erofs: fix up compacted indexes for block size < 4096
[platform/kernel/linux-starfive.git] / fs / ext4 / mballoc.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
4  * Written by Alex Tomas <alex@clusterfs.com>
5  */
6
7
8 /*
9  * mballoc.c contains the multiblocks allocation routines
10  */
11
12 #include "ext4_jbd2.h"
13 #include "mballoc.h"
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/nospec.h>
18 #include <linux/backing-dev.h>
19 #include <linux/freezer.h>
20 #include <trace/events/ext4.h>
21
22 /*
23  * MUSTDO:
24  *   - test ext4_ext_search_left() and ext4_ext_search_right()
25  *   - search for metadata in few groups
26  *
27  * TODO v4:
28  *   - normalization should take into account whether file is still open
29  *   - discard preallocations if no free space left (policy?)
30  *   - don't normalize tails
31  *   - quota
32  *   - reservation for superuser
33  *
34  * TODO v3:
35  *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
36  *   - track min/max extents in each group for better group selection
37  *   - mb_mark_used() may allocate chunk right after splitting buddy
38  *   - tree of groups sorted by number of free blocks
39  *   - error handling
40  */
41
42 /*
43  * The allocation request involve request for multiple number of blocks
44  * near to the goal(block) value specified.
45  *
46  * During initialization phase of the allocator we decide to use the
47  * group preallocation or inode preallocation depending on the size of
48  * the file. The size of the file could be the resulting file size we
49  * would have after allocation, or the current file size, which ever
50  * is larger. If the size is less than sbi->s_mb_stream_request we
51  * select to use the group preallocation. The default value of
52  * s_mb_stream_request is 16 blocks. This can also be tuned via
53  * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
54  * terms of number of blocks.
55  *
56  * The main motivation for having small file use group preallocation is to
57  * ensure that we have small files closer together on the disk.
58  *
59  * First stage the allocator looks at the inode prealloc list,
60  * ext4_inode_info->i_prealloc_list, which contains list of prealloc
61  * spaces for this particular inode. The inode prealloc space is
62  * represented as:
63  *
64  * pa_lstart -> the logical start block for this prealloc space
65  * pa_pstart -> the physical start block for this prealloc space
66  * pa_len    -> length for this prealloc space (in clusters)
67  * pa_free   ->  free space available in this prealloc space (in clusters)
68  *
69  * The inode preallocation space is used looking at the _logical_ start
70  * block. If only the logical file block falls within the range of prealloc
71  * space we will consume the particular prealloc space. This makes sure that
72  * we have contiguous physical blocks representing the file blocks
73  *
74  * The important thing to be noted in case of inode prealloc space is that
75  * we don't modify the values associated to inode prealloc space except
76  * pa_free.
77  *
78  * If we are not able to find blocks in the inode prealloc space and if we
79  * have the group allocation flag set then we look at the locality group
80  * prealloc space. These are per CPU prealloc list represented as
81  *
82  * ext4_sb_info.s_locality_groups[smp_processor_id()]
83  *
84  * The reason for having a per cpu locality group is to reduce the contention
85  * between CPUs. It is possible to get scheduled at this point.
86  *
87  * The locality group prealloc space is used looking at whether we have
88  * enough free space (pa_free) within the prealloc space.
89  *
90  * If we can't allocate blocks via inode prealloc or/and locality group
91  * prealloc then we look at the buddy cache. The buddy cache is represented
92  * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
93  * mapped to the buddy and bitmap information regarding different
94  * groups. The buddy information is attached to buddy cache inode so that
95  * we can access them through the page cache. The information regarding
96  * each group is loaded via ext4_mb_load_buddy.  The information involve
97  * block bitmap and buddy information. The information are stored in the
98  * inode as:
99  *
100  *  {                        page                        }
101  *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
102  *
103  *
104  * one block each for bitmap and buddy information.  So for each group we
105  * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
106  * blocksize) blocks.  So it can have information regarding groups_per_page
107  * which is blocks_per_page/2
108  *
109  * The buddy cache inode is not stored on disk. The inode is thrown
110  * away when the filesystem is unmounted.
111  *
112  * We look for count number of blocks in the buddy cache. If we were able
113  * to locate that many free blocks we return with additional information
114  * regarding rest of the contiguous physical block available
115  *
116  * Before allocating blocks via buddy cache we normalize the request
117  * blocks. This ensure we ask for more blocks that we needed. The extra
118  * blocks that we get after allocation is added to the respective prealloc
119  * list. In case of inode preallocation we follow a list of heuristics
120  * based on file size. This can be found in ext4_mb_normalize_request. If
121  * we are doing a group prealloc we try to normalize the request to
122  * sbi->s_mb_group_prealloc.  The default value of s_mb_group_prealloc is
123  * dependent on the cluster size; for non-bigalloc file systems, it is
124  * 512 blocks. This can be tuned via
125  * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
126  * terms of number of blocks. If we have mounted the file system with -O
127  * stripe=<value> option the group prealloc request is normalized to the
128  * smallest multiple of the stripe value (sbi->s_stripe) which is
129  * greater than the default mb_group_prealloc.
130  *
131  * If "mb_optimize_scan" mount option is set, we maintain in memory group info
132  * structures in two data structures:
133  *
134  * 1) Array of largest free order lists (sbi->s_mb_largest_free_orders)
135  *
136  *    Locking: sbi->s_mb_largest_free_orders_locks(array of rw locks)
137  *
138  *    This is an array of lists where the index in the array represents the
139  *    largest free order in the buddy bitmap of the participating group infos of
140  *    that list. So, there are exactly MB_NUM_ORDERS(sb) (which means total
141  *    number of buddy bitmap orders possible) number of lists. Group-infos are
142  *    placed in appropriate lists.
143  *
144  * 2) Average fragment size lists (sbi->s_mb_avg_fragment_size)
145  *
146  *    Locking: sbi->s_mb_avg_fragment_size_locks(array of rw locks)
147  *
148  *    This is an array of lists where in the i-th list there are groups with
149  *    average fragment size >= 2^i and < 2^(i+1). The average fragment size
150  *    is computed as ext4_group_info->bb_free / ext4_group_info->bb_fragments.
151  *    Note that we don't bother with a special list for completely empty groups
152  *    so we only have MB_NUM_ORDERS(sb) lists.
153  *
154  * When "mb_optimize_scan" mount option is set, mballoc consults the above data
155  * structures to decide the order in which groups are to be traversed for
156  * fulfilling an allocation request.
157  *
158  * At CR_POWER2_ALIGNED , we look for groups which have the largest_free_order
159  * >= the order of the request. We directly look at the largest free order list
160  * in the data structure (1) above where largest_free_order = order of the
161  * request. If that list is empty, we look at remaining list in the increasing
162  * order of largest_free_order. This allows us to perform CR_POWER2_ALIGNED
163  * lookup in O(1) time.
164  *
165  * At CR_GOAL_LEN_FAST, we only consider groups where
166  * average fragment size > request size. So, we lookup a group which has average
167  * fragment size just above or equal to request size using our average fragment
168  * size group lists (data structure 2) in O(1) time.
169  *
170  * At CR_BEST_AVAIL_LEN, we aim to optimize allocations which can't be satisfied
171  * in CR_GOAL_LEN_FAST. The fact that we couldn't find a group in
172  * CR_GOAL_LEN_FAST suggests that there is no BG that has avg
173  * fragment size > goal length. So before falling to the slower
174  * CR_GOAL_LEN_SLOW, in CR_BEST_AVAIL_LEN we proactively trim goal length and
175  * then use the same fragment lists as CR_GOAL_LEN_FAST to find a BG with a big
176  * enough average fragment size. This increases the chances of finding a
177  * suitable block group in O(1) time and results in faster allocation at the
178  * cost of reduced size of allocation.
179  *
180  * If "mb_optimize_scan" mount option is not set, mballoc traverses groups in
181  * linear order which requires O(N) search time for each CR_POWER2_ALIGNED and
182  * CR_GOAL_LEN_FAST phase.
183  *
184  * The regular allocator (using the buddy cache) supports a few tunables.
185  *
186  * /sys/fs/ext4/<partition>/mb_min_to_scan
187  * /sys/fs/ext4/<partition>/mb_max_to_scan
188  * /sys/fs/ext4/<partition>/mb_order2_req
189  * /sys/fs/ext4/<partition>/mb_linear_limit
190  *
191  * The regular allocator uses buddy scan only if the request len is power of
192  * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
193  * value of s_mb_order2_reqs can be tuned via
194  * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
195  * stripe size (sbi->s_stripe), we try to search for contiguous block in
196  * stripe size. This should result in better allocation on RAID setups. If
197  * not, we search in the specific group using bitmap for best extents. The
198  * tunable min_to_scan and max_to_scan control the behaviour here.
199  * min_to_scan indicate how long the mballoc __must__ look for a best
200  * extent and max_to_scan indicates how long the mballoc __can__ look for a
201  * best extent in the found extents. Searching for the blocks starts with
202  * the group specified as the goal value in allocation context via
203  * ac_g_ex. Each group is first checked based on the criteria whether it
204  * can be used for allocation. ext4_mb_good_group explains how the groups are
205  * checked.
206  *
207  * When "mb_optimize_scan" is turned on, as mentioned above, the groups may not
208  * get traversed linearly. That may result in subsequent allocations being not
209  * close to each other. And so, the underlying device may get filled up in a
210  * non-linear fashion. While that may not matter on non-rotational devices, for
211  * rotational devices that may result in higher seek times. "mb_linear_limit"
212  * tells mballoc how many groups mballoc should search linearly before
213  * performing consulting above data structures for more efficient lookups. For
214  * non rotational devices, this value defaults to 0 and for rotational devices
215  * this is set to MB_DEFAULT_LINEAR_LIMIT.
216  *
217  * Both the prealloc space are getting populated as above. So for the first
218  * request we will hit the buddy cache which will result in this prealloc
219  * space getting filled. The prealloc space is then later used for the
220  * subsequent request.
221  */
222
223 /*
224  * mballoc operates on the following data:
225  *  - on-disk bitmap
226  *  - in-core buddy (actually includes buddy and bitmap)
227  *  - preallocation descriptors (PAs)
228  *
229  * there are two types of preallocations:
230  *  - inode
231  *    assiged to specific inode and can be used for this inode only.
232  *    it describes part of inode's space preallocated to specific
233  *    physical blocks. any block from that preallocated can be used
234  *    independent. the descriptor just tracks number of blocks left
235  *    unused. so, before taking some block from descriptor, one must
236  *    make sure corresponded logical block isn't allocated yet. this
237  *    also means that freeing any block within descriptor's range
238  *    must discard all preallocated blocks.
239  *  - locality group
240  *    assigned to specific locality group which does not translate to
241  *    permanent set of inodes: inode can join and leave group. space
242  *    from this type of preallocation can be used for any inode. thus
243  *    it's consumed from the beginning to the end.
244  *
245  * relation between them can be expressed as:
246  *    in-core buddy = on-disk bitmap + preallocation descriptors
247  *
248  * this mean blocks mballoc considers used are:
249  *  - allocated blocks (persistent)
250  *  - preallocated blocks (non-persistent)
251  *
252  * consistency in mballoc world means that at any time a block is either
253  * free or used in ALL structures. notice: "any time" should not be read
254  * literally -- time is discrete and delimited by locks.
255  *
256  *  to keep it simple, we don't use block numbers, instead we count number of
257  *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
258  *
259  * all operations can be expressed as:
260  *  - init buddy:                       buddy = on-disk + PAs
261  *  - new PA:                           buddy += N; PA = N
262  *  - use inode PA:                     on-disk += N; PA -= N
263  *  - discard inode PA                  buddy -= on-disk - PA; PA = 0
264  *  - use locality group PA             on-disk += N; PA -= N
265  *  - discard locality group PA         buddy -= PA; PA = 0
266  *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
267  *        is used in real operation because we can't know actual used
268  *        bits from PA, only from on-disk bitmap
269  *
270  * if we follow this strict logic, then all operations above should be atomic.
271  * given some of them can block, we'd have to use something like semaphores
272  * killing performance on high-end SMP hardware. let's try to relax it using
273  * the following knowledge:
274  *  1) if buddy is referenced, it's already initialized
275  *  2) while block is used in buddy and the buddy is referenced,
276  *     nobody can re-allocate that block
277  *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
278  *     bit set and PA claims same block, it's OK. IOW, one can set bit in
279  *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
280  *     block
281  *
282  * so, now we're building a concurrency table:
283  *  - init buddy vs.
284  *    - new PA
285  *      blocks for PA are allocated in the buddy, buddy must be referenced
286  *      until PA is linked to allocation group to avoid concurrent buddy init
287  *    - use inode PA
288  *      we need to make sure that either on-disk bitmap or PA has uptodate data
289  *      given (3) we care that PA-=N operation doesn't interfere with init
290  *    - discard inode PA
291  *      the simplest way would be to have buddy initialized by the discard
292  *    - use locality group PA
293  *      again PA-=N must be serialized with init
294  *    - discard locality group PA
295  *      the simplest way would be to have buddy initialized by the discard
296  *  - new PA vs.
297  *    - use inode PA
298  *      i_data_sem serializes them
299  *    - discard inode PA
300  *      discard process must wait until PA isn't used by another process
301  *    - use locality group PA
302  *      some mutex should serialize them
303  *    - discard locality group PA
304  *      discard process must wait until PA isn't used by another process
305  *  - use inode PA
306  *    - use inode PA
307  *      i_data_sem or another mutex should serializes them
308  *    - discard inode PA
309  *      discard process must wait until PA isn't used by another process
310  *    - use locality group PA
311  *      nothing wrong here -- they're different PAs covering different blocks
312  *    - discard locality group PA
313  *      discard process must wait until PA isn't used by another process
314  *
315  * now we're ready to make few consequences:
316  *  - PA is referenced and while it is no discard is possible
317  *  - PA is referenced until block isn't marked in on-disk bitmap
318  *  - PA changes only after on-disk bitmap
319  *  - discard must not compete with init. either init is done before
320  *    any discard or they're serialized somehow
321  *  - buddy init as sum of on-disk bitmap and PAs is done atomically
322  *
323  * a special case when we've used PA to emptiness. no need to modify buddy
324  * in this case, but we should care about concurrent init
325  *
326  */
327
328  /*
329  * Logic in few words:
330  *
331  *  - allocation:
332  *    load group
333  *    find blocks
334  *    mark bits in on-disk bitmap
335  *    release group
336  *
337  *  - use preallocation:
338  *    find proper PA (per-inode or group)
339  *    load group
340  *    mark bits in on-disk bitmap
341  *    release group
342  *    release PA
343  *
344  *  - free:
345  *    load group
346  *    mark bits in on-disk bitmap
347  *    release group
348  *
349  *  - discard preallocations in group:
350  *    mark PAs deleted
351  *    move them onto local list
352  *    load on-disk bitmap
353  *    load group
354  *    remove PA from object (inode or locality group)
355  *    mark free blocks in-core
356  *
357  *  - discard inode's preallocations:
358  */
359
360 /*
361  * Locking rules
362  *
363  * Locks:
364  *  - bitlock on a group        (group)
365  *  - object (inode/locality)   (object)
366  *  - per-pa lock               (pa)
367  *  - cr_power2_aligned lists lock      (cr_power2_aligned)
368  *  - cr_goal_len_fast lists lock       (cr_goal_len_fast)
369  *
370  * Paths:
371  *  - new pa
372  *    object
373  *    group
374  *
375  *  - find and use pa:
376  *    pa
377  *
378  *  - release consumed pa:
379  *    pa
380  *    group
381  *    object
382  *
383  *  - generate in-core bitmap:
384  *    group
385  *        pa
386  *
387  *  - discard all for given object (inode, locality group):
388  *    object
389  *        pa
390  *    group
391  *
392  *  - discard all for given group:
393  *    group
394  *        pa
395  *    group
396  *        object
397  *
398  *  - allocation path (ext4_mb_regular_allocator)
399  *    group
400  *    cr_power2_aligned/cr_goal_len_fast
401  */
402 static struct kmem_cache *ext4_pspace_cachep;
403 static struct kmem_cache *ext4_ac_cachep;
404 static struct kmem_cache *ext4_free_data_cachep;
405
406 /* We create slab caches for groupinfo data structures based on the
407  * superblock block size.  There will be one per mounted filesystem for
408  * each unique s_blocksize_bits */
409 #define NR_GRPINFO_CACHES 8
410 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
411
412 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
413         "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
414         "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
415         "ext4_groupinfo_64k", "ext4_groupinfo_128k"
416 };
417
418 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
419                                         ext4_group_t group);
420 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac);
421
422 static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
423                                ext4_group_t group, enum criteria cr);
424
425 static int ext4_try_to_trim_range(struct super_block *sb,
426                 struct ext4_buddy *e4b, ext4_grpblk_t start,
427                 ext4_grpblk_t max, ext4_grpblk_t minblocks);
428
429 /*
430  * The algorithm using this percpu seq counter goes below:
431  * 1. We sample the percpu discard_pa_seq counter before trying for block
432  *    allocation in ext4_mb_new_blocks().
433  * 2. We increment this percpu discard_pa_seq counter when we either allocate
434  *    or free these blocks i.e. while marking those blocks as used/free in
435  *    mb_mark_used()/mb_free_blocks().
436  * 3. We also increment this percpu seq counter when we successfully identify
437  *    that the bb_prealloc_list is not empty and hence proceed for discarding
438  *    of those PAs inside ext4_mb_discard_group_preallocations().
439  *
440  * Now to make sure that the regular fast path of block allocation is not
441  * affected, as a small optimization we only sample the percpu seq counter
442  * on that cpu. Only when the block allocation fails and when freed blocks
443  * found were 0, that is when we sample percpu seq counter for all cpus using
444  * below function ext4_get_discard_pa_seq_sum(). This happens after making
445  * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty.
446  */
447 static DEFINE_PER_CPU(u64, discard_pa_seq);
448 static inline u64 ext4_get_discard_pa_seq_sum(void)
449 {
450         int __cpu;
451         u64 __seq = 0;
452
453         for_each_possible_cpu(__cpu)
454                 __seq += per_cpu(discard_pa_seq, __cpu);
455         return __seq;
456 }
457
458 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
459 {
460 #if BITS_PER_LONG == 64
461         *bit += ((unsigned long) addr & 7UL) << 3;
462         addr = (void *) ((unsigned long) addr & ~7UL);
463 #elif BITS_PER_LONG == 32
464         *bit += ((unsigned long) addr & 3UL) << 3;
465         addr = (void *) ((unsigned long) addr & ~3UL);
466 #else
467 #error "how many bits you are?!"
468 #endif
469         return addr;
470 }
471
472 static inline int mb_test_bit(int bit, void *addr)
473 {
474         /*
475          * ext4_test_bit on architecture like powerpc
476          * needs unsigned long aligned address
477          */
478         addr = mb_correct_addr_and_bit(&bit, addr);
479         return ext4_test_bit(bit, addr);
480 }
481
482 static inline void mb_set_bit(int bit, void *addr)
483 {
484         addr = mb_correct_addr_and_bit(&bit, addr);
485         ext4_set_bit(bit, addr);
486 }
487
488 static inline void mb_clear_bit(int bit, void *addr)
489 {
490         addr = mb_correct_addr_and_bit(&bit, addr);
491         ext4_clear_bit(bit, addr);
492 }
493
494 static inline int mb_test_and_clear_bit(int bit, void *addr)
495 {
496         addr = mb_correct_addr_and_bit(&bit, addr);
497         return ext4_test_and_clear_bit(bit, addr);
498 }
499
500 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
501 {
502         int fix = 0, ret, tmpmax;
503         addr = mb_correct_addr_and_bit(&fix, addr);
504         tmpmax = max + fix;
505         start += fix;
506
507         ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
508         if (ret > max)
509                 return max;
510         return ret;
511 }
512
513 static inline int mb_find_next_bit(void *addr, int max, int start)
514 {
515         int fix = 0, ret, tmpmax;
516         addr = mb_correct_addr_and_bit(&fix, addr);
517         tmpmax = max + fix;
518         start += fix;
519
520         ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
521         if (ret > max)
522                 return max;
523         return ret;
524 }
525
526 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
527 {
528         char *bb;
529
530         BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
531         BUG_ON(max == NULL);
532
533         if (order > e4b->bd_blkbits + 1) {
534                 *max = 0;
535                 return NULL;
536         }
537
538         /* at order 0 we see each particular block */
539         if (order == 0) {
540                 *max = 1 << (e4b->bd_blkbits + 3);
541                 return e4b->bd_bitmap;
542         }
543
544         bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
545         *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
546
547         return bb;
548 }
549
550 #ifdef DOUBLE_CHECK
551 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
552                            int first, int count)
553 {
554         int i;
555         struct super_block *sb = e4b->bd_sb;
556
557         if (unlikely(e4b->bd_info->bb_bitmap == NULL))
558                 return;
559         assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
560         for (i = 0; i < count; i++) {
561                 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
562                         ext4_fsblk_t blocknr;
563
564                         blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
565                         blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
566                         ext4_grp_locked_error(sb, e4b->bd_group,
567                                               inode ? inode->i_ino : 0,
568                                               blocknr,
569                                               "freeing block already freed "
570                                               "(bit %u)",
571                                               first + i);
572                         ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
573                                         EXT4_GROUP_INFO_BBITMAP_CORRUPT);
574                 }
575                 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
576         }
577 }
578
579 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
580 {
581         int i;
582
583         if (unlikely(e4b->bd_info->bb_bitmap == NULL))
584                 return;
585         assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
586         for (i = 0; i < count; i++) {
587                 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
588                 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
589         }
590 }
591
592 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
593 {
594         if (unlikely(e4b->bd_info->bb_bitmap == NULL))
595                 return;
596         if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
597                 unsigned char *b1, *b2;
598                 int i;
599                 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
600                 b2 = (unsigned char *) bitmap;
601                 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
602                         if (b1[i] != b2[i]) {
603                                 ext4_msg(e4b->bd_sb, KERN_ERR,
604                                          "corruption in group %u "
605                                          "at byte %u(%u): %x in copy != %x "
606                                          "on disk/prealloc",
607                                          e4b->bd_group, i, i * 8, b1[i], b2[i]);
608                                 BUG();
609                         }
610                 }
611         }
612 }
613
614 static void mb_group_bb_bitmap_alloc(struct super_block *sb,
615                         struct ext4_group_info *grp, ext4_group_t group)
616 {
617         struct buffer_head *bh;
618
619         grp->bb_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS);
620         if (!grp->bb_bitmap)
621                 return;
622
623         bh = ext4_read_block_bitmap(sb, group);
624         if (IS_ERR_OR_NULL(bh)) {
625                 kfree(grp->bb_bitmap);
626                 grp->bb_bitmap = NULL;
627                 return;
628         }
629
630         memcpy(grp->bb_bitmap, bh->b_data, sb->s_blocksize);
631         put_bh(bh);
632 }
633
634 static void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
635 {
636         kfree(grp->bb_bitmap);
637 }
638
639 #else
640 static inline void mb_free_blocks_double(struct inode *inode,
641                                 struct ext4_buddy *e4b, int first, int count)
642 {
643         return;
644 }
645 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
646                                                 int first, int count)
647 {
648         return;
649 }
650 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
651 {
652         return;
653 }
654
655 static inline void mb_group_bb_bitmap_alloc(struct super_block *sb,
656                         struct ext4_group_info *grp, ext4_group_t group)
657 {
658         return;
659 }
660
661 static inline void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
662 {
663         return;
664 }
665 #endif
666
667 #ifdef AGGRESSIVE_CHECK
668
669 #define MB_CHECK_ASSERT(assert)                                         \
670 do {                                                                    \
671         if (!(assert)) {                                                \
672                 printk(KERN_EMERG                                       \
673                         "Assertion failure in %s() at %s:%d: \"%s\"\n", \
674                         function, file, line, # assert);                \
675                 BUG();                                                  \
676         }                                                               \
677 } while (0)
678
679 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
680                                 const char *function, int line)
681 {
682         struct super_block *sb = e4b->bd_sb;
683         int order = e4b->bd_blkbits + 1;
684         int max;
685         int max2;
686         int i;
687         int j;
688         int k;
689         int count;
690         struct ext4_group_info *grp;
691         int fragments = 0;
692         int fstart;
693         struct list_head *cur;
694         void *buddy;
695         void *buddy2;
696
697         if (e4b->bd_info->bb_check_counter++ % 10)
698                 return 0;
699
700         while (order > 1) {
701                 buddy = mb_find_buddy(e4b, order, &max);
702                 MB_CHECK_ASSERT(buddy);
703                 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
704                 MB_CHECK_ASSERT(buddy2);
705                 MB_CHECK_ASSERT(buddy != buddy2);
706                 MB_CHECK_ASSERT(max * 2 == max2);
707
708                 count = 0;
709                 for (i = 0; i < max; i++) {
710
711                         if (mb_test_bit(i, buddy)) {
712                                 /* only single bit in buddy2 may be 0 */
713                                 if (!mb_test_bit(i << 1, buddy2)) {
714                                         MB_CHECK_ASSERT(
715                                                 mb_test_bit((i<<1)+1, buddy2));
716                                 }
717                                 continue;
718                         }
719
720                         /* both bits in buddy2 must be 1 */
721                         MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
722                         MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
723
724                         for (j = 0; j < (1 << order); j++) {
725                                 k = (i * (1 << order)) + j;
726                                 MB_CHECK_ASSERT(
727                                         !mb_test_bit(k, e4b->bd_bitmap));
728                         }
729                         count++;
730                 }
731                 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
732                 order--;
733         }
734
735         fstart = -1;
736         buddy = mb_find_buddy(e4b, 0, &max);
737         for (i = 0; i < max; i++) {
738                 if (!mb_test_bit(i, buddy)) {
739                         MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
740                         if (fstart == -1) {
741                                 fragments++;
742                                 fstart = i;
743                         }
744                         continue;
745                 }
746                 fstart = -1;
747                 /* check used bits only */
748                 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
749                         buddy2 = mb_find_buddy(e4b, j, &max2);
750                         k = i >> j;
751                         MB_CHECK_ASSERT(k < max2);
752                         MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
753                 }
754         }
755         MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
756         MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
757
758         grp = ext4_get_group_info(sb, e4b->bd_group);
759         if (!grp)
760                 return NULL;
761         list_for_each(cur, &grp->bb_prealloc_list) {
762                 ext4_group_t groupnr;
763                 struct ext4_prealloc_space *pa;
764                 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
765                 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
766                 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
767                 for (i = 0; i < pa->pa_len; i++)
768                         MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
769         }
770         return 0;
771 }
772 #undef MB_CHECK_ASSERT
773 #define mb_check_buddy(e4b) __mb_check_buddy(e4b,       \
774                                         __FILE__, __func__, __LINE__)
775 #else
776 #define mb_check_buddy(e4b)
777 #endif
778
779 /*
780  * Divide blocks started from @first with length @len into
781  * smaller chunks with power of 2 blocks.
782  * Clear the bits in bitmap which the blocks of the chunk(s) covered,
783  * then increase bb_counters[] for corresponded chunk size.
784  */
785 static void ext4_mb_mark_free_simple(struct super_block *sb,
786                                 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
787                                         struct ext4_group_info *grp)
788 {
789         struct ext4_sb_info *sbi = EXT4_SB(sb);
790         ext4_grpblk_t min;
791         ext4_grpblk_t max;
792         ext4_grpblk_t chunk;
793         unsigned int border;
794
795         BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
796
797         border = 2 << sb->s_blocksize_bits;
798
799         while (len > 0) {
800                 /* find how many blocks can be covered since this position */
801                 max = ffs(first | border) - 1;
802
803                 /* find how many blocks of power 2 we need to mark */
804                 min = fls(len) - 1;
805
806                 if (max < min)
807                         min = max;
808                 chunk = 1 << min;
809
810                 /* mark multiblock chunks only */
811                 grp->bb_counters[min]++;
812                 if (min > 0)
813                         mb_clear_bit(first >> min,
814                                      buddy + sbi->s_mb_offsets[min]);
815
816                 len -= chunk;
817                 first += chunk;
818         }
819 }
820
821 static int mb_avg_fragment_size_order(struct super_block *sb, ext4_grpblk_t len)
822 {
823         int order;
824
825         /*
826          * We don't bother with a special lists groups with only 1 block free
827          * extents and for completely empty groups.
828          */
829         order = fls(len) - 2;
830         if (order < 0)
831                 return 0;
832         if (order == MB_NUM_ORDERS(sb))
833                 order--;
834         return order;
835 }
836
837 /* Move group to appropriate avg_fragment_size list */
838 static void
839 mb_update_avg_fragment_size(struct super_block *sb, struct ext4_group_info *grp)
840 {
841         struct ext4_sb_info *sbi = EXT4_SB(sb);
842         int new_order;
843
844         if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || grp->bb_free == 0)
845                 return;
846
847         new_order = mb_avg_fragment_size_order(sb,
848                                         grp->bb_free / grp->bb_fragments);
849         if (new_order == grp->bb_avg_fragment_size_order)
850                 return;
851
852         if (grp->bb_avg_fragment_size_order != -1) {
853                 write_lock(&sbi->s_mb_avg_fragment_size_locks[
854                                         grp->bb_avg_fragment_size_order]);
855                 list_del(&grp->bb_avg_fragment_size_node);
856                 write_unlock(&sbi->s_mb_avg_fragment_size_locks[
857                                         grp->bb_avg_fragment_size_order]);
858         }
859         grp->bb_avg_fragment_size_order = new_order;
860         write_lock(&sbi->s_mb_avg_fragment_size_locks[
861                                         grp->bb_avg_fragment_size_order]);
862         list_add_tail(&grp->bb_avg_fragment_size_node,
863                 &sbi->s_mb_avg_fragment_size[grp->bb_avg_fragment_size_order]);
864         write_unlock(&sbi->s_mb_avg_fragment_size_locks[
865                                         grp->bb_avg_fragment_size_order]);
866 }
867
868 /*
869  * Choose next group by traversing largest_free_order lists. Updates *new_cr if
870  * cr level needs an update.
871  */
872 static void ext4_mb_choose_next_group_p2_aligned(struct ext4_allocation_context *ac,
873                         enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups)
874 {
875         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
876         struct ext4_group_info *iter;
877         int i;
878
879         if (ac->ac_status == AC_STATUS_FOUND)
880                 return;
881
882         if (unlikely(sbi->s_mb_stats && ac->ac_flags & EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED))
883                 atomic_inc(&sbi->s_bal_p2_aligned_bad_suggestions);
884
885         for (i = ac->ac_2order; i < MB_NUM_ORDERS(ac->ac_sb); i++) {
886                 if (list_empty(&sbi->s_mb_largest_free_orders[i]))
887                         continue;
888                 read_lock(&sbi->s_mb_largest_free_orders_locks[i]);
889                 if (list_empty(&sbi->s_mb_largest_free_orders[i])) {
890                         read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
891                         continue;
892                 }
893                 list_for_each_entry(iter, &sbi->s_mb_largest_free_orders[i],
894                                     bb_largest_free_order_node) {
895                         if (sbi->s_mb_stats)
896                                 atomic64_inc(&sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED]);
897                         if (likely(ext4_mb_good_group(ac, iter->bb_group, CR_POWER2_ALIGNED))) {
898                                 *group = iter->bb_group;
899                                 ac->ac_flags |= EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED;
900                                 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
901                                 return;
902                         }
903                 }
904                 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
905         }
906
907         /* Increment cr and search again if no group is found */
908         *new_cr = CR_GOAL_LEN_FAST;
909 }
910
911 /*
912  * Find a suitable group of given order from the average fragments list.
913  */
914 static struct ext4_group_info *
915 ext4_mb_find_good_group_avg_frag_lists(struct ext4_allocation_context *ac, int order)
916 {
917         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
918         struct list_head *frag_list = &sbi->s_mb_avg_fragment_size[order];
919         rwlock_t *frag_list_lock = &sbi->s_mb_avg_fragment_size_locks[order];
920         struct ext4_group_info *grp = NULL, *iter;
921         enum criteria cr = ac->ac_criteria;
922
923         if (list_empty(frag_list))
924                 return NULL;
925         read_lock(frag_list_lock);
926         if (list_empty(frag_list)) {
927                 read_unlock(frag_list_lock);
928                 return NULL;
929         }
930         list_for_each_entry(iter, frag_list, bb_avg_fragment_size_node) {
931                 if (sbi->s_mb_stats)
932                         atomic64_inc(&sbi->s_bal_cX_groups_considered[cr]);
933                 if (likely(ext4_mb_good_group(ac, iter->bb_group, cr))) {
934                         grp = iter;
935                         break;
936                 }
937         }
938         read_unlock(frag_list_lock);
939         return grp;
940 }
941
942 /*
943  * Choose next group by traversing average fragment size list of suitable
944  * order. Updates *new_cr if cr level needs an update.
