Merge tag 'iio-fixes-for-6.6a' of https://git.kernel.org/pub/scm/linux/kernel/git...
[platform/kernel/linux-starfive.git] / fs / ext4 / mballoc.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
4  * Written by Alex Tomas <alex@clusterfs.com>
5  */
6
7
8 /*
9  * mballoc.c contains the multiblocks allocation routines
10  */
11
12 #include "ext4_jbd2.h"
13 #include "mballoc.h"
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/nospec.h>
18 #include <linux/backing-dev.h>
19 #include <linux/freezer.h>
20 #include <trace/events/ext4.h>
21
22 /*
23  * MUSTDO:
24  *   - test ext4_ext_search_left() and ext4_ext_search_right()
25  *   - search for metadata in few groups
26  *
27  * TODO v4:
28  *   - normalization should take into account whether file is still open
29  *   - discard preallocations if no free space left (policy?)
30  *   - don't normalize tails
31  *   - quota
32  *   - reservation for superuser
33  *
34  * TODO v3:
35  *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
36  *   - track min/max extents in each group for better group selection
37  *   - mb_mark_used() may allocate chunk right after splitting buddy
38  *   - tree of groups sorted by number of free blocks
39  *   - error handling
40  */
41
42 /*
43  * The allocation request involve request for multiple number of blocks
44  * near to the goal(block) value specified.
45  *
46  * During initialization phase of the allocator we decide to use the
47  * group preallocation or inode preallocation depending on the size of
48  * the file. The size of the file could be the resulting file size we
49  * would have after allocation, or the current file size, which ever
50  * is larger. If the size is less than sbi->s_mb_stream_request we
51  * select to use the group preallocation. The default value of
52  * s_mb_stream_request is 16 blocks. This can also be tuned via
53  * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
54  * terms of number of blocks.
55  *
56  * The main motivation for having small file use group preallocation is to
57  * ensure that we have small files closer together on the disk.
58  *
59  * First stage the allocator looks at the inode prealloc list,
60  * ext4_inode_info->i_prealloc_list, which contains list of prealloc
61  * spaces for this particular inode. The inode prealloc space is
62  * represented as:
63  *
64  * pa_lstart -> the logical start block for this prealloc space
65  * pa_pstart -> the physical start block for this prealloc space
66  * pa_len    -> length for this prealloc space (in clusters)
67  * pa_free   ->  free space available in this prealloc space (in clusters)
68  *
69  * The inode preallocation space is used looking at the _logical_ start
70  * block. If only the logical file block falls within the range of prealloc
71  * space we will consume the particular prealloc space. This makes sure that
72  * we have contiguous physical blocks representing the file blocks
73  *
74  * The important thing to be noted in case of inode prealloc space is that
75  * we don't modify the values associated to inode prealloc space except
76  * pa_free.
77  *
78  * If we are not able to find blocks in the inode prealloc space and if we
79  * have the group allocation flag set then we look at the locality group
80  * prealloc space. These are per CPU prealloc list represented as
81  *
82  * ext4_sb_info.s_locality_groups[smp_processor_id()]
83  *
84  * The reason for having a per cpu locality group is to reduce the contention
85  * between CPUs. It is possible to get scheduled at this point.
86  *
87  * The locality group prealloc space is used looking at whether we have
88  * enough free space (pa_free) within the prealloc space.
89  *
90  * If we can't allocate blocks via inode prealloc or/and locality group
91  * prealloc then we look at the buddy cache. The buddy cache is represented
92  * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
93  * mapped to the buddy and bitmap information regarding different
94  * groups. The buddy information is attached to buddy cache inode so that
95  * we can access them through the page cache. The information regarding
96  * each group is loaded via ext4_mb_load_buddy.  The information involve
97  * block bitmap and buddy information. The information are stored in the
98  * inode as:
99  *
100  *  {                        page                        }
101  *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
102  *
103  *
104  * one block each for bitmap and buddy information.  So for each group we
105  * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
106  * blocksize) blocks.  So it can have information regarding groups_per_page
107  * which is blocks_per_page/2
108  *
109  * The buddy cache inode is not stored on disk. The inode is thrown
110  * away when the filesystem is unmounted.
111  *
112  * We look for count number of blocks in the buddy cache. If we were able
113  * to locate that many free blocks we return with additional information
114  * regarding rest of the contiguous physical block available
115  *
116  * Before allocating blocks via buddy cache we normalize the request
117  * blocks. This ensure we ask for more blocks that we needed. The extra
118  * blocks that we get after allocation is added to the respective prealloc
119  * list. In case of inode preallocation we follow a list of heuristics
120  * based on file size. This can be found in ext4_mb_normalize_request. If
121  * we are doing a group prealloc we try to normalize the request to
122  * sbi->s_mb_group_prealloc.  The default value of s_mb_group_prealloc is
123  * dependent on the cluster size; for non-bigalloc file systems, it is
124  * 512 blocks. This can be tuned via
125  * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
126  * terms of number of blocks. If we have mounted the file system with -O
127  * stripe=<value> option the group prealloc request is normalized to the
128  * smallest multiple of the stripe value (sbi->s_stripe) which is
129  * greater than the default mb_group_prealloc.
130  *
131  * If "mb_optimize_scan" mount option is set, we maintain in memory group info
132  * structures in two data structures:
133  *
134  * 1) Array of largest free order lists (sbi->s_mb_largest_free_orders)
135  *
136  *    Locking: sbi->s_mb_largest_free_orders_locks(array of rw locks)
137  *
138  *    This is an array of lists where the index in the array represents the
139  *    largest free order in the buddy bitmap of the participating group infos of
140  *    that list. So, there are exactly MB_NUM_ORDERS(sb) (which means total
141  *    number of buddy bitmap orders possible) number of lists. Group-infos are
142  *    placed in appropriate lists.
143  *
144  * 2) Average fragment size lists (sbi->s_mb_avg_fragment_size)
145  *
146  *    Locking: sbi->s_mb_avg_fragment_size_locks(array of rw locks)
147  *
148  *    This is an array of lists where in the i-th list there are groups with
149  *    average fragment size >= 2^i and < 2^(i+1). The average fragment size
150  *    is computed as ext4_group_info->bb_free / ext4_group_info->bb_fragments.
151  *    Note that we don't bother with a special list for completely empty groups
152  *    so we only have MB_NUM_ORDERS(sb) lists.
153  *
154  * When "mb_optimize_scan" mount option is set, mballoc consults the above data
155  * structures to decide the order in which groups are to be traversed for
156  * fulfilling an allocation request.
157  *
158  * At CR_POWER2_ALIGNED , we look for groups which have the largest_free_order
159  * >= the order of the request. We directly look at the largest free order list
160  * in the data structure (1) above where largest_free_order = order of the
161  * request. If that list is empty, we look at remaining list in the increasing
162  * order of largest_free_order. This allows us to perform CR_POWER2_ALIGNED
163  * lookup in O(1) time.
164  *
165  * At CR_GOAL_LEN_FAST, we only consider groups where
166  * average fragment size > request size. So, we lookup a group which has average
167  * fragment size just above or equal to request size using our average fragment
168  * size group lists (data structure 2) in O(1) time.
169  *
170  * At CR_BEST_AVAIL_LEN, we aim to optimize allocations which can't be satisfied
171  * in CR_GOAL_LEN_FAST. The fact that we couldn't find a group in
172  * CR_GOAL_LEN_FAST suggests that there is no BG that has avg
173  * fragment size > goal length. So before falling to the slower
174  * CR_GOAL_LEN_SLOW, in CR_BEST_AVAIL_LEN we proactively trim goal length and
175  * then use the same fragment lists as CR_GOAL_LEN_FAST to find a BG with a big
176  * enough average fragment size. This increases the chances of finding a
177  * suitable block group in O(1) time and results in faster allocation at the
178  * cost of reduced size of allocation.
179  *
180  * If "mb_optimize_scan" mount option is not set, mballoc traverses groups in
181  * linear order which requires O(N) search time for each CR_POWER2_ALIGNED and
182  * CR_GOAL_LEN_FAST phase.
183  *
184  * The regular allocator (using the buddy cache) supports a few tunables.
185  *
186  * /sys/fs/ext4/<partition>/mb_min_to_scan
187  * /sys/fs/ext4/<partition>/mb_max_to_scan
188  * /sys/fs/ext4/<partition>/mb_order2_req
189  * /sys/fs/ext4/<partition>/mb_linear_limit
190  *
191  * The regular allocator uses buddy scan only if the request len is power of
192  * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
193  * value of s_mb_order2_reqs can be tuned via
194  * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
195  * stripe size (sbi->s_stripe), we try to search for contiguous block in
196  * stripe size. This should result in better allocation on RAID setups. If
197  * not, we search in the specific group using bitmap for best extents. The
198  * tunable min_to_scan and max_to_scan control the behaviour here.
199  * min_to_scan indicate how long the mballoc __must__ look for a best
200  * extent and max_to_scan indicates how long the mballoc __can__ look for a
201  * best extent in the found extents. Searching for the blocks starts with
202  * the group specified as the goal value in allocation context via
203  * ac_g_ex. Each group is first checked based on the criteria whether it
204  * can be used for allocation. ext4_mb_good_group explains how the groups are
205  * checked.
206  *
207  * When "mb_optimize_scan" is turned on, as mentioned above, the groups may not
208  * get traversed linearly. That may result in subsequent allocations being not
209  * close to each other. And so, the underlying device may get filled up in a
210  * non-linear fashion. While that may not matter on non-rotational devices, for
211  * rotational devices that may result in higher seek times. "mb_linear_limit"
212  * tells mballoc how many groups mballoc should search linearly before
213  * performing consulting above data structures for more efficient lookups. For
214  * non rotational devices, this value defaults to 0 and for rotational devices
215  * this is set to MB_DEFAULT_LINEAR_LIMIT.
216  *
217  * Both the prealloc space are getting populated as above. So for the first
218  * request we will hit the buddy cache which will result in this prealloc
219  * space getting filled. The prealloc space is then later used for the
220  * subsequent request.
221  */
222
223 /*
224  * mballoc operates on the following data:
225  *  - on-disk bitmap
226  *  - in-core buddy (actually includes buddy and bitmap)
227  *  - preallocation descriptors (PAs)
228  *
229  * there are two types of preallocations:
230  *  - inode
231  *    assiged to specific inode and can be used for this inode only.
232  *    it describes part of inode's space preallocated to specific
233  *    physical blocks. any block from that preallocated can be used
234  *    independent. the descriptor just tracks number of blocks left
235  *    unused. so, before taking some block from descriptor, one must
236  *    make sure corresponded logical block isn't allocated yet. this
237  *    also means that freeing any block within descriptor's range
238  *    must discard all preallocated blocks.
239  *  - locality group
240  *    assigned to specific locality group which does not translate to
241  *    permanent set of inodes: inode can join and leave group. space
242  *    from this type of preallocation can be used for any inode. thus
243  *    it's consumed from the beginning to the end.
244  *
245  * relation between them can be expressed as:
246  *    in-core buddy = on-disk bitmap + preallocation descriptors
247  *
248  * this mean blocks mballoc considers used are:
249  *  - allocated blocks (persistent)
250  *  - preallocated blocks (non-persistent)
251  *
252  * consistency in mballoc world means that at any time a block is either
253  * free or used in ALL structures. notice: "any time" should not be read
254  * literally -- time is discrete and delimited by locks.
255  *
256  *  to keep it simple, we don't use block numbers, instead we count number of
257  *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
258  *
259  * all operations can be expressed as:
260  *  - init buddy:                       buddy = on-disk + PAs
261  *  - new PA:                           buddy += N; PA = N
262  *  - use inode PA:                     on-disk += N; PA -= N
263  *  - discard inode PA                  buddy -= on-disk - PA; PA = 0
264  *  - use locality group PA             on-disk += N; PA -= N
265  *  - discard locality group PA         buddy -= PA; PA = 0
266  *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
267  *        is used in real operation because we can't know actual used
268  *        bits from PA, only from on-disk bitmap
269  *
270  * if we follow this strict logic, then all operations above should be atomic.
271  * given some of them can block, we'd have to use something like semaphores
272  * killing performance on high-end SMP hardware. let's try to relax it using
273  * the following knowledge:
274  *  1) if buddy is referenced, it's already initialized
275  *  2) while block is used in buddy and the buddy is referenced,
276  *     nobody can re-allocate that block
277  *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
278  *     bit set and PA claims same block, it's OK. IOW, one can set bit in
279  *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
280  *     block
281  *
282  * so, now we're building a concurrency table:
283  *  - init buddy vs.
284  *    - new PA
285  *      blocks for PA are allocated in the buddy, buddy must be referenced
286  *      until PA is linked to allocation group to avoid concurrent buddy init
287  *    - use inode PA
288  *      we need to make sure that either on-disk bitmap or PA has uptodate data
289  *      given (3) we care that PA-=N operation doesn't interfere with init
290  *    - discard inode PA
291  *      the simplest way would be to have buddy initialized by the discard
292  *    - use locality group PA
293  *      again PA-=N must be serialized with init
294  *    - discard locality group PA
295  *      the simplest way would be to have buddy initialized by the discard
296  *  - new PA vs.
297  *    - use inode PA
298  *      i_data_sem serializes them
299  *    - discard inode PA
300  *      discard process must wait until PA isn't used by another process
301  *    - use locality group PA
302  *      some mutex should serialize them
303  *    - discard locality group PA
304  *      discard process must wait until PA isn't used by another process
305  *  - use inode PA
306  *    - use inode PA
307  *      i_data_sem or another mutex should serializes them
308  *    - discard inode PA
309  *      discard process must wait until PA isn't used by another process
310  *    - use locality group PA
311  *      nothing wrong here -- they're different PAs covering different blocks
312  *    - discard locality group PA
313  *      discard process must wait until PA isn't used by another process
314  *
315  * now we're ready to make few consequences:
316  *  - PA is referenced and while it is no discard is possible
317  *  - PA is referenced until block isn't marked in on-disk bitmap
318  *  - PA changes only after on-disk bitmap
319  *  - discard must not compete with init. either init is done before
320  *    any discard or they're serialized somehow
321  *  - buddy init as sum of on-disk bitmap and PAs is done atomically
322  *
323  * a special case when we've used PA to emptiness. no need to modify buddy
324  * in this case, but we should care about concurrent init
325  *
326  */
327
328  /*
329  * Logic in few words:
330  *
331  *  - allocation:
332  *    load group
333  *    find blocks
334  *    mark bits in on-disk bitmap
335  *    release group
336  *
337  *  - use preallocation:
338  *    find proper PA (per-inode or group)
339  *    load group
340  *    mark bits in on-disk bitmap
341  *    release group
342  *    release PA
343  *
344  *  - free:
345  *    load group
346  *    mark bits in on-disk bitmap
347  *    release group
348  *
349  *  - discard preallocations in group:
350  *    mark PAs deleted
351  *    move them onto local list
352  *    load on-disk bitmap
353  *    load group
354  *    remove PA from object (inode or locality group)
355  *    mark free blocks in-core
356  *
357  *  - discard inode's preallocations:
358  */
359
360 /*
361  * Locking rules
362  *
363  * Locks:
364  *  - bitlock on a group        (group)
365  *  - object (inode/locality)   (object)
366  *  - per-pa lock               (pa)
367  *  - cr_power2_aligned lists lock      (cr_power2_aligned)
368  *  - cr_goal_len_fast lists lock       (cr_goal_len_fast)
369  *
370  * Paths:
371  *  - new pa
372  *    object
373  *    group
374  *
375  *  - find and use pa:
376  *    pa
377  *
378  *  - release consumed pa:
379  *    pa
380  *    group
381  *    object
382  *
383  *  - generate in-core bitmap:
384  *    group
385  *        pa
386  *
387  *  - discard all for given object (inode, locality group):
388  *    object
389  *        pa
390  *    group
391  *
392  *  - discard all for given group:
393  *    group
394  *        pa
395  *    group
396  *        object
397  *
398  *  - allocation path (ext4_mb_regular_allocator)
399  *    group
400  *    cr_power2_aligned/cr_goal_len_fast
401  */
402 static struct kmem_cache *ext4_pspace_cachep;
403 static struct kmem_cache *ext4_ac_cachep;
404 static struct kmem_cache *ext4_free_data_cachep;
405
406 /* We create slab caches for groupinfo data structures based on the
407  * superblock block size.  There will be one per mounted filesystem for
408  * each unique s_blocksize_bits */
409 #define NR_GRPINFO_CACHES 8
410 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
411
412 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
413         "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
414         "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
415         "ext4_groupinfo_64k", "ext4_groupinfo_128k"
416 };
417
418 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
419                                         ext4_group_t group);
420 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
421                                                 ext4_group_t group);
422 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac);
423
424 static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
425                                ext4_group_t group, enum criteria cr);
426
427 static int ext4_try_to_trim_range(struct super_block *sb,
428                 struct ext4_buddy *e4b, ext4_grpblk_t start,
429                 ext4_grpblk_t max, ext4_grpblk_t minblocks);
430
431 /*
432  * The algorithm using this percpu seq counter goes below:
433  * 1. We sample the percpu discard_pa_seq counter before trying for block
434  *    allocation in ext4_mb_new_blocks().
435  * 2. We increment this percpu discard_pa_seq counter when we either allocate
436  *    or free these blocks i.e. while marking those blocks as used/free in
437  *    mb_mark_used()/mb_free_blocks().
438  * 3. We also increment this percpu seq counter when we successfully identify
439  *    that the bb_prealloc_list is not empty and hence proceed for discarding
440  *    of those PAs inside ext4_mb_discard_group_preallocations().
441  *
442  * Now to make sure that the regular fast path of block allocation is not
443  * affected, as a small optimization we only sample the percpu seq counter
444  * on that cpu. Only when the block allocation fails and when freed blocks
445  * found were 0, that is when we sample percpu seq counter for all cpus using
446  * below function ext4_get_discard_pa_seq_sum(). This happens after making
447  * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty.
448  */
449 static DEFINE_PER_CPU(u64, discard_pa_seq);
450 static inline u64 ext4_get_discard_pa_seq_sum(void)
451 {
452         int __cpu;
453         u64 __seq = 0;
454
455         for_each_possible_cpu(__cpu)
456                 __seq += per_cpu(discard_pa_seq, __cpu);
457         return __seq;
458 }
459
460 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
461 {
462 #if BITS_PER_LONG == 64
463         *bit += ((unsigned long) addr & 7UL) << 3;
464         addr = (void *) ((unsigned long) addr & ~7UL);
465 #elif BITS_PER_LONG == 32
466         *bit += ((unsigned long) addr & 3UL) << 3;
467         addr = (void *) ((unsigned long) addr & ~3UL);
468 #else
469 #error "how many bits you are?!"
470 #endif
471         return addr;
472 }
473
474 static inline int mb_test_bit(int bit, void *addr)
475 {
476         /*
477          * ext4_test_bit on architecture like powerpc
478          * needs unsigned long aligned address
479          */
480         addr = mb_correct_addr_and_bit(&bit, addr);
481         return ext4_test_bit(bit, addr);
482 }
483
484 static inline void mb_set_bit(int bit, void *addr)
485 {
486         addr = mb_correct_addr_and_bit(&bit, addr);
487         ext4_set_bit(bit, addr);
488 }
489
490 static inline void mb_clear_bit(int bit, void *addr)
491 {
492         addr = mb_correct_addr_and_bit(&bit, addr);
493         ext4_clear_bit(bit, addr);
494 }
495
496 static inline int mb_test_and_clear_bit(int bit, void *addr)
497 {
498         addr = mb_correct_addr_and_bit(&bit, addr);
499         return ext4_test_and_clear_bit(bit, addr);
500 }
501
502 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
503 {
504         int fix = 0, ret, tmpmax;
505         addr = mb_correct_addr_and_bit(&fix, addr);
506         tmpmax = max + fix;
507         start += fix;
508
509         ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
510         if (ret > max)
511                 return max;
512         return ret;
513 }
514
515 static inline int mb_find_next_bit(void *addr, int max, int start)
516 {
517         int fix = 0, ret, tmpmax;
518         addr = mb_correct_addr_and_bit(&fix, addr);
519         tmpmax = max + fix;
520         start += fix;
521
522         ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
523         if (ret > max)
524                 return max;
525         return ret;
526 }
527
528 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
529 {
530         char *bb;
531
532         BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
533         BUG_ON(max == NULL);
534
535         if (order > e4b->bd_blkbits + 1) {
536                 *max = 0;
537                 return NULL;
538         }
539
540         /* at order 0 we see each particular block */
541         if (order == 0) {
542                 *max = 1 << (e4b->bd_blkbits + 3);
543                 return e4b->bd_bitmap;
544         }
545
546         bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
547         *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
548
549         return bb;
550 }
551
552 #ifdef DOUBLE_CHECK
553 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
554                            int first, int count)
555 {
556         int i;
557         struct super_block *sb = e4b->bd_sb;
558
559         if (unlikely(e4b->bd_info->bb_bitmap == NULL))
560                 return;
561         assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
562         for (i = 0; i < count; i++) {
563                 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
564                         ext4_fsblk_t blocknr;
565
566                         blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
567                         blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
568                         ext4_grp_locked_error(sb, e4b->bd_group,
569                                               inode ? inode->i_ino : 0,
570                                               blocknr,
571                                               "freeing block already freed "
572                                               "(bit %u)",
573                                               first + i);
574                         ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
575                                         EXT4_GROUP_INFO_BBITMAP_CORRUPT);
576                 }
577                 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
578         }
579 }
580
581 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
582 {
583         int i;
584
585         if (unlikely(e4b->bd_info->bb_bitmap == NULL))
586                 return;
587         assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
588         for (i = 0; i < count; i++) {
589                 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
590                 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
591         }
592 }
593
594 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
595 {
596         if (unlikely(e4b->bd_info->bb_bitmap == NULL))
597                 return;
598         if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
599                 unsigned char *b1, *b2;
600                 int i;
601                 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
602                 b2 = (unsigned char *) bitmap;
603                 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
604                         if (b1[i] != b2[i]) {
605                                 ext4_msg(e4b->bd_sb, KERN_ERR,
606                                          "corruption in group %u "
607                                          "at byte %u(%u): %x in copy != %x "
608                                          "on disk/prealloc",
609                                          e4b->bd_group, i, i * 8, b1[i], b2[i]);
610                                 BUG();
611                         }
612                 }
613         }
614 }
615
616 static void mb_group_bb_bitmap_alloc(struct super_block *sb,
617                         struct ext4_group_info *grp, ext4_group_t group)
618 {
619         struct buffer_head *bh;
620
621         grp->bb_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS);
622         if (!grp->bb_bitmap)
623                 return;
624
625         bh = ext4_read_block_bitmap(sb, group);
626         if (IS_ERR_OR_NULL(bh)) {
627                 kfree(grp->bb_bitmap);
628                 grp->bb_bitmap = NULL;
629                 return;
630         }
631
632         memcpy(grp->bb_bitmap, bh->b_data, sb->s_blocksize);
633         put_bh(bh);
634 }
635
636 static void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
637 {
638         kfree(grp->bb_bitmap);
639 }
640
641 #else
642 static inline void mb_free_blocks_double(struct inode *inode,
643                                 struct ext4_buddy *e4b, int first, int count)
644 {
645         return;
646 }
647 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
648                                                 int first, int count)
649 {
650         return;
651 }
652 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
653 {
654         return;
655 }
656
657 static inline void mb_group_bb_bitmap_alloc(struct super_block *sb,
658                         struct ext4_group_info *grp, ext4_group_t group)
659 {
660         return;
661 }
662
663 static inline void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
664 {
665         return;
666 }
667 #endif
668
669 #ifdef AGGRESSIVE_CHECK
670
671 #define MB_CHECK_ASSERT(assert)                                         \
672 do {                                                                    \
673         if (!(assert)) {                                                \
674                 printk(KERN_EMERG                                       \
675                         "Assertion failure in %s() at %s:%d: \"%s\"\n", \
676                         function, file, line, # assert);                \
677                 BUG();                                                  \
678         }                                                               \
679 } while (0)
680
681 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
682                                 const char *function, int line)
683 {
684         struct super_block *sb = e4b->bd_sb;
685         int order = e4b->bd_blkbits + 1;
686         int max;
687         int max2;
688         int i;
689         int j;
690         int k;
691         int count;
692         struct ext4_group_info *grp;
693         int fragments = 0;
694         int fstart;
695         struct list_head *cur;
696         void *buddy;
697         void *buddy2;
698
699         if (e4b->bd_info->bb_check_counter++ % 10)
700                 return 0;
701
702         while (order > 1) {
703                 buddy = mb_find_buddy(e4b, order, &max);
704                 MB_CHECK_ASSERT(buddy);
705                 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
706                 MB_CHECK_ASSERT(buddy2);
707                 MB_CHECK_ASSERT(buddy != buddy2);
708                 MB_CHECK_ASSERT(max * 2 == max2);
709
710                 count = 0;
711                 for (i = 0; i < max; i++) {
712
713                         if (mb_test_bit(i, buddy)) {
714                                 /* only single bit in buddy2 may be 0 */
715                                 if (!mb_test_bit(i << 1, buddy2)) {
716                                         MB_CHECK_ASSERT(
717                                                 mb_test_bit((i<<1)+1, buddy2));
718                                 }
719                                 continue;
720                         }
721
722                         /* both bits in buddy2 must be 1 */
723                         MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
724                         MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
725
726                         for (j = 0; j < (1 << order); j++) {
727                                 k = (i * (1 << order)) + j;
728                                 MB_CHECK_ASSERT(
729                                         !mb_test_bit(k, e4b->bd_bitmap));
730                         }
731                         count++;
732                 }
733                 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
734                 order--;
735         }
736
737         fstart = -1;
738         buddy = mb_find_buddy(e4b, 0, &max);
739         for (i = 0; i < max; i++) {
740                 if (!mb_test_bit(i, buddy)) {
741                         MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
742                         if (fstart == -1) {
743                                 fragments++;
744                                 fstart = i;
745                         }
746                         continue;
747                 }
748                 fstart = -1;
749                 /* check used bits only */
750                 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
751                         buddy2 = mb_find_buddy(e4b, j, &max2);
752                         k = i >> j;
753                         MB_CHECK_ASSERT(k < max2);
754                         MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
755                 }
756         }
757         MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
758         MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
759
760         grp = ext4_get_group_info(sb, e4b->bd_group);
761         if (!grp)
762                 return NULL;
763         list_for_each(cur, &grp->bb_prealloc_list) {
764                 ext4_group_t groupnr;
765                 struct ext4_prealloc_space *pa;
766                 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
767                 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
768                 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
769                 for (i = 0; i < pa->pa_len; i++)
770                         MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
771         }
772         return 0;
773 }
774 #undef MB_CHECK_ASSERT
775 #define mb_check_buddy(e4b) __mb_check_buddy(e4b,       \
776                                         __FILE__, __func__, __LINE__)
777 #else
778 #define mb_check_buddy(e4b)
779 #endif
780
781 /*
782  * Divide blocks started from @first with length @len into
783  * smaller chunks with power of 2 blocks.
784  * Clear the bits in bitmap which the blocks of the chunk(s) covered,
785  * then increase bb_counters[] for corresponded chunk size.
786  */
787 static void ext4_mb_mark_free_simple(struct super_block *sb,
788                                 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
789                                         struct ext4_group_info *grp)
790 {
791         struct ext4_sb_info *sbi = EXT4_SB(sb);
792         ext4_grpblk_t min;
793         ext4_grpblk_t max;
794         ext4_grpblk_t chunk;
795         unsigned int border;
796
797         BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
798
799         border = 2 << sb->s_blocksize_bits;
800
801         while (len > 0) {
802                 /* find how many blocks can be covered since this position */
803                 max = ffs(first | border) - 1;
804
805                 /* find how many blocks of power 2 we need to mark */
806                 min = fls(len) - 1;
807
808                 if (max < min)
809                         min = max;
810                 chunk = 1 << min;
811
812                 /* mark multiblock chunks only */
813                 grp->bb_counters[min]++;
814                 if (min > 0)
815                         mb_clear_bit(first >> min,
816                                      buddy + sbi->s_mb_offsets[min]);
817
818                 len -= chunk;
819                 first += chunk;
820         }
821 }
822
823 static int mb_avg_fragment_size_order(struct super_block *sb, ext4_grpblk_t len)
824 {
825         int order;
826
827         /*
828          * We don't bother with a special lists groups with only 1 block free
829          * extents and for completely empty groups.
830          */
831         order = fls(len) - 2;
832         if (order < 0)
833                 return 0;
834         if (order == MB_NUM_ORDERS(sb))
835                 order--;
836         return order;
837 }
838
839 /* Move group to appropriate avg_fragment_size list */
840 static void
841 mb_update_avg_fragment_size(struct super_block *sb, struct ext4_group_info *grp)
842 {
843         struct ext4_sb_info *sbi = EXT4_SB(sb);
844         int new_order;
845
846         if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || grp->bb_free == 0)
847                 return;
848
849         new_order = mb_avg_fragment_size_order(sb,
850                                         grp->bb_free / grp->bb_fragments);
851         if (new_order == grp->bb_avg_fragment_size_order)
852                 return;
853
854         if (grp->bb_avg_fragment_size_order != -1) {
855                 write_lock(&sbi->s_mb_avg_fragment_size_locks[
856                                         grp->bb_avg_fragment_size_order]);
857                 list_del(&grp->bb_avg_fragment_size_node);
858                 write_unlock(&sbi->s_mb_avg_fragment_size_locks[
859                                         grp->bb_avg_fragment_size_order]);
860         }
861         grp->bb_avg_fragment_size_order = new_order;
862         write_lock(&sbi->s_mb_avg_fragment_size_locks[
863                                         grp->bb_avg_fragment_size_order]);
864         list_add_tail(&grp->bb_avg_fragment_size_node,
865                 &sbi->s_mb_avg_fragment_size[grp->bb_avg_fragment_size_order]);
866         write_unlock(&sbi->s_mb_avg_fragment_size_locks[
867                                         grp->bb_avg_fragment_size_order]);
868 }
869
870 /*
871  * Choose next group by traversing largest_free_order lists. Updates *new_cr if
872  * cr level needs an update.
873  */
874 static void ext4_mb_choose_next_group_p2_aligned(struct ext4_allocation_context *ac,
875                         enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups)
876 {
877         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
878         struct ext4_group_info *iter;
879         int i;
880
881         if (ac->ac_status == AC_STATUS_FOUND)
882                 return;
883
884         if (unlikely(sbi->s_mb_stats && ac->ac_flags & EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED))
885                 atomic_inc(&sbi->s_bal_p2_aligned_bad_suggestions);
886
887         for (i = ac->ac_2order; i < MB_NUM_ORDERS(ac->ac_sb); i++) {
888                 if (list_empty(&sbi->s_mb_largest_free_orders[i]))
889                         continue;
890                 read_lock(&sbi->s_mb_largest_free_orders_locks[i]);
891                 if (list_empty(&sbi->s_mb_largest_free_orders[i])) {
892                         read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
893                         continue;
894                 }
895                 list_for_each_entry(iter, &sbi->s_mb_largest_free_orders[i],
896                                     bb_largest_free_order_node) {
897                         if (sbi->s_mb_stats)
898                                 atomic64_inc(&sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED]);
899                         if (likely(ext4_mb_good_group(ac, iter->bb_group, CR_POWER2_ALIGNED))) {
900                                 *group = iter->bb_group;
901                                 ac->ac_flags |= EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED;
902                                 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
903                                 return;
904                         }
905                 }
906                 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
907         }
908
909         /* Increment cr and search again if no group is found */
910         *new_cr = CR_GOAL_LEN_FAST;
911 }
912
913 /*
914  * Find a suitable group of given order from the average fragments list.
915  */
916 static struct ext4_group_info *
917 ext4_mb_find_good_group_avg_frag_lists(struct ext4_allocation_context *ac, int order)
918 {
919         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
920         struct list_head *frag_list = &sbi->s_mb_avg_fragment_size[order];
921         rwlock_t *frag_list_lock = &sbi->s_mb_avg_fragment_size_locks[order];
922         struct ext4_group_info *grp = NULL, *iter;
923         enum criteria cr = ac->ac_criteria;
924
925         if (list_empty(frag_list))
926                 return NULL;
927         read_lock(frag_list_lock);
928         if (list_empty(frag_list)) {
929                 read_unlock(frag_list_lock);
930                 return NULL;
931         }
932         list_for_each_entry(iter, frag_list, bb_avg_fragment_size_node) {
933                 if (sbi->s_mb_stats)
934                         atomic64_inc(&sbi->s_bal_cX_groups_considered[cr]);
935                 if (likely(ext4_mb_good_group(ac, iter->bb_group, cr))) {
936                         grp = iter;
937                         break;
938                 }
939         }
940         read_unlock(frag_list_lock);
941         return grp;
942 }
943
944 /*
945  * Choose next group by traversing average fragment size list of suitable
946  * order. Updates *new_cr if cr level needs an update.
