2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
42 #include "ext4_jbd2.h"
47 #include <trace/events/ext4.h>
49 #define MPAGE_DA_EXTENT_TAIL 0x01
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 struct ext4_inode_info *ei)
54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
59 csum_lo = le16_to_cpu(raw->i_checksum_lo);
60 raw->i_checksum_lo = 0;
61 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
62 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
63 csum_hi = le16_to_cpu(raw->i_checksum_hi);
64 raw->i_checksum_hi = 0;
67 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
68 EXT4_INODE_SIZE(inode->i_sb));
70 raw->i_checksum_lo = cpu_to_le16(csum_lo);
71 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
72 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
73 raw->i_checksum_hi = cpu_to_le16(csum_hi);
78 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
79 struct ext4_inode_info *ei)
81 __u32 provided, calculated;
83 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
84 cpu_to_le32(EXT4_OS_LINUX) ||
85 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
86 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
89 provided = le16_to_cpu(raw->i_checksum_lo);
90 calculated = ext4_inode_csum(inode, raw, ei);
91 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
92 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
93 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
97 return provided == calculated;
100 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
101 struct ext4_inode_info *ei)
105 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
106 cpu_to_le32(EXT4_OS_LINUX) ||
107 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
108 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
111 csum = ext4_inode_csum(inode, raw, ei);
112 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
113 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
114 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
115 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
118 static inline int ext4_begin_ordered_truncate(struct inode *inode,
121 trace_ext4_begin_ordered_truncate(inode, new_size);
123 * If jinode is zero, then we never opened the file for
124 * writing, so there's no need to call
125 * jbd2_journal_begin_ordered_truncate() since there's no
126 * outstanding writes we need to flush.
128 if (!EXT4_I(inode)->jinode)
130 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
131 EXT4_I(inode)->jinode,
135 static void ext4_invalidatepage(struct page *page, unsigned int offset,
136 unsigned int length);
137 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
138 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
139 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143 * Test whether an inode is a fast symlink.
145 static int ext4_inode_is_fast_symlink(struct inode *inode)
147 int ea_blocks = EXT4_I(inode)->i_file_acl ?
148 (inode->i_sb->s_blocksize >> 9) : 0;
150 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
154 * Restart the transaction associated with *handle. This does a commit,
155 * so before we call here everything must be consistently dirtied against
158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
164 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
165 * moment, get_block can be called only for blocks inside i_size since
166 * page cache has been already dropped and writes are blocked by
167 * i_mutex. So we can safely drop the i_data_sem here.
169 BUG_ON(EXT4_JOURNAL(inode) == NULL);
170 jbd_debug(2, "restarting handle %p\n", handle);
171 up_write(&EXT4_I(inode)->i_data_sem);
172 ret = ext4_journal_restart(handle, nblocks);
173 down_write(&EXT4_I(inode)->i_data_sem);
174 ext4_discard_preallocations(inode);
180 * Called at the last iput() if i_nlink is zero.
182 void ext4_evict_inode(struct inode *inode)
187 trace_ext4_evict_inode(inode);
189 if (inode->i_nlink) {
191 * When journalling data dirty buffers are tracked only in the
192 * journal. So although mm thinks everything is clean and
193 * ready for reaping the inode might still have some pages to
194 * write in the running transaction or waiting to be
195 * checkpointed. Thus calling jbd2_journal_invalidatepage()
196 * (via truncate_inode_pages()) to discard these buffers can
197 * cause data loss. Also even if we did not discard these
198 * buffers, we would have no way to find them after the inode
199 * is reaped and thus user could see stale data if he tries to
200 * read them before the transaction is checkpointed. So be
201 * careful and force everything to disk here... We use
202 * ei->i_datasync_tid to store the newest transaction
203 * containing inode's data.
205 * Note that directories do not have this problem because they
206 * don't use page cache.
208 if (ext4_should_journal_data(inode) &&
209 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210 inode->i_ino != EXT4_JOURNAL_INO) {
211 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
214 jbd2_complete_transaction(journal, commit_tid);
215 filemap_write_and_wait(&inode->i_data);
217 truncate_inode_pages(&inode->i_data, 0);
219 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
223 if (!is_bad_inode(inode))
224 dquot_initialize(inode);
226 if (ext4_should_order_data(inode))
227 ext4_begin_ordered_truncate(inode, 0);
228 truncate_inode_pages(&inode->i_data, 0);
230 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
231 if (is_bad_inode(inode))
235 * Protect us against freezing - iput() caller didn't have to have any
236 * protection against it
238 sb_start_intwrite(inode->i_sb);
239 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
240 ext4_blocks_for_truncate(inode)+3);
241 if (IS_ERR(handle)) {
242 ext4_std_error(inode->i_sb, PTR_ERR(handle));
244 * If we're going to skip the normal cleanup, we still need to
245 * make sure that the in-core orphan linked list is properly
248 ext4_orphan_del(NULL, inode);
249 sb_end_intwrite(inode->i_sb);
254 ext4_handle_sync(handle);
256 err = ext4_mark_inode_dirty(handle, inode);
258 ext4_warning(inode->i_sb,
259 "couldn't mark inode dirty (err %d)", err);
263 ext4_truncate(inode);
266 * ext4_ext_truncate() doesn't reserve any slop when it
267 * restarts journal transactions; therefore there may not be
268 * enough credits left in the handle to remove the inode from
269 * the orphan list and set the dtime field.
271 if (!ext4_handle_has_enough_credits(handle, 3)) {
272 err = ext4_journal_extend(handle, 3);
274 err = ext4_journal_restart(handle, 3);
276 ext4_warning(inode->i_sb,
277 "couldn't extend journal (err %d)", err);
279 ext4_journal_stop(handle);
280 ext4_orphan_del(NULL, inode);
281 sb_end_intwrite(inode->i_sb);
287 * Kill off the orphan record which ext4_truncate created.
288 * AKPM: I think this can be inside the above `if'.
289 * Note that ext4_orphan_del() has to be able to cope with the
290 * deletion of a non-existent orphan - this is because we don't
291 * know if ext4_truncate() actually created an orphan record.
292 * (Well, we could do this if we need to, but heck - it works)
294 ext4_orphan_del(handle, inode);
295 EXT4_I(inode)->i_dtime = get_seconds();
298 * One subtle ordering requirement: if anything has gone wrong
299 * (transaction abort, IO errors, whatever), then we can still
300 * do these next steps (the fs will already have been marked as
301 * having errors), but we can't free the inode if the mark_dirty
304 if (ext4_mark_inode_dirty(handle, inode))
305 /* If that failed, just do the required in-core inode clear. */
306 ext4_clear_inode(inode);
308 ext4_free_inode(handle, inode);
309 ext4_journal_stop(handle);
310 sb_end_intwrite(inode->i_sb);
313 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
317 qsize_t *ext4_get_reserved_space(struct inode *inode)
319 return &EXT4_I(inode)->i_reserved_quota;
324 * Calculate the number of metadata blocks need to reserve
325 * to allocate a block located at @lblock
327 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
329 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
330 return ext4_ext_calc_metadata_amount(inode, lblock);
332 return ext4_ind_calc_metadata_amount(inode, lblock);
336 * Called with i_data_sem down, which is important since we can call
337 * ext4_discard_preallocations() from here.
339 void ext4_da_update_reserve_space(struct inode *inode,
340 int used, int quota_claim)
342 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
343 struct ext4_inode_info *ei = EXT4_I(inode);
345 spin_lock(&ei->i_block_reservation_lock);
346 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
347 if (unlikely(used > ei->i_reserved_data_blocks)) {
348 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
349 "with only %d reserved data blocks",
350 __func__, inode->i_ino, used,
351 ei->i_reserved_data_blocks);
353 used = ei->i_reserved_data_blocks;
356 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
357 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
358 "with only %d reserved metadata blocks "
359 "(releasing %d blocks with reserved %d data blocks)",
360 inode->i_ino, ei->i_allocated_meta_blocks,
361 ei->i_reserved_meta_blocks, used,
362 ei->i_reserved_data_blocks);
364 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
367 /* Update per-inode reservations */
368 ei->i_reserved_data_blocks -= used;
369 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
370 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
371 used + ei->i_allocated_meta_blocks);
372 ei->i_allocated_meta_blocks = 0;
374 if (ei->i_reserved_data_blocks == 0) {
376 * We can release all of the reserved metadata blocks
377 * only when we have written all of the delayed
380 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
381 ei->i_reserved_meta_blocks);
382 ei->i_reserved_meta_blocks = 0;
383 ei->i_da_metadata_calc_len = 0;
385 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
387 /* Update quota subsystem for data blocks */
389 dquot_claim_block(inode, EXT4_C2B(sbi, used));
392 * We did fallocate with an offset that is already delayed
393 * allocated. So on delayed allocated writeback we should
394 * not re-claim the quota for fallocated blocks.
396 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
400 * If we have done all the pending block allocations and if
401 * there aren't any writers on the inode, we can discard the
402 * inode's preallocations.
404 if ((ei->i_reserved_data_blocks == 0) &&
405 (atomic_read(&inode->i_writecount) == 0))
406 ext4_discard_preallocations(inode);
409 static int __check_block_validity(struct inode *inode, const char *func,
411 struct ext4_map_blocks *map)
413 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
415 ext4_error_inode(inode, func, line, map->m_pblk,
416 "lblock %lu mapped to illegal pblock "
417 "(length %d)", (unsigned long) map->m_lblk,
424 #define check_block_validity(inode, map) \
425 __check_block_validity((inode), __func__, __LINE__, (map))
427 #ifdef ES_AGGRESSIVE_TEST
428 static void ext4_map_blocks_es_recheck(handle_t *handle,
430 struct ext4_map_blocks *es_map,
431 struct ext4_map_blocks *map,
438 * There is a race window that the result is not the same.
439 * e.g. xfstests #223 when dioread_nolock enables. The reason
440 * is that we lookup a block mapping in extent status tree with
441 * out taking i_data_sem. So at the time the unwritten extent
442 * could be converted.
444 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
445 down_read((&EXT4_I(inode)->i_data_sem));
446 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
447 retval = ext4_ext_map_blocks(handle, inode, map, flags &
448 EXT4_GET_BLOCKS_KEEP_SIZE);
450 retval = ext4_ind_map_blocks(handle, inode, map, flags &
451 EXT4_GET_BLOCKS_KEEP_SIZE);
453 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
454 up_read((&EXT4_I(inode)->i_data_sem));
456 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
457 * because it shouldn't be marked in es_map->m_flags.
459 map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
462 * We don't check m_len because extent will be collpased in status
463 * tree. So the m_len might not equal.
465 if (es_map->m_lblk != map->m_lblk ||
466 es_map->m_flags != map->m_flags ||
467 es_map->m_pblk != map->m_pblk) {
468 printk("ES cache assertation failed for inode: %lu "
469 "es_cached ex [%d/%d/%llu/%x] != "
470 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
471 inode->i_ino, es_map->m_lblk, es_map->m_len,
472 es_map->m_pblk, es_map->m_flags, map->m_lblk,
473 map->m_len, map->m_pblk, map->m_flags,
477 #endif /* ES_AGGRESSIVE_TEST */
480 * The ext4_map_blocks() function tries to look up the requested blocks,
481 * and returns if the blocks are already mapped.
483 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
484 * and store the allocated blocks in the result buffer head and mark it
487 * If file type is extents based, it will call ext4_ext_map_blocks(),
488 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
491 * On success, it returns the number of blocks being mapped or allocate.
492 * if create==0 and the blocks are pre-allocated and uninitialized block,
493 * the result buffer head is unmapped. If the create ==1, it will make sure
494 * the buffer head is mapped.
496 * It returns 0 if plain look up failed (blocks have not been allocated), in
497 * that case, buffer head is unmapped
499 * It returns the error in case of allocation failure.
501 int ext4_map_blocks(handle_t *handle, struct inode *inode,
502 struct ext4_map_blocks *map, int flags)
504 struct extent_status es;
506 #ifdef ES_AGGRESSIVE_TEST
507 struct ext4_map_blocks orig_map;
509 memcpy(&orig_map, map, sizeof(*map));
513 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
514 "logical block %lu\n", inode->i_ino, flags, map->m_len,
515 (unsigned long) map->m_lblk);
517 ext4_es_lru_add(inode);
519 /* Lookup extent status tree firstly */
520 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
521 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
522 map->m_pblk = ext4_es_pblock(&es) +
523 map->m_lblk - es.es_lblk;
524 map->m_flags |= ext4_es_is_written(&es) ?
525 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
526 retval = es.es_len - (map->m_lblk - es.es_lblk);
527 if (retval > map->m_len)
530 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
535 #ifdef ES_AGGRESSIVE_TEST
536 ext4_map_blocks_es_recheck(handle, inode, map,
543 * Try to see if we can get the block without requesting a new
546 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
547 down_read((&EXT4_I(inode)->i_data_sem));
548 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
549 retval = ext4_ext_map_blocks(handle, inode, map, flags &
550 EXT4_GET_BLOCKS_KEEP_SIZE);
552 retval = ext4_ind_map_blocks(handle, inode, map, flags &
553 EXT4_GET_BLOCKS_KEEP_SIZE);
557 unsigned long long status;
559 #ifdef ES_AGGRESSIVE_TEST
560 if (retval != map->m_len) {
561 printk("ES len assertation failed for inode: %lu "
562 "retval %d != map->m_len %d "
563 "in %s (lookup)\n", inode->i_ino, retval,
564 map->m_len, __func__);
568 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
569 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
570 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
571 ext4_find_delalloc_range(inode, map->m_lblk,
572 map->m_lblk + map->m_len - 1))
573 status |= EXTENT_STATUS_DELAYED;
574 ret = ext4_es_insert_extent(inode, map->m_lblk,
575 map->m_len, map->m_pblk, status);
579 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
580 up_read((&EXT4_I(inode)->i_data_sem));
583 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
584 int ret = check_block_validity(inode, map);
589 /* If it is only a block(s) look up */
590 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
594 * Returns if the blocks have already allocated
596 * Note that if blocks have been preallocated
597 * ext4_ext_get_block() returns the create = 0
598 * with buffer head unmapped.
600 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
604 * Here we clear m_flags because after allocating an new extent,
605 * it will be set again.
607 map->m_flags &= ~EXT4_MAP_FLAGS;
610 * New blocks allocate and/or writing to uninitialized extent
611 * will possibly result in updating i_data, so we take
612 * the write lock of i_data_sem, and call get_blocks()
613 * with create == 1 flag.
615 down_write((&EXT4_I(inode)->i_data_sem));
618 * if the caller is from delayed allocation writeout path
619 * we have already reserved fs blocks for allocation
620 * let the underlying get_block() function know to
621 * avoid double accounting
623 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
624 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
626 * We need to check for EXT4 here because migrate
627 * could have changed the inode type in between
629 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
630 retval = ext4_ext_map_blocks(handle, inode, map, flags);
632 retval = ext4_ind_map_blocks(handle, inode, map, flags);
634 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
636 * We allocated new blocks which will result in
637 * i_data's format changing. Force the migrate
638 * to fail by clearing migrate flags
640 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
644 * Update reserved blocks/metadata blocks after successful
645 * block allocation which had been deferred till now. We don't
646 * support fallocate for non extent files. So we can update
647 * reserve space here.
650 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
651 ext4_da_update_reserve_space(inode, retval, 1);
653 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
654 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
658 unsigned long long status;
660 #ifdef ES_AGGRESSIVE_TEST
661 if (retval != map->m_len) {
662 printk("ES len assertation failed for inode: %lu "
663 "retval %d != map->m_len %d "
664 "in %s (allocation)\n", inode->i_ino, retval,
665 map->m_len, __func__);
670 * If the extent has been zeroed out, we don't need to update
671 * extent status tree.