945  */
946 static void ext4_mb_choose_next_group_goal_fast(struct ext4_allocation_context *ac,
947                 enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups)
948 {
949         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
950         struct ext4_group_info *grp = NULL;
951         int i;
952
953         if (unlikely(ac->ac_flags & EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED)) {
954                 if (sbi->s_mb_stats)
955                         atomic_inc(&sbi->s_bal_goal_fast_bad_suggestions);
956         }
957
958         for (i = mb_avg_fragment_size_order(ac->ac_sb, ac->ac_g_ex.fe_len);
959              i < MB_NUM_ORDERS(ac->ac_sb); i++) {
960                 grp = ext4_mb_find_good_group_avg_frag_lists(ac, i);
961                 if (grp) {
962                         *group = grp->bb_group;
963                         ac->ac_flags |= EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED;
964                         return;
965                 }
966         }
967
968         /*
969          * CR_BEST_AVAIL_LEN works based on the concept that we have
970          * a larger normalized goal len request which can be trimmed to
971          * a smaller goal len such that it can still satisfy original
972          * request len. However, allocation request for non-regular
973          * files never gets normalized.
974          * See function ext4_mb_normalize_request() (EXT4_MB_HINT_DATA).
975          */
976         if (ac->ac_flags & EXT4_MB_HINT_DATA)
977                 *new_cr = CR_BEST_AVAIL_LEN;
978         else
979                 *new_cr = CR_GOAL_LEN_SLOW;
980 }
981
982 /*
983  * We couldn't find a group in CR_GOAL_LEN_FAST so try to find the highest free fragment
984  * order we have and proactively trim the goal request length to that order to
985  * find a suitable group faster.
986  *
987  * This optimizes allocation speed at the cost of slightly reduced
988  * preallocations. However, we make sure that we don't trim the request too
989  * much and fall to CR_GOAL_LEN_SLOW in that case.
990  */
991 static void ext4_mb_choose_next_group_best_avail(struct ext4_allocation_context *ac,
992                 enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups)
993 {
994         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
995         struct ext4_group_info *grp = NULL;
996         int i, order, min_order;
997         unsigned long num_stripe_clusters = 0;
998
999         if (unlikely(ac->ac_flags & EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED)) {
1000                 if (sbi->s_mb_stats)
1001                         atomic_inc(&sbi->s_bal_best_avail_bad_suggestions);
1002         }
1003
1004         /*
1005          * mb_avg_fragment_size_order() returns order in a way that makes
1006          * retrieving back the length using (1 << order) inaccurate. Hence, use
1007          * fls() instead since we need to know the actual length while modifying
1008          * goal length.
1009          */
1010         order = fls(ac->ac_g_ex.fe_len) - 1;
1011         min_order = order - sbi->s_mb_best_avail_max_trim_order;
1012         if (min_order < 0)
1013                 min_order = 0;
1014
1015         if (sbi->s_stripe > 0) {
1016                 /*
1017                  * We are assuming that stripe size is always a multiple of
1018                  * cluster ratio otherwise __ext4_fill_super exists early.
1019                  */
1020                 num_stripe_clusters = EXT4_NUM_B2C(sbi, sbi->s_stripe);
1021                 if (1 << min_order < num_stripe_clusters)
1022                         /*
1023                          * We consider 1 order less because later we round
1024                          * up the goal len to num_stripe_clusters
1025                          */
1026                         min_order = fls(num_stripe_clusters) - 1;
1027         }
1028
1029         if (1 << min_order < ac->ac_o_ex.fe_len)
1030                 min_order = fls(ac->ac_o_ex.fe_len);
1031
1032         for (i = order; i >= min_order; i--) {
1033                 int frag_order;
1034                 /*
1035                  * Scale down goal len to make sure we find something
1036                  * in the free fragments list. Basically, reduce
1037                  * preallocations.
1038                  */
1039                 ac->ac_g_ex.fe_len = 1 << i;
1040
1041                 if (num_stripe_clusters > 0) {
1042                         /*
1043                          * Try to round up the adjusted goal length to
1044                          * stripe size (in cluster units) multiple for
1045                          * efficiency.
1046                          */
1047                         ac->ac_g_ex.fe_len = roundup(ac->ac_g_ex.fe_len,
1048                                                      num_stripe_clusters);
1049                 }
1050
1051                 frag_order = mb_avg_fragment_size_order(ac->ac_sb,
1052                                                         ac->ac_g_ex.fe_len);
1053
1054                 grp = ext4_mb_find_good_group_avg_frag_lists(ac, frag_order);
1055                 if (grp) {
1056                         *group = grp->bb_group;
1057                         ac->ac_flags |= EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED;
1058                         return;
1059                 }
1060         }
1061
1062         /* Reset goal length to original goal length before falling into CR_GOAL_LEN_SLOW */
1063         ac->ac_g_ex.fe_len = ac->ac_orig_goal_len;
1064         *new_cr = CR_GOAL_LEN_SLOW;
1065 }
1066
1067 static inline int should_optimize_scan(struct ext4_allocation_context *ac)
1068 {
1069         if (unlikely(!test_opt2(ac->ac_sb, MB_OPTIMIZE_SCAN)))
1070                 return 0;
1071         if (ac->ac_criteria >= CR_GOAL_LEN_SLOW)
1072                 return 0;
1073         if (!ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))
1074                 return 0;
1075         return 1;
1076 }
1077
1078 /*
1079  * Return next linear group for allocation. If linear traversal should not be
1080  * performed, this function just returns the same group
1081  */
1082 static ext4_group_t
1083 next_linear_group(struct ext4_allocation_context *ac, ext4_group_t group,
1084                   ext4_group_t ngroups)
1085 {
1086         if (!should_optimize_scan(ac))
1087                 goto inc_and_return;
1088
1089         if (ac->ac_groups_linear_remaining) {
1090                 ac->ac_groups_linear_remaining--;
1091                 goto inc_and_return;
1092         }
1093
1094         return group;
1095 inc_and_return:
1096         /*
1097          * Artificially restricted ngroups for non-extent
1098          * files makes group > ngroups possible on first loop.
1099          */
1100         return group + 1 >= ngroups ? 0 : group + 1;
1101 }
1102
1103 /*
1104  * ext4_mb_choose_next_group: choose next group for allocation.
1105  *
1106  * @ac        Allocation Context
1107  * @new_cr    This is an output parameter. If the there is no good group
1108  *            available at current CR level, this field is updated to indicate
1109  *            the new cr level that should be used.
1110  * @group     This is an input / output parameter. As an input it indicates the
1111  *            next group that the allocator intends to use for allocation. As
1112  *            output, this field indicates the next group that should be used as
1113  *            determined by the optimization functions.
1114  * @ngroups   Total number of groups
1115  */
1116 static void ext4_mb_choose_next_group(struct ext4_allocation_context *ac,
1117                 enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups)
1118 {
1119         *new_cr = ac->ac_criteria;
1120
1121         if (!should_optimize_scan(ac) || ac->ac_groups_linear_remaining) {
1122                 *group = next_linear_group(ac, *group, ngroups);
1123                 return;
1124         }
1125
1126         if (*new_cr == CR_POWER2_ALIGNED) {
1127                 ext4_mb_choose_next_group_p2_aligned(ac, new_cr, group, ngroups);
1128         } else if (*new_cr == CR_GOAL_LEN_FAST) {
1129                 ext4_mb_choose_next_group_goal_fast(ac, new_cr, group, ngroups);
1130         } else if (*new_cr == CR_BEST_AVAIL_LEN) {
1131                 ext4_mb_choose_next_group_best_avail(ac, new_cr, group, ngroups);
1132         } else {
1133                 /*
1134                  * TODO: For CR=2, we can arrange groups in an rb tree sorted by
1135                  * bb_free. But until that happens, we should never come here.
1136                  */
1137                 WARN_ON(1);
1138         }
1139 }
1140
1141 /*
1142  * Cache the order of the largest free extent we have available in this block
1143  * group.
1144  */
1145 static void
1146 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
1147 {
1148         struct ext4_sb_info *sbi = EXT4_SB(sb);
1149         int i;
1150
1151         for (i = MB_NUM_ORDERS(sb) - 1; i >= 0; i--)
1152                 if (grp->bb_counters[i] > 0)
1153                         break;
1154         /* No need to move between order lists? */
1155         if (!test_opt2(sb, MB_OPTIMIZE_SCAN) ||
1156             i == grp->bb_largest_free_order) {
1157                 grp->bb_largest_free_order = i;
1158                 return;
1159         }
1160
1161         if (grp->bb_largest_free_order >= 0) {
1162                 write_lock(&sbi->s_mb_largest_free_orders_locks[
1163                                               grp->bb_largest_free_order]);
1164                 list_del_init(&grp->bb_largest_free_order_node);
1165                 write_unlock(&sbi->s_mb_largest_free_orders_locks[
1166                                               grp->bb_largest_free_order]);
1167         }
1168         grp->bb_largest_free_order = i;
1169         if (grp->bb_largest_free_order >= 0 && grp->bb_free) {
1170                 write_lock(&sbi->s_mb_largest_free_orders_locks[
1171                                               grp->bb_largest_free_order]);
1172                 list_add_tail(&grp->bb_largest_free_order_node,
1173                       &sbi->s_mb_largest_free_orders[grp->bb_largest_free_order]);
1174                 write_unlock(&sbi->s_mb_largest_free_orders_locks[
1175                                               grp->bb_largest_free_order]);
1176         }
1177 }
1178
1179 static noinline_for_stack
1180 void ext4_mb_generate_buddy(struct super_block *sb,
1181                             void *buddy, void *bitmap, ext4_group_t group,
1182                             struct ext4_group_info *grp)
1183 {
1184         struct ext4_sb_info *sbi = EXT4_SB(sb);
1185         ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
1186         ext4_grpblk_t i = 0;
1187         ext4_grpblk_t first;
1188         ext4_grpblk_t len;
1189         unsigned free = 0;
1190         unsigned fragments = 0;
1191         unsigned long long period = get_cycles();
1192
1193         /* initialize buddy from bitmap which is aggregation
1194          * of on-disk bitmap and preallocations */
1195         i = mb_find_next_zero_bit(bitmap, max, 0);
1196         grp->bb_first_free = i;
1197         while (i < max) {
1198                 fragments++;
1199                 first = i;
1200                 i = mb_find_next_bit(bitmap, max, i);
1201                 len = i - first;
1202                 free += len;
1203                 if (len > 1)
1204                         ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
1205                 else
1206                         grp->bb_counters[0]++;
1207                 if (i < max)
1208                         i = mb_find_next_zero_bit(bitmap, max, i);
1209         }
1210         grp->bb_fragments = fragments;
1211
1212         if (free != grp->bb_free) {
1213                 ext4_grp_locked_error(sb, group, 0, 0,
1214                                       "block bitmap and bg descriptor "
1215                                       "inconsistent: %u vs %u free clusters",
1216                                       free, grp->bb_free);
1217                 /*
1218                  * If we intend to continue, we consider group descriptor
1219                  * corrupt and update bb_free using bitmap value
1220                  */
1221                 grp->bb_free = free;
1222                 ext4_mark_group_bitmap_corrupted(sb, group,
1223                                         EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1224         }
1225         mb_set_largest_free_order(sb, grp);
1226         mb_update_avg_fragment_size(sb, grp);
1227
1228         clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
1229
1230         period = get_cycles() - period;
1231         atomic_inc(&sbi->s_mb_buddies_generated);
1232         atomic64_add(period, &sbi->s_mb_generation_time);
1233 }
1234
1235 /* The buddy information is attached the buddy cache inode
1236  * for convenience. The information regarding each group
1237  * is loaded via ext4_mb_load_buddy. The information involve
1238  * block bitmap and buddy information. The information are
1239  * stored in the inode as
1240  *
1241  * {                        page                        }
1242  * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
1243  *
1244  *
1245  * one block each for bitmap and buddy information.
1246  * So for each group we take up 2 blocks. A page can
1247  * contain blocks_per_page (PAGE_SIZE / blocksize)  blocks.
1248  * So it can have information regarding groups_per_page which
1249  * is blocks_per_page/2
1250  *
1251  * Locking note:  This routine takes the block group lock of all groups
1252  * for this page; do not hold this lock when calling this routine!
1253  */
1254
1255 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp)
1256 {
1257         ext4_group_t ngroups;
1258         unsigned int blocksize;
1259         int blocks_per_page;
1260         int groups_per_page;
1261         int err = 0;
1262         int i;
1263         ext4_group_t first_group, group;
1264         int first_block;
1265         struct super_block *sb;
1266         struct buffer_head *bhs;
1267         struct buffer_head **bh = NULL;
1268         struct inode *inode;
1269         char *data;
1270         char *bitmap;
1271         struct ext4_group_info *grinfo;
1272
1273         inode = page->mapping->host;
1274         sb = inode->i_sb;
1275         ngroups = ext4_get_groups_count(sb);
1276         blocksize = i_blocksize(inode);
1277         blocks_per_page = PAGE_SIZE / blocksize;
1278
1279         mb_debug(sb, "init page %lu\n", page->index);
1280
1281         groups_per_page = blocks_per_page >> 1;
1282         if (groups_per_page == 0)
1283                 groups_per_page = 1;
1284
1285         /* allocate buffer_heads to read bitmaps */
1286         if (groups_per_page > 1) {
1287                 i = sizeof(struct buffer_head *) * groups_per_page;
1288                 bh = kzalloc(i, gfp);
1289                 if (bh == NULL)
1290                         return -ENOMEM;
1291         } else
1292                 bh = &bhs;
1293
1294         first_group = page->index * blocks_per_page / 2;
1295
1296         /* read all groups the page covers into the cache */
1297         for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
1298                 if (group >= ngroups)
1299                         break;
1300
1301                 grinfo = ext4_get_group_info(sb, group);
1302                 if (!grinfo)
1303                         continue;
1304                 /*
1305                  * If page is uptodate then we came here after online resize
1306                  * which added some new uninitialized group info structs, so
1307                  * we must skip all initialized uptodate buddies on the page,
1308                  * which may be currently in use by an allocating task.
1309                  */
1310                 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
1311                         bh[i] = NULL;
1312                         continue;
1313                 }
1314                 bh[i] = ext4_read_block_bitmap_nowait(sb, group, false);
1315                 if (IS_ERR(bh[i])) {
1316                         err = PTR_ERR(bh[i]);
1317                         bh[i] = NULL;
1318                         goto out;
1319                 }
1320                 mb_debug(sb, "read bitmap for group %u\n", group);
1321         }
1322
1323         /* wait for I/O completion */
1324         for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
1325                 int err2;
1326
1327                 if (!bh[i])
1328                         continue;
1329                 err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
1330                 if (!err)
1331                         err = err2;
1332         }
1333
1334         first_block = page->index * blocks_per_page;
1335         for (i = 0; i < blocks_per_page; i++) {
1336                 group = (first_block + i) >> 1;
1337                 if (group >= ngroups)
1338                         break;
1339
1340                 if (!bh[group - first_group])
1341                         /* skip initialized uptodate buddy */
1342                         continue;
1343
1344                 if (!buffer_verified(bh[group - first_group]))
1345                         /* Skip faulty bitmaps */
1346                         continue;
1347                 err = 0;
1348
1349                 /*
1350                  * data carry information regarding this
1351                  * particular group in the format specified
1352                  * above
1353                  *
1354                  */
1355                 data = page_address(page) + (i * blocksize);
1356                 bitmap = bh[group - first_group]->b_data;
1357
1358                 /*
1359                  * We place the buddy block and bitmap block
1360                  * close together
1361                  */
1362                 grinfo = ext4_get_group_info(sb, group);
1363                 if (!grinfo) {
1364                         err = -EFSCORRUPTED;
1365                         goto out;
1366                 }
1367                 if ((first_block + i) & 1) {
1368                         /* this is block of buddy */
1369                         BUG_ON(incore == NULL);
1370                         mb_debug(sb, "put buddy for group %u in page %lu/%x\n",
1371                                 group, page->index, i * blocksize);
1372                         trace_ext4_mb_buddy_bitmap_load(sb, group);
1373                         grinfo->bb_fragments = 0;
1374                         memset(grinfo->bb_counters, 0,
1375                                sizeof(*grinfo->bb_counters) *
1376                                (MB_NUM_ORDERS(sb)));
1377                         /*
1378                          * incore got set to the group block bitmap below
1379                          */
1380                         ext4_lock_group(sb, group);
1381                         /* init the buddy */
1382                         memset(data, 0xff, blocksize);
1383                         ext4_mb_generate_buddy(sb, data, incore, group, grinfo);
1384                         ext4_unlock_group(sb, group);
1385                         incore = NULL;
1386                 } else {
1387                         /* this is block of bitmap */
1388                         BUG_ON(incore != NULL);
1389                         mb_debug(sb, "put bitmap for group %u in page %lu/%x\n",
1390                                 group, page->index, i * blocksize);
1391                         trace_ext4_mb_bitmap_load(sb, group);
1392
1393                         /* see comments in ext4_mb_put_pa() */
1394                         ext4_lock_group(sb, group);
1395                         memcpy(data, bitmap, blocksize);
1396
1397                         /* mark all preallocated blks used in in-core bitmap */
1398                         ext4_mb_generate_from_pa(sb, data, group);
1399                         WARN_ON_ONCE(!RB_EMPTY_ROOT(&grinfo->bb_free_root));
1400                         ext4_unlock_group(sb, group);
1401
1402                         /* set incore so that the buddy information can be
1403                          * generated using this
1404                          */
1405                         incore = data;
1406                 }
1407         }
1408         SetPageUptodate(page);
1409
1410 out:
1411         if (bh) {
1412                 for (i = 0; i < groups_per_page; i++)
1413                         brelse(bh[i]);
1414                 if (bh != &bhs)
1415                         kfree(bh);
1416         }
1417         return err;
1418 }
1419
1420 /*
1421  * Lock the buddy and bitmap pages. This make sure other parallel init_group
1422  * on the same buddy page doesn't happen whild holding the buddy page lock.
1423  * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
1424  * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
1425  */
1426 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
1427                 ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
1428 {
1429         struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
1430         int block, pnum, poff;
1431         int blocks_per_page;
1432         struct page *page;
1433
1434         e4b->bd_buddy_page = NULL;
1435         e4b->bd_bitmap_page = NULL;
1436
1437         blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1438         /*
1439          * the buddy cache inode stores the block bitmap
1440          * and buddy information in consecutive blocks.
1441          * So for each group we need two blocks.
1442          */
1443         block = group * 2;
1444         pnum = block / blocks_per_page;
1445         poff = block % blocks_per_page;
1446         page = find_or_create_page(inode->i_mapping, pnum, gfp);
1447         if (!page)
1448                 return -ENOMEM;
1449         BUG_ON(page->mapping != inode->i_mapping);
1450         e4b->bd_bitmap_page = page;
1451         e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1452
1453         if (blocks_per_page >= 2) {
1454                 /* buddy and bitmap are on the same page */
1455                 return 0;
1456         }
1457
1458         block++;
1459         pnum = block / blocks_per_page;
1460         page = find_or_create_page(inode->i_mapping, pnum, gfp);
1461         if (!page)
1462                 return -ENOMEM;
1463         BUG_ON(page->mapping != inode->i_mapping);
1464         e4b->bd_buddy_page = page;
1465         return 0;
1466 }
1467
1468 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1469 {
1470         if (e4b->bd_bitmap_page) {
1471                 unlock_page(e4b->bd_bitmap_page);
1472                 put_page(e4b->bd_bitmap_page);
1473         }
1474         if (e4b->bd_buddy_page) {
1475                 unlock_page(e4b->bd_buddy_page);
1476                 put_page(e4b->bd_buddy_page);
1477         }
1478 }
1479
1480 /*
1481  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1482  * block group lock of all groups for this page; do not hold the BG lock when
1483  * calling this routine!
1484  */
1485 static noinline_for_stack
1486 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1487 {
1488
1489         struct ext4_group_info *this_grp;
1490         struct ext4_buddy e4b;
1491         struct page *page;
1492         int ret = 0;
1493
1494         might_sleep();
1495         mb_debug(sb, "init group %u\n", group);
1496         this_grp = ext4_get_group_info(sb, group);
1497         if (!this_grp)
1498                 return -EFSCORRUPTED;
1499
1500         /*
1501          * This ensures that we don't reinit the buddy cache
1502          * page which map to the group from which we are already
1503          * allocating. If we are looking at the buddy cache we would
1504          * have taken a reference using ext4_mb_load_buddy and that
1505          * would have pinned buddy page to page cache.
1506          * The call to ext4_mb_get_buddy_page_lock will mark the
1507          * page accessed.
1508          */
1509         ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1510         if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1511                 /*
1512                  * somebody initialized the group
1513                  * return without doing anything
1514                  */
1515                 goto err;
1516         }
1517
1518         page = e4b.bd_bitmap_page;
1519         ret = ext4_mb_init_cache(page, NULL, gfp);
1520         if (ret)
1521                 goto err;
1522         if (!PageUptodate(page)) {
1523                 ret = -EIO;
1524                 goto err;
1525         }
1526
1527         if (e4b.bd_buddy_page == NULL) {
1528                 /*
1529                  * If both the bitmap and buddy are in
1530                  * the same page we don't need to force
1531                  * init the buddy
1532                  */
1533                 ret = 0;
1534                 goto err;
1535         }
1536         /* init buddy cache */
1537         page = e4b.bd_buddy_page;
1538         ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp);
1539         if (ret)
1540                 goto err;
1541         if (!PageUptodate(page)) {
1542                 ret = -EIO;
1543                 goto err;
1544         }
1545 err:
1546         ext4_mb_put_buddy_page_lock(&e4b);
1547         return ret;
1548 }
1549
1550 /*
1551  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1552  * block group lock of all groups for this page; do not hold the BG lock when
1553  * calling this routine!
1554  */
1555 static noinline_for_stack int
1556 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1557                        struct ext4_buddy *e4b, gfp_t gfp)
1558 {
1559         int blocks_per_page;
1560         int block;
1561         int pnum;
1562         int poff;
1563         struct page *page;
1564         int ret;
1565         struct ext4_group_info *grp;
1566         struct ext4_sb_info *sbi = EXT4_SB(sb);
1567         struct inode *inode = sbi->s_buddy_cache;
1568
1569         might_sleep();
1570         mb_debug(sb, "load group %u\n", group);
1571
1572         blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1573         grp = ext4_get_group_info(sb, group);
1574         if (!grp)
1575                 return -EFSCORRUPTED;
1576
1577         e4b->bd_blkbits = sb->s_blocksize_bits;
1578         e4b->bd_info = grp;
1579         e4b->bd_sb = sb;
1580         e4b->bd_group = group;
1581         e4b->bd_buddy_page = NULL;
1582         e4b->bd_bitmap_page = NULL;
1583
1584         if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1585                 /*
1586                  * we need full data about the group
1587                  * to make a good selection
1588                  */
1589                 ret = ext4_mb_init_group(sb, group, gfp);
1590                 if (ret)
1591                         return ret;
1592         }
1593
1594         /*
1595          * the buddy cache inode stores the block bitmap
1596          * and buddy information in consecutive blocks.
1597          * So for each group we need two blocks.
1598          */
1599         block = group * 2;
1600         pnum = block / blocks_per_page;
1601         poff = block % blocks_per_page;
1602
1603         /* we could use find_or_create_page(), but it locks page
1604          * what we'd like to avoid in fast path ... */
1605         page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1606         if (page == NULL || !PageUptodate(page)) {
1607                 if (page)
1608                         /*
1609                          * drop the page reference and try
1610                          * to get the page with lock. If we
1611                          * are not uptodate that implies
1612                          * somebody just created the page but
1613                          * is yet to initialize the same. So
1614                          * wait for it to initialize.
1615                          */
1616                         put_page(page);
1617                 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1618                 if (page) {
1619                         if (WARN_RATELIMIT(page->mapping != inode->i_mapping,
1620         "ext4: bitmap's paging->mapping != inode->i_mapping\n")) {
1621                                 /* should never happen */
1622                                 unlock_page(page);
1623                                 ret = -EINVAL;
1624                                 goto err;
1625                         }
1626                         if (!PageUptodate(page)) {
1627                                 ret = ext4_mb_init_cache(page, NULL, gfp);
1628                                 if (ret) {
1629                                         unlock_page(page);
1630                                         goto err;
1631                                 }
1632                                 mb_cmp_bitmaps(e4b, page_address(page) +
1633                                                (poff * sb->s_blocksize));
1634                         }
1635                         unlock_page(page);
1636                 }
1637         }
1638         if (page == NULL) {
1639                 ret = -ENOMEM;
1640                 goto err;
1641         }
1642         if (!PageUptodate(page)) {
1643                 ret = -EIO;
1644                 goto err;
1645         }
1646
1647         /* Pages marked accessed already */
1648         e4b->bd_bitmap_page = page;
1649         e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1650
1651         block++;
1652         pnum = block / blocks_per_page;
1653         poff = block % blocks_per_page;
1654
1655         page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1656         if (page == NULL || !PageUptodate(page)) {
1657                 if (page)
1658                         put_page(page);
1659                 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1660                 if (page) {
1661                         if (WARN_RATELIMIT(page->mapping != inode->i_mapping,
1662         "ext4: buddy bitmap's page->mapping != inode->i_mapping\n")) {
1663                                 /* should never happen */
1664                                 unlock_page(page);
1665                                 ret = -EINVAL;
1666                                 goto err;
1667                         }
1668                         if (!PageUptodate(page)) {
1669                                 ret = ext4_mb_init_cache(page, e4b->bd_bitmap,
1670                                                          gfp);
1671                                 if (ret) {
1672                                         unlock_page(page);
1673                                         goto err;
1674                                 }
1675                         }
1676                         unlock_page(page);
1677                 }
1678         }
1679         if (page == NULL) {
1680                 ret = -ENOMEM;
1681                 goto err;
1682         }
1683         if (!PageUptodate(page)) {
1684                 ret = -EIO;
1685                 goto err;
1686         }
1687
1688         /* Pages marked accessed already */
1689         e4b->bd_buddy_page = page;
1690         e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1691
1692         return 0;
1693
1694 err:
1695         if (page)
1696                 put_page(page);
1697         if (e4b->bd_bitmap_page)
1698                 put_page(e4b->bd_bitmap_page);
1699
1700         e4b->bd_buddy = NULL;
1701         e4b->bd_bitmap = NULL;
1702         return ret;
1703 }
1704
1705 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1706                               struct ext4_buddy *e4b)
1707 {
1708         return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1709 }
1710
1711 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1712 {
1713         if (e4b->bd_bitmap_page)
1714                 put_page(e4b->bd_bitmap_page);
1715         if (e4b->bd_buddy_page)
1716                 put_page(e4b->bd_buddy_page);
1717 }
1718
1719
1720 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1721 {
1722         int order = 1, max;
1723         void *bb;
1724
1725         BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1726         BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1727
1728         while (order <= e4b->bd_blkbits + 1) {
1729                 bb = mb_find_buddy(e4b, order, &max);
1730                 if (!mb_test_bit(block >> order, bb)) {
1731                         /* this block is part of buddy of order 'order' */
1732                         return order;
1733                 }
1734                 order++;
1735         }
1736         return 0;
1737 }
1738
1739 static void mb_clear_bits(void *bm, int cur, int len)
1740 {
1741         __u32 *addr;
1742
1743         len = cur + len;
1744         while (cur < len) {
1745                 if ((cur & 31) == 0 && (len - cur) >= 32) {
1746                         /* fast path: clear whole word at once */
1747                         addr = bm + (cur >> 3);
1748                         *addr = 0;
1749                         cur += 32;
1750                         continue;
1751                 }
1752                 mb_clear_bit(cur, bm);
1753                 cur++;
1754         }
1755 }
1756
1757 /* clear bits in given range
1758  * will return first found zero bit if any, -1 otherwise
1759  */
1760 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1761 {
1762         __u32 *addr;
1763         int zero_bit = -1;
1764
1765         len = cur + len;
1766         while (cur < len) {
1767                 if ((cur & 31) == 0 && (len - cur) >= 32) {
1768                         /* fast path: clear whole word at once */
1769                         addr = bm + (cur >> 3);
1770                         if (*addr != (__u32)(-1) && zero_bit == -1)
1771                                 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1772                         *addr = 0;
1773                         cur += 32;
1774                         continue;
1775                 }
1776                 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1777                         zero_bit = cur;
1778                 cur++;
1779         }
1780
1781         return zero_bit;
1782 }
1783
1784 void mb_set_bits(void *bm, int cur, int len)
1785 {
1786         __u32 *addr;
1787
1788         len = cur + len;
1789         while (cur < len) {
1790                 if ((cur & 31) == 0 && (len - cur) >= 32) {
1791                         /* fast path: set whole word at once */
1792                         addr = bm + (cur >> 3);
1793                         *addr = 0xffffffff;
1794                         cur += 32;
1795                         continue;
1796                 }
1797                 mb_set_bit(cur, bm);
1798                 cur++;
1799         }
1800 }
1801
1802 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1803 {
1804         if (mb_test_bit(*bit + side, bitmap)) {
1805                 mb_clear_bit(*bit, bitmap);
1806                 (*bit) -= side;
1807                 return 1;
1808         }
1809         else {
1810                 (*bit) += side;
1811                 mb_set_bit(*bit, bitmap);
1812                 return -1;
1813         }
1814 }
1815
1816 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1817 {
1818         int max;
1819         int order = 1;
1820         void *buddy = mb_find_buddy(e4b, order, &max);
1821
1822         while (buddy) {
1823                 void *buddy2;
1824
1825                 /* Bits in range [first; last] are known to be set since
1826                  * corresponding blocks were allocated. Bits in range
1827                  * (first; last) will stay set because they form buddies on
1828                  * upper layer. We just deal with borders if they don't
1829                  * align with upper layer and then go up.
1830                  * Releasing entire group is all about clearing
1831                  * single bit of highest order buddy.
1832                  */
1833
1834                 /* Example:
1835                  * ---------------------------------
1836                  * |   1   |   1   |   1   |   1   |
1837                  * ---------------------------------
1838                  * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1839                  * ---------------------------------
1840                  *   0   1   2   3   4   5   6   7
1841                  *      \_____________________/
1842                  *
1843                  * Neither [1] nor [6] is aligned to above layer.
1844                  * Left neighbour [0] is free, so mark it busy,
1845                  * decrease bb_counters and extend range to
1846                  * [0; 6]
1847                  * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1848                  * mark [6] free, increase bb_counters and shrink range to
1849                  * [0; 5].
1850                  * Then shift range to [0; 2], go up and do the same.
1851                  */
1852
1853
1854                 if (first & 1)
1855                         e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1856                 if (!(last & 1))
1857                         e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1858                 if (first > last)
1859                         break;
1860                 order++;
1861
1862                 buddy2 = mb_find_buddy(e4b, order, &max);
1863                 if (!buddy2) {
1864                         mb_clear_bits(buddy, first, last - first + 1);
1865                         e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1866                         break;
1867                 }
1868                 first >>= 1;
1869                 last >>= 1;
1870                 buddy = buddy2;
1871         }
1872 }
1873
1874 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1875                            int first, int count)
1876 {
1877         int left_is_free = 0;
1878         int right_is_free = 0;
1879         int block;
1880         int last = first + count - 1;
1881         struct super_block *sb = e4b->bd_sb;
1882
1883         if (WARN_ON(count == 0))
1884                 return;
1885         BUG_ON(last >= (sb->s_blocksize << 3));
1886         assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1887         /* Don't bother if the block group is corrupt. */
1888         if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1889                 return;
1890
1891         mb_check_buddy(e4b);
1892         mb_free_blocks_double(inode, e4b, first, count);
1893
1894         this_cpu_inc(discard_pa_seq);
1895         e4b->bd_info->bb_free += count;
1896         if (first < e4b->bd_info->bb_first_free)
1897                 e4b->bd_info->bb_first_free = first;
1898
1899         /* access memory sequentially: check left neighbour,
1900          * clear range and then check right neighbour
1901          */
1902         if (first != 0)
1903                 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1904         block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1905         if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1906                 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1907
1908         if (unlikely(block != -1)) {
1909                 struct ext4_sb_info *sbi = EXT4_SB(sb);
1910                 ext4_fsblk_t blocknr;
1911
1912                 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1913                 blocknr += EXT4_C2B(sbi, block);
1914                 if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) {
1915                         ext4_grp_locked_error(sb, e4b->bd_group,
1916                                               inode ? inode->i_ino : 0,
1917                                               blocknr,
1918                                               "freeing already freed block (bit %u); block bitmap corrupt.",
1919                                               block);
1920                         ext4_mark_group_bitmap_corrupted(
1921                                 sb, e4b->bd_group,
1922                                 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1923                 }
1924                 goto done;
1925         }
1926
1927         /* let's maintain fragments counter */
1928         if (left_is_free && right_is_free)
1929                 e4b->bd_info->bb_fragments--;
1930         else if (!left_is_free && !right_is_free)
1931                 e4b->bd_info->bb_fragments++;
1932
1933         /* buddy[0] == bd_bitmap is a special case, so handle
1934          * it right away and let mb_buddy_mark_free stay free of
1935          * zero order checks.