947  */
948 static void ext4_mb_choose_next_group_goal_fast(struct ext4_allocation_context *ac,
949                 enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups)
950 {
951         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
952         struct ext4_group_info *grp = NULL;
953         int i;
954
955         if (unlikely(ac->ac_flags & EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED)) {
956                 if (sbi->s_mb_stats)
957                         atomic_inc(&sbi->s_bal_goal_fast_bad_suggestions);
958         }
959
960         for (i = mb_avg_fragment_size_order(ac->ac_sb, ac->ac_g_ex.fe_len);
961              i < MB_NUM_ORDERS(ac->ac_sb); i++) {
962                 grp = ext4_mb_find_good_group_avg_frag_lists(ac, i);
963                 if (grp) {
964                         *group = grp->bb_group;
965                         ac->ac_flags |= EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED;
966                         return;
967                 }
968         }
969
970         /*
971          * CR_BEST_AVAIL_LEN works based on the concept that we have
972          * a larger normalized goal len request which can be trimmed to
973          * a smaller goal len such that it can still satisfy original
974          * request len. However, allocation request for non-regular
975          * files never gets normalized.
976          * See function ext4_mb_normalize_request() (EXT4_MB_HINT_DATA).
977          */
978         if (ac->ac_flags & EXT4_MB_HINT_DATA)
979                 *new_cr = CR_BEST_AVAIL_LEN;
980         else
981                 *new_cr = CR_GOAL_LEN_SLOW;
982 }
983
984 /*
985  * We couldn't find a group in CR_GOAL_LEN_FAST so try to find the highest free fragment
986  * order we have and proactively trim the goal request length to that order to
987  * find a suitable group faster.
988  *
989  * This optimizes allocation speed at the cost of slightly reduced
990  * preallocations. However, we make sure that we don't trim the request too
991  * much and fall to CR_GOAL_LEN_SLOW in that case.
992  */
993 static void ext4_mb_choose_next_group_best_avail(struct ext4_allocation_context *ac,
994                 enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups)
995 {
996         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
997         struct ext4_group_info *grp = NULL;
998         int i, order, min_order;
999         unsigned long num_stripe_clusters = 0;
1000
1001         if (unlikely(ac->ac_flags & EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED)) {
1002                 if (sbi->s_mb_stats)
1003                         atomic_inc(&sbi->s_bal_best_avail_bad_suggestions);
1004         }
1005
1006         /*
1007          * mb_avg_fragment_size_order() returns order in a way that makes
1008          * retrieving back the length using (1 << order) inaccurate. Hence, use
1009          * fls() instead since we need to know the actual length while modifying
1010          * goal length.
1011          */
1012         order = fls(ac->ac_g_ex.fe_len) - 1;
1013         min_order = order - sbi->s_mb_best_avail_max_trim_order;
1014         if (min_order < 0)
1015                 min_order = 0;
1016
1017         if (sbi->s_stripe > 0) {
1018                 /*
1019                  * We are assuming that stripe size is always a multiple of
1020                  * cluster ratio otherwise __ext4_fill_super exists early.
1021                  */
1022                 num_stripe_clusters = EXT4_NUM_B2C(sbi, sbi->s_stripe);
1023                 if (1 << min_order < num_stripe_clusters)
1024                         /*
1025                          * We consider 1 order less because later we round
1026                          * up the goal len to num_stripe_clusters
1027                          */
1028                         min_order = fls(num_stripe_clusters) - 1;
1029         }
1030
1031         if (1 << min_order < ac->ac_o_ex.fe_len)
1032                 min_order = fls(ac->ac_o_ex.fe_len);
1033
1034         for (i = order; i >= min_order; i--) {
1035                 int frag_order;
1036                 /*
1037                  * Scale down goal len to make sure we find something
1038                  * in the free fragments list. Basically, reduce
1039                  * preallocations.
1040                  */
1041                 ac->ac_g_ex.fe_len = 1 << i;
1042
1043                 if (num_stripe_clusters > 0) {
1044                         /*
1045                          * Try to round up the adjusted goal length to
1046                          * stripe size (in cluster units) multiple for
1047                          * efficiency.
1048                          */
1049                         ac->ac_g_ex.fe_len = roundup(ac->ac_g_ex.fe_len,
1050                                                      num_stripe_clusters);
1051                 }
1052
1053                 frag_order = mb_avg_fragment_size_order(ac->ac_sb,
1054                                                         ac->ac_g_ex.fe_len);
1055
1056                 grp = ext4_mb_find_good_group_avg_frag_lists(ac, frag_order);
1057                 if (grp) {
1058                         *group = grp->bb_group;
1059                         ac->ac_flags |= EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED;
1060                         return;
1061                 }
1062         }
1063
1064         /* Reset goal length to original goal length before falling into CR_GOAL_LEN_SLOW */
1065         ac->ac_g_ex.fe_len = ac->ac_orig_goal_len;
1066         *new_cr = CR_GOAL_LEN_SLOW;
1067 }
1068
1069 static inline int should_optimize_scan(struct ext4_allocation_context *ac)
1070 {
1071         if (unlikely(!test_opt2(ac->ac_sb, MB_OPTIMIZE_SCAN)))
1072                 return 0;
1073         if (ac->ac_criteria >= CR_GOAL_LEN_SLOW)
1074                 return 0;
1075         if (!ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))
1076                 return 0;
1077         return 1;
1078 }
1079
1080 /*
1081  * Return next linear group for allocation. If linear traversal should not be
1082  * performed, this function just returns the same group
1083  */
1084 static ext4_group_t
1085 next_linear_group(struct ext4_allocation_context *ac, ext4_group_t group,
1086                   ext4_group_t ngroups)
1087 {
1088         if (!should_optimize_scan(ac))
1089                 goto inc_and_return;
1090
1091         if (ac->ac_groups_linear_remaining) {
1092                 ac->ac_groups_linear_remaining--;
1093                 goto inc_and_return;
1094         }
1095
1096         return group;
1097 inc_and_return:
1098         /*
1099          * Artificially restricted ngroups for non-extent
1100          * files makes group > ngroups possible on first loop.
1101          */
1102         return group + 1 >= ngroups ? 0 : group + 1;
1103 }
1104
1105 /*
1106  * ext4_mb_choose_next_group: choose next group for allocation.
1107  *
1108  * @ac        Allocation Context
1109  * @new_cr    This is an output parameter. If the there is no good group
1110  *            available at current CR level, this field is updated to indicate
1111  *            the new cr level that should be used.
1112  * @group     This is an input / output parameter. As an input it indicates the
1113  *            next group that the allocator intends to use for allocation. As
1114  *            output, this field indicates the next group that should be used as
1115  *            determined by the optimization functions.
1116  * @ngroups   Total number of groups
1117  */
1118 static void ext4_mb_choose_next_group(struct ext4_allocation_context *ac,
1119                 enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups)
1120 {
1121         *new_cr = ac->ac_criteria;
1122
1123         if (!should_optimize_scan(ac) || ac->ac_groups_linear_remaining) {
1124                 *group = next_linear_group(ac, *group, ngroups);
1125                 return;
1126         }
1127
1128         if (*new_cr == CR_POWER2_ALIGNED) {
1129                 ext4_mb_choose_next_group_p2_aligned(ac, new_cr, group, ngroups);
1130         } else if (*new_cr == CR_GOAL_LEN_FAST) {
1131                 ext4_mb_choose_next_group_goal_fast(ac, new_cr, group, ngroups);
1132         } else if (*new_cr == CR_BEST_AVAIL_LEN) {
1133                 ext4_mb_choose_next_group_best_avail(ac, new_cr, group, ngroups);
1134         } else {
1135                 /*
1136                  * TODO: For CR=2, we can arrange groups in an rb tree sorted by
1137                  * bb_free. But until that happens, we should never come here.
1138                  */
1139                 WARN_ON(1);
1140         }
1141 }
1142
1143 /*
1144  * Cache the order of the largest free extent we have available in this block
1145  * group.
1146  */
1147 static void
1148 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
1149 {
1150         struct ext4_sb_info *sbi = EXT4_SB(sb);
1151         int i;
1152
1153         for (i = MB_NUM_ORDERS(sb) - 1; i >= 0; i--)
1154                 if (grp->bb_counters[i] > 0)
1155                         break;
1156         /* No need to move between order lists? */
1157         if (!test_opt2(sb, MB_OPTIMIZE_SCAN) ||
1158             i == grp->bb_largest_free_order) {
1159                 grp->bb_largest_free_order = i;
1160                 return;
1161         }
1162
1163         if (grp->bb_largest_free_order >= 0) {
1164                 write_lock(&sbi->s_mb_largest_free_orders_locks[
1165                                               grp->bb_largest_free_order]);
1166                 list_del_init(&grp->bb_largest_free_order_node);
1167                 write_unlock(&sbi->s_mb_largest_free_orders_locks[
1168                                               grp->bb_largest_free_order]);
1169         }
1170         grp->bb_largest_free_order = i;
1171         if (grp->bb_largest_free_order >= 0 && grp->bb_free) {
1172                 write_lock(&sbi->s_mb_largest_free_orders_locks[
1173                                               grp->bb_largest_free_order]);
1174                 list_add_tail(&grp->bb_largest_free_order_node,
1175                       &sbi->s_mb_largest_free_orders[grp->bb_largest_free_order]);
1176                 write_unlock(&sbi->s_mb_largest_free_orders_locks[
1177                                               grp->bb_largest_free_order]);
1178         }
1179 }
1180
1181 static noinline_for_stack
1182 void ext4_mb_generate_buddy(struct super_block *sb,
1183                             void *buddy, void *bitmap, ext4_group_t group,
1184                             struct ext4_group_info *grp)
1185 {
1186         struct ext4_sb_info *sbi = EXT4_SB(sb);
1187         ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
1188         ext4_grpblk_t i = 0;
1189         ext4_grpblk_t first;
1190         ext4_grpblk_t len;
1191         unsigned free = 0;
1192         unsigned fragments = 0;
1193         unsigned long long period = get_cycles();
1194
1195         /* initialize buddy from bitmap which is aggregation
1196          * of on-disk bitmap and preallocations */
1197         i = mb_find_next_zero_bit(bitmap, max, 0);
1198         grp->bb_first_free = i;
1199         while (i < max) {
1200                 fragments++;
1201                 first = i;
1202                 i = mb_find_next_bit(bitmap, max, i);
1203                 len = i - first;
1204                 free += len;
1205                 if (len > 1)
1206                         ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
1207                 else
1208                         grp->bb_counters[0]++;
1209                 if (i < max)
1210                         i = mb_find_next_zero_bit(bitmap, max, i);
1211         }
1212         grp->bb_fragments = fragments;
1213
1214         if (free != grp->bb_free) {
1215                 ext4_grp_locked_error(sb, group, 0, 0,
1216                                       "block bitmap and bg descriptor "
1217                                       "inconsistent: %u vs %u free clusters",
1218                                       free, grp->bb_free);
1219                 /*
1220                  * If we intend to continue, we consider group descriptor
1221                  * corrupt and update bb_free using bitmap value
1222                  */
1223                 grp->bb_free = free;
1224                 ext4_mark_group_bitmap_corrupted(sb, group,
1225                                         EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1226         }
1227         mb_set_largest_free_order(sb, grp);
1228         mb_update_avg_fragment_size(sb, grp);
1229
1230         clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
1231
1232         period = get_cycles() - period;
1233         atomic_inc(&sbi->s_mb_buddies_generated);
1234         atomic64_add(period, &sbi->s_mb_generation_time);
1235 }
1236
1237 /* The buddy information is attached the buddy cache inode
1238  * for convenience. The information regarding each group
1239  * is loaded via ext4_mb_load_buddy. The information involve
1240  * block bitmap and buddy information. The information are
1241  * stored in the inode as
1242  *
1243  * {                        page                        }
1244  * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
1245  *
1246  *
1247  * one block each for bitmap and buddy information.
1248  * So for each group we take up 2 blocks. A page can
1249  * contain blocks_per_page (PAGE_SIZE / blocksize)  blocks.
1250  * So it can have information regarding groups_per_page which
1251  * is blocks_per_page/2
1252  *
1253  * Locking note:  This routine takes the block group lock of all groups
1254  * for this page; do not hold this lock when calling this routine!
1255  */
1256
1257 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp)
1258 {
1259         ext4_group_t ngroups;
1260         unsigned int blocksize;
1261         int blocks_per_page;
1262         int groups_per_page;
1263         int err = 0;
1264         int i;
1265         ext4_group_t first_group, group;
1266         int first_block;
1267         struct super_block *sb;
1268         struct buffer_head *bhs;
1269         struct buffer_head **bh = NULL;
1270         struct inode *inode;
1271         char *data;
1272         char *bitmap;
1273         struct ext4_group_info *grinfo;
1274
1275         inode = page->mapping->host;
1276         sb = inode->i_sb;
1277         ngroups = ext4_get_groups_count(sb);
1278         blocksize = i_blocksize(inode);
1279         blocks_per_page = PAGE_SIZE / blocksize;
1280
1281         mb_debug(sb, "init page %lu\n", page->index);
1282
1283         groups_per_page = blocks_per_page >> 1;
1284         if (groups_per_page == 0)
1285                 groups_per_page = 1;
1286
1287         /* allocate buffer_heads to read bitmaps */
1288         if (groups_per_page > 1) {
1289                 i = sizeof(struct buffer_head *) * groups_per_page;
1290                 bh = kzalloc(i, gfp);
1291                 if (bh == NULL)
1292                         return -ENOMEM;
1293         } else
1294                 bh = &bhs;
1295
1296         first_group = page->index * blocks_per_page / 2;
1297
1298         /* read all groups the page covers into the cache */
1299         for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
1300                 if (group >= ngroups)
1301                         break;
1302
1303                 grinfo = ext4_get_group_info(sb, group);
1304                 if (!grinfo)
1305                         continue;
1306                 /*
1307                  * If page is uptodate then we came here after online resize
1308                  * which added some new uninitialized group info structs, so
1309                  * we must skip all initialized uptodate buddies on the page,
1310                  * which may be currently in use by an allocating task.
1311                  */
1312                 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
1313                         bh[i] = NULL;
1314                         continue;
1315                 }
1316                 bh[i] = ext4_read_block_bitmap_nowait(sb, group, false);
1317                 if (IS_ERR(bh[i])) {
1318                         err = PTR_ERR(bh[i]);
1319                         bh[i] = NULL;
1320                         goto out;
1321                 }
1322                 mb_debug(sb, "read bitmap for group %u\n", group);
1323         }
1324
1325         /* wait for I/O completion */
1326         for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
1327                 int err2;
1328
1329                 if (!bh[i])
1330                         continue;
1331                 err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
1332                 if (!err)
1333                         err = err2;
1334         }
1335
1336         first_block = page->index * blocks_per_page;
1337         for (i = 0; i < blocks_per_page; i++) {
1338                 group = (first_block + i) >> 1;
1339                 if (group >= ngroups)
1340                         break;
1341
1342                 if (!bh[group - first_group])
1343                         /* skip initialized uptodate buddy */
1344                         continue;
1345
1346                 if (!buffer_verified(bh[group - first_group]))
1347                         /* Skip faulty bitmaps */
1348                         continue;
1349                 err = 0;
1350
1351                 /*
1352                  * data carry information regarding this
1353                  * particular group in the format specified
1354                  * above
1355                  *
1356                  */
1357                 data = page_address(page) + (i * blocksize);
1358                 bitmap = bh[group - first_group]->b_data;
1359
1360                 /*
1361                  * We place the buddy block and bitmap block
1362                  * close together
1363                  */
1364                 if ((first_block + i) & 1) {
1365                         /* this is block of buddy */
1366                         BUG_ON(incore == NULL);
1367                         mb_debug(sb, "put buddy for group %u in page %lu/%x\n",
1368                                 group, page->index, i * blocksize);
1369                         trace_ext4_mb_buddy_bitmap_load(sb, group);
1370                         grinfo = ext4_get_group_info(sb, group);
1371                         if (!grinfo) {
1372                                 err = -EFSCORRUPTED;
1373                                 goto out;
1374                         }
1375                         grinfo->bb_fragments = 0;
1376                         memset(grinfo->bb_counters, 0,
1377                                sizeof(*grinfo->bb_counters) *
1378                                (MB_NUM_ORDERS(sb)));
1379                         /*
1380                          * incore got set to the group block bitmap below
1381                          */
1382                         ext4_lock_group(sb, group);
1383                         /* init the buddy */
1384                         memset(data, 0xff, blocksize);
1385                         ext4_mb_generate_buddy(sb, data, incore, group, grinfo);
1386                         ext4_unlock_group(sb, group);
1387                         incore = NULL;
1388                 } else {
1389                         /* this is block of bitmap */
1390                         BUG_ON(incore != NULL);
1391                         mb_debug(sb, "put bitmap for group %u in page %lu/%x\n",
1392                                 group, page->index, i * blocksize);
1393                         trace_ext4_mb_bitmap_load(sb, group);
1394
1395                         /* see comments in ext4_mb_put_pa() */
1396                         ext4_lock_group(sb, group);
1397                         memcpy(data, bitmap, blocksize);
1398
1399                         /* mark all preallocated blks used in in-core bitmap */
1400                         ext4_mb_generate_from_pa(sb, data, group);
1401                         ext4_mb_generate_from_freelist(sb, data, group);
1402                         ext4_unlock_group(sb, group);
1403
1404                         /* set incore so that the buddy information can be
1405                          * generated using this
1406                          */
1407                         incore = data;
1408                 }
1409         }
1410         SetPageUptodate(page);
1411
1412 out:
1413         if (bh) {
1414                 for (i = 0; i < groups_per_page; i++)
1415                         brelse(bh[i]);
1416                 if (bh != &bhs)
1417                         kfree(bh);
1418         }
1419         return err;
1420 }
1421
1422 /*
1423  * Lock the buddy and bitmap pages. This make sure other parallel init_group
1424  * on the same buddy page doesn't happen whild holding the buddy page lock.
1425  * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
1426  * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
1427  */
1428 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
1429                 ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
1430 {
1431         struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
1432         int block, pnum, poff;
1433         int blocks_per_page;
1434         struct page *page;
1435
1436         e4b->bd_buddy_page = NULL;
1437         e4b->bd_bitmap_page = NULL;
1438
1439         blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1440         /*
1441          * the buddy cache inode stores the block bitmap
1442          * and buddy information in consecutive blocks.
1443          * So for each group we need two blocks.
1444          */
1445         block = group * 2;
1446         pnum = block / blocks_per_page;
1447         poff = block % blocks_per_page;
1448         page = find_or_create_page(inode->i_mapping, pnum, gfp);
1449         if (!page)
1450                 return -ENOMEM;
1451         BUG_ON(page->mapping != inode->i_mapping);
1452         e4b->bd_bitmap_page = page;
1453         e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1454
1455         if (blocks_per_page >= 2) {
1456                 /* buddy and bitmap are on the same page */
1457                 return 0;
1458         }
1459
1460         block++;
1461         pnum = block / blocks_per_page;
1462         page = find_or_create_page(inode->i_mapping, pnum, gfp);
1463         if (!page)
1464                 return -ENOMEM;
1465         BUG_ON(page->mapping != inode->i_mapping);
1466         e4b->bd_buddy_page = page;
1467         return 0;
1468 }
1469
1470 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1471 {
1472         if (e4b->bd_bitmap_page) {
1473                 unlock_page(e4b->bd_bitmap_page);
1474                 put_page(e4b->bd_bitmap_page);
1475         }
1476         if (e4b->bd_buddy_page) {
1477                 unlock_page(e4b->bd_buddy_page);
1478                 put_page(e4b->bd_buddy_page);
1479         }
1480 }
1481
1482 /*
1483  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1484  * block group lock of all groups for this page; do not hold the BG lock when
1485  * calling this routine!
1486  */
1487 static noinline_for_stack
1488 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1489 {
1490
1491         struct ext4_group_info *this_grp;
1492         struct ext4_buddy e4b;
1493         struct page *page;
1494         int ret = 0;
1495
1496         might_sleep();
1497         mb_debug(sb, "init group %u\n", group);
1498         this_grp = ext4_get_group_info(sb, group);
1499         if (!this_grp)
1500                 return -EFSCORRUPTED;
1501
1502         /*
1503          * This ensures that we don't reinit the buddy cache
1504          * page which map to the group from which we are already
1505          * allocating. If we are looking at the buddy cache we would
1506          * have taken a reference using ext4_mb_load_buddy and that
1507          * would have pinned buddy page to page cache.
1508          * The call to ext4_mb_get_buddy_page_lock will mark the
1509          * page accessed.
1510          */
1511         ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1512         if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1513                 /*
1514                  * somebody initialized the group
1515                  * return without doing anything
1516                  */
1517                 goto err;
1518         }
1519
1520         page = e4b.bd_bitmap_page;
1521         ret = ext4_mb_init_cache(page, NULL, gfp);
1522         if (ret)
1523                 goto err;
1524         if (!PageUptodate(page)) {
1525                 ret = -EIO;
1526                 goto err;
1527         }
1528
1529         if (e4b.bd_buddy_page == NULL) {
1530                 /*
1531                  * If both the bitmap and buddy are in
1532                  * the same page we don't need to force
1533                  * init the buddy
1534                  */
1535                 ret = 0;
1536                 goto err;
1537         }
1538         /* init buddy cache */
1539         page = e4b.bd_buddy_page;
1540         ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp);
1541         if (ret)
1542                 goto err;
1543         if (!PageUptodate(page)) {
1544                 ret = -EIO;
1545                 goto err;
1546         }
1547 err:
1548         ext4_mb_put_buddy_page_lock(&e4b);
1549         return ret;
1550 }
1551
1552 /*
1553  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1554  * block group lock of all groups for this page; do not hold the BG lock when
1555  * calling this routine!
1556  */
1557 static noinline_for_stack int
1558 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1559                        struct ext4_buddy *e4b, gfp_t gfp)
1560 {
1561         int blocks_per_page;
1562         int block;
1563         int pnum;
1564         int poff;
1565         struct page *page;
1566         int ret;
1567         struct ext4_group_info *grp;
1568         struct ext4_sb_info *sbi = EXT4_SB(sb);
1569         struct inode *inode = sbi->s_buddy_cache;
1570
1571         might_sleep();
1572         mb_debug(sb, "load group %u\n", group);
1573
1574         blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1575         grp = ext4_get_group_info(sb, group);
1576         if (!grp)
1577                 return -EFSCORRUPTED;
1578
1579         e4b->bd_blkbits = sb->s_blocksize_bits;
1580         e4b->bd_info = grp;
1581         e4b->bd_sb = sb;
1582         e4b->bd_group = group;
1583         e4b->bd_buddy_page = NULL;
1584         e4b->bd_bitmap_page = NULL;
1585
1586         if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1587                 /*
1588                  * we need full data about the group
1589                  * to make a good selection
1590                  */
1591                 ret = ext4_mb_init_group(sb, group, gfp);
1592                 if (ret)
1593                         return ret;
1594         }
1595
1596         /*
1597          * the buddy cache inode stores the block bitmap
1598          * and buddy information in consecutive blocks.
1599          * So for each group we need two blocks.
1600          */
1601         block = group * 2;
1602         pnum = block / blocks_per_page;
1603         poff = block % blocks_per_page;
1604
1605         /* we could use find_or_create_page(), but it locks page
1606          * what we'd like to avoid in fast path ... */
1607         page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1608         if (page == NULL || !PageUptodate(page)) {
1609                 if (page)
1610                         /*
1611                          * drop the page reference and try
1612                          * to get the page with lock. If we
1613                          * are not uptodate that implies
1614                          * somebody just created the page but
1615                          * is yet to initialize the same. So
1616                          * wait for it to initialize.
1617                          */
1618                         put_page(page);
1619                 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1620                 if (page) {
1621                         if (WARN_RATELIMIT(page->mapping != inode->i_mapping,
1622         "ext4: bitmap's paging->mapping != inode->i_mapping\n")) {
1623                                 /* should never happen */
1624                                 unlock_page(page);
1625                                 ret = -EINVAL;
1626                                 goto err;
1627                         }
1628                         if (!PageUptodate(page)) {
1629                                 ret = ext4_mb_init_cache(page, NULL, gfp);
1630                                 if (ret) {
1631                                         unlock_page(page);
1632                                         goto err;
1633                                 }
1634                                 mb_cmp_bitmaps(e4b, page_address(page) +
1635                                                (poff * sb->s_blocksize));
1636                         }
1637                         unlock_page(page);
1638                 }
1639         }
1640         if (page == NULL) {
1641                 ret = -ENOMEM;
1642                 goto err;
1643         }
1644         if (!PageUptodate(page)) {
1645                 ret = -EIO;
1646                 goto err;
1647         }
1648
1649         /* Pages marked accessed already */
1650         e4b->bd_bitmap_page = page;
1651         e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1652
1653         block++;
1654         pnum = block / blocks_per_page;
1655         poff = block % blocks_per_page;
1656
1657         page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1658         if (page == NULL || !PageUptodate(page)) {
1659                 if (page)
1660                         put_page(page);
1661                 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1662                 if (page) {
1663                         if (WARN_RATELIMIT(page->mapping != inode->i_mapping,
1664         "ext4: buddy bitmap's page->mapping != inode->i_mapping\n")) {
1665                                 /* should never happen */
1666                                 unlock_page(page);
1667                                 ret = -EINVAL;
1668                                 goto err;
1669                         }
1670                         if (!PageUptodate(page)) {
1671                                 ret = ext4_mb_init_cache(page, e4b->bd_bitmap,
1672                                                          gfp);
1673                                 if (ret) {
1674                                         unlock_page(page);
1675                                         goto err;
1676                                 }
1677                         }
1678                         unlock_page(page);
1679                 }
1680         }
1681         if (page == NULL) {
1682                 ret = -ENOMEM;
1683                 goto err;
1684         }
1685         if (!PageUptodate(page)) {
1686                 ret = -EIO;
1687                 goto err;
1688         }
1689
1690         /* Pages marked accessed already */
1691         e4b->bd_buddy_page = page;
1692         e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1693
1694         return 0;
1695
1696 err:
1697         if (page)
1698                 put_page(page);
1699         if (e4b->bd_bitmap_page)
1700                 put_page(e4b->bd_bitmap_page);
1701
1702         e4b->bd_buddy = NULL;
1703         e4b->bd_bitmap = NULL;
1704         return ret;
1705 }
1706
1707 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1708                               struct ext4_buddy *e4b)
1709 {
1710         return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1711 }
1712
1713 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1714 {
1715         if (e4b->bd_bitmap_page)
1716                 put_page(e4b->bd_bitmap_page);
1717         if (e4b->bd_buddy_page)
1718                 put_page(e4b->bd_buddy_page);
1719 }
1720
1721
1722 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1723 {
1724         int order = 1, max;
1725         void *bb;
1726
1727         BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1728         BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1729
1730         while (order <= e4b->bd_blkbits + 1) {
1731                 bb = mb_find_buddy(e4b, order, &max);
1732                 if (!mb_test_bit(block >> order, bb)) {
1733                         /* this block is part of buddy of order 'order' */
1734                         return order;
1735                 }
1736                 order++;
1737         }
1738         return 0;
1739 }
1740
1741 static void mb_clear_bits(void *bm, int cur, int len)
1742 {
1743         __u32 *addr;
1744
1745         len = cur + len;
1746         while (cur < len) {
1747                 if ((cur & 31) == 0 && (len - cur) >= 32) {
1748                         /* fast path: clear whole word at once */
1749                         addr = bm + (cur >> 3);
1750                         *addr = 0;
1751                         cur += 32;
1752                         continue;
1753                 }
1754                 mb_clear_bit(cur, bm);
1755                 cur++;
1756         }
1757 }
1758
1759 /* clear bits in given range
1760  * will return first found zero bit if any, -1 otherwise
1761  */
1762 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1763 {
1764         __u32 *addr;
1765         int zero_bit = -1;
1766
1767         len = cur + len;
1768         while (cur < len) {
1769                 if ((cur & 31) == 0 && (len - cur) >= 32) {
1770                         /* fast path: clear whole word at once */
1771                         addr = bm + (cur >> 3);
1772                         if (*addr != (__u32)(-1) && zero_bit == -1)
1773                                 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1774                         *addr = 0;
1775                         cur += 32;
1776                         continue;
1777                 }
1778                 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1779                         zero_bit = cur;
1780                 cur++;
1781         }
1782
1783         return zero_bit;
1784 }
1785
1786 void mb_set_bits(void *bm, int cur, int len)
1787 {
1788         __u32 *addr;
1789
1790         len = cur + len;
1791         while (cur < len) {
1792                 if ((cur & 31) == 0 && (len - cur) >= 32) {
1793                         /* fast path: set whole word at once */
1794                         addr = bm + (cur >> 3);
1795                         *addr = 0xffffffff;
1796                         cur += 32;
1797                         continue;
1798                 }
1799                 mb_set_bit(cur, bm);
1800                 cur++;
1801         }
1802 }
1803
1804 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1805 {
1806         if (mb_test_bit(*bit + side, bitmap)) {
1807                 mb_clear_bit(*bit, bitmap);
1808                 (*bit) -= side;
1809                 return 1;
1810         }
1811         else {
1812                 (*bit) += side;
1813                 mb_set_bit(*bit, bitmap);
1814                 return -1;
1815         }
1816 }
1817
1818 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1819 {
1820         int max;
1821         int order = 1;
1822         void *buddy = mb_find_buddy(e4b, order, &max);
1823
1824         while (buddy) {
1825                 void *buddy2;
1826
1827                 /* Bits in range [first; last] are known to be set since
1828                  * corresponding blocks were allocated. Bits in range
1829                  * (first; last) will stay set because they form buddies on
1830                  * upper layer. We just deal with borders if they don't
1831                  * align with upper layer and then go up.
1832                  * Releasing entire group is all about clearing
1833                  * single bit of highest order buddy.
1834                  */
1835
1836                 /* Example:
1837                  * ---------------------------------
1838                  * |   1   |   1   |   1   |   1   |
1839                  * ---------------------------------
1840                  * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1841                  * ---------------------------------
1842                  *   0   1   2   3   4   5   6   7
1843                  *      \_____________________/
1844                  *
1845                  * Neither [1] nor [6] is aligned to above layer.
1846                  * Left neighbour [0] is free, so mark it busy,
1847                  * decrease bb_counters and extend range to
1848                  * [0; 6]
1849                  * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1850                  * mark [6] free, increase bb_counters and shrink range to
1851                  * [0; 5].
1852                  * Then shift range to [0; 2], go up and do the same.
1853                  */
1854
1855
1856                 if (first & 1)
1857                         e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1858                 if (!(last & 1))
1859                         e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1860                 if (first > last)
1861                         break;
1862                 order++;
1863
1864                 buddy2 = mb_find_buddy(e4b, order, &max);
1865                 if (!buddy2) {
1866                         mb_clear_bits(buddy, first, last - first + 1);
1867                         e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1868                         break;
1869                 }
1870                 first >>= 1;
1871                 last >>= 1;
1872                 buddy = buddy2;
1873         }
1874 }
1875
1876 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1877                            int first, int count)
1878 {
1879         int left_is_free = 0;
1880         int right_is_free = 0;
1881         int block;
1882         int last = first + count - 1;
1883         struct super_block *sb = e4b->bd_sb;
1884
1885         if (WARN_ON(count == 0))
1886                 return;
1887         BUG_ON(last >= (sb->s_blocksize << 3));
1888         assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1889         /* Don't bother if the block group is corrupt. */
1890         if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1891                 return;
1892
1893         mb_check_buddy(e4b);
1894         mb_free_blocks_double(inode, e4b, first, count);
1895
1896         this_cpu_inc(discard_pa_seq);
1897         e4b->bd_info->bb_free += count;
1898         if (first < e4b->bd_info->bb_first_free)
1899                 e4b->bd_info->bb_first_free = first;
1900
1901         /* access memory sequentially: check left neighbour,
1902          * clear range and then check right neighbour
1903          */
1904         if (first != 0)
1905                 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1906         block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1907         if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1908                 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1909
1910         if (unlikely(block != -1)) {
1911                 struct ext4_sb_info *sbi = EXT4_SB(sb);
1912                 ext4_fsblk_t blocknr;
1913
1914                 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1915                 blocknr += EXT4_C2B(sbi, block);
1916                 if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) {
1917                         ext4_grp_locked_error(sb, e4b->bd_group,
1918                                               inode ? inode->i_ino : 0,
1919                                               blocknr,
1920                                               "freeing already freed block (bit %u); block bitmap corrupt.",
1921                                               block);
1922                         ext4_mark_group_bitmap_corrupted(
1923                                 sb, e4b->bd_group,
1924                                 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1925                 }
1926                 goto done;
1927         }
1928
1929         /* let's maintain fragments counter */
1930         if (left_is_free && right_is_free)
1931                 e4b->bd_info->bb_fragments--;
1932         else if (!left_is_free && !right_is_free)
1933                 e4b->bd_info->bb_fragments++;
1934
1935         /* buddy[0] == bd_bitmap is a special case, so handle
1936          * it right away and let mb_buddy_mark_free stay free of
1937          * zero order checks.
