ext4: remove code duplication in ext4_get_block_write_nolock()
[platform/adaptation/renesas_rcar/renesas_kernel.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45
46 #include <trace/events/ext4.h>
47
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51                               struct ext4_inode_info *ei)
52 {
53         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54         __u16 csum_lo;
55         __u16 csum_hi = 0;
56         __u32 csum;
57
58         csum_lo = raw->i_checksum_lo;
59         raw->i_checksum_lo = 0;
60         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62                 csum_hi = raw->i_checksum_hi;
63                 raw->i_checksum_hi = 0;
64         }
65
66         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67                            EXT4_INODE_SIZE(inode->i_sb));
68
69         raw->i_checksum_lo = csum_lo;
70         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72                 raw->i_checksum_hi = csum_hi;
73
74         return csum;
75 }
76
77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78                                   struct ext4_inode_info *ei)
79 {
80         __u32 provided, calculated;
81
82         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83             cpu_to_le32(EXT4_OS_LINUX) ||
84             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
85                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
86                 return 1;
87
88         provided = le16_to_cpu(raw->i_checksum_lo);
89         calculated = ext4_inode_csum(inode, raw, ei);
90         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
91             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
92                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
93         else
94                 calculated &= 0xFFFF;
95
96         return provided == calculated;
97 }
98
99 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
100                                 struct ext4_inode_info *ei)
101 {
102         __u32 csum;
103
104         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
105             cpu_to_le32(EXT4_OS_LINUX) ||
106             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
107                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
108                 return;
109
110         csum = ext4_inode_csum(inode, raw, ei);
111         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
112         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
113             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
114                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
115 }
116
117 static inline int ext4_begin_ordered_truncate(struct inode *inode,
118                                               loff_t new_size)
119 {
120         trace_ext4_begin_ordered_truncate(inode, new_size);
121         /*
122          * If jinode is zero, then we never opened the file for
123          * writing, so there's no need to call
124          * jbd2_journal_begin_ordered_truncate() since there's no
125          * outstanding writes we need to flush.
126          */
127         if (!EXT4_I(inode)->jinode)
128                 return 0;
129         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
130                                                    EXT4_I(inode)->jinode,
131                                                    new_size);
132 }
133
134 static void ext4_invalidatepage(struct page *page, unsigned long offset);
135 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
136                                    struct buffer_head *bh_result, int create);
137 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
138 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
139 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
140 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
141 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
142                 struct inode *inode, struct page *page, loff_t from,
143                 loff_t length, int flags);
144
145 /*
146  * Test whether an inode is a fast symlink.
147  */
148 static int ext4_inode_is_fast_symlink(struct inode *inode)
149 {
150         int ea_blocks = EXT4_I(inode)->i_file_acl ?
151                 (inode->i_sb->s_blocksize >> 9) : 0;
152
153         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
154 }
155
156 /*
157  * Restart the transaction associated with *handle.  This does a commit,
158  * so before we call here everything must be consistently dirtied against
159  * this transaction.
160  */
161 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
162                                  int nblocks)
163 {
164         int ret;
165
166         /*
167          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
168          * moment, get_block can be called only for blocks inside i_size since
169          * page cache has been already dropped and writes are blocked by
170          * i_mutex. So we can safely drop the i_data_sem here.
171          */
172         BUG_ON(EXT4_JOURNAL(inode) == NULL);
173         jbd_debug(2, "restarting handle %p\n", handle);
174         up_write(&EXT4_I(inode)->i_data_sem);
175         ret = ext4_journal_restart(handle, nblocks);
176         down_write(&EXT4_I(inode)->i_data_sem);
177         ext4_discard_preallocations(inode);
178
179         return ret;
180 }
181
182 /*
183  * Called at the last iput() if i_nlink is zero.
184  */
185 void ext4_evict_inode(struct inode *inode)
186 {
187         handle_t *handle;
188         int err;
189
190         trace_ext4_evict_inode(inode);
191
192         ext4_ioend_wait(inode);
193
194         if (inode->i_nlink) {
195                 /*
196                  * When journalling data dirty buffers are tracked only in the
197                  * journal. So although mm thinks everything is clean and
198                  * ready for reaping the inode might still have some pages to
199                  * write in the running transaction or waiting to be
200                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
201                  * (via truncate_inode_pages()) to discard these buffers can
202                  * cause data loss. Also even if we did not discard these
203                  * buffers, we would have no way to find them after the inode
204                  * is reaped and thus user could see stale data if he tries to
205                  * read them before the transaction is checkpointed. So be
206                  * careful and force everything to disk here... We use
207                  * ei->i_datasync_tid to store the newest transaction
208                  * containing inode's data.
209                  *
210                  * Note that directories do not have this problem because they
211                  * don't use page cache.
212                  */
213                 if (ext4_should_journal_data(inode) &&
214                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
215                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
216                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
217
218                         jbd2_log_start_commit(journal, commit_tid);
219                         jbd2_log_wait_commit(journal, commit_tid);
220                         filemap_write_and_wait(&inode->i_data);
221                 }
222                 truncate_inode_pages(&inode->i_data, 0);
223                 goto no_delete;
224         }
225
226         if (!is_bad_inode(inode))
227                 dquot_initialize(inode);
228
229         if (ext4_should_order_data(inode))
230                 ext4_begin_ordered_truncate(inode, 0);
231         truncate_inode_pages(&inode->i_data, 0);
232
233         if (is_bad_inode(inode))
234                 goto no_delete;
235
236         /*
237          * Protect us against freezing - iput() caller didn't have to have any
238          * protection against it
239          */
240         sb_start_intwrite(inode->i_sb);
241         handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
242         if (IS_ERR(handle)) {
243                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
244                 /*
245                  * If we're going to skip the normal cleanup, we still need to
246                  * make sure that the in-core orphan linked list is properly
247                  * cleaned up.
248                  */
249                 ext4_orphan_del(NULL, inode);
250                 sb_end_intwrite(inode->i_sb);
251                 goto no_delete;
252         }
253
254         if (IS_SYNC(inode))
255                 ext4_handle_sync(handle);
256         inode->i_size = 0;
257         err = ext4_mark_inode_dirty(handle, inode);
258         if (err) {
259                 ext4_warning(inode->i_sb,
260                              "couldn't mark inode dirty (err %d)", err);
261                 goto stop_handle;
262         }
263         if (inode->i_blocks)
264                 ext4_truncate(inode);
265
266         /*
267          * ext4_ext_truncate() doesn't reserve any slop when it
268          * restarts journal transactions; therefore there may not be
269          * enough credits left in the handle to remove the inode from
270          * the orphan list and set the dtime field.
271          */
272         if (!ext4_handle_has_enough_credits(handle, 3)) {
273                 err = ext4_journal_extend(handle, 3);
274                 if (err > 0)
275                         err = ext4_journal_restart(handle, 3);
276                 if (err != 0) {
277                         ext4_warning(inode->i_sb,
278                                      "couldn't extend journal (err %d)", err);
279                 stop_handle:
280                         ext4_journal_stop(handle);
281                         ext4_orphan_del(NULL, inode);
282                         sb_end_intwrite(inode->i_sb);
283                         goto no_delete;
284                 }
285         }
286
287         /*
288          * Kill off the orphan record which ext4_truncate created.
289          * AKPM: I think this can be inside the above `if'.
290          * Note that ext4_orphan_del() has to be able to cope with the
291          * deletion of a non-existent orphan - this is because we don't
292          * know if ext4_truncate() actually created an orphan record.
293          * (Well, we could do this if we need to, but heck - it works)
294          */
295         ext4_orphan_del(handle, inode);
296         EXT4_I(inode)->i_dtime  = get_seconds();
297
298         /*
299          * One subtle ordering requirement: if anything has gone wrong
300          * (transaction abort, IO errors, whatever), then we can still
301          * do these next steps (the fs will already have been marked as
302          * having errors), but we can't free the inode if the mark_dirty
303          * fails.
304          */
305         if (ext4_mark_inode_dirty(handle, inode))
306                 /* If that failed, just do the required in-core inode clear. */
307                 ext4_clear_inode(inode);
308         else
309                 ext4_free_inode(handle, inode);
310         ext4_journal_stop(handle);
311         sb_end_intwrite(inode->i_sb);
312         return;
313 no_delete:
314         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
315 }
316
317 #ifdef CONFIG_QUOTA
318 qsize_t *ext4_get_reserved_space(struct inode *inode)
319 {
320         return &EXT4_I(inode)->i_reserved_quota;
321 }
322 #endif
323
324 /*
325  * Calculate the number of metadata blocks need to reserve
326  * to allocate a block located at @lblock
327  */
328 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
329 {
330         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
331                 return ext4_ext_calc_metadata_amount(inode, lblock);
332
333         return ext4_ind_calc_metadata_amount(inode, lblock);
334 }
335
336 /*
337  * Called with i_data_sem down, which is important since we can call
338  * ext4_discard_preallocations() from here.
339  */
340 void ext4_da_update_reserve_space(struct inode *inode,
341                                         int used, int quota_claim)
342 {
343         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
344         struct ext4_inode_info *ei = EXT4_I(inode);
345
346         spin_lock(&ei->i_block_reservation_lock);
347         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
348         if (unlikely(used > ei->i_reserved_data_blocks)) {
349                 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
350                          "with only %d reserved data blocks",
351                          __func__, inode->i_ino, used,
352                          ei->i_reserved_data_blocks);
353                 WARN_ON(1);
354                 used = ei->i_reserved_data_blocks;
355         }
356
357         if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
358                 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, allocated %d "
359                          "with only %d reserved metadata blocks\n", __func__,
360                          inode->i_ino, ei->i_allocated_meta_blocks,
361                          ei->i_reserved_meta_blocks);
362                 WARN_ON(1);
363                 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
364         }
365
366         /* Update per-inode reservations */
367         ei->i_reserved_data_blocks -= used;
368         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
369         percpu_counter_sub(&sbi->s_dirtyclusters_counter,
370                            used + ei->i_allocated_meta_blocks);
371         ei->i_allocated_meta_blocks = 0;
372
373         if (ei->i_reserved_data_blocks == 0) {
374                 /*
375                  * We can release all of the reserved metadata blocks
376                  * only when we have written all of the delayed
377                  * allocation blocks.