673 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
674 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
675 if (ext4_es_is_written(&es))
678 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
679 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
680 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
681 ext4_find_delalloc_range(inode, map->m_lblk,
682 map->m_lblk + map->m_len - 1))
683 status |= EXTENT_STATUS_DELAYED;
684 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
685 map->m_pblk, status);
691 up_write((&EXT4_I(inode)->i_data_sem));
692 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
693 int ret = check_block_validity(inode, map);
700 /* Maximum number of blocks we map for direct IO at once. */
701 #define DIO_MAX_BLOCKS 4096
703 static int _ext4_get_block(struct inode *inode, sector_t iblock,
704 struct buffer_head *bh, int flags)
706 handle_t *handle = ext4_journal_current_handle();
707 struct ext4_map_blocks map;
708 int ret = 0, started = 0;
711 if (ext4_has_inline_data(inode))
715 map.m_len = bh->b_size >> inode->i_blkbits;
717 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
718 /* Direct IO write... */
719 if (map.m_len > DIO_MAX_BLOCKS)
720 map.m_len = DIO_MAX_BLOCKS;
721 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
722 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
724 if (IS_ERR(handle)) {
725 ret = PTR_ERR(handle);
731 ret = ext4_map_blocks(handle, inode, &map, flags);
733 map_bh(bh, inode->i_sb, map.m_pblk);
734 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
735 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
739 ext4_journal_stop(handle);
743 int ext4_get_block(struct inode *inode, sector_t iblock,
744 struct buffer_head *bh, int create)
746 return _ext4_get_block(inode, iblock, bh,
747 create ? EXT4_GET_BLOCKS_CREATE : 0);
751 * `handle' can be NULL if create is zero
753 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
754 ext4_lblk_t block, int create, int *errp)
756 struct ext4_map_blocks map;
757 struct buffer_head *bh;
760 J_ASSERT(handle != NULL || create == 0);
764 err = ext4_map_blocks(handle, inode, &map,
765 create ? EXT4_GET_BLOCKS_CREATE : 0);
767 /* ensure we send some value back into *errp */
770 if (create && err == 0)
771 err = -ENOSPC; /* should never happen */
777 bh = sb_getblk(inode->i_sb, map.m_pblk);
782 if (map.m_flags & EXT4_MAP_NEW) {
783 J_ASSERT(create != 0);
784 J_ASSERT(handle != NULL);
787 * Now that we do not always journal data, we should
788 * keep in mind whether this should always journal the
789 * new buffer as metadata. For now, regular file
790 * writes use ext4_get_block instead, so it's not a
794 BUFFER_TRACE(bh, "call get_create_access");
795 fatal = ext4_journal_get_create_access(handle, bh);
796 if (!fatal && !buffer_uptodate(bh)) {
797 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
798 set_buffer_uptodate(bh);
801 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
802 err = ext4_handle_dirty_metadata(handle, inode, bh);
806 BUFFER_TRACE(bh, "not a new buffer");
816 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
817 ext4_lblk_t block, int create, int *err)
819 struct buffer_head *bh;
821 bh = ext4_getblk(handle, inode, block, create, err);
824 if (buffer_uptodate(bh))
826 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
828 if (buffer_uptodate(bh))
835 int ext4_walk_page_buffers(handle_t *handle,
836 struct buffer_head *head,
840 int (*fn)(handle_t *handle,
841 struct buffer_head *bh))
843 struct buffer_head *bh;
844 unsigned block_start, block_end;
845 unsigned blocksize = head->b_size;
847 struct buffer_head *next;
849 for (bh = head, block_start = 0;
850 ret == 0 && (bh != head || !block_start);
851 block_start = block_end, bh = next) {
852 next = bh->b_this_page;
853 block_end = block_start + blocksize;
854 if (block_end <= from || block_start >= to) {
855 if (partial && !buffer_uptodate(bh))
859 err = (*fn)(handle, bh);
867 * To preserve ordering, it is essential that the hole instantiation and
868 * the data write be encapsulated in a single transaction. We cannot
869 * close off a transaction and start a new one between the ext4_get_block()
870 * and the commit_write(). So doing the jbd2_journal_start at the start of
871 * prepare_write() is the right place.
873 * Also, this function can nest inside ext4_writepage(). In that case, we
874 * *know* that ext4_writepage() has generated enough buffer credits to do the
875 * whole page. So we won't block on the journal in that case, which is good,
876 * because the caller may be PF_MEMALLOC.
878 * By accident, ext4 can be reentered when a transaction is open via
879 * quota file writes. If we were to commit the transaction while thus
880 * reentered, there can be a deadlock - we would be holding a quota
881 * lock, and the commit would never complete if another thread had a
882 * transaction open and was blocking on the quota lock - a ranking
885 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
886 * will _not_ run commit under these circumstances because handle->h_ref
887 * is elevated. We'll still have enough credits for the tiny quotafile
890 int do_journal_get_write_access(handle_t *handle,
891 struct buffer_head *bh)
893 int dirty = buffer_dirty(bh);
896 if (!buffer_mapped(bh) || buffer_freed(bh))
899 * __block_write_begin() could have dirtied some buffers. Clean
900 * the dirty bit as jbd2_journal_get_write_access() could complain
901 * otherwise about fs integrity issues. Setting of the dirty bit
902 * by __block_write_begin() isn't a real problem here as we clear
903 * the bit before releasing a page lock and thus writeback cannot
904 * ever write the buffer.
907 clear_buffer_dirty(bh);
908 ret = ext4_journal_get_write_access(handle, bh);
910 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
914 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
915 struct buffer_head *bh_result, int create);
916 static int ext4_write_begin(struct file *file, struct address_space *mapping,
917 loff_t pos, unsigned len, unsigned flags,
918 struct page **pagep, void **fsdata)
920 struct inode *inode = mapping->host;
921 int ret, needed_blocks;
928 trace_ext4_write_begin(inode, pos, len, flags);
930 * Reserve one block more for addition to orphan list in case
931 * we allocate blocks but write fails for some reason
933 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
934 index = pos >> PAGE_CACHE_SHIFT;
935 from = pos & (PAGE_CACHE_SIZE - 1);
938 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
939 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
948 * grab_cache_page_write_begin() can take a long time if the
949 * system is thrashing due to memory pressure, or if the page
950 * is being written back. So grab it first before we start
951 * the transaction handle. This also allows us to allocate
952 * the page (if needed) without using GFP_NOFS.
955 page = grab_cache_page_write_begin(mapping, index, flags);
961 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
962 if (IS_ERR(handle)) {
963 page_cache_release(page);
964 return PTR_ERR(handle);
968 if (page->mapping != mapping) {
969 /* The page got truncated from under us */
971 page_cache_release(page);
972 ext4_journal_stop(handle);
975 wait_on_page_writeback(page);
977 if (ext4_should_dioread_nolock(inode))
978 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
980 ret = __block_write_begin(page, pos, len, ext4_get_block);
982 if (!ret && ext4_should_journal_data(inode)) {
983 ret = ext4_walk_page_buffers(handle, page_buffers(page),
985 do_journal_get_write_access);
991 * __block_write_begin may have instantiated a few blocks
992 * outside i_size. Trim these off again. Don't need
993 * i_size_read because we hold i_mutex.
995 * Add inode to orphan list in case we crash before
998 if (pos + len > inode->i_size && ext4_can_truncate(inode))
999 ext4_orphan_add(handle, inode);
1001 ext4_journal_stop(handle);
1002 if (pos + len > inode->i_size) {
1003 ext4_truncate_failed_write(inode);
1005 * If truncate failed early the inode might
1006 * still be on the orphan list; we need to
1007 * make sure the inode is removed from the
1008 * orphan list in that case.
1011 ext4_orphan_del(NULL, inode);
1014 if (ret == -ENOSPC &&
1015 ext4_should_retry_alloc(inode->i_sb, &retries))
1017 page_cache_release(page);
1024 /* For write_end() in data=journal mode */
1025 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1028 if (!buffer_mapped(bh) || buffer_freed(bh))
1030 set_buffer_uptodate(bh);
1031 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1032 clear_buffer_meta(bh);
1033 clear_buffer_prio(bh);
1038 * We need to pick up the new inode size which generic_commit_write gave us
1039 * `file' can be NULL - eg, when called from page_symlink().
1041 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1042 * buffers are managed internally.
1044 static int ext4_write_end(struct file *file,
1045 struct address_space *mapping,
1046 loff_t pos, unsigned len, unsigned copied,
1047 struct page *page, void *fsdata)
1049 handle_t *handle = ext4_journal_current_handle();
1050 struct inode *inode = mapping->host;
1052 int i_size_changed = 0;
1054 trace_ext4_write_end(inode, pos, len, copied);
1055 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1056 ret = ext4_jbd2_file_inode(handle, inode);
1059 page_cache_release(page);
1064 if (ext4_has_inline_data(inode)) {
1065 ret = ext4_write_inline_data_end(inode, pos, len,
1071 copied = block_write_end(file, mapping, pos,
1072 len, copied, page, fsdata);
1075 * No need to use i_size_read() here, the i_size
1076 * cannot change under us because we hole i_mutex.
1078 * But it's important to update i_size while still holding page lock:
1079 * page writeout could otherwise come in and zero beyond i_size.
1081 if (pos + copied > inode->i_size) {
1082 i_size_write(inode, pos + copied);
1086 if (pos + copied > EXT4_I(inode)->i_disksize) {
1087 /* We need to mark inode dirty even if
1088 * new_i_size is less that inode->i_size
1089 * but greater than i_disksize. (hint delalloc)
1091 ext4_update_i_disksize(inode, (pos + copied));
1095 page_cache_release(page);
1098 * Don't mark the inode dirty under page lock. First, it unnecessarily
1099 * makes the holding time of page lock longer. Second, it forces lock
1100 * ordering of page lock and transaction start for journaling
1104 ext4_mark_inode_dirty(handle, inode);
1106 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1107 /* if we have allocated more blocks and copied
1108 * less. We will have blocks allocated outside
1109 * inode->i_size. So truncate them
1111 ext4_orphan_add(handle, inode);
1113 ret2 = ext4_journal_stop(handle);
1117 if (pos + len > inode->i_size) {
1118 ext4_truncate_failed_write(inode);
1120 * If truncate failed early the inode might still be
1121 * on the orphan list; we need to make sure the inode
1122 * is removed from the orphan list in that case.
1125 ext4_orphan_del(NULL, inode);
1128 return ret ? ret : copied;
1131 static int ext4_journalled_write_end(struct file *file,
1132 struct address_space *mapping,
1133 loff_t pos, unsigned len, unsigned copied,
1134 struct page *page, void *fsdata)
1136 handle_t *handle = ext4_journal_current_handle();
1137 struct inode *inode = mapping->host;
1143 trace_ext4_journalled_write_end(inode, pos, len, copied);
1144 from = pos & (PAGE_CACHE_SIZE - 1);
1147 BUG_ON(!ext4_handle_valid(handle));
1149 if (ext4_has_inline_data(inode))
1150 copied = ext4_write_inline_data_end(inode, pos, len,
1154 if (!PageUptodate(page))
1156 page_zero_new_buffers(page, from+copied, to);
1159 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1160 to, &partial, write_end_fn);
1162 SetPageUptodate(page);
1164 new_i_size = pos + copied;
1165 if (new_i_size > inode->i_size)
1166 i_size_write(inode, pos+copied);
1167 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1168 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1169 if (new_i_size > EXT4_I(inode)->i_disksize) {
1170 ext4_update_i_disksize(inode, new_i_size);
1171 ret2 = ext4_mark_inode_dirty(handle, inode);
1177 page_cache_release(page);
1178 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1179 /* if we have allocated more blocks and copied
1180 * less. We will have blocks allocated outside
1181 * inode->i_size. So truncate them
1183 ext4_orphan_add(handle, inode);
1185 ret2 = ext4_journal_stop(handle);
1188 if (pos + len > inode->i_size) {
1189 ext4_truncate_failed_write(inode);
1191 * If truncate failed early the inode might still be
1192 * on the orphan list; we need to make sure the inode
1193 * is removed from the orphan list in that case.
1196 ext4_orphan_del(NULL, inode);
1199 return ret ? ret : copied;
1203 * Reserve a metadata for a single block located at lblock
1205 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1208 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1209 struct ext4_inode_info *ei = EXT4_I(inode);
1210 unsigned int md_needed;
1211 ext4_lblk_t save_last_lblock;
1215 * recalculate the amount of metadata blocks to reserve
1216 * in order to allocate nrblocks
1217 * worse case is one extent per block
1220 spin_lock(&ei->i_block_reservation_lock);
1222 * ext4_calc_metadata_amount() has side effects, which we have
1223 * to be prepared undo if we fail to claim space.
1225 save_len = ei->i_da_metadata_calc_len;
1226 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1227 md_needed = EXT4_NUM_B2C(sbi,
1228 ext4_calc_metadata_amount(inode, lblock));
1229 trace_ext4_da_reserve_space(inode, md_needed);
1232 * We do still charge estimated metadata to the sb though;
1233 * we cannot afford to run out of free blocks.
1235 if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1236 ei->i_da_metadata_calc_len = save_len;
1237 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1238 spin_unlock(&ei->i_block_reservation_lock);
1239 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1245 ei->i_reserved_meta_blocks += md_needed;
1246 spin_unlock(&ei->i_block_reservation_lock);
1248 return 0; /* success */
1252 * Reserve a single cluster located at lblock
1254 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1257 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1258 struct ext4_inode_info *ei = EXT4_I(inode);
1259 unsigned int md_needed;
1261 ext4_lblk_t save_last_lblock;
1265 * We will charge metadata quota at writeout time; this saves
1266 * us from metadata over-estimation, though we may go over by
1267 * a small amount in the end. Here we just reserve for data.
1269 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1274 * recalculate the amount of metadata blocks to reserve
1275 * in order to allocate nrblocks
1276 * worse case is one extent per block
1279 spin_lock(&ei->i_block_reservation_lock);
1281 * ext4_calc_metadata_amount() has side effects, which we have
1282 * to be prepared undo if we fail to claim space.
1284 save_len = ei->i_da_metadata_calc_len;
1285 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1286 md_needed = EXT4_NUM_B2C(sbi,
1287 ext4_calc_metadata_amount(inode, lblock));
1288 trace_ext4_da_reserve_space(inode, md_needed);
1291 * We do still charge estimated metadata to the sb though;
1292 * we cannot afford to run out of free blocks.
1294 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1295 ei->i_da_metadata_calc_len = save_len;
1296 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1297 spin_unlock(&ei->i_block_reservation_lock);
1298 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1302 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1305 ei->i_reserved_data_blocks++;
1306 ei->i_reserved_meta_blocks += md_needed;
1307 spin_unlock(&ei->i_block_reservation_lock);
1309 return 0; /* success */
1312 static void ext4_da_release_space(struct inode *inode, int to_free)
1314 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1315 struct ext4_inode_info *ei = EXT4_I(inode);
1318 return; /* Nothing to release, exit */
1320 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1322 trace_ext4_da_release_space(inode, to_free);
1323 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1325 * if there aren't enough reserved blocks, then the
1326 * counter is messed up somewhere. Since this
1327 * function is called from invalidate page, it's
1328 * harmless to return without any action.
1330 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1331 "ino %lu, to_free %d with only %d reserved "
1332 "data blocks", inode->i_ino, to_free,
1333 ei->i_reserved_data_blocks);
1335 to_free = ei->i_reserved_data_blocks;
1337 ei->i_reserved_data_blocks -= to_free;
1339 if (ei->i_reserved_data_blocks == 0) {
1341 * We can release all of the reserved metadata blocks
1342 * only when we have written all of the delayed
1343 * allocation blocks.