1938          * Check if neighbours are to be coaleasced,
1939          * adjust bitmap bb_counters and borders appropriately.
1940          */
1941         if (first & 1) {
1942                 first += !left_is_free;
1943                 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1944         }
1945         if (!(last & 1)) {
1946                 last -= !right_is_free;
1947                 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1948         }
1949
1950         if (first <= last)
1951                 mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1952
1953 done:
1954         mb_set_largest_free_order(sb, e4b->bd_info);
1955         mb_update_avg_fragment_size(sb, e4b->bd_info);
1956         mb_check_buddy(e4b);
1957 }
1958
1959 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1960                                 int needed, struct ext4_free_extent *ex)
1961 {
1962         int next = block;
1963         int max, order;
1964         void *buddy;
1965
1966         assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1967         BUG_ON(ex == NULL);
1968
1969         buddy = mb_find_buddy(e4b, 0, &max);
1970         BUG_ON(buddy == NULL);
1971         BUG_ON(block >= max);
1972         if (mb_test_bit(block, buddy)) {
1973                 ex->fe_len = 0;
1974                 ex->fe_start = 0;
1975                 ex->fe_group = 0;
1976                 return 0;
1977         }
1978
1979         /* find actual order */
1980         order = mb_find_order_for_block(e4b, block);
1981         block = block >> order;
1982
1983         ex->fe_len = 1 << order;
1984         ex->fe_start = block << order;
1985         ex->fe_group = e4b->bd_group;
1986
1987         /* calc difference from given start */
1988         next = next - ex->fe_start;
1989         ex->fe_len -= next;
1990         ex->fe_start += next;
1991
1992         while (needed > ex->fe_len &&
1993                mb_find_buddy(e4b, order, &max)) {
1994
1995                 if (block + 1 >= max)
1996                         break;
1997
1998                 next = (block + 1) * (1 << order);
1999                 if (mb_test_bit(next, e4b->bd_bitmap))
2000                         break;
2001
2002                 order = mb_find_order_for_block(e4b, next);
2003
2004                 block = next >> order;
2005                 ex->fe_len += 1 << order;
2006         }
2007
2008         if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) {
2009                 /* Should never happen! (but apparently sometimes does?!?) */
2010                 WARN_ON(1);
2011                 ext4_grp_locked_error(e4b->bd_sb, e4b->bd_group, 0, 0,
2012                         "corruption or bug in mb_find_extent "
2013                         "block=%d, order=%d needed=%d ex=%u/%d/%d@%u",
2014                         block, order, needed, ex->fe_group, ex->fe_start,
2015                         ex->fe_len, ex->fe_logical);
2016                 ex->fe_len = 0;
2017                 ex->fe_start = 0;
2018                 ex->fe_group = 0;
2019         }
2020         return ex->fe_len;
2021 }
2022
2023 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
2024 {
2025         int ord;
2026         int mlen = 0;
2027         int max = 0;
2028         int cur;
2029         int start = ex->fe_start;
2030         int len = ex->fe_len;
2031         unsigned ret = 0;
2032         int len0 = len;
2033         void *buddy;
2034         bool split = false;
2035
2036         BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
2037         BUG_ON(e4b->bd_group != ex->fe_group);
2038         assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
2039         mb_check_buddy(e4b);
2040         mb_mark_used_double(e4b, start, len);
2041
2042         this_cpu_inc(discard_pa_seq);
2043         e4b->bd_info->bb_free -= len;
2044         if (e4b->bd_info->bb_first_free == start)
2045                 e4b->bd_info->bb_first_free += len;
2046
2047         /* let's maintain fragments counter */
2048         if (start != 0)
2049                 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
2050         if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
2051                 max = !mb_test_bit(start + len, e4b->bd_bitmap);
2052         if (mlen && max)
2053                 e4b->bd_info->bb_fragments++;
2054         else if (!mlen && !max)
2055                 e4b->bd_info->bb_fragments--;
2056
2057         /* let's maintain buddy itself */
2058         while (len) {
2059                 if (!split)
2060                         ord = mb_find_order_for_block(e4b, start);
2061
2062                 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
2063                         /* the whole chunk may be allocated at once! */
2064                         mlen = 1 << ord;
2065                         if (!split)
2066                                 buddy = mb_find_buddy(e4b, ord, &max);
2067                         else
2068                                 split = false;
2069                         BUG_ON((start >> ord) >= max);
2070                         mb_set_bit(start >> ord, buddy);
2071                         e4b->bd_info->bb_counters[ord]--;
2072                         start += mlen;
2073                         len -= mlen;
2074                         BUG_ON(len < 0);
2075                         continue;
2076                 }
2077
2078                 /* store for history */
2079                 if (ret == 0)
2080                         ret = len | (ord << 16);
2081
2082                 /* we have to split large buddy */
2083                 BUG_ON(ord <= 0);
2084                 buddy = mb_find_buddy(e4b, ord, &max);
2085                 mb_set_bit(start >> ord, buddy);
2086                 e4b->bd_info->bb_counters[ord]--;
2087
2088                 ord--;
2089                 cur = (start >> ord) & ~1U;
2090                 buddy = mb_find_buddy(e4b, ord, &max);
2091                 mb_clear_bit(cur, buddy);
2092                 mb_clear_bit(cur + 1, buddy);
2093                 e4b->bd_info->bb_counters[ord]++;
2094                 e4b->bd_info->bb_counters[ord]++;
2095                 split = true;
2096         }
2097         mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
2098
2099         mb_update_avg_fragment_size(e4b->bd_sb, e4b->bd_info);
2100         mb_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
2101         mb_check_buddy(e4b);
2102
2103         return ret;
2104 }
2105
2106 /*
2107  * Must be called under group lock!
2108  */
2109 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
2110                                         struct ext4_buddy *e4b)
2111 {
2112         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2113         int ret;
2114
2115         BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
2116         BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2117
2118         ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
2119         ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
2120         ret = mb_mark_used(e4b, &ac->ac_b_ex);
2121
2122         /* preallocation can change ac_b_ex, thus we store actually
2123          * allocated blocks for history */
2124         ac->ac_f_ex = ac->ac_b_ex;
2125
2126         ac->ac_status = AC_STATUS_FOUND;
2127         ac->ac_tail = ret & 0xffff;
2128         ac->ac_buddy = ret >> 16;
2129
2130         /*
2131          * take the page reference. We want the page to be pinned
2132          * so that we don't get a ext4_mb_init_cache_call for this
2133          * group until we update the bitmap. That would mean we
2134          * double allocate blocks. The reference is dropped
2135          * in ext4_mb_release_context
2136          */
2137         ac->ac_bitmap_page = e4b->bd_bitmap_page;
2138         get_page(ac->ac_bitmap_page);
2139         ac->ac_buddy_page = e4b->bd_buddy_page;
2140         get_page(ac->ac_buddy_page);
2141         /* store last allocated for subsequent stream allocation */
2142         if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2143                 spin_lock(&sbi->s_md_lock);
2144                 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
2145                 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
2146                 spin_unlock(&sbi->s_md_lock);
2147         }
2148         /*
2149          * As we've just preallocated more space than
2150          * user requested originally, we store allocated
2151          * space in a special descriptor.
2152          */
2153         if (ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
2154                 ext4_mb_new_preallocation(ac);
2155
2156 }
2157
2158 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
2159                                         struct ext4_buddy *e4b,
2160                                         int finish_group)
2161 {
2162         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2163         struct ext4_free_extent *bex = &ac->ac_b_ex;
2164         struct ext4_free_extent *gex = &ac->ac_g_ex;
2165
2166         if (ac->ac_status == AC_STATUS_FOUND)
2167                 return;
2168         /*
2169          * We don't want to scan for a whole year
2170          */
2171         if (ac->ac_found > sbi->s_mb_max_to_scan &&
2172                         !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2173                 ac->ac_status = AC_STATUS_BREAK;
2174                 return;
2175         }
2176
2177         /*
2178          * Haven't found good chunk so far, let's continue
2179          */
2180         if (bex->fe_len < gex->fe_len)
2181                 return;
2182
2183         if (finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
2184                 ext4_mb_use_best_found(ac, e4b);
2185 }
2186
2187 /*
2188  * The routine checks whether found extent is good enough. If it is,
2189  * then the extent gets marked used and flag is set to the context
2190  * to stop scanning. Otherwise, the extent is compared with the
2191  * previous found extent and if new one is better, then it's stored
2192  * in the context. Later, the best found extent will be used, if
2193  * mballoc can't find good enough extent.
2194  *
2195  * The algorithm used is roughly as follows:
2196  *
2197  * * If free extent found is exactly as big as goal, then
2198  *   stop the scan and use it immediately
2199  *
2200  * * If free extent found is smaller than goal, then keep retrying
2201  *   upto a max of sbi->s_mb_max_to_scan times (default 200). After
2202  *   that stop scanning and use whatever we have.
2203  *
2204  * * If free extent found is bigger than goal, then keep retrying
2205  *   upto a max of sbi->s_mb_min_to_scan times (default 10) before
2206  *   stopping the scan and using the extent.
2207  *
2208  *
2209  * FIXME: real allocation policy is to be designed yet!
2210  */
2211 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
2212                                         struct ext4_free_extent *ex,
2213                                         struct ext4_buddy *e4b)
2214 {
2215         struct ext4_free_extent *bex = &ac->ac_b_ex;
2216         struct ext4_free_extent *gex = &ac->ac_g_ex;
2217
2218         BUG_ON(ex->fe_len <= 0);
2219         BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2220         BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2221         BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
2222
2223         ac->ac_found++;
2224         ac->ac_cX_found[ac->ac_criteria]++;
2225
2226         /*
2227          * The special case - take what you catch first
2228          */
2229         if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2230                 *bex = *ex;
2231                 ext4_mb_use_best_found(ac, e4b);
2232                 return;
2233         }
2234
2235         /*
2236          * Let's check whether the chuck is good enough
2237          */
2238         if (ex->fe_len == gex->fe_len) {
2239                 *bex = *ex;
2240                 ext4_mb_use_best_found(ac, e4b);
2241                 return;
2242         }
2243
2244         /*
2245          * If this is first found extent, just store it in the context
2246          */
2247         if (bex->fe_len == 0) {
2248                 *bex = *ex;
2249                 return;
2250         }
2251
2252         /*
2253          * If new found extent is better, store it in the context
2254          */
2255         if (bex->fe_len < gex->fe_len) {
2256                 /* if the request isn't satisfied, any found extent
2257                  * larger than previous best one is better */
2258                 if (ex->fe_len > bex->fe_len)
2259                         *bex = *ex;
2260         } else if (ex->fe_len > gex->fe_len) {
2261                 /* if the request is satisfied, then we try to find
2262                  * an extent that still satisfy the request, but is
2263                  * smaller than previous one */
2264                 if (ex->fe_len < bex->fe_len)
2265                         *bex = *ex;
2266         }
2267
2268         ext4_mb_check_limits(ac, e4b, 0);
2269 }
2270
2271 static noinline_for_stack
2272 void ext4_mb_try_best_found(struct ext4_allocation_context *ac,
2273                                         struct ext4_buddy *e4b)
2274 {
2275         struct ext4_free_extent ex = ac->ac_b_ex;
2276         ext4_group_t group = ex.fe_group;
2277         int max;
2278         int err;
2279
2280         BUG_ON(ex.fe_len <= 0);
2281         err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2282         if (err)
2283                 return;
2284
2285         ext4_lock_group(ac->ac_sb, group);
2286         max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
2287
2288         if (max > 0) {
2289                 ac->ac_b_ex = ex;
2290                 ext4_mb_use_best_found(ac, e4b);
2291         }
2292
2293         ext4_unlock_group(ac->ac_sb, group);
2294         ext4_mb_unload_buddy(e4b);
2295 }
2296
2297 static noinline_for_stack
2298 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
2299                                 struct ext4_buddy *e4b)
2300 {
2301         ext4_group_t group = ac->ac_g_ex.fe_group;
2302         int max;
2303         int err;
2304         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2305         struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2306         struct ext4_free_extent ex;
2307
2308         if (!grp)
2309                 return -EFSCORRUPTED;
2310         if (!(ac->ac_flags & (EXT4_MB_HINT_TRY_GOAL | EXT4_MB_HINT_GOAL_ONLY)))
2311                 return 0;
2312         if (grp->bb_free == 0)
2313                 return 0;
2314
2315         err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2316         if (err)
2317                 return err;
2318
2319         if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
2320                 ext4_mb_unload_buddy(e4b);
2321                 return 0;
2322         }
2323
2324         ext4_lock_group(ac->ac_sb, group);
2325         max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
2326                              ac->ac_g_ex.fe_len, &ex);
2327         ex.fe_logical = 0xDEADFA11; /* debug value */
2328
2329         if (max >= ac->ac_g_ex.fe_len &&
2330             ac->ac_g_ex.fe_len == EXT4_B2C(sbi, sbi->s_stripe)) {
2331                 ext4_fsblk_t start;
2332
2333                 start = ext4_grp_offs_to_block(ac->ac_sb, &ex);
2334                 /* use do_div to get remainder (would be 64-bit modulo) */
2335                 if (do_div(start, sbi->s_stripe) == 0) {
2336                         ac->ac_found++;
2337                         ac->ac_b_ex = ex;
2338                         ext4_mb_use_best_found(ac, e4b);
2339                 }
2340         } else if (max >= ac->ac_g_ex.fe_len) {
2341                 BUG_ON(ex.fe_len <= 0);
2342                 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2343                 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2344                 ac->ac_found++;
2345                 ac->ac_b_ex = ex;
2346                 ext4_mb_use_best_found(ac, e4b);
2347         } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
2348                 /* Sometimes, caller may want to merge even small
2349                  * number of blocks to an existing extent */
2350                 BUG_ON(ex.fe_len <= 0);
2351                 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2352                 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2353                 ac->ac_found++;
2354                 ac->ac_b_ex = ex;
2355                 ext4_mb_use_best_found(ac, e4b);
2356         }
2357         ext4_unlock_group(ac->ac_sb, group);
2358         ext4_mb_unload_buddy(e4b);
2359
2360         return 0;
2361 }
2362
2363 /*
2364  * The routine scans buddy structures (not bitmap!) from given order
2365  * to max order and tries to find big enough chunk to satisfy the req
2366  */
2367 static noinline_for_stack
2368 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
2369                                         struct ext4_buddy *e4b)
2370 {
2371         struct super_block *sb = ac->ac_sb;
2372         struct ext4_group_info *grp = e4b->bd_info;
2373         void *buddy;
2374         int i;
2375         int k;
2376         int max;
2377
2378         BUG_ON(ac->ac_2order <= 0);
2379         for (i = ac->ac_2order; i < MB_NUM_ORDERS(sb); i++) {
2380                 if (grp->bb_counters[i] == 0)
2381                         continue;
2382
2383                 buddy = mb_find_buddy(e4b, i, &max);
2384                 if (WARN_RATELIMIT(buddy == NULL,
2385                          "ext4: mb_simple_scan_group: mb_find_buddy failed, (%d)\n", i))
2386                         continue;
2387
2388                 k = mb_find_next_zero_bit(buddy, max, 0);
2389                 if (k >= max) {
2390                         ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0,
2391                                 "%d free clusters of order %d. But found 0",
2392                                 grp->bb_counters[i], i);
2393                         ext4_mark_group_bitmap_corrupted(ac->ac_sb,
2394                                          e4b->bd_group,
2395                                         EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2396                         break;
2397                 }
2398                 ac->ac_found++;
2399                 ac->ac_cX_found[ac->ac_criteria]++;
2400
2401                 ac->ac_b_ex.fe_len = 1 << i;
2402                 ac->ac_b_ex.fe_start = k << i;
2403                 ac->ac_b_ex.fe_group = e4b->bd_group;
2404
2405                 ext4_mb_use_best_found(ac, e4b);
2406
2407                 BUG_ON(ac->ac_f_ex.fe_len != ac->ac_g_ex.fe_len);
2408
2409                 if (EXT4_SB(sb)->s_mb_stats)
2410                         atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
2411
2412                 break;
2413         }
2414 }
2415
2416 /*
2417  * The routine scans the group and measures all found extents.
2418  * In order to optimize scanning, caller must pass number of
2419  * free blocks in the group, so the routine can know upper limit.
2420  */
2421 static noinline_for_stack
2422 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
2423                                         struct ext4_buddy *e4b)
2424 {
2425         struct super_block *sb = ac->ac_sb;
2426         void *bitmap = e4b->bd_bitmap;
2427         struct ext4_free_extent ex;
2428         int i, j, freelen;
2429         int free;
2430
2431         free = e4b->bd_info->bb_free;
2432         if (WARN_ON(free <= 0))
2433                 return;
2434
2435         i = e4b->bd_info->bb_first_free;
2436
2437         while (free && ac->ac_status == AC_STATUS_CONTINUE) {
2438                 i = mb_find_next_zero_bit(bitmap,
2439                                                 EXT4_CLUSTERS_PER_GROUP(sb), i);
2440                 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
2441                         /*
2442                          * IF we have corrupt bitmap, we won't find any
2443                          * free blocks even though group info says we
2444                          * have free blocks
2445                          */
2446                         ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2447                                         "%d free clusters as per "
2448                                         "group info. But bitmap says 0",
2449                                         free);
2450                         ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2451                                         EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2452                         break;
2453                 }
2454
2455                 if (!ext4_mb_cr_expensive(ac->ac_criteria)) {
2456                         /*
2457                          * In CR_GOAL_LEN_FAST and CR_BEST_AVAIL_LEN, we are
2458                          * sure that this group will have a large enough
2459                          * continuous free extent, so skip over the smaller free
2460                          * extents
2461                          */
2462                         j = mb_find_next_bit(bitmap,
2463                                                 EXT4_CLUSTERS_PER_GROUP(sb), i);
2464                         freelen = j - i;
2465
2466                         if (freelen < ac->ac_g_ex.fe_len) {
2467                                 i = j;
2468                                 free -= freelen;
2469                                 continue;
2470                         }
2471                 }
2472
2473                 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
2474                 if (WARN_ON(ex.fe_len <= 0))
2475                         break;
2476                 if (free < ex.fe_len) {
2477                         ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2478                                         "%d free clusters as per "
2479                                         "group info. But got %d blocks",
2480                                         free, ex.fe_len);
2481                         ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2482                                         EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2483                         /*
2484                          * The number of free blocks differs. This mostly
2485                          * indicate that the bitmap is corrupt. So exit
2486                          * without claiming the space.
2487                          */
2488                         break;
2489                 }
2490                 ex.fe_logical = 0xDEADC0DE; /* debug value */
2491                 ext4_mb_measure_extent(ac, &ex, e4b);
2492
2493                 i += ex.fe_len;
2494                 free -= ex.fe_len;
2495         }
2496
2497         ext4_mb_check_limits(ac, e4b, 1);
2498 }
2499
2500 /*
2501  * This is a special case for storages like raid5
2502  * we try to find stripe-aligned chunks for stripe-size-multiple requests
2503  */
2504 static noinline_for_stack
2505 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
2506                                  struct ext4_buddy *e4b)
2507 {
2508         struct super_block *sb = ac->ac_sb;
2509         struct ext4_sb_info *sbi = EXT4_SB(sb);
2510         void *bitmap = e4b->bd_bitmap;
2511         struct ext4_free_extent ex;
2512         ext4_fsblk_t first_group_block;
2513         ext4_fsblk_t a;
2514         ext4_grpblk_t i, stripe;
2515         int max;
2516
2517         BUG_ON(sbi->s_stripe == 0);
2518
2519         /* find first stripe-aligned block in group */
2520         first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2521
2522         a = first_group_block + sbi->s_stripe - 1;
2523         do_div(a, sbi->s_stripe);
2524         i = (a * sbi->s_stripe) - first_group_block;
2525
2526         stripe = EXT4_B2C(sbi, sbi->s_stripe);
2527         i = EXT4_B2C(sbi, i);
2528         while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2529                 if (!mb_test_bit(i, bitmap)) {
2530                         max = mb_find_extent(e4b, i, stripe, &ex);
2531                         if (max >= stripe) {
2532                                 ac->ac_found++;
2533                                 ac->ac_cX_found[ac->ac_criteria]++;
2534                                 ex.fe_logical = 0xDEADF00D; /* debug value */
2535                                 ac->ac_b_ex = ex;
2536                                 ext4_mb_use_best_found(ac, e4b);
2537                                 break;
2538                         }
2539                 }
2540                 i += stripe;
2541         }
2542 }
2543
2544 /*
2545  * This is also called BEFORE we load the buddy bitmap.
2546  * Returns either 1 or 0 indicating that the group is either suitable
2547  * for the allocation or not.
2548  */
2549 static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
2550                                 ext4_group_t group, enum criteria cr)
2551 {
2552         ext4_grpblk_t free, fragments;
2553         int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2554         struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2555
2556         BUG_ON(cr < CR_POWER2_ALIGNED || cr >= EXT4_MB_NUM_CRS);
2557
2558         if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2559                 return false;
2560
2561         free = grp->bb_free;
2562         if (free == 0)
2563                 return false;
2564
2565         fragments = grp->bb_fragments;
2566         if (fragments == 0)
2567                 return false;
2568
2569         switch (cr) {
2570         case CR_POWER2_ALIGNED:
2571                 BUG_ON(ac->ac_2order == 0);
2572
2573                 /* Avoid using the first bg of a flexgroup for data files */
2574                 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2575                     (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2576                     ((group % flex_size) == 0))
2577                         return false;
2578
2579                 if (free < ac->ac_g_ex.fe_len)
2580                         return false;
2581
2582                 if (ac->ac_2order >= MB_NUM_ORDERS(ac->ac_sb))
2583                         return true;
2584
2585                 if (grp->bb_largest_free_order < ac->ac_2order)
2586                         return false;
2587
2588                 return true;
2589         case CR_GOAL_LEN_FAST:
2590         case CR_BEST_AVAIL_LEN:
2591                 if ((free / fragments) >= ac->ac_g_ex.fe_len)
2592                         return true;
2593                 break;
2594         case CR_GOAL_LEN_SLOW:
2595                 if (free >= ac->ac_g_ex.fe_len)
2596                         return true;
2597                 break;
2598         case CR_ANY_FREE:
2599                 return true;
2600         default:
2601                 BUG();
2602         }
2603
2604         return false;
2605 }
2606
2607 /*
2608  * This could return negative error code if something goes wrong
2609  * during ext4_mb_init_group(). This should not be called with
2610  * ext4_lock_group() held.
2611  *
2612  * Note: because we are conditionally operating with the group lock in
2613  * the EXT4_MB_STRICT_CHECK case, we need to fake out sparse in this
2614  * function using __acquire and __release.  This means we need to be
2615  * super careful before messing with the error path handling via "goto
2616  * out"!
2617  */
2618 static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac,
2619                                      ext4_group_t group, enum criteria cr)
2620 {
2621         struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2622         struct super_block *sb = ac->ac_sb;
2623         struct ext4_sb_info *sbi = EXT4_SB(sb);
2624         bool should_lock = ac->ac_flags & EXT4_MB_STRICT_CHECK;
2625         ext4_grpblk_t free;
2626         int ret = 0;
2627
2628         if (!grp)
2629                 return -EFSCORRUPTED;
2630         if (sbi->s_mb_stats)
2631                 atomic64_inc(&sbi->s_bal_cX_groups_considered[ac->ac_criteria]);
2632         if (should_lock) {
2633                 ext4_lock_group(sb, group);
2634                 __release(ext4_group_lock_ptr(sb, group));
2635         }
2636         free = grp->bb_free;
2637         if (free == 0)
2638                 goto out;
2639         /*
2640          * In all criterias except CR_ANY_FREE we try to avoid groups that
2641          * can't possibly satisfy the full goal request due to insufficient
2642          * free blocks.
2643          */
2644         if (cr < CR_ANY_FREE && free < ac->ac_g_ex.fe_len)
2645                 goto out;
2646         if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2647                 goto out;
2648         if (should_lock) {
2649                 __acquire(ext4_group_lock_ptr(sb, group));
2650                 ext4_unlock_group(sb, group);
2651         }
2652
2653         /* We only do this if the grp has never been initialized */
2654         if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2655                 struct ext4_group_desc *gdp =
2656                         ext4_get_group_desc(sb, group, NULL);
2657                 int ret;
2658
2659                 /*
2660                  * cr=CR_POWER2_ALIGNED/CR_GOAL_LEN_FAST is a very optimistic
2661                  * search to find large good chunks almost for free. If buddy
2662                  * data is not ready, then this optimization makes no sense. But
2663                  * we never skip the first block group in a flex_bg, since this
2664                  * gets used for metadata block allocation, and we want to make
2665                  * sure we locate metadata blocks in the first block group in
2666                  * the flex_bg if possible.
2667                  */
2668                 if (!ext4_mb_cr_expensive(cr) &&
2669                     (!sbi->s_log_groups_per_flex ||
2670                      ((group & ((1 << sbi->s_log_groups_per_flex) - 1)) != 0)) &&
2671                     !(ext4_has_group_desc_csum(sb) &&
2672                       (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))))
2673                         return 0;
2674                 ret = ext4_mb_init_group(sb, group, GFP_NOFS);
2675                 if (ret)
2676                         return ret;
2677         }
2678
2679         if (should_lock) {
2680                 ext4_lock_group(sb, group);
2681                 __release(ext4_group_lock_ptr(sb, group));
2682         }
2683         ret = ext4_mb_good_group(ac, group, cr);
2684 out:
2685         if (should_lock) {
2686                 __acquire(ext4_group_lock_ptr(sb, group));
2687                 ext4_unlock_group(sb, group);
2688         }
2689         return ret;
2690 }
2691
2692 /*
2693  * Start prefetching @nr block bitmaps starting at @group.
2694  * Return the next group which needs to be prefetched.
2695  */
2696 ext4_group_t ext4_mb_prefetch(struct super_block *sb, ext4_group_t group,
2697                               unsigned int nr, int *cnt)
2698 {
2699         ext4_group_t ngroups = ext4_get_groups_count(sb);
2700         struct buffer_head *bh;
2701         struct blk_plug plug;
2702
2703         blk_start_plug(&plug);
2704         while (nr-- > 0) {
2705                 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group,
2706                                                                   NULL);
2707                 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
2708
2709                 /*
2710                  * Prefetch block groups with free blocks; but don't
2711                  * bother if it is marked uninitialized on disk, since
2712                  * it won't require I/O to read.  Also only try to
2713                  * prefetch once, so we avoid getblk() call, which can
2714                  * be expensive.
2715                  */
2716                 if (gdp && grp && !EXT4_MB_GRP_TEST_AND_SET_READ(grp) &&
2717                     EXT4_MB_GRP_NEED_INIT(grp) &&
2718                     ext4_free_group_clusters(sb, gdp) > 0 ) {
2719                         bh = ext4_read_block_bitmap_nowait(sb, group, true);
2720                         if (bh && !IS_ERR(bh)) {
2721                                 if (!buffer_uptodate(bh) && cnt)
2722                                         (*cnt)++;
2723                                 brelse(bh);
2724                         }
2725                 }
2726                 if (++group >= ngroups)
2727                         group = 0;
2728         }
2729         blk_finish_plug(&plug);
2730         return group;
2731 }
2732
2733 /*
2734  * Prefetching reads the block bitmap into the buffer cache; but we
2735  * need to make sure that the buddy bitmap in the page cache has been
2736  * initialized.  Note that ext4_mb_init_group() will block if the I/O
2737  * is not yet completed, or indeed if it was not initiated by
2738  * ext4_mb_prefetch did not start the I/O.
2739  *
2740  * TODO: We should actually kick off the buddy bitmap setup in a work
2741  * queue when the buffer I/O is completed, so that we don't block
2742  * waiting for the block allocation bitmap read to finish when
2743  * ext4_mb_prefetch_fini is called from ext4_mb_regular_allocator().
2744  */
2745 void ext4_mb_prefetch_fini(struct super_block *sb, ext4_group_t group,
2746                            unsigned int nr)
2747 {
2748         struct ext4_group_desc *gdp;
2749         struct ext4_group_info *grp;
2750
2751         while (nr-- > 0) {
2752                 if (!group)
2753                         group = ext4_get_groups_count(sb);
2754                 group--;
2755                 gdp = ext4_get_group_desc(sb, group, NULL);
2756                 grp = ext4_get_group_info(sb, group);
2757
2758                 if (grp && gdp && EXT4_MB_GRP_NEED_INIT(grp) &&
2759                     ext4_free_group_clusters(sb, gdp) > 0) {
2760                         if (ext4_mb_init_group(sb, group, GFP_NOFS))
2761                                 break;
2762                 }
2763         }
2764 }
2765
2766 static noinline_for_stack int
2767 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2768 {
2769         ext4_group_t prefetch_grp = 0, ngroups, group, i;
2770         enum criteria new_cr, cr = CR_GOAL_LEN_FAST;
2771         int err = 0, first_err = 0;
2772         unsigned int nr = 0, prefetch_ios = 0;
2773         struct ext4_sb_info *sbi;
2774         struct super_block *sb;
2775         struct ext4_buddy e4b;
2776         int lost;
2777
2778         sb = ac->ac_sb;
2779         sbi = EXT4_SB(sb);
2780         ngroups = ext4_get_groups_count(sb);
2781         /* non-extent files are limited to low blocks/groups */
2782         if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2783                 ngroups = sbi->s_blockfile_groups;
2784
2785         BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2786
2787         /* first, try the goal */
2788         err = ext4_mb_find_by_goal(ac, &e4b);
2789         if (err || ac->ac_status == AC_STATUS_FOUND)
2790                 goto out;
2791
2792         if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2793                 goto out;
2794
2795         /*
2796          * ac->ac_2order is set only if the fe_len is a power of 2
2797          * if ac->ac_2order is set we also set criteria to CR_POWER2_ALIGNED
2798          * so that we try exact allocation using buddy.
2799          */
2800         i = fls(ac->ac_g_ex.fe_len);
2801         ac->ac_2order = 0;
2802         /*
2803          * We search using buddy data only if the order of the request
2804          * is greater than equal to the sbi_s_mb_order2_reqs
2805          * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2806          * We also support searching for power-of-two requests only for
2807          * requests upto maximum buddy size we have constructed.
2808          */
2809         if (i >= sbi->s_mb_order2_reqs && i <= MB_NUM_ORDERS(sb)) {
2810                 if (is_power_of_2(ac->ac_g_ex.fe_len))
2811                         ac->ac_2order = array_index_nospec(i - 1,
2812                                                            MB_NUM_ORDERS(sb));
2813         }
2814
2815         /* if stream allocation is enabled, use global goal */
2816         if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2817                 /* TBD: may be hot point */
2818                 spin_lock(&sbi->s_md_lock);
2819                 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2820                 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2821                 spin_unlock(&sbi->s_md_lock);
2822         }
2823
2824         /*
2825          * Let's just scan groups to find more-less suitable blocks We
2826          * start with CR_GOAL_LEN_FAST, unless it is power of 2
2827          * aligned, in which case let's do that faster approach first.