1936          * Check if neighbours are to be coaleasced,
1937          * adjust bitmap bb_counters and borders appropriately.
1938          */
1939         if (first & 1) {
1940                 first += !left_is_free;
1941                 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1942         }
1943         if (!(last & 1)) {
1944                 last -= !right_is_free;
1945                 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1946         }
1947
1948         if (first <= last)
1949                 mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1950
1951 done:
1952         mb_set_largest_free_order(sb, e4b->bd_info);
1953         mb_update_avg_fragment_size(sb, e4b->bd_info);
1954         mb_check_buddy(e4b);
1955 }
1956
1957 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1958                                 int needed, struct ext4_free_extent *ex)
1959 {
1960         int next = block;
1961         int max, order;
1962         void *buddy;
1963
1964         assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1965         BUG_ON(ex == NULL);
1966
1967         buddy = mb_find_buddy(e4b, 0, &max);
1968         BUG_ON(buddy == NULL);
1969         BUG_ON(block >= max);
1970         if (mb_test_bit(block, buddy)) {
1971                 ex->fe_len = 0;
1972                 ex->fe_start = 0;
1973                 ex->fe_group = 0;
1974                 return 0;
1975         }
1976
1977         /* find actual order */
1978         order = mb_find_order_for_block(e4b, block);
1979         block = block >> order;
1980
1981         ex->fe_len = 1 << order;
1982         ex->fe_start = block << order;
1983         ex->fe_group = e4b->bd_group;
1984
1985         /* calc difference from given start */
1986         next = next - ex->fe_start;
1987         ex->fe_len -= next;
1988         ex->fe_start += next;
1989
1990         while (needed > ex->fe_len &&
1991                mb_find_buddy(e4b, order, &max)) {
1992
1993                 if (block + 1 >= max)
1994                         break;
1995
1996                 next = (block + 1) * (1 << order);
1997                 if (mb_test_bit(next, e4b->bd_bitmap))
1998                         break;
1999
2000                 order = mb_find_order_for_block(e4b, next);
2001
2002                 block = next >> order;
2003                 ex->fe_len += 1 << order;
2004         }
2005
2006         if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) {
2007                 /* Should never happen! (but apparently sometimes does?!?) */
2008                 WARN_ON(1);
2009                 ext4_grp_locked_error(e4b->bd_sb, e4b->bd_group, 0, 0,
2010                         "corruption or bug in mb_find_extent "
2011                         "block=%d, order=%d needed=%d ex=%u/%d/%d@%u",
2012                         block, order, needed, ex->fe_group, ex->fe_start,
2013                         ex->fe_len, ex->fe_logical);
2014                 ex->fe_len = 0;
2015                 ex->fe_start = 0;
2016                 ex->fe_group = 0;
2017         }
2018         return ex->fe_len;
2019 }
2020
2021 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
2022 {
2023         int ord;
2024         int mlen = 0;
2025         int max = 0;
2026         int cur;
2027         int start = ex->fe_start;
2028         int len = ex->fe_len;
2029         unsigned ret = 0;
2030         int len0 = len;
2031         void *buddy;
2032         bool split = false;
2033
2034         BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
2035         BUG_ON(e4b->bd_group != ex->fe_group);
2036         assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
2037         mb_check_buddy(e4b);
2038         mb_mark_used_double(e4b, start, len);
2039
2040         this_cpu_inc(discard_pa_seq);
2041         e4b->bd_info->bb_free -= len;
2042         if (e4b->bd_info->bb_first_free == start)
2043                 e4b->bd_info->bb_first_free += len;
2044
2045         /* let's maintain fragments counter */
2046         if (start != 0)
2047                 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
2048         if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
2049                 max = !mb_test_bit(start + len, e4b->bd_bitmap);
2050         if (mlen && max)
2051                 e4b->bd_info->bb_fragments++;
2052         else if (!mlen && !max)
2053                 e4b->bd_info->bb_fragments--;
2054
2055         /* let's maintain buddy itself */
2056         while (len) {
2057                 if (!split)
2058                         ord = mb_find_order_for_block(e4b, start);
2059
2060                 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
2061                         /* the whole chunk may be allocated at once! */
2062                         mlen = 1 << ord;
2063                         if (!split)
2064                                 buddy = mb_find_buddy(e4b, ord, &max);
2065                         else
2066                                 split = false;
2067                         BUG_ON((start >> ord) >= max);
2068                         mb_set_bit(start >> ord, buddy);
2069                         e4b->bd_info->bb_counters[ord]--;
2070                         start += mlen;
2071                         len -= mlen;
2072                         BUG_ON(len < 0);
2073                         continue;
2074                 }
2075
2076                 /* store for history */
2077                 if (ret == 0)
2078                         ret = len | (ord << 16);
2079
2080                 /* we have to split large buddy */
2081                 BUG_ON(ord <= 0);
2082                 buddy = mb_find_buddy(e4b, ord, &max);
2083                 mb_set_bit(start >> ord, buddy);
2084                 e4b->bd_info->bb_counters[ord]--;
2085
2086                 ord--;
2087                 cur = (start >> ord) & ~1U;
2088                 buddy = mb_find_buddy(e4b, ord, &max);
2089                 mb_clear_bit(cur, buddy);
2090                 mb_clear_bit(cur + 1, buddy);
2091                 e4b->bd_info->bb_counters[ord]++;
2092                 e4b->bd_info->bb_counters[ord]++;
2093                 split = true;
2094         }
2095         mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
2096
2097         mb_update_avg_fragment_size(e4b->bd_sb, e4b->bd_info);
2098         mb_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
2099         mb_check_buddy(e4b);
2100
2101         return ret;
2102 }
2103
2104 /*
2105  * Must be called under group lock!
2106  */
2107 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
2108                                         struct ext4_buddy *e4b)
2109 {
2110         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2111         int ret;
2112
2113         BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
2114         BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2115
2116         ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
2117         ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
2118         ret = mb_mark_used(e4b, &ac->ac_b_ex);
2119
2120         /* preallocation can change ac_b_ex, thus we store actually
2121          * allocated blocks for history */
2122         ac->ac_f_ex = ac->ac_b_ex;
2123
2124         ac->ac_status = AC_STATUS_FOUND;
2125         ac->ac_tail = ret & 0xffff;
2126         ac->ac_buddy = ret >> 16;
2127
2128         /*
2129          * take the page reference. We want the page to be pinned
2130          * so that we don't get a ext4_mb_init_cache_call for this
2131          * group until we update the bitmap. That would mean we
2132          * double allocate blocks. The reference is dropped
2133          * in ext4_mb_release_context
2134          */
2135         ac->ac_bitmap_page = e4b->bd_bitmap_page;
2136         get_page(ac->ac_bitmap_page);
2137         ac->ac_buddy_page = e4b->bd_buddy_page;
2138         get_page(ac->ac_buddy_page);
2139         /* store last allocated for subsequent stream allocation */
2140         if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2141                 spin_lock(&sbi->s_md_lock);
2142                 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
2143                 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
2144                 spin_unlock(&sbi->s_md_lock);
2145         }
2146         /*
2147          * As we've just preallocated more space than
2148          * user requested originally, we store allocated
2149          * space in a special descriptor.
2150          */
2151         if (ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
2152                 ext4_mb_new_preallocation(ac);
2153
2154 }
2155
2156 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
2157                                         struct ext4_buddy *e4b,
2158                                         int finish_group)
2159 {
2160         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2161         struct ext4_free_extent *bex = &ac->ac_b_ex;
2162         struct ext4_free_extent *gex = &ac->ac_g_ex;
2163
2164         if (ac->ac_status == AC_STATUS_FOUND)
2165                 return;
2166         /*
2167          * We don't want to scan for a whole year
2168          */
2169         if (ac->ac_found > sbi->s_mb_max_to_scan &&
2170                         !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2171                 ac->ac_status = AC_STATUS_BREAK;
2172                 return;
2173         }
2174
2175         /*
2176          * Haven't found good chunk so far, let's continue
2177          */
2178         if (bex->fe_len < gex->fe_len)
2179                 return;
2180
2181         if (finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
2182                 ext4_mb_use_best_found(ac, e4b);
2183 }
2184
2185 /*
2186  * The routine checks whether found extent is good enough. If it is,
2187  * then the extent gets marked used and flag is set to the context
2188  * to stop scanning. Otherwise, the extent is compared with the
2189  * previous found extent and if new one is better, then it's stored
2190  * in the context. Later, the best found extent will be used, if
2191  * mballoc can't find good enough extent.
2192  *
2193  * The algorithm used is roughly as follows:
2194  *
2195  * * If free extent found is exactly as big as goal, then
2196  *   stop the scan and use it immediately
2197  *
2198  * * If free extent found is smaller than goal, then keep retrying
2199  *   upto a max of sbi->s_mb_max_to_scan times (default 200). After
2200  *   that stop scanning and use whatever we have.
2201  *
2202  * * If free extent found is bigger than goal, then keep retrying
2203  *   upto a max of sbi->s_mb_min_to_scan times (default 10) before
2204  *   stopping the scan and using the extent.
2205  *
2206  *
2207  * FIXME: real allocation policy is to be designed yet!
2208  */
2209 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
2210                                         struct ext4_free_extent *ex,
2211                                         struct ext4_buddy *e4b)
2212 {
2213         struct ext4_free_extent *bex = &ac->ac_b_ex;
2214         struct ext4_free_extent *gex = &ac->ac_g_ex;
2215
2216         BUG_ON(ex->fe_len <= 0);
2217         BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2218         BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2219         BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
2220
2221         ac->ac_found++;
2222         ac->ac_cX_found[ac->ac_criteria]++;
2223
2224         /*
2225          * The special case - take what you catch first
2226          */
2227         if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2228                 *bex = *ex;
2229                 ext4_mb_use_best_found(ac, e4b);
2230                 return;
2231         }
2232
2233         /*
2234          * Let's check whether the chuck is good enough
2235          */
2236         if (ex->fe_len == gex->fe_len) {
2237                 *bex = *ex;
2238                 ext4_mb_use_best_found(ac, e4b);
2239                 return;
2240         }
2241
2242         /*
2243          * If this is first found extent, just store it in the context
2244          */
2245         if (bex->fe_len == 0) {
2246                 *bex = *ex;
2247                 return;
2248         }
2249
2250         /*
2251          * If new found extent is better, store it in the context
2252          */
2253         if (bex->fe_len < gex->fe_len) {
2254                 /* if the request isn't satisfied, any found extent
2255                  * larger than previous best one is better */
2256                 if (ex->fe_len > bex->fe_len)
2257                         *bex = *ex;
2258         } else if (ex->fe_len > gex->fe_len) {
2259                 /* if the request is satisfied, then we try to find
2260                  * an extent that still satisfy the request, but is
2261                  * smaller than previous one */
2262                 if (ex->fe_len < bex->fe_len)
2263                         *bex = *ex;
2264         }
2265
2266         ext4_mb_check_limits(ac, e4b, 0);
2267 }
2268
2269 static noinline_for_stack
2270 void ext4_mb_try_best_found(struct ext4_allocation_context *ac,
2271                                         struct ext4_buddy *e4b)
2272 {
2273         struct ext4_free_extent ex = ac->ac_b_ex;
2274         ext4_group_t group = ex.fe_group;
2275         int max;
2276         int err;
2277
2278         BUG_ON(ex.fe_len <= 0);
2279         err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2280         if (err)
2281                 return;
2282
2283         ext4_lock_group(ac->ac_sb, group);
2284         max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
2285
2286         if (max > 0) {
2287                 ac->ac_b_ex = ex;
2288                 ext4_mb_use_best_found(ac, e4b);
2289         }
2290
2291         ext4_unlock_group(ac->ac_sb, group);
2292         ext4_mb_unload_buddy(e4b);
2293 }
2294
2295 static noinline_for_stack
2296 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
2297                                 struct ext4_buddy *e4b)
2298 {
2299         ext4_group_t group = ac->ac_g_ex.fe_group;
2300         int max;
2301         int err;
2302         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2303         struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2304         struct ext4_free_extent ex;
2305
2306         if (!grp)
2307                 return -EFSCORRUPTED;
2308         if (!(ac->ac_flags & (EXT4_MB_HINT_TRY_GOAL | EXT4_MB_HINT_GOAL_ONLY)))
2309                 return 0;
2310         if (grp->bb_free == 0)
2311                 return 0;
2312
2313         err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2314         if (err)
2315                 return err;
2316
2317         if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
2318                 ext4_mb_unload_buddy(e4b);
2319                 return 0;
2320         }
2321
2322         ext4_lock_group(ac->ac_sb, group);
2323         max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
2324                              ac->ac_g_ex.fe_len, &ex);
2325         ex.fe_logical = 0xDEADFA11; /* debug value */
2326
2327         if (max >= ac->ac_g_ex.fe_len &&
2328             ac->ac_g_ex.fe_len == EXT4_B2C(sbi, sbi->s_stripe)) {
2329                 ext4_fsblk_t start;
2330
2331                 start = ext4_grp_offs_to_block(ac->ac_sb, &ex);
2332                 /* use do_div to get remainder (would be 64-bit modulo) */
2333                 if (do_div(start, sbi->s_stripe) == 0) {
2334                         ac->ac_found++;
2335                         ac->ac_b_ex = ex;
2336                         ext4_mb_use_best_found(ac, e4b);
2337                 }
2338         } else if (max >= ac->ac_g_ex.fe_len) {
2339                 BUG_ON(ex.fe_len <= 0);
2340                 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2341                 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2342                 ac->ac_found++;
2343                 ac->ac_b_ex = ex;
2344                 ext4_mb_use_best_found(ac, e4b);
2345         } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
2346                 /* Sometimes, caller may want to merge even small
2347                  * number of blocks to an existing extent */
2348                 BUG_ON(ex.fe_len <= 0);
2349                 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2350                 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2351                 ac->ac_found++;
2352                 ac->ac_b_ex = ex;
2353                 ext4_mb_use_best_found(ac, e4b);
2354         }
2355         ext4_unlock_group(ac->ac_sb, group);
2356         ext4_mb_unload_buddy(e4b);
2357
2358         return 0;
2359 }
2360
2361 /*
2362  * The routine scans buddy structures (not bitmap!) from given order
2363  * to max order and tries to find big enough chunk to satisfy the req
2364  */
2365 static noinline_for_stack
2366 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
2367                                         struct ext4_buddy *e4b)
2368 {
2369         struct super_block *sb = ac->ac_sb;
2370         struct ext4_group_info *grp = e4b->bd_info;
2371         void *buddy;
2372         int i;
2373         int k;
2374         int max;
2375
2376         BUG_ON(ac->ac_2order <= 0);
2377         for (i = ac->ac_2order; i < MB_NUM_ORDERS(sb); i++) {
2378                 if (grp->bb_counters[i] == 0)
2379                         continue;
2380
2381                 buddy = mb_find_buddy(e4b, i, &max);
2382                 if (WARN_RATELIMIT(buddy == NULL,
2383                          "ext4: mb_simple_scan_group: mb_find_buddy failed, (%d)\n", i))
2384                         continue;
2385
2386                 k = mb_find_next_zero_bit(buddy, max, 0);
2387                 if (k >= max) {
2388                         ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0,
2389                                 "%d free clusters of order %d. But found 0",
2390                                 grp->bb_counters[i], i);
2391                         ext4_mark_group_bitmap_corrupted(ac->ac_sb,
2392                                          e4b->bd_group,
2393                                         EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2394                         break;
2395                 }
2396                 ac->ac_found++;
2397                 ac->ac_cX_found[ac->ac_criteria]++;
2398
2399                 ac->ac_b_ex.fe_len = 1 << i;
2400                 ac->ac_b_ex.fe_start = k << i;
2401                 ac->ac_b_ex.fe_group = e4b->bd_group;
2402
2403                 ext4_mb_use_best_found(ac, e4b);
2404
2405                 BUG_ON(ac->ac_f_ex.fe_len != ac->ac_g_ex.fe_len);
2406
2407                 if (EXT4_SB(sb)->s_mb_stats)
2408                         atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
2409
2410                 break;
2411         }
2412 }
2413
2414 /*
2415  * The routine scans the group and measures all found extents.
2416  * In order to optimize scanning, caller must pass number of
2417  * free blocks in the group, so the routine can know upper limit.
2418  */
2419 static noinline_for_stack
2420 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
2421                                         struct ext4_buddy *e4b)
2422 {
2423         struct super_block *sb = ac->ac_sb;
2424         void *bitmap = e4b->bd_bitmap;
2425         struct ext4_free_extent ex;
2426         int i, j, freelen;
2427         int free;
2428
2429         free = e4b->bd_info->bb_free;
2430         if (WARN_ON(free <= 0))
2431                 return;
2432
2433         i = e4b->bd_info->bb_first_free;
2434
2435         while (free && ac->ac_status == AC_STATUS_CONTINUE) {
2436                 i = mb_find_next_zero_bit(bitmap,
2437                                                 EXT4_CLUSTERS_PER_GROUP(sb), i);
2438                 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
2439                         /*
2440                          * IF we have corrupt bitmap, we won't find any
2441                          * free blocks even though group info says we
2442                          * have free blocks
2443                          */
2444                         ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2445                                         "%d free clusters as per "
2446                                         "group info. But bitmap says 0",
2447                                         free);
2448                         ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2449                                         EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2450                         break;
2451                 }
2452
2453                 if (!ext4_mb_cr_expensive(ac->ac_criteria)) {
2454                         /*
2455                          * In CR_GOAL_LEN_FAST and CR_BEST_AVAIL_LEN, we are
2456                          * sure that this group will have a large enough
2457                          * continuous free extent, so skip over the smaller free
2458                          * extents
2459                          */
2460                         j = mb_find_next_bit(bitmap,
2461                                                 EXT4_CLUSTERS_PER_GROUP(sb), i);
2462                         freelen = j - i;
2463
2464                         if (freelen < ac->ac_g_ex.fe_len) {
2465                                 i = j;
2466                                 free -= freelen;
2467                                 continue;
2468                         }
2469                 }
2470
2471                 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
2472                 if (WARN_ON(ex.fe_len <= 0))
2473                         break;
2474                 if (free < ex.fe_len) {
2475                         ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2476                                         "%d free clusters as per "
2477                                         "group info. But got %d blocks",
2478                                         free, ex.fe_len);
2479                         ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2480                                         EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2481                         /*
2482                          * The number of free blocks differs. This mostly
2483                          * indicate that the bitmap is corrupt. So exit
2484                          * without claiming the space.
2485                          */
2486                         break;
2487                 }
2488                 ex.fe_logical = 0xDEADC0DE; /* debug value */
2489                 ext4_mb_measure_extent(ac, &ex, e4b);
2490
2491                 i += ex.fe_len;
2492                 free -= ex.fe_len;
2493         }
2494
2495         ext4_mb_check_limits(ac, e4b, 1);
2496 }
2497
2498 /*
2499  * This is a special case for storages like raid5
2500  * we try to find stripe-aligned chunks for stripe-size-multiple requests
2501  */
2502 static noinline_for_stack
2503 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
2504                                  struct ext4_buddy *e4b)
2505 {
2506         struct super_block *sb = ac->ac_sb;
2507         struct ext4_sb_info *sbi = EXT4_SB(sb);
2508         void *bitmap = e4b->bd_bitmap;
2509         struct ext4_free_extent ex;
2510         ext4_fsblk_t first_group_block;
2511         ext4_fsblk_t a;
2512         ext4_grpblk_t i, stripe;
2513         int max;
2514
2515         BUG_ON(sbi->s_stripe == 0);
2516
2517         /* find first stripe-aligned block in group */
2518         first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2519
2520         a = first_group_block + sbi->s_stripe - 1;
2521         do_div(a, sbi->s_stripe);
2522         i = (a * sbi->s_stripe) - first_group_block;
2523
2524         stripe = EXT4_B2C(sbi, sbi->s_stripe);
2525         i = EXT4_B2C(sbi, i);
2526         while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2527                 if (!mb_test_bit(i, bitmap)) {
2528                         max = mb_find_extent(e4b, i, stripe, &ex);
2529                         if (max >= stripe) {
2530                                 ac->ac_found++;
2531                                 ac->ac_cX_found[ac->ac_criteria]++;
2532                                 ex.fe_logical = 0xDEADF00D; /* debug value */
2533                                 ac->ac_b_ex = ex;
2534                                 ext4_mb_use_best_found(ac, e4b);
2535                                 break;
2536                         }
2537                 }
2538                 i += stripe;
2539         }
2540 }
2541
2542 /*
2543  * This is also called BEFORE we load the buddy bitmap.
2544  * Returns either 1 or 0 indicating that the group is either suitable
2545  * for the allocation or not.
2546  */
2547 static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
2548                                 ext4_group_t group, enum criteria cr)
2549 {
2550         ext4_grpblk_t free, fragments;
2551         int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2552         struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2553
2554         BUG_ON(cr < CR_POWER2_ALIGNED || cr >= EXT4_MB_NUM_CRS);
2555
2556         if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2557                 return false;
2558
2559         free = grp->bb_free;
2560         if (free == 0)
2561                 return false;
2562
2563         fragments = grp->bb_fragments;
2564         if (fragments == 0)
2565                 return false;
2566
2567         switch (cr) {
2568         case CR_POWER2_ALIGNED:
2569                 BUG_ON(ac->ac_2order == 0);
2570
2571                 /* Avoid using the first bg of a flexgroup for data files */
2572                 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2573                     (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2574                     ((group % flex_size) == 0))
2575                         return false;
2576
2577                 if (free < ac->ac_g_ex.fe_len)
2578                         return false;
2579
2580                 if (ac->ac_2order >= MB_NUM_ORDERS(ac->ac_sb))
2581                         return true;
2582
2583                 if (grp->bb_largest_free_order < ac->ac_2order)
2584                         return false;
2585
2586                 return true;
2587         case CR_GOAL_LEN_FAST:
2588         case CR_BEST_AVAIL_LEN:
2589                 if ((free / fragments) >= ac->ac_g_ex.fe_len)
2590                         return true;
2591                 break;
2592         case CR_GOAL_LEN_SLOW:
2593                 if (free >= ac->ac_g_ex.fe_len)
2594                         return true;
2595                 break;
2596         case CR_ANY_FREE:
2597                 return true;
2598         default:
2599                 BUG();
2600         }
2601
2602         return false;
2603 }
2604
2605 /*
2606  * This could return negative error code if something goes wrong
2607  * during ext4_mb_init_group(). This should not be called with
2608  * ext4_lock_group() held.
2609  *
2610  * Note: because we are conditionally operating with the group lock in
2611  * the EXT4_MB_STRICT_CHECK case, we need to fake out sparse in this
2612  * function using __acquire and __release.  This means we need to be
2613  * super careful before messing with the error path handling via "goto
2614  * out"!
2615  */
2616 static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac,
2617                                      ext4_group_t group, enum criteria cr)
2618 {
2619         struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2620         struct super_block *sb = ac->ac_sb;
2621         struct ext4_sb_info *sbi = EXT4_SB(sb);
2622         bool should_lock = ac->ac_flags & EXT4_MB_STRICT_CHECK;
2623         ext4_grpblk_t free;
2624         int ret = 0;
2625
2626         if (!grp)
2627                 return -EFSCORRUPTED;
2628         if (sbi->s_mb_stats)
2629                 atomic64_inc(&sbi->s_bal_cX_groups_considered[ac->ac_criteria]);
2630         if (should_lock) {
2631                 ext4_lock_group(sb, group);
2632                 __release(ext4_group_lock_ptr(sb, group));
2633         }
2634         free = grp->bb_free;
2635         if (free == 0)
2636                 goto out;
2637         /*
2638          * In all criterias except CR_ANY_FREE we try to avoid groups that
2639          * can't possibly satisfy the full goal request due to insufficient
2640          * free blocks.
2641          */
2642         if (cr < CR_ANY_FREE && free < ac->ac_g_ex.fe_len)
2643                 goto out;
2644         if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2645                 goto out;
2646         if (should_lock) {
2647                 __acquire(ext4_group_lock_ptr(sb, group));
2648                 ext4_unlock_group(sb, group);
2649         }
2650
2651         /* We only do this if the grp has never been initialized */
2652         if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2653                 struct ext4_group_desc *gdp =
2654                         ext4_get_group_desc(sb, group, NULL);
2655                 int ret;
2656
2657                 /*
2658                  * cr=CR_POWER2_ALIGNED/CR_GOAL_LEN_FAST is a very optimistic
2659                  * search to find large good chunks almost for free. If buddy
2660                  * data is not ready, then this optimization makes no sense. But
2661                  * we never skip the first block group in a flex_bg, since this
2662                  * gets used for metadata block allocation, and we want to make
2663                  * sure we locate metadata blocks in the first block group in
2664                  * the flex_bg if possible.
2665                  */
2666                 if (!ext4_mb_cr_expensive(cr) &&
2667                     (!sbi->s_log_groups_per_flex ||
2668                      ((group & ((1 << sbi->s_log_groups_per_flex) - 1)) != 0)) &&
2669                     !(ext4_has_group_desc_csum(sb) &&
2670                       (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))))
2671                         return 0;
2672                 ret = ext4_mb_init_group(sb, group, GFP_NOFS);
2673                 if (ret)
2674                         return ret;
2675         }
2676
2677         if (should_lock) {
2678                 ext4_lock_group(sb, group);
2679                 __release(ext4_group_lock_ptr(sb, group));
2680         }
2681         ret = ext4_mb_good_group(ac, group, cr);
2682 out:
2683         if (should_lock) {
2684                 __acquire(ext4_group_lock_ptr(sb, group));
2685                 ext4_unlock_group(sb, group);
2686         }
2687         return ret;
2688 }
2689
2690 /*
2691  * Start prefetching @nr block bitmaps starting at @group.
2692  * Return the next group which needs to be prefetched.
2693  */
2694 ext4_group_t ext4_mb_prefetch(struct super_block *sb, ext4_group_t group,
2695                               unsigned int nr, int *cnt)
2696 {
2697         ext4_group_t ngroups = ext4_get_groups_count(sb);
2698         struct buffer_head *bh;
2699         struct blk_plug plug;
2700
2701         blk_start_plug(&plug);
2702         while (nr-- > 0) {
2703                 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group,
2704                                                                   NULL);
2705                 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
2706
2707                 /*
2708                  * Prefetch block groups with free blocks; but don't
2709                  * bother if it is marked uninitialized on disk, since
2710                  * it won't require I/O to read.  Also only try to
2711                  * prefetch once, so we avoid getblk() call, which can
2712                  * be expensive.
2713                  */
2714                 if (gdp && grp && !EXT4_MB_GRP_TEST_AND_SET_READ(grp) &&
2715                     EXT4_MB_GRP_NEED_INIT(grp) &&
2716                     ext4_free_group_clusters(sb, gdp) > 0 ) {
2717                         bh = ext4_read_block_bitmap_nowait(sb, group, true);
2718                         if (bh && !IS_ERR(bh)) {
2719                                 if (!buffer_uptodate(bh) && cnt)
2720                                         (*cnt)++;
2721                                 brelse(bh);
2722                         }
2723                 }
2724                 if (++group >= ngroups)
2725                         group = 0;
2726         }
2727         blk_finish_plug(&plug);
2728         return group;
2729 }
2730
2731 /*
2732  * Prefetching reads the block bitmap into the buffer cache; but we
2733  * need to make sure that the buddy bitmap in the page cache has been
2734  * initialized.  Note that ext4_mb_init_group() will block if the I/O
2735  * is not yet completed, or indeed if it was not initiated by
2736  * ext4_mb_prefetch did not start the I/O.
2737  *
2738  * TODO: We should actually kick off the buddy bitmap setup in a work
2739  * queue when the buffer I/O is completed, so that we don't block
2740  * waiting for the block allocation bitmap read to finish when
2741  * ext4_mb_prefetch_fini is called from ext4_mb_regular_allocator().
2742  */
2743 void ext4_mb_prefetch_fini(struct super_block *sb, ext4_group_t group,
2744                            unsigned int nr)
2745 {
2746         struct ext4_group_desc *gdp;
2747         struct ext4_group_info *grp;
2748
2749         while (nr-- > 0) {
2750                 if (!group)
2751                         group = ext4_get_groups_count(sb);
2752                 group--;
2753                 gdp = ext4_get_group_desc(sb, group, NULL);
2754                 grp = ext4_get_group_info(sb, group);
2755
2756                 if (grp && gdp && EXT4_MB_GRP_NEED_INIT(grp) &&
2757                     ext4_free_group_clusters(sb, gdp) > 0) {
2758                         if (ext4_mb_init_group(sb, group, GFP_NOFS))
2759                                 break;
2760                 }
2761         }
2762 }
2763
2764 static noinline_for_stack int
2765 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2766 {
2767         ext4_group_t prefetch_grp = 0, ngroups, group, i;
2768         enum criteria new_cr, cr = CR_GOAL_LEN_FAST;
2769         int err = 0, first_err = 0;
2770         unsigned int nr = 0, prefetch_ios = 0;
2771         struct ext4_sb_info *sbi;
2772         struct super_block *sb;
2773         struct ext4_buddy e4b;
2774         int lost;
2775
2776         sb = ac->ac_sb;
2777         sbi = EXT4_SB(sb);
2778         ngroups = ext4_get_groups_count(sb);
2779         /* non-extent files are limited to low blocks/groups */
2780         if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2781                 ngroups = sbi->s_blockfile_groups;
2782
2783         BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2784
2785         /* first, try the goal */
2786         err = ext4_mb_find_by_goal(ac, &e4b);
2787         if (err || ac->ac_status == AC_STATUS_FOUND)
2788                 goto out;
2789
2790         if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2791                 goto out;
2792
2793         /*
2794          * ac->ac_2order is set only if the fe_len is a power of 2
2795          * if ac->ac_2order is set we also set criteria to CR_POWER2_ALIGNED
2796          * so that we try exact allocation using buddy.
2797          */
2798         i = fls(ac->ac_g_ex.fe_len);
2799         ac->ac_2order = 0;
2800         /*
2801          * We search using buddy data only if the order of the request
2802          * is greater than equal to the sbi_s_mb_order2_reqs
2803          * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2804          * We also support searching for power-of-two requests only for
2805          * requests upto maximum buddy size we have constructed.
2806          */
2807         if (i >= sbi->s_mb_order2_reqs && i <= MB_NUM_ORDERS(sb)) {
2808                 if (is_power_of_2(ac->ac_g_ex.fe_len))
2809                         ac->ac_2order = array_index_nospec(i - 1,
2810                                                            MB_NUM_ORDERS(sb));
2811         }
2812
2813         /* if stream allocation is enabled, use global goal */
2814         if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2815                 /* TBD: may be hot point */
2816                 spin_lock(&sbi->s_md_lock);
2817                 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2818                 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2819                 spin_unlock(&sbi->s_md_lock);
2820         }
2821
2822         /*
2823          * Let's just scan groups to find more-less suitable blocks We
2824          * start with CR_GOAL_LEN_FAST, unless it is power of 2
2825          * aligned, in which case let's do that faster approach first.