1344 * Note that in case of bigalloc, i_reserved_meta_blocks,
1345 * i_reserved_data_blocks, etc. refer to number of clusters.
1347 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1348 ei->i_reserved_meta_blocks);
1349 ei->i_reserved_meta_blocks = 0;
1350 ei->i_da_metadata_calc_len = 0;
1353 /* update fs dirty data blocks counter */
1354 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1356 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1358 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1361 static void ext4_da_page_release_reservation(struct page *page,
1362 unsigned int offset,
1363 unsigned int length)
1366 struct buffer_head *head, *bh;
1367 unsigned int curr_off = 0;
1368 struct inode *inode = page->mapping->host;
1369 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1370 unsigned int stop = offset + length;
1374 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1376 head = page_buffers(page);
1379 unsigned int next_off = curr_off + bh->b_size;
1381 if (next_off > stop)
1384 if ((offset <= curr_off) && (buffer_delay(bh))) {
1386 clear_buffer_delay(bh);
1388 curr_off = next_off;
1389 } while ((bh = bh->b_this_page) != head);
1392 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1393 ext4_es_remove_extent(inode, lblk, to_release);
1396 /* If we have released all the blocks belonging to a cluster, then we
1397 * need to release the reserved space for that cluster. */
1398 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1399 while (num_clusters > 0) {
1400 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1401 ((num_clusters - 1) << sbi->s_cluster_bits);
1402 if (sbi->s_cluster_ratio == 1 ||
1403 !ext4_find_delalloc_cluster(inode, lblk))
1404 ext4_da_release_space(inode, 1);
1411 * Delayed allocation stuff
1414 struct mpage_da_data {
1415 struct inode *inode;
1416 struct writeback_control *wbc;
1418 pgoff_t first_page; /* The first page to write */
1419 pgoff_t next_page; /* Current page to examine */
1420 pgoff_t last_page; /* Last page to examine */
1422 * Extent to map - this can be after first_page because that can be
1423 * fully mapped. We somewhat abuse m_flags to store whether the extent
1424 * is delalloc or unwritten.
1426 struct ext4_map_blocks map;
1427 struct ext4_io_submit io_submit; /* IO submission data */
1430 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1435 struct pagevec pvec;
1436 struct inode *inode = mpd->inode;
1437 struct address_space *mapping = inode->i_mapping;
1439 /* This is necessary when next_page == 0. */
1440 if (mpd->first_page >= mpd->next_page)
1443 index = mpd->first_page;
1444 end = mpd->next_page - 1;
1446 ext4_lblk_t start, last;
1447 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1448 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1449 ext4_es_remove_extent(inode, start, last - start + 1);
1452 pagevec_init(&pvec, 0);
1453 while (index <= end) {
1454 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1457 for (i = 0; i < nr_pages; i++) {
1458 struct page *page = pvec.pages[i];
1459 if (page->index > end)
1461 BUG_ON(!PageLocked(page));
1462 BUG_ON(PageWriteback(page));
1464 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1465 ClearPageUptodate(page);
1469 index = pvec.pages[nr_pages - 1]->index + 1;
1470 pagevec_release(&pvec);
1474 static void ext4_print_free_blocks(struct inode *inode)
1476 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1477 struct super_block *sb = inode->i_sb;
1478 struct ext4_inode_info *ei = EXT4_I(inode);
1480 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1481 EXT4_C2B(EXT4_SB(inode->i_sb),
1482 ext4_count_free_clusters(sb)));
1483 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1484 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1485 (long long) EXT4_C2B(EXT4_SB(sb),
1486 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1487 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1488 (long long) EXT4_C2B(EXT4_SB(sb),
1489 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1490 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1491 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1492 ei->i_reserved_data_blocks);
1493 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1494 ei->i_reserved_meta_blocks);
1495 ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1496 ei->i_allocated_meta_blocks);
1500 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1502 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1506 * This function is grabs code from the very beginning of
1507 * ext4_map_blocks, but assumes that the caller is from delayed write
1508 * time. This function looks up the requested blocks and sets the
1509 * buffer delay bit under the protection of i_data_sem.
1511 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1512 struct ext4_map_blocks *map,
1513 struct buffer_head *bh)
1515 struct extent_status es;
1517 sector_t invalid_block = ~((sector_t) 0xffff);
1518 #ifdef ES_AGGRESSIVE_TEST
1519 struct ext4_map_blocks orig_map;
1521 memcpy(&orig_map, map, sizeof(*map));
1524 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1528 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1529 "logical block %lu\n", inode->i_ino, map->m_len,
1530 (unsigned long) map->m_lblk);
1532 ext4_es_lru_add(inode);
1534 /* Lookup extent status tree firstly */
1535 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1537 if (ext4_es_is_hole(&es)) {
1539 down_read((&EXT4_I(inode)->i_data_sem));
1544 * Delayed extent could be allocated by fallocate.
1545 * So we need to check it.
1547 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1548 map_bh(bh, inode->i_sb, invalid_block);
1550 set_buffer_delay(bh);
1554 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1555 retval = es.es_len - (iblock - es.es_lblk);
1556 if (retval > map->m_len)
1557 retval = map->m_len;
1558 map->m_len = retval;
1559 if (ext4_es_is_written(&es))
1560 map->m_flags |= EXT4_MAP_MAPPED;
1561 else if (ext4_es_is_unwritten(&es))
1562 map->m_flags |= EXT4_MAP_UNWRITTEN;
1566 #ifdef ES_AGGRESSIVE_TEST
1567 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1573 * Try to see if we can get the block without requesting a new
1574 * file system block.
1576 down_read((&EXT4_I(inode)->i_data_sem));
1577 if (ext4_has_inline_data(inode)) {
1579 * We will soon create blocks for this page, and let
1580 * us pretend as if the blocks aren't allocated yet.
1581 * In case of clusters, we have to handle the work
1582 * of mapping from cluster so that the reserved space
1583 * is calculated properly.
1585 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1586 ext4_find_delalloc_cluster(inode, map->m_lblk))
1587 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1589 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1590 retval = ext4_ext_map_blocks(NULL, inode, map,
1591 EXT4_GET_BLOCKS_NO_PUT_HOLE);
1593 retval = ext4_ind_map_blocks(NULL, inode, map,
1594 EXT4_GET_BLOCKS_NO_PUT_HOLE);
1600 * XXX: __block_prepare_write() unmaps passed block,
1604 * If the block was allocated from previously allocated cluster,
1605 * then we don't need to reserve it again. However we still need
1606 * to reserve metadata for every block we're going to write.
1608 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1609 ret = ext4_da_reserve_space(inode, iblock);
1611 /* not enough space to reserve */
1616 ret = ext4_da_reserve_metadata(inode, iblock);
1618 /* not enough space to reserve */
1624 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1625 ~0, EXTENT_STATUS_DELAYED);
1631 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1632 * and it should not appear on the bh->b_state.
1634 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1636 map_bh(bh, inode->i_sb, invalid_block);
1638 set_buffer_delay(bh);
1639 } else if (retval > 0) {
1641 unsigned long long status;
1643 #ifdef ES_AGGRESSIVE_TEST
1644 if (retval != map->m_len) {
1645 printk("ES len assertation failed for inode: %lu "
1646 "retval %d != map->m_len %d "
1647 "in %s (lookup)\n", inode->i_ino, retval,
1648 map->m_len, __func__);
1652 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1653 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1654 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1655 map->m_pblk, status);
1661 up_read((&EXT4_I(inode)->i_data_sem));
1667 * This is a special get_blocks_t callback which is used by
1668 * ext4_da_write_begin(). It will either return mapped block or
1669 * reserve space for a single block.
1671 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1672 * We also have b_blocknr = -1 and b_bdev initialized properly
1674 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1675 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1676 * initialized properly.
1678 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1679 struct buffer_head *bh, int create)
1681 struct ext4_map_blocks map;
1684 BUG_ON(create == 0);
1685 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1687 map.m_lblk = iblock;
1691 * first, we need to know whether the block is allocated already
1692 * preallocated blocks are unmapped but should treated
1693 * the same as allocated blocks.
1695 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1699 map_bh(bh, inode->i_sb, map.m_pblk);
1700 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1702 if (buffer_unwritten(bh)) {
1703 /* A delayed write to unwritten bh should be marked
1704 * new and mapped. Mapped ensures that we don't do
1705 * get_block multiple times when we write to the same
1706 * offset and new ensures that we do proper zero out
1707 * for partial write.
1710 set_buffer_mapped(bh);
1715 static int bget_one(handle_t *handle, struct buffer_head *bh)
1721 static int bput_one(handle_t *handle, struct buffer_head *bh)
1727 static int __ext4_journalled_writepage(struct page *page,
1730 struct address_space *mapping = page->mapping;
1731 struct inode *inode = mapping->host;
1732 struct buffer_head *page_bufs = NULL;
1733 handle_t *handle = NULL;
1734 int ret = 0, err = 0;
1735 int inline_data = ext4_has_inline_data(inode);
1736 struct buffer_head *inode_bh = NULL;
1738 ClearPageChecked(page);
1741 BUG_ON(page->index != 0);
1742 BUG_ON(len > ext4_get_max_inline_size(inode));
1743 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1744 if (inode_bh == NULL)
1747 page_bufs = page_buffers(page);
1752 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1755 /* As soon as we unlock the page, it can go away, but we have
1756 * references to buffers so we are safe */
1759 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1760 ext4_writepage_trans_blocks(inode));
1761 if (IS_ERR(handle)) {
1762 ret = PTR_ERR(handle);
1766 BUG_ON(!ext4_handle_valid(handle));
1769 ret = ext4_journal_get_write_access(handle, inode_bh);
1771 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1774 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1775 do_journal_get_write_access);
1777 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1782 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1783 err = ext4_journal_stop(handle);
1787 if (!ext4_has_inline_data(inode))
1788 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1790 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1797 * Note that we don't need to start a transaction unless we're journaling data
1798 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1799 * need to file the inode to the transaction's list in ordered mode because if
1800 * we are writing back data added by write(), the inode is already there and if
1801 * we are writing back data modified via mmap(), no one guarantees in which
1802 * transaction the data will hit the disk. In case we are journaling data, we
1803 * cannot start transaction directly because transaction start ranks above page
1804 * lock so we have to do some magic.
1806 * This function can get called via...
1807 * - ext4_writepages after taking page lock (have journal handle)
1808 * - journal_submit_inode_data_buffers (no journal handle)
1809 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1810 * - grab_page_cache when doing write_begin (have journal handle)
1812 * We don't do any block allocation in this function. If we have page with
1813 * multiple blocks we need to write those buffer_heads that are mapped. This
1814 * is important for mmaped based write. So if we do with blocksize 1K
1815 * truncate(f, 1024);
1816 * a = mmap(f, 0, 4096);
1818 * truncate(f, 4096);
1819 * we have in the page first buffer_head mapped via page_mkwrite call back
1820 * but other buffer_heads would be unmapped but dirty (dirty done via the
1821 * do_wp_page). So writepage should write the first block. If we modify
1822 * the mmap area beyond 1024 we will again get a page_fault and the
1823 * page_mkwrite callback will do the block allocation and mark the
1824 * buffer_heads mapped.
1826 * We redirty the page if we have any buffer_heads that is either delay or
1827 * unwritten in the page.
1829 * We can get recursively called as show below.
1831 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1834 * But since we don't do any block allocation we should not deadlock.
1835 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1837 static int ext4_writepage(struct page *page,
1838 struct writeback_control *wbc)
1843 struct buffer_head *page_bufs = NULL;
1844 struct inode *inode = page->mapping->host;
1845 struct ext4_io_submit io_submit;
1847 trace_ext4_writepage(page);
1848 size = i_size_read(inode);
1849 if (page->index == size >> PAGE_CACHE_SHIFT)
1850 len = size & ~PAGE_CACHE_MASK;
1852 len = PAGE_CACHE_SIZE;
1854 page_bufs = page_buffers(page);
1856 * We cannot do block allocation or other extent handling in this
1857 * function. If there are buffers needing that, we have to redirty
1858 * the page. But we may reach here when we do a journal commit via
1859 * journal_submit_inode_data_buffers() and in that case we must write
1860 * allocated buffers to achieve data=ordered mode guarantees.
1862 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1863 ext4_bh_delay_or_unwritten)) {
1864 redirty_page_for_writepage(wbc, page);
1865 if (current->flags & PF_MEMALLOC) {
1867 * For memory cleaning there's no point in writing only
1868 * some buffers. So just bail out. Warn if we came here
1869 * from direct reclaim.
1871 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1878 if (PageChecked(page) && ext4_should_journal_data(inode))
1880 * It's mmapped pagecache. Add buffers and journal it. There
1881 * doesn't seem much point in redirtying the page here.
1883 return __ext4_journalled_writepage(page, len);
1885 ext4_io_submit_init(&io_submit, wbc);
1886 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1887 if (!io_submit.io_end) {
1888 redirty_page_for_writepage(wbc, page);
1892 ret = ext4_bio_write_page(&io_submit, page, len, wbc);
1893 ext4_io_submit(&io_submit);
1894 /* Drop io_end reference we got from init */
1895 ext4_put_io_end_defer(io_submit.io_end);
1899 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1902 * mballoc gives us at most this number of blocks...
1903 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1904 * The rest of mballoc seems to handle chunks upto full group size.
1906 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1909 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1911 * @mpd - extent of blocks
1912 * @lblk - logical number of the block in the file
1913 * @b_state - b_state of the buffer head added
1915 * the function is used to collect contig. blocks in same state
1917 static int mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1918 unsigned long b_state)
1920 struct ext4_map_blocks *map = &mpd->map;
1922 /* Don't go larger than mballoc is willing to allocate */
1923 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1926 /* First block in the extent? */
1927 if (map->m_len == 0) {
1930 map->m_flags = b_state & BH_FLAGS;
1934 /* Can we merge the block to our big extent? */
1935 if (lblk == map->m_lblk + map->m_len &&
1936 (b_state & BH_FLAGS) == map->m_flags) {
1943 static bool add_page_bufs_to_extent(struct mpage_da_data *mpd,
1944 struct buffer_head *head,
1945 struct buffer_head *bh,
1948 struct inode *inode = mpd->inode;
1949 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1950 >> inode->i_blkbits;
1953 BUG_ON(buffer_locked(bh));
1955 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1956 (!buffer_delay(bh) && !buffer_unwritten(bh)) ||
1958 /* Found extent to map? */
1965 if (!mpage_add_bh_to_extent(mpd, lblk, bh->b_state))
1967 } while (lblk++, (bh = bh->b_this_page) != head);
1971 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1974 loff_t size = i_size_read(mpd->inode);
1977 BUG_ON(page->index != mpd->first_page);
1978 if (page->index == size >> PAGE_CACHE_SHIFT)
1979 len = size & ~PAGE_CACHE_MASK;
1981 len = PAGE_CACHE_SIZE;
1982 clear_page_dirty_for_io(page);
1983 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc);
1985 mpd->wbc->nr_to_write--;
1992 * mpage_map_buffers - update buffers corresponding to changed extent and
1993 * submit fully mapped pages for IO
1995 * @mpd - description of extent to map, on return next extent to map
1997 * Scan buffers corresponding to changed extent (we expect corresponding pages
1998 * to be already locked) and update buffer state according to new extent state.
1999 * We map delalloc buffers to their physical location, clear unwritten bits,
2000 * and mark buffers as uninit when we perform writes to uninitialized extents
2001 * and do extent conversion after IO is finished. If the last page is not fully
2002 * mapped, we update @map to the next extent in the last page that needs
2003 * mapping. Otherwise we submit the page for IO.