2828          */
2829         if (ac->ac_2order)
2830                 cr = CR_POWER2_ALIGNED;
2831 repeat:
2832         for (; cr < EXT4_MB_NUM_CRS && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2833                 ac->ac_criteria = cr;
2834                 /*
2835                  * searching for the right group start
2836                  * from the goal value specified
2837                  */
2838                 group = ac->ac_g_ex.fe_group;
2839                 ac->ac_groups_linear_remaining = sbi->s_mb_max_linear_groups;
2840                 prefetch_grp = group;
2841
2842                 for (i = 0, new_cr = cr; i < ngroups; i++,
2843                      ext4_mb_choose_next_group(ac, &new_cr, &group, ngroups)) {
2844                         int ret = 0;
2845
2846                         cond_resched();
2847                         if (new_cr != cr) {
2848                                 cr = new_cr;
2849                                 goto repeat;
2850                         }
2851
2852                         /*
2853                          * Batch reads of the block allocation bitmaps
2854                          * to get multiple READs in flight; limit
2855                          * prefetching at inexpensive CR, otherwise mballoc
2856                          * can spend a lot of time loading imperfect groups
2857                          */
2858                         if ((prefetch_grp == group) &&
2859                             (ext4_mb_cr_expensive(cr) ||
2860                              prefetch_ios < sbi->s_mb_prefetch_limit)) {
2861                                 nr = sbi->s_mb_prefetch;
2862                                 if (ext4_has_feature_flex_bg(sb)) {
2863                                         nr = 1 << sbi->s_log_groups_per_flex;
2864                                         nr -= group & (nr - 1);
2865                                         nr = min(nr, sbi->s_mb_prefetch);
2866                                 }
2867                                 prefetch_grp = ext4_mb_prefetch(sb, group,
2868                                                         nr, &prefetch_ios);
2869                         }
2870
2871                         /* This now checks without needing the buddy page */
2872                         ret = ext4_mb_good_group_nolock(ac, group, cr);
2873                         if (ret <= 0) {
2874                                 if (!first_err)
2875                                         first_err = ret;
2876                                 continue;
2877                         }
2878
2879                         err = ext4_mb_load_buddy(sb, group, &e4b);
2880                         if (err)
2881                                 goto out;
2882
2883                         ext4_lock_group(sb, group);
2884
2885                         /*
2886                          * We need to check again after locking the
2887                          * block group
2888                          */
2889                         ret = ext4_mb_good_group(ac, group, cr);
2890                         if (ret == 0) {
2891                                 ext4_unlock_group(sb, group);
2892                                 ext4_mb_unload_buddy(&e4b);
2893                                 continue;
2894                         }
2895
2896                         ac->ac_groups_scanned++;
2897                         if (cr == CR_POWER2_ALIGNED)
2898                                 ext4_mb_simple_scan_group(ac, &e4b);
2899                         else if ((cr == CR_GOAL_LEN_FAST ||
2900                                  cr == CR_BEST_AVAIL_LEN) &&
2901                                  sbi->s_stripe &&
2902                                  !(ac->ac_g_ex.fe_len %
2903                                  EXT4_B2C(sbi, sbi->s_stripe)))
2904                                 ext4_mb_scan_aligned(ac, &e4b);
2905                         else
2906                                 ext4_mb_complex_scan_group(ac, &e4b);
2907
2908                         ext4_unlock_group(sb, group);
2909                         ext4_mb_unload_buddy(&e4b);
2910
2911                         if (ac->ac_status != AC_STATUS_CONTINUE)
2912                                 break;
2913                 }
2914                 /* Processed all groups and haven't found blocks */
2915                 if (sbi->s_mb_stats && i == ngroups)
2916                         atomic64_inc(&sbi->s_bal_cX_failed[cr]);
2917
2918                 if (i == ngroups && ac->ac_criteria == CR_BEST_AVAIL_LEN)
2919                         /* Reset goal length to original goal length before
2920                          * falling into CR_GOAL_LEN_SLOW */
2921                         ac->ac_g_ex.fe_len = ac->ac_orig_goal_len;
2922         }
2923
2924         if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2925             !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2926                 /*
2927                  * We've been searching too long. Let's try to allocate
2928                  * the best chunk we've found so far
2929                  */
2930                 ext4_mb_try_best_found(ac, &e4b);
2931                 if (ac->ac_status != AC_STATUS_FOUND) {
2932                         /*
2933                          * Someone more lucky has already allocated it.
2934                          * The only thing we can do is just take first
2935                          * found block(s)
2936                          */
2937                         lost = atomic_inc_return(&sbi->s_mb_lost_chunks);
2938                         mb_debug(sb, "lost chunk, group: %u, start: %d, len: %d, lost: %d\n",
2939                                  ac->ac_b_ex.fe_group, ac->ac_b_ex.fe_start,
2940                                  ac->ac_b_ex.fe_len, lost);
2941
2942                         ac->ac_b_ex.fe_group = 0;
2943                         ac->ac_b_ex.fe_start = 0;
2944                         ac->ac_b_ex.fe_len = 0;
2945                         ac->ac_status = AC_STATUS_CONTINUE;
2946                         ac->ac_flags |= EXT4_MB_HINT_FIRST;
2947                         cr = CR_ANY_FREE;
2948                         goto repeat;
2949                 }
2950         }
2951
2952         if (sbi->s_mb_stats && ac->ac_status == AC_STATUS_FOUND)
2953                 atomic64_inc(&sbi->s_bal_cX_hits[ac->ac_criteria]);
2954 out:
2955         if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2956                 err = first_err;
2957
2958         mb_debug(sb, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n",
2959                  ac->ac_b_ex.fe_len, ac->ac_o_ex.fe_len, ac->ac_status,
2960                  ac->ac_flags, cr, err);
2961
2962         if (nr)
2963                 ext4_mb_prefetch_fini(sb, prefetch_grp, nr);
2964
2965         return err;
2966 }
2967
2968 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2969 {
2970         struct super_block *sb = pde_data(file_inode(seq->file));
2971         ext4_group_t group;
2972
2973         if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2974                 return NULL;
2975         group = *pos + 1;
2976         return (void *) ((unsigned long) group);
2977 }
2978
2979 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2980 {
2981         struct super_block *sb = pde_data(file_inode(seq->file));
2982         ext4_group_t group;
2983
2984         ++*pos;
2985         if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2986                 return NULL;
2987         group = *pos + 1;
2988         return (void *) ((unsigned long) group);
2989 }
2990
2991 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2992 {
2993         struct super_block *sb = pde_data(file_inode(seq->file));
2994         ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2995         int i;
2996         int err, buddy_loaded = 0;
2997         struct ext4_buddy e4b;
2998         struct ext4_group_info *grinfo;
2999         unsigned char blocksize_bits = min_t(unsigned char,
3000                                              sb->s_blocksize_bits,
3001                                              EXT4_MAX_BLOCK_LOG_SIZE);
3002         struct sg {
3003                 struct ext4_group_info info;
3004                 ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2];
3005         } sg;
3006
3007         group--;
3008         if (group == 0)
3009                 seq_puts(seq, "#group: free  frags first ["
3010                               " 2^0   2^1   2^2   2^3   2^4   2^5   2^6  "
3011                               " 2^7   2^8   2^9   2^10  2^11  2^12  2^13  ]\n");
3012
3013         i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
3014                 sizeof(struct ext4_group_info);
3015
3016         grinfo = ext4_get_group_info(sb, group);
3017         if (!grinfo)
3018                 return 0;
3019         /* Load the group info in memory only if not already loaded. */
3020         if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
3021                 err = ext4_mb_load_buddy(sb, group, &e4b);
3022                 if (err) {
3023                         seq_printf(seq, "#%-5u: I/O error\n", group);
3024                         return 0;
3025                 }
3026                 buddy_loaded = 1;
3027         }
3028
3029         memcpy(&sg, grinfo, i);
3030
3031         if (buddy_loaded)
3032                 ext4_mb_unload_buddy(&e4b);
3033
3034         seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
3035                         sg.info.bb_fragments, sg.info.bb_first_free);
3036         for (i = 0; i <= 13; i++)
3037                 seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ?
3038                                 sg.info.bb_counters[i] : 0);
3039         seq_puts(seq, " ]\n");
3040
3041         return 0;
3042 }
3043
3044 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
3045 {
3046 }
3047
3048 const struct seq_operations ext4_mb_seq_groups_ops = {
3049         .start  = ext4_mb_seq_groups_start,
3050         .next   = ext4_mb_seq_groups_next,
3051         .stop   = ext4_mb_seq_groups_stop,
3052         .show   = ext4_mb_seq_groups_show,
3053 };
3054
3055 int ext4_seq_mb_stats_show(struct seq_file *seq, void *offset)
3056 {
3057         struct super_block *sb = seq->private;
3058         struct ext4_sb_info *sbi = EXT4_SB(sb);
3059
3060         seq_puts(seq, "mballoc:\n");
3061         if (!sbi->s_mb_stats) {
3062                 seq_puts(seq, "\tmb stats collection turned off.\n");
3063                 seq_puts(
3064                         seq,
3065                         "\tTo enable, please write \"1\" to sysfs file mb_stats.\n");
3066                 return 0;
3067         }
3068         seq_printf(seq, "\treqs: %u\n", atomic_read(&sbi->s_bal_reqs));
3069         seq_printf(seq, "\tsuccess: %u\n", atomic_read(&sbi->s_bal_success));
3070
3071         seq_printf(seq, "\tgroups_scanned: %u\n",
3072                    atomic_read(&sbi->s_bal_groups_scanned));
3073
3074         /* CR_POWER2_ALIGNED stats */
3075         seq_puts(seq, "\tcr_p2_aligned_stats:\n");
3076         seq_printf(seq, "\t\thits: %llu\n",
3077                    atomic64_read(&sbi->s_bal_cX_hits[CR_POWER2_ALIGNED]));
3078         seq_printf(
3079                 seq, "\t\tgroups_considered: %llu\n",
3080                 atomic64_read(
3081                         &sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED]));
3082         seq_printf(seq, "\t\textents_scanned: %u\n",
3083                    atomic_read(&sbi->s_bal_cX_ex_scanned[CR_POWER2_ALIGNED]));
3084         seq_printf(seq, "\t\tuseless_loops: %llu\n",
3085                    atomic64_read(&sbi->s_bal_cX_failed[CR_POWER2_ALIGNED]));
3086         seq_printf(seq, "\t\tbad_suggestions: %u\n",
3087                    atomic_read(&sbi->s_bal_p2_aligned_bad_suggestions));
3088
3089         /* CR_GOAL_LEN_FAST stats */
3090         seq_puts(seq, "\tcr_goal_fast_stats:\n");
3091         seq_printf(seq, "\t\thits: %llu\n",
3092                    atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_FAST]));
3093         seq_printf(seq, "\t\tgroups_considered: %llu\n",
3094                    atomic64_read(
3095                            &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_FAST]));
3096         seq_printf(seq, "\t\textents_scanned: %u\n",
3097                    atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_FAST]));
3098         seq_printf(seq, "\t\tuseless_loops: %llu\n",
3099                    atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_FAST]));
3100         seq_printf(seq, "\t\tbad_suggestions: %u\n",
3101                    atomic_read(&sbi->s_bal_goal_fast_bad_suggestions));
3102
3103         /* CR_BEST_AVAIL_LEN stats */
3104         seq_puts(seq, "\tcr_best_avail_stats:\n");
3105         seq_printf(seq, "\t\thits: %llu\n",
3106                    atomic64_read(&sbi->s_bal_cX_hits[CR_BEST_AVAIL_LEN]));
3107         seq_printf(
3108                 seq, "\t\tgroups_considered: %llu\n",
3109                 atomic64_read(
3110                         &sbi->s_bal_cX_groups_considered[CR_BEST_AVAIL_LEN]));
3111         seq_printf(seq, "\t\textents_scanned: %u\n",
3112                    atomic_read(&sbi->s_bal_cX_ex_scanned[CR_BEST_AVAIL_LEN]));
3113         seq_printf(seq, "\t\tuseless_loops: %llu\n",
3114                    atomic64_read(&sbi->s_bal_cX_failed[CR_BEST_AVAIL_LEN]));
3115         seq_printf(seq, "\t\tbad_suggestions: %u\n",
3116                    atomic_read(&sbi->s_bal_best_avail_bad_suggestions));
3117
3118         /* CR_GOAL_LEN_SLOW stats */
3119         seq_puts(seq, "\tcr_goal_slow_stats:\n");
3120         seq_printf(seq, "\t\thits: %llu\n",
3121                    atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_SLOW]));
3122         seq_printf(seq, "\t\tgroups_considered: %llu\n",
3123                    atomic64_read(
3124                            &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_SLOW]));
3125         seq_printf(seq, "\t\textents_scanned: %u\n",
3126                    atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_SLOW]));
3127         seq_printf(seq, "\t\tuseless_loops: %llu\n",
3128                    atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_SLOW]));
3129
3130         /* CR_ANY_FREE stats */
3131         seq_puts(seq, "\tcr_any_free_stats:\n");
3132         seq_printf(seq, "\t\thits: %llu\n",
3133                    atomic64_read(&sbi->s_bal_cX_hits[CR_ANY_FREE]));
3134         seq_printf(
3135                 seq, "\t\tgroups_considered: %llu\n",
3136                 atomic64_read(&sbi->s_bal_cX_groups_considered[CR_ANY_FREE]));
3137         seq_printf(seq, "\t\textents_scanned: %u\n",
3138                    atomic_read(&sbi->s_bal_cX_ex_scanned[CR_ANY_FREE]));
3139         seq_printf(seq, "\t\tuseless_loops: %llu\n",
3140                    atomic64_read(&sbi->s_bal_cX_failed[CR_ANY_FREE]));
3141
3142         /* Aggregates */
3143         seq_printf(seq, "\textents_scanned: %u\n",
3144                    atomic_read(&sbi->s_bal_ex_scanned));
3145         seq_printf(seq, "\t\tgoal_hits: %u\n", atomic_read(&sbi->s_bal_goals));
3146         seq_printf(seq, "\t\tlen_goal_hits: %u\n",
3147                    atomic_read(&sbi->s_bal_len_goals));
3148         seq_printf(seq, "\t\t2^n_hits: %u\n", atomic_read(&sbi->s_bal_2orders));
3149         seq_printf(seq, "\t\tbreaks: %u\n", atomic_read(&sbi->s_bal_breaks));
3150         seq_printf(seq, "\t\tlost: %u\n", atomic_read(&sbi->s_mb_lost_chunks));
3151         seq_printf(seq, "\tbuddies_generated: %u/%u\n",
3152                    atomic_read(&sbi->s_mb_buddies_generated),
3153                    ext4_get_groups_count(sb));
3154         seq_printf(seq, "\tbuddies_time_used: %llu\n",
3155                    atomic64_read(&sbi->s_mb_generation_time));
3156         seq_printf(seq, "\tpreallocated: %u\n",
3157                    atomic_read(&sbi->s_mb_preallocated));
3158         seq_printf(seq, "\tdiscarded: %u\n", atomic_read(&sbi->s_mb_discarded));
3159         return 0;
3160 }
3161
3162 static void *ext4_mb_seq_structs_summary_start(struct seq_file *seq, loff_t *pos)
3163 __acquires(&EXT4_SB(sb)->s_mb_rb_lock)
3164 {
3165         struct super_block *sb = pde_data(file_inode(seq->file));
3166         unsigned long position;
3167
3168         if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb))
3169                 return NULL;
3170         position = *pos + 1;
3171         return (void *) ((unsigned long) position);
3172 }
3173
3174 static void *ext4_mb_seq_structs_summary_next(struct seq_file *seq, void *v, loff_t *pos)
3175 {
3176         struct super_block *sb = pde_data(file_inode(seq->file));
3177         unsigned long position;
3178
3179         ++*pos;
3180         if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb))
3181                 return NULL;
3182         position = *pos + 1;
3183         return (void *) ((unsigned long) position);
3184 }
3185
3186 static int ext4_mb_seq_structs_summary_show(struct seq_file *seq, void *v)
3187 {
3188         struct super_block *sb = pde_data(file_inode(seq->file));
3189         struct ext4_sb_info *sbi = EXT4_SB(sb);
3190         unsigned long position = ((unsigned long) v);
3191         struct ext4_group_info *grp;
3192         unsigned int count;
3193
3194         position--;
3195         if (position >= MB_NUM_ORDERS(sb)) {
3196                 position -= MB_NUM_ORDERS(sb);
3197                 if (position == 0)
3198                         seq_puts(seq, "avg_fragment_size_lists:\n");
3199
3200                 count = 0;
3201                 read_lock(&sbi->s_mb_avg_fragment_size_locks[position]);
3202                 list_for_each_entry(grp, &sbi->s_mb_avg_fragment_size[position],
3203                                     bb_avg_fragment_size_node)
3204                         count++;
3205                 read_unlock(&sbi->s_mb_avg_fragment_size_locks[position]);
3206                 seq_printf(seq, "\tlist_order_%u_groups: %u\n",
3207                                         (unsigned int)position, count);
3208                 return 0;
3209         }
3210
3211         if (position == 0) {
3212                 seq_printf(seq, "optimize_scan: %d\n",
3213                            test_opt2(sb, MB_OPTIMIZE_SCAN) ? 1 : 0);
3214                 seq_puts(seq, "max_free_order_lists:\n");
3215         }
3216         count = 0;
3217         read_lock(&sbi->s_mb_largest_free_orders_locks[position]);
3218         list_for_each_entry(grp, &sbi->s_mb_largest_free_orders[position],
3219                             bb_largest_free_order_node)
3220                 count++;
3221         read_unlock(&sbi->s_mb_largest_free_orders_locks[position]);
3222         seq_printf(seq, "\tlist_order_%u_groups: %u\n",
3223                    (unsigned int)position, count);
3224
3225         return 0;
3226 }
3227
3228 static void ext4_mb_seq_structs_summary_stop(struct seq_file *seq, void *v)
3229 {
3230 }
3231
3232 const struct seq_operations ext4_mb_seq_structs_summary_ops = {
3233         .start  = ext4_mb_seq_structs_summary_start,
3234         .next   = ext4_mb_seq_structs_summary_next,
3235         .stop   = ext4_mb_seq_structs_summary_stop,
3236         .show   = ext4_mb_seq_structs_summary_show,
3237 };
3238
3239 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
3240 {
3241         int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3242         struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
3243
3244         BUG_ON(!cachep);
3245         return cachep;
3246 }
3247
3248 /*
3249  * Allocate the top-level s_group_info array for the specified number
3250  * of groups
3251  */
3252 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
3253 {
3254         struct ext4_sb_info *sbi = EXT4_SB(sb);
3255         unsigned size;
3256         struct ext4_group_info ***old_groupinfo, ***new_groupinfo;
3257
3258         size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
3259                 EXT4_DESC_PER_BLOCK_BITS(sb);
3260         if (size <= sbi->s_group_info_size)
3261                 return 0;
3262
3263         size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
3264         new_groupinfo = kvzalloc(size, GFP_KERNEL);
3265         if (!new_groupinfo) {
3266                 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
3267                 return -ENOMEM;
3268         }
3269         rcu_read_lock();
3270         old_groupinfo = rcu_dereference(sbi->s_group_info);
3271         if (old_groupinfo)
3272                 memcpy(new_groupinfo, old_groupinfo,
3273                        sbi->s_group_info_size * sizeof(*sbi->s_group_info));
3274         rcu_read_unlock();
3275         rcu_assign_pointer(sbi->s_group_info, new_groupinfo);
3276         sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
3277         if (old_groupinfo)
3278                 ext4_kvfree_array_rcu(old_groupinfo);
3279         ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
3280                    sbi->s_group_info_size);
3281         return 0;
3282 }
3283
3284 /* Create and initialize ext4_group_info data for the given group. */
3285 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
3286                           struct ext4_group_desc *desc)
3287 {
3288         int i;
3289         int metalen = 0;
3290         int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb);
3291         struct ext4_sb_info *sbi = EXT4_SB(sb);
3292         struct ext4_group_info **meta_group_info;
3293         struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3294
3295         /*
3296          * First check if this group is the first of a reserved block.
3297          * If it's true, we have to allocate a new table of pointers
3298          * to ext4_group_info structures
3299          */
3300         if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3301                 metalen = sizeof(*meta_group_info) <<
3302                         EXT4_DESC_PER_BLOCK_BITS(sb);
3303                 meta_group_info = kmalloc(metalen, GFP_NOFS);
3304                 if (meta_group_info == NULL) {
3305                         ext4_msg(sb, KERN_ERR, "can't allocate mem "
3306                                  "for a buddy group");
3307                         return -ENOMEM;
3308                 }
3309                 rcu_read_lock();
3310                 rcu_dereference(sbi->s_group_info)[idx] = meta_group_info;
3311                 rcu_read_unlock();
3312         }
3313
3314         meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx);
3315         i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
3316
3317         meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
3318         if (meta_group_info[i] == NULL) {
3319                 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
3320                 goto exit_group_info;
3321         }
3322         set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
3323                 &(meta_group_info[i]->bb_state));
3324
3325         /*
3326          * initialize bb_free to be able to skip
3327          * empty groups without initialization
3328          */
3329         if (ext4_has_group_desc_csum(sb) &&
3330             (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3331                 meta_group_info[i]->bb_free =
3332                         ext4_free_clusters_after_init(sb, group, desc);
3333         } else {
3334                 meta_group_info[i]->bb_free =
3335                         ext4_free_group_clusters(sb, desc);
3336         }
3337
3338         INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
3339         init_rwsem(&meta_group_info[i]->alloc_sem);
3340         meta_group_info[i]->bb_free_root = RB_ROOT;
3341         INIT_LIST_HEAD(&meta_group_info[i]->bb_largest_free_order_node);
3342         INIT_LIST_HEAD(&meta_group_info[i]->bb_avg_fragment_size_node);
3343         meta_group_info[i]->bb_largest_free_order = -1;  /* uninit */
3344         meta_group_info[i]->bb_avg_fragment_size_order = -1;  /* uninit */
3345         meta_group_info[i]->bb_group = group;
3346
3347         mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group);
3348         return 0;
3349
3350 exit_group_info:
3351         /* If a meta_group_info table has been allocated, release it now */
3352         if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3353                 struct ext4_group_info ***group_info;
3354
3355                 rcu_read_lock();
3356                 group_info = rcu_dereference(sbi->s_group_info);
3357                 kfree(group_info[idx]);
3358                 group_info[idx] = NULL;
3359                 rcu_read_unlock();
3360         }
3361         return -ENOMEM;
3362 } /* ext4_mb_add_groupinfo */
3363
3364 static int ext4_mb_init_backend(struct super_block *sb)
3365 {
3366         ext4_group_t ngroups = ext4_get_groups_count(sb);
3367         ext4_group_t i;
3368         struct ext4_sb_info *sbi = EXT4_SB(sb);
3369         int err;
3370         struct ext4_group_desc *desc;
3371         struct ext4_group_info ***group_info;
3372         struct kmem_cache *cachep;
3373
3374         err = ext4_mb_alloc_groupinfo(sb, ngroups);
3375         if (err)
3376                 return err;
3377
3378         sbi->s_buddy_cache = new_inode(sb);
3379         if (sbi->s_buddy_cache == NULL) {
3380                 ext4_msg(sb, KERN_ERR, "can't get new inode");
3381                 goto err_freesgi;
3382         }
3383         /* To avoid potentially colliding with an valid on-disk inode number,
3384          * use EXT4_BAD_INO for the buddy cache inode number.  This inode is
3385          * not in the inode hash, so it should never be found by iget(), but
3386          * this will avoid confusion if it ever shows up during debugging. */
3387         sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
3388         EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
3389         for (i = 0; i < ngroups; i++) {
3390                 cond_resched();
3391                 desc = ext4_get_group_desc(sb, i, NULL);
3392                 if (desc == NULL) {
3393                         ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
3394                         goto err_freebuddy;
3395                 }
3396                 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
3397                         goto err_freebuddy;
3398         }
3399
3400         if (ext4_has_feature_flex_bg(sb)) {
3401                 /* a single flex group is supposed to be read by a single IO.
3402                  * 2 ^ s_log_groups_per_flex != UINT_MAX as s_mb_prefetch is
3403                  * unsigned integer, so the maximum shift is 32.
3404                  */
3405                 if (sbi->s_es->s_log_groups_per_flex >= 32) {
3406                         ext4_msg(sb, KERN_ERR, "too many log groups per flexible block group");
3407                         goto err_freebuddy;
3408                 }
3409                 sbi->s_mb_prefetch = min_t(uint, 1 << sbi->s_es->s_log_groups_per_flex,
3410                         BLK_MAX_SEGMENT_SIZE >> (sb->s_blocksize_bits - 9));
3411                 sbi->s_mb_prefetch *= 8; /* 8 prefetch IOs in flight at most */
3412         } else {
3413                 sbi->s_mb_prefetch = 32;
3414         }
3415         if (sbi->s_mb_prefetch > ext4_get_groups_count(sb))
3416                 sbi->s_mb_prefetch = ext4_get_groups_count(sb);
3417         /* now many real IOs to prefetch within a single allocation at cr=0
3418          * given cr=0 is an CPU-related optimization we shouldn't try to
3419          * load too many groups, at some point we should start to use what
3420          * we've got in memory.
3421          * with an average random access time 5ms, it'd take a second to get
3422          * 200 groups (* N with flex_bg), so let's make this limit 4
3423          */
3424         sbi->s_mb_prefetch_limit = sbi->s_mb_prefetch * 4;
3425         if (sbi->s_mb_prefetch_limit > ext4_get_groups_count(sb))
3426                 sbi->s_mb_prefetch_limit = ext4_get_groups_count(sb);
3427
3428         return 0;
3429
3430 err_freebuddy:
3431         cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3432         while (i-- > 0) {
3433                 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
3434
3435                 if (grp)
3436                         kmem_cache_free(cachep, grp);
3437         }
3438         i = sbi->s_group_info_size;
3439         rcu_read_lock();
3440         group_info = rcu_dereference(sbi->s_group_info);
3441         while (i-- > 0)
3442                 kfree(group_info[i]);
3443         rcu_read_unlock();
3444         iput(sbi->s_buddy_cache);
3445 err_freesgi:
3446         rcu_read_lock();
3447         kvfree(rcu_dereference(sbi->s_group_info));
3448         rcu_read_unlock();
3449         return -ENOMEM;
3450 }
3451
3452 static void ext4_groupinfo_destroy_slabs(void)
3453 {
3454         int i;
3455
3456         for (i = 0; i < NR_GRPINFO_CACHES; i++) {
3457                 kmem_cache_destroy(ext4_groupinfo_caches[i]);
3458                 ext4_groupinfo_caches[i] = NULL;
3459         }
3460 }
3461
3462 static int ext4_groupinfo_create_slab(size_t size)
3463 {
3464         static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
3465         int slab_size;
3466         int blocksize_bits = order_base_2(size);
3467         int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3468         struct kmem_cache *cachep;
3469
3470         if (cache_index >= NR_GRPINFO_CACHES)
3471                 return -EINVAL;
3472
3473         if (unlikely(cache_index < 0))
3474                 cache_index = 0;
3475
3476         mutex_lock(&ext4_grpinfo_slab_create_mutex);
3477         if (ext4_groupinfo_caches[cache_index]) {
3478                 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3479                 return 0;       /* Already created */
3480         }
3481
3482         slab_size = offsetof(struct ext4_group_info,
3483                                 bb_counters[blocksize_bits + 2]);
3484
3485         cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
3486                                         slab_size, 0, SLAB_RECLAIM_ACCOUNT,
3487                                         NULL);
3488
3489         ext4_groupinfo_caches[cache_index] = cachep;
3490
3491         mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3492         if (!cachep) {
3493                 printk(KERN_EMERG
3494                        "EXT4-fs: no memory for groupinfo slab cache\n");
3495                 return -ENOMEM;
3496         }
3497
3498         return 0;
3499 }
3500
3501 static void ext4_discard_work(struct work_struct *work)
3502 {
3503         struct ext4_sb_info *sbi = container_of(work,
3504                         struct ext4_sb_info, s_discard_work);
3505         struct super_block *sb = sbi->s_sb;
3506         struct ext4_free_data *fd, *nfd;
3507         struct ext4_buddy e4b;
3508         LIST_HEAD(discard_list);
3509         ext4_group_t grp, load_grp;
3510         int err = 0;
3511
3512         spin_lock(&sbi->s_md_lock);
3513         list_splice_init(&sbi->s_discard_list, &discard_list);
3514         spin_unlock(&sbi->s_md_lock);
3515
3516         load_grp = UINT_MAX;
3517         list_for_each_entry_safe(fd, nfd, &discard_list, efd_list) {
3518                 /*
3519                  * If filesystem is umounting or no memory or suffering
3520                  * from no space, give up the discard
3521                  */
3522                 if ((sb->s_flags & SB_ACTIVE) && !err &&
3523                     !atomic_read(&sbi->s_retry_alloc_pending)) {
3524                         grp = fd->efd_group;
3525                         if (grp != load_grp) {
3526                                 if (load_grp != UINT_MAX)
3527                                         ext4_mb_unload_buddy(&e4b);
3528
3529                                 err = ext4_mb_load_buddy(sb, grp, &e4b);
3530                                 if (err) {
3531                                         kmem_cache_free(ext4_free_data_cachep, fd);
3532                                         load_grp = UINT_MAX;
3533                                         continue;
3534                                 } else {
3535                                         load_grp = grp;
3536                                 }
3537                         }
3538
3539                         ext4_lock_group(sb, grp);
3540                         ext4_try_to_trim_range(sb, &e4b, fd->efd_start_cluster,
3541                                                 fd->efd_start_cluster + fd->efd_count - 1, 1);
3542                         ext4_unlock_group(sb, grp);
3543                 }
3544                 kmem_cache_free(ext4_free_data_cachep, fd);
3545         }
3546
3547         if (load_grp != UINT_MAX)
3548                 ext4_mb_unload_buddy(&e4b);
3549 }
3550
3551 int ext4_mb_init(struct super_block *sb)
3552 {
3553         struct ext4_sb_info *sbi = EXT4_SB(sb);
3554         unsigned i, j;
3555         unsigned offset, offset_incr;
3556         unsigned max;
3557         int ret;
3558
3559         i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_offsets);
3560
3561         sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
3562         if (sbi->s_mb_offsets == NULL) {
3563                 ret = -ENOMEM;
3564                 goto out;
3565         }
3566
3567         i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_maxs);
3568         sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
3569         if (sbi->s_mb_maxs == NULL) {
3570                 ret = -ENOMEM;
3571                 goto out;
3572         }
3573
3574         ret = ext4_groupinfo_create_slab(sb->s_blocksize);
3575         if (ret < 0)
3576                 goto out;
3577
3578         /* order 0 is regular bitmap */
3579         sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
3580         sbi->s_mb_offsets[0] = 0;
3581
3582         i = 1;
3583         offset = 0;
3584         offset_incr = 1 << (sb->s_blocksize_bits - 1);
3585         max = sb->s_blocksize << 2;
3586         do {
3587                 sbi->s_mb_offsets[i] = offset;
3588                 sbi->s_mb_maxs[i] = max;
3589                 offset += offset_incr;
3590                 offset_incr = offset_incr >> 1;
3591                 max = max >> 1;
3592                 i++;
3593         } while (i < MB_NUM_ORDERS(sb));
3594
3595         sbi->s_mb_avg_fragment_size =
3596                 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head),
3597                         GFP_KERNEL);
3598         if (!sbi->s_mb_avg_fragment_size) {
3599                 ret = -ENOMEM;
3600                 goto out;
3601         }
3602         sbi->s_mb_avg_fragment_size_locks =
3603                 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t),
3604                         GFP_KERNEL);
3605         if (!sbi->s_mb_avg_fragment_size_locks) {
3606                 ret = -ENOMEM;
3607                 goto out;
3608         }
3609         for (i = 0; i < MB_NUM_ORDERS(sb); i++) {
3610                 INIT_LIST_HEAD(&sbi->s_mb_avg_fragment_size[i]);
3611                 rwlock_init(&sbi->s_mb_avg_fragment_size_locks[i]);
3612         }
3613         sbi->s_mb_largest_free_orders =
3614                 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head),
3615                         GFP_KERNEL);
3616         if (!sbi->s_mb_largest_free_orders) {
3617                 ret = -ENOMEM;
3618                 goto out;
3619         }
3620         sbi->s_mb_largest_free_orders_locks =
3621                 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t),
3622                         GFP_KERNEL);
3623         if (!sbi->s_mb_largest_free_orders_locks) {
3624                 ret = -ENOMEM;
3625                 goto out;
3626         }
3627         for (i = 0; i < MB_NUM_ORDERS(sb); i++) {
3628                 INIT_LIST_HEAD(&sbi->s_mb_largest_free_orders[i]);
3629                 rwlock_init(&sbi->s_mb_largest_free_orders_locks[i]);
3630         }
3631
3632         spin_lock_init(&sbi->s_md_lock);
3633         sbi->s_mb_free_pending = 0;
3634         INIT_LIST_HEAD(&sbi->s_freed_data_list);
3635         INIT_LIST_HEAD(&sbi->s_discard_list);
3636         INIT_WORK(&sbi->s_discard_work, ext4_discard_work);
3637         atomic_set(&sbi->s_retry_alloc_pending, 0);
3638
3639         sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
3640         sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
3641         sbi->s_mb_stats = MB_DEFAULT_STATS;
3642         sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
3643         sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
3644         sbi->s_mb_best_avail_max_trim_order = MB_DEFAULT_BEST_AVAIL_TRIM_ORDER;
3645
3646         /*
3647          * The default group preallocation is 512, which for 4k block
3648          * sizes translates to 2 megabytes.  However for bigalloc file
3649          * systems, this is probably too big (i.e, if the cluster size
3650          * is 1 megabyte, then group preallocation size becomes half a
3651          * gigabyte!).  As a default, we will keep a two megabyte
3652          * group pralloc size for cluster sizes up to 64k, and after
3653          * that, we will force a minimum group preallocation size of
3654          * 32 clusters.  This translates to 8 megs when the cluster
3655          * size is 256k, and 32 megs when the cluster size is 1 meg,
3656          * which seems reasonable as a default.
