1 // SPDX-License-Identifier: GPL-2.0
3 * linux/fs/ext4/page-io.c
5 * This contains the new page_io functions for ext4
7 * Written by Theodore Ts'o, 2010.
11 #include <linux/time.h>
12 #include <linux/highuid.h>
13 #include <linux/pagemap.h>
14 #include <linux/quotaops.h>
15 #include <linux/string.h>
16 #include <linux/buffer_head.h>
17 #include <linux/writeback.h>
18 #include <linux/pagevec.h>
19 #include <linux/mpage.h>
20 #include <linux/namei.h>
21 #include <linux/uio.h>
22 #include <linux/bio.h>
23 #include <linux/workqueue.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
27 #include <linux/sched/mm.h>
29 #include "ext4_jbd2.h"
33 static struct kmem_cache *io_end_cachep;
34 static struct kmem_cache *io_end_vec_cachep;
36 int __init ext4_init_pageio(void)
38 io_end_cachep = KMEM_CACHE(ext4_io_end, SLAB_RECLAIM_ACCOUNT);
39 if (io_end_cachep == NULL)
42 io_end_vec_cachep = KMEM_CACHE(ext4_io_end_vec, 0);
43 if (io_end_vec_cachep == NULL) {
44 kmem_cache_destroy(io_end_cachep);
50 void ext4_exit_pageio(void)
52 kmem_cache_destroy(io_end_cachep);
53 kmem_cache_destroy(io_end_vec_cachep);
56 struct ext4_io_end_vec *ext4_alloc_io_end_vec(ext4_io_end_t *io_end)
58 struct ext4_io_end_vec *io_end_vec;
60 io_end_vec = kmem_cache_zalloc(io_end_vec_cachep, GFP_NOFS);
62 return ERR_PTR(-ENOMEM);
63 INIT_LIST_HEAD(&io_end_vec->list);
64 list_add_tail(&io_end_vec->list, &io_end->list_vec);
68 static void ext4_free_io_end_vec(ext4_io_end_t *io_end)
70 struct ext4_io_end_vec *io_end_vec, *tmp;
72 if (list_empty(&io_end->list_vec))
74 list_for_each_entry_safe(io_end_vec, tmp, &io_end->list_vec, list) {
75 list_del(&io_end_vec->list);
76 kmem_cache_free(io_end_vec_cachep, io_end_vec);
80 struct ext4_io_end_vec *ext4_last_io_end_vec(ext4_io_end_t *io_end)
82 BUG_ON(list_empty(&io_end->list_vec));
83 return list_last_entry(&io_end->list_vec, struct ext4_io_end_vec, list);
87 * Print an buffer I/O error compatible with the fs/buffer.c. This
88 * provides compatibility with dmesg scrapers that look for a specific
89 * buffer I/O error message. We really need a unified error reporting
90 * structure to userspace ala Digital Unix's uerf system, but it's
91 * probably not going to happen in my lifetime, due to LKML politics...
93 static void buffer_io_error(struct buffer_head *bh)
95 printk_ratelimited(KERN_ERR "Buffer I/O error on device %pg, logical block %llu\n",
97 (unsigned long long)bh->b_blocknr);
100 static void ext4_finish_bio(struct bio *bio)
102 struct bio_vec *bvec;
103 struct bvec_iter_all iter_all;
105 bio_for_each_segment_all(bvec, bio, iter_all) {
106 struct page *page = bvec->bv_page;
107 struct page *bounce_page = NULL;
108 struct buffer_head *bh, *head;
109 unsigned bio_start = bvec->bv_offset;
110 unsigned bio_end = bio_start + bvec->bv_len;
111 unsigned under_io = 0;
114 if (fscrypt_is_bounce_page(page)) {
116 page = fscrypt_pagecache_page(bounce_page);
119 if (bio->bi_status) {
121 mapping_set_error(page->mapping, -EIO);
123 bh = head = page_buffers(page);
125 * We check all buffers in the page under b_uptodate_lock
126 * to avoid races with other end io clearing async_write flags
128 spin_lock_irqsave(&head->b_uptodate_lock, flags);
130 if (bh_offset(bh) < bio_start ||
131 bh_offset(bh) + bh->b_size > bio_end) {
132 if (buffer_async_write(bh))
