid recursion */
6839 qf_inode->i_flags |= S_NOQUOTA;
6840 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
6841 err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
6843 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
6849 /* Enable usage tracking for all quota types. */
6850 int ext4_enable_quotas(struct super_block *sb)
6853 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6854 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6855 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6856 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6858 bool quota_mopt[EXT4_MAXQUOTAS] = {
6859 test_opt(sb, USRQUOTA),
6860 test_opt(sb, GRPQUOTA),
6861 test_opt(sb, PRJQUOTA),
6864 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
6865 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
6866 if (qf_inums[type]) {
6867 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
6868 DQUOT_USAGE_ENABLED |
6869 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
6872 "Failed to enable quota tracking "
6873 "(type=%d, err=%d). Please run "
6874 "e2fsck to fix.", type, err);
6875 for (type--; type >= 0; type--) {
6876 struct inode *inode;
6878 inode = sb_dqopt(sb)->files[type];
6880 inode = igrab(inode);
6881 dquot_quota_off(sb, type);
6883 lockdep_set_quota_inode(inode,
6896 static int ext4_quota_off(struct super_block *sb, int type)
6898 struct inode *inode = sb_dqopt(sb)->files[type];
6902 /* Force all delayed allocation blocks to be allocated.
6903 * Caller already holds s_umount sem */
6904 if (test_opt(sb, DELALLOC))
6905 sync_filesystem(sb);
6907 if (!inode || !igrab(inode))
6910 err = dquot_quota_off(sb, type);
6911 if (err || ext4_has_feature_quota(sb))
6916 * Update modification times of quota files when userspace can
6917 * start looking at them. If we fail, we return success anyway since
6918 * this is not a hard failure and quotas are already disabled.
6920 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6921 if (IS_ERR(handle)) {
6922 err = PTR_ERR(handle);
6925 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
6926 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
6927 inode->i_mtime = inode->i_ctime = current_time(inode);
6928 err = ext4_mark_inode_dirty(handle, inode);
6929 ext4_journal_stop(handle);
6931 inode_unlock(inode);
6933 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
6937 return dquot_quota_off(sb, type);
6940 /* Read data from quotafile - avoid pagecache and such because we cannot afford
6941 * acquiring the locks... As quota files are never truncated and quota code
6942 * itself serializes the operations (and no one else should touch the files)
6943 * we don't have to be afraid of races */
6944 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
6945 size_t len, loff_t off)
6947 struct inode *inode = sb_dqopt(sb)->files[type];
6948 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6949 int offset = off & (sb->s_blocksize - 1);
6952 struct buffer_head *bh;
6953 loff_t i_size = i_size_read(inode);
6957 if (off+len > i_size)
6960 while (toread > 0) {
6961 tocopy = sb->s_blocksize - offset < toread ?
6962 sb->s_blocksize - offset : toread;
6963 bh = ext4_bread(NULL, inode, blk, 0);
6966 if (!bh) /* A hole? */
6967 memset(data, 0, tocopy);
6969 memcpy(data, bh->b_data+offset, tocopy);
6979 /* Write to quotafile (we know the transaction is already started and has
6980 * enough credits) */
6981 static ssize_t ext4_quota_write(struct super_block *sb, int type,
6982 const char *data, size_t len, loff_t off)
6984 struct inode *inode = sb_dqopt(sb)->files[type];
6985 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6986 int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
6988 struct buffer_head *bh;
6989 handle_t *handle = journal_current_handle();
6992 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6993 " cancelled because transaction is not started",
6994 (unsigned long long)off, (unsigned long long)len);
6998 * Since we account only one data block in transaction credits,
6999 * then it is impossible to cross a block boundary.