3657          */
3658         sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
3659                                        sbi->s_cluster_bits, 32);
3660         /*
3661          * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
3662          * to the lowest multiple of s_stripe which is bigger than
3663          * the s_mb_group_prealloc as determined above. We want
3664          * the preallocation size to be an exact multiple of the
3665          * RAID stripe size so that preallocations don't fragment
3666          * the stripes.
3667          */
3668         if (sbi->s_stripe > 1) {
3669                 sbi->s_mb_group_prealloc = roundup(
3670                         sbi->s_mb_group_prealloc, EXT4_B2C(sbi, sbi->s_stripe));
3671         }
3672
3673         sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
3674         if (sbi->s_locality_groups == NULL) {
3675                 ret = -ENOMEM;
3676                 goto out;
3677         }
3678         for_each_possible_cpu(i) {
3679                 struct ext4_locality_group *lg;
3680                 lg = per_cpu_ptr(sbi->s_locality_groups, i);
3681                 mutex_init(&lg->lg_mutex);
3682                 for (j = 0; j < PREALLOC_TB_SIZE; j++)
3683                         INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
3684                 spin_lock_init(&lg->lg_prealloc_lock);
3685         }
3686
3687         if (bdev_nonrot(sb->s_bdev))
3688                 sbi->s_mb_max_linear_groups = 0;
3689         else
3690                 sbi->s_mb_max_linear_groups = MB_DEFAULT_LINEAR_LIMIT;
3691         /* init file for buddy data */
3692         ret = ext4_mb_init_backend(sb);
3693         if (ret != 0)
3694                 goto out_free_locality_groups;
3695
3696         return 0;
3697
3698 out_free_locality_groups:
3699         free_percpu(sbi->s_locality_groups);
3700         sbi->s_locality_groups = NULL;
3701 out:
3702         kfree(sbi->s_mb_avg_fragment_size);
3703         kfree(sbi->s_mb_avg_fragment_size_locks);
3704         kfree(sbi->s_mb_largest_free_orders);
3705         kfree(sbi->s_mb_largest_free_orders_locks);
3706         kfree(sbi->s_mb_offsets);
3707         sbi->s_mb_offsets = NULL;
3708         kfree(sbi->s_mb_maxs);
3709         sbi->s_mb_maxs = NULL;
3710         return ret;
3711 }
3712
3713 /* need to called with the ext4 group lock held */
3714 static int ext4_mb_cleanup_pa(struct ext4_group_info *grp)
3715 {
3716         struct ext4_prealloc_space *pa;
3717         struct list_head *cur, *tmp;
3718         int count = 0;
3719
3720         list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
3721                 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3722                 list_del(&pa->pa_group_list);
3723                 count++;
3724                 kmem_cache_free(ext4_pspace_cachep, pa);
3725         }
3726         return count;
3727 }
3728
3729 int ext4_mb_release(struct super_block *sb)
3730 {
3731         ext4_group_t ngroups = ext4_get_groups_count(sb);
3732         ext4_group_t i;
3733         int num_meta_group_infos;
3734         struct ext4_group_info *grinfo, ***group_info;
3735         struct ext4_sb_info *sbi = EXT4_SB(sb);
3736         struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3737         int count;
3738
3739         if (test_opt(sb, DISCARD)) {
3740                 /*
3741                  * wait the discard work to drain all of ext4_free_data
3742                  */
3743                 flush_work(&sbi->s_discard_work);
3744                 WARN_ON_ONCE(!list_empty(&sbi->s_discard_list));
3745         }
3746
3747         if (sbi->s_group_info) {
3748                 for (i = 0; i < ngroups; i++) {
3749                         cond_resched();
3750                         grinfo = ext4_get_group_info(sb, i);
3751                         if (!grinfo)
3752                                 continue;
3753                         mb_group_bb_bitmap_free(grinfo);
3754                         ext4_lock_group(sb, i);
3755                         count = ext4_mb_cleanup_pa(grinfo);
3756                         if (count)
3757                                 mb_debug(sb, "mballoc: %d PAs left\n",
3758                                          count);
3759                         ext4_unlock_group(sb, i);
3760                         kmem_cache_free(cachep, grinfo);
3761                 }
3762                 num_meta_group_infos = (ngroups +
3763                                 EXT4_DESC_PER_BLOCK(sb) - 1) >>
3764                         EXT4_DESC_PER_BLOCK_BITS(sb);
3765                 rcu_read_lock();
3766                 group_info = rcu_dereference(sbi->s_group_info);
3767                 for (i = 0; i < num_meta_group_infos; i++)
3768                         kfree(group_info[i]);
3769                 kvfree(group_info);
3770                 rcu_read_unlock();
3771         }
3772         kfree(sbi->s_mb_avg_fragment_size);
3773         kfree(sbi->s_mb_avg_fragment_size_locks);
3774         kfree(sbi->s_mb_largest_free_orders);
3775         kfree(sbi->s_mb_largest_free_orders_locks);
3776         kfree(sbi->s_mb_offsets);
3777         kfree(sbi->s_mb_maxs);
3778         iput(sbi->s_buddy_cache);
3779         if (sbi->s_mb_stats) {
3780                 ext4_msg(sb, KERN_INFO,
3781                        "mballoc: %u blocks %u reqs (%u success)",
3782                                 atomic_read(&sbi->s_bal_allocated),
3783                                 atomic_read(&sbi->s_bal_reqs),
3784                                 atomic_read(&sbi->s_bal_success));
3785                 ext4_msg(sb, KERN_INFO,
3786                       "mballoc: %u extents scanned, %u groups scanned, %u goal hits, "
3787                                 "%u 2^N hits, %u breaks, %u lost",
3788                                 atomic_read(&sbi->s_bal_ex_scanned),
3789                                 atomic_read(&sbi->s_bal_groups_scanned),
3790                                 atomic_read(&sbi->s_bal_goals),
3791                                 atomic_read(&sbi->s_bal_2orders),
3792                                 atomic_read(&sbi->s_bal_breaks),
3793                                 atomic_read(&sbi->s_mb_lost_chunks));
3794                 ext4_msg(sb, KERN_INFO,
3795                        "mballoc: %u generated and it took %llu",
3796                                 atomic_read(&sbi->s_mb_buddies_generated),
3797                                 atomic64_read(&sbi->s_mb_generation_time));
3798                 ext4_msg(sb, KERN_INFO,
3799                        "mballoc: %u preallocated, %u discarded",
3800                                 atomic_read(&sbi->s_mb_preallocated),
3801                                 atomic_read(&sbi->s_mb_discarded));
3802         }
3803
3804         free_percpu(sbi->s_locality_groups);
3805
3806         return 0;
3807 }
3808
3809 static inline int ext4_issue_discard(struct super_block *sb,
3810                 ext4_group_t block_group, ext4_grpblk_t cluster, int count,
3811                 struct bio **biop)
3812 {
3813         ext4_fsblk_t discard_block;
3814
3815         discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
3816                          ext4_group_first_block_no(sb, block_group));
3817         count = EXT4_C2B(EXT4_SB(sb), count);
3818         trace_ext4_discard_blocks(sb,
3819                         (unsigned long long) discard_block, count);
3820         if (biop) {
3821                 return __blkdev_issue_discard(sb->s_bdev,
3822                         (sector_t)discard_block << (sb->s_blocksize_bits - 9),
3823                         (sector_t)count << (sb->s_blocksize_bits - 9),
3824                         GFP_NOFS, biop);
3825         } else
3826                 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
3827 }
3828
3829 static void ext4_free_data_in_buddy(struct super_block *sb,
3830                                     struct ext4_free_data *entry)
3831 {
3832         struct ext4_buddy e4b;
3833         struct ext4_group_info *db;
3834         int err, count = 0;
3835
3836         mb_debug(sb, "gonna free %u blocks in group %u (0x%p):",
3837                  entry->efd_count, entry->efd_group, entry);
3838
3839         err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
3840         /* we expect to find existing buddy because it's pinned */
3841         BUG_ON(err != 0);
3842
3843         spin_lock(&EXT4_SB(sb)->s_md_lock);
3844         EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count;
3845         spin_unlock(&EXT4_SB(sb)->s_md_lock);
3846
3847         db = e4b.bd_info;
3848         /* there are blocks to put in buddy to make them really free */
3849         count += entry->efd_count;
3850         ext4_lock_group(sb, entry->efd_group);
3851         /* Take it out of per group rb tree */
3852         rb_erase(&entry->efd_node, &(db->bb_free_root));
3853         mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
3854
3855         /*
3856          * Clear the trimmed flag for the group so that the next
3857          * ext4_trim_fs can trim it.
3858          * If the volume is mounted with -o discard, online discard
3859          * is supported and the free blocks will be trimmed online.
3860          */
3861         if (!test_opt(sb, DISCARD))
3862                 EXT4_MB_GRP_CLEAR_TRIMMED(db);
3863
3864         if (!db->bb_free_root.rb_node) {
3865                 /* No more items in the per group rb tree
3866                  * balance refcounts from ext4_mb_free_metadata()
3867                  */
3868                 put_page(e4b.bd_buddy_page);
3869                 put_page(e4b.bd_bitmap_page);
3870         }
3871         ext4_unlock_group(sb, entry->efd_group);
3872         ext4_mb_unload_buddy(&e4b);
3873
3874         mb_debug(sb, "freed %d blocks in 1 structures\n", count);
3875 }
3876
3877 /*
3878  * This function is called by the jbd2 layer once the commit has finished,
3879  * so we know we can free the blocks that were released with that commit.
3880  */
3881 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid)
3882 {
3883         struct ext4_sb_info *sbi = EXT4_SB(sb);
3884         struct ext4_free_data *entry, *tmp;
3885         LIST_HEAD(freed_data_list);
3886         struct list_head *cut_pos = NULL;
3887         bool wake;
3888
3889         spin_lock(&sbi->s_md_lock);
3890         list_for_each_entry(entry, &sbi->s_freed_data_list, efd_list) {
3891                 if (entry->efd_tid != commit_tid)
3892                         break;
3893                 cut_pos = &entry->efd_list;
3894         }
3895         if (cut_pos)
3896                 list_cut_position(&freed_data_list, &sbi->s_freed_data_list,
3897                                   cut_pos);
3898         spin_unlock(&sbi->s_md_lock);
3899
3900         list_for_each_entry(entry, &freed_data_list, efd_list)
3901                 ext4_free_data_in_buddy(sb, entry);
3902
3903         if (test_opt(sb, DISCARD)) {
3904                 spin_lock(&sbi->s_md_lock);
3905                 wake = list_empty(&sbi->s_discard_list);
3906                 list_splice_tail(&freed_data_list, &sbi->s_discard_list);
3907                 spin_unlock(&sbi->s_md_lock);
3908                 if (wake)
3909                         queue_work(system_unbound_wq, &sbi->s_discard_work);
3910         } else {
3911                 list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list)
3912                         kmem_cache_free(ext4_free_data_cachep, entry);
3913         }
3914 }
3915
3916 int __init ext4_init_mballoc(void)
3917 {
3918         ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
3919                                         SLAB_RECLAIM_ACCOUNT);
3920         if (ext4_pspace_cachep == NULL)
3921                 goto out;
3922
3923         ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
3924                                     SLAB_RECLAIM_ACCOUNT);
3925         if (ext4_ac_cachep == NULL)
3926                 goto out_pa_free;
3927
3928         ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
3929                                            SLAB_RECLAIM_ACCOUNT);
3930         if (ext4_free_data_cachep == NULL)
3931                 goto out_ac_free;
3932
3933         return 0;
3934
3935 out_ac_free:
3936         kmem_cache_destroy(ext4_ac_cachep);
3937 out_pa_free:
3938         kmem_cache_destroy(ext4_pspace_cachep);
3939 out:
3940         return -ENOMEM;
3941 }
3942
3943 void ext4_exit_mballoc(void)
3944 {
3945         /*
3946          * Wait for completion of call_rcu()'s on ext4_pspace_cachep
3947          * before destroying the slab cache.
3948          */
3949         rcu_barrier();
3950         kmem_cache_destroy(ext4_pspace_cachep);
3951         kmem_cache_destroy(ext4_ac_cachep);
3952         kmem_cache_destroy(ext4_free_data_cachep);
3953         ext4_groupinfo_destroy_slabs();
3954 }
3955
3956
3957 /*
3958  * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
3959  * Returns 0 if success or error code
3960  */
3961 static noinline_for_stack int
3962 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
3963                                 handle_t *handle, unsigned int reserv_clstrs)
3964 {
3965         struct buffer_head *bitmap_bh = NULL;
3966         struct ext4_group_desc *gdp;
3967         struct buffer_head *gdp_bh;
3968         struct ext4_sb_info *sbi;
3969         struct super_block *sb;
3970         ext4_fsblk_t block;
3971         int err, len;
3972
3973         BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3974         BUG_ON(ac->ac_b_ex.fe_len <= 0);
3975
3976         sb = ac->ac_sb;
3977         sbi = EXT4_SB(sb);
3978
3979         bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
3980         if (IS_ERR(bitmap_bh)) {
3981                 return PTR_ERR(bitmap_bh);
3982         }
3983
3984         BUFFER_TRACE(bitmap_bh, "getting write access");
3985         err = ext4_journal_get_write_access(handle, sb, bitmap_bh,
3986                                             EXT4_JTR_NONE);
3987         if (err)
3988                 goto out_err;
3989
3990         err = -EIO;
3991         gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
3992         if (!gdp)
3993                 goto out_err;
3994
3995         ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
3996                         ext4_free_group_clusters(sb, gdp));
3997
3998         BUFFER_TRACE(gdp_bh, "get_write_access");
3999         err = ext4_journal_get_write_access(handle, sb, gdp_bh, EXT4_JTR_NONE);
4000         if (err)
4001                 goto out_err;
4002
4003         block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4004
4005         len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4006         if (!ext4_inode_block_valid(ac->ac_inode, block, len)) {
4007                 ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
4008                            "fs metadata", block, block+len);
4009                 /* File system mounted not to panic on error
4010                  * Fix the bitmap and return EFSCORRUPTED
4011                  * We leak some of the blocks here.
4012                  */
4013                 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
4014                 mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
4015                               ac->ac_b_ex.fe_len);
4016                 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
4017                 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4018                 if (!err)
4019                         err = -EFSCORRUPTED;
4020                 goto out_err;
4021         }
4022
4023         ext4_lock_group(sb, ac->ac_b_ex.fe_group);
4024 #ifdef AGGRESSIVE_CHECK
4025         {
4026                 int i;
4027                 for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
4028                         BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
4029                                                 bitmap_bh->b_data));
4030                 }
4031         }
4032 #endif
4033         mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
4034                       ac->ac_b_ex.fe_len);
4035         if (ext4_has_group_desc_csum(sb) &&
4036             (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
4037                 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
4038                 ext4_free_group_clusters_set(sb, gdp,
4039                                              ext4_free_clusters_after_init(sb,
4040                                                 ac->ac_b_ex.fe_group, gdp));
4041         }
4042         len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
4043         ext4_free_group_clusters_set(sb, gdp, len);
4044         ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh);
4045         ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
4046
4047         ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
4048         percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
4049         /*
4050          * Now reduce the dirty block count also. Should not go negative
4051          */
4052         if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
4053                 /* release all the reserved blocks if non delalloc */
4054                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4055                                    reserv_clstrs);
4056
4057         if (sbi->s_log_groups_per_flex) {
4058                 ext4_group_t flex_group = ext4_flex_group(sbi,
4059                                                           ac->ac_b_ex.fe_group);
4060                 atomic64_sub(ac->ac_b_ex.fe_len,
4061                              &sbi_array_rcu_deref(sbi, s_flex_groups,
4062                                                   flex_group)->free_clusters);
4063         }
4064
4065         err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4066         if (err)
4067                 goto out_err;
4068         err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
4069
4070 out_err:
4071         brelse(bitmap_bh);
4072         return err;
4073 }
4074
4075 /*
4076  * Idempotent helper for Ext4 fast commit replay path to set the state of
4077  * blocks in bitmaps and update counters.
4078  */
4079 void ext4_mb_mark_bb(struct super_block *sb, ext4_fsblk_t block,
4080                         int len, int state)
4081 {
4082         struct buffer_head *bitmap_bh = NULL;
4083         struct ext4_group_desc *gdp;
4084         struct buffer_head *gdp_bh;
4085         struct ext4_sb_info *sbi = EXT4_SB(sb);
4086         ext4_group_t group;
4087         ext4_grpblk_t blkoff;
4088         int i, err = 0;
4089         int already;
4090         unsigned int clen, clen_changed, thisgrp_len;
4091
4092         while (len > 0) {
4093                 ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
4094
4095                 /*
4096                  * Check to see if we are freeing blocks across a group
4097                  * boundary.
4098                  * In case of flex_bg, this can happen that (block, len) may
4099                  * span across more than one group. In that case we need to
4100                  * get the corresponding group metadata to work with.
4101                  * For this we have goto again loop.
4102                  */
4103                 thisgrp_len = min_t(unsigned int, (unsigned int)len,
4104                         EXT4_BLOCKS_PER_GROUP(sb) - EXT4_C2B(sbi, blkoff));
4105                 clen = EXT4_NUM_B2C(sbi, thisgrp_len);
4106
4107                 if (!ext4_sb_block_valid(sb, NULL, block, thisgrp_len)) {
4108                         ext4_error(sb, "Marking blocks in system zone - "
4109                                    "Block = %llu, len = %u",
4110                                    block, thisgrp_len);
4111                         bitmap_bh = NULL;
4112                         break;
4113                 }
4114
4115                 bitmap_bh = ext4_read_block_bitmap(sb, group);
4116                 if (IS_ERR(bitmap_bh)) {
4117                         err = PTR_ERR(bitmap_bh);
4118                         bitmap_bh = NULL;
4119                         break;
4120                 }
4121
4122                 err = -EIO;
4123                 gdp = ext4_get_group_desc(sb, group, &gdp_bh);
4124                 if (!gdp)
4125                         break;
4126
4127                 ext4_lock_group(sb, group);
4128                 already = 0;
4129                 for (i = 0; i < clen; i++)
4130                         if (!mb_test_bit(blkoff + i, bitmap_bh->b_data) ==
4131                                          !state)
4132                                 already++;
4133
4134                 clen_changed = clen - already;
4135                 if (state)
4136                         mb_set_bits(bitmap_bh->b_data, blkoff, clen);
4137                 else
4138                         mb_clear_bits(bitmap_bh->b_data, blkoff, clen);
4139                 if (ext4_has_group_desc_csum(sb) &&
4140                     (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
4141                         gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
4142                         ext4_free_group_clusters_set(sb, gdp,
4143                              ext4_free_clusters_after_init(sb, group, gdp));
4144                 }
4145                 if (state)
4146                         clen = ext4_free_group_clusters(sb, gdp) - clen_changed;
4147                 else
4148                         clen = ext4_free_group_clusters(sb, gdp) + clen_changed;
4149
4150                 ext4_free_group_clusters_set(sb, gdp, clen);
4151                 ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh);
4152                 ext4_group_desc_csum_set(sb, group, gdp);
4153
4154                 ext4_unlock_group(sb, group);
4155
4156                 if (sbi->s_log_groups_per_flex) {
4157                         ext4_group_t flex_group = ext4_flex_group(sbi, group);
4158                         struct flex_groups *fg = sbi_array_rcu_deref(sbi,
4159                                                    s_flex_groups, flex_group);
4160
4161                         if (state)
4162                                 atomic64_sub(clen_changed, &fg->free_clusters);
4163                         else
4164                                 atomic64_add(clen_changed, &fg->free_clusters);
4165
4166                 }
4167
4168                 err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh);
4169                 if (err)
4170                         break;
4171                 sync_dirty_buffer(bitmap_bh);
4172                 err = ext4_handle_dirty_metadata(NULL, NULL, gdp_bh);
4173                 sync_dirty_buffer(gdp_bh);
4174                 if (err)
4175                         break;
4176
4177                 block += thisgrp_len;
4178                 len -= thisgrp_len;
4179                 brelse(bitmap_bh);
4180                 BUG_ON(len < 0);
4181         }
4182
4183         if (err)
4184                 brelse(bitmap_bh);
4185 }
4186
4187 /*
4188  * here we normalize request for locality group
4189  * Group request are normalized to s_mb_group_prealloc, which goes to
4190  * s_strip if we set the same via mount option.
4191  * s_mb_group_prealloc can be configured via
4192  * /sys/fs/ext4/<partition>/mb_group_prealloc
4193  *
4194  * XXX: should we try to preallocate more than the group has now?
4195  */
4196 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
4197 {
4198         struct super_block *sb = ac->ac_sb;
4199         struct ext4_locality_group *lg = ac->ac_lg;
4200
4201         BUG_ON(lg == NULL);
4202         ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
4203         mb_debug(sb, "goal %u blocks for locality group\n", ac->ac_g_ex.fe_len);
4204 }
4205
4206 /*
4207  * This function returns the next element to look at during inode
4208  * PA rbtree walk. We assume that we have held the inode PA rbtree lock
4209  * (ei->i_prealloc_lock)
4210  *
4211  * new_start    The start of the range we want to compare
4212  * cur_start    The existing start that we are comparing against
4213  * node The node of the rb_tree
4214  */
4215 static inline struct rb_node*
4216 ext4_mb_pa_rb_next_iter(ext4_lblk_t new_start, ext4_lblk_t cur_start, struct rb_node *node)
4217 {
4218         if (new_start < cur_start)
4219                 return node->rb_left;
4220         else
4221                 return node->rb_right;
4222 }
4223
4224 static inline void
4225 ext4_mb_pa_assert_overlap(struct ext4_allocation_context *ac,
4226                           ext4_lblk_t start, loff_t end)
4227 {
4228         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4229         struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4230         struct ext4_prealloc_space *tmp_pa;
4231         ext4_lblk_t tmp_pa_start;
4232         loff_t tmp_pa_end;
4233         struct rb_node *iter;
4234
4235         read_lock(&ei->i_prealloc_lock);
4236         for (iter = ei->i_prealloc_node.rb_node; iter;
4237              iter = ext4_mb_pa_rb_next_iter(start, tmp_pa_start, iter)) {
4238                 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4239                                   pa_node.inode_node);
4240                 tmp_pa_start = tmp_pa->pa_lstart;
4241                 tmp_pa_end = pa_logical_end(sbi, tmp_pa);
4242
4243                 spin_lock(&tmp_pa->pa_lock);
4244                 if (tmp_pa->pa_deleted == 0)
4245                         BUG_ON(!(start >= tmp_pa_end || end <= tmp_pa_start));
4246                 spin_unlock(&tmp_pa->pa_lock);
4247         }
4248         read_unlock(&ei->i_prealloc_lock);
4249 }
4250
4251 /*
4252  * Given an allocation context "ac" and a range "start", "end", check
4253  * and adjust boundaries if the range overlaps with any of the existing
4254  * preallocatoins stored in the corresponding inode of the allocation context.
4255  *
4256  * Parameters:
4257  *      ac                      allocation context
4258  *      start                   start of the new range
4259  *      end                     end of the new range
4260  */
4261 static inline void
4262 ext4_mb_pa_adjust_overlap(struct ext4_allocation_context *ac,
4263                           ext4_lblk_t *start, loff_t *end)
4264 {
4265         struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4266         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4267         struct ext4_prealloc_space *tmp_pa = NULL, *left_pa = NULL, *right_pa = NULL;
4268         struct rb_node *iter;
4269         ext4_lblk_t new_start, tmp_pa_start, right_pa_start = -1;
4270         loff_t new_end, tmp_pa_end, left_pa_end = -1;
4271
4272         new_start = *start;
4273         new_end = *end;
4274
4275         /*
4276          * Adjust the normalized range so that it doesn't overlap with any
4277          * existing preallocated blocks(PAs). Make sure to hold the rbtree lock
4278          * so it doesn't change underneath us.
4279          */
4280         read_lock(&ei->i_prealloc_lock);
4281
4282         /* Step 1: find any one immediate neighboring PA of the normalized range */
4283         for (iter = ei->i_prealloc_node.rb_node; iter;
4284              iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical,
4285                                             tmp_pa_start, iter)) {
4286                 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4287                                   pa_node.inode_node);
4288                 tmp_pa_start = tmp_pa->pa_lstart;
4289                 tmp_pa_end = pa_logical_end(sbi, tmp_pa);
4290
4291                 /* PA must not overlap original request */
4292                 spin_lock(&tmp_pa->pa_lock);
4293                 if (tmp_pa->pa_deleted == 0)
4294                         BUG_ON(!(ac->ac_o_ex.fe_logical >= tmp_pa_end ||
4295                                  ac->ac_o_ex.fe_logical < tmp_pa_start));
4296                 spin_unlock(&tmp_pa->pa_lock);
4297         }
4298
4299         /*
4300          * Step 2: check if the found PA is left or right neighbor and
4301          * get the other neighbor
4302          */
4303         if (tmp_pa) {
4304                 if (tmp_pa->pa_lstart < ac->ac_o_ex.fe_logical) {
4305                         struct rb_node *tmp;
4306
4307                         left_pa = tmp_pa;
4308                         tmp = rb_next(&left_pa->pa_node.inode_node);
4309                         if (tmp) {
4310                                 right_pa = rb_entry(tmp,
4311                                                     struct ext4_prealloc_space,
4312                                                     pa_node.inode_node);
4313                         }
4314                 } else {
4315                         struct rb_node *tmp;
4316
4317                         right_pa = tmp_pa;
4318                         tmp = rb_prev(&right_pa->pa_node.inode_node);
4319                         if (tmp) {
4320                                 left_pa = rb_entry(tmp,
4321                                                    struct ext4_prealloc_space,
4322                                                    pa_node.inode_node);
4323                         }
4324                 }
4325         }
4326
4327         /* Step 3: get the non deleted neighbors */
4328         if (left_pa) {
4329                 for (iter = &left_pa->pa_node.inode_node;;
4330                      iter = rb_prev(iter)) {
4331                         if (!iter) {
4332                                 left_pa = NULL;
4333                                 break;
4334                         }
4335
4336                         tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4337                                           pa_node.inode_node);
4338                         left_pa = tmp_pa;
4339                         spin_lock(&tmp_pa->pa_lock);
4340                         if (tmp_pa->pa_deleted == 0) {
4341                                 spin_unlock(&tmp_pa->pa_lock);
4342                                 break;
4343                         }
4344                         spin_unlock(&tmp_pa->pa_lock);
4345                 }
4346         }
4347
4348         if (right_pa) {
4349                 for (iter = &right_pa->pa_node.inode_node;;
4350                      iter = rb_next(iter)) {
4351                         if (!iter) {
4352                                 right_pa = NULL;
4353                                 break;
4354                         }
4355
4356                         tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4357                                           pa_node.inode_node);
4358                         right_pa = tmp_pa;
4359                         spin_lock(&tmp_pa->pa_lock);
4360                         if (tmp_pa->pa_deleted == 0) {
4361                                 spin_unlock(&tmp_pa->pa_lock);
4362                                 break;
4363                         }
4364                         spin_unlock(&tmp_pa->pa_lock);
4365                 }
4366         }
4367
4368         if (left_pa) {
4369                 left_pa_end = pa_logical_end(sbi, left_pa);
4370                 BUG_ON(left_pa_end > ac->ac_o_ex.fe_logical);
4371         }
4372
4373         if (right_pa) {
4374                 right_pa_start = right_pa->pa_lstart;
4375                 BUG_ON(right_pa_start <= ac->ac_o_ex.fe_logical);
4376         }
4377
4378         /* Step 4: trim our normalized range to not overlap with the neighbors */
4379         if (left_pa) {
4380                 if (left_pa_end > new_start)
4381                         new_start = left_pa_end;
4382         }
4383
4384         if (right_pa) {
4385                 if (right_pa_start < new_end)
4386                         new_end = right_pa_start;
4387         }
4388         read_unlock(&ei->i_prealloc_lock);
4389
4390         /* XXX: extra loop to check we really don't overlap preallocations */
4391         ext4_mb_pa_assert_overlap(ac, new_start, new_end);
4392
4393         *start = new_start;
4394         *end = new_end;
4395 }
4396
4397 /*
4398  * Normalization means making request better in terms of
4399  * size and alignment
4400  */
4401 static noinline_for_stack void
4402 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
4403                                 struct ext4_allocation_request *ar)
4404 {
4405         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4406         struct ext4_super_block *es = sbi->s_es;
4407         int bsbits, max;
4408         loff_t size, start_off, end;
4409         loff_t orig_size __maybe_unused;
4410         ext4_lblk_t start;
4411
4412         /* do normalize only data requests, metadata requests
4413            do not need preallocation */
4414         if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4415                 return;
4416
4417         /* sometime caller may want exact blocks */
4418         if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4419                 return;
4420
4421         /* caller may indicate that preallocation isn't
4422          * required (it's a tail, for example) */
4423         if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
4424                 return;
4425
4426         if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
4427                 ext4_mb_normalize_group_request(ac);
4428                 return ;
4429         }
4430
4431         bsbits = ac->ac_sb->s_blocksize_bits;
4432
4433         /* first, let's learn actual file size
4434          * given current request is allocated */
4435         size = extent_logical_end(sbi, &ac->ac_o_ex);
4436         size = size << bsbits;
4437         if (size < i_size_read(ac->ac_inode))
4438                 size = i_size_read(ac->ac_inode);
4439         orig_size = size;
4440
4441         /* max size of free chunks */
4442         max = 2 << bsbits;
4443
4444 #define NRL_CHECK_SIZE(req, size, max, chunk_size)      \
4445                 (req <= (size) || max <= (chunk_size))
4446
4447         /* first, try to predict filesize */
4448         /* XXX: should this table be tunable? */
4449         start_off = 0;
4450         if (size <= 16 * 1024) {
4451                 size = 16 * 1024;
4452         } else if (size <= 32 * 1024) {
4453                 size = 32 * 1024;
4454         } else if (size <= 64 * 1024) {
4455                 size = 64 * 1024;
4456         } else if (size <= 128 * 1024) {
4457                 size = 128 * 1024;
4458         } else if (size <= 256 * 1024) {
4459                 size = 256 * 1024;
4460         } else if (size <= 512 * 1024) {
4461                 size = 512 * 1024;
4462         } else if (size <= 1024 * 1024) {
4463                 size = 1024 * 1024;
4464         } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
4465                 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4466                                                 (21 - bsbits)) << 21;
4467                 size = 2 * 1024 * 1024;
4468         } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
4469                 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4470                                                         (22 - bsbits)) << 22;
4471                 size = 4 * 1024 * 1024;
4472         } else if (NRL_CHECK_SIZE(EXT4_C2B(sbi, ac->ac_o_ex.fe_len),
4473                                         (8<<20)>>bsbits, max, 8 * 1024)) {
4474                 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4475                                                         (23 - bsbits)) << 23;
4476                 size = 8 * 1024 * 1024;
4477         } else {
4478                 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
4479                 size      = (loff_t) EXT4_C2B(sbi,
4480                                               ac->ac_o_ex.fe_len) << bsbits;
4481         }
4482         size = size >> bsbits;
4483         start = start_off >> bsbits;
4484
4485         /*
4486          * For tiny groups (smaller than 8MB) the chosen allocation
4487          * alignment may be larger than group size. Make sure the
4488          * alignment does not move allocation to a different group which
4489          * makes mballoc fail assertions later.