378                  */
379                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
380                                    ei->i_reserved_meta_blocks);
381                 ei->i_reserved_meta_blocks = 0;
382                 ei->i_da_metadata_calc_len = 0;
383         }
384         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
385
386         /* Update quota subsystem for data blocks */
387         if (quota_claim)
388                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
389         else {
390                 /*
391                  * We did fallocate with an offset that is already delayed
392                  * allocated. So on delayed allocated writeback we should
393                  * not re-claim the quota for fallocated blocks.
394                  */
395                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
396         }
397
398         /*
399          * If we have done all the pending block allocations and if
400          * there aren't any writers on the inode, we can discard the
401          * inode's preallocations.
402          */
403         if ((ei->i_reserved_data_blocks == 0) &&
404             (atomic_read(&inode->i_writecount) == 0))
405                 ext4_discard_preallocations(inode);
406 }
407
408 static int __check_block_validity(struct inode *inode, const char *func,
409                                 unsigned int line,
410                                 struct ext4_map_blocks *map)
411 {
412         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
413                                    map->m_len)) {
414                 ext4_error_inode(inode, func, line, map->m_pblk,
415                                  "lblock %lu mapped to illegal pblock "
416                                  "(length %d)", (unsigned long) map->m_lblk,
417                                  map->m_len);
418                 return -EIO;
419         }
420         return 0;
421 }
422
423 #define check_block_validity(inode, map)        \
424         __check_block_validity((inode), __func__, __LINE__, (map))
425
426 /*
427  * Return the number of contiguous dirty pages in a given inode
428  * starting at page frame idx.
429  */
430 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
431                                     unsigned int max_pages)
432 {
433         struct address_space *mapping = inode->i_mapping;
434         pgoff_t index;
435         struct pagevec pvec;
436         pgoff_t num = 0;
437         int i, nr_pages, done = 0;
438
439         if (max_pages == 0)
440                 return 0;
441         pagevec_init(&pvec, 0);
442         while (!done) {
443                 index = idx;
444                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
445                                               PAGECACHE_TAG_DIRTY,
446                                               (pgoff_t)PAGEVEC_SIZE);
447                 if (nr_pages == 0)
448                         break;
449                 for (i = 0; i < nr_pages; i++) {
450                         struct page *page = pvec.pages[i];
451                         struct buffer_head *bh, *head;
452
453                         lock_page(page);
454                         if (unlikely(page->mapping != mapping) ||
455                             !PageDirty(page) ||
456                             PageWriteback(page) ||
457                             page->index != idx) {
458                                 done = 1;
459                                 unlock_page(page);
460                                 break;
461                         }
462                         if (page_has_buffers(page)) {
463                                 bh = head = page_buffers(page);
464                                 do {
465                                         if (!buffer_delay(bh) &&
466                                             !buffer_unwritten(bh))
467                                                 done = 1;
468                                         bh = bh->b_this_page;
469                                 } while (!done && (bh != head));
470                         }
471                         unlock_page(page);
472                         if (done)
473                                 break;
474                         idx++;
475                         num++;
476                         if (num >= max_pages) {
477                                 done = 1;
478                                 break;
479                         }
480                 }
481                 pagevec_release(&pvec);
482         }
483         return num;
484 }
485
486 /*
487  * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map.
488  */
489 static void set_buffers_da_mapped(struct inode *inode,
490                                    struct ext4_map_blocks *map)
491 {
492         struct address_space *mapping = inode->i_mapping;
493         struct pagevec pvec;
494         int i, nr_pages;
495         pgoff_t index, end;
496
497         index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
498         end = (map->m_lblk + map->m_len - 1) >>
499                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
500
501         pagevec_init(&pvec, 0);
502         while (index <= end) {
503                 nr_pages = pagevec_lookup(&pvec, mapping, index,
504                                           min(end - index + 1,
505                                               (pgoff_t)PAGEVEC_SIZE));
506                 if (nr_pages == 0)
507                         break;
508                 for (i = 0; i < nr_pages; i++) {
509                         struct page *page = pvec.pages[i];
510                         struct buffer_head *bh, *head;
511
512                         if (unlikely(page->mapping != mapping) ||
513                             !PageDirty(page))
514                                 break;
515
516                         if (page_has_buffers(page)) {
517                                 bh = head = page_buffers(page);
518                                 do {
519                                         set_buffer_da_mapped(bh);
520                                         bh = bh->b_this_page;
521                                 } while (bh != head);
522                         }
523                         index++;
524                 }
525                 pagevec_release(&pvec);
526         }
527 }
528
529 /*
530  * The ext4_map_blocks() function tries to look up the requested blocks,
531  * and returns if the blocks are already mapped.
532  *
533  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
534  * and store the allocated blocks in the result buffer head and mark it
535  * mapped.
536  *
537  * If file type is extents based, it will call ext4_ext_map_blocks(),
538  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
539  * based files
540  *
541  * On success, it returns the number of blocks being mapped or allocate.
542  * if create==0 and the blocks are pre-allocated and uninitialized block,
543  * the result buffer head is unmapped. If the create ==1, it will make sure
544  * the buffer head is mapped.
545  *
546  * It returns 0 if plain look up failed (blocks have not been allocated), in
547  * that case, buffer head is unmapped
548  *
549  * It returns the error in case of allocation failure.
550  */
551 int ext4_map_blocks(handle_t *handle, struct inode *inode,
552                     struct ext4_map_blocks *map, int flags)
553 {
554         int retval;
555
556         map->m_flags = 0;
557         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
558                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
559                   (unsigned long) map->m_lblk);
560         /*
561          * Try to see if we can get the block without requesting a new
562          * file system block.
563          */
564         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
565                 down_read((&EXT4_I(inode)->i_data_sem));
566         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
567                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
568                                              EXT4_GET_BLOCKS_KEEP_SIZE);
569         } else {
570                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
571                                              EXT4_GET_BLOCKS_KEEP_SIZE);
572         }
573         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
574                 up_read((&EXT4_I(inode)->i_data_sem));
575
576         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
577                 int ret = check_block_validity(inode, map);
578                 if (ret != 0)
579                         return ret;
580         }
581
582         /* If it is only a block(s) look up */
583         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
584                 return retval;
585
586         /*
587          * Returns if the blocks have already allocated
588          *
589          * Note that if blocks have been preallocated
590          * ext4_ext_get_block() returns the create = 0
591          * with buffer head unmapped.
592          */
593         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
594                 return retval;
595
596         /*
597          * When we call get_blocks without the create flag, the
598          * BH_Unwritten flag could have gotten set if the blocks
599          * requested were part of a uninitialized extent.  We need to
600          * clear this flag now that we are committed to convert all or
601          * part of the uninitialized extent to be an initialized
602          * extent.  This is because we need to avoid the combination
603          * of BH_Unwritten and BH_Mapped flags being simultaneously
604          * set on the buffer_head.
605          */
606         map->m_flags &= ~EXT4_MAP_UNWRITTEN;
607
608         /*
609          * New blocks allocate and/or writing to uninitialized extent
610          * will possibly result in updating i_data, so we take
611          * the write lock of i_data_sem, and call get_blocks()
612          * with create == 1 flag.
613          */
614         down_write((&EXT4_I(inode)->i_data_sem));
615
616         /*
617          * if the caller is from delayed allocation writeout path
618          * we have already reserved fs blocks for allocation
619          * let the underlying get_block() function know to
620          * avoid double accounting
621          */
622         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
623                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
624         /*
625          * We need to check for EXT4 here because migrate
626          * could have changed the inode type in between
627          */
628         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
629                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
630         } else {
631                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
632
633                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
634                         /*
635                          * We allocated new blocks which will result in
636                          * i_data's format changing.  Force the migrate
637                          * to fail by clearing migrate flags
638                          */
639                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
640                 }
641
642                 /*
643                  * Update reserved blocks/metadata blocks after successful
644                  * block allocation which had been deferred till now. We don't
645                  * support fallocate for non extent files. So we can update
646                  * reserve space here.
647                  */
648                 if ((retval > 0) &&
649                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
650                         ext4_da_update_reserve_space(inode, retval, 1);
651         }
652         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
653                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
654
655                 /* If we have successfully mapped the delayed allocated blocks,
656                  * set the BH_Da_Mapped bit on them. Its important to do this
657                  * under the protection of i_data_sem.