2005 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2007 struct pagevec pvec;
2009 struct inode *inode = mpd->inode;
2010 struct buffer_head *head, *bh;
2011 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2012 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2013 >> inode->i_blkbits;
2019 start = mpd->map.m_lblk >> bpp_bits;
2020 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2021 lblk = start << bpp_bits;
2022 pblock = mpd->map.m_pblk;
2024 pagevec_init(&pvec, 0);
2025 while (start <= end) {
2026 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2030 for (i = 0; i < nr_pages; i++) {
2031 struct page *page = pvec.pages[i];
2033 if (page->index > end)
2035 /* Upto 'end' pages must be contiguous */
2036 BUG_ON(page->index != start);
2037 bh = head = page_buffers(page);
2039 if (lblk < mpd->map.m_lblk)
2041 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2043 * Buffer after end of mapped extent.
2044 * Find next buffer in the page to map.
2047 mpd->map.m_flags = 0;
2048 add_page_bufs_to_extent(mpd, head, bh,
2050 pagevec_release(&pvec);
2053 if (buffer_delay(bh)) {
2054 clear_buffer_delay(bh);
2055 bh->b_blocknr = pblock++;
2057 clear_buffer_unwritten(bh);
2058 } while (++lblk < blocks &&
2059 (bh = bh->b_this_page) != head);
2062 * FIXME: This is going to break if dioread_nolock
2063 * supports blocksize < pagesize as we will try to
2064 * convert potentially unmapped parts of inode.
2066 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2067 /* Page fully mapped - let IO run! */
2068 err = mpage_submit_page(mpd, page);
2070 pagevec_release(&pvec);
2075 pagevec_release(&pvec);
2077 /* Extent fully mapped and matches with page boundary. We are done. */
2079 mpd->map.m_flags = 0;
2083 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2085 struct inode *inode = mpd->inode;
2086 struct ext4_map_blocks *map = &mpd->map;
2087 int get_blocks_flags;
2090 trace_ext4_da_write_pages_extent(inode, map);
2092 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2093 * to convert an uninitialized extent to be initialized (in the case
2094 * where we have written into one or more preallocated blocks). It is
2095 * possible that we're going to need more metadata blocks than
2096 * previously reserved. However we must not fail because we're in
2097 * writeback and there is nothing we can do about it so it might result
2098 * in data loss. So use reserved blocks to allocate metadata if
2101 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks
2102 * in question are delalloc blocks. This affects functions in many
2103 * different parts of the allocation call path. This flag exists
2104 * primarily because we don't want to change *many* call functions, so
2105 * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag
2106 * once the inode's allocation semaphore is taken.
2108 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2109 EXT4_GET_BLOCKS_METADATA_NOFAIL;
2110 if (ext4_should_dioread_nolock(inode))
2111 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2112 if (map->m_flags & (1 << BH_Delay))
2113 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2115 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2118 if (map->m_flags & EXT4_MAP_UNINIT) {
2119 if (!mpd->io_submit.io_end->handle &&
2120 ext4_handle_valid(handle)) {
2121 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2122 handle->h_rsv_handle = NULL;
2124 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2127 BUG_ON(map->m_len == 0);
2128 if (map->m_flags & EXT4_MAP_NEW) {
2129 struct block_device *bdev = inode->i_sb->s_bdev;
2132 for (i = 0; i < map->m_len; i++)
2133 unmap_underlying_metadata(bdev, map->m_pblk + i);
2139 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2140 * mpd->len and submit pages underlying it for IO
2142 * @handle - handle for journal operations
2143 * @mpd - extent to map
2145 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2146 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2147 * them to initialized or split the described range from larger unwritten
2148 * extent. Note that we need not map all the described range since allocation
2149 * can return less blocks or the range is covered by more unwritten extents. We
2150 * cannot map more because we are limited by reserved transaction credits. On
2151 * the other hand we always make sure that the last touched page is fully
2152 * mapped so that it can be written out (and thus forward progress is
2153 * guaranteed). After mapping we submit all mapped pages for IO.
2155 static int mpage_map_and_submit_extent(handle_t *handle,
2156 struct mpage_da_data *mpd,
2157 bool *give_up_on_write)
2159 struct inode *inode = mpd->inode;
2160 struct ext4_map_blocks *map = &mpd->map;
2164 mpd->io_submit.io_end->offset =
2165 ((loff_t)map->m_lblk) << inode->i_blkbits;
2166 while (map->m_len) {
2167 err = mpage_map_one_extent(handle, mpd);
2169 struct super_block *sb = inode->i_sb;
2171 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2172 goto invalidate_dirty_pages;
2174 * Let the uper layers retry transient errors.
2175 * In the case of ENOSPC, if ext4_count_free_blocks()
2176 * is non-zero, a commit should free up blocks.
2178 if ((err == -ENOMEM) ||
2179 (err == -ENOSPC && ext4_count_free_clusters(sb)))
2181 ext4_msg(sb, KERN_CRIT,
2182 "Delayed block allocation failed for "
2183 "inode %lu at logical offset %llu with"
2184 " max blocks %u with error %d",
2186 (unsigned long long)map->m_lblk,
2187 (unsigned)map->m_len, -err);
2188 ext4_msg(sb, KERN_CRIT,
2189 "This should not happen!! Data will "
2192 ext4_print_free_blocks(inode);
2193 invalidate_dirty_pages:
2194 *give_up_on_write = true;
2198 * Update buffer state, submit mapped pages, and get us new
2201 err = mpage_map_and_submit_buffers(mpd);
2206 /* Update on-disk size after IO is submitted */
2207 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2208 if (disksize > i_size_read(inode))
2209 disksize = i_size_read(inode);
2210 if (disksize > EXT4_I(inode)->i_disksize) {
2213 ext4_update_i_disksize(inode, disksize);
2214 err2 = ext4_mark_inode_dirty(handle, inode);
2216 ext4_error(inode->i_sb,
2217 "Failed to mark inode %lu dirty",
2226 * Calculate the total number of credits to reserve for one writepages
2227 * iteration. This is called from ext4_writepages(). We map an extent of
2228 * upto MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2229 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2230 * bpp - 1 blocks in bpp different extents.
2232 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2234 int bpp = ext4_journal_blocks_per_page(inode);
2236 return ext4_meta_trans_blocks(inode,
2237 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2241 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2242 * and underlying extent to map
2244 * @mpd - where to look for pages
2246 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2247 * IO immediately. When we find a page which isn't mapped we start accumulating
2248 * extent of buffers underlying these pages that needs mapping (formed by
2249 * either delayed or unwritten buffers). We also lock the pages containing
2250 * these buffers. The extent found is returned in @mpd structure (starting at
2251 * mpd->lblk with length mpd->len blocks).
2253 * Note that this function can attach bios to one io_end structure which are
2254 * neither logically nor physically contiguous. Although it may seem as an
2255 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2256 * case as we need to track IO to all buffers underlying a page in one io_end.
2258 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2260 struct address_space *mapping = mpd->inode->i_mapping;
2261 struct pagevec pvec;
2262 unsigned int nr_pages;
2263 pgoff_t index = mpd->first_page;
2264 pgoff_t end = mpd->last_page;
2267 int blkbits = mpd->inode->i_blkbits;
2269 struct buffer_head *head;
2271 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2272 tag = PAGECACHE_TAG_TOWRITE;
2274 tag = PAGECACHE_TAG_DIRTY;
2276 pagevec_init(&pvec, 0);
2278 mpd->next_page = index;
2279 while (index <= end) {
2280 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2281 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2285 for (i = 0; i < nr_pages; i++) {
2286 struct page *page = pvec.pages[i];
2289 * At this point, the page may be truncated or
2290 * invalidated (changing page->mapping to NULL), or
2291 * even swizzled back from swapper_space to tmpfs file
2292 * mapping. However, page->index will not change
2293 * because we have a reference on the page.
2295 if (page->index > end)
2298 /* If we can't merge this page, we are done. */
2299 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2304 * If the page is no longer dirty, or its mapping no
2305 * longer corresponds to inode we are writing (which
2306 * means it has been truncated or invalidated), or the
2307 * page is already under writeback and we are not doing
2308 * a data integrity writeback, skip the page
2310 if (!PageDirty(page) ||
2311 (PageWriteback(page) &&
2312 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2313 unlikely(page->mapping != mapping)) {
2318 wait_on_page_writeback(page);
2319 BUG_ON(PageWriteback(page));
2321 if (mpd->map.m_len == 0)
2322 mpd->first_page = page->index;
2323 mpd->next_page = page->index + 1;
2324 /* Add all dirty buffers to mpd */
2325 lblk = ((ext4_lblk_t)page->index) <<
2326 (PAGE_CACHE_SHIFT - blkbits);
2327 head = page_buffers(page);
2328 if (!add_page_bufs_to_extent(mpd, head, head, lblk))
2330 /* So far everything mapped? Submit the page for IO. */
2331 if (mpd->map.m_len == 0) {
2332 err = mpage_submit_page(mpd, page);
2338 * Accumulated enough dirty pages? This doesn't apply
2339 * to WB_SYNC_ALL mode. For integrity sync we have to
2340 * keep going because someone may be concurrently
2341 * dirtying pages, and we might have synced a lot of
2342 * newly appeared dirty pages, but have not synced all
2343 * of the old dirty pages.
2345 if (mpd->wbc->sync_mode == WB_SYNC_NONE &&
2346 mpd->next_page - mpd->first_page >=
2347 mpd->wbc->nr_to_write)
2350 pagevec_release(&pvec);
2355 pagevec_release(&pvec);
2359 static int __writepage(struct page *page, struct writeback_control *wbc,
2362 struct address_space *mapping = data;
2363 int ret = ext4_writepage(page, wbc);
2364 mapping_set_error(mapping, ret);
2368 static int ext4_writepages(struct address_space *mapping,
2369 struct writeback_control *wbc)
2371 pgoff_t writeback_index = 0;
2372 long nr_to_write = wbc->nr_to_write;
2373 int range_whole = 0;
2375 handle_t *handle = NULL;
2376 struct mpage_da_data mpd;
2377 struct inode *inode = mapping->host;
2378 int needed_blocks, rsv_blocks = 0, ret = 0;
2379 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2381 struct blk_plug plug;
2382 bool give_up_on_write = false;
2384 trace_ext4_writepages(inode, wbc);
2387 * No pages to write? This is mainly a kludge to avoid starting
2388 * a transaction for special inodes like journal inode on last iput()
2389 * because that could violate lock ordering on umount
2391 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2394 if (ext4_should_journal_data(inode)) {
2395 struct blk_plug plug;
2398 blk_start_plug(&plug);
2399 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2400 blk_finish_plug(&plug);
2405 * If the filesystem has aborted, it is read-only, so return
2406 * right away instead of dumping stack traces later on that
2407 * will obscure the real source of the problem. We test
2408 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2409 * the latter could be true if the filesystem is mounted
2410 * read-only, and in that case, ext4_writepages should
2411 * *never* be called, so if that ever happens, we would want
2414 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2417 if (ext4_should_dioread_nolock(inode)) {
2419 * We may need to convert upto one extent per block in
2420 * the page and we may dirty the inode.
2422 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2426 * If we have inline data and arrive here, it means that
2427 * we will soon create the block for the 1st page, so
2428 * we'd better clear the inline data here.
2430 if (ext4_has_inline_data(inode)) {
2431 /* Just inode will be modified... */
2432 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2433 if (IS_ERR(handle)) {
2434 ret = PTR_ERR(handle);
2435 goto out_writepages;
2437 BUG_ON(ext4_test_inode_state(inode,
2438 EXT4_STATE_MAY_INLINE_DATA));
2439 ext4_destroy_inline_data(handle, inode);
2440 ext4_journal_stop(handle);
2443 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2446 if (wbc->range_cyclic) {
2447 writeback_index = mapping->writeback_index;
2448 if (writeback_index)
2450 mpd.first_page = writeback_index;
2453 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2454 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2459 ext4_io_submit_init(&mpd.io_submit, wbc);
2461 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2462 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2464 blk_start_plug(&plug);
2465 while (!done && mpd.first_page <= mpd.last_page) {
2466 /* For each extent of pages we use new io_end */
2467 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2468 if (!mpd.io_submit.io_end) {
2474 * We have two constraints: We find one extent to map and we
2475 * must always write out whole page (makes a difference when
2476 * blocksize < pagesize) so that we don't block on IO when we
2477 * try to write out the rest of the page. Journalled mode is
2478 * not supported by delalloc.
2480 BUG_ON(ext4_should_journal_data(inode));
2481 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2483 /* start a new transaction */
2484 handle = ext4_journal_start_with_reserve(inode,
2485 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2486 if (IS_ERR(handle)) {
2487 ret = PTR_ERR(handle);
2488 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2489 "%ld pages, ino %lu; err %d", __func__,
2490 wbc->nr_to_write, inode->i_ino, ret);
2491 /* Release allocated io_end */
2492 ext4_put_io_end(mpd.io_submit.io_end);
2496 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2497 ret = mpage_prepare_extent_to_map(&mpd);
2500 ret = mpage_map_and_submit_extent(handle, &mpd,
2504 * We scanned the whole range (or exhausted
2505 * nr_to_write), submitted what was mapped and
2506 * didn't find anything needing mapping. We are
2512 ext4_journal_stop(handle);
2513 /* Submit prepared bio */
2514 ext4_io_submit(&mpd.io_submit);
2515 /* Unlock pages we didn't use */
2516 mpage_release_unused_pages(&mpd, give_up_on_write);
2517 /* Drop our io_end reference we got from init */
2518 ext4_put_io_end(mpd.io_submit.io_end);
2520 if (ret == -ENOSPC && sbi->s_journal) {
2522 * Commit the transaction which would
2523 * free blocks released in the transaction
2526 jbd2_journal_force_commit_nested(sbi->s_journal);
2530 /* Fatal error - ENOMEM, EIO... */
2534 blk_finish_plug(&plug);
2535 if (!ret && !cycled) {
2537 mpd.last_page = writeback_index - 1;
2543 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2545 * Set the writeback_index so that range_cyclic
2546 * mode will write it back later
2548 mapping->writeback_index = mpd.first_page;
2551 trace_ext4_writepages_result(inode, wbc, ret,
2552 nr_to_write - wbc->nr_to_write);
2556 static int ext4_nonda_switch(struct super_block *sb)
2558 s64 free_clusters, dirty_clusters;
2559 struct ext4_sb_info *sbi = EXT4_SB(sb);
2562 * switch to non delalloc mode if we are running low
2563 * on free block. The free block accounting via percpu
2564 * counters can get slightly wrong with percpu_counter_batch getting
2565 * accumulated on each CPU without updating global counters
2566 * Delalloc need an accurate free block accounting. So switch
2567 * to non delalloc when we are near to error range.
2570 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2572 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2574 * Start pushing delalloc when 1/2 of free blocks are dirty.
2576 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2577 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2579 if (2 * free_clusters < 3 * dirty_clusters ||
2580 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2582 * free block count is less than 150% of dirty blocks
2583 * or free blocks is less than watermark
2590 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2591 loff_t pos, unsigned len, unsigned flags,
2592 struct page **pagep, void **fsdata)
2594 int ret, retries = 0;
2597 struct inode *inode = mapping->host;
2600 index = pos >> PAGE_CACHE_SHIFT;
2602 if (ext4_nonda_switch(inode->i_sb)) {
2603 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2604 return ext4_write_begin(file, mapping, pos,
2605 len, flags, pagep, fsdata);
2607 *fsdata = (void *)0;
2608 trace_ext4_da_write_begin(inode, pos, len, flags);
2610 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2611 ret = ext4_da_write_inline_data_begin(mapping, inode,
2621 * grab_cache_page_write_begin() can take a long time if the
2622 * system is thrashing due to memory pressure, or if the page
2623 * is being written back. So grab it first before we start
2624 * the transaction handle. This also allows us to allocate
2625 * the page (if needed) without using GFP_NOFS.