4490          */
4491         start = max(start, rounddown(ac->ac_o_ex.fe_logical,
4492                         (ext4_lblk_t)EXT4_BLOCKS_PER_GROUP(ac->ac_sb)));
4493
4494         /* don't cover already allocated blocks in selected range */
4495         if (ar->pleft && start <= ar->lleft) {
4496                 size -= ar->lleft + 1 - start;
4497                 start = ar->lleft + 1;
4498         }
4499         if (ar->pright && start + size - 1 >= ar->lright)
4500                 size -= start + size - ar->lright;
4501
4502         /*
4503          * Trim allocation request for filesystems with artificially small
4504          * groups.
4505          */
4506         if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb))
4507                 size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb);
4508
4509         end = start + size;
4510
4511         ext4_mb_pa_adjust_overlap(ac, &start, &end);
4512
4513         size = end - start;
4514
4515         /*
4516          * In this function "start" and "size" are normalized for better
4517          * alignment and length such that we could preallocate more blocks.
4518          * This normalization is done such that original request of
4519          * ac->ac_o_ex.fe_logical & fe_len should always lie within "start" and
4520          * "size" boundaries.
4521          * (Note fe_len can be relaxed since FS block allocation API does not
4522          * provide gurantee on number of contiguous blocks allocation since that
4523          * depends upon free space left, etc).
4524          * In case of inode pa, later we use the allocated blocks
4525          * [pa_pstart + fe_logical - pa_lstart, fe_len/size] from the preallocated
4526          * range of goal/best blocks [start, size] to put it at the
4527          * ac_o_ex.fe_logical extent of this inode.
4528          * (See ext4_mb_use_inode_pa() for more details)
4529          */
4530         if (start + size <= ac->ac_o_ex.fe_logical ||
4531                         start > ac->ac_o_ex.fe_logical) {
4532                 ext4_msg(ac->ac_sb, KERN_ERR,
4533                          "start %lu, size %lu, fe_logical %lu",
4534                          (unsigned long) start, (unsigned long) size,
4535                          (unsigned long) ac->ac_o_ex.fe_logical);
4536                 BUG();
4537         }
4538         BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
4539
4540         /* now prepare goal request */
4541
4542         /* XXX: is it better to align blocks WRT to logical
4543          * placement or satisfy big request as is */
4544         ac->ac_g_ex.fe_logical = start;
4545         ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
4546         ac->ac_orig_goal_len = ac->ac_g_ex.fe_len;
4547
4548         /* define goal start in order to merge */
4549         if (ar->pright && (ar->lright == (start + size)) &&
4550             ar->pright >= size &&
4551             ar->pright - size >= le32_to_cpu(es->s_first_data_block)) {
4552                 /* merge to the right */
4553                 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
4554                                                 &ac->ac_g_ex.fe_group,
4555                                                 &ac->ac_g_ex.fe_start);
4556                 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4557         }
4558         if (ar->pleft && (ar->lleft + 1 == start) &&
4559             ar->pleft + 1 < ext4_blocks_count(es)) {
4560                 /* merge to the left */
4561                 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
4562                                                 &ac->ac_g_ex.fe_group,
4563                                                 &ac->ac_g_ex.fe_start);
4564                 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4565         }
4566
4567         mb_debug(ac->ac_sb, "goal: %lld(was %lld) blocks at %u\n", size,
4568                  orig_size, start);
4569 }
4570
4571 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
4572 {
4573         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4574
4575         if (sbi->s_mb_stats && ac->ac_g_ex.fe_len >= 1) {
4576                 atomic_inc(&sbi->s_bal_reqs);
4577                 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
4578                 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
4579                         atomic_inc(&sbi->s_bal_success);
4580
4581                 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
4582                 for (int i=0; i<EXT4_MB_NUM_CRS; i++) {
4583                         atomic_add(ac->ac_cX_found[i], &sbi->s_bal_cX_ex_scanned[i]);
4584                 }
4585
4586                 atomic_add(ac->ac_groups_scanned, &sbi->s_bal_groups_scanned);
4587                 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
4588                                 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
4589                         atomic_inc(&sbi->s_bal_goals);
4590                 /* did we allocate as much as normalizer originally wanted? */
4591                 if (ac->ac_f_ex.fe_len == ac->ac_orig_goal_len)
4592                         atomic_inc(&sbi->s_bal_len_goals);
4593
4594                 if (ac->ac_found > sbi->s_mb_max_to_scan)
4595                         atomic_inc(&sbi->s_bal_breaks);
4596         }
4597
4598         if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
4599                 trace_ext4_mballoc_alloc(ac);
4600         else
4601                 trace_ext4_mballoc_prealloc(ac);
4602 }
4603
4604 /*
4605  * Called on failure; free up any blocks from the inode PA for this
4606  * context.  We don't need this for MB_GROUP_PA because we only change
4607  * pa_free in ext4_mb_release_context(), but on failure, we've already
4608  * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
4609  */
4610 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
4611 {
4612         struct ext4_prealloc_space *pa = ac->ac_pa;
4613         struct ext4_buddy e4b;
4614         int err;
4615
4616         if (pa == NULL) {
4617                 if (ac->ac_f_ex.fe_len == 0)
4618                         return;
4619                 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
4620                 if (WARN_RATELIMIT(err,
4621                                    "ext4: mb_load_buddy failed (%d)", err))
4622                         /*
4623                          * This should never happen since we pin the
4624                          * pages in the ext4_allocation_context so
4625                          * ext4_mb_load_buddy() should never fail.
4626                          */
4627                         return;
4628                 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4629                 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
4630                                ac->ac_f_ex.fe_len);
4631                 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4632                 ext4_mb_unload_buddy(&e4b);
4633                 return;
4634         }
4635         if (pa->pa_type == MB_INODE_PA) {
4636                 spin_lock(&pa->pa_lock);
4637                 pa->pa_free += ac->ac_b_ex.fe_len;
4638                 spin_unlock(&pa->pa_lock);
4639         }
4640 }
4641
4642 /*
4643  * use blocks preallocated to inode
4644  */
4645 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
4646                                 struct ext4_prealloc_space *pa)
4647 {
4648         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4649         ext4_fsblk_t start;
4650         ext4_fsblk_t end;
4651         int len;
4652
4653         /* found preallocated blocks, use them */
4654         start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
4655         end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
4656                   start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
4657         len = EXT4_NUM_B2C(sbi, end - start);
4658         ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
4659                                         &ac->ac_b_ex.fe_start);
4660         ac->ac_b_ex.fe_len = len;
4661         ac->ac_status = AC_STATUS_FOUND;
4662         ac->ac_pa = pa;
4663
4664         BUG_ON(start < pa->pa_pstart);
4665         BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
4666         BUG_ON(pa->pa_free < len);
4667         BUG_ON(ac->ac_b_ex.fe_len <= 0);
4668         pa->pa_free -= len;
4669
4670         mb_debug(ac->ac_sb, "use %llu/%d from inode pa %p\n", start, len, pa);
4671 }
4672
4673 /*
4674  * use blocks preallocated to locality group
4675  */
4676 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
4677                                 struct ext4_prealloc_space *pa)
4678 {
4679         unsigned int len = ac->ac_o_ex.fe_len;
4680
4681         ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
4682                                         &ac->ac_b_ex.fe_group,
4683                                         &ac->ac_b_ex.fe_start);
4684         ac->ac_b_ex.fe_len = len;
4685         ac->ac_status = AC_STATUS_FOUND;
4686         ac->ac_pa = pa;
4687
4688         /* we don't correct pa_pstart or pa_len here to avoid
4689          * possible race when the group is being loaded concurrently
4690          * instead we correct pa later, after blocks are marked
4691          * in on-disk bitmap -- see ext4_mb_release_context()
4692          * Other CPUs are prevented from allocating from this pa by lg_mutex
4693          */
4694         mb_debug(ac->ac_sb, "use %u/%u from group pa %p\n",
4695                  pa->pa_lstart, len, pa);
4696 }
4697
4698 /*
4699  * Return the prealloc space that have minimal distance
4700  * from the goal block. @cpa is the prealloc
4701  * space that is having currently known minimal distance
4702  * from the goal block.
4703  */
4704 static struct ext4_prealloc_space *
4705 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
4706                         struct ext4_prealloc_space *pa,
4707                         struct ext4_prealloc_space *cpa)
4708 {
4709         ext4_fsblk_t cur_distance, new_distance;
4710
4711         if (cpa == NULL) {
4712                 atomic_inc(&pa->pa_count);
4713                 return pa;
4714         }
4715         cur_distance = abs(goal_block - cpa->pa_pstart);
4716         new_distance = abs(goal_block - pa->pa_pstart);
4717
4718         if (cur_distance <= new_distance)
4719                 return cpa;
4720
4721         /* drop the previous reference */
4722         atomic_dec(&cpa->pa_count);
4723         atomic_inc(&pa->pa_count);
4724         return pa;
4725 }
4726
4727 /*
4728  * check if found pa meets EXT4_MB_HINT_GOAL_ONLY
4729  */
4730 static bool
4731 ext4_mb_pa_goal_check(struct ext4_allocation_context *ac,
4732                       struct ext4_prealloc_space *pa)
4733 {
4734         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4735         ext4_fsblk_t start;
4736
4737         if (likely(!(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)))
4738                 return true;
4739
4740         /*
4741          * If EXT4_MB_HINT_GOAL_ONLY is set, ac_g_ex will not be adjusted
4742          * in ext4_mb_normalize_request and will keep same with ac_o_ex
4743          * from ext4_mb_initialize_context. Choose ac_g_ex here to keep
4744          * consistent with ext4_mb_find_by_goal.
4745          */
4746         start = pa->pa_pstart +
4747                 (ac->ac_g_ex.fe_logical - pa->pa_lstart);
4748         if (ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex) != start)
4749                 return false;
4750
4751         if (ac->ac_g_ex.fe_len > pa->pa_len -
4752             EXT4_B2C(sbi, ac->ac_g_ex.fe_logical - pa->pa_lstart))
4753                 return false;
4754
4755         return true;
4756 }
4757
4758 /*
4759  * search goal blocks in preallocated space
4760  */
4761 static noinline_for_stack bool
4762 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
4763 {
4764         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4765         int order, i;
4766         struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4767         struct ext4_locality_group *lg;
4768         struct ext4_prealloc_space *tmp_pa = NULL, *cpa = NULL;
4769         struct rb_node *iter;
4770         ext4_fsblk_t goal_block;
4771
4772         /* only data can be preallocated */
4773         if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4774                 return false;
4775
4776         /*
4777          * first, try per-file preallocation by searching the inode pa rbtree.
4778          *
4779          * Here, we can't do a direct traversal of the tree because
4780          * ext4_mb_discard_group_preallocation() can paralelly mark the pa
4781          * deleted and that can cause direct traversal to skip some entries.
4782          */
4783         read_lock(&ei->i_prealloc_lock);
4784
4785         if (RB_EMPTY_ROOT(&ei->i_prealloc_node)) {
4786                 goto try_group_pa;
4787         }
4788
4789         /*
4790          * Step 1: Find a pa with logical start immediately adjacent to the
4791          * original logical start. This could be on the left or right.
4792          *
4793          * (tmp_pa->pa_lstart never changes so we can skip locking for it).
4794          */
4795         for (iter = ei->i_prealloc_node.rb_node; iter;
4796              iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical,
4797                                             tmp_pa->pa_lstart, iter)) {
4798                 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4799                                   pa_node.inode_node);
4800         }
4801
4802         /*
4803          * Step 2: The adjacent pa might be to the right of logical start, find
4804          * the left adjacent pa. After this step we'd have a valid tmp_pa whose
4805          * logical start is towards the left of original request's logical start
4806          */
4807         if (tmp_pa->pa_lstart > ac->ac_o_ex.fe_logical) {
4808                 struct rb_node *tmp;
4809                 tmp = rb_prev(&tmp_pa->pa_node.inode_node);
4810
4811                 if (tmp) {
4812                         tmp_pa = rb_entry(tmp, struct ext4_prealloc_space,
4813                                             pa_node.inode_node);
4814                 } else {
4815                         /*
4816                          * If there is no adjacent pa to the left then finding
4817                          * an overlapping pa is not possible hence stop searching
4818                          * inode pa tree
4819                          */
4820                         goto try_group_pa;
4821                 }
4822         }
4823
4824         BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical));
4825
4826         /*
4827          * Step 3: If the left adjacent pa is deleted, keep moving left to find
4828          * the first non deleted adjacent pa. After this step we should have a
4829          * valid tmp_pa which is guaranteed to be non deleted.
4830          */
4831         for (iter = &tmp_pa->pa_node.inode_node;; iter = rb_prev(iter)) {
4832                 if (!iter) {
4833                         /*
4834                          * no non deleted left adjacent pa, so stop searching
4835                          * inode pa tree
4836                          */
4837                         goto try_group_pa;
4838                 }
4839                 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4840                                   pa_node.inode_node);
4841                 spin_lock(&tmp_pa->pa_lock);
4842                 if (tmp_pa->pa_deleted == 0) {
4843                         /*
4844                          * We will keep holding the pa_lock from
4845                          * this point on because we don't want group discard
4846                          * to delete this pa underneath us. Since group
4847                          * discard is anyways an ENOSPC operation it
4848                          * should be okay for it to wait a few more cycles.
4849                          */
4850                         break;
4851                 } else {
4852                         spin_unlock(&tmp_pa->pa_lock);
4853                 }
4854         }
4855
4856         BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical));
4857         BUG_ON(tmp_pa->pa_deleted == 1);
4858
4859         /*
4860          * Step 4: We now have the non deleted left adjacent pa. Only this
4861          * pa can possibly satisfy the request hence check if it overlaps
4862          * original logical start and stop searching if it doesn't.
4863          */
4864         if (ac->ac_o_ex.fe_logical >= pa_logical_end(sbi, tmp_pa)) {
4865                 spin_unlock(&tmp_pa->pa_lock);
4866                 goto try_group_pa;
4867         }
4868
4869         /* non-extent files can't have physical blocks past 2^32 */
4870         if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
4871             (tmp_pa->pa_pstart + EXT4_C2B(sbi, tmp_pa->pa_len) >
4872              EXT4_MAX_BLOCK_FILE_PHYS)) {
4873                 /*
4874                  * Since PAs don't overlap, we won't find any other PA to
4875                  * satisfy this.
4876                  */
4877                 spin_unlock(&tmp_pa->pa_lock);
4878                 goto try_group_pa;
4879         }
4880
4881         if (tmp_pa->pa_free && likely(ext4_mb_pa_goal_check(ac, tmp_pa))) {
4882                 atomic_inc(&tmp_pa->pa_count);
4883                 ext4_mb_use_inode_pa(ac, tmp_pa);
4884                 spin_unlock(&tmp_pa->pa_lock);
4885                 read_unlock(&ei->i_prealloc_lock);
4886                 return true;
4887         } else {
4888                 /*
4889                  * We found a valid overlapping pa but couldn't use it because
4890                  * it had no free blocks. This should ideally never happen
4891                  * because:
4892                  *
4893                  * 1. When a new inode pa is added to rbtree it must have
4894                  *    pa_free > 0 since otherwise we won't actually need
4895                  *    preallocation.
4896                  *
4897                  * 2. An inode pa that is in the rbtree can only have it's
4898                  *    pa_free become zero when another thread calls:
4899                  *      ext4_mb_new_blocks
4900                  *       ext4_mb_use_preallocated
4901                  *        ext4_mb_use_inode_pa
4902                  *
4903                  * 3. Further, after the above calls make pa_free == 0, we will
4904                  *    immediately remove it from the rbtree in:
4905                  *      ext4_mb_new_blocks
4906                  *       ext4_mb_release_context
4907                  *        ext4_mb_put_pa
4908                  *
4909                  * 4. Since the pa_free becoming 0 and pa_free getting removed
4910                  * from tree both happen in ext4_mb_new_blocks, which is always
4911                  * called with i_data_sem held for data allocations, we can be
4912                  * sure that another process will never see a pa in rbtree with
4913                  * pa_free == 0.
4914                  */
4915                 WARN_ON_ONCE(tmp_pa->pa_free == 0);
4916         }
4917         spin_unlock(&tmp_pa->pa_lock);
4918 try_group_pa:
4919         read_unlock(&ei->i_prealloc_lock);
4920
4921         /* can we use group allocation? */
4922         if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
4923                 return false;
4924
4925         /* inode may have no locality group for some reason */
4926         lg = ac->ac_lg;
4927         if (lg == NULL)
4928                 return false;
4929         order  = fls(ac->ac_o_ex.fe_len) - 1;
4930         if (order > PREALLOC_TB_SIZE - 1)
4931                 /* The max size of hash table is PREALLOC_TB_SIZE */
4932                 order = PREALLOC_TB_SIZE - 1;
4933
4934         goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
4935         /*
4936          * search for the prealloc space that is having
4937          * minimal distance from the goal block.
4938          */
4939         for (i = order; i < PREALLOC_TB_SIZE; i++) {
4940                 rcu_read_lock();
4941                 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[i],
4942                                         pa_node.lg_list) {
4943                         spin_lock(&tmp_pa->pa_lock);
4944                         if (tmp_pa->pa_deleted == 0 &&
4945                                         tmp_pa->pa_free >= ac->ac_o_ex.fe_len) {
4946
4947                                 cpa = ext4_mb_check_group_pa(goal_block,
4948                                                                 tmp_pa, cpa);
4949                         }
4950                         spin_unlock(&tmp_pa->pa_lock);
4951                 }
4952                 rcu_read_unlock();
4953         }
4954         if (cpa) {
4955                 ext4_mb_use_group_pa(ac, cpa);
4956                 return true;
4957         }
4958         return false;
4959 }
4960
4961 /*
4962  * the function goes through all block freed in the group
4963  * but not yet committed and marks them used in in-core bitmap.
4964  * buddy must be generated from this bitmap
4965  * Need to be called with the ext4 group lock held
4966  */
4967 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
4968                                                 ext4_group_t group)
4969 {
4970         struct rb_node *n;
4971         struct ext4_group_info *grp;
4972         struct ext4_free_data *entry;
4973
4974         grp = ext4_get_group_info(sb, group);
4975         if (!grp)
4976                 return;
4977         n = rb_first(&(grp->bb_free_root));
4978
4979         while (n) {
4980                 entry = rb_entry(n, struct ext4_free_data, efd_node);
4981                 mb_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
4982                 n = rb_next(n);
4983         }
4984 }
4985
4986 /*
4987  * the function goes through all preallocation in this group and marks them
4988  * used in in-core bitmap. buddy must be generated from this bitmap
4989  * Need to be called with ext4 group lock held
4990  */
4991 static noinline_for_stack
4992 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
4993                                         ext4_group_t group)
4994 {
4995         struct ext4_group_info *grp = ext4_get_group_info(sb, group);
4996         struct ext4_prealloc_space *pa;
4997         struct list_head *cur;
4998         ext4_group_t groupnr;
4999         ext4_grpblk_t start;
5000         int preallocated = 0;
5001         int len;
5002
5003         if (!grp)
5004                 return;
5005
5006         /* all form of preallocation discards first load group,
5007          * so the only competing code is preallocation use.
5008          * we don't need any locking here
5009          * notice we do NOT ignore preallocations with pa_deleted
5010          * otherwise we could leave used blocks available for
5011          * allocation in buddy when concurrent ext4_mb_put_pa()
5012          * is dropping preallocation
5013          */
5014         list_for_each(cur, &grp->bb_prealloc_list) {
5015                 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
5016                 spin_lock(&pa->pa_lock);
5017                 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
5018                                              &groupnr, &start);
5019                 len = pa->pa_len;
5020                 spin_unlock(&pa->pa_lock);
5021                 if (unlikely(len == 0))
5022                         continue;
5023                 BUG_ON(groupnr != group);
5024                 mb_set_bits(bitmap, start, len);
5025                 preallocated += len;
5026         }
5027         mb_debug(sb, "preallocated %d for group %u\n", preallocated, group);
5028 }
5029
5030 static void ext4_mb_mark_pa_deleted(struct super_block *sb,
5031                                     struct ext4_prealloc_space *pa)
5032 {
5033         struct ext4_inode_info *ei;
5034
5035         if (pa->pa_deleted) {
5036                 ext4_warning(sb, "deleted pa, type:%d, pblk:%llu, lblk:%u, len:%d\n",
5037                              pa->pa_type, pa->pa_pstart, pa->pa_lstart,
5038                              pa->pa_len);
5039                 return;
5040         }
5041
5042         pa->pa_deleted = 1;
5043
5044         if (pa->pa_type == MB_INODE_PA) {
5045                 ei = EXT4_I(pa->pa_inode);
5046                 atomic_dec(&ei->i_prealloc_active);
5047         }
5048 }
5049
5050 static inline void ext4_mb_pa_free(struct ext4_prealloc_space *pa)
5051 {
5052         BUG_ON(!pa);
5053         BUG_ON(atomic_read(&pa->pa_count));
5054         BUG_ON(pa->pa_deleted == 0);
5055         kmem_cache_free(ext4_pspace_cachep, pa);
5056 }
5057
5058 static void ext4_mb_pa_callback(struct rcu_head *head)
5059 {
5060         struct ext4_prealloc_space *pa;
5061
5062         pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
5063         ext4_mb_pa_free(pa);
5064 }
5065
5066 /*
5067  * drops a reference to preallocated space descriptor
5068  * if this was the last reference and the space is consumed
5069  */
5070 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
5071                         struct super_block *sb, struct ext4_prealloc_space *pa)
5072 {
5073         ext4_group_t grp;
5074         ext4_fsblk_t grp_blk;
5075         struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
5076
5077         /* in this short window concurrent discard can set pa_deleted */
5078         spin_lock(&pa->pa_lock);
5079         if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
5080                 spin_unlock(&pa->pa_lock);
5081                 return;
5082         }
5083
5084         if (pa->pa_deleted == 1) {
5085                 spin_unlock(&pa->pa_lock);
5086                 return;
5087         }
5088
5089         ext4_mb_mark_pa_deleted(sb, pa);
5090         spin_unlock(&pa->pa_lock);
5091
5092         grp_blk = pa->pa_pstart;
5093         /*
5094          * If doing group-based preallocation, pa_pstart may be in the
5095          * next group when pa is used up
5096          */
5097         if (pa->pa_type == MB_GROUP_PA)
5098                 grp_blk--;
5099
5100         grp = ext4_get_group_number(sb, grp_blk);
5101
5102         /*
5103          * possible race:
5104          *
5105          *  P1 (buddy init)                     P2 (regular allocation)
5106          *                                      find block B in PA
5107          *  copy on-disk bitmap to buddy
5108          *                                      mark B in on-disk bitmap
5109          *                                      drop PA from group
5110          *  mark all PAs in buddy
5111          *
5112          * thus, P1 initializes buddy with B available. to prevent this
5113          * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
5114          * against that pair
5115          */
5116         ext4_lock_group(sb, grp);
5117         list_del(&pa->pa_group_list);
5118         ext4_unlock_group(sb, grp);
5119
5120         if (pa->pa_type == MB_INODE_PA) {
5121                 write_lock(pa->pa_node_lock.inode_lock);
5122                 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5123                 write_unlock(pa->pa_node_lock.inode_lock);
5124                 ext4_mb_pa_free(pa);
5125         } else {
5126                 spin_lock(pa->pa_node_lock.lg_lock);
5127                 list_del_rcu(&pa->pa_node.lg_list);
5128                 spin_unlock(pa->pa_node_lock.lg_lock);
5129                 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5130         }
5131 }
5132
5133 static void ext4_mb_pa_rb_insert(struct rb_root *root, struct rb_node *new)
5134 {
5135         struct rb_node **iter = &root->rb_node, *parent = NULL;
5136         struct ext4_prealloc_space *iter_pa, *new_pa;
5137         ext4_lblk_t iter_start, new_start;
5138
5139         while (*iter) {
5140                 iter_pa = rb_entry(*iter, struct ext4_prealloc_space,
5141                                    pa_node.inode_node);
5142                 new_pa = rb_entry(new, struct ext4_prealloc_space,
5143                                    pa_node.inode_node);
5144                 iter_start = iter_pa->pa_lstart;
5145                 new_start = new_pa->pa_lstart;
5146
5147                 parent = *iter;
5148                 if (new_start < iter_start)
5149                         iter = &((*iter)->rb_left);
5150                 else
5151                         iter = &((*iter)->rb_right);
5152         }
5153
5154         rb_link_node(new, parent, iter);
5155         rb_insert_color(new, root);
5156 }
5157
5158 /*
5159  * creates new preallocated space for given inode
5160  */
5161 static noinline_for_stack void
5162 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
5163 {
5164         struct super_block *sb = ac->ac_sb;
5165         struct ext4_sb_info *sbi = EXT4_SB(sb);
5166         struct ext4_prealloc_space *pa;
5167         struct ext4_group_info *grp;
5168         struct ext4_inode_info *ei;
5169
5170         /* preallocate only when found space is larger then requested */
5171         BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
5172         BUG_ON(ac->ac_status != AC_STATUS_FOUND);
5173         BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
5174         BUG_ON(ac->ac_pa == NULL);
5175
5176         pa = ac->ac_pa;
5177
5178         if (ac->ac_b_ex.fe_len < ac->ac_orig_goal_len) {
5179                 struct ext4_free_extent ex = {
5180                         .fe_logical = ac->ac_g_ex.fe_logical,
5181                         .fe_len = ac->ac_orig_goal_len,
5182                 };
5183                 loff_t orig_goal_end = extent_logical_end(sbi, &ex);
5184
5185                 /* we can't allocate as much as normalizer wants.
5186                  * so, found space must get proper lstart
5187                  * to cover original request */
5188                 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
5189                 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
5190
5191                 /*
5192                  * Use the below logic for adjusting best extent as it keeps
5193                  * fragmentation in check while ensuring logical range of best
5194                  * extent doesn't overflow out of goal extent:
5195                  *
5196                  * 1. Check if best ex can be kept at end of goal (before
5197                  *    cr_best_avail trimmed it) and still cover original start
5198                  * 2. Else, check if best ex can be kept at start of goal and
5199                  *    still cover original start
5200                  * 3. Else, keep the best ex at start of original request.
5201                  */
5202                 ex.fe_len = ac->ac_b_ex.fe_len;
5203
5204                 ex.fe_logical = orig_goal_end - EXT4_C2B(sbi, ex.fe_len);
5205                 if (ac->ac_o_ex.fe_logical >= ex.fe_logical)
5206                         goto adjust_bex;
5207
5208                 ex.fe_logical = ac->ac_g_ex.fe_logical;
5209                 if (ac->ac_o_ex.fe_logical < extent_logical_end(sbi, &ex))
5210                         goto adjust_bex;
5211
5212                 ex.fe_logical = ac->ac_o_ex.fe_logical;
5213 adjust_bex:
5214                 ac->ac_b_ex.fe_logical = ex.fe_logical;
5215
5216                 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
5217                 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
5218                 BUG_ON(extent_logical_end(sbi, &ex) > orig_goal_end);
5219         }
5220
5221         pa->pa_lstart = ac->ac_b_ex.fe_logical;
5222         pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
5223         pa->pa_len = ac->ac_b_ex.fe_len;
5224         pa->pa_free = pa->pa_len;
5225         spin_lock_init(&pa->pa_lock);
5226         INIT_LIST_HEAD(&pa->pa_group_list);
5227         pa->pa_deleted = 0;
5228         pa->pa_type = MB_INODE_PA;
5229
5230         mb_debug(sb, "new inode pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
5231                  pa->pa_len, pa->pa_lstart);
5232         trace_ext4_mb_new_inode_pa(ac, pa);
5233
5234         atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
5235         ext4_mb_use_inode_pa(ac, pa);
5236
5237         ei = EXT4_I(ac->ac_inode);
5238         grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
5239         if (!grp)
5240                 return;
5241
5242         pa->pa_node_lock.inode_lock = &ei->i_prealloc_lock;
5243         pa->pa_inode = ac->ac_inode;
5244
5245         list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
5246
5247         write_lock(pa->pa_node_lock.inode_lock);
5248         ext4_mb_pa_rb_insert(&ei->i_prealloc_node, &pa->pa_node.inode_node);
5249         write_unlock(pa->pa_node_lock.inode_lock);
5250         atomic_inc(&ei->i_prealloc_active);
5251 }
5252
5253 /*
5254  * creates new preallocated space for locality group inodes belongs to
5255  */
5256 static noinline_for_stack void
5257 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
5258 {
5259         struct super_block *sb = ac->ac_sb;
5260         struct ext4_locality_group *lg;
5261         struct ext4_prealloc_space *pa;
5262         struct ext4_group_info *grp;
5263
5264         /* preallocate only when found space is larger then requested */
5265         BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
5266         BUG_ON(ac->ac_status != AC_STATUS_FOUND);
5267         BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
5268         BUG_ON(ac->ac_pa == NULL);
5269
5270         pa = ac->ac_pa;
5271
5272         pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
5273         pa->pa_lstart = pa->pa_pstart;
5274         pa->pa_len = ac->ac_b_ex.fe_len;
5275         pa->pa_free = pa->pa_len;
5276         spin_lock_init(&pa->pa_lock);
5277         INIT_LIST_HEAD(&pa->pa_node.lg_list);
5278         INIT_LIST_HEAD(&pa->pa_group_list);
5279         pa->pa_deleted = 0;
5280         pa->pa_type = MB_GROUP_PA;
5281
5282         mb_debug(sb, "new group pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
5283                  pa->pa_len, pa->pa_lstart);
5284         trace_ext4_mb_new_group_pa(ac, pa);
5285
5286         ext4_mb_use_group_pa(ac, pa);
5287         atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
5288
5289         grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
5290         if (!grp)
5291                 return;
5292         lg = ac->ac_lg;
5293         BUG_ON(lg == NULL);
5294
5295         pa->pa_node_lock.lg_lock = &lg->lg_prealloc_lock;
5296         pa->pa_inode = NULL;
5297
5298         list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
5299
5300         /*
5301          * We will later add the new pa to the right bucket
5302          * after updating the pa_free in ext4_mb_release_context
5303          */
5304 }
5305
5306 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
5307 {
5308         if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
5309                 ext4_mb_new_group_pa(ac);
5310         else
5311                 ext4_mb_new_inode_pa(ac);
5312 }
5313
5314 /*
5315  * finds all unused blocks in on-disk bitmap, frees them in
5316  * in-core bitmap and buddy.
5317  * @pa must be unlinked from inode and group lists, so that
5318  * nobody else can find/use it.
5319  * the caller MUST hold group/inode locks.
5320  * TODO: optimize the case when there are no in-core structures yet
5321  */
5322 static noinline_for_stack int
5323 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
5324                         struct ext4_prealloc_space *pa)
5325 {
5326         struct super_block *sb = e4b->bd_sb;
5327         struct ext4_sb_info *sbi = EXT4_SB(sb);
5328         unsigned int end;
5329         unsigned int next;
5330         ext4_group_t group;
5331         ext4_grpblk_t bit;
5332         unsigned long long grp_blk_start;
5333         int free = 0;
5334
5335         BUG_ON(pa->pa_deleted == 0);
5336         ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
5337         grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
5338         BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
5339         end = bit + pa->pa_len;
5340
5341         while (bit < end) {
5342                 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
5343                 if (bit >= end)
5344                         break;
5345                 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
5346                 mb_debug(sb, "free preallocated %u/%u in group %u\n",
5347                          (unsigned) ext4_group_first_block_no(sb, group) + bit,
5348                          (unsigned) next - bit, (unsigned) group);
5349                 free += next - bit;
5350
5351                 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
5352                 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
5353                                                     EXT4_C2B(sbi, bit)),
5354                                                next - bit);
5355                 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
5356                 bit = next + 1;
5357         }
5358         if (free != pa->pa_free) {
5359                 ext4_msg(e4b->bd_sb, KERN_CRIT,
5360                          "pa %p: logic %lu, phys. %lu, len %d",
5361                          pa, (unsigned long) pa->pa_lstart,
5362                          (unsigned long) pa->pa_pstart,
5363                          pa->pa_len);
5364                 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
5365                                         free, pa->pa_free);
5366                 /*
5367                  * pa is already deleted so we use the value obtained
5368                  * from the bitmap and continue.