2826          */
2827         if (ac->ac_2order)
2828                 cr = CR_POWER2_ALIGNED;
2829 repeat:
2830         for (; cr < EXT4_MB_NUM_CRS && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2831                 ac->ac_criteria = cr;
2832                 /*
2833                  * searching for the right group start
2834                  * from the goal value specified
2835                  */
2836                 group = ac->ac_g_ex.fe_group;
2837                 ac->ac_groups_linear_remaining = sbi->s_mb_max_linear_groups;
2838                 prefetch_grp = group;
2839
2840                 for (i = 0, new_cr = cr; i < ngroups; i++,
2841                      ext4_mb_choose_next_group(ac, &new_cr, &group, ngroups)) {
2842                         int ret = 0;
2843
2844                         cond_resched();
2845                         if (new_cr != cr) {
2846                                 cr = new_cr;
2847                                 goto repeat;
2848                         }
2849
2850                         /*
2851                          * Batch reads of the block allocation bitmaps
2852                          * to get multiple READs in flight; limit
2853                          * prefetching at inexpensive CR, otherwise mballoc
2854                          * can spend a lot of time loading imperfect groups
2855                          */
2856                         if ((prefetch_grp == group) &&
2857                             (ext4_mb_cr_expensive(cr) ||
2858                              prefetch_ios < sbi->s_mb_prefetch_limit)) {
2859                                 nr = sbi->s_mb_prefetch;
2860                                 if (ext4_has_feature_flex_bg(sb)) {
2861                                         nr = 1 << sbi->s_log_groups_per_flex;
2862                                         nr -= group & (nr - 1);
2863                                         nr = min(nr, sbi->s_mb_prefetch);
2864                                 }
2865                                 prefetch_grp = ext4_mb_prefetch(sb, group,
2866                                                         nr, &prefetch_ios);
2867                         }
2868
2869                         /* This now checks without needing the buddy page */
2870                         ret = ext4_mb_good_group_nolock(ac, group, cr);
2871                         if (ret <= 0) {
2872                                 if (!first_err)
2873                                         first_err = ret;
2874                                 continue;
2875                         }
2876
2877                         err = ext4_mb_load_buddy(sb, group, &e4b);
2878                         if (err)
2879                                 goto out;
2880
2881                         ext4_lock_group(sb, group);
2882
2883                         /*
2884                          * We need to check again after locking the
2885                          * block group
2886                          */
2887                         ret = ext4_mb_good_group(ac, group, cr);
2888                         if (ret == 0) {
2889                                 ext4_unlock_group(sb, group);
2890                                 ext4_mb_unload_buddy(&e4b);
2891                                 continue;
2892                         }
2893
2894                         ac->ac_groups_scanned++;
2895                         if (cr == CR_POWER2_ALIGNED)
2896                                 ext4_mb_simple_scan_group(ac, &e4b);
2897                         else if ((cr == CR_GOAL_LEN_FAST ||
2898                                  cr == CR_BEST_AVAIL_LEN) &&
2899                                  sbi->s_stripe &&
2900                                  !(ac->ac_g_ex.fe_len %
2901                                  EXT4_B2C(sbi, sbi->s_stripe)))
2902                                 ext4_mb_scan_aligned(ac, &e4b);
2903                         else
2904                                 ext4_mb_complex_scan_group(ac, &e4b);
2905
2906                         ext4_unlock_group(sb, group);
2907                         ext4_mb_unload_buddy(&e4b);
2908
2909                         if (ac->ac_status != AC_STATUS_CONTINUE)
2910                                 break;
2911                 }
2912                 /* Processed all groups and haven't found blocks */
2913                 if (sbi->s_mb_stats && i == ngroups)
2914                         atomic64_inc(&sbi->s_bal_cX_failed[cr]);
2915
2916                 if (i == ngroups && ac->ac_criteria == CR_BEST_AVAIL_LEN)
2917                         /* Reset goal length to original goal length before
2918                          * falling into CR_GOAL_LEN_SLOW */
2919                         ac->ac_g_ex.fe_len = ac->ac_orig_goal_len;
2920         }
2921
2922         if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2923             !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2924                 /*
2925                  * We've been searching too long. Let's try to allocate
2926                  * the best chunk we've found so far
2927                  */
2928                 ext4_mb_try_best_found(ac, &e4b);
2929                 if (ac->ac_status != AC_STATUS_FOUND) {
2930                         /*
2931                          * Someone more lucky has already allocated it.
2932                          * The only thing we can do is just take first
2933                          * found block(s)
2934                          */
2935                         lost = atomic_inc_return(&sbi->s_mb_lost_chunks);
2936                         mb_debug(sb, "lost chunk, group: %u, start: %d, len: %d, lost: %d\n",
2937                                  ac->ac_b_ex.fe_group, ac->ac_b_ex.fe_start,
2938                                  ac->ac_b_ex.fe_len, lost);
2939
2940                         ac->ac_b_ex.fe_group = 0;
2941                         ac->ac_b_ex.fe_start = 0;
2942                         ac->ac_b_ex.fe_len = 0;
2943                         ac->ac_status = AC_STATUS_CONTINUE;
2944                         ac->ac_flags |= EXT4_MB_HINT_FIRST;
2945                         cr = CR_ANY_FREE;
2946                         goto repeat;
2947                 }
2948         }
2949
2950         if (sbi->s_mb_stats && ac->ac_status == AC_STATUS_FOUND)
2951                 atomic64_inc(&sbi->s_bal_cX_hits[ac->ac_criteria]);
2952 out:
2953         if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2954                 err = first_err;
2955
2956         mb_debug(sb, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n",
2957                  ac->ac_b_ex.fe_len, ac->ac_o_ex.fe_len, ac->ac_status,
2958                  ac->ac_flags, cr, err);
2959
2960         if (nr)
2961                 ext4_mb_prefetch_fini(sb, prefetch_grp, nr);
2962
2963         return err;
2964 }
2965
2966 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2967 {
2968         struct super_block *sb = pde_data(file_inode(seq->file));
2969         ext4_group_t group;
2970
2971         if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2972                 return NULL;
2973         group = *pos + 1;
2974         return (void *) ((unsigned long) group);
2975 }
2976
2977 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2978 {
2979         struct super_block *sb = pde_data(file_inode(seq->file));
2980         ext4_group_t group;
2981
2982         ++*pos;
2983         if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2984                 return NULL;
2985         group = *pos + 1;
2986         return (void *) ((unsigned long) group);
2987 }
2988
2989 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2990 {
2991         struct super_block *sb = pde_data(file_inode(seq->file));
2992         ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2993         int i;
2994         int err, buddy_loaded = 0;
2995         struct ext4_buddy e4b;
2996         struct ext4_group_info *grinfo;
2997         unsigned char blocksize_bits = min_t(unsigned char,
2998                                              sb->s_blocksize_bits,
2999                                              EXT4_MAX_BLOCK_LOG_SIZE);
3000         struct sg {
3001                 struct ext4_group_info info;
3002                 ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2];
3003         } sg;
3004
3005         group--;
3006         if (group == 0)
3007                 seq_puts(seq, "#group: free  frags first ["
3008                               " 2^0   2^1   2^2   2^3   2^4   2^5   2^6  "
3009                               " 2^7   2^8   2^9   2^10  2^11  2^12  2^13  ]\n");
3010
3011         i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
3012                 sizeof(struct ext4_group_info);
3013
3014         grinfo = ext4_get_group_info(sb, group);
3015         if (!grinfo)
3016                 return 0;
3017         /* Load the group info in memory only if not already loaded. */
3018         if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
3019                 err = ext4_mb_load_buddy(sb, group, &e4b);
3020                 if (err) {
3021                         seq_printf(seq, "#%-5u: I/O error\n", group);
3022                         return 0;
3023                 }
3024                 buddy_loaded = 1;
3025         }
3026
3027         memcpy(&sg, grinfo, i);
3028
3029         if (buddy_loaded)
3030                 ext4_mb_unload_buddy(&e4b);
3031
3032         seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
3033                         sg.info.bb_fragments, sg.info.bb_first_free);
3034         for (i = 0; i <= 13; i++)
3035                 seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ?
3036                                 sg.info.bb_counters[i] : 0);
3037         seq_puts(seq, " ]\n");
3038
3039         return 0;
3040 }
3041
3042 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
3043 {
3044 }
3045
3046 const struct seq_operations ext4_mb_seq_groups_ops = {
3047         .start  = ext4_mb_seq_groups_start,
3048         .next   = ext4_mb_seq_groups_next,
3049         .stop   = ext4_mb_seq_groups_stop,
3050         .show   = ext4_mb_seq_groups_show,
3051 };
3052
3053 int ext4_seq_mb_stats_show(struct seq_file *seq, void *offset)
3054 {
3055         struct super_block *sb = seq->private;
3056         struct ext4_sb_info *sbi = EXT4_SB(sb);
3057
3058         seq_puts(seq, "mballoc:\n");
3059         if (!sbi->s_mb_stats) {
3060                 seq_puts(seq, "\tmb stats collection turned off.\n");
3061                 seq_puts(
3062                         seq,
3063                         "\tTo enable, please write \"1\" to sysfs file mb_stats.\n");
3064                 return 0;
3065         }
3066         seq_printf(seq, "\treqs: %u\n", atomic_read(&sbi->s_bal_reqs));
3067         seq_printf(seq, "\tsuccess: %u\n", atomic_read(&sbi->s_bal_success));
3068
3069         seq_printf(seq, "\tgroups_scanned: %u\n",
3070                    atomic_read(&sbi->s_bal_groups_scanned));
3071
3072         /* CR_POWER2_ALIGNED stats */
3073         seq_puts(seq, "\tcr_p2_aligned_stats:\n");
3074         seq_printf(seq, "\t\thits: %llu\n",
3075                    atomic64_read(&sbi->s_bal_cX_hits[CR_POWER2_ALIGNED]));
3076         seq_printf(
3077                 seq, "\t\tgroups_considered: %llu\n",
3078                 atomic64_read(
3079                         &sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED]));
3080         seq_printf(seq, "\t\textents_scanned: %u\n",
3081                    atomic_read(&sbi->s_bal_cX_ex_scanned[CR_POWER2_ALIGNED]));
3082         seq_printf(seq, "\t\tuseless_loops: %llu\n",
3083                    atomic64_read(&sbi->s_bal_cX_failed[CR_POWER2_ALIGNED]));
3084         seq_printf(seq, "\t\tbad_suggestions: %u\n",
3085                    atomic_read(&sbi->s_bal_p2_aligned_bad_suggestions));
3086
3087         /* CR_GOAL_LEN_FAST stats */
3088         seq_puts(seq, "\tcr_goal_fast_stats:\n");
3089         seq_printf(seq, "\t\thits: %llu\n",
3090                    atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_FAST]));
3091         seq_printf(seq, "\t\tgroups_considered: %llu\n",
3092                    atomic64_read(
3093                            &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_FAST]));
3094         seq_printf(seq, "\t\textents_scanned: %u\n",
3095                    atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_FAST]));
3096         seq_printf(seq, "\t\tuseless_loops: %llu\n",
3097                    atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_FAST]));
3098         seq_printf(seq, "\t\tbad_suggestions: %u\n",
3099                    atomic_read(&sbi->s_bal_goal_fast_bad_suggestions));
3100
3101         /* CR_BEST_AVAIL_LEN stats */
3102         seq_puts(seq, "\tcr_best_avail_stats:\n");
3103         seq_printf(seq, "\t\thits: %llu\n",
3104                    atomic64_read(&sbi->s_bal_cX_hits[CR_BEST_AVAIL_LEN]));
3105         seq_printf(
3106                 seq, "\t\tgroups_considered: %llu\n",
3107                 atomic64_read(
3108                         &sbi->s_bal_cX_groups_considered[CR_BEST_AVAIL_LEN]));
3109         seq_printf(seq, "\t\textents_scanned: %u\n",
3110                    atomic_read(&sbi->s_bal_cX_ex_scanned[CR_BEST_AVAIL_LEN]));
3111         seq_printf(seq, "\t\tuseless_loops: %llu\n",
3112                    atomic64_read(&sbi->s_bal_cX_failed[CR_BEST_AVAIL_LEN]));
3113         seq_printf(seq, "\t\tbad_suggestions: %u\n",
3114                    atomic_read(&sbi->s_bal_best_avail_bad_suggestions));
3115
3116         /* CR_GOAL_LEN_SLOW stats */
3117         seq_puts(seq, "\tcr_goal_slow_stats:\n");
3118         seq_printf(seq, "\t\thits: %llu\n",
3119                    atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_SLOW]));
3120         seq_printf(seq, "\t\tgroups_considered: %llu\n",
3121                    atomic64_read(
3122                            &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_SLOW]));
3123         seq_printf(seq, "\t\textents_scanned: %u\n",
3124                    atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_SLOW]));
3125         seq_printf(seq, "\t\tuseless_loops: %llu\n",
3126                    atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_SLOW]));
3127
3128         /* CR_ANY_FREE stats */
3129         seq_puts(seq, "\tcr_any_free_stats:\n");
3130         seq_printf(seq, "\t\thits: %llu\n",
3131                    atomic64_read(&sbi->s_bal_cX_hits[CR_ANY_FREE]));
3132         seq_printf(
3133                 seq, "\t\tgroups_considered: %llu\n",
3134                 atomic64_read(&sbi->s_bal_cX_groups_considered[CR_ANY_FREE]));
3135         seq_printf(seq, "\t\textents_scanned: %u\n",
3136                    atomic_read(&sbi->s_bal_cX_ex_scanned[CR_ANY_FREE]));
3137         seq_printf(seq, "\t\tuseless_loops: %llu\n",
3138                    atomic64_read(&sbi->s_bal_cX_failed[CR_ANY_FREE]));
3139
3140         /* Aggregates */
3141         seq_printf(seq, "\textents_scanned: %u\n",
3142                    atomic_read(&sbi->s_bal_ex_scanned));
3143         seq_printf(seq, "\t\tgoal_hits: %u\n", atomic_read(&sbi->s_bal_goals));
3144         seq_printf(seq, "\t\tlen_goal_hits: %u\n",
3145                    atomic_read(&sbi->s_bal_len_goals));
3146         seq_printf(seq, "\t\t2^n_hits: %u\n", atomic_read(&sbi->s_bal_2orders));
3147         seq_printf(seq, "\t\tbreaks: %u\n", atomic_read(&sbi->s_bal_breaks));
3148         seq_printf(seq, "\t\tlost: %u\n", atomic_read(&sbi->s_mb_lost_chunks));
3149         seq_printf(seq, "\tbuddies_generated: %u/%u\n",
3150                    atomic_read(&sbi->s_mb_buddies_generated),
3151                    ext4_get_groups_count(sb));
3152         seq_printf(seq, "\tbuddies_time_used: %llu\n",
3153                    atomic64_read(&sbi->s_mb_generation_time));
3154         seq_printf(seq, "\tpreallocated: %u\n",
3155                    atomic_read(&sbi->s_mb_preallocated));
3156         seq_printf(seq, "\tdiscarded: %u\n", atomic_read(&sbi->s_mb_discarded));
3157         return 0;
3158 }
3159
3160 static void *ext4_mb_seq_structs_summary_start(struct seq_file *seq, loff_t *pos)
3161 __acquires(&EXT4_SB(sb)->s_mb_rb_lock)
3162 {
3163         struct super_block *sb = pde_data(file_inode(seq->file));
3164         unsigned long position;
3165
3166         if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb))
3167                 return NULL;
3168         position = *pos + 1;
3169         return (void *) ((unsigned long) position);
3170 }
3171
3172 static void *ext4_mb_seq_structs_summary_next(struct seq_file *seq, void *v, loff_t *pos)
3173 {
3174         struct super_block *sb = pde_data(file_inode(seq->file));
3175         unsigned long position;
3176
3177         ++*pos;
3178         if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb))
3179                 return NULL;
3180         position = *pos + 1;
3181         return (void *) ((unsigned long) position);
3182 }
3183
3184 static int ext4_mb_seq_structs_summary_show(struct seq_file *seq, void *v)
3185 {
3186         struct super_block *sb = pde_data(file_inode(seq->file));
3187         struct ext4_sb_info *sbi = EXT4_SB(sb);
3188         unsigned long position = ((unsigned long) v);
3189         struct ext4_group_info *grp;
3190         unsigned int count;
3191
3192         position--;
3193         if (position >= MB_NUM_ORDERS(sb)) {
3194                 position -= MB_NUM_ORDERS(sb);
3195                 if (position == 0)
3196                         seq_puts(seq, "avg_fragment_size_lists:\n");
3197
3198                 count = 0;
3199                 read_lock(&sbi->s_mb_avg_fragment_size_locks[position]);
3200                 list_for_each_entry(grp, &sbi->s_mb_avg_fragment_size[position],
3201                                     bb_avg_fragment_size_node)
3202                         count++;
3203                 read_unlock(&sbi->s_mb_avg_fragment_size_locks[position]);
3204                 seq_printf(seq, "\tlist_order_%u_groups: %u\n",
3205                                         (unsigned int)position, count);
3206                 return 0;
3207         }
3208
3209         if (position == 0) {
3210                 seq_printf(seq, "optimize_scan: %d\n",
3211                            test_opt2(sb, MB_OPTIMIZE_SCAN) ? 1 : 0);
3212                 seq_puts(seq, "max_free_order_lists:\n");
3213         }
3214         count = 0;
3215         read_lock(&sbi->s_mb_largest_free_orders_locks[position]);
3216         list_for_each_entry(grp, &sbi->s_mb_largest_free_orders[position],
3217                             bb_largest_free_order_node)
3218                 count++;
3219         read_unlock(&sbi->s_mb_largest_free_orders_locks[position]);
3220         seq_printf(seq, "\tlist_order_%u_groups: %u\n",
3221                    (unsigned int)position, count);
3222
3223         return 0;
3224 }
3225
3226 static void ext4_mb_seq_structs_summary_stop(struct seq_file *seq, void *v)
3227 {
3228 }
3229
3230 const struct seq_operations ext4_mb_seq_structs_summary_ops = {
3231         .start  = ext4_mb_seq_structs_summary_start,
3232         .next   = ext4_mb_seq_structs_summary_next,
3233         .stop   = ext4_mb_seq_structs_summary_stop,
3234         .show   = ext4_mb_seq_structs_summary_show,
3235 };
3236
3237 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
3238 {
3239         int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3240         struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
3241
3242         BUG_ON(!cachep);
3243         return cachep;
3244 }
3245
3246 /*
3247  * Allocate the top-level s_group_info array for the specified number
3248  * of groups
3249  */
3250 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
3251 {
3252         struct ext4_sb_info *sbi = EXT4_SB(sb);
3253         unsigned size;
3254         struct ext4_group_info ***old_groupinfo, ***new_groupinfo;
3255
3256         size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
3257                 EXT4_DESC_PER_BLOCK_BITS(sb);
3258         if (size <= sbi->s_group_info_size)
3259                 return 0;
3260
3261         size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
3262         new_groupinfo = kvzalloc(size, GFP_KERNEL);
3263         if (!new_groupinfo) {
3264                 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
3265                 return -ENOMEM;
3266         }
3267         rcu_read_lock();
3268         old_groupinfo = rcu_dereference(sbi->s_group_info);
3269         if (old_groupinfo)
3270                 memcpy(new_groupinfo, old_groupinfo,
3271                        sbi->s_group_info_size * sizeof(*sbi->s_group_info));
3272         rcu_read_unlock();
3273         rcu_assign_pointer(sbi->s_group_info, new_groupinfo);
3274         sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
3275         if (old_groupinfo)
3276                 ext4_kvfree_array_rcu(old_groupinfo);
3277         ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
3278                    sbi->s_group_info_size);
3279         return 0;
3280 }
3281
3282 /* Create and initialize ext4_group_info data for the given group. */
3283 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
3284                           struct ext4_group_desc *desc)
3285 {
3286         int i;
3287         int metalen = 0;
3288         int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb);
3289         struct ext4_sb_info *sbi = EXT4_SB(sb);
3290         struct ext4_group_info **meta_group_info;
3291         struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3292
3293         /*
3294          * First check if this group is the first of a reserved block.
3295          * If it's true, we have to allocate a new table of pointers
3296          * to ext4_group_info structures
3297          */
3298         if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3299                 metalen = sizeof(*meta_group_info) <<
3300                         EXT4_DESC_PER_BLOCK_BITS(sb);
3301                 meta_group_info = kmalloc(metalen, GFP_NOFS);
3302                 if (meta_group_info == NULL) {
3303                         ext4_msg(sb, KERN_ERR, "can't allocate mem "
3304                                  "for a buddy group");
3305                         return -ENOMEM;
3306                 }
3307                 rcu_read_lock();
3308                 rcu_dereference(sbi->s_group_info)[idx] = meta_group_info;
3309                 rcu_read_unlock();
3310         }
3311
3312         meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx);
3313         i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
3314
3315         meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
3316         if (meta_group_info[i] == NULL) {
3317                 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
3318                 goto exit_group_info;
3319         }
3320         set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
3321                 &(meta_group_info[i]->bb_state));
3322
3323         /*
3324          * initialize bb_free to be able to skip
3325          * empty groups without initialization
3326          */
3327         if (ext4_has_group_desc_csum(sb) &&
3328             (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3329                 meta_group_info[i]->bb_free =
3330                         ext4_free_clusters_after_init(sb, group, desc);
3331         } else {
3332                 meta_group_info[i]->bb_free =
3333                         ext4_free_group_clusters(sb, desc);
3334         }
3335
3336         INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
3337         init_rwsem(&meta_group_info[i]->alloc_sem);
3338         meta_group_info[i]->bb_free_root = RB_ROOT;
3339         INIT_LIST_HEAD(&meta_group_info[i]->bb_largest_free_order_node);
3340         INIT_LIST_HEAD(&meta_group_info[i]->bb_avg_fragment_size_node);
3341         meta_group_info[i]->bb_largest_free_order = -1;  /* uninit */
3342         meta_group_info[i]->bb_avg_fragment_size_order = -1;  /* uninit */
3343         meta_group_info[i]->bb_group = group;
3344
3345         mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group);
3346         return 0;
3347
3348 exit_group_info:
3349         /* If a meta_group_info table has been allocated, release it now */
3350         if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3351                 struct ext4_group_info ***group_info;
3352
3353                 rcu_read_lock();
3354                 group_info = rcu_dereference(sbi->s_group_info);
3355                 kfree(group_info[idx]);
3356                 group_info[idx] = NULL;
3357                 rcu_read_unlock();
3358         }
3359         return -ENOMEM;
3360 } /* ext4_mb_add_groupinfo */
3361
3362 static int ext4_mb_init_backend(struct super_block *sb)
3363 {
3364         ext4_group_t ngroups = ext4_get_groups_count(sb);
3365         ext4_group_t i;
3366         struct ext4_sb_info *sbi = EXT4_SB(sb);
3367         int err;
3368         struct ext4_group_desc *desc;
3369         struct ext4_group_info ***group_info;
3370         struct kmem_cache *cachep;
3371
3372         err = ext4_mb_alloc_groupinfo(sb, ngroups);
3373         if (err)
3374                 return err;
3375
3376         sbi->s_buddy_cache = new_inode(sb);
3377         if (sbi->s_buddy_cache == NULL) {
3378                 ext4_msg(sb, KERN_ERR, "can't get new inode");
3379                 goto err_freesgi;
3380         }
3381         /* To avoid potentially colliding with an valid on-disk inode number,
3382          * use EXT4_BAD_INO for the buddy cache inode number.  This inode is
3383          * not in the inode hash, so it should never be found by iget(), but
3384          * this will avoid confusion if it ever shows up during debugging. */
3385         sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
3386         EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
3387         for (i = 0; i < ngroups; i++) {
3388                 cond_resched();
3389                 desc = ext4_get_group_desc(sb, i, NULL);
3390                 if (desc == NULL) {
3391                         ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
3392                         goto err_freebuddy;
3393                 }
3394                 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
3395                         goto err_freebuddy;
3396         }
3397
3398         if (ext4_has_feature_flex_bg(sb)) {
3399                 /* a single flex group is supposed to be read by a single IO.
3400                  * 2 ^ s_log_groups_per_flex != UINT_MAX as s_mb_prefetch is
3401                  * unsigned integer, so the maximum shift is 32.
3402                  */
3403                 if (sbi->s_es->s_log_groups_per_flex >= 32) {
3404                         ext4_msg(sb, KERN_ERR, "too many log groups per flexible block group");
3405                         goto err_freebuddy;
3406                 }
3407                 sbi->s_mb_prefetch = min_t(uint, 1 << sbi->s_es->s_log_groups_per_flex,
3408                         BLK_MAX_SEGMENT_SIZE >> (sb->s_blocksize_bits - 9));
3409                 sbi->s_mb_prefetch *= 8; /* 8 prefetch IOs in flight at most */
3410         } else {
3411                 sbi->s_mb_prefetch = 32;
3412         }
3413         if (sbi->s_mb_prefetch > ext4_get_groups_count(sb))
3414                 sbi->s_mb_prefetch = ext4_get_groups_count(sb);
3415         /* now many real IOs to prefetch within a single allocation at cr=0
3416          * given cr=0 is an CPU-related optimization we shouldn't try to
3417          * load too many groups, at some point we should start to use what
3418          * we've got in memory.
3419          * with an average random access time 5ms, it'd take a second to get
3420          * 200 groups (* N with flex_bg), so let's make this limit 4
3421          */
3422         sbi->s_mb_prefetch_limit = sbi->s_mb_prefetch * 4;
3423         if (sbi->s_mb_prefetch_limit > ext4_get_groups_count(sb))
3424                 sbi->s_mb_prefetch_limit = ext4_get_groups_count(sb);
3425
3426         return 0;
3427
3428 err_freebuddy:
3429         cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3430         while (i-- > 0) {
3431                 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
3432
3433                 if (grp)
3434                         kmem_cache_free(cachep, grp);
3435         }
3436         i = sbi->s_group_info_size;
3437         rcu_read_lock();
3438         group_info = rcu_dereference(sbi->s_group_info);
3439         while (i-- > 0)
3440                 kfree(group_info[i]);
3441         rcu_read_unlock();
3442         iput(sbi->s_buddy_cache);
3443 err_freesgi:
3444         rcu_read_lock();
3445         kvfree(rcu_dereference(sbi->s_group_info));
3446         rcu_read_unlock();
3447         return -ENOMEM;
3448 }
3449
3450 static void ext4_groupinfo_destroy_slabs(void)
3451 {
3452         int i;
3453
3454         for (i = 0; i < NR_GRPINFO_CACHES; i++) {
3455                 kmem_cache_destroy(ext4_groupinfo_caches[i]);
3456                 ext4_groupinfo_caches[i] = NULL;
3457         }
3458 }
3459
3460 static int ext4_groupinfo_create_slab(size_t size)
3461 {
3462         static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
3463         int slab_size;
3464         int blocksize_bits = order_base_2(size);
3465         int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3466         struct kmem_cache *cachep;
3467
3468         if (cache_index >= NR_GRPINFO_CACHES)
3469                 return -EINVAL;
3470
3471         if (unlikely(cache_index < 0))
3472                 cache_index = 0;
3473
3474         mutex_lock(&ext4_grpinfo_slab_create_mutex);
3475         if (ext4_groupinfo_caches[cache_index]) {
3476                 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3477                 return 0;       /* Already created */
3478         }
3479
3480         slab_size = offsetof(struct ext4_group_info,
3481                                 bb_counters[blocksize_bits + 2]);
3482
3483         cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
3484                                         slab_size, 0, SLAB_RECLAIM_ACCOUNT,
3485                                         NULL);
3486
3487         ext4_groupinfo_caches[cache_index] = cachep;
3488
3489         mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3490         if (!cachep) {
3491                 printk(KERN_EMERG
3492                        "EXT4-fs: no memory for groupinfo slab cache\n");
3493                 return -ENOMEM;
3494         }
3495
3496         return 0;
3497 }
3498
3499 static void ext4_discard_work(struct work_struct *work)
3500 {
3501         struct ext4_sb_info *sbi = container_of(work,
3502                         struct ext4_sb_info, s_discard_work);
3503         struct super_block *sb = sbi->s_sb;
3504         struct ext4_free_data *fd, *nfd;
3505         struct ext4_buddy e4b;
3506         LIST_HEAD(discard_list);
3507         ext4_group_t grp, load_grp;
3508         int err = 0;
3509
3510         spin_lock(&sbi->s_md_lock);
3511         list_splice_init(&sbi->s_discard_list, &discard_list);
3512         spin_unlock(&sbi->s_md_lock);
3513
3514         load_grp = UINT_MAX;
3515         list_for_each_entry_safe(fd, nfd, &discard_list, efd_list) {
3516                 /*
3517                  * If filesystem is umounting or no memory or suffering
3518                  * from no space, give up the discard
3519                  */
3520                 if ((sb->s_flags & SB_ACTIVE) && !err &&
3521                     !atomic_read(&sbi->s_retry_alloc_pending)) {
3522                         grp = fd->efd_group;
3523                         if (grp != load_grp) {
3524                                 if (load_grp != UINT_MAX)
3525                                         ext4_mb_unload_buddy(&e4b);
3526
3527                                 err = ext4_mb_load_buddy(sb, grp, &e4b);
3528                                 if (err) {
3529                                         kmem_cache_free(ext4_free_data_cachep, fd);
3530                                         load_grp = UINT_MAX;
3531                                         continue;
3532                                 } else {
3533                                         load_grp = grp;
3534                                 }
3535                         }
3536
3537                         ext4_lock_group(sb, grp);
3538                         ext4_try_to_trim_range(sb, &e4b, fd->efd_start_cluster,
3539                                                 fd->efd_start_cluster + fd->efd_count - 1, 1);
3540                         ext4_unlock_group(sb, grp);
3541                 }
3542                 kmem_cache_free(ext4_free_data_cachep, fd);
3543         }
3544
3545         if (load_grp != UINT_MAX)
3546                 ext4_mb_unload_buddy(&e4b);
3547 }
3548
3549 int ext4_mb_init(struct super_block *sb)
3550 {
3551         struct ext4_sb_info *sbi = EXT4_SB(sb);
3552         unsigned i, j;
3553         unsigned offset, offset_incr;
3554         unsigned max;
3555         int ret;
3556
3557         i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_offsets);
3558
3559         sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
3560         if (sbi->s_mb_offsets == NULL) {
3561                 ret = -ENOMEM;
3562                 goto out;
3563         }
3564
3565         i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_maxs);
3566         sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
3567         if (sbi->s_mb_maxs == NULL) {
3568                 ret = -ENOMEM;
3569                 goto out;
3570         }
3571
3572         ret = ext4_groupinfo_create_slab(sb->s_blocksize);
3573         if (ret < 0)
3574                 goto out;
3575
3576         /* order 0 is regular bitmap */
3577         sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
3578         sbi->s_mb_offsets[0] = 0;
3579
3580         i = 1;
3581         offset = 0;
3582         offset_incr = 1 << (sb->s_blocksize_bits - 1);
3583         max = sb->s_blocksize << 2;
3584         do {
3585                 sbi->s_mb_offsets[i] = offset;
3586                 sbi->s_mb_maxs[i] = max;
3587                 offset += offset_incr;
3588                 offset_incr = offset_incr >> 1;
3589                 max = max >> 1;
3590                 i++;
3591         } while (i < MB_NUM_ORDERS(sb));
3592
3593         sbi->s_mb_avg_fragment_size =
3594                 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head),
3595                         GFP_KERNEL);
3596         if (!sbi->s_mb_avg_fragment_size) {
3597                 ret = -ENOMEM;
3598                 goto out;
3599         }
3600         sbi->s_mb_avg_fragment_size_locks =
3601                 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t),
3602                         GFP_KERNEL);
3603         if (!sbi->s_mb_avg_fragment_size_locks) {
3604                 ret = -ENOMEM;
3605                 goto out;
3606         }
3607         for (i = 0; i < MB_NUM_ORDERS(sb); i++) {
3608                 INIT_LIST_HEAD(&sbi->s_mb_avg_fragment_size[i]);
3609                 rwlock_init(&sbi->s_mb_avg_fragment_size_locks[i]);
3610         }
3611         sbi->s_mb_largest_free_orders =
3612                 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head),
3613                         GFP_KERNEL);
3614         if (!sbi->s_mb_largest_free_orders) {
3615                 ret = -ENOMEM;
3616                 goto out;
3617         }
3618         sbi->s_mb_largest_free_orders_locks =
3619                 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t),
3620                         GFP_KERNEL);
3621         if (!sbi->s_mb_largest_free_orders_locks) {
3622                 ret = -ENOMEM;
3623                 goto out;
3624         }
3625         for (i = 0; i < MB_NUM_ORDERS(sb); i++) {
3626                 INIT_LIST_HEAD(&sbi->s_mb_largest_free_orders[i]);
3627                 rwlock_init(&sbi->s_mb_largest_free_orders_locks[i]);
3628         }
3629
3630         spin_lock_init(&sbi->s_md_lock);
3631         sbi->s_mb_free_pending = 0;
3632         INIT_LIST_HEAD(&sbi->s_freed_data_list);
3633         INIT_LIST_HEAD(&sbi->s_discard_list);
3634         INIT_WORK(&sbi->s_discard_work, ext4_discard_work);
3635         atomic_set(&sbi->s_retry_alloc_pending, 0);
3636
3637         sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
3638         sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
3639         sbi->s_mb_stats = MB_DEFAULT_STATS;
3640         sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
3641         sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
3642         sbi->s_mb_best_avail_max_trim_order = MB_DEFAULT_BEST_AVAIL_TRIM_ORDER;
3643
3644         /*
3645          * The default group preallocation is 512, which for 4k block
3646          * sizes translates to 2 megabytes.  However for bigalloc file
3647          * systems, this is probably too big (i.e, if the cluster size
3648          * is 1 megabyte, then group preallocation size becomes half a
3649          * gigabyte!).  As a default, we will keep a two megabyte
3650          * group pralloc size for cluster sizes up to 64k, and after
3651          * that, we will force a minimum group preallocation size of
3652          * 32 clusters.  This translates to 8 megs when the cluster
3653          * size is 256k, and 32 megs when the cluster size is 1 meg,
3654          * which seems reasonable as a default.