7001 if (sb->s_blocksize - offset < len) {
7002 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7003 " cancelled because not block aligned",
7004 (unsigned long long)off, (unsigned long long)len);
7009 bh = ext4_bread(handle, inode, blk,
7010 EXT4_GET_BLOCKS_CREATE |
7011 EXT4_GET_BLOCKS_METADATA_NOFAIL);
7012 } while (PTR_ERR(bh) == -ENOSPC &&
7013 ext4_should_retry_alloc(inode->i_sb, &retries));
7018 BUFFER_TRACE(bh, "get write access");
7019 err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE);
7025 memcpy(bh->b_data+offset, data, len);
7026 flush_dcache_page(bh->b_page);
7028 err = ext4_handle_dirty_metadata(handle, NULL, bh);
7031 if (inode->i_size < off + len) {
7032 i_size_write(inode, off + len);
7033 EXT4_I(inode)->i_disksize = inode->i_size;
7034 err2 = ext4_mark_inode_dirty(handle, inode);
7035 if (unlikely(err2 && !err))
7038 return err ? err : len;
7042 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
7043 static inline void register_as_ext2(void)
7045 int err = register_filesystem(&ext2_fs_type);
7048 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
7051 static inline void unregister_as_ext2(void)
7053 unregister_filesystem(&ext2_fs_type);
7056 static inline int ext2_feature_set_ok(struct super_block *sb)
7058 if (ext4_has_unknown_ext2_incompat_features(sb))
7062 if (ext4_has_unknown_ext2_ro_compat_features(sb))
7067 static inline void register_as_ext2(void) { }
7068 static inline void unregister_as_ext2(void) { }
7069 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
7072 static inline void register_as_ext3(void)
7074 int err = register_filesystem(&ext3_fs_type);
7077 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
7080 static inline void unregister_as_ext3(void)
7082 unregister_filesystem(&ext3_fs_type);
7085 static inline int ext3_feature_set_ok(struct super_block *sb)
7087 if (ext4_has_unknown_ext3_incompat_features(sb))
7089 if (!ext4_has_feature_journal(sb))
7093 if (ext4_has_unknown_ext3_ro_compat_features(sb))
7098 static struct file_system_type ext4_fs_type = {
7099 .owner = THIS_MODULE,
7101 .init_fs_context = ext4_init_fs_context,
7102 .parameters = ext4_param_specs,
7103 .kill_sb = kill_block_super,
7104 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP,
7106 MODULE_ALIAS_FS("ext4");
7108 /* Shared across all ext4 file systems */
7109 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
7111 static int __init ext4_init_fs(void)
7115 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
7116 ext4_li_info = NULL;
7118 /* Build-time check for flags consistency */
7119 ext4_check_flag_values();
7121 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
7122 init_waitqueue_head(&ext4__ioend_wq[i]);
7124 err = ext4_init_es();
7128 err = ext4_init_pending();
7132 err = ext4_init_post_read_processing();
7136 err = ext4_init_pageio();
7140 err = ext4_init_system_zone();
7144 err = ext4_init_sysfs();
7148 err = ext4_init_mballoc();
7151 err = init_inodecache();
7155 err = ext4_fc_init_dentry_cache();
7161 err = register_filesystem(&ext4_fs_type);
7167 unregister_as_ext2();
7168 unregister_as_ext3();
7169 ext4_fc_destroy_dentry_cache();
7171 destroy_inodecache();
7173 ext4_exit_mballoc();
7177 ext4_exit_system_zone();
7181 ext4_exit_post_read_processing();
7183 ext4_exit_pending();
7190 static void __exit ext4_exit_fs(void)
7192 ext4_destroy_lazyinit_thread();
7193 unregister_as_ext2();
7194 unregister_as_ext3();
7195 unregister_filesystem(&ext4_fs_type);
7196 ext4_fc_destroy_dentry_cache();
7197 destroy_inodecache();
7198 ext4_exit_mballoc();
7200 ext4_exit_system_zone();
7202 ext4_exit_post_read_processing();
7204 ext4_exit_pending();
7207 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
7208 MODULE_DESCRIPTION("Fourth Extended Filesystem");
7209 MODULE_LICENSE("GPL");
7210 MODULE_SOFTDEP("pre: crc32c");
7211 module_init(ext4_init_fs)
7212 module_exit(ext4_exit_fs)