2628 page = grab_cache_page_write_begin(mapping, index, flags);
2634 * With delayed allocation, we don't log the i_disksize update
2635 * if there is delayed block allocation. But we still need
2636 * to journalling the i_disksize update if writes to the end
2637 * of file which has an already mapped buffer.
2640 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2641 if (IS_ERR(handle)) {
2642 page_cache_release(page);
2643 return PTR_ERR(handle);
2647 if (page->mapping != mapping) {
2648 /* The page got truncated from under us */
2650 page_cache_release(page);
2651 ext4_journal_stop(handle);
2654 /* In case writeback began while the page was unlocked */
2655 wait_on_page_writeback(page);
2657 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2660 ext4_journal_stop(handle);
2662 * block_write_begin may have instantiated a few blocks
2663 * outside i_size. Trim these off again. Don't need
2664 * i_size_read because we hold i_mutex.
2666 if (pos + len > inode->i_size)
2667 ext4_truncate_failed_write(inode);
2669 if (ret == -ENOSPC &&
2670 ext4_should_retry_alloc(inode->i_sb, &retries))
2673 page_cache_release(page);
2682 * Check if we should update i_disksize
2683 * when write to the end of file but not require block allocation
2685 static int ext4_da_should_update_i_disksize(struct page *page,
2686 unsigned long offset)
2688 struct buffer_head *bh;
2689 struct inode *inode = page->mapping->host;
2693 bh = page_buffers(page);
2694 idx = offset >> inode->i_blkbits;
2696 for (i = 0; i < idx; i++)
2697 bh = bh->b_this_page;
2699 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2704 static int ext4_da_write_end(struct file *file,
2705 struct address_space *mapping,
2706 loff_t pos, unsigned len, unsigned copied,
2707 struct page *page, void *fsdata)
2709 struct inode *inode = mapping->host;
2711 handle_t *handle = ext4_journal_current_handle();
2713 unsigned long start, end;
2714 int write_mode = (int)(unsigned long)fsdata;
2716 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2717 return ext4_write_end(file, mapping, pos,
2718 len, copied, page, fsdata);
2720 trace_ext4_da_write_end(inode, pos, len, copied);
2721 start = pos & (PAGE_CACHE_SIZE - 1);
2722 end = start + copied - 1;
2725 * generic_write_end() will run mark_inode_dirty() if i_size
2726 * changes. So let's piggyback the i_disksize mark_inode_dirty
2729 new_i_size = pos + copied;
2730 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2731 if (ext4_has_inline_data(inode) ||
2732 ext4_da_should_update_i_disksize(page, end)) {
2733 down_write(&EXT4_I(inode)->i_data_sem);
2734 if (new_i_size > EXT4_I(inode)->i_disksize)
2735 EXT4_I(inode)->i_disksize = new_i_size;
2736 up_write(&EXT4_I(inode)->i_data_sem);
2737 /* We need to mark inode dirty even if
2738 * new_i_size is less that inode->i_size
2739 * bu greater than i_disksize.(hint delalloc)
2741 ext4_mark_inode_dirty(handle, inode);
2745 if (write_mode != CONVERT_INLINE_DATA &&
2746 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2747 ext4_has_inline_data(inode))
2748 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2751 ret2 = generic_write_end(file, mapping, pos, len, copied,
2757 ret2 = ext4_journal_stop(handle);
2761 return ret ? ret : copied;
2764 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2765 unsigned int length)
2768 * Drop reserved blocks
2770 BUG_ON(!PageLocked(page));
2771 if (!page_has_buffers(page))
2774 ext4_da_page_release_reservation(page, offset, length);
2777 ext4_invalidatepage(page, offset, length);
2783 * Force all delayed allocation blocks to be allocated for a given inode.
2785 int ext4_alloc_da_blocks(struct inode *inode)
2787 trace_ext4_alloc_da_blocks(inode);
2789 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2790 !EXT4_I(inode)->i_reserved_meta_blocks)
2794 * We do something simple for now. The filemap_flush() will
2795 * also start triggering a write of the data blocks, which is
2796 * not strictly speaking necessary (and for users of
2797 * laptop_mode, not even desirable). However, to do otherwise
2798 * would require replicating code paths in:
2800 * ext4_writepages() ->
2801 * write_cache_pages() ---> (via passed in callback function)
2802 * __mpage_da_writepage() -->
2803 * mpage_add_bh_to_extent()
2804 * mpage_da_map_blocks()
2806 * The problem is that write_cache_pages(), located in
2807 * mm/page-writeback.c, marks pages clean in preparation for
2808 * doing I/O, which is not desirable if we're not planning on
2811 * We could call write_cache_pages(), and then redirty all of
2812 * the pages by calling redirty_page_for_writepage() but that
2813 * would be ugly in the extreme. So instead we would need to
2814 * replicate parts of the code in the above functions,
2815 * simplifying them because we wouldn't actually intend to
2816 * write out the pages, but rather only collect contiguous
2817 * logical block extents, call the multi-block allocator, and
2818 * then update the buffer heads with the block allocations.
2820 * For now, though, we'll cheat by calling filemap_flush(),
2821 * which will map the blocks, and start the I/O, but not
2822 * actually wait for the I/O to complete.
2824 return filemap_flush(inode->i_mapping);
2828 * bmap() is special. It gets used by applications such as lilo and by
2829 * the swapper to find the on-disk block of a specific piece of data.
2831 * Naturally, this is dangerous if the block concerned is still in the
2832 * journal. If somebody makes a swapfile on an ext4 data-journaling
2833 * filesystem and enables swap, then they may get a nasty shock when the
2834 * data getting swapped to that swapfile suddenly gets overwritten by
2835 * the original zero's written out previously to the journal and
2836 * awaiting writeback in the kernel's buffer cache.
2838 * So, if we see any bmap calls here on a modified, data-journaled file,
2839 * take extra steps to flush any blocks which might be in the cache.
2841 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2843 struct inode *inode = mapping->host;
2848 * We can get here for an inline file via the FIBMAP ioctl
2850 if (ext4_has_inline_data(inode))
2853 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2854 test_opt(inode->i_sb, DELALLOC)) {
2856 * With delalloc we want to sync the file
2857 * so that we can make sure we allocate
2860 filemap_write_and_wait(mapping);
2863 if (EXT4_JOURNAL(inode) &&
2864 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2866 * This is a REALLY heavyweight approach, but the use of
2867 * bmap on dirty files is expected to be extremely rare:
2868 * only if we run lilo or swapon on a freshly made file
2869 * do we expect this to happen.
2871 * (bmap requires CAP_SYS_RAWIO so this does not
2872 * represent an unprivileged user DOS attack --- we'd be
2873 * in trouble if mortal users could trigger this path at
2876 * NB. EXT4_STATE_JDATA is not set on files other than
2877 * regular files. If somebody wants to bmap a directory
2878 * or symlink and gets confused because the buffer
2879 * hasn't yet been flushed to disk, they deserve
2880 * everything they get.
2883 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2884 journal = EXT4_JOURNAL(inode);
2885 jbd2_journal_lock_updates(journal);
2886 err = jbd2_journal_flush(journal);
2887 jbd2_journal_unlock_updates(journal);
2893 return generic_block_bmap(mapping, block, ext4_get_block);
2896 static int ext4_readpage(struct file *file, struct page *page)
2899 struct inode *inode = page->mapping->host;
2901 trace_ext4_readpage(page);
2903 if (ext4_has_inline_data(inode))
2904 ret = ext4_readpage_inline(inode, page);
2907 return mpage_readpage(page, ext4_get_block);
2913 ext4_readpages(struct file *file, struct address_space *mapping,
2914 struct list_head *pages, unsigned nr_pages)
2916 struct inode *inode = mapping->host;
2918 /* If the file has inline data, no need to do readpages. */
2919 if (ext4_has_inline_data(inode))
2922 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2925 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2926 unsigned int length)
2928 trace_ext4_invalidatepage(page, offset, length);
2930 /* No journalling happens on data buffers when this function is used */
2931 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2933 block_invalidatepage(page, offset, length);
2936 static int __ext4_journalled_invalidatepage(struct page *page,
2937 unsigned int offset,
2938 unsigned int length)
2940 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2942 trace_ext4_journalled_invalidatepage(page, offset, length);
2945 * If it's a full truncate we just forget about the pending dirtying
2947 if (offset == 0 && length == PAGE_CACHE_SIZE)
2948 ClearPageChecked(page);
2950 return jbd2_journal_invalidatepage(journal, page, offset, length);
2953 /* Wrapper for aops... */
2954 static void ext4_journalled_invalidatepage(struct page *page,
2955 unsigned int offset,
2956 unsigned int length)
2958 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
2961 static int ext4_releasepage(struct page *page, gfp_t wait)
2963 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2965 trace_ext4_releasepage(page);
2967 /* Page has dirty journalled data -> cannot release */
2968 if (PageChecked(page))
2971 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2973 return try_to_free_buffers(page);
2977 * ext4_get_block used when preparing for a DIO write or buffer write.
2978 * We allocate an uinitialized extent if blocks haven't been allocated.
2979 * The extent will be converted to initialized after the IO is complete.
2981 int ext4_get_block_write(struct inode *inode, sector_t iblock,
2982 struct buffer_head *bh_result, int create)
2984 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2985 inode->i_ino, create);
2986 return _ext4_get_block(inode, iblock, bh_result,
2987 EXT4_GET_BLOCKS_IO_CREATE_EXT);
2990 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2991 struct buffer_head *bh_result, int create)
2993 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2994 inode->i_ino, create);
2995 return _ext4_get_block(inode, iblock, bh_result,
2996 EXT4_GET_BLOCKS_NO_LOCK);
2999 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3000 ssize_t size, void *private, int ret,
3003 struct inode *inode = file_inode(iocb->ki_filp);
3004 ext4_io_end_t *io_end = iocb->private;
3006 /* if not async direct IO just return */
3008 inode_dio_done(inode);
3010 aio_complete(iocb, ret, 0);
3014 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3015 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3016 iocb->private, io_end->inode->i_ino, iocb, offset,
3019 iocb->private = NULL;
3020 io_end->offset = offset;
3021 io_end->size = size;
3023 io_end->iocb = iocb;
3024 io_end->result = ret;
3026 ext4_put_io_end_defer(io_end);
3030 * For ext4 extent files, ext4 will do direct-io write to holes,
3031 * preallocated extents, and those write extend the file, no need to
3032 * fall back to buffered IO.
3034 * For holes, we fallocate those blocks, mark them as uninitialized
3035 * If those blocks were preallocated, we mark sure they are split, but
3036 * still keep the range to write as uninitialized.
3038 * The unwritten extents will be converted to written when DIO is completed.
3039 * For async direct IO, since the IO may still pending when return, we
3040 * set up an end_io call back function, which will do the conversion
3041 * when async direct IO completed.
3043 * If the O_DIRECT write will extend the file then add this inode to the
3044 * orphan list. So recovery will truncate it back to the original size
3045 * if the machine crashes during the write.
3048 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3049 const struct iovec *iov, loff_t offset,
3050 unsigned long nr_segs)
3052 struct file *file = iocb->ki_filp;
3053 struct inode *inode = file->f_mapping->host;
3055 size_t count = iov_length(iov, nr_segs);
3057 get_block_t *get_block_func = NULL;
3059 loff_t final_size = offset + count;
3060 ext4_io_end_t *io_end = NULL;
3062 /* Use the old path for reads and writes beyond i_size. */
3063 if (rw != WRITE || final_size > inode->i_size)
3064 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3066 BUG_ON(iocb->private == NULL);
3069 * Make all waiters for direct IO properly wait also for extent
3070 * conversion. This also disallows race between truncate() and
3071 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3074 atomic_inc(&inode->i_dio_count);
3076 /* If we do a overwrite dio, i_mutex locking can be released */
3077 overwrite = *((int *)iocb->private);
3080 down_read(&EXT4_I(inode)->i_data_sem);
3081 mutex_unlock(&inode->i_mutex);
3085 * We could direct write to holes and fallocate.
3087 * Allocated blocks to fill the hole are marked as
3088 * uninitialized to prevent parallel buffered read to expose
3089 * the stale data before DIO complete the data IO.
3091 * As to previously fallocated extents, ext4 get_block will
3092 * just simply mark the buffer mapped but still keep the
3093 * extents uninitialized.
3095 * For non AIO case, we will convert those unwritten extents
3096 * to written after return back from blockdev_direct_IO.
3098 * For async DIO, the conversion needs to be deferred when the
3099 * IO is completed. The ext4 end_io callback function will be
3100 * called to take care of the conversion work. Here for async
3101 * case, we allocate an io_end structure to hook to the iocb.
3103 iocb->private = NULL;
3104 ext4_inode_aio_set(inode, NULL);
3105 if (!is_sync_kiocb(iocb)) {
3106 io_end = ext4_init_io_end(inode, GFP_NOFS);
3111 io_end->flag |= EXT4_IO_END_DIRECT;
3113 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3115 iocb->private = ext4_get_io_end(io_end);
3117 * we save the io structure for current async direct
3118 * IO, so that later ext4_map_blocks() could flag the
3119 * io structure whether there is a unwritten extents
3120 * needs to be converted when IO is completed.
3122 ext4_inode_aio_set(inode, io_end);
3126 get_block_func = ext4_get_block_write_nolock;
3128 get_block_func = ext4_get_block_write;
3129 dio_flags = DIO_LOCKING;
3131 ret = __blockdev_direct_IO(rw, iocb, inode,
3132 inode->i_sb->s_bdev, iov,
3140 * Put our reference to io_end. This can free the io_end structure e.g.
3141 * in sync IO case or in case of error. It can even perform extent
3142 * conversion if all bios we submitted finished before we got here.
3143 * Note that in that case iocb->private can be already set to NULL
3147 ext4_inode_aio_set(inode, NULL);
3148 ext4_put_io_end(io_end);
3150 * When no IO was submitted ext4_end_io_dio() was not
3151 * called so we have to put iocb's reference.
3153 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3154 WARN_ON(iocb->private != io_end);
3155 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3156 WARN_ON(io_end->iocb);
3158 * Generic code already did inode_dio_done() so we
3159 * have to clear EXT4_IO_END_DIRECT to not do it for
3163 ext4_put_io_end(io_end);
3164 iocb->private = NULL;
3167 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3168 EXT4_STATE_DIO_UNWRITTEN)) {
3171 * for non AIO case, since the IO is already
3172 * completed, we could do the conversion right here
3174 err = ext4_convert_unwritten_extents(NULL, inode,
3178 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3183 inode_dio_done(inode);
3184 /* take i_mutex locking again if we do a ovewrite dio */
3186 up_read(&EXT4_I(inode)->i_data_sem);
3187 mutex_lock(&inode->i_mutex);
3193 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3194 const struct iovec *iov, loff_t offset,
3195 unsigned long nr_segs)
3197 struct file *file = iocb->ki_filp;
3198 struct inode *inode = file->f_mapping->host;
3202 * If we are doing data journalling we don't support O_DIRECT
3204 if (ext4_should_journal_data(inode))
3207 /* Let buffer I/O handle the inline data case. */
3208 if (ext4_has_inline_data(inode))
3211 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3212 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3213 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3215 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3216 trace_ext4_direct_IO_exit(inode, offset,
3217 iov_length(iov, nr_segs), rw, ret);
3222 * Pages can be marked dirty completely asynchronously from ext4's journalling
3223 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3224 * much here because ->set_page_dirty is called under VFS locks. The page is
3225 * not necessarily locked.