658                  */
659                 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
660                         set_buffers_da_mapped(inode, map);
661         }
662
663         up_write((&EXT4_I(inode)->i_data_sem));
664         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
665                 int ret = check_block_validity(inode, map);
666                 if (ret != 0)
667                         return ret;
668         }
669         return retval;
670 }
671
672 /* Maximum number of blocks we map for direct IO at once. */
673 #define DIO_MAX_BLOCKS 4096
674
675 static int _ext4_get_block(struct inode *inode, sector_t iblock,
676                            struct buffer_head *bh, int flags)
677 {
678         handle_t *handle = ext4_journal_current_handle();
679         struct ext4_map_blocks map;
680         int ret = 0, started = 0;
681         int dio_credits;
682
683         map.m_lblk = iblock;
684         map.m_len = bh->b_size >> inode->i_blkbits;
685
686         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
687                 /* Direct IO write... */
688                 if (map.m_len > DIO_MAX_BLOCKS)
689                         map.m_len = DIO_MAX_BLOCKS;
690                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
691                 handle = ext4_journal_start(inode, dio_credits);
692                 if (IS_ERR(handle)) {
693                         ret = PTR_ERR(handle);
694                         return ret;
695                 }
696                 started = 1;
697         }
698
699         ret = ext4_map_blocks(handle, inode, &map, flags);
700         if (ret > 0) {
701                 map_bh(bh, inode->i_sb, map.m_pblk);
702                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
703                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
704                 ret = 0;
705         }
706         if (started)
707                 ext4_journal_stop(handle);
708         return ret;
709 }
710
711 int ext4_get_block(struct inode *inode, sector_t iblock,
712                    struct buffer_head *bh, int create)
713 {
714         return _ext4_get_block(inode, iblock, bh,
715                                create ? EXT4_GET_BLOCKS_CREATE : 0);
716 }
717
718 /*
719  * `handle' can be NULL if create is zero
720  */
721 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
722                                 ext4_lblk_t block, int create, int *errp)
723 {
724         struct ext4_map_blocks map;
725         struct buffer_head *bh;
726         int fatal = 0, err;
727
728         J_ASSERT(handle != NULL || create == 0);
729
730         map.m_lblk = block;
731         map.m_len = 1;
732         err = ext4_map_blocks(handle, inode, &map,
733                               create ? EXT4_GET_BLOCKS_CREATE : 0);
734
735         /* ensure we send some value back into *errp */
736         *errp = 0;
737
738         if (err < 0)
739                 *errp = err;
740         if (err <= 0)
741                 return NULL;
742
743         bh = sb_getblk(inode->i_sb, map.m_pblk);
744         if (!bh) {
745                 *errp = -EIO;
746                 return NULL;
747         }
748         if (map.m_flags & EXT4_MAP_NEW) {
749                 J_ASSERT(create != 0);
750                 J_ASSERT(handle != NULL);
751
752                 /*
753                  * Now that we do not always journal data, we should
754                  * keep in mind whether this should always journal the
755                  * new buffer as metadata.  For now, regular file
756                  * writes use ext4_get_block instead, so it's not a
757                  * problem.
758                  */
759                 lock_buffer(bh);
760                 BUFFER_TRACE(bh, "call get_create_access");
761                 fatal = ext4_journal_get_create_access(handle, bh);
762                 if (!fatal && !buffer_uptodate(bh)) {
763                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
764                         set_buffer_uptodate(bh);
765                 }
766                 unlock_buffer(bh);
767                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
768                 err = ext4_handle_dirty_metadata(handle, inode, bh);
769                 if (!fatal)
770                         fatal = err;
771         } else {
772                 BUFFER_TRACE(bh, "not a new buffer");
773         }
774         if (fatal) {
775                 *errp = fatal;
776                 brelse(bh);
777                 bh = NULL;
778         }
779         return bh;
780 }
781
782 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
783                                ext4_lblk_t block, int create, int *err)
784 {
785         struct buffer_head *bh;
786
787         bh = ext4_getblk(handle, inode, block, create, err);
788         if (!bh)
789                 return bh;
790         if (buffer_uptodate(bh))
791                 return bh;
792         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
793         wait_on_buffer(bh);
794         if (buffer_uptodate(bh))
795                 return bh;
796         put_bh(bh);
797         *err = -EIO;
798         return NULL;
799 }
800
801 static int walk_page_buffers(handle_t *handle,
802                              struct buffer_head *head,
803                              unsigned from,
804                              unsigned to,
805                              int *partial,
806                              int (*fn)(handle_t *handle,
807                                        struct buffer_head *bh))
808 {
809         struct buffer_head *bh;
810         unsigned block_start, block_end;
811         unsigned blocksize = head->b_size;
812         int err, ret = 0;
813         struct buffer_head *next;
814
815         for (bh = head, block_start = 0;
816              ret == 0 && (bh != head || !block_start);
817              block_start = block_end, bh = next) {
818                 next = bh->b_this_page;
819                 block_end = block_start + blocksize;
820                 if (block_end <= from || block_start >= to) {
821                         if (partial && !buffer_uptodate(bh))
822                                 *partial = 1;
823                         continue;
824                 }
825                 err = (*fn)(handle, bh);
826                 if (!ret)
827                         ret = err;
828         }
829         return ret;
830 }
831
832 /*
833  * To preserve ordering, it is essential that the hole instantiation and
834  * the data write be encapsulated in a single transaction.  We cannot
835  * close off a transaction and start a new one between the ext4_get_block()
836  * and the commit_write().  So doing the jbd2_journal_start at the start of
837  * prepare_write() is the right place.
838  *
839  * Also, this function can nest inside ext4_writepage() ->
840  * block_write_full_page(). In that case, we *know* that ext4_writepage()
841  * has generated enough buffer credits to do the whole page.  So we won't
842  * block on the journal in that case, which is good, because the caller may
843  * be PF_MEMALLOC.
844  *
845  * By accident, ext4 can be reentered when a transaction is open via
846  * quota file writes.  If we were to commit the transaction while thus
847  * reentered, there can be a deadlock - we would be holding a quota
848  * lock, and the commit would never complete if another thread had a
849  * transaction open and was blocking on the quota lock - a ranking
850  * violation.
851  *
852  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
853  * will _not_ run commit under these circumstances because handle->h_ref
854  * is elevated.  We'll still have enough credits for the tiny quotafile
855  * write.
856  */
857 static int do_journal_get_write_access(handle_t *handle,
858                                        struct buffer_head *bh)
859 {
860         int dirty = buffer_dirty(bh);
861         int ret;
862
863         if (!buffer_mapped(bh) || buffer_freed(bh))
864                 return 0;
865         /*
866          * __block_write_begin() could have dirtied some buffers. Clean
867          * the dirty bit as jbd2_journal_get_write_access() could complain
868          * otherwise about fs integrity issues. Setting of the dirty bit
869          * by __block_write_begin() isn't a real problem here as we clear
870          * the bit before releasing a page lock and thus writeback cannot
871          * ever write the buffer.
872          */
873         if (dirty)
874                 clear_buffer_dirty(bh);
875         ret = ext4_journal_get_write_access(handle, bh);
876         if (!ret && dirty)
877                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
878         return ret;
879 }
880
881 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
882                    struct buffer_head *bh_result, int create);
883 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
884                    struct buffer_head *bh_result, int create);
885 static int ext4_write_begin(struct file *file, struct address_space *mapping,
886                             loff_t pos, unsigned len, unsigned flags,
887                             struct page **pagep, void **fsdata)
888 {
889         struct inode *inode = mapping->host;
890         int ret, needed_blocks;
891         handle_t *handle;
892         int retries = 0;
893         struct page *page;
894         pgoff_t index;
895         unsigned from, to;
896
897         trace_ext4_write_begin(inode, pos, len, flags);
898         /*
899          * Reserve one block more for addition to orphan list in case
900          * we allocate blocks but write fails for some reason
901          */
902         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
903         index = pos >> PAGE_CACHE_SHIFT;
904         from = pos & (PAGE_CACHE_SIZE - 1);
905         to = from + len;
906
907 retry:
908         handle = ext4_journal_start(inode, needed_blocks);
909         if (IS_ERR(handle)) {
910                 ret = PTR_ERR(handle);
911                 goto out;
912         }
913
914         /* We cannot recurse into the filesystem as the transaction is already
915          * started */
916         flags |= AOP_FLAG_NOFS;
917
918         page = grab_cache_page_write_begin(mapping, index, flags);
919         if (!page) {
920                 ext4_journal_stop(handle);
921                 ret = -ENOMEM;
922                 goto out;
923         }
924         *pagep = page;
925
926         if (ext4_should_dioread_nolock(inode))
927                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
928         else
929                 ret = __block_write_begin(page, pos, len, ext4_get_block);
930
931         if (!ret && ext4_should_journal_data(inode)) {
932                 ret = walk_page_buffers(handle, page_buffers(page),
933                                 from, to, NULL, do_journal_get_write_access);
934         }
935
936         if (ret) {
937                 unlock_page(page);
938                 page_cache_release(page);
939                 /*
940                  * __block_write_begin may have instantiated a few blocks
941                  * outside i_size.  Trim these off again. Don't need
942                  * i_size_read because we hold i_mutex.
943                  *
944                  * Add inode to orphan list in case we crash before
945                  * truncate finishes
946                  */
947                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
948                         ext4_orphan_add(handle, inode);
949
950                 ext4_journal_stop(handle);
951                 if (pos + len > inode->i_size) {
952                         ext4_truncate_failed_write(inode);
953                         /*
954                          * If truncate failed early the inode might
955                          * still be on the orphan list; we need to
956                          * make sure the inode is removed from the
957                          * orphan list in that case.
958                          */
959                         if (inode->i_nlink)
960                                 ext4_orphan_del(NULL, inode);
961                 }
962         }
963
964         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
965                 goto retry;
966 out:
967         return ret;
968 }
969
970 /* For write_end() in data=journal mode */
971 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
972 {
973         if (!buffer_mapped(bh) || buffer_freed(bh))
974                 return 0;
975         set_buffer_uptodate(bh);
976         return ext4_handle_dirty_metadata(handle, NULL, bh);
977 }
978
979 static int ext4_generic_write_end(struct file *file,
980                                   struct address_space *mapping,
981                                   loff_t pos, unsigned len, unsigned copied,
982                                   struct page *page, void *fsdata)
983 {
984         int i_size_changed = 0;
985         struct inode *inode = mapping->host;
986         handle_t *handle = ext4_journal_current_handle();
987
988         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
989
990         /*
991          * No need to use i_size_read() here, the i_size
992          * cannot change under us because we hold i_mutex.
993          *
994          * But it's important to update i_size while still holding page lock:
995          * page writeout could otherwise come in and zero beyond i_size.
996          */
997         if (pos + copied > inode->i_size) {
998                 i_size_write(inode, pos + copied);
999                 i_size_changed = 1;
1000         }
1001
1002         if (pos + copied >  EXT4_I(inode)->i_disksize) {
1003                 /* We need to mark inode dirty even if
1004                  * new_i_size is less that inode->i_size
1005                  * bu greater than i_disksize.(hint delalloc)
1006                  */
1007                 ext4_update_i_disksize(inode, (pos + copied));
1008                 i_size_changed = 1;
1009         }
1010         unlock_page(page);
1011         page_cache_release(page);
1012
1013         /*
1014          * Don't mark the inode dirty under page lock. First, it unnecessarily
1015          * makes the holding time of page lock longer. Second, it forces lock
1016          * ordering of page lock and transaction start for journaling
1017          * filesystems.
