drm/amdgpu: fall back to INPUT power for AVG power via INFO IOCTL
[platform/kernel/linux-starfive.git] / fs / ext4 / readpage.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/fs/ext4/readpage.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  * Copyright (C) 2015, Google, Inc.
7  *
8  * This was originally taken from fs/mpage.c
9  *
10  * The ext4_mpage_readpages() function here is intended to
11  * replace mpage_readahead() in the general case, not just for
12  * encrypted files.  It has some limitations (see below), where it
13  * will fall back to read_block_full_page(), but these limitations
14  * should only be hit when page_size != block_size.
15  *
16  * This will allow us to attach a callback function to support ext4
17  * encryption.
18  *
19  * If anything unusual happens, such as:
20  *
21  * - encountering a page which has buffers
22  * - encountering a page which has a non-hole after a hole
23  * - encountering a page with non-contiguous blocks
24  *
25  * then this code just gives up and calls the buffer_head-based read function.
26  * It does handle a page which has holes at the end - that is a common case:
27  * the end-of-file on blocksize < PAGE_SIZE setups.
28  *
29  */
30
31 #include <linux/kernel.h>
32 #include <linux/export.h>
33 #include <linux/mm.h>
34 #include <linux/kdev_t.h>
35 #include <linux/gfp.h>
36 #include <linux/bio.h>
37 #include <linux/fs.h>
38 #include <linux/buffer_head.h>
39 #include <linux/blkdev.h>
40 #include <linux/highmem.h>
41 #include <linux/prefetch.h>
42 #include <linux/mpage.h>
43 #include <linux/writeback.h>
44 #include <linux/backing-dev.h>
45 #include <linux/pagevec.h>
46
47 #include "ext4.h"
48
49 #define NUM_PREALLOC_POST_READ_CTXS     128
50
51 static struct kmem_cache *bio_post_read_ctx_cache;
52 static mempool_t *bio_post_read_ctx_pool;
53
54 /* postprocessing steps for read bios */
55 enum bio_post_read_step {
56         STEP_INITIAL = 0,
57         STEP_DECRYPT,
58         STEP_VERITY,
59         STEP_MAX,
60 };
61
62 struct bio_post_read_ctx {
63         struct bio *bio;
64         struct work_struct work;
65         unsigned int cur_step;
66         unsigned int enabled_steps;
67 };
68
69 static void __read_end_io(struct bio *bio)
70 {
71         struct folio_iter fi;
72
73         bio_for_each_folio_all(fi, bio) {
74                 struct folio *folio = fi.folio;
75
76                 if (bio->bi_status)
77                         folio_clear_uptodate(folio);
78                 else
79                         folio_mark_uptodate(folio);
80                 folio_unlock(folio);
81         }
82         if (bio->bi_private)
83                 mempool_free(bio->bi_private, bio_post_read_ctx_pool);
84         bio_put(bio);
85 }
86
87 static void bio_post_read_processing(struct bio_post_read_ctx *ctx);
88
89 static void decrypt_work(struct work_struct *work)
90 {
91         struct bio_post_read_ctx *ctx =
92                 container_of(work, struct bio_post_read_ctx, work);
93         struct bio *bio = ctx->bio;
94
95         if (fscrypt_decrypt_bio(bio))
96                 bio_post_read_processing(ctx);
97         else
98                 __read_end_io(bio);
99 }
100
101 static void verity_work(struct work_struct *work)
102 {
103         struct bio_post_read_ctx *ctx =
104                 container_of(work, struct bio_post_read_ctx, work);
105         struct bio *bio = ctx->bio;
106
107         /*
108          * fsverity_verify_bio() may call readahead() again, and although verity
109          * will be disabled for that, decryption may still be needed, causing
110          * another bio_post_read_ctx to be allocated.  So to guarantee that
111          * mempool_alloc() never deadlocks we must free the current ctx first.
112          * This is safe because verity is the last post-read step.
113          */
114         BUILD_BUG_ON(STEP_VERITY + 1 != STEP_MAX);
115         mempool_free(ctx, bio_post_read_ctx_pool);
116         bio->bi_private = NULL;
117
118         fsverity_verify_bio(bio);
119
120         __read_end_io(bio);
121 }
122
123 static void bio_post_read_processing(struct bio_post_read_ctx *ctx)
124 {
125         /*
126          * We use different work queues for decryption and for verity because
127          * verity may require reading metadata pages that need decryption, and
128          * we shouldn't recurse to the same workqueue.
129          */
130         switch (++ctx->cur_step) {
131         case STEP_DECRYPT:
132                 if (ctx->enabled_steps & (1 << STEP_DECRYPT)) {
133                         INIT_WORK(&ctx->work, decrypt_work);
134                         fscrypt_enqueue_decrypt_work(&ctx->work);
135                         return;
136                 }
137                 ctx->cur_step++;
138                 fallthrough;
139         case STEP_VERITY:
140                 if (ctx->enabled_steps & (1 << STEP_VERITY)) {
141                         INIT_WORK(&ctx->work, verity_work);
142                         fsverity_enqueue_verify_work(&ctx->work);
143                         return;
144                 }
145                 ctx->cur_step++;
146                 fallthrough;
147         default:
148                 __read_end_io(ctx->bio);
149         }
150 }
151
152 static bool bio_post_read_required(struct bio *bio)
153 {
154         return bio->bi_private && !bio->bi_status;
155 }
156
157 /*
158  * I/O completion handler for multipage BIOs.