136 clear_buffer_async_write(bh);
137 if (bio->bi_status) {
138 set_buffer_write_io_error(bh);
141 } while ((bh = bh->b_this_page) != head);
142 spin_unlock_irqrestore(&head->b_uptodate_lock, flags);
144 fscrypt_free_bounce_page(bounce_page);
145 end_page_writeback(page);
150 static void ext4_release_io_end(ext4_io_end_t *io_end)
152 struct bio *bio, *next_bio;
154 BUG_ON(!list_empty(&io_end->list));
155 BUG_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
156 WARN_ON(io_end->handle);
158 for (bio = io_end->bio; bio; bio = next_bio) {
159 next_bio = bio->bi_private;
160 ext4_finish_bio(bio);
163 ext4_free_io_end_vec(io_end);
164 kmem_cache_free(io_end_cachep, io_end);
168 * Check a range of space and convert unwritten extents to written. Note that
169 * we are protected from truncate touching same part of extent tree by the
170 * fact that truncate code waits for all DIO to finish (thus exclusion from
171 * direct IO is achieved) and also waits for PageWriteback bits. Thus we
172 * cannot get to ext4_ext_truncate() before all IOs overlapping that range are
173 * completed (happens from ext4_free_ioend()).
175 static int ext4_end_io_end(ext4_io_end_t *io_end)
177 struct inode *inode = io_end->inode;
178 handle_t *handle = io_end->handle;
181 ext4_debug("ext4_end_io_nolock: io_end 0x%p from inode %lu,list->next 0x%p,"
183 io_end, inode->i_ino, io_end->list.next, io_end->list.prev);
185 io_end->handle = NULL; /* Following call will use up the handle */
186 ret = ext4_convert_unwritten_io_end_vec(handle, io_end);
187 if (ret < 0 && !ext4_forced_shutdown(EXT4_SB(inode->i_sb))) {
188 ext4_msg(inode->i_sb, KERN_EMERG,
189 "failed to convert unwritten extents to written "
190 "extents -- potential data loss! "
191 "(inode %lu, error %d)", inode->i_ino, ret);
193 ext4_clear_io_unwritten_flag(io_end);
194 ext4_release_io_end(io_end);
198 static void dump_completed_IO(struct inode *inode, struct list_head *head)
201 struct list_head *cur, *before, *after;
202 ext4_io_end_t *io_end, *io_end0, *io_end1;
204 if (list_empty(head))
207 ext4_debug("Dump inode %lu completed io list\n", inode->i_ino);
208 list_for_each_entry(io_end, head, list) {
211 io_end0 = container_of(before, ext4_io_end_t, list);
213 io_end1 = container_of(after, ext4_io_end_t, list);
215 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
216 io_end, inode->i_ino, io_end0, io_end1);
221 /* Add the io_end to per-inode completed end_io list. */
222 static void ext4_add_complete_io(ext4_io_end_t *io_end)
224 struct ext4_inode_info *ei = EXT4_I(io_end->inode);
225 struct ext4_sb_info *sbi = EXT4_SB(io_end->inode->i_sb);
226 struct workqueue_struct *wq;
229 /* Only reserved conversions from writeback should enter here */
230 WARN_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN));
231 WARN_ON(!io_end->handle && sbi->s_journal);
232 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
233 wq = sbi->rsv_conversion_wq;
234 if (list_empty(&ei->i_rsv_conversion_list))
235 queue_work(wq, &ei->i_rsv_conversion_work);
236 list_add_tail(&io_end->list, &ei->i_rsv_conversion_list);
237 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
240 static int ext4_do_flush_completed_IO(struct inode *inode,
241 struct list_head *head)
243 ext4_io_end_t *io_end;
244 struct list_head unwritten;
246 struct ext4_inode_info *ei = EXT4_I(inode);