3655          */
3656         sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
3657                                        sbi->s_cluster_bits, 32);
3658         /*
3659          * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
3660          * to the lowest multiple of s_stripe which is bigger than
3661          * the s_mb_group_prealloc as determined above. We want
3662          * the preallocation size to be an exact multiple of the
3663          * RAID stripe size so that preallocations don't fragment
3664          * the stripes.
3665          */
3666         if (sbi->s_stripe > 1) {
3667                 sbi->s_mb_group_prealloc = roundup(
3668                         sbi->s_mb_group_prealloc, EXT4_B2C(sbi, sbi->s_stripe));
3669         }
3670
3671         sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
3672         if (sbi->s_locality_groups == NULL) {
3673                 ret = -ENOMEM;
3674                 goto out;
3675         }
3676         for_each_possible_cpu(i) {
3677                 struct ext4_locality_group *lg;
3678                 lg = per_cpu_ptr(sbi->s_locality_groups, i);
3679                 mutex_init(&lg->lg_mutex);
3680                 for (j = 0; j < PREALLOC_TB_SIZE; j++)
3681                         INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
3682                 spin_lock_init(&lg->lg_prealloc_lock);
3683         }
3684
3685         if (bdev_nonrot(sb->s_bdev))
3686                 sbi->s_mb_max_linear_groups = 0;
3687         else
3688                 sbi->s_mb_max_linear_groups = MB_DEFAULT_LINEAR_LIMIT;
3689         /* init file for buddy data */
3690         ret = ext4_mb_init_backend(sb);
3691         if (ret != 0)
3692                 goto out_free_locality_groups;
3693
3694         return 0;
3695
3696 out_free_locality_groups:
3697         free_percpu(sbi->s_locality_groups);
3698         sbi->s_locality_groups = NULL;
3699 out:
3700         kfree(sbi->s_mb_avg_fragment_size);
3701         kfree(sbi->s_mb_avg_fragment_size_locks);
3702         kfree(sbi->s_mb_largest_free_orders);
3703         kfree(sbi->s_mb_largest_free_orders_locks);
3704         kfree(sbi->s_mb_offsets);
3705         sbi->s_mb_offsets = NULL;
3706         kfree(sbi->s_mb_maxs);
3707         sbi->s_mb_maxs = NULL;
3708         return ret;
3709 }
3710
3711 /* need to called with the ext4 group lock held */
3712 static int ext4_mb_cleanup_pa(struct ext4_group_info *grp)
3713 {
3714         struct ext4_prealloc_space *pa;
3715         struct list_head *cur, *tmp;
3716         int count = 0;
3717
3718         list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
3719                 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3720                 list_del(&pa->pa_group_list);
3721                 count++;
3722                 kmem_cache_free(ext4_pspace_cachep, pa);
3723         }
3724         return count;
3725 }
3726
3727 int ext4_mb_release(struct super_block *sb)
3728 {
3729         ext4_group_t ngroups = ext4_get_groups_count(sb);
3730         ext4_group_t i;
3731         int num_meta_group_infos;
3732         struct ext4_group_info *grinfo, ***group_info;
3733         struct ext4_sb_info *sbi = EXT4_SB(sb);
3734         struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3735         int count;
3736
3737         if (test_opt(sb, DISCARD)) {
3738                 /*
3739                  * wait the discard work to drain all of ext4_free_data
3740                  */
3741                 flush_work(&sbi->s_discard_work);
3742                 WARN_ON_ONCE(!list_empty(&sbi->s_discard_list));
3743         }
3744
3745         if (sbi->s_group_info) {
3746                 for (i = 0; i < ngroups; i++) {
3747                         cond_resched();
3748                         grinfo = ext4_get_group_info(sb, i);
3749                         if (!grinfo)
3750                                 continue;
3751                         mb_group_bb_bitmap_free(grinfo);
3752                         ext4_lock_group(sb, i);
3753                         count = ext4_mb_cleanup_pa(grinfo);
3754                         if (count)
3755                                 mb_debug(sb, "mballoc: %d PAs left\n",
3756                                          count);
3757                         ext4_unlock_group(sb, i);
3758                         kmem_cache_free(cachep, grinfo);
3759                 }
3760                 num_meta_group_infos = (ngroups +
3761                                 EXT4_DESC_PER_BLOCK(sb) - 1) >>
3762                         EXT4_DESC_PER_BLOCK_BITS(sb);
3763                 rcu_read_lock();
3764                 group_info = rcu_dereference(sbi->s_group_info);
3765                 for (i = 0; i < num_meta_group_infos; i++)
3766                         kfree(group_info[i]);
3767                 kvfree(group_info);
3768                 rcu_read_unlock();
3769         }
3770         kfree(sbi->s_mb_avg_fragment_size);
3771         kfree(sbi->s_mb_avg_fragment_size_locks);
3772         kfree(sbi->s_mb_largest_free_orders);
3773         kfree(sbi->s_mb_largest_free_orders_locks);
3774         kfree(sbi->s_mb_offsets);
3775         kfree(sbi->s_mb_maxs);
3776         iput(sbi->s_buddy_cache);
3777         if (sbi->s_mb_stats) {
3778                 ext4_msg(sb, KERN_INFO,
3779                        "mballoc: %u blocks %u reqs (%u success)",
3780                                 atomic_read(&sbi->s_bal_allocated),
3781                                 atomic_read(&sbi->s_bal_reqs),
3782                                 atomic_read(&sbi->s_bal_success));
3783                 ext4_msg(sb, KERN_INFO,
3784                       "mballoc: %u extents scanned, %u groups scanned, %u goal hits, "
3785                                 "%u 2^N hits, %u breaks, %u lost",
3786                                 atomic_read(&sbi->s_bal_ex_scanned),
3787                                 atomic_read(&sbi->s_bal_groups_scanned),
3788                                 atomic_read(&sbi->s_bal_goals),
3789                                 atomic_read(&sbi->s_bal_2orders),
3790                                 atomic_read(&sbi->s_bal_breaks),
3791                                 atomic_read(&sbi->s_mb_lost_chunks));
3792                 ext4_msg(sb, KERN_INFO,
3793                        "mballoc: %u generated and it took %llu",
3794                                 atomic_read(&sbi->s_mb_buddies_generated),
3795                                 atomic64_read(&sbi->s_mb_generation_time));
3796                 ext4_msg(sb, KERN_INFO,
3797                        "mballoc: %u preallocated, %u discarded",
3798                                 atomic_read(&sbi->s_mb_preallocated),
3799                                 atomic_read(&sbi->s_mb_discarded));
3800         }
3801
3802         free_percpu(sbi->s_locality_groups);
3803
3804         return 0;
3805 }
3806
3807 static inline int ext4_issue_discard(struct super_block *sb,
3808                 ext4_group_t block_group, ext4_grpblk_t cluster, int count,
3809                 struct bio **biop)
3810 {
3811         ext4_fsblk_t discard_block;
3812
3813         discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
3814                          ext4_group_first_block_no(sb, block_group));
3815         count = EXT4_C2B(EXT4_SB(sb), count);
3816         trace_ext4_discard_blocks(sb,
3817                         (unsigned long long) discard_block, count);
3818         if (biop) {
3819                 return __blkdev_issue_discard(sb->s_bdev,
3820                         (sector_t)discard_block << (sb->s_blocksize_bits - 9),
3821                         (sector_t)count << (sb->s_blocksize_bits - 9),
3822                         GFP_NOFS, biop);
3823         } else
3824                 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
3825 }
3826
3827 static void ext4_free_data_in_buddy(struct super_block *sb,
3828                                     struct ext4_free_data *entry)
3829 {
3830         struct ext4_buddy e4b;
3831         struct ext4_group_info *db;
3832         int err, count = 0;
3833
3834         mb_debug(sb, "gonna free %u blocks in group %u (0x%p):",
3835                  entry->efd_count, entry->efd_group, entry);
3836
3837         err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
3838         /* we expect to find existing buddy because it's pinned */
3839         BUG_ON(err != 0);
3840
3841         spin_lock(&EXT4_SB(sb)->s_md_lock);
3842         EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count;
3843         spin_unlock(&EXT4_SB(sb)->s_md_lock);
3844
3845         db = e4b.bd_info;
3846         /* there are blocks to put in buddy to make them really free */
3847         count += entry->efd_count;
3848         ext4_lock_group(sb, entry->efd_group);
3849         /* Take it out of per group rb tree */
3850         rb_erase(&entry->efd_node, &(db->bb_free_root));
3851         mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
3852
3853         /*
3854          * Clear the trimmed flag for the group so that the next
3855          * ext4_trim_fs can trim it.
3856          * If the volume is mounted with -o discard, online discard
3857          * is supported and the free blocks will be trimmed online.
3858          */
3859         if (!test_opt(sb, DISCARD))
3860                 EXT4_MB_GRP_CLEAR_TRIMMED(db);
3861
3862         if (!db->bb_free_root.rb_node) {
3863                 /* No more items in the per group rb tree
3864                  * balance refcounts from ext4_mb_free_metadata()
3865                  */
3866                 put_page(e4b.bd_buddy_page);
3867                 put_page(e4b.bd_bitmap_page);
3868         }
3869         ext4_unlock_group(sb, entry->efd_group);
3870         ext4_mb_unload_buddy(&e4b);
3871
3872         mb_debug(sb, "freed %d blocks in 1 structures\n", count);
3873 }
3874
3875 /*
3876  * This function is called by the jbd2 layer once the commit has finished,
3877  * so we know we can free the blocks that were released with that commit.
3878  */
3879 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid)
3880 {
3881         struct ext4_sb_info *sbi = EXT4_SB(sb);
3882         struct ext4_free_data *entry, *tmp;
3883         LIST_HEAD(freed_data_list);
3884         struct list_head *cut_pos = NULL;
3885         bool wake;
3886
3887         spin_lock(&sbi->s_md_lock);
3888         list_for_each_entry(entry, &sbi->s_freed_data_list, efd_list) {
3889                 if (entry->efd_tid != commit_tid)
3890                         break;
3891                 cut_pos = &entry->efd_list;
3892         }
3893         if (cut_pos)
3894                 list_cut_position(&freed_data_list, &sbi->s_freed_data_list,
3895                                   cut_pos);
3896         spin_unlock(&sbi->s_md_lock);
3897
3898         list_for_each_entry(entry, &freed_data_list, efd_list)
3899                 ext4_free_data_in_buddy(sb, entry);
3900
3901         if (test_opt(sb, DISCARD)) {
3902                 spin_lock(&sbi->s_md_lock);
3903                 wake = list_empty(&sbi->s_discard_list);
3904                 list_splice_tail(&freed_data_list, &sbi->s_discard_list);
3905                 spin_unlock(&sbi->s_md_lock);
3906                 if (wake)
3907                         queue_work(system_unbound_wq, &sbi->s_discard_work);
3908         } else {
3909                 list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list)
3910                         kmem_cache_free(ext4_free_data_cachep, entry);
3911         }
3912 }
3913
3914 int __init ext4_init_mballoc(void)
3915 {
3916         ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
3917                                         SLAB_RECLAIM_ACCOUNT);
3918         if (ext4_pspace_cachep == NULL)
3919                 goto out;
3920
3921         ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
3922                                     SLAB_RECLAIM_ACCOUNT);
3923         if (ext4_ac_cachep == NULL)
3924                 goto out_pa_free;
3925
3926         ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
3927                                            SLAB_RECLAIM_ACCOUNT);
3928         if (ext4_free_data_cachep == NULL)
3929                 goto out_ac_free;
3930
3931         return 0;
3932
3933 out_ac_free:
3934         kmem_cache_destroy(ext4_ac_cachep);
3935 out_pa_free:
3936         kmem_cache_destroy(ext4_pspace_cachep);
3937 out:
3938         return -ENOMEM;
3939 }
3940
3941 void ext4_exit_mballoc(void)
3942 {
3943         /*
3944          * Wait for completion of call_rcu()'s on ext4_pspace_cachep
3945          * before destroying the slab cache.
3946          */
3947         rcu_barrier();
3948         kmem_cache_destroy(ext4_pspace_cachep);
3949         kmem_cache_destroy(ext4_ac_cachep);
3950         kmem_cache_destroy(ext4_free_data_cachep);
3951         ext4_groupinfo_destroy_slabs();
3952 }
3953
3954
3955 /*
3956  * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
3957  * Returns 0 if success or error code
3958  */
3959 static noinline_for_stack int
3960 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
3961                                 handle_t *handle, unsigned int reserv_clstrs)
3962 {
3963         struct buffer_head *bitmap_bh = NULL;
3964         struct ext4_group_desc *gdp;
3965         struct buffer_head *gdp_bh;
3966         struct ext4_sb_info *sbi;
3967         struct super_block *sb;
3968         ext4_fsblk_t block;
3969         int err, len;
3970
3971         BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3972         BUG_ON(ac->ac_b_ex.fe_len <= 0);
3973
3974         sb = ac->ac_sb;
3975         sbi = EXT4_SB(sb);
3976
3977         bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
3978         if (IS_ERR(bitmap_bh)) {
3979                 return PTR_ERR(bitmap_bh);
3980         }
3981
3982         BUFFER_TRACE(bitmap_bh, "getting write access");
3983         err = ext4_journal_get_write_access(handle, sb, bitmap_bh,
3984                                             EXT4_JTR_NONE);
3985         if (err)
3986                 goto out_err;
3987
3988         err = -EIO;
3989         gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
3990         if (!gdp)
3991                 goto out_err;
3992
3993         ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
3994                         ext4_free_group_clusters(sb, gdp));
3995
3996         BUFFER_TRACE(gdp_bh, "get_write_access");
3997         err = ext4_journal_get_write_access(handle, sb, gdp_bh, EXT4_JTR_NONE);
3998         if (err)
3999                 goto out_err;
4000
4001         block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4002
4003         len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4004         if (!ext4_inode_block_valid(ac->ac_inode, block, len)) {
4005                 ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
4006                            "fs metadata", block, block+len);
4007                 /* File system mounted not to panic on error
4008                  * Fix the bitmap and return EFSCORRUPTED
4009                  * We leak some of the blocks here.
4010                  */
4011                 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
4012                 mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
4013                               ac->ac_b_ex.fe_len);
4014                 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
4015                 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4016                 if (!err)
4017                         err = -EFSCORRUPTED;
4018                 goto out_err;
4019         }
4020
4021         ext4_lock_group(sb, ac->ac_b_ex.fe_group);
4022 #ifdef AGGRESSIVE_CHECK
4023         {
4024                 int i;
4025                 for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
4026                         BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
4027                                                 bitmap_bh->b_data));
4028                 }
4029         }
4030 #endif
4031         mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
4032                       ac->ac_b_ex.fe_len);
4033         if (ext4_has_group_desc_csum(sb) &&
4034             (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
4035                 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
4036                 ext4_free_group_clusters_set(sb, gdp,
4037                                              ext4_free_clusters_after_init(sb,
4038                                                 ac->ac_b_ex.fe_group, gdp));
4039         }
4040         len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
4041         ext4_free_group_clusters_set(sb, gdp, len);
4042         ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh);
4043         ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
4044
4045         ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
4046         percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
4047         /*
4048          * Now reduce the dirty block count also. Should not go negative
4049          */
4050         if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
4051                 /* release all the reserved blocks if non delalloc */
4052                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4053                                    reserv_clstrs);
4054
4055         if (sbi->s_log_groups_per_flex) {
4056                 ext4_group_t flex_group = ext4_flex_group(sbi,
4057                                                           ac->ac_b_ex.fe_group);
4058                 atomic64_sub(ac->ac_b_ex.fe_len,
4059                              &sbi_array_rcu_deref(sbi, s_flex_groups,
4060                                                   flex_group)->free_clusters);
4061         }
4062
4063         err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4064         if (err)
4065                 goto out_err;
4066         err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
4067
4068 out_err:
4069         brelse(bitmap_bh);
4070         return err;
4071 }
4072
4073 /*
4074  * Idempotent helper for Ext4 fast commit replay path to set the state of
4075  * blocks in bitmaps and update counters.
4076  */
4077 void ext4_mb_mark_bb(struct super_block *sb, ext4_fsblk_t block,
4078                         int len, int state)
4079 {
4080         struct buffer_head *bitmap_bh = NULL;
4081         struct ext4_group_desc *gdp;
4082         struct buffer_head *gdp_bh;
4083         struct ext4_sb_info *sbi = EXT4_SB(sb);
4084         ext4_group_t group;
4085         ext4_grpblk_t blkoff;
4086         int i, err = 0;
4087         int already;
4088         unsigned int clen, clen_changed, thisgrp_len;
4089
4090         while (len > 0) {
4091                 ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
4092
4093                 /*
4094                  * Check to see if we are freeing blocks across a group
4095                  * boundary.
4096                  * In case of flex_bg, this can happen that (block, len) may
4097                  * span across more than one group. In that case we need to
4098                  * get the corresponding group metadata to work with.
4099                  * For this we have goto again loop.
4100                  */
4101                 thisgrp_len = min_t(unsigned int, (unsigned int)len,
4102                         EXT4_BLOCKS_PER_GROUP(sb) - EXT4_C2B(sbi, blkoff));
4103                 clen = EXT4_NUM_B2C(sbi, thisgrp_len);
4104
4105                 if (!ext4_sb_block_valid(sb, NULL, block, thisgrp_len)) {
4106                         ext4_error(sb, "Marking blocks in system zone - "
4107                                    "Block = %llu, len = %u",
4108                                    block, thisgrp_len);
4109                         bitmap_bh = NULL;
4110                         break;
4111                 }
4112
4113                 bitmap_bh = ext4_read_block_bitmap(sb, group);
4114                 if (IS_ERR(bitmap_bh)) {
4115                         err = PTR_ERR(bitmap_bh);
4116                         bitmap_bh = NULL;
4117                         break;
4118                 }
4119
4120                 err = -EIO;
4121                 gdp = ext4_get_group_desc(sb, group, &gdp_bh);
4122                 if (!gdp)
4123                         break;
4124
4125                 ext4_lock_group(sb, group);
4126                 already = 0;
4127                 for (i = 0; i < clen; i++)
4128                         if (!mb_test_bit(blkoff + i, bitmap_bh->b_data) ==
4129                                          !state)
4130                                 already++;
4131
4132                 clen_changed = clen - already;
4133                 if (state)
4134                         mb_set_bits(bitmap_bh->b_data, blkoff, clen);
4135                 else
4136                         mb_clear_bits(bitmap_bh->b_data, blkoff, clen);
4137                 if (ext4_has_group_desc_csum(sb) &&
4138                     (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
4139                         gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
4140                         ext4_free_group_clusters_set(sb, gdp,
4141                              ext4_free_clusters_after_init(sb, group, gdp));
4142                 }
4143                 if (state)
4144                         clen = ext4_free_group_clusters(sb, gdp) - clen_changed;
4145                 else
4146                         clen = ext4_free_group_clusters(sb, gdp) + clen_changed;
4147
4148                 ext4_free_group_clusters_set(sb, gdp, clen);
4149                 ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh);
4150                 ext4_group_desc_csum_set(sb, group, gdp);
4151
4152                 ext4_unlock_group(sb, group);
4153
4154                 if (sbi->s_log_groups_per_flex) {
4155                         ext4_group_t flex_group = ext4_flex_group(sbi, group);
4156                         struct flex_groups *fg = sbi_array_rcu_deref(sbi,
4157                                                    s_flex_groups, flex_group);
4158
4159                         if (state)
4160                                 atomic64_sub(clen_changed, &fg->free_clusters);
4161                         else
4162                                 atomic64_add(clen_changed, &fg->free_clusters);
4163
4164                 }
4165
4166                 err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh);
4167                 if (err)
4168                         break;
4169                 sync_dirty_buffer(bitmap_bh);
4170                 err = ext4_handle_dirty_metadata(NULL, NULL, gdp_bh);
4171                 sync_dirty_buffer(gdp_bh);
4172                 if (err)
4173                         break;
4174
4175                 block += thisgrp_len;
4176                 len -= thisgrp_len;
4177                 brelse(bitmap_bh);
4178                 BUG_ON(len < 0);
4179         }
4180
4181         if (err)
4182                 brelse(bitmap_bh);
4183 }
4184
4185 /*
4186  * here we normalize request for locality group
4187  * Group request are normalized to s_mb_group_prealloc, which goes to
4188  * s_strip if we set the same via mount option.
4189  * s_mb_group_prealloc can be configured via
4190  * /sys/fs/ext4/<partition>/mb_group_prealloc
4191  *
4192  * XXX: should we try to preallocate more than the group has now?
4193  */
4194 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
4195 {
4196         struct super_block *sb = ac->ac_sb;
4197         struct ext4_locality_group *lg = ac->ac_lg;
4198
4199         BUG_ON(lg == NULL);
4200         ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
4201         mb_debug(sb, "goal %u blocks for locality group\n", ac->ac_g_ex.fe_len);
4202 }
4203
4204 /*
4205  * This function returns the next element to look at during inode
4206  * PA rbtree walk. We assume that we have held the inode PA rbtree lock
4207  * (ei->i_prealloc_lock)
4208  *
4209  * new_start    The start of the range we want to compare
4210  * cur_start    The existing start that we are comparing against
4211  * node The node of the rb_tree
4212  */
4213 static inline struct rb_node*
4214 ext4_mb_pa_rb_next_iter(ext4_lblk_t new_start, ext4_lblk_t cur_start, struct rb_node *node)
4215 {
4216         if (new_start < cur_start)
4217                 return node->rb_left;
4218         else
4219                 return node->rb_right;
4220 }
4221
4222 static inline void
4223 ext4_mb_pa_assert_overlap(struct ext4_allocation_context *ac,
4224                           ext4_lblk_t start, loff_t end)
4225 {
4226         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4227         struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4228         struct ext4_prealloc_space *tmp_pa;
4229         ext4_lblk_t tmp_pa_start;
4230         loff_t tmp_pa_end;
4231         struct rb_node *iter;
4232
4233         read_lock(&ei->i_prealloc_lock);
4234         for (iter = ei->i_prealloc_node.rb_node; iter;
4235              iter = ext4_mb_pa_rb_next_iter(start, tmp_pa_start, iter)) {
4236                 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4237                                   pa_node.inode_node);
4238                 tmp_pa_start = tmp_pa->pa_lstart;
4239                 tmp_pa_end = pa_logical_end(sbi, tmp_pa);
4240
4241                 spin_lock(&tmp_pa->pa_lock);
4242                 if (tmp_pa->pa_deleted == 0)
4243                         BUG_ON(!(start >= tmp_pa_end || end <= tmp_pa_start));
4244                 spin_unlock(&tmp_pa->pa_lock);
4245         }
4246         read_unlock(&ei->i_prealloc_lock);
4247 }
4248
4249 /*
4250  * Given an allocation context "ac" and a range "start", "end", check
4251  * and adjust boundaries if the range overlaps with any of the existing
4252  * preallocatoins stored in the corresponding inode of the allocation context.
4253  *
4254  * Parameters:
4255  *      ac                      allocation context
4256  *      start                   start of the new range
4257  *      end                     end of the new range
4258  */
4259 static inline void
4260 ext4_mb_pa_adjust_overlap(struct ext4_allocation_context *ac,
4261                           ext4_lblk_t *start, loff_t *end)
4262 {
4263         struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4264         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4265         struct ext4_prealloc_space *tmp_pa = NULL, *left_pa = NULL, *right_pa = NULL;
4266         struct rb_node *iter;
4267         ext4_lblk_t new_start, tmp_pa_start, right_pa_start = -1;
4268         loff_t new_end, tmp_pa_end, left_pa_end = -1;
4269
4270         new_start = *start;
4271         new_end = *end;
4272
4273         /*
4274          * Adjust the normalized range so that it doesn't overlap with any
4275          * existing preallocated blocks(PAs). Make sure to hold the rbtree lock
4276          * so it doesn't change underneath us.
4277          */
4278         read_lock(&ei->i_prealloc_lock);
4279
4280         /* Step 1: find any one immediate neighboring PA of the normalized range */
4281         for (iter = ei->i_prealloc_node.rb_node; iter;
4282              iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical,
4283                                             tmp_pa_start, iter)) {
4284                 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4285                                   pa_node.inode_node);
4286                 tmp_pa_start = tmp_pa->pa_lstart;
4287                 tmp_pa_end = pa_logical_end(sbi, tmp_pa);
4288
4289                 /* PA must not overlap original request */
4290                 spin_lock(&tmp_pa->pa_lock);
4291                 if (tmp_pa->pa_deleted == 0)
4292                         BUG_ON(!(ac->ac_o_ex.fe_logical >= tmp_pa_end ||
4293                                  ac->ac_o_ex.fe_logical < tmp_pa_start));
4294                 spin_unlock(&tmp_pa->pa_lock);
4295         }
4296
4297         /*
4298          * Step 2: check if the found PA is left or right neighbor and
4299          * get the other neighbor
4300          */
4301         if (tmp_pa) {
4302                 if (tmp_pa->pa_lstart < ac->ac_o_ex.fe_logical) {
4303                         struct rb_node *tmp;
4304
4305                         left_pa = tmp_pa;
4306                         tmp = rb_next(&left_pa->pa_node.inode_node);
4307                         if (tmp) {
4308                                 right_pa = rb_entry(tmp,
4309                                                     struct ext4_prealloc_space,
4310                                                     pa_node.inode_node);
4311                         }
4312                 } else {
4313                         struct rb_node *tmp;
4314
4315                         right_pa = tmp_pa;
4316                         tmp = rb_prev(&right_pa->pa_node.inode_node);
4317                         if (tmp) {
4318                                 left_pa = rb_entry(tmp,
4319                                                    struct ext4_prealloc_space,
4320                                                    pa_node.inode_node);
4321                         }
4322                 }
4323         }
4324
4325         /* Step 3: get the non deleted neighbors */
4326         if (left_pa) {
4327                 for (iter = &left_pa->pa_node.inode_node;;
4328                      iter = rb_prev(iter)) {
4329                         if (!iter) {
4330                                 left_pa = NULL;
4331                                 break;
4332                         }
4333
4334                         tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4335                                           pa_node.inode_node);
4336                         left_pa = tmp_pa;
4337                         spin_lock(&tmp_pa->pa_lock);
4338                         if (tmp_pa->pa_deleted == 0) {
4339                                 spin_unlock(&tmp_pa->pa_lock);
4340                                 break;
4341                         }
4342                         spin_unlock(&tmp_pa->pa_lock);
4343                 }
4344         }
4345
4346         if (right_pa) {
4347                 for (iter = &right_pa->pa_node.inode_node;;
4348                      iter = rb_next(iter)) {
4349                         if (!iter) {
4350                                 right_pa = NULL;
4351                                 break;
4352                         }
4353
4354                         tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4355                                           pa_node.inode_node);
4356                         right_pa = tmp_pa;
4357                         spin_lock(&tmp_pa->pa_lock);
4358                         if (tmp_pa->pa_deleted == 0) {
4359                                 spin_unlock(&tmp_pa->pa_lock);
4360                                 break;
4361                         }
4362                         spin_unlock(&tmp_pa->pa_lock);
4363                 }
4364         }
4365
4366         if (left_pa) {
4367                 left_pa_end = pa_logical_end(sbi, left_pa);
4368                 BUG_ON(left_pa_end > ac->ac_o_ex.fe_logical);
4369         }
4370
4371         if (right_pa) {
4372                 right_pa_start = right_pa->pa_lstart;
4373                 BUG_ON(right_pa_start <= ac->ac_o_ex.fe_logical);
4374         }
4375
4376         /* Step 4: trim our normalized range to not overlap with the neighbors */
4377         if (left_pa) {
4378                 if (left_pa_end > new_start)
4379                         new_start = left_pa_end;
4380         }
4381
4382         if (right_pa) {
4383                 if (right_pa_start < new_end)
4384                         new_end = right_pa_start;
4385         }
4386         read_unlock(&ei->i_prealloc_lock);
4387
4388         /* XXX: extra loop to check we really don't overlap preallocations */
4389         ext4_mb_pa_assert_overlap(ac, new_start, new_end);
4390
4391         *start = new_start;
4392         *end = new_end;
4393 }
4394
4395 /*
4396  * Normalization means making request better in terms of
4397  * size and alignment
4398  */
4399 static noinline_for_stack void
4400 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
4401                                 struct ext4_allocation_request *ar)
4402 {
4403         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4404         struct ext4_super_block *es = sbi->s_es;
4405         int bsbits, max;
4406         loff_t size, start_off, end;
4407         loff_t orig_size __maybe_unused;
4408         ext4_lblk_t start;
4409
4410         /* do normalize only data requests, metadata requests
4411            do not need preallocation */
4412         if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4413                 return;
4414
4415         /* sometime caller may want exact blocks */
4416         if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4417                 return;
4418
4419         /* caller may indicate that preallocation isn't
4420          * required (it's a tail, for example) */
4421         if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
4422                 return;
4423
4424         if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
4425                 ext4_mb_normalize_group_request(ac);
4426                 return ;
4427         }
4428
4429         bsbits = ac->ac_sb->s_blocksize_bits;
4430
4431         /* first, let's learn actual file size
4432          * given current request is allocated */
4433         size = extent_logical_end(sbi, &ac->ac_o_ex);
4434         size = size << bsbits;
4435         if (size < i_size_read(ac->ac_inode))
4436                 size = i_size_read(ac->ac_inode);
4437         orig_size = size;
4438
4439         /* max size of free chunks */
4440         max = 2 << bsbits;
4441
4442 #define NRL_CHECK_SIZE(req, size, max, chunk_size)      \
4443                 (req <= (size) || max <= (chunk_size))
4444
4445         /* first, try to predict filesize */
4446         /* XXX: should this table be tunable? */
4447         start_off = 0;
4448         if (size <= 16 * 1024) {
4449                 size = 16 * 1024;
4450         } else if (size <= 32 * 1024) {
4451                 size = 32 * 1024;
4452         } else if (size <= 64 * 1024) {
4453                 size = 64 * 1024;
4454         } else if (size <= 128 * 1024) {
4455                 size = 128 * 1024;
4456         } else if (size <= 256 * 1024) {
4457                 size = 256 * 1024;
4458         } else if (size <= 512 * 1024) {
4459                 size = 512 * 1024;
4460         } else if (size <= 1024 * 1024) {
4461                 size = 1024 * 1024;
4462         } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
4463                 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4464                                                 (21 - bsbits)) << 21;
4465                 size = 2 * 1024 * 1024;
4466         } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
4467                 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4468                                                         (22 - bsbits)) << 22;
4469                 size = 4 * 1024 * 1024;
4470         } else if (NRL_CHECK_SIZE(EXT4_C2B(sbi, ac->ac_o_ex.fe_len),
4471                                         (8<<20)>>bsbits, max, 8 * 1024)) {
4472                 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4473                                                         (23 - bsbits)) << 23;
4474                 size = 8 * 1024 * 1024;
4475         } else {
4476                 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
4477                 size      = (loff_t) EXT4_C2B(sbi,
4478                                               ac->ac_o_ex.fe_len) << bsbits;
4479         }
4480         size = size >> bsbits;
4481         start = start_off >> bsbits;
4482
4483         /*
4484          * For tiny groups (smaller than 8MB) the chosen allocation
4485          * alignment may be larger than group size. Make sure the
4486          * alignment does not move allocation to a different group which
4487          * makes mballoc fail assertions later.