3227 * We cannot just dirty the page and leave attached buffers clean, because the
3228 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3229 * or jbddirty because all the journalling code will explode.
3231 * So what we do is to mark the page "pending dirty" and next time writepage
3232 * is called, propagate that into the buffers appropriately.
3234 static int ext4_journalled_set_page_dirty(struct page *page)
3236 SetPageChecked(page);
3237 return __set_page_dirty_nobuffers(page);
3240 static const struct address_space_operations ext4_aops = {
3241 .readpage = ext4_readpage,
3242 .readpages = ext4_readpages,
3243 .writepage = ext4_writepage,
3244 .writepages = ext4_writepages,
3245 .write_begin = ext4_write_begin,
3246 .write_end = ext4_write_end,
3248 .invalidatepage = ext4_invalidatepage,
3249 .releasepage = ext4_releasepage,
3250 .direct_IO = ext4_direct_IO,
3251 .migratepage = buffer_migrate_page,
3252 .is_partially_uptodate = block_is_partially_uptodate,
3253 .error_remove_page = generic_error_remove_page,
3256 static const struct address_space_operations ext4_journalled_aops = {
3257 .readpage = ext4_readpage,
3258 .readpages = ext4_readpages,
3259 .writepage = ext4_writepage,
3260 .writepages = ext4_writepages,
3261 .write_begin = ext4_write_begin,
3262 .write_end = ext4_journalled_write_end,
3263 .set_page_dirty = ext4_journalled_set_page_dirty,
3265 .invalidatepage = ext4_journalled_invalidatepage,
3266 .releasepage = ext4_releasepage,
3267 .direct_IO = ext4_direct_IO,
3268 .is_partially_uptodate = block_is_partially_uptodate,
3269 .error_remove_page = generic_error_remove_page,
3272 static const struct address_space_operations ext4_da_aops = {
3273 .readpage = ext4_readpage,
3274 .readpages = ext4_readpages,
3275 .writepage = ext4_writepage,
3276 .writepages = ext4_writepages,
3277 .write_begin = ext4_da_write_begin,
3278 .write_end = ext4_da_write_end,
3280 .invalidatepage = ext4_da_invalidatepage,
3281 .releasepage = ext4_releasepage,
3282 .direct_IO = ext4_direct_IO,
3283 .migratepage = buffer_migrate_page,
3284 .is_partially_uptodate = block_is_partially_uptodate,
3285 .error_remove_page = generic_error_remove_page,
3288 void ext4_set_aops(struct inode *inode)
3290 switch (ext4_inode_journal_mode(inode)) {
3291 case EXT4_INODE_ORDERED_DATA_MODE:
3292 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3294 case EXT4_INODE_WRITEBACK_DATA_MODE:
3295 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3297 case EXT4_INODE_JOURNAL_DATA_MODE:
3298 inode->i_mapping->a_ops = &ext4_journalled_aops;
3303 if (test_opt(inode->i_sb, DELALLOC))
3304 inode->i_mapping->a_ops = &ext4_da_aops;
3306 inode->i_mapping->a_ops = &ext4_aops;
3310 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3311 * up to the end of the block which corresponds to `from'.
3312 * This required during truncate. We need to physically zero the tail end
3313 * of that block so it doesn't yield old data if the file is later grown.
3315 int ext4_block_truncate_page(handle_t *handle,
3316 struct address_space *mapping, loff_t from)
3318 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3321 struct inode *inode = mapping->host;
3323 blocksize = inode->i_sb->s_blocksize;
3324 length = blocksize - (offset & (blocksize - 1));
3326 return ext4_block_zero_page_range(handle, mapping, from, length);
3330 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3331 * starting from file offset 'from'. The range to be zero'd must
3332 * be contained with in one block. If the specified range exceeds
3333 * the end of the block it will be shortened to end of the block
3334 * that cooresponds to 'from'
3336 int ext4_block_zero_page_range(handle_t *handle,
3337 struct address_space *mapping, loff_t from, loff_t length)
3339 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3340 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3341 unsigned blocksize, max, pos;
3343 struct inode *inode = mapping->host;
3344 struct buffer_head *bh;
3348 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3349 mapping_gfp_mask(mapping) & ~__GFP_FS);
3353 blocksize = inode->i_sb->s_blocksize;
3354 max = blocksize - (offset & (blocksize - 1));
3357 * correct length if it does not fall between
3358 * 'from' and the end of the block
3360 if (length > max || length < 0)
3363 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3365 if (!page_has_buffers(page))
3366 create_empty_buffers(page, blocksize, 0);
3368 /* Find the buffer that contains "offset" */
3369 bh = page_buffers(page);
3371 while (offset >= pos) {
3372 bh = bh->b_this_page;
3376 if (buffer_freed(bh)) {
3377 BUFFER_TRACE(bh, "freed: skip");
3380 if (!buffer_mapped(bh)) {
3381 BUFFER_TRACE(bh, "unmapped");
3382 ext4_get_block(inode, iblock, bh, 0);
3383 /* unmapped? It's a hole - nothing to do */
3384 if (!buffer_mapped(bh)) {
3385 BUFFER_TRACE(bh, "still unmapped");
3390 /* Ok, it's mapped. Make sure it's up-to-date */
3391 if (PageUptodate(page))
3392 set_buffer_uptodate(bh);
3394 if (!buffer_uptodate(bh)) {
3396 ll_rw_block(READ, 1, &bh);
3398 /* Uhhuh. Read error. Complain and punt. */
3399 if (!buffer_uptodate(bh))
3402 if (ext4_should_journal_data(inode)) {
3403 BUFFER_TRACE(bh, "get write access");
3404 err = ext4_journal_get_write_access(handle, bh);
3408 zero_user(page, offset, length);
3409 BUFFER_TRACE(bh, "zeroed end of block");
3411 if (ext4_should_journal_data(inode)) {
3412 err = ext4_handle_dirty_metadata(handle, inode, bh);
3415 mark_buffer_dirty(bh);
3416 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3417 err = ext4_jbd2_file_inode(handle, inode);
3422 page_cache_release(page);
3426 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3427 loff_t lstart, loff_t length)
3429 struct super_block *sb = inode->i_sb;
3430 struct address_space *mapping = inode->i_mapping;
3431 unsigned partial_start, partial_end;
3432 ext4_fsblk_t start, end;
3433 loff_t byte_end = (lstart + length - 1);
3436 partial_start = lstart & (sb->s_blocksize - 1);
3437 partial_end = byte_end & (sb->s_blocksize - 1);
3439 start = lstart >> sb->s_blocksize_bits;
3440 end = byte_end >> sb->s_blocksize_bits;
3442 /* Handle partial zero within the single block */
3444 (partial_start || (partial_end != sb->s_blocksize - 1))) {
3445 err = ext4_block_zero_page_range(handle, mapping,
3449 /* Handle partial zero out on the start of the range */
3450 if (partial_start) {
3451 err = ext4_block_zero_page_range(handle, mapping,
3452 lstart, sb->s_blocksize);
3456 /* Handle partial zero out on the end of the range */
3457 if (partial_end != sb->s_blocksize - 1)
3458 err = ext4_block_zero_page_range(handle, mapping,
3459 byte_end - partial_end,
3464 int ext4_can_truncate(struct inode *inode)
3466 if (S_ISREG(inode->i_mode))
3468 if (S_ISDIR(inode->i_mode))
3470 if (S_ISLNK(inode->i_mode))
3471 return !ext4_inode_is_fast_symlink(inode);
3476 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3477 * associated with the given offset and length
3479 * @inode: File inode
3480 * @offset: The offset where the hole will begin
3481 * @len: The length of the hole
3483 * Returns: 0 on success or negative on failure
3486 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3488 struct super_block *sb = inode->i_sb;
3489 ext4_lblk_t first_block, stop_block;
3490 struct address_space *mapping = inode->i_mapping;
3491 loff_t first_block_offset, last_block_offset;
3493 unsigned int credits;
3496 if (!S_ISREG(inode->i_mode))
3499 if (EXT4_SB(sb)->s_cluster_ratio > 1) {
3500 /* TODO: Add support for bigalloc file systems */
3504 trace_ext4_punch_hole(inode, offset, length);
3507 * Write out all dirty pages to avoid race conditions
3508 * Then release them.
3510 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3511 ret = filemap_write_and_wait_range(mapping, offset,
3512 offset + length - 1);
3517 mutex_lock(&inode->i_mutex);
3518 /* It's not possible punch hole on append only file */
3519 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3523 if (IS_SWAPFILE(inode)) {
3528 /* No need to punch hole beyond i_size */
3529 if (offset >= inode->i_size)
3533 * If the hole extends beyond i_size, set the hole
3534 * to end after the page that contains i_size
3536 if (offset + length > inode->i_size) {
3537 length = inode->i_size +
3538 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3542 first_block_offset = round_up(offset, sb->s_blocksize);
3543 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3545 /* Now release the pages and zero block aligned part of pages*/
3546 if (last_block_offset > first_block_offset)
3547 truncate_pagecache_range(inode, first_block_offset,
3550 /* Wait all existing dio workers, newcomers will block on i_mutex */
3551 ext4_inode_block_unlocked_dio(inode);
3552 inode_dio_wait(inode);
3554 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3555 credits = ext4_writepage_trans_blocks(inode);
3557 credits = ext4_blocks_for_truncate(inode);
3558 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3559 if (IS_ERR(handle)) {
3560 ret = PTR_ERR(handle);
3561 ext4_std_error(sb, ret);
3565 ret = ext4_zero_partial_blocks(handle, inode, offset,
3570 first_block = (offset + sb->s_blocksize - 1) >>
3571 EXT4_BLOCK_SIZE_BITS(sb);
3572 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3574 /* If there are no blocks to remove, return now */
3575 if (first_block >= stop_block)
3578 down_write(&EXT4_I(inode)->i_data_sem);
3579 ext4_discard_preallocations(inode);
3581 ret = ext4_es_remove_extent(inode, first_block,
3582 stop_block - first_block);
3584 up_write(&EXT4_I(inode)->i_data_sem);
3588 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3589 ret = ext4_ext_remove_space(inode, first_block,
3592 ret = ext4_free_hole_blocks(handle, inode, first_block,
3595 ext4_discard_preallocations(inode);
3596 up_write(&EXT4_I(inode)->i_data_sem);
3598 ext4_handle_sync(handle);
3599 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3600 ext4_mark_inode_dirty(handle, inode);
3602 ext4_journal_stop(handle);
3604 ext4_inode_resume_unlocked_dio(inode);
3606 mutex_unlock(&inode->i_mutex);
3613 * We block out ext4_get_block() block instantiations across the entire
3614 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3615 * simultaneously on behalf of the same inode.
3617 * As we work through the truncate and commit bits of it to the journal there
3618 * is one core, guiding principle: the file's tree must always be consistent on
3619 * disk. We must be able to restart the truncate after a crash.
3621 * The file's tree may be transiently inconsistent in memory (although it
3622 * probably isn't), but whenever we close off and commit a journal transaction,
3623 * the contents of (the filesystem + the journal) must be consistent and
3624 * restartable. It's pretty simple, really: bottom up, right to left (although
3625 * left-to-right works OK too).
3627 * Note that at recovery time, journal replay occurs *before* the restart of
3628 * truncate against the orphan inode list.
3630 * The committed inode has the new, desired i_size (which is the same as
3631 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3632 * that this inode's truncate did not complete and it will again call
3633 * ext4_truncate() to have another go. So there will be instantiated blocks
3634 * to the right of the truncation point in a crashed ext4 filesystem. But
3635 * that's fine - as long as they are linked from the inode, the post-crash
3636 * ext4_truncate() run will find them and release them.
3638 void ext4_truncate(struct inode *inode)
3640 struct ext4_inode_info *ei = EXT4_I(inode);
3641 unsigned int credits;
3643 struct address_space *mapping = inode->i_mapping;
3646 * There is a possibility that we're either freeing the inode
3647 * or it completely new indode. In those cases we might not
3648 * have i_mutex locked because it's not necessary.
3650 if (!(inode->i_state & (I_NEW|I_FREEING)))
3651 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3652 trace_ext4_truncate_enter(inode);
3654 if (!ext4_can_truncate(inode))
3657 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3659 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3660 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3662 if (ext4_has_inline_data(inode)) {
3665 ext4_inline_data_truncate(inode, &has_inline);
3670 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3671 credits = ext4_writepage_trans_blocks(inode);
3673 credits = ext4_blocks_for_truncate(inode);
3675 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3676 if (IS_ERR(handle)) {
3677 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3681 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3682 ext4_block_truncate_page(handle, mapping, inode->i_size);
3685 * We add the inode to the orphan list, so that if this
3686 * truncate spans multiple transactions, and we crash, we will
3687 * resume the truncate when the filesystem recovers. It also
3688 * marks the inode dirty, to catch the new size.
3690 * Implication: the file must always be in a sane, consistent
3691 * truncatable state while each transaction commits.
3693 if (ext4_orphan_add(handle, inode))
3696 down_write(&EXT4_I(inode)->i_data_sem);
3698 ext4_discard_preallocations(inode);
3700 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3701 ext4_ext_truncate(handle, inode);
3703 ext4_ind_truncate(handle, inode);
3705 up_write(&ei->i_data_sem);
3708 ext4_handle_sync(handle);
3712 * If this was a simple ftruncate() and the file will remain alive,
3713 * then we need to clear up the orphan record which we created above.
3714 * However, if this was a real unlink then we were called by
3715 * ext4_delete_inode(), and we allow that function to clean up the
3716 * orphan info for us.
3719 ext4_orphan_del(handle, inode);
3721 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3722 ext4_mark_inode_dirty(handle, inode);
3723 ext4_journal_stop(handle);
3725 trace_ext4_truncate_exit(inode);
3729 * ext4_get_inode_loc returns with an extra refcount against the inode's
3730 * underlying buffer_head on success. If 'in_mem' is true, we have all
3731 * data in memory that is needed to recreate the on-disk version of this
3734 static int __ext4_get_inode_loc(struct inode *inode,
3735 struct ext4_iloc *iloc, int in_mem)
3737 struct ext4_group_desc *gdp;
3738 struct buffer_head *bh;
3739 struct super_block *sb = inode->i_sb;
3741 int inodes_per_block, inode_offset;
3744 if (!ext4_valid_inum(sb, inode->i_ino))
3747 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3748 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3753 * Figure out the offset within the block group inode table
3755 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3756 inode_offset = ((inode->i_ino - 1) %
3757 EXT4_INODES_PER_GROUP(sb));
3758 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3759 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3761 bh = sb_getblk(sb, block);
3764 if (!buffer_uptodate(bh)) {
3768 * If the buffer has the write error flag, we have failed
3769 * to write out another inode in the same block. In this
3770 * case, we don't have to read the block because we may
3771 * read the old inode data successfully.
3773 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3774 set_buffer_uptodate(bh);
3776 if (buffer_uptodate(bh)) {
3777 /* someone brought it uptodate while we waited */
3783 * If we have all information of the inode in memory and this
3784 * is the only valid inode in the block, we need not read the
3788 struct buffer_head *bitmap_bh;
3791 start = inode_offset & ~(inodes_per_block - 1);
3793 /* Is the inode bitmap in cache? */
3794 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3795 if (unlikely(!bitmap_bh))
3799 * If the inode bitmap isn't in cache then the
3800 * optimisation may end up performing two reads instead
3801 * of one, so skip it.
3803 if (!buffer_uptodate(bitmap_bh)) {
3807 for (i = start; i < start + inodes_per_block; i++) {
3808 if (i == inode_offset)
3810 if (ext4_test_bit(i, bitmap_bh->b_data))
3814 if (i == start + inodes_per_block) {
3815 /* all other inodes are free, so skip I/O */
3816 memset(bh->b_data, 0, bh->b_size);
3817 set_buffer_uptodate(bh);
3825 * If we need to do any I/O, try to pre-readahead extra
3826 * blocks from the inode table.