5369                  */
5370         }
5371         atomic_add(free, &sbi->s_mb_discarded);
5372
5373         return 0;
5374 }
5375
5376 static noinline_for_stack int
5377 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
5378                                 struct ext4_prealloc_space *pa)
5379 {
5380         struct super_block *sb = e4b->bd_sb;
5381         ext4_group_t group;
5382         ext4_grpblk_t bit;
5383
5384         trace_ext4_mb_release_group_pa(sb, pa);
5385         BUG_ON(pa->pa_deleted == 0);
5386         ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
5387         if (unlikely(group != e4b->bd_group && pa->pa_len != 0)) {
5388                 ext4_warning(sb, "bad group: expected %u, group %u, pa_start %llu",
5389                              e4b->bd_group, group, pa->pa_pstart);
5390                 return 0;
5391         }
5392         mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
5393         atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
5394         trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
5395
5396         return 0;
5397 }
5398
5399 /*
5400  * releases all preallocations in given group
5401  *
5402  * first, we need to decide discard policy:
5403  * - when do we discard
5404  *   1) ENOSPC
5405  * - how many do we discard
5406  *   1) how many requested
5407  */
5408 static noinline_for_stack int
5409 ext4_mb_discard_group_preallocations(struct super_block *sb,
5410                                      ext4_group_t group, int *busy)
5411 {
5412         struct ext4_group_info *grp = ext4_get_group_info(sb, group);
5413         struct buffer_head *bitmap_bh = NULL;
5414         struct ext4_prealloc_space *pa, *tmp;
5415         LIST_HEAD(list);
5416         struct ext4_buddy e4b;
5417         struct ext4_inode_info *ei;
5418         int err;
5419         int free = 0;
5420
5421         if (!grp)
5422                 return 0;
5423         mb_debug(sb, "discard preallocation for group %u\n", group);
5424         if (list_empty(&grp->bb_prealloc_list))
5425                 goto out_dbg;
5426
5427         bitmap_bh = ext4_read_block_bitmap(sb, group);
5428         if (IS_ERR(bitmap_bh)) {
5429                 err = PTR_ERR(bitmap_bh);
5430                 ext4_error_err(sb, -err,
5431                                "Error %d reading block bitmap for %u",
5432                                err, group);
5433                 goto out_dbg;
5434         }
5435
5436         err = ext4_mb_load_buddy(sb, group, &e4b);
5437         if (err) {
5438                 ext4_warning(sb, "Error %d loading buddy information for %u",
5439                              err, group);
5440                 put_bh(bitmap_bh);
5441                 goto out_dbg;
5442         }
5443
5444         ext4_lock_group(sb, group);
5445         list_for_each_entry_safe(pa, tmp,
5446                                 &grp->bb_prealloc_list, pa_group_list) {
5447                 spin_lock(&pa->pa_lock);
5448                 if (atomic_read(&pa->pa_count)) {
5449                         spin_unlock(&pa->pa_lock);
5450                         *busy = 1;
5451                         continue;
5452                 }
5453                 if (pa->pa_deleted) {
5454                         spin_unlock(&pa->pa_lock);
5455                         continue;
5456                 }
5457
5458                 /* seems this one can be freed ... */
5459                 ext4_mb_mark_pa_deleted(sb, pa);
5460
5461                 if (!free)
5462                         this_cpu_inc(discard_pa_seq);
5463
5464                 /* we can trust pa_free ... */
5465                 free += pa->pa_free;
5466
5467                 spin_unlock(&pa->pa_lock);
5468
5469                 list_del(&pa->pa_group_list);
5470                 list_add(&pa->u.pa_tmp_list, &list);
5471         }
5472
5473         /* now free all selected PAs */
5474         list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
5475
5476                 /* remove from object (inode or locality group) */
5477                 if (pa->pa_type == MB_GROUP_PA) {
5478                         spin_lock(pa->pa_node_lock.lg_lock);
5479                         list_del_rcu(&pa->pa_node.lg_list);
5480                         spin_unlock(pa->pa_node_lock.lg_lock);
5481                 } else {
5482                         write_lock(pa->pa_node_lock.inode_lock);
5483                         ei = EXT4_I(pa->pa_inode);
5484                         rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5485                         write_unlock(pa->pa_node_lock.inode_lock);
5486                 }
5487
5488                 list_del(&pa->u.pa_tmp_list);
5489
5490                 if (pa->pa_type == MB_GROUP_PA) {
5491                         ext4_mb_release_group_pa(&e4b, pa);
5492                         call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5493                 } else {
5494                         ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
5495                         ext4_mb_pa_free(pa);
5496                 }
5497         }
5498
5499         ext4_unlock_group(sb, group);
5500         ext4_mb_unload_buddy(&e4b);
5501         put_bh(bitmap_bh);
5502 out_dbg:
5503         mb_debug(sb, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n",
5504                  free, group, grp->bb_free);
5505         return free;
5506 }
5507
5508 /*
5509  * releases all non-used preallocated blocks for given inode
5510  *
5511  * It's important to discard preallocations under i_data_sem
5512  * We don't want another block to be served from the prealloc
5513  * space when we are discarding the inode prealloc space.
5514  *
5515  * FIXME!! Make sure it is valid at all the call sites
5516  */
5517 void ext4_discard_preallocations(struct inode *inode, unsigned int needed)
5518 {
5519         struct ext4_inode_info *ei = EXT4_I(inode);
5520         struct super_block *sb = inode->i_sb;
5521         struct buffer_head *bitmap_bh = NULL;
5522         struct ext4_prealloc_space *pa, *tmp;
5523         ext4_group_t group = 0;
5524         LIST_HEAD(list);
5525         struct ext4_buddy e4b;
5526         struct rb_node *iter;
5527         int err;
5528
5529         if (!S_ISREG(inode->i_mode)) {
5530                 return;
5531         }
5532
5533         if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY)
5534                 return;
5535
5536         mb_debug(sb, "discard preallocation for inode %lu\n",
5537                  inode->i_ino);
5538         trace_ext4_discard_preallocations(inode,
5539                         atomic_read(&ei->i_prealloc_active), needed);
5540
5541         if (needed == 0)
5542                 needed = UINT_MAX;
5543
5544 repeat:
5545         /* first, collect all pa's in the inode */
5546         write_lock(&ei->i_prealloc_lock);
5547         for (iter = rb_first(&ei->i_prealloc_node); iter && needed;
5548              iter = rb_next(iter)) {
5549                 pa = rb_entry(iter, struct ext4_prealloc_space,
5550                               pa_node.inode_node);
5551                 BUG_ON(pa->pa_node_lock.inode_lock != &ei->i_prealloc_lock);
5552
5553                 spin_lock(&pa->pa_lock);
5554                 if (atomic_read(&pa->pa_count)) {
5555                         /* this shouldn't happen often - nobody should
5556                          * use preallocation while we're discarding it */
5557                         spin_unlock(&pa->pa_lock);
5558                         write_unlock(&ei->i_prealloc_lock);
5559                         ext4_msg(sb, KERN_ERR,
5560                                  "uh-oh! used pa while discarding");
5561                         WARN_ON(1);
5562                         schedule_timeout_uninterruptible(HZ);
5563                         goto repeat;
5564
5565                 }
5566                 if (pa->pa_deleted == 0) {
5567                         ext4_mb_mark_pa_deleted(sb, pa);
5568                         spin_unlock(&pa->pa_lock);
5569                         rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5570                         list_add(&pa->u.pa_tmp_list, &list);
5571                         needed--;
5572                         continue;
5573                 }
5574
5575                 /* someone is deleting pa right now */
5576                 spin_unlock(&pa->pa_lock);
5577                 write_unlock(&ei->i_prealloc_lock);
5578
5579                 /* we have to wait here because pa_deleted
5580                  * doesn't mean pa is already unlinked from
5581                  * the list. as we might be called from
5582                  * ->clear_inode() the inode will get freed
5583                  * and concurrent thread which is unlinking
5584                  * pa from inode's list may access already
5585                  * freed memory, bad-bad-bad */
5586
5587                 /* XXX: if this happens too often, we can
5588                  * add a flag to force wait only in case
5589                  * of ->clear_inode(), but not in case of
5590                  * regular truncate */
5591                 schedule_timeout_uninterruptible(HZ);
5592                 goto repeat;
5593         }
5594         write_unlock(&ei->i_prealloc_lock);
5595
5596         list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
5597                 BUG_ON(pa->pa_type != MB_INODE_PA);
5598                 group = ext4_get_group_number(sb, pa->pa_pstart);
5599
5600                 err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
5601                                              GFP_NOFS|__GFP_NOFAIL);
5602                 if (err) {
5603                         ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
5604                                        err, group);
5605                         continue;
5606                 }
5607
5608                 bitmap_bh = ext4_read_block_bitmap(sb, group);
5609                 if (IS_ERR(bitmap_bh)) {
5610                         err = PTR_ERR(bitmap_bh);
5611                         ext4_error_err(sb, -err, "Error %d reading block bitmap for %u",
5612                                        err, group);
5613                         ext4_mb_unload_buddy(&e4b);
5614                         continue;
5615                 }
5616
5617                 ext4_lock_group(sb, group);
5618                 list_del(&pa->pa_group_list);
5619                 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
5620                 ext4_unlock_group(sb, group);
5621
5622                 ext4_mb_unload_buddy(&e4b);
5623                 put_bh(bitmap_bh);
5624
5625                 list_del(&pa->u.pa_tmp_list);
5626                 ext4_mb_pa_free(pa);
5627         }
5628 }
5629
5630 static int ext4_mb_pa_alloc(struct ext4_allocation_context *ac)
5631 {
5632         struct ext4_prealloc_space *pa;
5633
5634         BUG_ON(ext4_pspace_cachep == NULL);
5635         pa = kmem_cache_zalloc(ext4_pspace_cachep, GFP_NOFS);
5636         if (!pa)
5637                 return -ENOMEM;
5638         atomic_set(&pa->pa_count, 1);
5639         ac->ac_pa = pa;
5640         return 0;
5641 }
5642
5643 static void ext4_mb_pa_put_free(struct ext4_allocation_context *ac)
5644 {
5645         struct ext4_prealloc_space *pa = ac->ac_pa;
5646
5647         BUG_ON(!pa);
5648         ac->ac_pa = NULL;
5649         WARN_ON(!atomic_dec_and_test(&pa->pa_count));
5650         /*
5651          * current function is only called due to an error or due to
5652          * len of found blocks < len of requested blocks hence the PA has not
5653          * been added to grp->bb_prealloc_list. So we don't need to lock it
5654          */
5655         pa->pa_deleted = 1;
5656         ext4_mb_pa_free(pa);
5657 }
5658
5659 #ifdef CONFIG_EXT4_DEBUG
5660 static inline void ext4_mb_show_pa(struct super_block *sb)
5661 {
5662         ext4_group_t i, ngroups;
5663
5664         if (ext4_forced_shutdown(sb))
5665                 return;
5666
5667         ngroups = ext4_get_groups_count(sb);
5668         mb_debug(sb, "groups: ");
5669         for (i = 0; i < ngroups; i++) {
5670                 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
5671                 struct ext4_prealloc_space *pa;
5672                 ext4_grpblk_t start;
5673                 struct list_head *cur;
5674
5675                 if (!grp)
5676                         continue;
5677                 ext4_lock_group(sb, i);
5678                 list_for_each(cur, &grp->bb_prealloc_list) {
5679                         pa = list_entry(cur, struct ext4_prealloc_space,
5680                                         pa_group_list);
5681                         spin_lock(&pa->pa_lock);
5682                         ext4_get_group_no_and_offset(sb, pa->pa_pstart,
5683                                                      NULL, &start);
5684                         spin_unlock(&pa->pa_lock);
5685                         mb_debug(sb, "PA:%u:%d:%d\n", i, start,
5686                                  pa->pa_len);
5687                 }
5688                 ext4_unlock_group(sb, i);
5689                 mb_debug(sb, "%u: %d/%d\n", i, grp->bb_free,
5690                          grp->bb_fragments);
5691         }
5692 }
5693
5694 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5695 {
5696         struct super_block *sb = ac->ac_sb;
5697
5698         if (ext4_forced_shutdown(sb))
5699                 return;
5700
5701         mb_debug(sb, "Can't allocate:"
5702                         " Allocation context details:");
5703         mb_debug(sb, "status %u flags 0x%x",
5704                         ac->ac_status, ac->ac_flags);
5705         mb_debug(sb, "orig %lu/%lu/%lu@%lu, "
5706                         "goal %lu/%lu/%lu@%lu, "
5707                         "best %lu/%lu/%lu@%lu cr %d",
5708                         (unsigned long)ac->ac_o_ex.fe_group,
5709                         (unsigned long)ac->ac_o_ex.fe_start,
5710                         (unsigned long)ac->ac_o_ex.fe_len,
5711                         (unsigned long)ac->ac_o_ex.fe_logical,
5712                         (unsigned long)ac->ac_g_ex.fe_group,
5713                         (unsigned long)ac->ac_g_ex.fe_start,
5714                         (unsigned long)ac->ac_g_ex.fe_len,
5715                         (unsigned long)ac->ac_g_ex.fe_logical,
5716                         (unsigned long)ac->ac_b_ex.fe_group,
5717                         (unsigned long)ac->ac_b_ex.fe_start,
5718                         (unsigned long)ac->ac_b_ex.fe_len,
5719                         (unsigned long)ac->ac_b_ex.fe_logical,
5720                         (int)ac->ac_criteria);
5721         mb_debug(sb, "%u found", ac->ac_found);
5722         mb_debug(sb, "used pa: %s, ", ac->ac_pa ? "yes" : "no");
5723         if (ac->ac_pa)
5724                 mb_debug(sb, "pa_type %s\n", ac->ac_pa->pa_type == MB_GROUP_PA ?
5725                          "group pa" : "inode pa");
5726         ext4_mb_show_pa(sb);
5727 }
5728 #else
5729 static inline void ext4_mb_show_pa(struct super_block *sb)
5730 {
5731 }
5732 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5733 {
5734         ext4_mb_show_pa(ac->ac_sb);
5735 }
5736 #endif
5737
5738 /*
5739  * We use locality group preallocation for small size file. The size of the
5740  * file is determined by the current size or the resulting size after
5741  * allocation which ever is larger
5742  *
5743  * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
5744  */
5745 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
5746 {
5747         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
5748         int bsbits = ac->ac_sb->s_blocksize_bits;
5749         loff_t size, isize;
5750         bool inode_pa_eligible, group_pa_eligible;
5751
5752         if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
5753                 return;
5754
5755         if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
5756                 return;
5757
5758         group_pa_eligible = sbi->s_mb_group_prealloc > 0;
5759         inode_pa_eligible = true;
5760         size = extent_logical_end(sbi, &ac->ac_o_ex);
5761         isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
5762                 >> bsbits;
5763
5764         /* No point in using inode preallocation for closed files */
5765         if ((size == isize) && !ext4_fs_is_busy(sbi) &&
5766             !inode_is_open_for_write(ac->ac_inode))
5767                 inode_pa_eligible = false;
5768
5769         size = max(size, isize);
5770         /* Don't use group allocation for large files */
5771         if (size > sbi->s_mb_stream_request)
5772                 group_pa_eligible = false;
5773
5774         if (!group_pa_eligible) {
5775                 if (inode_pa_eligible)
5776                         ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
5777                 else
5778                         ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
5779                 return;
5780         }
5781
5782         BUG_ON(ac->ac_lg != NULL);
5783         /*
5784          * locality group prealloc space are per cpu. The reason for having
5785          * per cpu locality group is to reduce the contention between block
5786          * request from multiple CPUs.
5787          */
5788         ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
5789
5790         /* we're going to use group allocation */
5791         ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
5792
5793         /* serialize all allocations in the group */
5794         mutex_lock(&ac->ac_lg->lg_mutex);
5795 }
5796
5797 static noinline_for_stack void
5798 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
5799                                 struct ext4_allocation_request *ar)
5800 {
5801         struct super_block *sb = ar->inode->i_sb;
5802         struct ext4_sb_info *sbi = EXT4_SB(sb);
5803         struct ext4_super_block *es = sbi->s_es;
5804         ext4_group_t group;
5805         unsigned int len;
5806         ext4_fsblk_t goal;
5807         ext4_grpblk_t block;
5808
5809         /* we can't allocate > group size */
5810         len = ar->len;
5811
5812         /* just a dirty hack to filter too big requests  */
5813         if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
5814                 len = EXT4_CLUSTERS_PER_GROUP(sb);
5815
5816         /* start searching from the goal */
5817         goal = ar->goal;
5818         if (goal < le32_to_cpu(es->s_first_data_block) ||
5819                         goal >= ext4_blocks_count(es))
5820                 goal = le32_to_cpu(es->s_first_data_block);
5821         ext4_get_group_no_and_offset(sb, goal, &group, &block);
5822
5823         /* set up allocation goals */
5824         ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
5825         ac->ac_status = AC_STATUS_CONTINUE;
5826         ac->ac_sb = sb;
5827         ac->ac_inode = ar->inode;
5828         ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
5829         ac->ac_o_ex.fe_group = group;
5830         ac->ac_o_ex.fe_start = block;
5831         ac->ac_o_ex.fe_len = len;
5832         ac->ac_g_ex = ac->ac_o_ex;
5833         ac->ac_orig_goal_len = ac->ac_g_ex.fe_len;
5834         ac->ac_flags = ar->flags;
5835
5836         /* we have to define context: we'll work with a file or
5837          * locality group. this is a policy, actually */
5838         ext4_mb_group_or_file(ac);
5839
5840         mb_debug(sb, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, "
5841                         "left: %u/%u, right %u/%u to %swritable\n",
5842                         (unsigned) ar->len, (unsigned) ar->logical,
5843                         (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
5844                         (unsigned) ar->lleft, (unsigned) ar->pleft,
5845                         (unsigned) ar->lright, (unsigned) ar->pright,
5846                         inode_is_open_for_write(ar->inode) ? "" : "non-");
5847 }
5848
5849 static noinline_for_stack void
5850 ext4_mb_discard_lg_preallocations(struct super_block *sb,
5851                                         struct ext4_locality_group *lg,
5852                                         int order, int total_entries)
5853 {
5854         ext4_group_t group = 0;
5855         struct ext4_buddy e4b;
5856         LIST_HEAD(discard_list);
5857         struct ext4_prealloc_space *pa, *tmp;
5858
5859         mb_debug(sb, "discard locality group preallocation\n");
5860
5861         spin_lock(&lg->lg_prealloc_lock);
5862         list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
5863                                 pa_node.lg_list,
5864                                 lockdep_is_held(&lg->lg_prealloc_lock)) {
5865                 spin_lock(&pa->pa_lock);
5866                 if (atomic_read(&pa->pa_count)) {
5867                         /*
5868                          * This is the pa that we just used
5869                          * for block allocation. So don't
5870                          * free that
5871                          */
5872                         spin_unlock(&pa->pa_lock);
5873                         continue;
5874                 }
5875                 if (pa->pa_deleted) {
5876                         spin_unlock(&pa->pa_lock);
5877                         continue;
5878                 }
5879                 /* only lg prealloc space */
5880                 BUG_ON(pa->pa_type != MB_GROUP_PA);
5881
5882                 /* seems this one can be freed ... */
5883                 ext4_mb_mark_pa_deleted(sb, pa);
5884                 spin_unlock(&pa->pa_lock);
5885
5886                 list_del_rcu(&pa->pa_node.lg_list);
5887                 list_add(&pa->u.pa_tmp_list, &discard_list);
5888
5889                 total_entries--;
5890                 if (total_entries <= 5) {
5891                         /*
5892                          * we want to keep only 5 entries
5893                          * allowing it to grow to 8. This
5894                          * mak sure we don't call discard
5895                          * soon for this list.
5896                          */
5897                         break;
5898                 }
5899         }
5900         spin_unlock(&lg->lg_prealloc_lock);
5901
5902         list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
5903                 int err;
5904
5905                 group = ext4_get_group_number(sb, pa->pa_pstart);
5906                 err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
5907                                              GFP_NOFS|__GFP_NOFAIL);
5908                 if (err) {
5909                         ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
5910                                        err, group);
5911                         continue;
5912                 }
5913                 ext4_lock_group(sb, group);
5914                 list_del(&pa->pa_group_list);
5915                 ext4_mb_release_group_pa(&e4b, pa);
5916                 ext4_unlock_group(sb, group);
5917
5918                 ext4_mb_unload_buddy(&e4b);
5919                 list_del(&pa->u.pa_tmp_list);
5920                 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5921         }
5922 }
5923
5924 /*
5925  * We have incremented pa_count. So it cannot be freed at this
5926  * point. Also we hold lg_mutex. So no parallel allocation is
5927  * possible from this lg. That means pa_free cannot be updated.
5928  *
5929  * A parallel ext4_mb_discard_group_preallocations is possible.
5930  * which can cause the lg_prealloc_list to be updated.
5931  */
5932
5933 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
5934 {
5935         int order, added = 0, lg_prealloc_count = 1;
5936         struct super_block *sb = ac->ac_sb;
5937         struct ext4_locality_group *lg = ac->ac_lg;
5938         struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
5939
5940         order = fls(pa->pa_free) - 1;
5941         if (order > PREALLOC_TB_SIZE - 1)
5942                 /* The max size of hash table is PREALLOC_TB_SIZE */
5943                 order = PREALLOC_TB_SIZE - 1;
5944         /* Add the prealloc space to lg */
5945         spin_lock(&lg->lg_prealloc_lock);
5946         list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
5947                                 pa_node.lg_list,
5948                                 lockdep_is_held(&lg->lg_prealloc_lock)) {
5949                 spin_lock(&tmp_pa->pa_lock);
5950                 if (tmp_pa->pa_deleted) {
5951                         spin_unlock(&tmp_pa->pa_lock);
5952                         continue;
5953                 }
5954                 if (!added && pa->pa_free < tmp_pa->pa_free) {
5955                         /* Add to the tail of the previous entry */
5956                         list_add_tail_rcu(&pa->pa_node.lg_list,
5957                                                 &tmp_pa->pa_node.lg_list);
5958                         added = 1;
5959                         /*
5960                          * we want to count the total
5961                          * number of entries in the list
5962                          */
5963                 }
5964                 spin_unlock(&tmp_pa->pa_lock);
5965                 lg_prealloc_count++;
5966         }
5967         if (!added)
5968                 list_add_tail_rcu(&pa->pa_node.lg_list,
5969                                         &lg->lg_prealloc_list[order]);
5970         spin_unlock(&lg->lg_prealloc_lock);
5971
5972         /* Now trim the list to be not more than 8 elements */
5973         if (lg_prealloc_count > 8)
5974                 ext4_mb_discard_lg_preallocations(sb, lg,
5975                                                   order, lg_prealloc_count);
5976 }
5977
5978 /*
5979  * release all resource we used in allocation
5980  */
5981 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
5982 {
5983         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
5984         struct ext4_prealloc_space *pa = ac->ac_pa;
5985         if (pa) {
5986                 if (pa->pa_type == MB_GROUP_PA) {
5987                         /* see comment in ext4_mb_use_group_pa() */
5988                         spin_lock(&pa->pa_lock);
5989                         pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
5990                         pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
5991                         pa->pa_free -= ac->ac_b_ex.fe_len;
5992                         pa->pa_len -= ac->ac_b_ex.fe_len;
5993                         spin_unlock(&pa->pa_lock);
5994
5995                         /*
5996                          * We want to add the pa to the right bucket.
5997                          * Remove it from the list and while adding
5998                          * make sure the list to which we are adding
5999                          * doesn't grow big.
6000                          */
6001                         if (likely(pa->pa_free)) {
6002                                 spin_lock(pa->pa_node_lock.lg_lock);
6003                                 list_del_rcu(&pa->pa_node.lg_list);
6004                                 spin_unlock(pa->pa_node_lock.lg_lock);
6005                                 ext4_mb_add_n_trim(ac);
6006                         }
6007                 }
6008
6009                 ext4_mb_put_pa(ac, ac->ac_sb, pa);
6010         }
6011         if (ac->ac_bitmap_page)
6012                 put_page(ac->ac_bitmap_page);
6013         if (ac->ac_buddy_page)
6014                 put_page(ac->ac_buddy_page);
6015         if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
6016                 mutex_unlock(&ac->ac_lg->lg_mutex);
6017         ext4_mb_collect_stats(ac);
6018         return 0;
6019 }
6020
6021 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
6022 {
6023         ext4_group_t i, ngroups = ext4_get_groups_count(sb);
6024         int ret;
6025         int freed = 0, busy = 0;
6026         int retry = 0;
6027
6028         trace_ext4_mb_discard_preallocations(sb, needed);
6029
6030         if (needed == 0)
6031                 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
6032  repeat:
6033         for (i = 0; i < ngroups && needed > 0; i++) {
6034                 ret = ext4_mb_discard_group_preallocations(sb, i, &busy);
6035                 freed += ret;
6036                 needed -= ret;
6037                 cond_resched();
6038         }
6039
6040         if (needed > 0 && busy && ++retry < 3) {
6041                 busy = 0;
6042                 goto repeat;
6043         }
6044
6045         return freed;
6046 }
6047
6048 static bool ext4_mb_discard_preallocations_should_retry(struct super_block *sb,
6049                         struct ext4_allocation_context *ac, u64 *seq)
6050 {
6051         int freed;
6052         u64 seq_retry = 0;
6053         bool ret = false;
6054
6055         freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
6056         if (freed) {
6057                 ret = true;
6058                 goto out_dbg;
6059         }
6060         seq_retry = ext4_get_discard_pa_seq_sum();
6061         if (!(ac->ac_flags & EXT4_MB_STRICT_CHECK) || seq_retry != *seq) {
6062                 ac->ac_flags |= EXT4_MB_STRICT_CHECK;
6063                 *seq = seq_retry;
6064                 ret = true;
6065         }
6066
6067 out_dbg:
6068         mb_debug(sb, "freed %d, retry ? %s\n", freed, ret ? "yes" : "no");
6069         return ret;
6070 }
6071
6072 /*
6073  * Simple allocator for Ext4 fast commit replay path. It searches for blocks
6074  * linearly starting at the goal block and also excludes the blocks which
6075  * are going to be in use after fast commit replay.
6076  */
6077 static ext4_fsblk_t
6078 ext4_mb_new_blocks_simple(struct ext4_allocation_request *ar, int *errp)
6079 {
6080         struct buffer_head *bitmap_bh;
6081         struct super_block *sb = ar->inode->i_sb;
6082         struct ext4_sb_info *sbi = EXT4_SB(sb);
6083         ext4_group_t group, nr;
6084         ext4_grpblk_t blkoff;
6085         ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
6086         ext4_grpblk_t i = 0;
6087         ext4_fsblk_t goal, block;
6088         struct ext4_super_block *es = sbi->s_es;
6089
6090         goal = ar->goal;
6091         if (goal < le32_to_cpu(es->s_first_data_block) ||
6092                         goal >= ext4_blocks_count(es))
6093                 goal = le32_to_cpu(es->s_first_data_block);
6094
6095         ar->len = 0;
6096         ext4_get_group_no_and_offset(sb, goal, &group, &blkoff);
6097         for (nr = ext4_get_groups_count(sb); nr > 0; nr--) {
6098                 bitmap_bh = ext4_read_block_bitmap(sb, group);
6099                 if (IS_ERR(bitmap_bh)) {
6100                         *errp = PTR_ERR(bitmap_bh);
6101                         pr_warn("Failed to read block bitmap\n");
6102                         return 0;
6103                 }
6104
6105                 while (1) {
6106                         i = mb_find_next_zero_bit(bitmap_bh->b_data, max,
6107                                                 blkoff);
6108                         if (i >= max)
6109                                 break;
6110                         if (ext4_fc_replay_check_excluded(sb,
6111                                 ext4_group_first_block_no(sb, group) +
6112                                 EXT4_C2B(sbi, i))) {
6113                                 blkoff = i + 1;
6114                         } else
6115                                 break;
6116                 }
6117                 brelse(bitmap_bh);
6118                 if (i < max)
6119                         break;
6120
6121                 if (++group >= ext4_get_groups_count(sb))
6122                         group = 0;
6123
6124                 blkoff = 0;
6125         }
6126
6127         if (i >= max) {
6128                 *errp = -ENOSPC;
6129                 return 0;
6130         }
6131
6132         block = ext4_group_first_block_no(sb, group) + EXT4_C2B(sbi, i);
6133         ext4_mb_mark_bb(sb, block, 1, 1);
6134         ar->len = 1;
6135
6136         return block;
6137 }
6138
6139 /*
6140  * Main entry point into mballoc to allocate blocks
6141  * it tries to use preallocation first, then falls back
6142  * to usual allocation
6143  */
6144 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
6145                                 struct ext4_allocation_request *ar, int *errp)
6146 {
6147         struct ext4_allocation_context *ac = NULL;
6148         struct ext4_sb_info *sbi;
6149         struct super_block *sb;
6150         ext4_fsblk_t block = 0;
6151         unsigned int inquota = 0;
6152         unsigned int reserv_clstrs = 0;
6153         int retries = 0;
6154         u64 seq;
6155
6156         might_sleep();
6157         sb = ar->inode->i_sb;
6158         sbi = EXT4_SB(sb);
6159
6160         trace_ext4_request_blocks(ar);
6161         if (sbi->s_mount_state & EXT4_FC_REPLAY)
6162                 return ext4_mb_new_blocks_simple(ar, errp);
6163
6164         /* Allow to use superuser reservation for quota file */
6165         if (ext4_is_quota_file(ar->inode))
6166                 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
6167
6168         if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
6169                 /* Without delayed allocation we need to verify
6170                  * there is enough free blocks to do block allocation
6171                  * and verify allocation doesn't exceed the quota limits.
6172                  */
6173                 while (ar->len &&
6174                         ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
6175
6176                         /* let others to free the space */
6177                         cond_resched();
6178                         ar->len = ar->len >> 1;
6179                 }
6180                 if (!ar->len) {
6181                         ext4_mb_show_pa(sb);
6182                         *errp = -ENOSPC;
6183                         return 0;
6184                 }
6185                 reserv_clstrs = ar->len;
6186                 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
6187                         dquot_alloc_block_nofail(ar->inode,
6188                                                  EXT4_C2B(sbi, ar->len));
6189                 } else {
6190                         while (ar->len &&
6191                                 dquot_alloc_block(ar->inode,
6192                                                   EXT4_C2B(sbi, ar->len))) {
6193
6194                                 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
6195                                 ar->len--;
6196                         }
6197                 }
6198                 inquota = ar->len;
6199                 if (ar->len == 0) {
6200                         *errp = -EDQUOT;
6201                         goto out;
6202                 }
6203         }
6204
6205         ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
6206         if (!ac) {
6207                 ar->len = 0;
6208                 *errp = -ENOMEM;
6209                 goto out;
6210         }
6211
6212         ext4_mb_initialize_context(ac, ar);
6213
6214         ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
6215         seq = this_cpu_read(discard_pa_seq);
6216         if (!ext4_mb_use_preallocated(ac)) {
6217                 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
6218                 ext4_mb_normalize_request(ac, ar);
6219
6220                 *errp = ext4_mb_pa_alloc(ac);
6221                 if (*errp)
6222                         goto errout;
6223 repeat:
6224                 /* allocate space in core */
6225                 *errp = ext4_mb_regular_allocator(ac);
6226                 /*
6227                  * pa allocated above is added to grp->bb_prealloc_list only
6228                  * when we were able to allocate some block i.e. when
6229                  * ac->ac_status == AC_STATUS_FOUND.
6230                  * And error from above mean ac->ac_status != AC_STATUS_FOUND
6231                  * So we have to free this pa here itself.
6232                  */
6233                 if (*errp) {
6234                         ext4_mb_pa_put_free(ac);
6235                         ext4_discard_allocated_blocks(ac);
6236                         goto errout;
6237                 }
6238                 if (ac->ac_status == AC_STATUS_FOUND &&
6239                         ac->ac_o_ex.fe_len >= ac->ac_f_ex.fe_len)
6240                         ext4_mb_pa_put_free(ac);
6241         }
6242         if (likely(ac->ac_status == AC_STATUS_FOUND)) {
6243                 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
6244                 if (*errp) {
6245                         ext4_discard_allocated_blocks(ac);
6246                         goto errout;
6247                 } else {
6248                         block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
6249                         ar->len = ac->ac_b_ex.fe_len;
6250                 }
6251         } else {
6252                 if (++retries < 3 &&
6253                     ext4_mb_discard_preallocations_should_retry(sb, ac, &seq))
6254                         goto repeat;
6255                 /*
6256                  * If block allocation fails then the pa allocated above
6257                  * needs to be freed here itself.