249 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
250 dump_completed_IO(inode, head);
251 list_replace_init(head, &unwritten);
252 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
254 while (!list_empty(&unwritten)) {
255 io_end = list_entry(unwritten.next, ext4_io_end_t, list);
256 BUG_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN));
257 list_del_init(&io_end->list);
259 err = ext4_end_io_end(io_end);
260 if (unlikely(!ret && err))
267 * work on completed IO, to convert unwritten extents to extents
269 void ext4_end_io_rsv_work(struct work_struct *work)
271 struct ext4_inode_info *ei = container_of(work, struct ext4_inode_info,
272 i_rsv_conversion_work);
273 ext4_do_flush_completed_IO(&ei->vfs_inode, &ei->i_rsv_conversion_list);
276 ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags)
278 ext4_io_end_t *io_end = kmem_cache_zalloc(io_end_cachep, flags);
281 io_end->inode = inode;
282 INIT_LIST_HEAD(&io_end->list);
283 INIT_LIST_HEAD(&io_end->list_vec);
284 refcount_set(&io_end->count, 1);
289 void ext4_put_io_end_defer(ext4_io_end_t *io_end)
291 if (refcount_dec_and_test(&io_end->count)) {
292 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN) ||
293 list_empty(&io_end->list_vec)) {
294 ext4_release_io_end(io_end);
297 ext4_add_complete_io(io_end);
301 int ext4_put_io_end(ext4_io_end_t *io_end)
305 if (refcount_dec_and_test(&io_end->count)) {
306 if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
307 err = ext4_convert_unwritten_io_end_vec(io_end->handle,
309 io_end->handle = NULL;
310 ext4_clear_io_unwritten_flag(io_end);
312 ext4_release_io_end(io_end);
317 ext4_io_end_t *ext4_get_io_end(ext4_io_end_t *io_end)
319 refcount_inc(&io_end->count);
323 /* BIO completion function for page writeback */
324 static void ext4_end_bio(struct bio *bio)
326 ext4_io_end_t *io_end = bio->bi_private;
327 sector_t bi_sector = bio->bi_iter.bi_sector;
329 if (WARN_ONCE(!io_end, "io_end is NULL: %pg: sector %Lu len %u err %d\n",
331 (long long) bio->bi_iter.bi_sector,
332 (unsigned) bio_sectors(bio),
334 ext4_finish_bio(bio);
338 bio->bi_end_io = NULL;
340 if (bio->bi_status) {
341 struct inode *inode = io_end->inode;
343 ext4_warning(inode->i_sb, "I/O error %d writing to inode %lu "
344 "starting block %llu)",
345 bio->bi_status, inode->i_ino,
347 bi_sector >> (inode->i_blkbits - 9));
348 mapping_set_error(inode->i_mapping,
349 blk_status_to_errno(bio->bi_status));
352 if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
354 * Link bio into list hanging from io_end. We have to do it
355 * atomically as bio completions can be racing against each
358 bio->bi_private = xchg(&io_end->bio, bio);
359 ext4_put_io_end_defer(io_end);
362 * Drop io_end reference early. Inode can get freed once
365 ext4_put_io_end_defer(io_end);
366 ext4_finish_bio(bio);
371 void ext4_io_submit(struct ext4_io_submit *io)
373 struct bio *bio = io->io_bio;
376 if (io->io_wbc->sync_mode == WB_SYNC_ALL)
377 io->io_bio->bi_opf |= REQ_SYNC;
378 submit_bio(io->io_bio);
383 void ext4_io_submit_init(struct ext4_io_submit *io,
384 struct writeback_control *wbc)
391 static void io_submit_init_bio(struct ext4_io_submit *io,
392 struct buffer_head *bh)
397 * bio_alloc will _always_ be able to allocate a bio if
398 * __GFP_DIRECT_RECLAIM is set, see comments for bio_alloc_bioset().