1018          */
1019         if (i_size_changed)
1020                 ext4_mark_inode_dirty(handle, inode);
1021
1022         return copied;
1023 }
1024
1025 /*
1026  * We need to pick up the new inode size which generic_commit_write gave us
1027  * `file' can be NULL - eg, when called from page_symlink().
1028  *
1029  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1030  * buffers are managed internally.
1031  */
1032 static int ext4_ordered_write_end(struct file *file,
1033                                   struct address_space *mapping,
1034                                   loff_t pos, unsigned len, unsigned copied,
1035                                   struct page *page, void *fsdata)
1036 {
1037         handle_t *handle = ext4_journal_current_handle();
1038         struct inode *inode = mapping->host;
1039         int ret = 0, ret2;
1040
1041         trace_ext4_ordered_write_end(inode, pos, len, copied);
1042         ret = ext4_jbd2_file_inode(handle, inode);
1043
1044         if (ret == 0) {
1045                 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1046                                                         page, fsdata);
1047                 copied = ret2;
1048                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1049                         /* if we have allocated more blocks and copied
1050                          * less. We will have blocks allocated outside
1051                          * inode->i_size. So truncate them
1052                          */
1053                         ext4_orphan_add(handle, inode);
1054                 if (ret2 < 0)
1055                         ret = ret2;
1056         } else {
1057                 unlock_page(page);
1058                 page_cache_release(page);
1059         }
1060
1061         ret2 = ext4_journal_stop(handle);
1062         if (!ret)
1063                 ret = ret2;
1064
1065         if (pos + len > inode->i_size) {
1066                 ext4_truncate_failed_write(inode);
1067                 /*
1068                  * If truncate failed early the inode might still be
1069                  * on the orphan list; we need to make sure the inode
1070                  * is removed from the orphan list in that case.
1071                  */
1072                 if (inode->i_nlink)
1073                         ext4_orphan_del(NULL, inode);
1074         }
1075
1076
1077         return ret ? ret : copied;
1078 }
1079
1080 static int ext4_writeback_write_end(struct file *file,
1081                                     struct address_space *mapping,
1082                                     loff_t pos, unsigned len, unsigned copied,
1083                                     struct page *page, void *fsdata)
1084 {
1085         handle_t *handle = ext4_journal_current_handle();
1086         struct inode *inode = mapping->host;
1087         int ret = 0, ret2;
1088
1089         trace_ext4_writeback_write_end(inode, pos, len, copied);
1090         ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1091                                                         page, fsdata);
1092         copied = ret2;
1093         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1094                 /* if we have allocated more blocks and copied
1095                  * less. We will have blocks allocated outside
1096                  * inode->i_size. So truncate them
1097                  */
1098                 ext4_orphan_add(handle, inode);
1099
1100         if (ret2 < 0)
1101                 ret = ret2;
1102
1103         ret2 = ext4_journal_stop(handle);
1104         if (!ret)
1105                 ret = ret2;
1106
1107         if (pos + len > inode->i_size) {
1108                 ext4_truncate_failed_write(inode);
1109                 /*
1110                  * If truncate failed early the inode might still be
1111                  * on the orphan list; we need to make sure the inode
1112                  * is removed from the orphan list in that case.
1113                  */
1114                 if (inode->i_nlink)
1115                         ext4_orphan_del(NULL, inode);
1116         }
1117
1118         return ret ? ret : copied;
1119 }
1120
1121 static int ext4_journalled_write_end(struct file *file,
1122                                      struct address_space *mapping,
1123                                      loff_t pos, unsigned len, unsigned copied,
1124                                      struct page *page, void *fsdata)
1125 {
1126         handle_t *handle = ext4_journal_current_handle();
1127         struct inode *inode = mapping->host;
1128         int ret = 0, ret2;
1129         int partial = 0;
1130         unsigned from, to;
1131         loff_t new_i_size;
1132
1133         trace_ext4_journalled_write_end(inode, pos, len, copied);
1134         from = pos & (PAGE_CACHE_SIZE - 1);
1135         to = from + len;
1136
1137         BUG_ON(!ext4_handle_valid(handle));
1138
1139         if (copied < len) {
1140                 if (!PageUptodate(page))
1141                         copied = 0;
1142                 page_zero_new_buffers(page, from+copied, to);
1143         }
1144
1145         ret = walk_page_buffers(handle, page_buffers(page), from,
1146                                 to, &partial, write_end_fn);
1147         if (!partial)
1148                 SetPageUptodate(page);
1149         new_i_size = pos + copied;
1150         if (new_i_size > inode->i_size)
1151                 i_size_write(inode, pos+copied);
1152         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1153         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1154         if (new_i_size > EXT4_I(inode)->i_disksize) {
1155                 ext4_update_i_disksize(inode, new_i_size);
1156                 ret2 = ext4_mark_inode_dirty(handle, inode);
1157                 if (!ret)
1158                         ret = ret2;
1159         }
1160
1161         unlock_page(page);
1162         page_cache_release(page);
1163         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1164                 /* if we have allocated more blocks and copied
1165                  * less. We will have blocks allocated outside
1166                  * inode->i_size. So truncate them
1167                  */
1168                 ext4_orphan_add(handle, inode);
1169
1170         ret2 = ext4_journal_stop(handle);
1171         if (!ret)
1172                 ret = ret2;
1173         if (pos + len > inode->i_size) {
1174                 ext4_truncate_failed_write(inode);
1175                 /*
1176                  * If truncate failed early the inode might still be
1177                  * on the orphan list; we need to make sure the inode
1178                  * is removed from the orphan list in that case.
1179                  */
1180                 if (inode->i_nlink)
1181                         ext4_orphan_del(NULL, inode);
1182         }
1183
1184         return ret ? ret : copied;
1185 }
1186
1187 /*
1188  * Reserve a single cluster located at lblock
1189  */
1190 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1191 {
1192         int retries = 0;
1193         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1194         struct ext4_inode_info *ei = EXT4_I(inode);
1195         unsigned int md_needed;
1196         int ret;
1197         ext4_lblk_t save_last_lblock;
1198         int save_len;
1199
1200         /*
1201          * We will charge metadata quota at writeout time; this saves
1202          * us from metadata over-estimation, though we may go over by
1203          * a small amount in the end.  Here we just reserve for data.
1204          */
1205         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1206         if (ret)
1207                 return ret;
1208
1209         /*
1210          * recalculate the amount of metadata blocks to reserve
1211          * in order to allocate nrblocks
1212          * worse case is one extent per block
1213          */
1214 repeat:
1215         spin_lock(&ei->i_block_reservation_lock);
1216         /*
1217          * ext4_calc_metadata_amount() has side effects, which we have
1218          * to be prepared undo if we fail to claim space.
1219          */
1220         save_len = ei->i_da_metadata_calc_len;
1221         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1222         md_needed = EXT4_NUM_B2C(sbi,
1223                                  ext4_calc_metadata_amount(inode, lblock));
1224         trace_ext4_da_reserve_space(inode, md_needed);
1225
1226         /*
1227          * We do still charge estimated metadata to the sb though;
1228          * we cannot afford to run out of free blocks.
1229          */
1230         if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1231                 ei->i_da_metadata_calc_len = save_len;
1232                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1233                 spin_unlock(&ei->i_block_reservation_lock);
1234                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1235                         yield();
1236                         goto repeat;
1237                 }
1238                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1239                 return -ENOSPC;
1240         }
1241         ei->i_reserved_data_blocks++;
1242         ei->i_reserved_meta_blocks += md_needed;
1243         spin_unlock(&ei->i_block_reservation_lock);
1244
1245         return 0;       /* success */
1246 }
1247
1248 static void ext4_da_release_space(struct inode *inode, int to_free)
1249 {
1250         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1251         struct ext4_inode_info *ei = EXT4_I(inode);
1252
1253         if (!to_free)
1254                 return;         /* Nothing to release, exit */
1255
1256         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1257
1258         trace_ext4_da_release_space(inode, to_free);
1259         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1260                 /*
1261                  * if there aren't enough reserved blocks, then the
1262                  * counter is messed up somewhere.  Since this
1263                  * function is called from invalidate page, it's
1264                  * harmless to return without any action.
1265                  */
1266                 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1267                          "ino %lu, to_free %d with only %d reserved "
1268                          "data blocks", inode->i_ino, to_free,
1269                          ei->i_reserved_data_blocks);
1270                 WARN_ON(1);
1271                 to_free = ei->i_reserved_data_blocks;
1272         }
1273         ei->i_reserved_data_blocks -= to_free;
1274
1275         if (ei->i_reserved_data_blocks == 0) {
1276                 /*
1277                  * We can release all of the reserved metadata blocks
1278                  * only when we have written all of the delayed
1279                  * allocation blocks.
1280                  * Note that in case of bigalloc, i_reserved_meta_blocks,
1281                  * i_reserved_data_blocks, etc. refer to number of clusters.