6258                  */
6259                 ext4_mb_pa_put_free(ac);
6260                 *errp = -ENOSPC;
6261         }
6262
6263         if (*errp) {
6264 errout:
6265                 ac->ac_b_ex.fe_len = 0;
6266                 ar->len = 0;
6267                 ext4_mb_show_ac(ac);
6268         }
6269         ext4_mb_release_context(ac);
6270         kmem_cache_free(ext4_ac_cachep, ac);
6271 out:
6272         if (inquota && ar->len < inquota)
6273                 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
6274         if (!ar->len) {
6275                 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
6276                         /* release all the reserved blocks if non delalloc */
6277                         percpu_counter_sub(&sbi->s_dirtyclusters_counter,
6278                                                 reserv_clstrs);
6279         }
6280
6281         trace_ext4_allocate_blocks(ar, (unsigned long long)block);
6282
6283         return block;
6284 }
6285
6286 /*
6287  * We can merge two free data extents only if the physical blocks
6288  * are contiguous, AND the extents were freed by the same transaction,
6289  * AND the blocks are associated with the same group.
6290  */
6291 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi,
6292                                         struct ext4_free_data *entry,
6293                                         struct ext4_free_data *new_entry,
6294                                         struct rb_root *entry_rb_root)
6295 {
6296         if ((entry->efd_tid != new_entry->efd_tid) ||
6297             (entry->efd_group != new_entry->efd_group))
6298                 return;
6299         if (entry->efd_start_cluster + entry->efd_count ==
6300             new_entry->efd_start_cluster) {
6301                 new_entry->efd_start_cluster = entry->efd_start_cluster;
6302                 new_entry->efd_count += entry->efd_count;
6303         } else if (new_entry->efd_start_cluster + new_entry->efd_count ==
6304                    entry->efd_start_cluster) {
6305                 new_entry->efd_count += entry->efd_count;
6306         } else
6307                 return;
6308         spin_lock(&sbi->s_md_lock);
6309         list_del(&entry->efd_list);
6310         spin_unlock(&sbi->s_md_lock);
6311         rb_erase(&entry->efd_node, entry_rb_root);
6312         kmem_cache_free(ext4_free_data_cachep, entry);
6313 }
6314
6315 static noinline_for_stack void
6316 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
6317                       struct ext4_free_data *new_entry)
6318 {
6319         ext4_group_t group = e4b->bd_group;
6320         ext4_grpblk_t cluster;
6321         ext4_grpblk_t clusters = new_entry->efd_count;
6322         struct ext4_free_data *entry;
6323         struct ext4_group_info *db = e4b->bd_info;
6324         struct super_block *sb = e4b->bd_sb;
6325         struct ext4_sb_info *sbi = EXT4_SB(sb);
6326         struct rb_node **n = &db->bb_free_root.rb_node, *node;
6327         struct rb_node *parent = NULL, *new_node;
6328
6329         BUG_ON(!ext4_handle_valid(handle));
6330         BUG_ON(e4b->bd_bitmap_page == NULL);
6331         BUG_ON(e4b->bd_buddy_page == NULL);
6332
6333         new_node = &new_entry->efd_node;
6334         cluster = new_entry->efd_start_cluster;
6335
6336         if (!*n) {
6337                 /* first free block exent. We need to
6338                    protect buddy cache from being freed,
6339                  * otherwise we'll refresh it from
6340                  * on-disk bitmap and lose not-yet-available
6341                  * blocks */
6342                 get_page(e4b->bd_buddy_page);
6343                 get_page(e4b->bd_bitmap_page);
6344         }
6345         while (*n) {
6346                 parent = *n;
6347                 entry = rb_entry(parent, struct ext4_free_data, efd_node);
6348                 if (cluster < entry->efd_start_cluster)
6349                         n = &(*n)->rb_left;
6350                 else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
6351                         n = &(*n)->rb_right;
6352                 else {
6353                         ext4_grp_locked_error(sb, group, 0,
6354                                 ext4_group_first_block_no(sb, group) +
6355                                 EXT4_C2B(sbi, cluster),
6356                                 "Block already on to-be-freed list");
6357                         kmem_cache_free(ext4_free_data_cachep, new_entry);
6358                         return;
6359                 }
6360         }
6361
6362         rb_link_node(new_node, parent, n);
6363         rb_insert_color(new_node, &db->bb_free_root);
6364
6365         /* Now try to see the extent can be merged to left and right */
6366         node = rb_prev(new_node);
6367         if (node) {
6368                 entry = rb_entry(node, struct ext4_free_data, efd_node);
6369                 ext4_try_merge_freed_extent(sbi, entry, new_entry,
6370                                             &(db->bb_free_root));
6371         }
6372
6373         node = rb_next(new_node);
6374         if (node) {
6375                 entry = rb_entry(node, struct ext4_free_data, efd_node);
6376                 ext4_try_merge_freed_extent(sbi, entry, new_entry,
6377                                             &(db->bb_free_root));
6378         }
6379
6380         spin_lock(&sbi->s_md_lock);
6381         list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list);
6382         sbi->s_mb_free_pending += clusters;
6383         spin_unlock(&sbi->s_md_lock);
6384 }
6385
6386 static void ext4_free_blocks_simple(struct inode *inode, ext4_fsblk_t block,
6387                                         unsigned long count)
6388 {
6389         struct buffer_head *bitmap_bh;
6390         struct super_block *sb = inode->i_sb;
6391         struct ext4_group_desc *gdp;
6392         struct buffer_head *gdp_bh;
6393         ext4_group_t group;
6394         ext4_grpblk_t blkoff;
6395         int already_freed = 0, err, i;
6396
6397         ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
6398         bitmap_bh = ext4_read_block_bitmap(sb, group);
6399         if (IS_ERR(bitmap_bh)) {
6400                 pr_warn("Failed to read block bitmap\n");
6401                 return;
6402         }
6403         gdp = ext4_get_group_desc(sb, group, &gdp_bh);
6404         if (!gdp)
6405                 goto err_out;
6406
6407         for (i = 0; i < count; i++) {
6408                 if (!mb_test_bit(blkoff + i, bitmap_bh->b_data))
6409                         already_freed++;
6410         }
6411         mb_clear_bits(bitmap_bh->b_data, blkoff, count);
6412         err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh);
6413         if (err)
6414                 goto err_out;
6415         ext4_free_group_clusters_set(
6416                 sb, gdp, ext4_free_group_clusters(sb, gdp) +
6417                 count - already_freed);
6418         ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh);
6419         ext4_group_desc_csum_set(sb, group, gdp);
6420         ext4_handle_dirty_metadata(NULL, NULL, gdp_bh);
6421         sync_dirty_buffer(bitmap_bh);
6422         sync_dirty_buffer(gdp_bh);
6423
6424 err_out:
6425         brelse(bitmap_bh);
6426 }
6427
6428 /**
6429  * ext4_mb_clear_bb() -- helper function for freeing blocks.
6430  *                      Used by ext4_free_blocks()
6431  * @handle:             handle for this transaction
6432  * @inode:              inode
6433  * @block:              starting physical block to be freed
6434  * @count:              number of blocks to be freed
6435  * @flags:              flags used by ext4_free_blocks
6436  */
6437 static void ext4_mb_clear_bb(handle_t *handle, struct inode *inode,
6438                                ext4_fsblk_t block, unsigned long count,
6439                                int flags)
6440 {
6441         struct buffer_head *bitmap_bh = NULL;
6442         struct super_block *sb = inode->i_sb;
6443         struct ext4_group_desc *gdp;
6444         struct ext4_group_info *grp;
6445         unsigned int overflow;
6446         ext4_grpblk_t bit;
6447         struct buffer_head *gd_bh;
6448         ext4_group_t block_group;
6449         struct ext4_sb_info *sbi;
6450         struct ext4_buddy e4b;
6451         unsigned int count_clusters;
6452         int err = 0;
6453         int ret;
6454
6455         sbi = EXT4_SB(sb);
6456
6457         if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6458             !ext4_inode_block_valid(inode, block, count)) {
6459                 ext4_error(sb, "Freeing blocks in system zone - "
6460                            "Block = %llu, count = %lu", block, count);
6461                 /* err = 0. ext4_std_error should be a no op */
6462                 goto error_return;
6463         }
6464         flags |= EXT4_FREE_BLOCKS_VALIDATED;
6465
6466 do_more:
6467         overflow = 0;
6468         ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
6469
6470         grp = ext4_get_group_info(sb, block_group);
6471         if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
6472                 return;
6473
6474         /*
6475          * Check to see if we are freeing blocks across a group
6476          * boundary.
6477          */
6478         if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
6479                 overflow = EXT4_C2B(sbi, bit) + count -
6480                         EXT4_BLOCKS_PER_GROUP(sb);
6481                 count -= overflow;
6482                 /* The range changed so it's no longer validated */
6483                 flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6484         }
6485         count_clusters = EXT4_NUM_B2C(sbi, count);
6486         bitmap_bh = ext4_read_block_bitmap(sb, block_group);
6487         if (IS_ERR(bitmap_bh)) {
6488                 err = PTR_ERR(bitmap_bh);
6489                 bitmap_bh = NULL;
6490                 goto error_return;
6491         }
6492         gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
6493         if (!gdp) {
6494                 err = -EIO;
6495                 goto error_return;
6496         }
6497
6498         if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6499             !ext4_inode_block_valid(inode, block, count)) {
6500                 ext4_error(sb, "Freeing blocks in system zone - "
6501                            "Block = %llu, count = %lu", block, count);
6502                 /* err = 0. ext4_std_error should be a no op */
6503                 goto error_return;
6504         }
6505
6506         BUFFER_TRACE(bitmap_bh, "getting write access");
6507         err = ext4_journal_get_write_access(handle, sb, bitmap_bh,
6508                                             EXT4_JTR_NONE);
6509         if (err)
6510                 goto error_return;
6511
6512         /*
6513          * We are about to modify some metadata.  Call the journal APIs
6514          * to unshare ->b_data if a currently-committing transaction is
6515          * using it
6516          */
6517         BUFFER_TRACE(gd_bh, "get_write_access");
6518         err = ext4_journal_get_write_access(handle, sb, gd_bh, EXT4_JTR_NONE);
6519         if (err)
6520                 goto error_return;
6521 #ifdef AGGRESSIVE_CHECK
6522         {
6523                 int i;
6524                 for (i = 0; i < count_clusters; i++)
6525                         BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
6526         }
6527 #endif
6528         trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
6529
6530         /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
6531         err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
6532                                      GFP_NOFS|__GFP_NOFAIL);
6533         if (err)
6534                 goto error_return;
6535
6536         /*
6537          * We need to make sure we don't reuse the freed block until after the
6538          * transaction is committed. We make an exception if the inode is to be
6539          * written in writeback mode since writeback mode has weak data
6540          * consistency guarantees.
6541          */
6542         if (ext4_handle_valid(handle) &&
6543             ((flags & EXT4_FREE_BLOCKS_METADATA) ||
6544              !ext4_should_writeback_data(inode))) {
6545                 struct ext4_free_data *new_entry;
6546                 /*
6547                  * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
6548                  * to fail.
6549                  */
6550                 new_entry = kmem_cache_alloc(ext4_free_data_cachep,
6551                                 GFP_NOFS|__GFP_NOFAIL);
6552                 new_entry->efd_start_cluster = bit;
6553                 new_entry->efd_group = block_group;
6554                 new_entry->efd_count = count_clusters;
6555                 new_entry->efd_tid = handle->h_transaction->t_tid;
6556
6557                 ext4_lock_group(sb, block_group);
6558                 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
6559                 ext4_mb_free_metadata(handle, &e4b, new_entry);
6560         } else {
6561                 /* need to update group_info->bb_free and bitmap
6562                  * with group lock held. generate_buddy look at
6563                  * them with group lock_held
6564                  */
6565                 if (test_opt(sb, DISCARD)) {
6566                         err = ext4_issue_discard(sb, block_group, bit,
6567                                                  count_clusters, NULL);
6568                         if (err && err != -EOPNOTSUPP)
6569                                 ext4_msg(sb, KERN_WARNING, "discard request in"
6570                                          " group:%u block:%d count:%lu failed"
6571                                          " with %d", block_group, bit, count,
6572                                          err);
6573                 } else
6574                         EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
6575
6576                 ext4_lock_group(sb, block_group);
6577                 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
6578                 mb_free_blocks(inode, &e4b, bit, count_clusters);
6579         }
6580
6581         ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
6582         ext4_free_group_clusters_set(sb, gdp, ret);
6583         ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh);
6584         ext4_group_desc_csum_set(sb, block_group, gdp);
6585         ext4_unlock_group(sb, block_group);
6586
6587         if (sbi->s_log_groups_per_flex) {
6588                 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
6589                 atomic64_add(count_clusters,
6590                              &sbi_array_rcu_deref(sbi, s_flex_groups,
6591                                                   flex_group)->free_clusters);
6592         }
6593
6594         /*
6595          * on a bigalloc file system, defer the s_freeclusters_counter
6596          * update to the caller (ext4_remove_space and friends) so they
6597          * can determine if a cluster freed here should be rereserved
6598          */
6599         if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) {
6600                 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
6601                         dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
6602                 percpu_counter_add(&sbi->s_freeclusters_counter,
6603                                    count_clusters);
6604         }
6605
6606         ext4_mb_unload_buddy(&e4b);
6607
6608         /* We dirtied the bitmap block */
6609         BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
6610         err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
6611
6612         /* And the group descriptor block */
6613         BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
6614         ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
6615         if (!err)
6616                 err = ret;
6617
6618         if (overflow && !err) {
6619                 block += count;
6620                 count = overflow;
6621                 put_bh(bitmap_bh);
6622                 /* The range changed so it's no longer validated */
6623                 flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6624                 goto do_more;
6625         }
6626 error_return:
6627         brelse(bitmap_bh);
6628         ext4_std_error(sb, err);
6629 }
6630
6631 /**
6632  * ext4_free_blocks() -- Free given blocks and update quota
6633  * @handle:             handle for this transaction
6634  * @inode:              inode
6635  * @bh:                 optional buffer of the block to be freed
6636  * @block:              starting physical block to be freed
6637  * @count:              number of blocks to be freed
6638  * @flags:              flags used by ext4_free_blocks
6639  */
6640 void ext4_free_blocks(handle_t *handle, struct inode *inode,
6641                       struct buffer_head *bh, ext4_fsblk_t block,
6642                       unsigned long count, int flags)
6643 {
6644         struct super_block *sb = inode->i_sb;
6645         unsigned int overflow;
6646         struct ext4_sb_info *sbi;
6647
6648         sbi = EXT4_SB(sb);
6649
6650         if (bh) {
6651                 if (block)
6652                         BUG_ON(block != bh->b_blocknr);
6653                 else
6654                         block = bh->b_blocknr;
6655         }
6656
6657         if (sbi->s_mount_state & EXT4_FC_REPLAY) {
6658                 ext4_free_blocks_simple(inode, block, EXT4_NUM_B2C(sbi, count));
6659                 return;
6660         }
6661
6662         might_sleep();
6663
6664         if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6665             !ext4_inode_block_valid(inode, block, count)) {
6666                 ext4_error(sb, "Freeing blocks not in datazone - "
6667                            "block = %llu, count = %lu", block, count);
6668                 return;
6669         }
6670         flags |= EXT4_FREE_BLOCKS_VALIDATED;
6671
6672         ext4_debug("freeing block %llu\n", block);
6673         trace_ext4_free_blocks(inode, block, count, flags);
6674
6675         if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
6676                 BUG_ON(count > 1);
6677
6678                 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
6679                             inode, bh, block);
6680         }
6681
6682         /*
6683          * If the extent to be freed does not begin on a cluster
6684          * boundary, we need to deal with partial clusters at the
6685          * beginning and end of the extent.  Normally we will free
6686          * blocks at the beginning or the end unless we are explicitly
6687          * requested to avoid doing so.
6688          */
6689         overflow = EXT4_PBLK_COFF(sbi, block);
6690         if (overflow) {
6691                 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
6692                         overflow = sbi->s_cluster_ratio - overflow;
6693                         block += overflow;
6694                         if (count > overflow)
6695                                 count -= overflow;
6696                         else
6697                                 return;
6698                 } else {
6699                         block -= overflow;
6700                         count += overflow;
6701                 }
6702                 /* The range changed so it's no longer validated */
6703                 flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6704         }
6705         overflow = EXT4_LBLK_COFF(sbi, count);
6706         if (overflow) {
6707                 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
6708                         if (count > overflow)
6709                                 count -= overflow;
6710                         else
6711                                 return;
6712                 } else
6713                         count += sbi->s_cluster_ratio - overflow;
6714                 /* The range changed so it's no longer validated */
6715                 flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6716         }
6717
6718         if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
6719                 int i;
6720                 int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
6721
6722                 for (i = 0; i < count; i++) {
6723                         cond_resched();
6724                         if (is_metadata)
6725                                 bh = sb_find_get_block(inode->i_sb, block + i);
6726                         ext4_forget(handle, is_metadata, inode, bh, block + i);
6727                 }
6728         }
6729
6730         ext4_mb_clear_bb(handle, inode, block, count, flags);
6731 }
6732
6733 /**
6734  * ext4_group_add_blocks() -- Add given blocks to an existing group
6735  * @handle:                     handle to this transaction
6736  * @sb:                         super block
6737  * @block:                      start physical block to add to the block group
6738  * @count:                      number of blocks to free
6739  *
6740  * This marks the blocks as free in the bitmap and buddy.
6741  */
6742 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
6743                          ext4_fsblk_t block, unsigned long count)
6744 {
6745         struct buffer_head *bitmap_bh = NULL;
6746         struct buffer_head *gd_bh;
6747         ext4_group_t block_group;
6748         ext4_grpblk_t bit;
6749         unsigned int i;
6750         struct ext4_group_desc *desc;
6751         struct ext4_sb_info *sbi = EXT4_SB(sb);
6752         struct ext4_buddy e4b;
6753         int err = 0, ret, free_clusters_count;
6754         ext4_grpblk_t clusters_freed;
6755         ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block);
6756         ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1);
6757         unsigned long cluster_count = last_cluster - first_cluster + 1;
6758
6759         ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
6760
6761         if (count == 0)
6762                 return 0;
6763
6764         ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
6765         /*
6766          * Check to see if we are freeing blocks across a group
6767          * boundary.
6768          */
6769         if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) {
6770                 ext4_warning(sb, "too many blocks added to group %u",
6771                              block_group);
6772                 err = -EINVAL;
6773                 goto error_return;
6774         }
6775
6776         bitmap_bh = ext4_read_block_bitmap(sb, block_group);
6777         if (IS_ERR(bitmap_bh)) {
6778                 err = PTR_ERR(bitmap_bh);
6779                 bitmap_bh = NULL;
6780                 goto error_return;
6781         }
6782
6783         desc = ext4_get_group_desc(sb, block_group, &gd_bh);
6784         if (!desc) {
6785                 err = -EIO;
6786                 goto error_return;
6787         }
6788
6789         if (!ext4_sb_block_valid(sb, NULL, block, count)) {
6790                 ext4_error(sb, "Adding blocks in system zones - "
6791                            "Block = %llu, count = %lu",
6792                            block, count);
6793                 err = -EINVAL;
6794                 goto error_return;
6795         }
6796
6797         BUFFER_TRACE(bitmap_bh, "getting write access");
6798         err = ext4_journal_get_write_access(handle, sb, bitmap_bh,
6799                                             EXT4_JTR_NONE);
6800         if (err)
6801                 goto error_return;
6802
6803         /*
6804          * We are about to modify some metadata.  Call the journal APIs
6805          * to unshare ->b_data if a currently-committing transaction is
6806          * using it
6807          */
6808         BUFFER_TRACE(gd_bh, "get_write_access");
6809         err = ext4_journal_get_write_access(handle, sb, gd_bh, EXT4_JTR_NONE);
6810         if (err)
6811                 goto error_return;
6812
6813         for (i = 0, clusters_freed = 0; i < cluster_count; i++) {
6814                 BUFFER_TRACE(bitmap_bh, "clear bit");
6815                 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
6816                         ext4_error(sb, "bit already cleared for block %llu",
6817                                    (ext4_fsblk_t)(block + i));
6818                         BUFFER_TRACE(bitmap_bh, "bit already cleared");
6819                 } else {
6820                         clusters_freed++;
6821                 }
6822         }
6823
6824         err = ext4_mb_load_buddy(sb, block_group, &e4b);
6825         if (err)
6826                 goto error_return;
6827
6828         /*
6829          * need to update group_info->bb_free and bitmap
6830          * with group lock held. generate_buddy look at
6831          * them with group lock_held
6832          */
6833         ext4_lock_group(sb, block_group);
6834         mb_clear_bits(bitmap_bh->b_data, bit, cluster_count);
6835         mb_free_blocks(NULL, &e4b, bit, cluster_count);
6836         free_clusters_count = clusters_freed +
6837                 ext4_free_group_clusters(sb, desc);
6838         ext4_free_group_clusters_set(sb, desc, free_clusters_count);
6839         ext4_block_bitmap_csum_set(sb, desc, bitmap_bh);
6840         ext4_group_desc_csum_set(sb, block_group, desc);
6841         ext4_unlock_group(sb, block_group);
6842         percpu_counter_add(&sbi->s_freeclusters_counter,
6843                            clusters_freed);
6844
6845         if (sbi->s_log_groups_per_flex) {
6846                 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
6847                 atomic64_add(clusters_freed,
6848                              &sbi_array_rcu_deref(sbi, s_flex_groups,
6849                                                   flex_group)->free_clusters);
6850         }
6851
6852         ext4_mb_unload_buddy(&e4b);
6853
6854         /* We dirtied the bitmap block */
6855         BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
6856         err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
6857
6858         /* And the group descriptor block */
6859         BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
6860         ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
6861         if (!err)
6862                 err = ret;
6863
6864 error_return:
6865         brelse(bitmap_bh);
6866         ext4_std_error(sb, err);
6867         return err;
6868 }
6869
6870 /**
6871  * ext4_trim_extent -- function to TRIM one single free extent in the group
6872  * @sb:         super block for the file system
6873  * @start:      starting block of the free extent in the alloc. group
6874  * @count:      number of blocks to TRIM
6875  * @e4b:        ext4 buddy for the group
6876  *
6877  * Trim "count" blocks starting at "start" in the "group". To assure that no
6878  * one will allocate those blocks, mark it as used in buddy bitmap. This must
6879  * be called with under the group lock.
6880  */
6881 static int ext4_trim_extent(struct super_block *sb,
6882                 int start, int count, struct ext4_buddy *e4b)
6883 __releases(bitlock)
6884 __acquires(bitlock)
6885 {
6886         struct ext4_free_extent ex;
6887         ext4_group_t group = e4b->bd_group;
6888         int ret = 0;
6889
6890         trace_ext4_trim_extent(sb, group, start, count);
6891
6892         assert_spin_locked(ext4_group_lock_ptr(sb, group));
6893
6894         ex.fe_start = start;
6895         ex.fe_group = group;
6896         ex.fe_len = count;
6897
6898         /*
6899          * Mark blocks used, so no one can reuse them while
6900          * being trimmed.
6901          */
6902         mb_mark_used(e4b, &ex);
6903         ext4_unlock_group(sb, group);
6904         ret = ext4_issue_discard(sb, group, start, count, NULL);
6905         ext4_lock_group(sb, group);
6906         mb_free_blocks(NULL, e4b, start, ex.fe_len);
6907         return ret;
6908 }
6909
6910 static ext4_grpblk_t ext4_last_grp_cluster(struct super_block *sb,
6911                                            ext4_group_t grp)
6912 {
6913         if (grp < ext4_get_groups_count(sb))
6914                 return EXT4_CLUSTERS_PER_GROUP(sb) - 1;
6915         return (ext4_blocks_count(EXT4_SB(sb)->s_es) -
6916                 ext4_group_first_block_no(sb, grp) - 1) >>
6917                                         EXT4_CLUSTER_BITS(sb);
6918 }
6919
6920 static bool ext4_trim_interrupted(void)
6921 {
6922         return fatal_signal_pending(current) || freezing(current);
6923 }
6924
6925 static int ext4_try_to_trim_range(struct super_block *sb,
6926                 struct ext4_buddy *e4b, ext4_grpblk_t start,
6927                 ext4_grpblk_t max, ext4_grpblk_t minblocks)
6928 __acquires(ext4_group_lock_ptr(sb, e4b->bd_group))
6929 __releases(ext4_group_lock_ptr(sb, e4b->bd_group))
6930 {
6931         ext4_grpblk_t next, count, free_count;
6932         bool set_trimmed = false;
6933         void *bitmap;
6934
6935         bitmap = e4b->bd_bitmap;
6936         if (start == 0 && max >= ext4_last_grp_cluster(sb, e4b->bd_group))
6937                 set_trimmed = true;
6938         start = max(e4b->bd_info->bb_first_free, start);
6939         count = 0;
6940         free_count = 0;
6941
6942         while (start <= max) {
6943                 start = mb_find_next_zero_bit(bitmap, max + 1, start);
6944                 if (start > max)
6945                         break;
6946                 next = mb_find_next_bit(bitmap, max + 1, start);
6947
6948                 if ((next - start) >= minblocks) {
6949                         int ret = ext4_trim_extent(sb, start, next - start, e4b);
6950
6951                         if (ret && ret != -EOPNOTSUPP)
6952                                 return count;
6953                         count += next - start;
6954                 }
6955                 free_count += next - start;
6956                 start = next + 1;
6957
6958                 if (ext4_trim_interrupted())
6959                         return count;
6960
6961                 if (need_resched()) {
6962                         ext4_unlock_group(sb, e4b->bd_group);
6963                         cond_resched();
6964                         ext4_lock_group(sb, e4b->bd_group);
6965                 }
6966
6967                 if ((e4b->bd_info->bb_free - free_count) < minblocks)
6968                         break;
6969         }
6970
6971         if (set_trimmed)
6972                 EXT4_MB_GRP_SET_TRIMMED(e4b->bd_info);
6973
6974         return count;
6975 }
6976
6977 /**
6978  * ext4_trim_all_free -- function to trim all free space in alloc. group
6979  * @sb:                 super block for file system
6980  * @group:              group to be trimmed
6981  * @start:              first group block to examine
6982  * @max:                last group block to examine
6983  * @minblocks:          minimum extent block count
6984  *
6985  * ext4_trim_all_free walks through group's block bitmap searching for free
6986  * extents. When the free extent is found, mark it as used in group buddy
6987  * bitmap. Then issue a TRIM command on this extent and free the extent in
6988  * the group buddy bitmap.
6989  */
6990 static ext4_grpblk_t
6991 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
6992                    ext4_grpblk_t start, ext4_grpblk_t max,
6993                    ext4_grpblk_t minblocks)
6994 {
6995         struct ext4_buddy e4b;
6996         int ret;
6997
6998         trace_ext4_trim_all_free(sb, group, start, max);
6999
7000         ret = ext4_mb_load_buddy(sb, group, &e4b);
7001         if (ret) {
7002                 ext4_warning(sb, "Error %d loading buddy information for %u",
7003                              ret, group);
7004                 return ret;
7005         }
7006
7007         ext4_lock_group(sb, group);
7008
7009         if (!EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) ||
7010             minblocks < EXT4_SB(sb)->s_last_trim_minblks)
7011                 ret = ext4_try_to_trim_range(sb, &e4b, start, max, minblocks);
7012         else
7013                 ret = 0;
7014
7015         ext4_unlock_group(sb, group);
7016         ext4_mb_unload_buddy(&e4b);
7017
7018         ext4_debug("trimmed %d blocks in the group %d\n",
7019                 ret, group);
7020
7021         return ret;
7022 }
7023
7024 /**
7025  * ext4_trim_fs() -- trim ioctl handle function
7026  * @sb:                 superblock for filesystem
7027  * @range:              fstrim_range structure
7028  *
7029  * start:       First Byte to trim
7030  * len:         number of Bytes to trim from start
7031  * minlen:      minimum extent length in Bytes
7032  * ext4_trim_fs goes through all allocation groups containing Bytes from
7033  * start to start+len. For each such a group ext4_trim_all_free function
7034  * is invoked to trim all free space.
7035  */
7036 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
7037 {
7038         unsigned int discard_granularity = bdev_discard_granularity(sb->s_bdev);
7039         struct ext4_group_info *grp;
7040         ext4_group_t group, first_group, last_group;
7041         ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
7042         uint64_t start, end, minlen, trimmed = 0;
7043         ext4_fsblk_t first_data_blk =
7044                         le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
7045         ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
7046         int ret = 0;
7047
7048         start = range->start >> sb->s_blocksize_bits;
7049         end = start + (range->len >> sb->s_blocksize_bits) - 1;
7050         minlen = EXT4_NUM_B2C(EXT4_SB(sb),
7051                               range->minlen >> sb->s_blocksize_bits);
7052
7053         if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
7054             start >= max_blks ||
7055             range->len < sb->s_blocksize)
7056                 return -EINVAL;
7057         /* No point to try to trim less than discard granularity */
7058         if (range->minlen < discard_granularity) {
7059                 minlen = EXT4_NUM_B2C(EXT4_SB(sb),
7060                                 discard_granularity >> sb->s_blocksize_bits);
7061                 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb))
7062                         goto out;
7063         }
7064         if (end >= max_blks - 1)
7065                 end = max_blks - 1;
7066         if (end <= first_data_blk)
7067                 goto out;
7068         if (start < first_data_blk)
7069                 start = first_data_blk;
7070
7071         /* Determine first and last group to examine based on start and end */
7072         ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
7073                                      &first_group, &first_cluster);
7074         ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
7075                                      &last_group, &last_cluster);
7076
7077         /* end now represents the last cluster to discard in this group */
7078         end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
7079
7080         for (group = first_group; group <= last_group; group++) {
7081                 if (ext4_trim_interrupted())
7082                         break;
7083                 grp = ext4_get_group_info(sb, group);
7084                 if (!grp)
7085                         continue;
7086                 /* We only do this if the grp has never been initialized */
7087                 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
7088                         ret = ext4_mb_init_group(sb, group, GFP_NOFS);
7089                         if (ret)
7090                                 break;
7091                 }
7092
7093                 /*
7094                  * For all the groups except the last one, last cluster will
7095                  * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
7096                  * change it for the last group, note that last_cluster is
7097                  * already computed earlier by ext4_get_group_no_and_offset()
7098                  */
7099                 if (group == last_group)
7100                         end = last_cluster;
7101                 if (grp->bb_free >= minlen) {
7102                         cnt = ext4_trim_all_free(sb, group, first_cluster,
7103                                                  end, minlen);
7104                         if (cnt < 0) {
7105                                 ret = cnt;
7106                                 break;
7107                         }
7108                         trimmed += cnt;
7109                 }
7110
7111                 /*
7112                  * For every group except the first one, we are sure
7113                  * that the first cluster to discard will be cluster #0.
7114                  */
7115                 first_cluster = 0;
7116         }
7117
7118         if (!ret)
7119                 EXT4_SB(sb)->s_last_trim_minblks = minlen;
7120
7121 out:
7122         range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
7123         return ret;
7124 }
7125
7126 /* Iterate all the free extents in the group. */
7127 int
7128 ext4_mballoc_query_range(
7129         struct super_block              *sb,
7130         ext4_group_t                    group,
7131         ext4_grpblk_t                   start,
7132         ext4_grpblk_t                   end,
7133         ext4_mballoc_query_range_fn     formatter,
7134         void                            *priv)
7135 {
7136         void                            *bitmap;
7137         ext4_grpblk_t                   next;
7138         struct ext4_buddy               e4b;
7139         int                             error;
7140
7141         error = ext4_mb_load_buddy(sb, group, &e4b);
7142         if (error)
7143                 return error;
7144         bitmap = e4b.bd_bitmap;
7145
7146         ext4_lock_group(sb, group);
7147
7148         start = max(e4b.bd_info->bb_first_free, start);
7149         if (end >= EXT4_CLUSTERS_PER_GROUP(sb))
7150                 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
7151
7152         while (start <= end) {
7153                 start = mb_find_next_zero_bit(bitmap, end + 1, start);
7154                 if (start > end)
7155                         break;
7156                 next = mb_find_next_bit(bitmap, end + 1, start);
7157
7158                 ext4_unlock_group(sb, group);
7159                 error = formatter(sb, group, start, next - start, priv);
7160                 if (error)
7161                         goto out_unload;
7162                 ext4_lock_group(sb, group);
7163
7164                 start = next + 1;
7165         }
7166
7167         ext4_unlock_group(sb, group);
7168 out_unload:
7169         ext4_mb_unload_buddy(&e4b);
7170
7171         return error;
7172 }