159  *
160  * The mpage code never puts partial pages into a BIO (except for end-of-file).
161  * If a page does not map to a contiguous run of blocks then it simply falls
162  * back to block_read_full_folio().
163  *
164  * Why is this?  If a page's completion depends on a number of different BIOs
165  * which can complete in any order (or at the same time) then determining the
166  * status of that page is hard.  See end_buffer_async_read() for the details.
167  * There is no point in duplicating all that complexity.
168  */
169 static void mpage_end_io(struct bio *bio)
170 {
171         if (bio_post_read_required(bio)) {
172                 struct bio_post_read_ctx *ctx = bio->bi_private;
173
174                 ctx->cur_step = STEP_INITIAL;
175                 bio_post_read_processing(ctx);
176                 return;
177         }
178         __read_end_io(bio);
179 }
180
181 static inline bool ext4_need_verity(const struct inode *inode, pgoff_t idx)
182 {
183         return fsverity_active(inode) &&
184                idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
185 }
186
187 static void ext4_set_bio_post_read_ctx(struct bio *bio,
188                                        const struct inode *inode,
189                                        pgoff_t first_idx)
190 {
191         unsigned int post_read_steps = 0;
192
193         if (fscrypt_inode_uses_fs_layer_crypto(inode))
194                 post_read_steps |= 1 << STEP_DECRYPT;
195
196         if (ext4_need_verity(inode, first_idx))
197                 post_read_steps |= 1 << STEP_VERITY;
198
199         if (post_read_steps) {
200                 /* Due to the mempool, this never fails. */
201                 struct bio_post_read_ctx *ctx =
202                         mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
203
204                 ctx->bio = bio;
205                 ctx->enabled_steps = post_read_steps;
206                 bio->bi_private = ctx;
207         }
208 }
209
210 static inline loff_t ext4_readpage_limit(struct inode *inode)
211 {
212         if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
213                 return inode->i_sb->s_maxbytes;
214
215         return i_size_read(inode);
216 }
217
218 int ext4_mpage_readpages(struct inode *inode,
219                 struct readahead_control *rac, struct folio *folio)
220 {
221         struct bio *bio = NULL;
222         sector_t last_block_in_bio = 0;
223
224         const unsigned blkbits = inode->i_blkbits;
225         const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
226         const unsigned blocksize = 1 << blkbits;
227         sector_t next_block;
228         sector_t block_in_file;
229         sector_t last_block;
230         sector_t last_block_in_file;
231         sector_t blocks[MAX_BUF_PER_PAGE];
232         unsigned page_block;
233         struct block_device *bdev = inode->i_sb->s_bdev;
234         int length;
235         unsigned relative_block = 0;
236         struct ext4_map_blocks map;
237         unsigned int nr_pages = rac ? readahead_count(rac) : 1;
238
239         map.m_pblk = 0;
240         map.m_lblk = 0;
241         map.m_len = 0;
242         map.m_flags = 0;
243
244         for (; nr_pages; nr_pages--) {
245                 int fully_mapped = 1;
246                 unsigned first_hole = blocks_per_page;
247
248                 if (rac)
249                         folio = readahead_folio(rac);
250                 prefetchw(&folio->flags);
251
252                 if (folio_buffers(folio))
253                         goto confused;
254
255                 block_in_file = next_block =
256                         (sector_t)folio->index << (PAGE_SHIFT - blkbits);
257                 last_block = block_in_file + nr_pages * blocks_per_page;
258                 last_block_in_file = (ext4_readpage_limit(inode) +
259                                       blocksize - 1) >> blkbits;
260                 if (last_block > last_block_in_file)
261                         last_block = last_block_in_file;
262                 page_block = 0;
263
264                 /*
265                  * Map blocks using the previous result first.
266                  */
267                 if ((map.m_flags & EXT4_MAP_MAPPED) &&
268                     block_in_file > map.m_lblk &&
269                     block_in_file < (map.m_lblk + map.m_len)) {
270                         unsigned map_offset = block_in_file - map.m_lblk;
271                         unsigned last = map.m_len - map_offset;
272
273                         for (relative_block = 0; ; relative_block++) {
274                                 if (relative_block == last) {
275                                         /* needed? */
276                                         map.m_flags &= ~EXT4_MAP_MAPPED;
277                                         break;
278                                 }
279                                 if (page_block == blocks_per_page)
280                                         break;
281                                 blocks[page_block] = map.m_pblk + map_offset +
282                                         relative_block;
283                                 page_block++;
284                                 block_in_file++;
285                         }
286                 }
287
288                 /*
289                  * Then do more ext4_map_blocks() calls until we are
290                  * done with this folio.