1282                  */
1283                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1284                                    ei->i_reserved_meta_blocks);
1285                 ei->i_reserved_meta_blocks = 0;
1286                 ei->i_da_metadata_calc_len = 0;
1287         }
1288
1289         /* update fs dirty data blocks counter */
1290         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1291
1292         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1293
1294         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1295 }
1296
1297 static void ext4_da_page_release_reservation(struct page *page,
1298                                              unsigned long offset)
1299 {
1300         int to_release = 0;
1301         struct buffer_head *head, *bh;
1302         unsigned int curr_off = 0;
1303         struct inode *inode = page->mapping->host;
1304         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1305         int num_clusters;
1306
1307         head = page_buffers(page);
1308         bh = head;
1309         do {
1310                 unsigned int next_off = curr_off + bh->b_size;
1311
1312                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1313                         to_release++;
1314                         clear_buffer_delay(bh);
1315                         clear_buffer_da_mapped(bh);
1316                 }
1317                 curr_off = next_off;
1318         } while ((bh = bh->b_this_page) != head);
1319
1320         /* If we have released all the blocks belonging to a cluster, then we
1321          * need to release the reserved space for that cluster. */
1322         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1323         while (num_clusters > 0) {
1324                 ext4_fsblk_t lblk;
1325                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1326                         ((num_clusters - 1) << sbi->s_cluster_bits);
1327                 if (sbi->s_cluster_ratio == 1 ||
1328                     !ext4_find_delalloc_cluster(inode, lblk, 1))
1329                         ext4_da_release_space(inode, 1);
1330
1331                 num_clusters--;
1332         }
1333 }
1334
1335 /*
1336  * Delayed allocation stuff
1337  */
1338
1339 /*
1340  * mpage_da_submit_io - walks through extent of pages and try to write
1341  * them with writepage() call back
1342  *
1343  * @mpd->inode: inode
1344  * @mpd->first_page: first page of the extent
1345  * @mpd->next_page: page after the last page of the extent
1346  *
1347  * By the time mpage_da_submit_io() is called we expect all blocks
1348  * to be allocated. this may be wrong if allocation failed.
1349  *
1350  * As pages are already locked by write_cache_pages(), we can't use it
1351  */
1352 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1353                               struct ext4_map_blocks *map)
1354 {
1355         struct pagevec pvec;
1356         unsigned long index, end;
1357         int ret = 0, err, nr_pages, i;
1358         struct inode *inode = mpd->inode;
1359         struct address_space *mapping = inode->i_mapping;
1360         loff_t size = i_size_read(inode);
1361         unsigned int len, block_start;
1362         struct buffer_head *bh, *page_bufs = NULL;
1363         int journal_data = ext4_should_journal_data(inode);
1364         sector_t pblock = 0, cur_logical = 0;
1365         struct ext4_io_submit io_submit;
1366
1367         BUG_ON(mpd->next_page <= mpd->first_page);
1368         memset(&io_submit, 0, sizeof(io_submit));
1369         /*
1370          * We need to start from the first_page to the next_page - 1
1371          * to make sure we also write the mapped dirty buffer_heads.
1372          * If we look at mpd->b_blocknr we would only be looking
1373          * at the currently mapped buffer_heads.
1374          */
1375         index = mpd->first_page;
1376         end = mpd->next_page - 1;
1377
1378         pagevec_init(&pvec, 0);
1379         while (index <= end) {
1380                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1381                 if (nr_pages == 0)
1382                         break;
1383                 for (i = 0; i < nr_pages; i++) {
1384                         int commit_write = 0, skip_page = 0;
1385                         struct page *page = pvec.pages[i];
1386
1387                         index = page->index;
1388                         if (index > end)
1389                                 break;
1390
1391                         if (index == size >> PAGE_CACHE_SHIFT)
1392                                 len = size & ~PAGE_CACHE_MASK;
1393                         else
1394                                 len = PAGE_CACHE_SIZE;
1395                         if (map) {
1396                                 cur_logical = index << (PAGE_CACHE_SHIFT -
1397                                                         inode->i_blkbits);
1398                                 pblock = map->m_pblk + (cur_logical -
1399                                                         map->m_lblk);
1400                         }
1401                         index++;
1402
1403                         BUG_ON(!PageLocked(page));
1404                         BUG_ON(PageWriteback(page));
1405
1406                         /*
1407                          * If the page does not have buffers (for
1408                          * whatever reason), try to create them using
1409                          * __block_write_begin.  If this fails,
1410                          * skip the page and move on.
1411                          */
1412                         if (!page_has_buffers(page)) {
1413                                 if (__block_write_begin(page, 0, len,
1414                                                 noalloc_get_block_write)) {
1415                                 skip_page:
1416                                         unlock_page(page);
1417                                         continue;
1418                                 }
1419                                 commit_write = 1;
1420                         }
1421
1422                         bh = page_bufs = page_buffers(page);
1423                         block_start = 0;
1424                         do {
1425                                 if (!bh)
1426                                         goto skip_page;
1427                                 if (map && (cur_logical >= map->m_lblk) &&
1428                                     (cur_logical <= (map->m_lblk +
1429                                                      (map->m_len - 1)))) {
1430                                         if (buffer_delay(bh)) {
1431                                                 clear_buffer_delay(bh);
1432                                                 bh->b_blocknr = pblock;
1433                                         }
1434                                         if (buffer_da_mapped(bh))
1435                                                 clear_buffer_da_mapped(bh);
1436                                         if (buffer_unwritten(bh) ||
1437                                             buffer_mapped(bh))
1438                                                 BUG_ON(bh->b_blocknr != pblock);
1439                                         if (map->m_flags & EXT4_MAP_UNINIT)
1440                                                 set_buffer_uninit(bh);
1441                                         clear_buffer_unwritten(bh);
1442                                 }
1443
1444                                 /*
1445                                  * skip page if block allocation undone and
1446                                  * block is dirty
1447                                  */
1448                                 if (ext4_bh_delay_or_unwritten(NULL, bh))
1449                                         skip_page = 1;
1450                                 bh = bh->b_this_page;
1451                                 block_start += bh->b_size;
1452                                 cur_logical++;
1453                                 pblock++;
1454                         } while (bh != page_bufs);
1455
1456                         if (skip_page)
1457                                 goto skip_page;
1458
1459                         if (commit_write)
1460                                 /* mark the buffer_heads as dirty & uptodate */
1461                                 block_commit_write(page, 0, len);
1462
1463                         clear_page_dirty_for_io(page);
1464                         /*
1465                          * Delalloc doesn't support data journalling,
1466                          * but eventually maybe we'll lift this
1467                          * restriction.
1468                          */
1469                         if (unlikely(journal_data && PageChecked(page)))
1470                                 err = __ext4_journalled_writepage(page, len);
1471                         else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1472                                 err = ext4_bio_write_page(&io_submit, page,
1473                                                           len, mpd->wbc);
1474                         else if (buffer_uninit(page_bufs)) {
1475                                 ext4_set_bh_endio(page_bufs, inode);
1476                                 err = block_write_full_page_endio(page,
1477                                         noalloc_get_block_write,
1478                                         mpd->wbc, ext4_end_io_buffer_write);
1479                         } else
1480                                 err = block_write_full_page(page,
1481                                         noalloc_get_block_write, mpd->wbc);
1482
1483                         if (!err)
1484                                 mpd->pages_written++;
1485                         /*
1486                          * In error case, we have to continue because
1487                          * remaining pages are still locked
1488                          */
1489                         if (ret == 0)
1490                                 ret = err;
1491                 }
1492                 pagevec_release(&pvec);
1493         }
1494         ext4_io_submit(&io_submit);
1495         return ret;
1496 }
1497
1498 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1499 {
1500         int nr_pages, i;
1501         pgoff_t index, end;
1502         struct pagevec pvec;
1503         struct inode *inode = mpd->inode;
1504         struct address_space *mapping = inode->i_mapping;
1505
1506         index = mpd->first_page;
1507         end   = mpd->next_page - 1;
1508         while (index <= end) {
1509                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1510                 if (nr_pages == 0)
1511                         break;
1512                 for (i = 0; i < nr_pages; i++) {
1513                         struct page *page = pvec.pages[i];
1514                         if (page->index > end)
1515                                 break;
1516                         BUG_ON(!PageLocked(page));
1517                         BUG_ON(PageWriteback(page));
1518                         block_invalidatepage(page, 0);
1519                         ClearPageUptodate(page);
1520                         unlock_page(page);
1521                 }
1522                 index = pvec.pages[nr_pages - 1]->index + 1;
1523                 pagevec_release(&pvec);
1524         }
1525         return;
1526 }
1527
1528 static void ext4_print_free_blocks(struct inode *inode)
1529 {
1530         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1531         struct super_block *sb = inode->i_sb;
1532
1533         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1534                EXT4_C2B(EXT4_SB(inode->i_sb),
1535                         ext4_count_free_clusters(inode->i_sb)));
1536         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1537         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1538                (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1539                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1540         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1541                (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1542                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1543         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1544         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1545                  EXT4_I(inode)->i_reserved_data_blocks);
1546         ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1547                EXT4_I(inode)->i_reserved_meta_blocks);
1548         return;
1549 }
1550
1551 /*
1552  * mpage_da_map_and_submit - go through given space, map them
1553  *       if necessary, and then submit them for I/O
1554  *
1555  * @mpd - bh describing space
1556  *
1557  * The function skips space we know is already mapped to disk blocks.
1558  *
1559  */
1560 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1561 {
1562         int err, blks, get_blocks_flags;
1563         struct ext4_map_blocks map, *mapp = NULL;
1564         sector_t next = mpd->b_blocknr;
1565         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1566         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1567         handle_t *handle = NULL;
1568
1569         /*
1570          * If the blocks are mapped already, or we couldn't accumulate
1571          * any blocks, then proceed immediately to the submission stage.
1572          */
1573         if ((mpd->b_size == 0) ||
1574             ((mpd->b_state  & (1 << BH_Mapped)) &&
1575              !(mpd->b_state & (1 << BH_Delay)) &&
1576              !(mpd->b_state & (1 << BH_Unwritten))))
1577                 goto submit_io;
1578
1579         handle = ext4_journal_current_handle();
1580         BUG_ON(!handle);
1581
1582         /*
1583          * Call ext4_map_blocks() to allocate any delayed allocation
1584          * blocks, or to convert an uninitialized extent to be
1585          * initialized (in the case where we have written into
1586          * one or more preallocated blocks).
1587          *
1588          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1589          * indicate that we are on the delayed allocation path.  This
1590          * affects functions in many different parts of the allocation
1591          * call path.  This flag exists primarily because we don't
1592          * want to change *many* call functions, so ext4_map_blocks()
1593          * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1594          * inode's allocation semaphore is taken.
1595          *
1596          * If the blocks in questions were delalloc blocks, set
1597          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1598          * variables are updated after the blocks have been allocated.