4488          */
4489         start = max(start, rounddown(ac->ac_o_ex.fe_logical,
4490                         (ext4_lblk_t)EXT4_BLOCKS_PER_GROUP(ac->ac_sb)));
4491
4492         /* avoid unnecessary preallocation that may trigger assertions */
4493         if (start + size > EXT_MAX_BLOCKS)
4494                 size = EXT_MAX_BLOCKS - start;
4495
4496         /* don't cover already allocated blocks in selected range */
4497         if (ar->pleft && start <= ar->lleft) {
4498                 size -= ar->lleft + 1 - start;
4499                 start = ar->lleft + 1;
4500         }
4501         if (ar->pright && start + size - 1 >= ar->lright)
4502                 size -= start + size - ar->lright;
4503
4504         /*
4505          * Trim allocation request for filesystems with artificially small
4506          * groups.
4507          */
4508         if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb))
4509                 size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb);
4510
4511         end = start + size;
4512
4513         ext4_mb_pa_adjust_overlap(ac, &start, &end);
4514
4515         size = end - start;
4516
4517         /*
4518          * In this function "start" and "size" are normalized for better
4519          * alignment and length such that we could preallocate more blocks.
4520          * This normalization is done such that original request of
4521          * ac->ac_o_ex.fe_logical & fe_len should always lie within "start" and
4522          * "size" boundaries.
4523          * (Note fe_len can be relaxed since FS block allocation API does not
4524          * provide gurantee on number of contiguous blocks allocation since that
4525          * depends upon free space left, etc).
4526          * In case of inode pa, later we use the allocated blocks
4527          * [pa_pstart + fe_logical - pa_lstart, fe_len/size] from the preallocated
4528          * range of goal/best blocks [start, size] to put it at the
4529          * ac_o_ex.fe_logical extent of this inode.
4530          * (See ext4_mb_use_inode_pa() for more details)
4531          */
4532         if (start + size <= ac->ac_o_ex.fe_logical ||
4533                         start > ac->ac_o_ex.fe_logical) {
4534                 ext4_msg(ac->ac_sb, KERN_ERR,
4535                          "start %lu, size %lu, fe_logical %lu",
4536                          (unsigned long) start, (unsigned long) size,
4537                          (unsigned long) ac->ac_o_ex.fe_logical);
4538                 BUG();
4539         }
4540         BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
4541
4542         /* now prepare goal request */
4543
4544         /* XXX: is it better to align blocks WRT to logical
4545          * placement or satisfy big request as is */
4546         ac->ac_g_ex.fe_logical = start;
4547         ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
4548         ac->ac_orig_goal_len = ac->ac_g_ex.fe_len;
4549
4550         /* define goal start in order to merge */
4551         if (ar->pright && (ar->lright == (start + size)) &&
4552             ar->pright >= size &&
4553             ar->pright - size >= le32_to_cpu(es->s_first_data_block)) {
4554                 /* merge to the right */
4555                 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
4556                                                 &ac->ac_g_ex.fe_group,
4557                                                 &ac->ac_g_ex.fe_start);
4558                 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4559         }
4560         if (ar->pleft && (ar->lleft + 1 == start) &&
4561             ar->pleft + 1 < ext4_blocks_count(es)) {
4562                 /* merge to the left */
4563                 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
4564                                                 &ac->ac_g_ex.fe_group,
4565                                                 &ac->ac_g_ex.fe_start);
4566                 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4567         }
4568
4569         mb_debug(ac->ac_sb, "goal: %lld(was %lld) blocks at %u\n", size,
4570                  orig_size, start);
4571 }
4572
4573 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
4574 {
4575         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4576
4577         if (sbi->s_mb_stats && ac->ac_g_ex.fe_len >= 1) {
4578                 atomic_inc(&sbi->s_bal_reqs);
4579                 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
4580                 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
4581                         atomic_inc(&sbi->s_bal_success);
4582
4583                 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
4584                 for (int i=0; i<EXT4_MB_NUM_CRS; i++) {
4585                         atomic_add(ac->ac_cX_found[i], &sbi->s_bal_cX_ex_scanned[i]);
4586                 }
4587
4588                 atomic_add(ac->ac_groups_scanned, &sbi->s_bal_groups_scanned);
4589                 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
4590                                 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
4591                         atomic_inc(&sbi->s_bal_goals);
4592                 /* did we allocate as much as normalizer originally wanted? */
4593                 if (ac->ac_f_ex.fe_len == ac->ac_orig_goal_len)
4594                         atomic_inc(&sbi->s_bal_len_goals);
4595
4596                 if (ac->ac_found > sbi->s_mb_max_to_scan)
4597                         atomic_inc(&sbi->s_bal_breaks);
4598         }
4599
4600         if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
4601                 trace_ext4_mballoc_alloc(ac);
4602         else
4603                 trace_ext4_mballoc_prealloc(ac);
4604 }
4605
4606 /*
4607  * Called on failure; free up any blocks from the inode PA for this
4608  * context.  We don't need this for MB_GROUP_PA because we only change
4609  * pa_free in ext4_mb_release_context(), but on failure, we've already
4610  * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
4611  */
4612 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
4613 {
4614         struct ext4_prealloc_space *pa = ac->ac_pa;
4615         struct ext4_buddy e4b;
4616         int err;
4617
4618         if (pa == NULL) {
4619                 if (ac->ac_f_ex.fe_len == 0)
4620                         return;
4621                 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
4622                 if (WARN_RATELIMIT(err,
4623                                    "ext4: mb_load_buddy failed (%d)", err))
4624                         /*
4625                          * This should never happen since we pin the
4626                          * pages in the ext4_allocation_context so
4627                          * ext4_mb_load_buddy() should never fail.
4628                          */
4629                         return;
4630                 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4631                 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
4632                                ac->ac_f_ex.fe_len);
4633                 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4634                 ext4_mb_unload_buddy(&e4b);
4635                 return;
4636         }
4637         if (pa->pa_type == MB_INODE_PA) {
4638                 spin_lock(&pa->pa_lock);
4639                 pa->pa_free += ac->ac_b_ex.fe_len;
4640                 spin_unlock(&pa->pa_lock);
4641         }
4642 }
4643
4644 /*
4645  * use blocks preallocated to inode
4646  */
4647 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
4648                                 struct ext4_prealloc_space *pa)
4649 {
4650         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4651         ext4_fsblk_t start;
4652         ext4_fsblk_t end;
4653         int len;
4654
4655         /* found preallocated blocks, use them */
4656         start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
4657         end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
4658                   start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
4659         len = EXT4_NUM_B2C(sbi, end - start);
4660         ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
4661                                         &ac->ac_b_ex.fe_start);
4662         ac->ac_b_ex.fe_len = len;
4663         ac->ac_status = AC_STATUS_FOUND;
4664         ac->ac_pa = pa;
4665
4666         BUG_ON(start < pa->pa_pstart);
4667         BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
4668         BUG_ON(pa->pa_free < len);
4669         BUG_ON(ac->ac_b_ex.fe_len <= 0);
4670         pa->pa_free -= len;
4671
4672         mb_debug(ac->ac_sb, "use %llu/%d from inode pa %p\n", start, len, pa);
4673 }
4674
4675 /*
4676  * use blocks preallocated to locality group
4677  */
4678 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
4679                                 struct ext4_prealloc_space *pa)
4680 {
4681         unsigned int len = ac->ac_o_ex.fe_len;
4682
4683         ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
4684                                         &ac->ac_b_ex.fe_group,
4685                                         &ac->ac_b_ex.fe_start);
4686         ac->ac_b_ex.fe_len = len;
4687         ac->ac_status = AC_STATUS_FOUND;
4688         ac->ac_pa = pa;
4689
4690         /* we don't correct pa_pstart or pa_len here to avoid
4691          * possible race when the group is being loaded concurrently
4692          * instead we correct pa later, after blocks are marked
4693          * in on-disk bitmap -- see ext4_mb_release_context()
4694          * Other CPUs are prevented from allocating from this pa by lg_mutex
4695          */
4696         mb_debug(ac->ac_sb, "use %u/%u from group pa %p\n",
4697                  pa->pa_lstart, len, pa);
4698 }
4699
4700 /*
4701  * Return the prealloc space that have minimal distance
4702  * from the goal block. @cpa is the prealloc
4703  * space that is having currently known minimal distance
4704  * from the goal block.
4705  */
4706 static struct ext4_prealloc_space *
4707 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
4708                         struct ext4_prealloc_space *pa,
4709                         struct ext4_prealloc_space *cpa)
4710 {
4711         ext4_fsblk_t cur_distance, new_distance;
4712
4713         if (cpa == NULL) {
4714                 atomic_inc(&pa->pa_count);
4715                 return pa;
4716         }
4717         cur_distance = abs(goal_block - cpa->pa_pstart);
4718         new_distance = abs(goal_block - pa->pa_pstart);
4719
4720         if (cur_distance <= new_distance)
4721                 return cpa;
4722
4723         /* drop the previous reference */
4724         atomic_dec(&cpa->pa_count);
4725         atomic_inc(&pa->pa_count);
4726         return pa;
4727 }
4728
4729 /*
4730  * check if found pa meets EXT4_MB_HINT_GOAL_ONLY
4731  */
4732 static bool
4733 ext4_mb_pa_goal_check(struct ext4_allocation_context *ac,
4734                       struct ext4_prealloc_space *pa)
4735 {
4736         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4737         ext4_fsblk_t start;
4738
4739         if (likely(!(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)))
4740                 return true;
4741
4742         /*
4743          * If EXT4_MB_HINT_GOAL_ONLY is set, ac_g_ex will not be adjusted
4744          * in ext4_mb_normalize_request and will keep same with ac_o_ex
4745          * from ext4_mb_initialize_context. Choose ac_g_ex here to keep
4746          * consistent with ext4_mb_find_by_goal.
4747          */
4748         start = pa->pa_pstart +
4749                 (ac->ac_g_ex.fe_logical - pa->pa_lstart);
4750         if (ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex) != start)
4751                 return false;
4752
4753         if (ac->ac_g_ex.fe_len > pa->pa_len -
4754             EXT4_B2C(sbi, ac->ac_g_ex.fe_logical - pa->pa_lstart))
4755                 return false;
4756
4757         return true;
4758 }
4759
4760 /*
4761  * search goal blocks in preallocated space
4762  */
4763 static noinline_for_stack bool
4764 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
4765 {
4766         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4767         int order, i;
4768         struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4769         struct ext4_locality_group *lg;
4770         struct ext4_prealloc_space *tmp_pa = NULL, *cpa = NULL;
4771         struct rb_node *iter;
4772         ext4_fsblk_t goal_block;
4773
4774         /* only data can be preallocated */
4775         if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4776                 return false;
4777
4778         /*
4779          * first, try per-file preallocation by searching the inode pa rbtree.
4780          *
4781          * Here, we can't do a direct traversal of the tree because
4782          * ext4_mb_discard_group_preallocation() can paralelly mark the pa
4783          * deleted and that can cause direct traversal to skip some entries.
4784          */
4785         read_lock(&ei->i_prealloc_lock);
4786
4787         if (RB_EMPTY_ROOT(&ei->i_prealloc_node)) {
4788                 goto try_group_pa;
4789         }
4790
4791         /*
4792          * Step 1: Find a pa with logical start immediately adjacent to the
4793          * original logical start. This could be on the left or right.
4794          *
4795          * (tmp_pa->pa_lstart never changes so we can skip locking for it).
4796          */
4797         for (iter = ei->i_prealloc_node.rb_node; iter;
4798              iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical,
4799                                             tmp_pa->pa_lstart, iter)) {
4800                 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4801                                   pa_node.inode_node);
4802         }
4803
4804         /*
4805          * Step 2: The adjacent pa might be to the right of logical start, find
4806          * the left adjacent pa. After this step we'd have a valid tmp_pa whose
4807          * logical start is towards the left of original request's logical start
4808          */
4809         if (tmp_pa->pa_lstart > ac->ac_o_ex.fe_logical) {
4810                 struct rb_node *tmp;
4811                 tmp = rb_prev(&tmp_pa->pa_node.inode_node);
4812
4813                 if (tmp) {
4814                         tmp_pa = rb_entry(tmp, struct ext4_prealloc_space,
4815                                             pa_node.inode_node);
4816                 } else {
4817                         /*
4818                          * If there is no adjacent pa to the left then finding
4819                          * an overlapping pa is not possible hence stop searching
4820                          * inode pa tree
4821                          */
4822                         goto try_group_pa;
4823                 }
4824         }
4825
4826         BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical));
4827
4828         /*
4829          * Step 3: If the left adjacent pa is deleted, keep moving left to find
4830          * the first non deleted adjacent pa. After this step we should have a
4831          * valid tmp_pa which is guaranteed to be non deleted.
4832          */
4833         for (iter = &tmp_pa->pa_node.inode_node;; iter = rb_prev(iter)) {
4834                 if (!iter) {
4835                         /*
4836                          * no non deleted left adjacent pa, so stop searching
4837                          * inode pa tree
4838                          */
4839                         goto try_group_pa;
4840                 }
4841                 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4842                                   pa_node.inode_node);
4843                 spin_lock(&tmp_pa->pa_lock);
4844                 if (tmp_pa->pa_deleted == 0) {
4845                         /*
4846                          * We will keep holding the pa_lock from
4847                          * this point on because we don't want group discard
4848                          * to delete this pa underneath us. Since group
4849                          * discard is anyways an ENOSPC operation it
4850                          * should be okay for it to wait a few more cycles.
4851                          */
4852                         break;
4853                 } else {
4854                         spin_unlock(&tmp_pa->pa_lock);
4855                 }
4856         }
4857
4858         BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical));
4859         BUG_ON(tmp_pa->pa_deleted == 1);
4860
4861         /*
4862          * Step 4: We now have the non deleted left adjacent pa. Only this
4863          * pa can possibly satisfy the request hence check if it overlaps
4864          * original logical start and stop searching if it doesn't.
4865          */
4866         if (ac->ac_o_ex.fe_logical >= pa_logical_end(sbi, tmp_pa)) {
4867                 spin_unlock(&tmp_pa->pa_lock);
4868                 goto try_group_pa;
4869         }
4870
4871         /* non-extent files can't have physical blocks past 2^32 */
4872         if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
4873             (tmp_pa->pa_pstart + EXT4_C2B(sbi, tmp_pa->pa_len) >
4874              EXT4_MAX_BLOCK_FILE_PHYS)) {
4875                 /*
4876                  * Since PAs don't overlap, we won't find any other PA to
4877                  * satisfy this.
4878                  */
4879                 spin_unlock(&tmp_pa->pa_lock);
4880                 goto try_group_pa;
4881         }
4882
4883         if (tmp_pa->pa_free && likely(ext4_mb_pa_goal_check(ac, tmp_pa))) {
4884                 atomic_inc(&tmp_pa->pa_count);
4885                 ext4_mb_use_inode_pa(ac, tmp_pa);
4886                 spin_unlock(&tmp_pa->pa_lock);
4887                 read_unlock(&ei->i_prealloc_lock);
4888                 return true;
4889         } else {
4890                 /*
4891                  * We found a valid overlapping pa but couldn't use it because
4892                  * it had no free blocks. This should ideally never happen
4893                  * because:
4894                  *
4895                  * 1. When a new inode pa is added to rbtree it must have
4896                  *    pa_free > 0 since otherwise we won't actually need
4897                  *    preallocation.
4898                  *
4899                  * 2. An inode pa that is in the rbtree can only have it's
4900                  *    pa_free become zero when another thread calls:
4901                  *      ext4_mb_new_blocks
4902                  *       ext4_mb_use_preallocated
4903                  *        ext4_mb_use_inode_pa
4904                  *
4905                  * 3. Further, after the above calls make pa_free == 0, we will
4906                  *    immediately remove it from the rbtree in:
4907                  *      ext4_mb_new_blocks
4908                  *       ext4_mb_release_context
4909                  *        ext4_mb_put_pa
4910                  *
4911                  * 4. Since the pa_free becoming 0 and pa_free getting removed
4912                  * from tree both happen in ext4_mb_new_blocks, which is always
4913                  * called with i_data_sem held for data allocations, we can be
4914                  * sure that another process will never see a pa in rbtree with
4915                  * pa_free == 0.
4916                  */
4917                 WARN_ON_ONCE(tmp_pa->pa_free == 0);
4918         }
4919         spin_unlock(&tmp_pa->pa_lock);
4920 try_group_pa:
4921         read_unlock(&ei->i_prealloc_lock);
4922
4923         /* can we use group allocation? */
4924         if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
4925                 return false;
4926
4927         /* inode may have no locality group for some reason */
4928         lg = ac->ac_lg;
4929         if (lg == NULL)
4930                 return false;
4931         order  = fls(ac->ac_o_ex.fe_len) - 1;
4932         if (order > PREALLOC_TB_SIZE - 1)
4933                 /* The max size of hash table is PREALLOC_TB_SIZE */
4934                 order = PREALLOC_TB_SIZE - 1;
4935
4936         goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
4937         /*
4938          * search for the prealloc space that is having
4939          * minimal distance from the goal block.
4940          */
4941         for (i = order; i < PREALLOC_TB_SIZE; i++) {
4942                 rcu_read_lock();
4943                 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[i],
4944                                         pa_node.lg_list) {
4945                         spin_lock(&tmp_pa->pa_lock);
4946                         if (tmp_pa->pa_deleted == 0 &&
4947                                         tmp_pa->pa_free >= ac->ac_o_ex.fe_len) {
4948
4949                                 cpa = ext4_mb_check_group_pa(goal_block,
4950                                                                 tmp_pa, cpa);
4951                         }
4952                         spin_unlock(&tmp_pa->pa_lock);
4953                 }
4954                 rcu_read_unlock();
4955         }
4956         if (cpa) {
4957                 ext4_mb_use_group_pa(ac, cpa);
4958                 return true;
4959         }
4960         return false;
4961 }
4962
4963 /*
4964  * the function goes through all preallocation in this group and marks them
4965  * used in in-core bitmap. buddy must be generated from this bitmap
4966  * Need to be called with ext4 group lock held
4967  */
4968 static noinline_for_stack
4969 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
4970                                         ext4_group_t group)
4971 {
4972         struct ext4_group_info *grp = ext4_get_group_info(sb, group);
4973         struct ext4_prealloc_space *pa;
4974         struct list_head *cur;
4975         ext4_group_t groupnr;
4976         ext4_grpblk_t start;
4977         int preallocated = 0;
4978         int len;
4979
4980         if (!grp)
4981                 return;
4982
4983         /* all form of preallocation discards first load group,
4984          * so the only competing code is preallocation use.
4985          * we don't need any locking here
4986          * notice we do NOT ignore preallocations with pa_deleted
4987          * otherwise we could leave used blocks available for
4988          * allocation in buddy when concurrent ext4_mb_put_pa()
4989          * is dropping preallocation
4990          */
4991         list_for_each(cur, &grp->bb_prealloc_list) {
4992                 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
4993                 spin_lock(&pa->pa_lock);
4994                 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4995                                              &groupnr, &start);
4996                 len = pa->pa_len;
4997                 spin_unlock(&pa->pa_lock);
4998                 if (unlikely(len == 0))
4999                         continue;
5000                 BUG_ON(groupnr != group);
5001                 mb_set_bits(bitmap, start, len);
5002                 preallocated += len;
5003         }
5004         mb_debug(sb, "preallocated %d for group %u\n", preallocated, group);
5005 }
5006
5007 static void ext4_mb_mark_pa_deleted(struct super_block *sb,
5008                                     struct ext4_prealloc_space *pa)
5009 {
5010         struct ext4_inode_info *ei;
5011
5012         if (pa->pa_deleted) {
5013                 ext4_warning(sb, "deleted pa, type:%d, pblk:%llu, lblk:%u, len:%d\n",
5014                              pa->pa_type, pa->pa_pstart, pa->pa_lstart,
5015                              pa->pa_len);
5016                 return;
5017         }
5018
5019         pa->pa_deleted = 1;
5020
5021         if (pa->pa_type == MB_INODE_PA) {
5022                 ei = EXT4_I(pa->pa_inode);
5023                 atomic_dec(&ei->i_prealloc_active);
5024         }
5025 }
5026
5027 static inline void ext4_mb_pa_free(struct ext4_prealloc_space *pa)
5028 {
5029         BUG_ON(!pa);
5030         BUG_ON(atomic_read(&pa->pa_count));
5031         BUG_ON(pa->pa_deleted == 0);
5032         kmem_cache_free(ext4_pspace_cachep, pa);
5033 }
5034
5035 static void ext4_mb_pa_callback(struct rcu_head *head)
5036 {
5037         struct ext4_prealloc_space *pa;
5038
5039         pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
5040         ext4_mb_pa_free(pa);
5041 }
5042
5043 /*
5044  * drops a reference to preallocated space descriptor
5045  * if this was the last reference and the space is consumed
5046  */
5047 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
5048                         struct super_block *sb, struct ext4_prealloc_space *pa)
5049 {
5050         ext4_group_t grp;
5051         ext4_fsblk_t grp_blk;
5052         struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
5053
5054         /* in this short window concurrent discard can set pa_deleted */
5055         spin_lock(&pa->pa_lock);
5056         if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
5057                 spin_unlock(&pa->pa_lock);
5058                 return;
5059         }
5060
5061         if (pa->pa_deleted == 1) {
5062                 spin_unlock(&pa->pa_lock);
5063                 return;
5064         }
5065
5066         ext4_mb_mark_pa_deleted(sb, pa);
5067         spin_unlock(&pa->pa_lock);
5068
5069         grp_blk = pa->pa_pstart;
5070         /*
5071          * If doing group-based preallocation, pa_pstart may be in the
5072          * next group when pa is used up
5073          */
5074         if (pa->pa_type == MB_GROUP_PA)
5075                 grp_blk--;
5076
5077         grp = ext4_get_group_number(sb, grp_blk);
5078
5079         /*
5080          * possible race:
5081          *
5082          *  P1 (buddy init)                     P2 (regular allocation)
5083          *                                      find block B in PA
5084          *  copy on-disk bitmap to buddy
5085          *                                      mark B in on-disk bitmap
5086          *                                      drop PA from group
5087          *  mark all PAs in buddy
5088          *
5089          * thus, P1 initializes buddy with B available. to prevent this
5090          * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
5091          * against that pair
5092          */
5093         ext4_lock_group(sb, grp);
5094         list_del(&pa->pa_group_list);
5095         ext4_unlock_group(sb, grp);
5096
5097         if (pa->pa_type == MB_INODE_PA) {
5098                 write_lock(pa->pa_node_lock.inode_lock);
5099                 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5100                 write_unlock(pa->pa_node_lock.inode_lock);
5101                 ext4_mb_pa_free(pa);
5102         } else {
5103                 spin_lock(pa->pa_node_lock.lg_lock);
5104                 list_del_rcu(&pa->pa_node.lg_list);
5105                 spin_unlock(pa->pa_node_lock.lg_lock);
5106                 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5107         }
5108 }
5109
5110 static void ext4_mb_pa_rb_insert(struct rb_root *root, struct rb_node *new)
5111 {
5112         struct rb_node **iter = &root->rb_node, *parent = NULL;
5113         struct ext4_prealloc_space *iter_pa, *new_pa;
5114         ext4_lblk_t iter_start, new_start;
5115
5116         while (*iter) {
5117                 iter_pa = rb_entry(*iter, struct ext4_prealloc_space,
5118                                    pa_node.inode_node);
5119                 new_pa = rb_entry(new, struct ext4_prealloc_space,
5120                                    pa_node.inode_node);
5121                 iter_start = iter_pa->pa_lstart;
5122                 new_start = new_pa->pa_lstart;
5123
5124                 parent = *iter;
5125                 if (new_start < iter_start)
5126                         iter = &((*iter)->rb_left);
5127                 else
5128                         iter = &((*iter)->rb_right);
5129         }
5130
5131         rb_link_node(new, parent, iter);
5132         rb_insert_color(new, root);
5133 }
5134
5135 /*
5136  * creates new preallocated space for given inode
5137  */
5138 static noinline_for_stack void
5139 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
5140 {
5141         struct super_block *sb = ac->ac_sb;
5142         struct ext4_sb_info *sbi = EXT4_SB(sb);
5143         struct ext4_prealloc_space *pa;
5144         struct ext4_group_info *grp;
5145         struct ext4_inode_info *ei;
5146
5147         /* preallocate only when found space is larger then requested */
5148         BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
5149         BUG_ON(ac->ac_status != AC_STATUS_FOUND);
5150         BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
5151         BUG_ON(ac->ac_pa == NULL);
5152
5153         pa = ac->ac_pa;
5154
5155         if (ac->ac_b_ex.fe_len < ac->ac_orig_goal_len) {
5156                 struct ext4_free_extent ex = {
5157                         .fe_logical = ac->ac_g_ex.fe_logical,
5158                         .fe_len = ac->ac_orig_goal_len,
5159                 };
5160                 loff_t orig_goal_end = extent_logical_end(sbi, &ex);
5161
5162                 /* we can't allocate as much as normalizer wants.
5163                  * so, found space must get proper lstart
5164                  * to cover original request */
5165                 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
5166                 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
5167
5168                 /*
5169                  * Use the below logic for adjusting best extent as it keeps
5170                  * fragmentation in check while ensuring logical range of best
5171                  * extent doesn't overflow out of goal extent:
5172                  *
5173                  * 1. Check if best ex can be kept at end of goal (before
5174                  *    cr_best_avail trimmed it) and still cover original start
5175                  * 2. Else, check if best ex can be kept at start of goal and
5176                  *    still cover original start
5177                  * 3. Else, keep the best ex at start of original request.
5178                  */
5179                 ex.fe_len = ac->ac_b_ex.fe_len;
5180
5181                 ex.fe_logical = orig_goal_end - EXT4_C2B(sbi, ex.fe_len);
5182                 if (ac->ac_o_ex.fe_logical >= ex.fe_logical)
5183                         goto adjust_bex;
5184
5185                 ex.fe_logical = ac->ac_g_ex.fe_logical;
5186                 if (ac->ac_o_ex.fe_logical < extent_logical_end(sbi, &ex))
5187                         goto adjust_bex;
5188
5189                 ex.fe_logical = ac->ac_o_ex.fe_logical;
5190 adjust_bex:
5191                 ac->ac_b_ex.fe_logical = ex.fe_logical;
5192
5193                 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
5194                 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
5195                 BUG_ON(extent_logical_end(sbi, &ex) > orig_goal_end);
5196         }
5197
5198         pa->pa_lstart = ac->ac_b_ex.fe_logical;
5199         pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
5200         pa->pa_len = ac->ac_b_ex.fe_len;
5201         pa->pa_free = pa->pa_len;
5202         spin_lock_init(&pa->pa_lock);
5203         INIT_LIST_HEAD(&pa->pa_group_list);
5204         pa->pa_deleted = 0;
5205         pa->pa_type = MB_INODE_PA;
5206
5207         mb_debug(sb, "new inode pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
5208                  pa->pa_len, pa->pa_lstart);
5209         trace_ext4_mb_new_inode_pa(ac, pa);
5210
5211         atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
5212         ext4_mb_use_inode_pa(ac, pa);
5213
5214         ei = EXT4_I(ac->ac_inode);
5215         grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
5216         if (!grp)
5217                 return;
5218
5219         pa->pa_node_lock.inode_lock = &ei->i_prealloc_lock;
5220         pa->pa_inode = ac->ac_inode;
5221
5222         list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
5223
5224         write_lock(pa->pa_node_lock.inode_lock);
5225         ext4_mb_pa_rb_insert(&ei->i_prealloc_node, &pa->pa_node.inode_node);
5226         write_unlock(pa->pa_node_lock.inode_lock);
5227         atomic_inc(&ei->i_prealloc_active);
5228 }
5229
5230 /*
5231  * creates new preallocated space for locality group inodes belongs to
5232  */
5233 static noinline_for_stack void
5234 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
5235 {
5236         struct super_block *sb = ac->ac_sb;
5237         struct ext4_locality_group *lg;
5238         struct ext4_prealloc_space *pa;
5239         struct ext4_group_info *grp;
5240
5241         /* preallocate only when found space is larger then requested */
5242         BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
5243         BUG_ON(ac->ac_status != AC_STATUS_FOUND);
5244         BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
5245         BUG_ON(ac->ac_pa == NULL);
5246
5247         pa = ac->ac_pa;
5248
5249         pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
5250         pa->pa_lstart = pa->pa_pstart;
5251         pa->pa_len = ac->ac_b_ex.fe_len;
5252         pa->pa_free = pa->pa_len;
5253         spin_lock_init(&pa->pa_lock);
5254         INIT_LIST_HEAD(&pa->pa_node.lg_list);
5255         INIT_LIST_HEAD(&pa->pa_group_list);
5256         pa->pa_deleted = 0;
5257         pa->pa_type = MB_GROUP_PA;
5258
5259         mb_debug(sb, "new group pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
5260                  pa->pa_len, pa->pa_lstart);
5261         trace_ext4_mb_new_group_pa(ac, pa);
5262
5263         ext4_mb_use_group_pa(ac, pa);
5264         atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
5265
5266         grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
5267         if (!grp)
5268                 return;
5269         lg = ac->ac_lg;
5270         BUG_ON(lg == NULL);
5271
5272         pa->pa_node_lock.lg_lock = &lg->lg_prealloc_lock;
5273         pa->pa_inode = NULL;
5274
5275         list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
5276
5277         /*
5278          * We will later add the new pa to the right bucket
5279          * after updating the pa_free in ext4_mb_release_context
5280          */
5281 }
5282
5283 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
5284 {
5285         if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
5286                 ext4_mb_new_group_pa(ac);
5287         else
5288                 ext4_mb_new_inode_pa(ac);
5289 }
5290
5291 /*
5292  * finds all unused blocks in on-disk bitmap, frees them in
5293  * in-core bitmap and buddy.
5294  * @pa must be unlinked from inode and group lists, so that
5295  * nobody else can find/use it.
5296  * the caller MUST hold group/inode locks.
5297  * TODO: optimize the case when there are no in-core structures yet
5298  */
5299 static noinline_for_stack int
5300 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
5301                         struct ext4_prealloc_space *pa)
5302 {
5303         struct super_block *sb = e4b->bd_sb;
5304         struct ext4_sb_info *sbi = EXT4_SB(sb);
5305         unsigned int end;
5306         unsigned int next;
5307         ext4_group_t group;
5308         ext4_grpblk_t bit;
5309         unsigned long long grp_blk_start;
5310         int free = 0;
5311
5312         BUG_ON(pa->pa_deleted == 0);
5313         ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
5314         grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
5315         BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
5316         end = bit + pa->pa_len;
5317
5318         while (bit < end) {
5319                 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
5320                 if (bit >= end)
5321                         break;
5322                 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
5323                 mb_debug(sb, "free preallocated %u/%u in group %u\n",
5324                          (unsigned) ext4_group_first_block_no(sb, group) + bit,
5325                          (unsigned) next - bit, (unsigned) group);
5326                 free += next - bit;
5327
5328                 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
5329                 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
5330                                                     EXT4_C2B(sbi, bit)),
5331                                                next - bit);
5332                 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
5333                 bit = next + 1;
5334         }
5335         if (free != pa->pa_free) {
5336                 ext4_msg(e4b->bd_sb, KERN_CRIT,
5337                          "pa %p: logic %lu, phys. %lu, len %d",
5338                          pa, (unsigned long) pa->pa_lstart,
5339                          (unsigned long) pa->pa_pstart,
5340                          pa->pa_len);
5341                 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
5342                                         free, pa->pa_free);
5343                 /*
5344                  * pa is already deleted so we use the value obtained
5345                  * from the bitmap and continue.