291                  */
292                 while (page_block < blocks_per_page) {
293                         if (block_in_file < last_block) {
294                                 map.m_lblk = block_in_file;
295                                 map.m_len = last_block - block_in_file;
296
297                                 if (ext4_map_blocks(NULL, inode, &map, 0) < 0) {
298                                 set_error_page:
299                                         folio_set_error(folio);
300                                         folio_zero_segment(folio, 0,
301                                                           folio_size(folio));
302                                         folio_unlock(folio);
303                                         goto next_page;
304                                 }
305                         }
306                         if ((map.m_flags & EXT4_MAP_MAPPED) == 0) {
307                                 fully_mapped = 0;
308                                 if (first_hole == blocks_per_page)
309                                         first_hole = page_block;
310                                 page_block++;
311                                 block_in_file++;
312                                 continue;
313                         }
314                         if (first_hole != blocks_per_page)
315                                 goto confused;          /* hole -> non-hole */
316
317                         /* Contiguous blocks? */
318                         if (page_block && blocks[page_block-1] != map.m_pblk-1)
319                                 goto confused;
320                         for (relative_block = 0; ; relative_block++) {
321                                 if (relative_block == map.m_len) {
322                                         /* needed? */
323                                         map.m_flags &= ~EXT4_MAP_MAPPED;
324                                         break;
325                                 } else if (page_block == blocks_per_page)
326                                         break;
327                                 blocks[page_block] = map.m_pblk+relative_block;
328                                 page_block++;
329                                 block_in_file++;
330                         }
331                 }
332                 if (first_hole != blocks_per_page) {
333                         folio_zero_segment(folio, first_hole << blkbits,
334                                           folio_size(folio));
335                         if (first_hole == 0) {
336                                 if (ext4_need_verity(inode, folio->index) &&
337                                     !fsverity_verify_folio(folio))
338                                         goto set_error_page;
339                                 folio_mark_uptodate(folio);
340                                 folio_unlock(folio);
341                                 continue;
342                         }
343                 } else if (fully_mapped) {
344                         folio_set_mappedtodisk(folio);
345                 }
346
347                 /*
348                  * This folio will go to BIO.  Do we need to send this
349                  * BIO off first?
350                  */
351                 if (bio && (last_block_in_bio != blocks[0] - 1 ||
352                             !fscrypt_mergeable_bio(bio, inode, next_block))) {
353                 submit_and_realloc:
354                         submit_bio(bio);
355                         bio = NULL;
356                 }
357                 if (bio == NULL) {
358                         /*
359                          * bio_alloc will _always_ be able to allocate a bio if
360                          * __GFP_DIRECT_RECLAIM is set, see bio_alloc_bioset().
361                          */
362                         bio = bio_alloc(bdev, bio_max_segs(nr_pages),
363                                         REQ_OP_READ, GFP_KERNEL);
364                         fscrypt_set_bio_crypt_ctx(bio, inode, next_block,
365                                                   GFP_KERNEL);
366                         ext4_set_bio_post_read_ctx(bio, inode, folio->index);
367                         bio->bi_iter.bi_sector = blocks[0] << (blkbits - 9);
368                         bio->bi_end_io = mpage_end_io;
369                         if (rac)
370                                 bio->bi_opf |= REQ_RAHEAD;
371                 }
372
373                 length = first_hole << blkbits;
374                 if (!bio_add_folio(bio, folio, length, 0))
375                         goto submit_and_realloc;
376
377                 if (((map.m_flags & EXT4_MAP_BOUNDARY) &&
378                      (relative_block == map.m_len)) ||
379                     (first_hole != blocks_per_page)) {
380                         submit_bio(bio);
381                         bio = NULL;
382                 } else
383                         last_block_in_bio = blocks[blocks_per_page - 1];
384                 continue;
385         confused:
386                 if (bio) {
387                         submit_bio(bio);
388                         bio = NULL;
389                 }
390                 if (!folio_test_uptodate(folio))
391                         block_read_full_folio(folio, ext4_get_block);
392                 else
393                         folio_unlock(folio);
394 next_page:
395                 ; /* A label shall be followed by a statement until C23 */
396         }
397         if (bio)
398                 submit_bio(bio);
399         return 0;
400 }
401
402 int __init ext4_init_post_read_processing(void)
403 {
404         bio_post_read_ctx_cache = KMEM_CACHE(bio_post_read_ctx, SLAB_RECLAIM_ACCOUNT);
405
406         if (!bio_post_read_ctx_cache)
407                 goto fail;
408         bio_post_read_ctx_pool =
409                 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
410                                          bio_post_read_ctx_cache);
411         if (!bio_post_read_ctx_pool)
412                 goto fail_free_cache;
413         return 0;
414
415 fail_free_cache:
416         kmem_cache_destroy(bio_post_read_ctx_cache);
417 fail:
418         return -ENOMEM;
419 }
420
421 void ext4_exit_post_read_processing(void)
422 {
423         mempool_destroy(bio_post_read_ctx_pool);
424         kmem_cache_destroy(bio_post_read_ctx_cache);
425 }