1599          */
1600         map.m_lblk = next;
1601         map.m_len = max_blocks;
1602         get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1603         if (ext4_should_dioread_nolock(mpd->inode))
1604                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1605         if (mpd->b_state & (1 << BH_Delay))
1606                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1607
1608         blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1609         if (blks < 0) {
1610                 struct super_block *sb = mpd->inode->i_sb;
1611
1612                 err = blks;
1613                 /*
1614                  * If get block returns EAGAIN or ENOSPC and there
1615                  * appears to be free blocks we will just let
1616                  * mpage_da_submit_io() unlock all of the pages.
1617                  */
1618                 if (err == -EAGAIN)
1619                         goto submit_io;
1620
1621                 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1622                         mpd->retval = err;
1623                         goto submit_io;
1624                 }
1625
1626                 /*
1627                  * get block failure will cause us to loop in
1628                  * writepages, because a_ops->writepage won't be able
1629                  * to make progress. The page will be redirtied by
1630                  * writepage and writepages will again try to write
1631                  * the same.
1632                  */
1633                 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1634                         ext4_msg(sb, KERN_CRIT,
1635                                  "delayed block allocation failed for inode %lu "
1636                                  "at logical offset %llu with max blocks %zd "
1637                                  "with error %d", mpd->inode->i_ino,
1638                                  (unsigned long long) next,
1639                                  mpd->b_size >> mpd->inode->i_blkbits, err);
1640                         ext4_msg(sb, KERN_CRIT,
1641                                 "This should not happen!! Data will be lost\n");
1642                         if (err == -ENOSPC)
1643                                 ext4_print_free_blocks(mpd->inode);
1644                 }
1645                 /* invalidate all the pages */
1646                 ext4_da_block_invalidatepages(mpd);
1647
1648                 /* Mark this page range as having been completed */
1649                 mpd->io_done = 1;
1650                 return;
1651         }
1652         BUG_ON(blks == 0);
1653
1654         mapp = &map;
1655         if (map.m_flags & EXT4_MAP_NEW) {
1656                 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1657                 int i;
1658
1659                 for (i = 0; i < map.m_len; i++)
1660                         unmap_underlying_metadata(bdev, map.m_pblk + i);
1661
1662                 if (ext4_should_order_data(mpd->inode)) {
1663                         err = ext4_jbd2_file_inode(handle, mpd->inode);
1664                         if (err) {
1665                                 /* Only if the journal is aborted */
1666                                 mpd->retval = err;
1667                                 goto submit_io;
1668                         }
1669                 }
1670         }
1671
1672         /*
1673          * Update on-disk size along with block allocation.
1674          */
1675         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1676         if (disksize > i_size_read(mpd->inode))
1677                 disksize = i_size_read(mpd->inode);
1678         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1679                 ext4_update_i_disksize(mpd->inode, disksize);
1680                 err = ext4_mark_inode_dirty(handle, mpd->inode);
1681                 if (err)
1682                         ext4_error(mpd->inode->i_sb,
1683                                    "Failed to mark inode %lu dirty",
1684                                    mpd->inode->i_ino);
1685         }
1686
1687 submit_io:
1688         mpage_da_submit_io(mpd, mapp);
1689         mpd->io_done = 1;
1690 }
1691
1692 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1693                 (1 << BH_Delay) | (1 << BH_Unwritten))
1694
1695 /*
1696  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1697  *
1698  * @mpd->lbh - extent of blocks
1699  * @logical - logical number of the block in the file
1700  * @bh - bh of the block (used to access block's state)
1701  *
1702  * the function is used to collect contig. blocks in same state
1703  */
1704 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1705                                    sector_t logical, size_t b_size,
1706                                    unsigned long b_state)
1707 {
1708         sector_t next;
1709         int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1710
1711         /*
1712          * XXX Don't go larger than mballoc is willing to allocate
1713          * This is a stopgap solution.  We eventually need to fold
1714          * mpage_da_submit_io() into this function and then call
1715          * ext4_map_blocks() multiple times in a loop
1716          */
1717         if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1718                 goto flush_it;
1719
1720         /* check if thereserved journal credits might overflow */
1721         if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1722                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1723                         /*
1724                          * With non-extent format we are limited by the journal
1725                          * credit available.  Total credit needed to insert
1726                          * nrblocks contiguous blocks is dependent on the
1727                          * nrblocks.  So limit nrblocks.
1728                          */
1729                         goto flush_it;
1730                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1731                                 EXT4_MAX_TRANS_DATA) {
1732                         /*
1733                          * Adding the new buffer_head would make it cross the
1734                          * allowed limit for which we have journal credit
1735                          * reserved. So limit the new bh->b_size
1736                          */
1737                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1738                                                 mpd->inode->i_blkbits;
1739                         /* we will do mpage_da_submit_io in the next loop */
1740                 }
1741         }
1742         /*
1743          * First block in the extent
1744          */
1745         if (mpd->b_size == 0) {
1746                 mpd->b_blocknr = logical;
1747                 mpd->b_size = b_size;
1748                 mpd->b_state = b_state & BH_FLAGS;
1749                 return;
1750         }
1751
1752         next = mpd->b_blocknr + nrblocks;
1753         /*
1754          * Can we merge the block to our big extent?
1755          */
1756         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1757                 mpd->b_size += b_size;
1758                 return;
1759         }
1760
1761 flush_it:
1762         /*
1763          * We couldn't merge the block to our extent, so we
1764          * need to flush current  extent and start new one
1765          */
1766         mpage_da_map_and_submit(mpd);
1767         return;
1768 }
1769
1770 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1771 {
1772         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1773 }
1774
1775 /*
1776  * This function is grabs code from the very beginning of
1777  * ext4_map_blocks, but assumes that the caller is from delayed write
1778  * time. This function looks up the requested blocks and sets the
1779  * buffer delay bit under the protection of i_data_sem.
1780  */
1781 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1782                               struct ext4_map_blocks *map,
1783                               struct buffer_head *bh)
1784 {
1785         int retval;
1786         sector_t invalid_block = ~((sector_t) 0xffff);
1787
1788         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1789                 invalid_block = ~0;
1790
1791         map->m_flags = 0;
1792         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1793                   "logical block %lu\n", inode->i_ino, map->m_len,
1794                   (unsigned long) map->m_lblk);
1795         /*
1796          * Try to see if we can get the block without requesting a new
1797          * file system block.
1798          */
1799         down_read((&EXT4_I(inode)->i_data_sem));
1800         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1801                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1802         else
1803                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1804
1805         if (retval == 0) {
1806                 /*
1807                  * XXX: __block_prepare_write() unmaps passed block,
1808                  * is it OK?
1809                  */
1810                 /* If the block was allocated from previously allocated cluster,
1811                  * then we dont need to reserve it again. */
1812                 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1813                         retval = ext4_da_reserve_space(inode, iblock);
1814                         if (retval)
1815                                 /* not enough space to reserve */
1816                                 goto out_unlock;
1817                 }
1818
1819                 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1820                  * and it should not appear on the bh->b_state.
1821                  */
1822                 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1823
1824                 map_bh(bh, inode->i_sb, invalid_block);
1825                 set_buffer_new(bh);
1826                 set_buffer_delay(bh);
1827         }
1828
1829 out_unlock:
1830         up_read((&EXT4_I(inode)->i_data_sem));
1831
1832         return retval;
1833 }
1834
1835 /*
1836  * This is a special get_blocks_t callback which is used by
1837  * ext4_da_write_begin().  It will either return mapped block or
1838  * reserve space for a single block.
1839  *
1840  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1841  * We also have b_blocknr = -1 and b_bdev initialized properly
1842  *
1843  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1844  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1845  * initialized properly.
1846  */
1847 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1848                                   struct buffer_head *bh, int create)
1849 {
1850         struct ext4_map_blocks map;
1851         int ret = 0;
1852
1853         BUG_ON(create == 0);
1854         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1855
1856         map.m_lblk = iblock;
1857         map.m_len = 1;
1858
1859         /*
1860          * first, we need to know whether the block is allocated already
1861          * preallocated blocks are unmapped but should treated
1862          * the same as allocated blocks.
1863          */
1864         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1865         if (ret <= 0)
1866                 return ret;
1867
1868         map_bh(bh, inode->i_sb, map.m_pblk);
1869         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1870
1871         if (buffer_unwritten(bh)) {
1872                 /* A delayed write to unwritten bh should be marked
1873                  * new and mapped.  Mapped ensures that we don't do
1874                  * get_block multiple times when we write to the same
1875                  * offset and new ensures that we do proper zero out
1876                  * for partial write.
1877                  */
1878                 set_buffer_new(bh);
1879                 set_buffer_mapped(bh);
1880         }
1881         return 0;
1882 }
1883
1884 /*
1885  * This function is used as a standard get_block_t calback function
1886  * when there is no desire to allocate any blocks.  It is used as a
1887  * callback function for block_write_begin() and block_write_full_page().
1888  * These functions should only try to map a single block at a time.
1889  *
1890  * Since this function doesn't do block allocations even if the caller
1891  * requests it by passing in create=1, it is critically important that
1892  * any caller checks to make sure that any buffer heads are returned
1893  * by this function are either all already mapped or marked for
1894  * delayed allocation before calling  block_write_full_page().  Otherwise,
1895  * b_blocknr could be left unitialized, and the page write functions will
1896  * be taken by surprise.