3828 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3829 ext4_fsblk_t b, end, table;
3831 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3833 table = ext4_inode_table(sb, gdp);
3834 /* s_inode_readahead_blks is always a power of 2 */
3835 b = block & ~((ext4_fsblk_t) ra_blks - 1);
3839 num = EXT4_INODES_PER_GROUP(sb);
3840 if (ext4_has_group_desc_csum(sb))
3841 num -= ext4_itable_unused_count(sb, gdp);
3842 table += num / inodes_per_block;
3846 sb_breadahead(sb, b++);
3850 * There are other valid inodes in the buffer, this inode
3851 * has in-inode xattrs, or we don't have this inode in memory.
3852 * Read the block from disk.
3854 trace_ext4_load_inode(inode);
3856 bh->b_end_io = end_buffer_read_sync;
3857 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3859 if (!buffer_uptodate(bh)) {
3860 EXT4_ERROR_INODE_BLOCK(inode, block,
3861 "unable to read itable block");
3871 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3873 /* We have all inode data except xattrs in memory here. */
3874 return __ext4_get_inode_loc(inode, iloc,
3875 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3878 void ext4_set_inode_flags(struct inode *inode)
3880 unsigned int flags = EXT4_I(inode)->i_flags;
3882 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3883 if (flags & EXT4_SYNC_FL)
3884 inode->i_flags |= S_SYNC;
3885 if (flags & EXT4_APPEND_FL)
3886 inode->i_flags |= S_APPEND;
3887 if (flags & EXT4_IMMUTABLE_FL)
3888 inode->i_flags |= S_IMMUTABLE;
3889 if (flags & EXT4_NOATIME_FL)
3890 inode->i_flags |= S_NOATIME;
3891 if (flags & EXT4_DIRSYNC_FL)
3892 inode->i_flags |= S_DIRSYNC;
3895 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3896 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3898 unsigned int vfs_fl;
3899 unsigned long old_fl, new_fl;
3902 vfs_fl = ei->vfs_inode.i_flags;
3903 old_fl = ei->i_flags;
3904 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3905 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3907 if (vfs_fl & S_SYNC)
3908 new_fl |= EXT4_SYNC_FL;
3909 if (vfs_fl & S_APPEND)
3910 new_fl |= EXT4_APPEND_FL;
3911 if (vfs_fl & S_IMMUTABLE)
3912 new_fl |= EXT4_IMMUTABLE_FL;
3913 if (vfs_fl & S_NOATIME)
3914 new_fl |= EXT4_NOATIME_FL;
3915 if (vfs_fl & S_DIRSYNC)
3916 new_fl |= EXT4_DIRSYNC_FL;
3917 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3920 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3921 struct ext4_inode_info *ei)
3924 struct inode *inode = &(ei->vfs_inode);
3925 struct super_block *sb = inode->i_sb;
3927 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3928 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3929 /* we are using combined 48 bit field */
3930 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3931 le32_to_cpu(raw_inode->i_blocks_lo);
3932 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3933 /* i_blocks represent file system block size */
3934 return i_blocks << (inode->i_blkbits - 9);
3939 return le32_to_cpu(raw_inode->i_blocks_lo);
3943 static inline void ext4_iget_extra_inode(struct inode *inode,
3944 struct ext4_inode *raw_inode,
3945 struct ext4_inode_info *ei)
3947 __le32 *magic = (void *)raw_inode +
3948 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3949 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3950 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3951 ext4_find_inline_data_nolock(inode);
3953 EXT4_I(inode)->i_inline_off = 0;
3956 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3958 struct ext4_iloc iloc;
3959 struct ext4_inode *raw_inode;
3960 struct ext4_inode_info *ei;
3961 struct inode *inode;
3962 journal_t *journal = EXT4_SB(sb)->s_journal;
3968 inode = iget_locked(sb, ino);
3970 return ERR_PTR(-ENOMEM);
3971 if (!(inode->i_state & I_NEW))
3977 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3980 raw_inode = ext4_raw_inode(&iloc);
3982 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3983 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3984 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3985 EXT4_INODE_SIZE(inode->i_sb)) {
3986 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3987 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3988 EXT4_INODE_SIZE(inode->i_sb));
3993 ei->i_extra_isize = 0;
3995 /* Precompute checksum seed for inode metadata */
3996 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3997 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3998 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4000 __le32 inum = cpu_to_le32(inode->i_ino);
4001 __le32 gen = raw_inode->i_generation;
4002 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4004 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4008 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4009 EXT4_ERROR_INODE(inode, "checksum invalid");
4014 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4015 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4016 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4017 if (!(test_opt(inode->i_sb, NO_UID32))) {
4018 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4019 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4021 i_uid_write(inode, i_uid);
4022 i_gid_write(inode, i_gid);
4023 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4025 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4026 ei->i_inline_off = 0;
4027 ei->i_dir_start_lookup = 0;
4028 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4029 /* We now have enough fields to check if the inode was active or not.
4030 * This is needed because nfsd might try to access dead inodes
4031 * the test is that same one that e2fsck uses
4032 * NeilBrown 1999oct15
4034 if (inode->i_nlink == 0) {
4035 if ((inode->i_mode == 0 ||
4036 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4037 ino != EXT4_BOOT_LOADER_INO) {
4038 /* this inode is deleted */
4042 /* The only unlinked inodes we let through here have
4043 * valid i_mode and are being read by the orphan
4044 * recovery code: that's fine, we're about to complete
4045 * the process of deleting those.
4046 * OR it is the EXT4_BOOT_LOADER_INO which is
4047 * not initialized on a new filesystem. */
4049 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4050 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4051 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4052 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4054 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4055 inode->i_size = ext4_isize(raw_inode);
4056 ei->i_disksize = inode->i_size;
4058 ei->i_reserved_quota = 0;
4060 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4061 ei->i_block_group = iloc.block_group;
4062 ei->i_last_alloc_group = ~0;
4064 * NOTE! The in-memory inode i_data array is in little-endian order
4065 * even on big-endian machines: we do NOT byteswap the block numbers!
4067 for (block = 0; block < EXT4_N_BLOCKS; block++)
4068 ei->i_data[block] = raw_inode->i_block[block];
4069 INIT_LIST_HEAD(&ei->i_orphan);
4072 * Set transaction id's of transactions that have to be committed
4073 * to finish f[data]sync. We set them to currently running transaction
4074 * as we cannot be sure that the inode or some of its metadata isn't
4075 * part of the transaction - the inode could have been reclaimed and
4076 * now it is reread from disk.
4079 transaction_t *transaction;
4082 read_lock(&journal->j_state_lock);
4083 if (journal->j_running_transaction)
4084 transaction = journal->j_running_transaction;
4086 transaction = journal->j_committing_transaction;
4088 tid = transaction->t_tid;
4090 tid = journal->j_commit_sequence;
4091 read_unlock(&journal->j_state_lock);
4092 ei->i_sync_tid = tid;
4093 ei->i_datasync_tid = tid;
4096 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4097 if (ei->i_extra_isize == 0) {
4098 /* The extra space is currently unused. Use it. */
4099 ei->i_extra_isize = sizeof(struct ext4_inode) -
4100 EXT4_GOOD_OLD_INODE_SIZE;
4102 ext4_iget_extra_inode(inode, raw_inode, ei);
4106 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4107 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4108 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4109 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4111 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4112 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4113 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4115 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4119 if (ei->i_file_acl &&
4120 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4121 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4125 } else if (!ext4_has_inline_data(inode)) {
4126 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4127 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4128 (S_ISLNK(inode->i_mode) &&
4129 !ext4_inode_is_fast_symlink(inode))))
4130 /* Validate extent which is part of inode */
4131 ret = ext4_ext_check_inode(inode);
4132 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4133 (S_ISLNK(inode->i_mode) &&
4134 !ext4_inode_is_fast_symlink(inode))) {
4135 /* Validate block references which are part of inode */
4136 ret = ext4_ind_check_inode(inode);
4142 if (S_ISREG(inode->i_mode)) {
4143 inode->i_op = &ext4_file_inode_operations;
4144 inode->i_fop = &ext4_file_operations;
4145 ext4_set_aops(inode);
4146 } else if (S_ISDIR(inode->i_mode)) {
4147 inode->i_op = &ext4_dir_inode_operations;
4148 inode->i_fop = &ext4_dir_operations;
4149 } else if (S_ISLNK(inode->i_mode)) {
4150 if (ext4_inode_is_fast_symlink(inode)) {
4151 inode->i_op = &ext4_fast_symlink_inode_operations;
4152 nd_terminate_link(ei->i_data, inode->i_size,
4153 sizeof(ei->i_data) - 1);
4155 inode->i_op = &ext4_symlink_inode_operations;
4156 ext4_set_aops(inode);
4158 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4159 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4160 inode->i_op = &ext4_special_inode_operations;
4161 if (raw_inode->i_block[0])
4162 init_special_inode(inode, inode->i_mode,
4163 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4165 init_special_inode(inode, inode->i_mode,
4166 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4167 } else if (ino == EXT4_BOOT_LOADER_INO) {
4168 make_bad_inode(inode);
4171 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4175 ext4_set_inode_flags(inode);
4176 unlock_new_inode(inode);
4182 return ERR_PTR(ret);
4185 static int ext4_inode_blocks_set(handle_t *handle,
4186 struct ext4_inode *raw_inode,
4187 struct ext4_inode_info *ei)
4189 struct inode *inode = &(ei->vfs_inode);
4190 u64 i_blocks = inode->i_blocks;
4191 struct super_block *sb = inode->i_sb;
4193 if (i_blocks <= ~0U) {
4195 * i_blocks can be represented in a 32 bit variable
4196 * as multiple of 512 bytes
4198 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4199 raw_inode->i_blocks_high = 0;
4200 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4203 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4206 if (i_blocks <= 0xffffffffffffULL) {
4208 * i_blocks can be represented in a 48 bit variable
4209 * as multiple of 512 bytes
4211 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4212 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4213 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4215 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4216 /* i_block is stored in file system block size */
4217 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4218 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4219 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4225 * Post the struct inode info into an on-disk inode location in the
4226 * buffer-cache. This gobbles the caller's reference to the
4227 * buffer_head in the inode location struct.
4229 * The caller must have write access to iloc->bh.
4231 static int ext4_do_update_inode(handle_t *handle,
4232 struct inode *inode,
4233 struct ext4_iloc *iloc)
4235 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4236 struct ext4_inode_info *ei = EXT4_I(inode);
4237 struct buffer_head *bh = iloc->bh;
4238 int err = 0, rc, block;
4239 int need_datasync = 0;
4243 /* For fields not not tracking in the in-memory inode,
4244 * initialise them to zero for new inodes. */
4245 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4246 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4248 ext4_get_inode_flags(ei);
4249 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4250 i_uid = i_uid_read(inode);
4251 i_gid = i_gid_read(inode);
4252 if (!(test_opt(inode->i_sb, NO_UID32))) {
4253 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4254 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4256 * Fix up interoperability with old kernels. Otherwise, old inodes get
4257 * re-used with the upper 16 bits of the uid/gid intact
4260 raw_inode->i_uid_high =
4261 cpu_to_le16(high_16_bits(i_uid));
4262 raw_inode->i_gid_high =
4263 cpu_to_le16(high_16_bits(i_gid));
4265 raw_inode->i_uid_high = 0;
4266 raw_inode->i_gid_high = 0;
4269 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4270 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4271 raw_inode->i_uid_high = 0;
4272 raw_inode->i_gid_high = 0;
4274 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4276 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4277 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4278 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4279 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4281 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4283 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4284 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4285 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4286 cpu_to_le32(EXT4_OS_HURD))
4287 raw_inode->i_file_acl_high =
4288 cpu_to_le16(ei->i_file_acl >> 32);
4289 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4290 if (ei->i_disksize != ext4_isize(raw_inode)) {
4291 ext4_isize_set(raw_inode, ei->i_disksize);
4294 if (ei->i_disksize > 0x7fffffffULL) {
4295 struct super_block *sb = inode->i_sb;
4296 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4297 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4298 EXT4_SB(sb)->s_es->s_rev_level ==
4299 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4300 /* If this is the first large file
4301 * created, add a flag to the superblock.
4303 err = ext4_journal_get_write_access(handle,
4304 EXT4_SB(sb)->s_sbh);
4307 ext4_update_dynamic_rev(sb);
4308 EXT4_SET_RO_COMPAT_FEATURE(sb,
4309 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4310 ext4_handle_sync(handle);
4311 err = ext4_handle_dirty_super(handle, sb);
4314 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4315 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4316 if (old_valid_dev(inode->i_rdev)) {
4317 raw_inode->i_block[0] =
4318 cpu_to_le32(old_encode_dev(inode->i_rdev));
4319 raw_inode->i_block[1] = 0;
4321 raw_inode->i_block[0] = 0;
4322 raw_inode->i_block[1] =
4323 cpu_to_le32(new_encode_dev(inode->i_rdev));
4324 raw_inode->i_block[2] = 0;
4326 } else if (!ext4_has_inline_data(inode)) {
4327 for (block = 0; block < EXT4_N_BLOCKS; block++)
4328 raw_inode->i_block[block] = ei->i_data[block];
4331 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4332 if (ei->i_extra_isize) {
4333 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4334 raw_inode->i_version_hi =
4335 cpu_to_le32(inode->i_version >> 32);
4336 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4339 ext4_inode_csum_set(inode, raw_inode, ei);
4341 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4342 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4345 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4347 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4350 ext4_std_error(inode->i_sb, err);
4355 * ext4_write_inode()
4357 * We are called from a few places:
4359 * - Within generic_file_write() for O_SYNC files.
4360 * Here, there will be no transaction running. We wait for any running
4361 * transaction to commit.
4363 * - Within sys_sync(), kupdate and such.
4364 * We wait on commit, if tol to.
4366 * - Within prune_icache() (PF_MEMALLOC == true)
4367 * Here we simply return. We can't afford to block kswapd on the
4370 * In all cases it is actually safe for us to return without doing anything,
4371 * because the inode has been copied into a raw inode buffer in
4372 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
4375 * Note that we are absolutely dependent upon all inode dirtiers doing the
4376 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4377 * which we are interested.
4379 * It would be a bug for them to not do this. The code:
4381 * mark_inode_dirty(inode)
4383 * inode->i_size = expr;
4385 * is in error because a kswapd-driven write_inode() could occur while
4386 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4387 * will no longer be on the superblock's dirty inode list.
4389 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4393 if (current->flags & PF_MEMALLOC)
4396 if (EXT4_SB(inode->i_sb)->s_journal) {
4397 if (ext4_journal_current_handle()) {
4398 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4403 if (wbc->sync_mode != WB_SYNC_ALL)
4406 err = ext4_force_commit(inode->i_sb);
4408 struct ext4_iloc iloc;
4410 err = __ext4_get_inode_loc(inode, &iloc, 0);
4413 if (wbc->sync_mode == WB_SYNC_ALL)
4414 sync_dirty_buffer(iloc.bh);
4415 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4416 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4417 "IO error syncing inode");
4426 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4427 * buffers that are attached to a page stradding i_size and are undergoing
4428 * commit. In that case we have to wait for commit to finish and try again.
4430 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4434 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4435 tid_t commit_tid = 0;
4438 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4440 * All buffers in the last page remain valid? Then there's nothing to
4441 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4444 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4447 page = find_lock_page(inode->i_mapping,
4448 inode->i_size >> PAGE_CACHE_SHIFT);
4451 ret = __ext4_journalled_invalidatepage(page, offset,
4452 PAGE_CACHE_SIZE - offset);
4454 page_cache_release(page);
4458 read_lock(&journal->j_state_lock);
4459 if (journal->j_committing_transaction)
4460 commit_tid = journal->j_committing_transaction->t_tid;
4461 read_unlock(&journal->j_state_lock);
4463 jbd2_log_wait_commit(journal, commit_tid);
4470 * Called from notify_change.