400 bio = bio_alloc(bh->b_bdev, BIO_MAX_VECS, REQ_OP_WRITE, GFP_NOIO);
401 fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
402 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
403 bio->bi_end_io = ext4_end_bio;
404 bio->bi_private = ext4_get_io_end(io->io_end);
406 io->io_next_block = bh->b_blocknr;
407 wbc_init_bio(io->io_wbc, bio);
410 static void io_submit_add_bh(struct ext4_io_submit *io,
413 struct buffer_head *bh)
417 if (io->io_bio && (bh->b_blocknr != io->io_next_block ||
418 !fscrypt_mergeable_bio_bh(io->io_bio, bh))) {
422 if (io->io_bio == NULL)
423 io_submit_init_bio(io, bh);
424 ret = bio_add_page(io->io_bio, page, bh->b_size, bh_offset(bh));
425 if (ret != bh->b_size)
426 goto submit_and_retry;
427 wbc_account_cgroup_owner(io->io_wbc, page, bh->b_size);
431 int ext4_bio_write_page(struct ext4_io_submit *io,
436 struct page *bounce_page = NULL;
437 struct inode *inode = page->mapping->host;
438 unsigned block_start;
439 struct buffer_head *bh, *head;
441 int nr_submitted = 0;
442 int nr_to_submit = 0;
443 struct writeback_control *wbc = io->io_wbc;
445 BUG_ON(!PageLocked(page));
446 BUG_ON(PageWriteback(page));
449 set_page_writeback_keepwrite(page);
451 set_page_writeback(page);
452 ClearPageError(page);
455 * Comments copied from block_write_full_page:
457 * The page straddles i_size. It must be zeroed out on each and every
458 * writepage invocation because it may be mmapped. "A file is mapped
459 * in multiples of the page size. For a file that is not a multiple of
460 * the page size, the remaining memory is zeroed when mapped, and
461 * writes to that region are not written out to the file."
464 zero_user_segment(page, len, PAGE_SIZE);
466 * In the first loop we prepare and mark buffers to submit. We have to
467 * mark all buffers in the page before submitting so that
468 * end_page_writeback() cannot be called from ext4_bio_end_io() when IO
469 * on the first buffer finishes and we are still working on submitting
472 bh = head = page_buffers(page);
474 block_start = bh_offset(bh);
475 if (block_start >= len) {
476 clear_buffer_dirty(bh);
477 set_buffer_uptodate(bh);
480 if (!buffer_dirty(bh) || buffer_delay(bh) ||
481 !buffer_mapped(bh) || buffer_unwritten(bh)) {
482 /* A hole? We can safely clear the dirty bit */
483 if (!buffer_mapped(bh))
484 clear_buffer_dirty(bh);
490 clear_buffer_new(bh);
491 set_buffer_async_write(bh);
493 } while ((bh = bh->b_this_page) != head);
495 bh = head = page_buffers(page);
498 * If any blocks are being written to an encrypted file, encrypt them
499 * into a bounce page. For simplicity, just encrypt until the last
500 * block which might be needed. This may cause some unneeded blocks
501 * (e.g. holes) to be unnecessarily encrypted, but this is rare and
502 * can't happen in the common case of blocksize == PAGE_SIZE.
504 if (fscrypt_inode_uses_fs_layer_crypto(inode) && nr_to_submit) {
505 gfp_t gfp_flags = GFP_NOFS;
506 unsigned int enc_bytes = round_up(len, i_blocksize(inode));
509 * Since bounce page allocation uses a mempool, we can only use
510 * a waiting mask (i.e. request guaranteed allocation) on the
511 * first page of the bio. Otherwise it can deadlock.
514 gfp_flags = GFP_NOWAIT | __GFP_NOWARN;
516 bounce_page = fscrypt_encrypt_pagecache_blocks(page, enc_bytes,
518 if (IS_ERR(bounce_page)) {
519 ret = PTR_ERR(bounce_page);
520 if (ret == -ENOMEM &&
521 (io->io_bio || wbc->sync_mode == WB_SYNC_ALL)) {
522 gfp_t new_gfp_flags = GFP_NOFS;
526 new_gfp_flags |= __GFP_NOFAIL;
527 memalloc_retry_wait(gfp_flags);
528 gfp_flags = new_gfp_flags;
532 printk_ratelimited(KERN_ERR "%s: ret = %d\n", __func__, ret);
533 redirty_page_for_writepage(wbc, page);
535 clear_buffer_async_write(bh);
536 bh = bh->b_this_page;
537 } while (bh != head);
542 /* Now submit buffers to write */
544 if (!buffer_async_write(bh))
546 io_submit_add_bh(io, inode,
547 bounce_page ? bounce_page : page, bh);
549 clear_buffer_dirty(bh);
550 } while ((bh = bh->b_this_page) != head);
554 /* Nothing submitted - we have to end page writeback */
556 end_page_writeback(page);