1897  */
1898 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1899                                    struct buffer_head *bh_result, int create)
1900 {
1901         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1902         return _ext4_get_block(inode, iblock, bh_result, 0);
1903 }
1904
1905 static int bget_one(handle_t *handle, struct buffer_head *bh)
1906 {
1907         get_bh(bh);
1908         return 0;
1909 }
1910
1911 static int bput_one(handle_t *handle, struct buffer_head *bh)
1912 {
1913         put_bh(bh);
1914         return 0;
1915 }
1916
1917 static int __ext4_journalled_writepage(struct page *page,
1918                                        unsigned int len)
1919 {
1920         struct address_space *mapping = page->mapping;
1921         struct inode *inode = mapping->host;
1922         struct buffer_head *page_bufs;
1923         handle_t *handle = NULL;
1924         int ret = 0;
1925         int err;
1926
1927         ClearPageChecked(page);
1928         page_bufs = page_buffers(page);
1929         BUG_ON(!page_bufs);
1930         walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
1931         /* As soon as we unlock the page, it can go away, but we have
1932          * references to buffers so we are safe */
1933         unlock_page(page);
1934
1935         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1936         if (IS_ERR(handle)) {
1937                 ret = PTR_ERR(handle);
1938                 goto out;
1939         }
1940
1941         BUG_ON(!ext4_handle_valid(handle));
1942
1943         ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1944                                 do_journal_get_write_access);
1945
1946         err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1947                                 write_end_fn);
1948         if (ret == 0)
1949                 ret = err;
1950         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1951         err = ext4_journal_stop(handle);
1952         if (!ret)
1953                 ret = err;
1954
1955         walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
1956         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1957 out:
1958         return ret;
1959 }
1960
1961 /*
1962  * Note that we don't need to start a transaction unless we're journaling data
1963  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1964  * need to file the inode to the transaction's list in ordered mode because if
1965  * we are writing back data added by write(), the inode is already there and if
1966  * we are writing back data modified via mmap(), no one guarantees in which
1967  * transaction the data will hit the disk. In case we are journaling data, we
1968  * cannot start transaction directly because transaction start ranks above page
1969  * lock so we have to do some magic.
1970  *
1971  * This function can get called via...
1972  *   - ext4_da_writepages after taking page lock (have journal handle)
1973  *   - journal_submit_inode_data_buffers (no journal handle)
1974  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1975  *   - grab_page_cache when doing write_begin (have journal handle)
1976  *
1977  * We don't do any block allocation in this function. If we have page with
1978  * multiple blocks we need to write those buffer_heads that are mapped. This
1979  * is important for mmaped based write. So if we do with blocksize 1K
1980  * truncate(f, 1024);
1981  * a = mmap(f, 0, 4096);
1982  * a[0] = 'a';
1983  * truncate(f, 4096);
1984  * we have in the page first buffer_head mapped via page_mkwrite call back
1985  * but other buffer_heads would be unmapped but dirty (dirty done via the
1986  * do_wp_page). So writepage should write the first block. If we modify
1987  * the mmap area beyond 1024 we will again get a page_fault and the
1988  * page_mkwrite callback will do the block allocation and mark the
1989  * buffer_heads mapped.
1990  *
1991  * We redirty the page if we have any buffer_heads that is either delay or
1992  * unwritten in the page.
1993  *
1994  * We can get recursively called as show below.
1995  *
1996  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1997  *              ext4_writepage()
1998  *
1999  * But since we don't do any block allocation we should not deadlock.
2000  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2001  */
2002 static int ext4_writepage(struct page *page,
2003                           struct writeback_control *wbc)
2004 {
2005         int ret = 0, commit_write = 0;
2006         loff_t size;
2007         unsigned int len;
2008         struct buffer_head *page_bufs = NULL;
2009         struct inode *inode = page->mapping->host;
2010
2011         trace_ext4_writepage(page);
2012         size = i_size_read(inode);
2013         if (page->index == size >> PAGE_CACHE_SHIFT)
2014                 len = size & ~PAGE_CACHE_MASK;
2015         else
2016                 len = PAGE_CACHE_SIZE;
2017
2018         /*
2019          * If the page does not have buffers (for whatever reason),
2020          * try to create them using __block_write_begin.  If this
2021          * fails, redirty the page and move on.
2022          */
2023         if (!page_has_buffers(page)) {
2024                 if (__block_write_begin(page, 0, len,
2025                                         noalloc_get_block_write)) {
2026                 redirty_page:
2027                         redirty_page_for_writepage(wbc, page);
2028                         unlock_page(page);
2029                         return 0;
2030                 }
2031                 commit_write = 1;
2032         }
2033         page_bufs = page_buffers(page);
2034         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2035                               ext4_bh_delay_or_unwritten)) {
2036                 /*
2037                  * We don't want to do block allocation, so redirty
2038                  * the page and return.  We may reach here when we do
2039                  * a journal commit via journal_submit_inode_data_buffers.
2040                  * We can also reach here via shrink_page_list but it
2041                  * should never be for direct reclaim so warn if that
2042                  * happens
2043                  */
2044                 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
2045                                                                 PF_MEMALLOC);
2046                 goto redirty_page;
2047         }
2048         if (commit_write)
2049                 /* now mark the buffer_heads as dirty and uptodate */
2050                 block_commit_write(page, 0, len);
2051
2052         if (PageChecked(page) && ext4_should_journal_data(inode))
2053                 /*
2054                  * It's mmapped pagecache.  Add buffers and journal it.  There
2055                  * doesn't seem much point in redirtying the page here.
2056                  */
2057                 return __ext4_journalled_writepage(page, len);
2058
2059         if (buffer_uninit(page_bufs)) {
2060                 ext4_set_bh_endio(page_bufs, inode);
2061                 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2062                                             wbc, ext4_end_io_buffer_write);
2063         } else
2064                 ret = block_write_full_page(page, noalloc_get_block_write,
2065                                             wbc);
2066
2067         return ret;
2068 }
2069
2070 /*
2071  * This is called via ext4_da_writepages() to
2072  * calculate the total number of credits to reserve to fit
2073  * a single extent allocation into a single transaction,
2074  * ext4_da_writpeages() will loop calling this before
2075  * the block allocation.
2076  */
2077
2078 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2079 {
2080         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2081
2082         /*
2083          * With non-extent format the journal credit needed to
2084          * insert nrblocks contiguous block is dependent on
2085          * number of contiguous block. So we will limit
2086          * number of contiguous block to a sane value
2087          */
2088         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2089             (max_blocks > EXT4_MAX_TRANS_DATA))
2090                 max_blocks = EXT4_MAX_TRANS_DATA;
2091
2092         return ext4_chunk_trans_blocks(inode, max_blocks);
2093 }
2094
2095 /*
2096  * write_cache_pages_da - walk the list of dirty pages of the given
2097  * address space and accumulate pages that need writing, and call
2098  * mpage_da_map_and_submit to map a single contiguous memory region
2099  * and then write them.
2100  */
2101 static int write_cache_pages_da(struct address_space *mapping,
2102                                 struct writeback_control *wbc,
2103                                 struct mpage_da_data *mpd,
2104                                 pgoff_t *done_index)
2105 {
2106         struct buffer_head      *bh, *head;
2107         struct inode            *inode = mapping->host;
2108         struct pagevec          pvec;
2109         unsigned int            nr_pages;
2110         sector_t                logical;
2111         pgoff_t                 index, end;
2112         long                    nr_to_write = wbc->nr_to_write;
2113         int                     i, tag, ret = 0;
2114
2115         memset(mpd, 0, sizeof(struct mpage_da_data));
2116         mpd->wbc = wbc;
2117         mpd->inode = inode;
2118         pagevec_init(&pvec, 0);
2119         index = wbc->range_start >> PAGE_CACHE_SHIFT;
2120         end = wbc->range_end >> PAGE_CACHE_SHIFT;
2121
2122         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2123                 tag = PAGECACHE_TAG_TOWRITE;
2124         else
2125                 tag = PAGECACHE_TAG_DIRTY;
2126
2127         *done_index = index;
2128         while (index <= end) {
2129                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2130                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2131                 if (nr_pages == 0)
2132                         return 0;
2133
2134                 for (i = 0; i < nr_pages; i++) {
2135                         struct page *page = pvec.pages[i];
2136
2137                         /*
2138                          * At this point, the page may be truncated or
2139                          * invalidated (changing page->mapping to NULL), or
2140                          * even swizzled back from swapper_space to tmpfs file
2141                          * mapping. However, page->index will not change
2142                          * because we have a reference on the page.
2143                          */
2144                         if (page->index > end)
2145                                 goto out;
2146
2147                         *done_index = page->index + 1;
2148
2149                         /*
2150                          * If we can't merge this page, and we have
2151                          * accumulated an contiguous region, write it
2152                          */
2153                         if ((mpd->next_page != page->index) &&
2154                             (mpd->next_page != mpd->first_page)) {
2155                                 mpage_da_map_and_submit(mpd);
2156                                 goto ret_extent_tail;
2157                         }
2158
2159                         lock_page(page);
2160
2161                         /*
2162                          * If the page is no longer dirty, or its
2163                          * mapping no longer corresponds to inode we
2164                          * are writing (which means it has been
2165                          * truncated or invalidated), or the page is
2166                          * already under writeback and we are not
2167                          * doing a data integrity writeback, skip the page
2168                          */
2169                         if (!PageDirty(page) ||
2170                             (PageWriteback(page) &&
2171                              (wbc->sync_mode == WB_SYNC_NONE)) ||
2172                             unlikely(page->mapping != mapping)) {
2173                                 unlock_page(page);
2174                                 continue;
2175                         }
2176
2177                         wait_on_page_writeback(page);
2178                         BUG_ON(PageWriteback(page));
2179
2180                         if (mpd->next_page != page->index)
2181                                 mpd->first_page = page->index;
2182                         mpd->next_page = page->index + 1;
2183                         logical = (sector_t) page->index <<
2184                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2185
2186                         if (!page_has_buffers(page)) {
2187                                 mpage_add_bh_to_extent(mpd, logical,
2188                                                        PAGE_CACHE_SIZE,
2189                                                        (1 << BH_Dirty) | (1 << BH_Uptodate));
2190                                 if (mpd->io_done)
2191                                         goto ret_extent_tail;
2192                         } else {
2193                                 /*
2194                                  * Page with regular buffer heads,
2195                                  * just add all dirty ones
2196                                  */
2197                                 head = page_buffers(page);
2198                                 bh = head;
2199                                 do {
2200                                         BUG_ON(buffer_locked(bh));
2201                                         /*
2202                                          * We need to try to allocate
2203                                          * unmapped blocks in the same page.