5346                  */
5347         }
5348         atomic_add(free, &sbi->s_mb_discarded);
5349
5350         return 0;
5351 }
5352
5353 static noinline_for_stack int
5354 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
5355                                 struct ext4_prealloc_space *pa)
5356 {
5357         struct super_block *sb = e4b->bd_sb;
5358         ext4_group_t group;
5359         ext4_grpblk_t bit;
5360
5361         trace_ext4_mb_release_group_pa(sb, pa);
5362         BUG_ON(pa->pa_deleted == 0);
5363         ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
5364         if (unlikely(group != e4b->bd_group && pa->pa_len != 0)) {
5365                 ext4_warning(sb, "bad group: expected %u, group %u, pa_start %llu",
5366                              e4b->bd_group, group, pa->pa_pstart);
5367                 return 0;
5368         }
5369         mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
5370         atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
5371         trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
5372
5373         return 0;
5374 }
5375
5376 /*
5377  * releases all preallocations in given group
5378  *
5379  * first, we need to decide discard policy:
5380  * - when do we discard
5381  *   1) ENOSPC
5382  * - how many do we discard
5383  *   1) how many requested
5384  */
5385 static noinline_for_stack int
5386 ext4_mb_discard_group_preallocations(struct super_block *sb,
5387                                      ext4_group_t group, int *busy)
5388 {
5389         struct ext4_group_info *grp = ext4_get_group_info(sb, group);
5390         struct buffer_head *bitmap_bh = NULL;
5391         struct ext4_prealloc_space *pa, *tmp;
5392         LIST_HEAD(list);
5393         struct ext4_buddy e4b;
5394         struct ext4_inode_info *ei;
5395         int err;
5396         int free = 0;
5397
5398         if (!grp)
5399                 return 0;
5400         mb_debug(sb, "discard preallocation for group %u\n", group);
5401         if (list_empty(&grp->bb_prealloc_list))
5402                 goto out_dbg;
5403
5404         bitmap_bh = ext4_read_block_bitmap(sb, group);
5405         if (IS_ERR(bitmap_bh)) {
5406                 err = PTR_ERR(bitmap_bh);
5407                 ext4_error_err(sb, -err,
5408                                "Error %d reading block bitmap for %u",
5409                                err, group);
5410                 goto out_dbg;
5411         }
5412
5413         err = ext4_mb_load_buddy(sb, group, &e4b);
5414         if (err) {
5415                 ext4_warning(sb, "Error %d loading buddy information for %u",
5416                              err, group);
5417                 put_bh(bitmap_bh);
5418                 goto out_dbg;
5419         }
5420
5421         ext4_lock_group(sb, group);
5422         list_for_each_entry_safe(pa, tmp,
5423                                 &grp->bb_prealloc_list, pa_group_list) {
5424                 spin_lock(&pa->pa_lock);
5425                 if (atomic_read(&pa->pa_count)) {
5426                         spin_unlock(&pa->pa_lock);
5427                         *busy = 1;
5428                         continue;
5429                 }
5430                 if (pa->pa_deleted) {
5431                         spin_unlock(&pa->pa_lock);
5432                         continue;
5433                 }
5434
5435                 /* seems this one can be freed ... */
5436                 ext4_mb_mark_pa_deleted(sb, pa);
5437
5438                 if (!free)
5439                         this_cpu_inc(discard_pa_seq);
5440
5441                 /* we can trust pa_free ... */
5442                 free += pa->pa_free;
5443
5444                 spin_unlock(&pa->pa_lock);
5445
5446                 list_del(&pa->pa_group_list);
5447                 list_add(&pa->u.pa_tmp_list, &list);
5448         }
5449
5450         /* now free all selected PAs */
5451         list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
5452
5453                 /* remove from object (inode or locality group) */
5454                 if (pa->pa_type == MB_GROUP_PA) {
5455                         spin_lock(pa->pa_node_lock.lg_lock);
5456                         list_del_rcu(&pa->pa_node.lg_list);
5457                         spin_unlock(pa->pa_node_lock.lg_lock);
5458                 } else {
5459                         write_lock(pa->pa_node_lock.inode_lock);
5460                         ei = EXT4_I(pa->pa_inode);
5461                         rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5462                         write_unlock(pa->pa_node_lock.inode_lock);
5463                 }
5464
5465                 list_del(&pa->u.pa_tmp_list);
5466
5467                 if (pa->pa_type == MB_GROUP_PA) {
5468                         ext4_mb_release_group_pa(&e4b, pa);
5469                         call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5470                 } else {
5471                         ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
5472                         ext4_mb_pa_free(pa);
5473                 }
5474         }
5475
5476         ext4_unlock_group(sb, group);
5477         ext4_mb_unload_buddy(&e4b);
5478         put_bh(bitmap_bh);
5479 out_dbg:
5480         mb_debug(sb, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n",
5481                  free, group, grp->bb_free);
5482         return free;
5483 }
5484
5485 /*
5486  * releases all non-used preallocated blocks for given inode
5487  *
5488  * It's important to discard preallocations under i_data_sem
5489  * We don't want another block to be served from the prealloc
5490  * space when we are discarding the inode prealloc space.
5491  *
5492  * FIXME!! Make sure it is valid at all the call sites
5493  */
5494 void ext4_discard_preallocations(struct inode *inode, unsigned int needed)
5495 {
5496         struct ext4_inode_info *ei = EXT4_I(inode);
5497         struct super_block *sb = inode->i_sb;
5498         struct buffer_head *bitmap_bh = NULL;
5499         struct ext4_prealloc_space *pa, *tmp;
5500         ext4_group_t group = 0;
5501         LIST_HEAD(list);
5502         struct ext4_buddy e4b;
5503         struct rb_node *iter;
5504         int err;
5505
5506         if (!S_ISREG(inode->i_mode)) {
5507                 return;
5508         }
5509
5510         if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY)
5511                 return;
5512
5513         mb_debug(sb, "discard preallocation for inode %lu\n",
5514                  inode->i_ino);
5515         trace_ext4_discard_preallocations(inode,
5516                         atomic_read(&ei->i_prealloc_active), needed);
5517
5518         if (needed == 0)
5519                 needed = UINT_MAX;
5520
5521 repeat:
5522         /* first, collect all pa's in the inode */
5523         write_lock(&ei->i_prealloc_lock);
5524         for (iter = rb_first(&ei->i_prealloc_node); iter && needed;
5525              iter = rb_next(iter)) {
5526                 pa = rb_entry(iter, struct ext4_prealloc_space,
5527                               pa_node.inode_node);
5528                 BUG_ON(pa->pa_node_lock.inode_lock != &ei->i_prealloc_lock);
5529
5530                 spin_lock(&pa->pa_lock);
5531                 if (atomic_read(&pa->pa_count)) {
5532                         /* this shouldn't happen often - nobody should
5533                          * use preallocation while we're discarding it */
5534                         spin_unlock(&pa->pa_lock);
5535                         write_unlock(&ei->i_prealloc_lock);
5536                         ext4_msg(sb, KERN_ERR,
5537                                  "uh-oh! used pa while discarding");
5538                         WARN_ON(1);
5539                         schedule_timeout_uninterruptible(HZ);
5540                         goto repeat;
5541
5542                 }
5543                 if (pa->pa_deleted == 0) {
5544                         ext4_mb_mark_pa_deleted(sb, pa);
5545                         spin_unlock(&pa->pa_lock);
5546                         rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5547                         list_add(&pa->u.pa_tmp_list, &list);
5548                         needed--;
5549                         continue;
5550                 }
5551
5552                 /* someone is deleting pa right now */
5553                 spin_unlock(&pa->pa_lock);
5554                 write_unlock(&ei->i_prealloc_lock);
5555
5556                 /* we have to wait here because pa_deleted
5557                  * doesn't mean pa is already unlinked from
5558                  * the list. as we might be called from
5559                  * ->clear_inode() the inode will get freed
5560                  * and concurrent thread which is unlinking
5561                  * pa from inode's list may access already
5562                  * freed memory, bad-bad-bad */
5563
5564                 /* XXX: if this happens too often, we can
5565                  * add a flag to force wait only in case
5566                  * of ->clear_inode(), but not in case of
5567                  * regular truncate */
5568                 schedule_timeout_uninterruptible(HZ);
5569                 goto repeat;
5570         }
5571         write_unlock(&ei->i_prealloc_lock);
5572
5573         list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
5574                 BUG_ON(pa->pa_type != MB_INODE_PA);
5575                 group = ext4_get_group_number(sb, pa->pa_pstart);
5576
5577                 err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
5578                                              GFP_NOFS|__GFP_NOFAIL);
5579                 if (err) {
5580                         ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
5581                                        err, group);
5582                         continue;
5583                 }
5584
5585                 bitmap_bh = ext4_read_block_bitmap(sb, group);
5586                 if (IS_ERR(bitmap_bh)) {
5587                         err = PTR_ERR(bitmap_bh);
5588                         ext4_error_err(sb, -err, "Error %d reading block bitmap for %u",
5589                                        err, group);
5590                         ext4_mb_unload_buddy(&e4b);
5591                         continue;
5592                 }
5593
5594                 ext4_lock_group(sb, group);
5595                 list_del(&pa->pa_group_list);
5596                 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
5597                 ext4_unlock_group(sb, group);
5598
5599                 ext4_mb_unload_buddy(&e4b);
5600                 put_bh(bitmap_bh);
5601
5602                 list_del(&pa->u.pa_tmp_list);
5603                 ext4_mb_pa_free(pa);
5604         }
5605 }
5606
5607 static int ext4_mb_pa_alloc(struct ext4_allocation_context *ac)
5608 {
5609         struct ext4_prealloc_space *pa;
5610
5611         BUG_ON(ext4_pspace_cachep == NULL);
5612         pa = kmem_cache_zalloc(ext4_pspace_cachep, GFP_NOFS);
5613         if (!pa)
5614                 return -ENOMEM;
5615         atomic_set(&pa->pa_count, 1);
5616         ac->ac_pa = pa;
5617         return 0;
5618 }
5619
5620 static void ext4_mb_pa_put_free(struct ext4_allocation_context *ac)
5621 {
5622         struct ext4_prealloc_space *pa = ac->ac_pa;
5623
5624         BUG_ON(!pa);
5625         ac->ac_pa = NULL;
5626         WARN_ON(!atomic_dec_and_test(&pa->pa_count));
5627         /*
5628          * current function is only called due to an error or due to
5629          * len of found blocks < len of requested blocks hence the PA has not
5630          * been added to grp->bb_prealloc_list. So we don't need to lock it
5631          */
5632         pa->pa_deleted = 1;
5633         ext4_mb_pa_free(pa);
5634 }
5635
5636 #ifdef CONFIG_EXT4_DEBUG
5637 static inline void ext4_mb_show_pa(struct super_block *sb)
5638 {
5639         ext4_group_t i, ngroups;
5640
5641         if (ext4_forced_shutdown(sb))
5642                 return;
5643
5644         ngroups = ext4_get_groups_count(sb);
5645         mb_debug(sb, "groups: ");
5646         for (i = 0; i < ngroups; i++) {
5647                 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
5648                 struct ext4_prealloc_space *pa;
5649                 ext4_grpblk_t start;
5650                 struct list_head *cur;
5651
5652                 if (!grp)
5653                         continue;
5654                 ext4_lock_group(sb, i);
5655                 list_for_each(cur, &grp->bb_prealloc_list) {
5656                         pa = list_entry(cur, struct ext4_prealloc_space,
5657                                         pa_group_list);
5658                         spin_lock(&pa->pa_lock);
5659                         ext4_get_group_no_and_offset(sb, pa->pa_pstart,
5660                                                      NULL, &start);
5661                         spin_unlock(&pa->pa_lock);
5662                         mb_debug(sb, "PA:%u:%d:%d\n", i, start,
5663                                  pa->pa_len);
5664                 }
5665                 ext4_unlock_group(sb, i);
5666                 mb_debug(sb, "%u: %d/%d\n", i, grp->bb_free,
5667                          grp->bb_fragments);
5668         }
5669 }
5670
5671 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5672 {
5673         struct super_block *sb = ac->ac_sb;
5674
5675         if (ext4_forced_shutdown(sb))
5676                 return;
5677
5678         mb_debug(sb, "Can't allocate:"
5679                         " Allocation context details:");
5680         mb_debug(sb, "status %u flags 0x%x",
5681                         ac->ac_status, ac->ac_flags);
5682         mb_debug(sb, "orig %lu/%lu/%lu@%lu, "
5683                         "goal %lu/%lu/%lu@%lu, "
5684                         "best %lu/%lu/%lu@%lu cr %d",
5685                         (unsigned long)ac->ac_o_ex.fe_group,
5686                         (unsigned long)ac->ac_o_ex.fe_start,
5687                         (unsigned long)ac->ac_o_ex.fe_len,
5688                         (unsigned long)ac->ac_o_ex.fe_logical,
5689                         (unsigned long)ac->ac_g_ex.fe_group,
5690                         (unsigned long)ac->ac_g_ex.fe_start,
5691                         (unsigned long)ac->ac_g_ex.fe_len,
5692                         (unsigned long)ac->ac_g_ex.fe_logical,
5693                         (unsigned long)ac->ac_b_ex.fe_group,
5694                         (unsigned long)ac->ac_b_ex.fe_start,
5695                         (unsigned long)ac->ac_b_ex.fe_len,
5696                         (unsigned long)ac->ac_b_ex.fe_logical,
5697                         (int)ac->ac_criteria);
5698         mb_debug(sb, "%u found", ac->ac_found);
5699         mb_debug(sb, "used pa: %s, ", ac->ac_pa ? "yes" : "no");
5700         if (ac->ac_pa)
5701                 mb_debug(sb, "pa_type %s\n", ac->ac_pa->pa_type == MB_GROUP_PA ?
5702                          "group pa" : "inode pa");
5703         ext4_mb_show_pa(sb);
5704 }
5705 #else
5706 static inline void ext4_mb_show_pa(struct super_block *sb)
5707 {
5708 }
5709 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5710 {
5711         ext4_mb_show_pa(ac->ac_sb);
5712 }
5713 #endif
5714
5715 /*
5716  * We use locality group preallocation for small size file. The size of the
5717  * file is determined by the current size or the resulting size after
5718  * allocation which ever is larger
5719  *
5720  * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
5721  */
5722 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
5723 {
5724         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
5725         int bsbits = ac->ac_sb->s_blocksize_bits;
5726         loff_t size, isize;
5727         bool inode_pa_eligible, group_pa_eligible;
5728
5729         if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
5730                 return;
5731
5732         if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
5733                 return;
5734
5735         group_pa_eligible = sbi->s_mb_group_prealloc > 0;
5736         inode_pa_eligible = true;
5737         size = extent_logical_end(sbi, &ac->ac_o_ex);
5738         isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
5739                 >> bsbits;
5740
5741         /* No point in using inode preallocation for closed files */
5742         if ((size == isize) && !ext4_fs_is_busy(sbi) &&
5743             !inode_is_open_for_write(ac->ac_inode))
5744                 inode_pa_eligible = false;
5745
5746         size = max(size, isize);
5747         /* Don't use group allocation for large files */
5748         if (size > sbi->s_mb_stream_request)
5749                 group_pa_eligible = false;
5750
5751         if (!group_pa_eligible) {
5752                 if (inode_pa_eligible)
5753                         ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
5754                 else
5755                         ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
5756                 return;
5757         }
5758
5759         BUG_ON(ac->ac_lg != NULL);
5760         /*
5761          * locality group prealloc space are per cpu. The reason for having
5762          * per cpu locality group is to reduce the contention between block
5763          * request from multiple CPUs.
5764          */
5765         ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
5766
5767         /* we're going to use group allocation */
5768         ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
5769
5770         /* serialize all allocations in the group */
5771         mutex_lock(&ac->ac_lg->lg_mutex);
5772 }
5773
5774 static noinline_for_stack void
5775 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
5776                                 struct ext4_allocation_request *ar)
5777 {
5778         struct super_block *sb = ar->inode->i_sb;
5779         struct ext4_sb_info *sbi = EXT4_SB(sb);
5780         struct ext4_super_block *es = sbi->s_es;
5781         ext4_group_t group;
5782         unsigned int len;
5783         ext4_fsblk_t goal;
5784         ext4_grpblk_t block;
5785
5786         /* we can't allocate > group size */
5787         len = ar->len;
5788
5789         /* just a dirty hack to filter too big requests  */
5790         if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
5791                 len = EXT4_CLUSTERS_PER_GROUP(sb);
5792
5793         /* start searching from the goal */
5794         goal = ar->goal;
5795         if (goal < le32_to_cpu(es->s_first_data_block) ||
5796                         goal >= ext4_blocks_count(es))
5797                 goal = le32_to_cpu(es->s_first_data_block);
5798         ext4_get_group_no_and_offset(sb, goal, &group, &block);
5799
5800         /* set up allocation goals */
5801         ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
5802         ac->ac_status = AC_STATUS_CONTINUE;
5803         ac->ac_sb = sb;
5804         ac->ac_inode = ar->inode;
5805         ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
5806         ac->ac_o_ex.fe_group = group;
5807         ac->ac_o_ex.fe_start = block;
5808         ac->ac_o_ex.fe_len = len;
5809         ac->ac_g_ex = ac->ac_o_ex;
5810         ac->ac_orig_goal_len = ac->ac_g_ex.fe_len;
5811         ac->ac_flags = ar->flags;
5812
5813         /* we have to define context: we'll work with a file or
5814          * locality group. this is a policy, actually */
5815         ext4_mb_group_or_file(ac);
5816
5817         mb_debug(sb, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, "
5818                         "left: %u/%u, right %u/%u to %swritable\n",
5819                         (unsigned) ar->len, (unsigned) ar->logical,
5820                         (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
5821                         (unsigned) ar->lleft, (unsigned) ar->pleft,
5822                         (unsigned) ar->lright, (unsigned) ar->pright,
5823                         inode_is_open_for_write(ar->inode) ? "" : "non-");
5824 }
5825
5826 static noinline_for_stack void
5827 ext4_mb_discard_lg_preallocations(struct super_block *sb,
5828                                         struct ext4_locality_group *lg,
5829                                         int order, int total_entries)
5830 {
5831         ext4_group_t group = 0;
5832         struct ext4_buddy e4b;
5833         LIST_HEAD(discard_list);
5834         struct ext4_prealloc_space *pa, *tmp;
5835
5836         mb_debug(sb, "discard locality group preallocation\n");
5837
5838         spin_lock(&lg->lg_prealloc_lock);
5839         list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
5840                                 pa_node.lg_list,
5841                                 lockdep_is_held(&lg->lg_prealloc_lock)) {
5842                 spin_lock(&pa->pa_lock);
5843                 if (atomic_read(&pa->pa_count)) {
5844                         /*
5845                          * This is the pa that we just used
5846                          * for block allocation. So don't
5847                          * free that
5848                          */
5849                         spin_unlock(&pa->pa_lock);
5850                         continue;
5851                 }
5852                 if (pa->pa_deleted) {
5853                         spin_unlock(&pa->pa_lock);
5854                         continue;
5855                 }
5856                 /* only lg prealloc space */
5857                 BUG_ON(pa->pa_type != MB_GROUP_PA);
5858
5859                 /* seems this one can be freed ... */
5860                 ext4_mb_mark_pa_deleted(sb, pa);
5861                 spin_unlock(&pa->pa_lock);
5862
5863                 list_del_rcu(&pa->pa_node.lg_list);
5864                 list_add(&pa->u.pa_tmp_list, &discard_list);
5865
5866                 total_entries--;
5867                 if (total_entries <= 5) {
5868                         /*
5869                          * we want to keep only 5 entries
5870                          * allowing it to grow to 8. This
5871                          * mak sure we don't call discard
5872                          * soon for this list.
5873                          */
5874                         break;
5875                 }
5876         }
5877         spin_unlock(&lg->lg_prealloc_lock);
5878
5879         list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
5880                 int err;
5881
5882                 group = ext4_get_group_number(sb, pa->pa_pstart);
5883                 err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
5884                                              GFP_NOFS|__GFP_NOFAIL);
5885                 if (err) {
5886                         ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
5887                                        err, group);
5888                         continue;
5889                 }
5890                 ext4_lock_group(sb, group);
5891                 list_del(&pa->pa_group_list);
5892                 ext4_mb_release_group_pa(&e4b, pa);
5893                 ext4_unlock_group(sb, group);
5894
5895                 ext4_mb_unload_buddy(&e4b);
5896                 list_del(&pa->u.pa_tmp_list);
5897                 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5898         }
5899 }
5900
5901 /*
5902  * We have incremented pa_count. So it cannot be freed at this
5903  * point. Also we hold lg_mutex. So no parallel allocation is
5904  * possible from this lg. That means pa_free cannot be updated.
5905  *
5906  * A parallel ext4_mb_discard_group_preallocations is possible.
5907  * which can cause the lg_prealloc_list to be updated.
5908  */
5909
5910 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
5911 {
5912         int order, added = 0, lg_prealloc_count = 1;
5913         struct super_block *sb = ac->ac_sb;
5914         struct ext4_locality_group *lg = ac->ac_lg;
5915         struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
5916
5917         order = fls(pa->pa_free) - 1;
5918         if (order > PREALLOC_TB_SIZE - 1)
5919                 /* The max size of hash table is PREALLOC_TB_SIZE */
5920                 order = PREALLOC_TB_SIZE - 1;
5921         /* Add the prealloc space to lg */
5922         spin_lock(&lg->lg_prealloc_lock);
5923         list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
5924                                 pa_node.lg_list,
5925                                 lockdep_is_held(&lg->lg_prealloc_lock)) {
5926                 spin_lock(&tmp_pa->pa_lock);
5927                 if (tmp_pa->pa_deleted) {
5928                         spin_unlock(&tmp_pa->pa_lock);
5929                         continue;
5930                 }
5931                 if (!added && pa->pa_free < tmp_pa->pa_free) {
5932                         /* Add to the tail of the previous entry */
5933                         list_add_tail_rcu(&pa->pa_node.lg_list,
5934                                                 &tmp_pa->pa_node.lg_list);
5935                         added = 1;
5936                         /*
5937                          * we want to count the total
5938                          * number of entries in the list
5939                          */
5940                 }
5941                 spin_unlock(&tmp_pa->pa_lock);
5942                 lg_prealloc_count++;
5943         }
5944         if (!added)
5945                 list_add_tail_rcu(&pa->pa_node.lg_list,
5946                                         &lg->lg_prealloc_list[order]);
5947         spin_unlock(&lg->lg_prealloc_lock);
5948
5949         /* Now trim the list to be not more than 8 elements */
5950         if (lg_prealloc_count > 8)
5951                 ext4_mb_discard_lg_preallocations(sb, lg,
5952                                                   order, lg_prealloc_count);
5953 }
5954
5955 /*
5956  * release all resource we used in allocation
5957  */
5958 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
5959 {
5960         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
5961         struct ext4_prealloc_space *pa = ac->ac_pa;
5962         if (pa) {
5963                 if (pa->pa_type == MB_GROUP_PA) {
5964                         /* see comment in ext4_mb_use_group_pa() */
5965                         spin_lock(&pa->pa_lock);
5966                         pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
5967                         pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
5968                         pa->pa_free -= ac->ac_b_ex.fe_len;
5969                         pa->pa_len -= ac->ac_b_ex.fe_len;
5970                         spin_unlock(&pa->pa_lock);
5971
5972                         /*
5973                          * We want to add the pa to the right bucket.
5974                          * Remove it from the list and while adding
5975                          * make sure the list to which we are adding
5976                          * doesn't grow big.
5977                          */
5978                         if (likely(pa->pa_free)) {
5979                                 spin_lock(pa->pa_node_lock.lg_lock);
5980                                 list_del_rcu(&pa->pa_node.lg_list);
5981                                 spin_unlock(pa->pa_node_lock.lg_lock);
5982                                 ext4_mb_add_n_trim(ac);
5983                         }
5984                 }
5985
5986                 ext4_mb_put_pa(ac, ac->ac_sb, pa);
5987         }
5988         if (ac->ac_bitmap_page)
5989                 put_page(ac->ac_bitmap_page);
5990         if (ac->ac_buddy_page)
5991                 put_page(ac->ac_buddy_page);
5992         if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
5993                 mutex_unlock(&ac->ac_lg->lg_mutex);
5994         ext4_mb_collect_stats(ac);
5995         return 0;
5996 }
5997
5998 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
5999 {
6000         ext4_group_t i, ngroups = ext4_get_groups_count(sb);
6001         int ret;
6002         int freed = 0, busy = 0;
6003         int retry = 0;
6004
6005         trace_ext4_mb_discard_preallocations(sb, needed);
6006
6007         if (needed == 0)
6008                 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
6009  repeat:
6010         for (i = 0; i < ngroups && needed > 0; i++) {
6011                 ret = ext4_mb_discard_group_preallocations(sb, i, &busy);
6012                 freed += ret;
6013                 needed -= ret;
6014                 cond_resched();
6015         }
6016
6017         if (needed > 0 && busy && ++retry < 3) {
6018                 busy = 0;
6019                 goto repeat;
6020         }
6021
6022         return freed;
6023 }
6024
6025 static bool ext4_mb_discard_preallocations_should_retry(struct super_block *sb,
6026                         struct ext4_allocation_context *ac, u64 *seq)
6027 {
6028         int freed;
6029         u64 seq_retry = 0;
6030         bool ret = false;
6031
6032         freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
6033         if (freed) {
6034                 ret = true;
6035                 goto out_dbg;
6036         }
6037         seq_retry = ext4_get_discard_pa_seq_sum();
6038         if (!(ac->ac_flags & EXT4_MB_STRICT_CHECK) || seq_retry != *seq) {
6039                 ac->ac_flags |= EXT4_MB_STRICT_CHECK;
6040                 *seq = seq_retry;
6041                 ret = true;
6042         }
6043
6044 out_dbg:
6045         mb_debug(sb, "freed %d, retry ? %s\n", freed, ret ? "yes" : "no");
6046         return ret;
6047 }
6048
6049 /*
6050  * Simple allocator for Ext4 fast commit replay path. It searches for blocks
6051  * linearly starting at the goal block and also excludes the blocks which
6052  * are going to be in use after fast commit replay.
6053  */
6054 static ext4_fsblk_t
6055 ext4_mb_new_blocks_simple(struct ext4_allocation_request *ar, int *errp)
6056 {
6057         struct buffer_head *bitmap_bh;
6058         struct super_block *sb = ar->inode->i_sb;
6059         struct ext4_sb_info *sbi = EXT4_SB(sb);
6060         ext4_group_t group, nr;
6061         ext4_grpblk_t blkoff;
6062         ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
6063         ext4_grpblk_t i = 0;
6064         ext4_fsblk_t goal, block;
6065         struct ext4_super_block *es = sbi->s_es;
6066
6067         goal = ar->goal;
6068         if (goal < le32_to_cpu(es->s_first_data_block) ||
6069                         goal >= ext4_blocks_count(es))
6070                 goal = le32_to_cpu(es->s_first_data_block);
6071
6072         ar->len = 0;
6073         ext4_get_group_no_and_offset(sb, goal, &group, &blkoff);
6074         for (nr = ext4_get_groups_count(sb); nr > 0; nr--) {
6075                 bitmap_bh = ext4_read_block_bitmap(sb, group);
6076                 if (IS_ERR(bitmap_bh)) {
6077                         *errp = PTR_ERR(bitmap_bh);
6078                         pr_warn("Failed to read block bitmap\n");
6079                         return 0;
6080                 }
6081
6082                 while (1) {
6083                         i = mb_find_next_zero_bit(bitmap_bh->b_data, max,
6084                                                 blkoff);
6085                         if (i >= max)
6086                                 break;
6087                         if (ext4_fc_replay_check_excluded(sb,
6088                                 ext4_group_first_block_no(sb, group) +
6089                                 EXT4_C2B(sbi, i))) {
6090                                 blkoff = i + 1;
6091                         } else
6092                                 break;
6093                 }
6094                 brelse(bitmap_bh);
6095                 if (i < max)
6096                         break;
6097
6098                 if (++group >= ext4_get_groups_count(sb))
6099                         group = 0;
6100
6101                 blkoff = 0;
6102         }
6103
6104         if (i >= max) {
6105                 *errp = -ENOSPC;
6106                 return 0;
6107         }
6108
6109         block = ext4_group_first_block_no(sb, group) + EXT4_C2B(sbi, i);
6110         ext4_mb_mark_bb(sb, block, 1, 1);
6111         ar->len = 1;
6112
6113         return block;
6114 }
6115
6116 /*
6117  * Main entry point into mballoc to allocate blocks
6118  * it tries to use preallocation first, then falls back
6119  * to usual allocation
6120  */
6121 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
6122                                 struct ext4_allocation_request *ar, int *errp)
6123 {
6124         struct ext4_allocation_context *ac = NULL;
6125         struct ext4_sb_info *sbi;
6126         struct super_block *sb;
6127         ext4_fsblk_t block = 0;
6128         unsigned int inquota = 0;
6129         unsigned int reserv_clstrs = 0;
6130         int retries = 0;
6131         u64 seq;
6132
6133         might_sleep();
6134         sb = ar->inode->i_sb;
6135         sbi = EXT4_SB(sb);
6136
6137         trace_ext4_request_blocks(ar);
6138         if (sbi->s_mount_state & EXT4_FC_REPLAY)
6139                 return ext4_mb_new_blocks_simple(ar, errp);
6140
6141         /* Allow to use superuser reservation for quota file */
6142         if (ext4_is_quota_file(ar->inode))
6143                 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
6144
6145         if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
6146                 /* Without delayed allocation we need to verify
6147                  * there is enough free blocks to do block allocation
6148                  * and verify allocation doesn't exceed the quota limits.
6149                  */
6150                 while (ar->len &&
6151                         ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
6152
6153                         /* let others to free the space */
6154                         cond_resched();
6155                         ar->len = ar->len >> 1;
6156                 }
6157                 if (!ar->len) {
6158                         ext4_mb_show_pa(sb);
6159                         *errp = -ENOSPC;
6160                         return 0;
6161                 }
6162                 reserv_clstrs = ar->len;
6163                 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
6164                         dquot_alloc_block_nofail(ar->inode,
6165                                                  EXT4_C2B(sbi, ar->len));
6166                 } else {
6167                         while (ar->len &&
6168                                 dquot_alloc_block(ar->inode,
6169                                                   EXT4_C2B(sbi, ar->len))) {
6170
6171                                 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
6172                                 ar->len--;
6173                         }
6174                 }
6175                 inquota = ar->len;
6176                 if (ar->len == 0) {
6177                         *errp = -EDQUOT;
6178                         goto out;
6179                 }
6180         }
6181
6182         ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
6183         if (!ac) {
6184                 ar->len = 0;
6185                 *errp = -ENOMEM;
6186                 goto out;
6187         }
6188
6189         ext4_mb_initialize_context(ac, ar);
6190
6191         ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
6192         seq = this_cpu_read(discard_pa_seq);
6193         if (!ext4_mb_use_preallocated(ac)) {
6194                 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
6195                 ext4_mb_normalize_request(ac, ar);
6196
6197                 *errp = ext4_mb_pa_alloc(ac);
6198                 if (*errp)
6199                         goto errout;
6200 repeat:
6201                 /* allocate space in core */
6202                 *errp = ext4_mb_regular_allocator(ac);
6203                 /*
6204                  * pa allocated above is added to grp->bb_prealloc_list only
6205                  * when we were able to allocate some block i.e. when
6206                  * ac->ac_status == AC_STATUS_FOUND.
6207                  * And error from above mean ac->ac_status != AC_STATUS_FOUND
6208                  * So we have to free this pa here itself.
6209                  */
6210                 if (*errp) {
6211                         ext4_mb_pa_put_free(ac);
6212                         ext4_discard_allocated_blocks(ac);
6213                         goto errout;
6214                 }
6215                 if (ac->ac_status == AC_STATUS_FOUND &&
6216                         ac->ac_o_ex.fe_len >= ac->ac_f_ex.fe_len)
6217                         ext4_mb_pa_put_free(ac);
6218         }
6219         if (likely(ac->ac_status == AC_STATUS_FOUND)) {
6220                 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
6221                 if (*errp) {
6222                         ext4_discard_allocated_blocks(ac);
6223                         goto errout;
6224                 } else {
6225                         block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
6226                         ar->len = ac->ac_b_ex.fe_len;
6227                 }
6228         } else {
6229                 if (++retries < 3 &&
6230                     ext4_mb_discard_preallocations_should_retry(sb, ac, &seq))
6231                         goto repeat;
6232                 /*
6233                  * If block allocation fails then the pa allocated above
6234                  * needs to be freed here itself.