4472 * We want to trap VFS attempts to truncate the file as soon as
4473 * possible. In particular, we want to make sure that when the VFS
4474 * shrinks i_size, we put the inode on the orphan list and modify
4475 * i_disksize immediately, so that during the subsequent flushing of
4476 * dirty pages and freeing of disk blocks, we can guarantee that any
4477 * commit will leave the blocks being flushed in an unused state on
4478 * disk. (On recovery, the inode will get truncated and the blocks will
4479 * be freed, so we have a strong guarantee that no future commit will
4480 * leave these blocks visible to the user.)
4482 * Another thing we have to assure is that if we are in ordered mode
4483 * and inode is still attached to the committing transaction, we must
4484 * we start writeout of all the dirty pages which are being truncated.
4485 * This way we are sure that all the data written in the previous
4486 * transaction are already on disk (truncate waits for pages under
4489 * Called with inode->i_mutex down.
4491 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4493 struct inode *inode = dentry->d_inode;
4496 const unsigned int ia_valid = attr->ia_valid;
4498 error = inode_change_ok(inode, attr);
4502 if (is_quota_modification(inode, attr))
4503 dquot_initialize(inode);
4504 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4505 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4508 /* (user+group)*(old+new) structure, inode write (sb,
4509 * inode block, ? - but truncate inode update has it) */
4510 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4511 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4512 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4513 if (IS_ERR(handle)) {
4514 error = PTR_ERR(handle);
4517 error = dquot_transfer(inode, attr);
4519 ext4_journal_stop(handle);
4522 /* Update corresponding info in inode so that everything is in
4523 * one transaction */
4524 if (attr->ia_valid & ATTR_UID)
4525 inode->i_uid = attr->ia_uid;
4526 if (attr->ia_valid & ATTR_GID)
4527 inode->i_gid = attr->ia_gid;
4528 error = ext4_mark_inode_dirty(handle, inode);
4529 ext4_journal_stop(handle);
4532 if (attr->ia_valid & ATTR_SIZE) {
4534 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4535 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4537 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4542 if (S_ISREG(inode->i_mode) &&
4543 attr->ia_valid & ATTR_SIZE &&
4544 (attr->ia_size < inode->i_size)) {
4547 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4548 if (IS_ERR(handle)) {
4549 error = PTR_ERR(handle);
4552 if (ext4_handle_valid(handle)) {
4553 error = ext4_orphan_add(handle, inode);
4556 EXT4_I(inode)->i_disksize = attr->ia_size;
4557 rc = ext4_mark_inode_dirty(handle, inode);
4560 ext4_journal_stop(handle);
4562 if (ext4_should_order_data(inode)) {
4563 error = ext4_begin_ordered_truncate(inode,
4566 /* Do as much error cleanup as possible */
4567 handle = ext4_journal_start(inode,
4569 if (IS_ERR(handle)) {
4570 ext4_orphan_del(NULL, inode);
4573 ext4_orphan_del(handle, inode);
4575 ext4_journal_stop(handle);
4581 if (attr->ia_valid & ATTR_SIZE) {
4582 if (attr->ia_size != inode->i_size) {
4583 loff_t oldsize = inode->i_size;
4585 i_size_write(inode, attr->ia_size);
4587 * Blocks are going to be removed from the inode. Wait
4588 * for dio in flight. Temporarily disable
4589 * dioread_nolock to prevent livelock.
4592 if (!ext4_should_journal_data(inode)) {
4593 ext4_inode_block_unlocked_dio(inode);
4594 inode_dio_wait(inode);
4595 ext4_inode_resume_unlocked_dio(inode);
4597 ext4_wait_for_tail_page_commit(inode);
4600 * Truncate pagecache after we've waited for commit
4601 * in data=journal mode to make pages freeable.
4603 truncate_pagecache(inode, oldsize, inode->i_size);
4605 ext4_truncate(inode);
4609 setattr_copy(inode, attr);
4610 mark_inode_dirty(inode);
4614 * If the call to ext4_truncate failed to get a transaction handle at
4615 * all, we need to clean up the in-core orphan list manually.
4617 if (orphan && inode->i_nlink)
4618 ext4_orphan_del(NULL, inode);
4620 if (!rc && (ia_valid & ATTR_MODE))
4621 rc = ext4_acl_chmod(inode);
4624 ext4_std_error(inode->i_sb, error);
4630 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4633 struct inode *inode;
4634 unsigned long long delalloc_blocks;
4636 inode = dentry->d_inode;
4637 generic_fillattr(inode, stat);
4640 * We can't update i_blocks if the block allocation is delayed
4641 * otherwise in the case of system crash before the real block
4642 * allocation is done, we will have i_blocks inconsistent with
4643 * on-disk file blocks.
4644 * We always keep i_blocks updated together with real
4645 * allocation. But to not confuse with user, stat
4646 * will return the blocks that include the delayed allocation
4647 * blocks for this file.
4649 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4650 EXT4_I(inode)->i_reserved_data_blocks);
4652 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits-9);
4656 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4659 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4660 return ext4_ind_trans_blocks(inode, lblocks);
4661 return ext4_ext_index_trans_blocks(inode, pextents);
4665 * Account for index blocks, block groups bitmaps and block group
4666 * descriptor blocks if modify datablocks and index blocks
4667 * worse case, the indexs blocks spread over different block groups
4669 * If datablocks are discontiguous, they are possible to spread over
4670 * different block groups too. If they are contiguous, with flexbg,
4671 * they could still across block group boundary.
4673 * Also account for superblock, inode, quota and xattr blocks
4675 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4678 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4684 * How many index blocks need to touch to map @lblocks logical blocks
4685 * to @pextents physical extents?
4687 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4692 * Now let's see how many group bitmaps and group descriptors need
4695 groups = idxblocks + pextents;
4697 if (groups > ngroups)
4699 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4700 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4702 /* bitmaps and block group descriptor blocks */
4703 ret += groups + gdpblocks;
4705 /* Blocks for super block, inode, quota and xattr blocks */
4706 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4712 * Calculate the total number of credits to reserve to fit
4713 * the modification of a single pages into a single transaction,
4714 * which may include multiple chunks of block allocations.
4716 * This could be called via ext4_write_begin()
4718 * We need to consider the worse case, when
4719 * one new block per extent.
4721 int ext4_writepage_trans_blocks(struct inode *inode)
4723 int bpp = ext4_journal_blocks_per_page(inode);
4726 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4728 /* Account for data blocks for journalled mode */
4729 if (ext4_should_journal_data(inode))
4735 * Calculate the journal credits for a chunk of data modification.
4737 * This is called from DIO, fallocate or whoever calling
4738 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4740 * journal buffers for data blocks are not included here, as DIO
4741 * and fallocate do no need to journal data buffers.
4743 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4745 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4749 * The caller must have previously called ext4_reserve_inode_write().
4750 * Give this, we know that the caller already has write access to iloc->bh.
4752 int ext4_mark_iloc_dirty(handle_t *handle,
4753 struct inode *inode, struct ext4_iloc *iloc)
4757 if (IS_I_VERSION(inode))
4758 inode_inc_iversion(inode);
4760 /* the do_update_inode consumes one bh->b_count */
4763 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4764 err = ext4_do_update_inode(handle, inode, iloc);
4770 * On success, We end up with an outstanding reference count against
4771 * iloc->bh. This _must_ be cleaned up later.
4775 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4776 struct ext4_iloc *iloc)
4780 err = ext4_get_inode_loc(inode, iloc);
4782 BUFFER_TRACE(iloc->bh, "get_write_access");
4783 err = ext4_journal_get_write_access(handle, iloc->bh);
4789 ext4_std_error(inode->i_sb, err);
4794 * Expand an inode by new_extra_isize bytes.
4795 * Returns 0 on success or negative error number on failure.
4797 static int ext4_expand_extra_isize(struct inode *inode,
4798 unsigned int new_extra_isize,
4799 struct ext4_iloc iloc,
4802 struct ext4_inode *raw_inode;
4803 struct ext4_xattr_ibody_header *header;
4805 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4808 raw_inode = ext4_raw_inode(&iloc);
4810 header = IHDR(inode, raw_inode);
4812 /* No extended attributes present */
4813 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4814 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4815 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4817 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4821 /* try to expand with EAs present */
4822 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4827 * What we do here is to mark the in-core inode as clean with respect to inode
4828 * dirtiness (it may still be data-dirty).
4829 * This means that the in-core inode may be reaped by prune_icache
4830 * without having to perform any I/O. This is a very good thing,
4831 * because *any* task may call prune_icache - even ones which
4832 * have a transaction open against a different journal.
4834 * Is this cheating? Not really. Sure, we haven't written the
4835 * inode out, but prune_icache isn't a user-visible syncing function.
4836 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4837 * we start and wait on commits.
4839 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4841 struct ext4_iloc iloc;
4842 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4843 static unsigned int mnt_count;
4847 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4848 err = ext4_reserve_inode_write(handle, inode, &iloc);
4849 if (ext4_handle_valid(handle) &&
4850 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4851 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4853 * We need extra buffer credits since we may write into EA block
4854 * with this same handle. If journal_extend fails, then it will
4855 * only result in a minor loss of functionality for that inode.
4856 * If this is felt to be critical, then e2fsck should be run to
4857 * force a large enough s_min_extra_isize.
4859 if ((jbd2_journal_extend(handle,
4860 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4861 ret = ext4_expand_extra_isize(inode,
4862 sbi->s_want_extra_isize,
4865 ext4_set_inode_state(inode,
4866 EXT4_STATE_NO_EXPAND);
4868 le16_to_cpu(sbi->s_es->s_mnt_count)) {
4869 ext4_warning(inode->i_sb,
4870 "Unable to expand inode %lu. Delete"
4871 " some EAs or run e2fsck.",
4874 le16_to_cpu(sbi->s_es->s_mnt_count);
4880 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4885 * ext4_dirty_inode() is called from __mark_inode_dirty()
4887 * We're really interested in the case where a file is being extended.
4888 * i_size has been changed by generic_commit_write() and we thus need
4889 * to include the updated inode in the current transaction.
4891 * Also, dquot_alloc_block() will always dirty the inode when blocks
4892 * are allocated to the file.
4894 * If the inode is marked synchronous, we don't honour that here - doing
4895 * so would cause a commit on atime updates, which we don't bother doing.
4896 * We handle synchronous inodes at the highest possible level.
4898 void ext4_dirty_inode(struct inode *inode, int flags)
4902 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4906 ext4_mark_inode_dirty(handle, inode);
4908 ext4_journal_stop(handle);
4915 * Bind an inode's backing buffer_head into this transaction, to prevent
4916 * it from being flushed to disk early. Unlike
4917 * ext4_reserve_inode_write, this leaves behind no bh reference and
4918 * returns no iloc structure, so the caller needs to repeat the iloc
4919 * lookup to mark the inode dirty later.
4921 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4923 struct ext4_iloc iloc;
4927 err = ext4_get_inode_loc(inode, &iloc);
4929 BUFFER_TRACE(iloc.bh, "get_write_access");
4930 err = jbd2_journal_get_write_access(handle, iloc.bh);
4932 err = ext4_handle_dirty_metadata(handle,
4938 ext4_std_error(inode->i_sb, err);
4943 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4950 * We have to be very careful here: changing a data block's
4951 * journaling status dynamically is dangerous. If we write a
4952 * data block to the journal, change the status and then delete
4953 * that block, we risk forgetting to revoke the old log record
4954 * from the journal and so a subsequent replay can corrupt data.
4955 * So, first we make sure that the journal is empty and that
4956 * nobody is changing anything.
4959 journal = EXT4_JOURNAL(inode);
4962 if (is_journal_aborted(journal))
4964 /* We have to allocate physical blocks for delalloc blocks
4965 * before flushing journal. otherwise delalloc blocks can not
4966 * be allocated any more. even more truncate on delalloc blocks
4967 * could trigger BUG by flushing delalloc blocks in journal.
4968 * There is no delalloc block in non-journal data mode.
4970 if (val && test_opt(inode->i_sb, DELALLOC)) {
4971 err = ext4_alloc_da_blocks(inode);
4976 /* Wait for all existing dio workers */
4977 ext4_inode_block_unlocked_dio(inode);
4978 inode_dio_wait(inode);
4980 jbd2_journal_lock_updates(journal);
4983 * OK, there are no updates running now, and all cached data is
4984 * synced to disk. We are now in a completely consistent state
4985 * which doesn't have anything in the journal, and we know that
4986 * no filesystem updates are running, so it is safe to modify
4987 * the inode's in-core data-journaling state flag now.
4991 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4993 jbd2_journal_flush(journal);
4994 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4996 ext4_set_aops(inode);
4998 jbd2_journal_unlock_updates(journal);
4999 ext4_inode_resume_unlocked_dio(inode);
5001 /* Finally we can mark the inode as dirty. */
5003 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5005 return PTR_ERR(handle);
5007 err = ext4_mark_inode_dirty(handle, inode);
5008 ext4_handle_sync(handle);
5009 ext4_journal_stop(handle);
5010 ext4_std_error(inode->i_sb, err);
5015 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5017 return !buffer_mapped(bh);
5020 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5022 struct page *page = vmf->page;
5026 struct file *file = vma->vm_file;
5027 struct inode *inode = file_inode(file);
5028 struct address_space *mapping = inode->i_mapping;
5030 get_block_t *get_block;
5033 sb_start_pagefault(inode->i_sb);
5034 file_update_time(vma->vm_file);
5035 /* Delalloc case is easy... */
5036 if (test_opt(inode->i_sb, DELALLOC) &&
5037 !ext4_should_journal_data(inode) &&
5038 !ext4_nonda_switch(inode->i_sb)) {
5040 ret = __block_page_mkwrite(vma, vmf,
5041 ext4_da_get_block_prep);
5042 } while (ret == -ENOSPC &&
5043 ext4_should_retry_alloc(inode->i_sb, &retries));
5048 size = i_size_read(inode);
5049 /* Page got truncated from under us? */
5050 if (page->mapping != mapping || page_offset(page) > size) {
5052 ret = VM_FAULT_NOPAGE;
5056 if (page->index == size >> PAGE_CACHE_SHIFT)
5057 len = size & ~PAGE_CACHE_MASK;
5059 len = PAGE_CACHE_SIZE;
5061 * Return if we have all the buffers mapped. This avoids the need to do
5062 * journal_start/journal_stop which can block and take a long time
5064 if (page_has_buffers(page)) {
5065 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5067 ext4_bh_unmapped)) {
5068 /* Wait so that we don't change page under IO */
5069 wait_for_stable_page(page);
5070 ret = VM_FAULT_LOCKED;
5075 /* OK, we need to fill the hole... */
5076 if (ext4_should_dioread_nolock(inode))
5077 get_block = ext4_get_block_write;
5079 get_block = ext4_get_block;
5081 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5082 ext4_writepage_trans_blocks(inode));
5083 if (IS_ERR(handle)) {
5084 ret = VM_FAULT_SIGBUS;
5087 ret = __block_page_mkwrite(vma, vmf, get_block);
5088 if (!ret && ext4_should_journal_data(inode)) {
5089 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5090 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5092 ret = VM_FAULT_SIGBUS;
5093 ext4_journal_stop(handle);
5096 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5098 ext4_journal_stop(handle);
5099 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5102 ret = block_page_mkwrite_return(ret);
5104 sb_end_pagefault(inode->i_sb);