6235                  */
6236                 ext4_mb_pa_put_free(ac);
6237                 *errp = -ENOSPC;
6238         }
6239
6240         if (*errp) {
6241 errout:
6242                 ac->ac_b_ex.fe_len = 0;
6243                 ar->len = 0;
6244                 ext4_mb_show_ac(ac);
6245         }
6246         ext4_mb_release_context(ac);
6247         kmem_cache_free(ext4_ac_cachep, ac);
6248 out:
6249         if (inquota && ar->len < inquota)
6250                 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
6251         if (!ar->len) {
6252                 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
6253                         /* release all the reserved blocks if non delalloc */
6254                         percpu_counter_sub(&sbi->s_dirtyclusters_counter,
6255                                                 reserv_clstrs);
6256         }
6257
6258         trace_ext4_allocate_blocks(ar, (unsigned long long)block);
6259
6260         return block;
6261 }
6262
6263 /*
6264  * We can merge two free data extents only if the physical blocks
6265  * are contiguous, AND the extents were freed by the same transaction,
6266  * AND the blocks are associated with the same group.
6267  */
6268 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi,
6269                                         struct ext4_free_data *entry,
6270                                         struct ext4_free_data *new_entry,
6271                                         struct rb_root *entry_rb_root)
6272 {
6273         if ((entry->efd_tid != new_entry->efd_tid) ||
6274             (entry->efd_group != new_entry->efd_group))
6275                 return;
6276         if (entry->efd_start_cluster + entry->efd_count ==
6277             new_entry->efd_start_cluster) {
6278                 new_entry->efd_start_cluster = entry->efd_start_cluster;
6279                 new_entry->efd_count += entry->efd_count;
6280         } else if (new_entry->efd_start_cluster + new_entry->efd_count ==
6281                    entry->efd_start_cluster) {
6282                 new_entry->efd_count += entry->efd_count;
6283         } else
6284                 return;
6285         spin_lock(&sbi->s_md_lock);
6286         list_del(&entry->efd_list);
6287         spin_unlock(&sbi->s_md_lock);
6288         rb_erase(&entry->efd_node, entry_rb_root);
6289         kmem_cache_free(ext4_free_data_cachep, entry);
6290 }
6291
6292 static noinline_for_stack void
6293 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
6294                       struct ext4_free_data *new_entry)
6295 {
6296         ext4_group_t group = e4b->bd_group;
6297         ext4_grpblk_t cluster;
6298         ext4_grpblk_t clusters = new_entry->efd_count;
6299         struct ext4_free_data *entry;
6300         struct ext4_group_info *db = e4b->bd_info;
6301         struct super_block *sb = e4b->bd_sb;
6302         struct ext4_sb_info *sbi = EXT4_SB(sb);
6303         struct rb_node **n = &db->bb_free_root.rb_node, *node;
6304         struct rb_node *parent = NULL, *new_node;
6305
6306         BUG_ON(!ext4_handle_valid(handle));
6307         BUG_ON(e4b->bd_bitmap_page == NULL);
6308         BUG_ON(e4b->bd_buddy_page == NULL);
6309
6310         new_node = &new_entry->efd_node;
6311         cluster = new_entry->efd_start_cluster;
6312
6313         if (!*n) {
6314                 /* first free block exent. We need to
6315                    protect buddy cache from being freed,
6316                  * otherwise we'll refresh it from
6317                  * on-disk bitmap and lose not-yet-available
6318                  * blocks */
6319                 get_page(e4b->bd_buddy_page);
6320                 get_page(e4b->bd_bitmap_page);
6321         }
6322         while (*n) {
6323                 parent = *n;
6324                 entry = rb_entry(parent, struct ext4_free_data, efd_node);
6325                 if (cluster < entry->efd_start_cluster)
6326                         n = &(*n)->rb_left;
6327                 else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
6328                         n = &(*n)->rb_right;
6329                 else {
6330                         ext4_grp_locked_error(sb, group, 0,
6331                                 ext4_group_first_block_no(sb, group) +
6332                                 EXT4_C2B(sbi, cluster),
6333                                 "Block already on to-be-freed list");
6334                         kmem_cache_free(ext4_free_data_cachep, new_entry);
6335                         return;
6336                 }
6337         }
6338
6339         rb_link_node(new_node, parent, n);
6340         rb_insert_color(new_node, &db->bb_free_root);
6341
6342         /* Now try to see the extent can be merged to left and right */
6343         node = rb_prev(new_node);
6344         if (node) {
6345                 entry = rb_entry(node, struct ext4_free_data, efd_node);
6346                 ext4_try_merge_freed_extent(sbi, entry, new_entry,
6347                                             &(db->bb_free_root));
6348         }
6349
6350         node = rb_next(new_node);
6351         if (node) {
6352                 entry = rb_entry(node, struct ext4_free_data, efd_node);
6353                 ext4_try_merge_freed_extent(sbi, entry, new_entry,
6354                                             &(db->bb_free_root));
6355         }
6356
6357         spin_lock(&sbi->s_md_lock);
6358         list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list);
6359         sbi->s_mb_free_pending += clusters;
6360         spin_unlock(&sbi->s_md_lock);
6361 }
6362
6363 static void ext4_free_blocks_simple(struct inode *inode, ext4_fsblk_t block,
6364                                         unsigned long count)
6365 {
6366         struct buffer_head *bitmap_bh;
6367         struct super_block *sb = inode->i_sb;
6368         struct ext4_group_desc *gdp;
6369         struct buffer_head *gdp_bh;
6370         ext4_group_t group;
6371         ext4_grpblk_t blkoff;
6372         int already_freed = 0, err, i;
6373
6374         ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
6375         bitmap_bh = ext4_read_block_bitmap(sb, group);
6376         if (IS_ERR(bitmap_bh)) {
6377                 pr_warn("Failed to read block bitmap\n");
6378                 return;
6379         }
6380         gdp = ext4_get_group_desc(sb, group, &gdp_bh);
6381         if (!gdp)
6382                 goto err_out;
6383
6384         for (i = 0; i < count; i++) {
6385                 if (!mb_test_bit(blkoff + i, bitmap_bh->b_data))
6386                         already_freed++;
6387         }
6388         mb_clear_bits(bitmap_bh->b_data, blkoff, count);
6389         err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh);
6390         if (err)
6391                 goto err_out;
6392         ext4_free_group_clusters_set(
6393                 sb, gdp, ext4_free_group_clusters(sb, gdp) +
6394                 count - already_freed);
6395         ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh);
6396         ext4_group_desc_csum_set(sb, group, gdp);
6397         ext4_handle_dirty_metadata(NULL, NULL, gdp_bh);
6398         sync_dirty_buffer(bitmap_bh);
6399         sync_dirty_buffer(gdp_bh);
6400
6401 err_out:
6402         brelse(bitmap_bh);
6403 }
6404
6405 /**
6406  * ext4_mb_clear_bb() -- helper function for freeing blocks.
6407  *                      Used by ext4_free_blocks()
6408  * @handle:             handle for this transaction
6409  * @inode:              inode
6410  * @block:              starting physical block to be freed
6411  * @count:              number of blocks to be freed
6412  * @flags:              flags used by ext4_free_blocks
6413  */
6414 static void ext4_mb_clear_bb(handle_t *handle, struct inode *inode,
6415                                ext4_fsblk_t block, unsigned long count,
6416                                int flags)
6417 {
6418         struct buffer_head *bitmap_bh = NULL;
6419         struct super_block *sb = inode->i_sb;
6420         struct ext4_group_desc *gdp;
6421         struct ext4_group_info *grp;
6422         unsigned int overflow;
6423         ext4_grpblk_t bit;
6424         struct buffer_head *gd_bh;
6425         ext4_group_t block_group;
6426         struct ext4_sb_info *sbi;
6427         struct ext4_buddy e4b;
6428         unsigned int count_clusters;
6429         int err = 0;
6430         int ret;
6431
6432         sbi = EXT4_SB(sb);
6433
6434         if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6435             !ext4_inode_block_valid(inode, block, count)) {
6436                 ext4_error(sb, "Freeing blocks in system zone - "
6437                            "Block = %llu, count = %lu", block, count);
6438                 /* err = 0. ext4_std_error should be a no op */
6439                 goto error_return;
6440         }
6441         flags |= EXT4_FREE_BLOCKS_VALIDATED;
6442
6443 do_more:
6444         overflow = 0;
6445         ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
6446
6447         grp = ext4_get_group_info(sb, block_group);
6448         if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
6449                 return;
6450
6451         /*
6452          * Check to see if we are freeing blocks across a group
6453          * boundary.
6454          */
6455         if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
6456                 overflow = EXT4_C2B(sbi, bit) + count -
6457                         EXT4_BLOCKS_PER_GROUP(sb);
6458                 count -= overflow;
6459                 /* The range changed so it's no longer validated */
6460                 flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6461         }
6462         count_clusters = EXT4_NUM_B2C(sbi, count);
6463         bitmap_bh = ext4_read_block_bitmap(sb, block_group);
6464         if (IS_ERR(bitmap_bh)) {
6465                 err = PTR_ERR(bitmap_bh);
6466                 bitmap_bh = NULL;
6467                 goto error_return;
6468         }
6469         gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
6470         if (!gdp) {
6471                 err = -EIO;
6472                 goto error_return;
6473         }
6474
6475         if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6476             !ext4_inode_block_valid(inode, block, count)) {
6477                 ext4_error(sb, "Freeing blocks in system zone - "
6478                            "Block = %llu, count = %lu", block, count);
6479                 /* err = 0. ext4_std_error should be a no op */
6480                 goto error_return;
6481         }
6482
6483         BUFFER_TRACE(bitmap_bh, "getting write access");
6484         err = ext4_journal_get_write_access(handle, sb, bitmap_bh,
6485                                             EXT4_JTR_NONE);
6486         if (err)
6487                 goto error_return;
6488
6489         /*
6490          * We are about to modify some metadata.  Call the journal APIs
6491          * to unshare ->b_data if a currently-committing transaction is
6492          * using it
6493          */
6494         BUFFER_TRACE(gd_bh, "get_write_access");
6495         err = ext4_journal_get_write_access(handle, sb, gd_bh, EXT4_JTR_NONE);
6496         if (err)
6497                 goto error_return;
6498 #ifdef AGGRESSIVE_CHECK
6499         {
6500                 int i;
6501                 for (i = 0; i < count_clusters; i++)
6502                         BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
6503         }
6504 #endif
6505         trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
6506
6507         /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
6508         err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
6509                                      GFP_NOFS|__GFP_NOFAIL);
6510         if (err)
6511                 goto error_return;
6512
6513         /*
6514          * We need to make sure we don't reuse the freed block until after the
6515          * transaction is committed. We make an exception if the inode is to be
6516          * written in writeback mode since writeback mode has weak data
6517          * consistency guarantees.
6518          */
6519         if (ext4_handle_valid(handle) &&
6520             ((flags & EXT4_FREE_BLOCKS_METADATA) ||
6521              !ext4_should_writeback_data(inode))) {
6522                 struct ext4_free_data *new_entry;
6523                 /*
6524                  * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
6525                  * to fail.
6526                  */
6527                 new_entry = kmem_cache_alloc(ext4_free_data_cachep,
6528                                 GFP_NOFS|__GFP_NOFAIL);
6529                 new_entry->efd_start_cluster = bit;
6530                 new_entry->efd_group = block_group;
6531                 new_entry->efd_count = count_clusters;
6532                 new_entry->efd_tid = handle->h_transaction->t_tid;
6533
6534                 ext4_lock_group(sb, block_group);
6535                 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
6536                 ext4_mb_free_metadata(handle, &e4b, new_entry);
6537         } else {
6538                 /* need to update group_info->bb_free and bitmap
6539                  * with group lock held. generate_buddy look at
6540                  * them with group lock_held
6541                  */
6542                 if (test_opt(sb, DISCARD)) {
6543                         err = ext4_issue_discard(sb, block_group, bit,
6544                                                  count_clusters, NULL);
6545                         if (err && err != -EOPNOTSUPP)
6546                                 ext4_msg(sb, KERN_WARNING, "discard request in"
6547                                          " group:%u block:%d count:%lu failed"
6548                                          " with %d", block_group, bit, count,
6549                                          err);
6550                 } else
6551                         EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
6552
6553                 ext4_lock_group(sb, block_group);
6554                 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
6555                 mb_free_blocks(inode, &e4b, bit, count_clusters);
6556         }
6557
6558         ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
6559         ext4_free_group_clusters_set(sb, gdp, ret);
6560         ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh);
6561         ext4_group_desc_csum_set(sb, block_group, gdp);
6562         ext4_unlock_group(sb, block_group);
6563
6564         if (sbi->s_log_groups_per_flex) {
6565                 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
6566                 atomic64_add(count_clusters,
6567                              &sbi_array_rcu_deref(sbi, s_flex_groups,
6568                                                   flex_group)->free_clusters);
6569         }
6570
6571         /*
6572          * on a bigalloc file system, defer the s_freeclusters_counter
6573          * update to the caller (ext4_remove_space and friends) so they
6574          * can determine if a cluster freed here should be rereserved
6575          */
6576         if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) {
6577                 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
6578                         dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
6579                 percpu_counter_add(&sbi->s_freeclusters_counter,
6580                                    count_clusters);
6581         }
6582
6583         ext4_mb_unload_buddy(&e4b);
6584
6585         /* We dirtied the bitmap block */
6586         BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
6587         err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
6588
6589         /* And the group descriptor block */
6590         BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
6591         ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
6592         if (!err)
6593                 err = ret;
6594
6595         if (overflow && !err) {
6596                 block += count;
6597                 count = overflow;
6598                 put_bh(bitmap_bh);
6599                 /* The range changed so it's no longer validated */
6600                 flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6601                 goto do_more;
6602         }
6603 error_return:
6604         brelse(bitmap_bh);
6605         ext4_std_error(sb, err);
6606 }
6607
6608 /**
6609  * ext4_free_blocks() -- Free given blocks and update quota
6610  * @handle:             handle for this transaction
6611  * @inode:              inode
6612  * @bh:                 optional buffer of the block to be freed
6613  * @block:              starting physical block to be freed
6614  * @count:              number of blocks to be freed
6615  * @flags:              flags used by ext4_free_blocks
6616  */
6617 void ext4_free_blocks(handle_t *handle, struct inode *inode,
6618                       struct buffer_head *bh, ext4_fsblk_t block,
6619                       unsigned long count, int flags)
6620 {
6621         struct super_block *sb = inode->i_sb;
6622         unsigned int overflow;
6623         struct ext4_sb_info *sbi;
6624
6625         sbi = EXT4_SB(sb);
6626
6627         if (bh) {
6628                 if (block)
6629                         BUG_ON(block != bh->b_blocknr);
6630                 else
6631                         block = bh->b_blocknr;
6632         }
6633
6634         if (sbi->s_mount_state & EXT4_FC_REPLAY) {
6635                 ext4_free_blocks_simple(inode, block, EXT4_NUM_B2C(sbi, count));
6636                 return;
6637         }
6638
6639         might_sleep();
6640
6641         if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6642             !ext4_inode_block_valid(inode, block, count)) {
6643                 ext4_error(sb, "Freeing blocks not in datazone - "
6644                            "block = %llu, count = %lu", block, count);
6645                 return;
6646         }
6647         flags |= EXT4_FREE_BLOCKS_VALIDATED;
6648
6649         ext4_debug("freeing block %llu\n", block);
6650         trace_ext4_free_blocks(inode, block, count, flags);
6651
6652         if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
6653                 BUG_ON(count > 1);
6654
6655                 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
6656                             inode, bh, block);
6657         }
6658
6659         /*
6660          * If the extent to be freed does not begin on a cluster
6661          * boundary, we need to deal with partial clusters at the
6662          * beginning and end of the extent.  Normally we will free
6663          * blocks at the beginning or the end unless we are explicitly
6664          * requested to avoid doing so.
6665          */
6666         overflow = EXT4_PBLK_COFF(sbi, block);
6667         if (overflow) {
6668                 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
6669                         overflow = sbi->s_cluster_ratio - overflow;
6670                         block += overflow;
6671                         if (count > overflow)
6672                                 count -= overflow;
6673                         else
6674                                 return;
6675                 } else {
6676                         block -= overflow;
6677                         count += overflow;
6678                 }
6679                 /* The range changed so it's no longer validated */
6680                 flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6681         }
6682         overflow = EXT4_LBLK_COFF(sbi, count);
6683         if (overflow) {
6684                 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
6685                         if (count > overflow)
6686                                 count -= overflow;
6687                         else
6688                                 return;
6689                 } else
6690                         count += sbi->s_cluster_ratio - overflow;
6691                 /* The range changed so it's no longer validated */
6692                 flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6693         }
6694
6695         if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
6696                 int i;
6697                 int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
6698
6699                 for (i = 0; i < count; i++) {
6700                         cond_resched();
6701                         if (is_metadata)
6702                                 bh = sb_find_get_block(inode->i_sb, block + i);
6703                         ext4_forget(handle, is_metadata, inode, bh, block + i);
6704                 }
6705         }
6706
6707         ext4_mb_clear_bb(handle, inode, block, count, flags);
6708 }
6709
6710 /**
6711  * ext4_group_add_blocks() -- Add given blocks to an existing group
6712  * @handle:                     handle to this transaction
6713  * @sb:                         super block
6714  * @block:                      start physical block to add to the block group
6715  * @count:                      number of blocks to free
6716  *
6717  * This marks the blocks as free in the bitmap and buddy.
6718  */
6719 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
6720                          ext4_fsblk_t block, unsigned long count)
6721 {
6722         struct buffer_head *bitmap_bh = NULL;
6723         struct buffer_head *gd_bh;
6724         ext4_group_t block_group;
6725         ext4_grpblk_t bit;
6726         unsigned int i;
6727         struct ext4_group_desc *desc;
6728         struct ext4_sb_info *sbi = EXT4_SB(sb);
6729         struct ext4_buddy e4b;
6730         int err = 0, ret, free_clusters_count;
6731         ext4_grpblk_t clusters_freed;
6732         ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block);
6733         ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1);
6734         unsigned long cluster_count = last_cluster - first_cluster + 1;
6735
6736         ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
6737
6738         if (count == 0)
6739                 return 0;
6740
6741         ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
6742         /*
6743          * Check to see if we are freeing blocks across a group
6744          * boundary.
6745          */
6746         if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) {
6747                 ext4_warning(sb, "too many blocks added to group %u",
6748                              block_group);
6749                 err = -EINVAL;
6750                 goto error_return;
6751         }
6752
6753         bitmap_bh = ext4_read_block_bitmap(sb, block_group);
6754         if (IS_ERR(bitmap_bh)) {
6755                 err = PTR_ERR(bitmap_bh);
6756                 bitmap_bh = NULL;
6757                 goto error_return;
6758         }
6759
6760         desc = ext4_get_group_desc(sb, block_group, &gd_bh);
6761         if (!desc) {
6762                 err = -EIO;
6763                 goto error_return;
6764         }
6765
6766         if (!ext4_sb_block_valid(sb, NULL, block, count)) {
6767                 ext4_error(sb, "Adding blocks in system zones - "
6768                            "Block = %llu, count = %lu",
6769                            block, count);
6770                 err = -EINVAL;
6771                 goto error_return;
6772         }
6773
6774         BUFFER_TRACE(bitmap_bh, "getting write access");
6775         err = ext4_journal_get_write_access(handle, sb, bitmap_bh,
6776                                             EXT4_JTR_NONE);
6777         if (err)
6778                 goto error_return;
6779
6780         /*
6781          * We are about to modify some metadata.  Call the journal APIs
6782          * to unshare ->b_data if a currently-committing transaction is
6783          * using it
6784          */
6785         BUFFER_TRACE(gd_bh, "get_write_access");
6786         err = ext4_journal_get_write_access(handle, sb, gd_bh, EXT4_JTR_NONE);
6787         if (err)
6788                 goto error_return;
6789
6790         for (i = 0, clusters_freed = 0; i < cluster_count; i++) {
6791                 BUFFER_TRACE(bitmap_bh, "clear bit");
6792                 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
6793                         ext4_error(sb, "bit already cleared for block %llu",
6794                                    (ext4_fsblk_t)(block + i));
6795                         BUFFER_TRACE(bitmap_bh, "bit already cleared");
6796                 } else {
6797                         clusters_freed++;
6798                 }
6799         }
6800
6801         err = ext4_mb_load_buddy(sb, block_group, &e4b);
6802         if (err)
6803                 goto error_return;
6804
6805         /*
6806          * need to update group_info->bb_free and bitmap
6807          * with group lock held. generate_buddy look at
6808          * them with group lock_held
6809          */
6810         ext4_lock_group(sb, block_group);
6811         mb_clear_bits(bitmap_bh->b_data, bit, cluster_count);
6812         mb_free_blocks(NULL, &e4b, bit, cluster_count);
6813         free_clusters_count = clusters_freed +
6814                 ext4_free_group_clusters(sb, desc);
6815         ext4_free_group_clusters_set(sb, desc, free_clusters_count);
6816         ext4_block_bitmap_csum_set(sb, desc, bitmap_bh);
6817         ext4_group_desc_csum_set(sb, block_group, desc);
6818         ext4_unlock_group(sb, block_group);
6819         percpu_counter_add(&sbi->s_freeclusters_counter,
6820                            clusters_freed);
6821
6822         if (sbi->s_log_groups_per_flex) {
6823                 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
6824                 atomic64_add(clusters_freed,
6825                              &sbi_array_rcu_deref(sbi, s_flex_groups,
6826                                                   flex_group)->free_clusters);
6827         }
6828
6829         ext4_mb_unload_buddy(&e4b);
6830
6831         /* We dirtied the bitmap block */
6832         BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
6833         err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
6834
6835         /* And the group descriptor block */
6836         BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
6837         ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
6838         if (!err)
6839                 err = ret;
6840
6841 error_return:
6842         brelse(bitmap_bh);
6843         ext4_std_error(sb, err);
6844         return err;
6845 }
6846
6847 /**
6848  * ext4_trim_extent -- function to TRIM one single free extent in the group
6849  * @sb:         super block for the file system
6850  * @start:      starting block of the free extent in the alloc. group
6851  * @count:      number of blocks to TRIM
6852  * @e4b:        ext4 buddy for the group
6853  *
6854  * Trim "count" blocks starting at "start" in the "group". To assure that no
6855  * one will allocate those blocks, mark it as used in buddy bitmap. This must
6856  * be called with under the group lock.
6857  */
6858 static int ext4_trim_extent(struct super_block *sb,
6859                 int start, int count, struct ext4_buddy *e4b)
6860 __releases(bitlock)
6861 __acquires(bitlock)
6862 {
6863         struct ext4_free_extent ex;
6864         ext4_group_t group = e4b->bd_group;
6865         int ret = 0;
6866
6867         trace_ext4_trim_extent(sb, group, start, count);
6868
6869         assert_spin_locked(ext4_group_lock_ptr(sb, group));
6870
6871         ex.fe_start = start;
6872         ex.fe_group = group;
6873         ex.fe_len = count;
6874
6875         /*
6876          * Mark blocks used, so no one can reuse them while
6877          * being trimmed.
6878          */
6879         mb_mark_used(e4b, &ex);
6880         ext4_unlock_group(sb, group);
6881         ret = ext4_issue_discard(sb, group, start, count, NULL);
6882         ext4_lock_group(sb, group);
6883         mb_free_blocks(NULL, e4b, start, ex.fe_len);
6884         return ret;
6885 }
6886
6887 static ext4_grpblk_t ext4_last_grp_cluster(struct super_block *sb,
6888                                            ext4_group_t grp)
6889 {
6890         unsigned long nr_clusters_in_group;
6891
6892         if (grp < (ext4_get_groups_count(sb) - 1))
6893                 nr_clusters_in_group = EXT4_CLUSTERS_PER_GROUP(sb);
6894         else
6895                 nr_clusters_in_group = (ext4_blocks_count(EXT4_SB(sb)->s_es) -
6896                                         ext4_group_first_block_no(sb, grp))
6897                                        >> EXT4_CLUSTER_BITS(sb);
6898
6899         return nr_clusters_in_group - 1;
6900 }
6901
6902 static bool ext4_trim_interrupted(void)
6903 {
6904         return fatal_signal_pending(current) || freezing(current);
6905 }
6906
6907 static int ext4_try_to_trim_range(struct super_block *sb,
6908                 struct ext4_buddy *e4b, ext4_grpblk_t start,
6909                 ext4_grpblk_t max, ext4_grpblk_t minblocks)
6910 __acquires(ext4_group_lock_ptr(sb, e4b->bd_group))
6911 __releases(ext4_group_lock_ptr(sb, e4b->bd_group))
6912 {
6913         ext4_grpblk_t next, count, free_count;
6914         bool set_trimmed = false;
6915         void *bitmap;
6916
6917         bitmap = e4b->bd_bitmap;
6918         if (start == 0 && max >= ext4_last_grp_cluster(sb, e4b->bd_group))
6919                 set_trimmed = true;
6920         start = max(e4b->bd_info->bb_first_free, start);
6921         count = 0;
6922         free_count = 0;
6923
6924         while (start <= max) {
6925                 start = mb_find_next_zero_bit(bitmap, max + 1, start);
6926                 if (start > max)
6927                         break;
6928                 next = mb_find_next_bit(bitmap, max + 1, start);
6929
6930                 if ((next - start) >= minblocks) {
6931                         int ret = ext4_trim_extent(sb, start, next - start, e4b);
6932
6933                         if (ret && ret != -EOPNOTSUPP)
6934                                 return count;
6935                         count += next - start;
6936                 }
6937                 free_count += next - start;
6938                 start = next + 1;
6939
6940                 if (ext4_trim_interrupted())
6941                         return count;
6942
6943                 if (need_resched()) {
6944                         ext4_unlock_group(sb, e4b->bd_group);
6945                         cond_resched();
6946                         ext4_lock_group(sb, e4b->bd_group);
6947                 }
6948
6949                 if ((e4b->bd_info->bb_free - free_count) < minblocks)
6950                         break;
6951         }
6952
6953         if (set_trimmed)
6954                 EXT4_MB_GRP_SET_TRIMMED(e4b->bd_info);
6955
6956         return count;
6957 }
6958
6959 /**
6960  * ext4_trim_all_free -- function to trim all free space in alloc. group
6961  * @sb:                 super block for file system
6962  * @group:              group to be trimmed
6963  * @start:              first group block to examine
6964  * @max:                last group block to examine
6965  * @minblocks:          minimum extent block count
6966  *
6967  * ext4_trim_all_free walks through group's block bitmap searching for free
6968  * extents. When the free extent is found, mark it as used in group buddy
6969  * bitmap. Then issue a TRIM command on this extent and free the extent in
6970  * the group buddy bitmap.
6971  */
6972 static ext4_grpblk_t
6973 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
6974                    ext4_grpblk_t start, ext4_grpblk_t max,
6975                    ext4_grpblk_t minblocks)
6976 {
6977         struct ext4_buddy e4b;
6978         int ret;
6979
6980         trace_ext4_trim_all_free(sb, group, start, max);
6981
6982         ret = ext4_mb_load_buddy(sb, group, &e4b);
6983         if (ret) {
6984                 ext4_warning(sb, "Error %d loading buddy information for %u",
6985                              ret, group);
6986                 return ret;
6987         }
6988
6989         ext4_lock_group(sb, group);
6990
6991         if (!EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) ||
6992             minblocks < EXT4_SB(sb)->s_last_trim_minblks)
6993                 ret = ext4_try_to_trim_range(sb, &e4b, start, max, minblocks);
6994         else
6995                 ret = 0;
6996
6997         ext4_unlock_group(sb, group);
6998         ext4_mb_unload_buddy(&e4b);
6999
7000         ext4_debug("trimmed %d blocks in the group %d\n",
7001                 ret, group);
7002
7003         return ret;
7004 }
7005
7006 /**
7007  * ext4_trim_fs() -- trim ioctl handle function
7008  * @sb:                 superblock for filesystem
7009  * @range:              fstrim_range structure
7010  *
7011  * start:       First Byte to trim
7012  * len:         number of Bytes to trim from start
7013  * minlen:      minimum extent length in Bytes
7014  * ext4_trim_fs goes through all allocation groups containing Bytes from
7015  * start to start+len. For each such a group ext4_trim_all_free function
7016  * is invoked to trim all free space.
7017  */
7018 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
7019 {
7020         unsigned int discard_granularity = bdev_discard_granularity(sb->s_bdev);
7021         struct ext4_group_info *grp;
7022         ext4_group_t group, first_group, last_group;
7023         ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
7024         uint64_t start, end, minlen, trimmed = 0;
7025         ext4_fsblk_t first_data_blk =
7026                         le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
7027         ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
7028         int ret = 0;
7029
7030         start = range->start >> sb->s_blocksize_bits;
7031         end = start + (range->len >> sb->s_blocksize_bits) - 1;
7032         minlen = EXT4_NUM_B2C(EXT4_SB(sb),
7033                               range->minlen >> sb->s_blocksize_bits);
7034
7035         if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
7036             start >= max_blks ||
7037             range->len < sb->s_blocksize)
7038                 return -EINVAL;
7039         /* No point to try to trim less than discard granularity */
7040         if (range->minlen < discard_granularity) {
7041                 minlen = EXT4_NUM_B2C(EXT4_SB(sb),
7042                                 discard_granularity >> sb->s_blocksize_bits);
7043                 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb))
7044                         goto out;
7045         }
7046         if (end >= max_blks - 1)
7047                 end = max_blks - 1;
7048         if (end <= first_data_blk)
7049                 goto out;
7050         if (start < first_data_blk)
7051                 start = first_data_blk;
7052
7053         /* Determine first and last group to examine based on start and end */
7054         ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
7055                                      &first_group, &first_cluster);
7056         ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
7057                                      &last_group, &last_cluster);
7058
7059         /* end now represents the last cluster to discard in this group */
7060         end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
7061
7062         for (group = first_group; group <= last_group; group++) {
7063                 if (ext4_trim_interrupted())
7064                         break;
7065                 grp = ext4_get_group_info(sb, group);
7066                 if (!grp)
7067                         continue;
7068                 /* We only do this if the grp has never been initialized */
7069                 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
7070                         ret = ext4_mb_init_group(sb, group, GFP_NOFS);
7071                         if (ret)
7072                                 break;
7073                 }
7074
7075                 /*
7076                  * For all the groups except the last one, last cluster will
7077                  * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
7078                  * change it for the last group, note that last_cluster is
7079                  * already computed earlier by ext4_get_group_no_and_offset()
7080                  */
7081                 if (group == last_group)
7082                         end = last_cluster;
7083                 if (grp->bb_free >= minlen) {
7084                         cnt = ext4_trim_all_free(sb, group, first_cluster,
7085                                                  end, minlen);
7086                         if (cnt < 0) {
7087                                 ret = cnt;
7088                                 break;
7089                         }
7090                         trimmed += cnt;
7091                 }
7092
7093                 /*
7094                  * For every group except the first one, we are sure
7095                  * that the first cluster to discard will be cluster #0.
7096                  */
7097                 first_cluster = 0;
7098         }
7099
7100         if (!ret)
7101                 EXT4_SB(sb)->s_last_trim_minblks = minlen;
7102
7103 out:
7104         range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
7105         return ret;
7106 }
7107
7108 /* Iterate all the free extents in the group. */
7109 int
7110 ext4_mballoc_query_range(
7111         struct super_block              *sb,
7112         ext4_group_t                    group,
7113         ext4_grpblk_t                   start,
7114         ext4_grpblk_t                   end,
7115         ext4_mballoc_query_range_fn     formatter,
7116         void                            *priv)
7117 {
7118         void                            *bitmap;
7119         ext4_grpblk_t                   next;
7120         struct ext4_buddy               e4b;
7121         int                             error;
7122
7123         error = ext4_mb_load_buddy(sb, group, &e4b);
7124         if (error)
7125                 return error;
7126         bitmap = e4b.bd_bitmap;
7127
7128         ext4_lock_group(sb, group);
7129
7130         start = max(e4b.bd_info->bb_first_free, start);
7131         if (end >= EXT4_CLUSTERS_PER_GROUP(sb))
7132                 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
7133
7134         while (start <= end) {
7135                 start = mb_find_next_zero_bit(bitmap, end + 1, start);
7136                 if (start > end)
7137                         break;
7138                 next = mb_find_next_bit(bitmap, end + 1, start);
7139
7140                 ext4_unlock_group(sb, group);
7141                 error = formatter(sb, group, start, next - start, priv);
7142                 if (error)
7143                         goto out_unload;
7144                 ext4_lock_group(sb, group);
7145
7146                 start = next + 1;
7147         }
7148
7149         ext4_unlock_group(sb, group);
7150 out_unload:
7151         ext4_mb_unload_buddy(&e4b);
7152
7153         return error;
7154 }