2204                                          * Otherwise we won't make progress
2205                                          * with the page in ext4_writepage
2206                                          */
2207                                         if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2208                                                 mpage_add_bh_to_extent(mpd, logical,
2209                                                                        bh->b_size,
2210                                                                        bh->b_state);
2211                                                 if (mpd->io_done)
2212                                                         goto ret_extent_tail;
2213                                         } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2214                                                 /*
2215                                                  * mapped dirty buffer. We need
2216                                                  * to update the b_state
2217                                                  * because we look at b_state
2218                                                  * in mpage_da_map_blocks.  We
2219                                                  * don't update b_size because
2220                                                  * if we find an unmapped
2221                                                  * buffer_head later we need to
2222                                                  * use the b_state flag of that
2223                                                  * buffer_head.
2224                                                  */
2225                                                 if (mpd->b_size == 0)
2226                                                         mpd->b_state = bh->b_state & BH_FLAGS;
2227                                         }
2228                                         logical++;
2229                                 } while ((bh = bh->b_this_page) != head);
2230                         }
2231
2232                         if (nr_to_write > 0) {
2233                                 nr_to_write--;
2234                                 if (nr_to_write == 0 &&
2235                                     wbc->sync_mode == WB_SYNC_NONE)
2236                                         /*
2237                                          * We stop writing back only if we are
2238                                          * not doing integrity sync. In case of
2239                                          * integrity sync we have to keep going
2240                                          * because someone may be concurrently
2241                                          * dirtying pages, and we might have
2242                                          * synced a lot of newly appeared dirty
2243                                          * pages, but have not synced all of the
2244                                          * old dirty pages.
2245                                          */
2246                                         goto out;
2247                         }
2248                 }
2249                 pagevec_release(&pvec);
2250                 cond_resched();
2251         }
2252         return 0;
2253 ret_extent_tail:
2254         ret = MPAGE_DA_EXTENT_TAIL;
2255 out:
2256         pagevec_release(&pvec);
2257         cond_resched();
2258         return ret;
2259 }
2260
2261
2262 static int ext4_da_writepages(struct address_space *mapping,
2263                               struct writeback_control *wbc)
2264 {
2265         pgoff_t index;
2266         int range_whole = 0;
2267         handle_t *handle = NULL;
2268         struct mpage_da_data mpd;
2269         struct inode *inode = mapping->host;
2270         int pages_written = 0;
2271         unsigned int max_pages;
2272         int range_cyclic, cycled = 1, io_done = 0;
2273         int needed_blocks, ret = 0;
2274         long desired_nr_to_write, nr_to_writebump = 0;
2275         loff_t range_start = wbc->range_start;
2276         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2277         pgoff_t done_index = 0;
2278         pgoff_t end;
2279         struct blk_plug plug;
2280
2281         trace_ext4_da_writepages(inode, wbc);
2282
2283         /*
2284          * No pages to write? This is mainly a kludge to avoid starting
2285          * a transaction for special inodes like journal inode on last iput()
2286          * because that could violate lock ordering on umount
2287          */
2288         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2289                 return 0;
2290
2291         /*
2292          * If the filesystem has aborted, it is read-only, so return
2293          * right away instead of dumping stack traces later on that
2294          * will obscure the real source of the problem.  We test
2295          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2296          * the latter could be true if the filesystem is mounted
2297          * read-only, and in that case, ext4_da_writepages should
2298          * *never* be called, so if that ever happens, we would want
2299          * the stack trace.
2300          */
2301         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2302                 return -EROFS;
2303
2304         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2305                 range_whole = 1;
2306
2307         range_cyclic = wbc->range_cyclic;
2308         if (wbc->range_cyclic) {
2309                 index = mapping->writeback_index;
2310                 if (index)
2311                         cycled = 0;
2312                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2313                 wbc->range_end  = LLONG_MAX;
2314                 wbc->range_cyclic = 0;
2315                 end = -1;
2316         } else {
2317                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2318                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2319         }
2320
2321         /*
2322          * This works around two forms of stupidity.  The first is in
2323          * the writeback code, which caps the maximum number of pages
2324          * written to be 1024 pages.  This is wrong on multiple
2325          * levels; different architectues have a different page size,
2326          * which changes the maximum amount of data which gets
2327          * written.  Secondly, 4 megabytes is way too small.  XFS
2328          * forces this value to be 16 megabytes by multiplying
2329          * nr_to_write parameter by four, and then relies on its
2330          * allocator to allocate larger extents to make them
2331          * contiguous.  Unfortunately this brings us to the second
2332          * stupidity, which is that ext4's mballoc code only allocates
2333          * at most 2048 blocks.  So we force contiguous writes up to
2334          * the number of dirty blocks in the inode, or
2335          * sbi->max_writeback_mb_bump whichever is smaller.
2336          */
2337         max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2338         if (!range_cyclic && range_whole) {
2339                 if (wbc->nr_to_write == LONG_MAX)
2340                         desired_nr_to_write = wbc->nr_to_write;
2341                 else
2342                         desired_nr_to_write = wbc->nr_to_write * 8;
2343         } else
2344                 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2345                                                            max_pages);
2346         if (desired_nr_to_write > max_pages)
2347                 desired_nr_to_write = max_pages;
2348
2349         if (wbc->nr_to_write < desired_nr_to_write) {
2350                 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2351                 wbc->nr_to_write = desired_nr_to_write;
2352         }
2353
2354 retry:
2355         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2356                 tag_pages_for_writeback(mapping, index, end);
2357
2358         blk_start_plug(&plug);
2359         while (!ret && wbc->nr_to_write > 0) {
2360
2361                 /*
2362                  * we  insert one extent at a time. So we need
2363                  * credit needed for single extent allocation.
2364                  * journalled mode is currently not supported
2365                  * by delalloc
2366                  */
2367                 BUG_ON(ext4_should_journal_data(inode));
2368                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2369
2370                 /* start a new transaction*/
2371                 handle = ext4_journal_start(inode, needed_blocks);
2372                 if (IS_ERR(handle)) {
2373                         ret = PTR_ERR(handle);
2374                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2375                                "%ld pages, ino %lu; err %d", __func__,
2376                                 wbc->nr_to_write, inode->i_ino, ret);
2377                         blk_finish_plug(&plug);
2378                         goto out_writepages;
2379                 }
2380
2381                 /*
2382                  * Now call write_cache_pages_da() to find the next
2383                  * contiguous region of logical blocks that need
2384                  * blocks to be allocated by ext4 and submit them.
2385                  */
2386                 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2387                 /*
2388                  * If we have a contiguous extent of pages and we
2389                  * haven't done the I/O yet, map the blocks and submit
2390                  * them for I/O.
2391                  */
2392                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2393                         mpage_da_map_and_submit(&mpd);
2394                         ret = MPAGE_DA_EXTENT_TAIL;
2395                 }
2396                 trace_ext4_da_write_pages(inode, &mpd);
2397                 wbc->nr_to_write -= mpd.pages_written;
2398
2399                 ext4_journal_stop(handle);
2400
2401                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2402                         /* commit the transaction which would
2403                          * free blocks released in the transaction
2404                          * and try again
2405                          */
2406                         jbd2_journal_force_commit_nested(sbi->s_journal);
2407                         ret = 0;
2408                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2409                         /*
2410                          * Got one extent now try with rest of the pages.
2411                          * If mpd.retval is set -EIO, journal is aborted.
2412                          * So we don't need to write any more.
2413                          */
2414                         pages_written += mpd.pages_written;
2415                         ret = mpd.retval;
2416                         io_done = 1;
2417                 } else if (wbc->nr_to_write)
2418                         /*
2419                          * There is no more writeout needed
2420                          * or we requested for a noblocking writeout
2421                          * and we found the device congested
2422                          */
2423                         break;
2424         }
2425         blk_finish_plug(&plug);
2426         if (!io_done && !cycled) {
2427                 cycled = 1;
2428                 index = 0;
2429                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2430                 wbc->range_end  = mapping->writeback_index - 1;
2431                 goto retry;
2432         }
2433
2434         /* Update index */
2435         wbc->range_cyclic = range_cyclic;
2436         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2437                 /*
2438                  * set the writeback_index so that range_cyclic
2439                  * mode will write it back later
2440                  */
2441                 mapping->writeback_index = done_index;
2442
2443 out_writepages:
2444         wbc->nr_to_write -= nr_to_writebump;
2445         wbc->range_start = range_start;
2446         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2447         return ret;
2448 }
2449
2450 #define FALL_BACK_TO_NONDELALLOC 1
2451 static int ext4_nonda_switch(struct super_block *sb)
2452 {
2453         s64 free_blocks, dirty_blocks;
2454         struct ext4_sb_info *sbi = EXT4_SB(sb);
2455
2456         /*
2457          * switch to non delalloc mode if we are running low
2458          * on free block. The free block accounting via percpu
2459          * counters can get slightly wrong with percpu_counter_batch getting
2460          * accumulated on each CPU without updating global counters
2461          * Delalloc need an accurate free block accounting. So switch
2462          * to non delalloc when we are near to error range.
2463          */
2464         free_blocks  = EXT4_C2B(sbi,
2465                 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2466         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2467         /*
2468          * Start pushing delalloc when 1/2 of free blocks are dirty.
2469          */
2470         if (dirty_blocks && (free_blocks < 2 * dirty_blocks) &&
2471             !writeback_in_progress(sb->s_bdi) &&
2472             down_read_trylock(&sb->s_umount)) {
2473                 writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2474                 up_read(&sb->s_umount);
2475         }
2476
2477         if (2 * free_blocks < 3 * dirty_blocks ||
2478                 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2479                 /*
2480                  * free block count is less than 150% of dirty blocks
2481                  * or free blocks is less than watermark
2482                  */
2483                 return 1;
2484         }
2485         return 0;
2486 }
2487
2488 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2489                                loff_t pos, unsigned len, unsigned flags,
2490                                struct page **pagep, void **fsdata)
2491 {
2492         int ret, retries = 0;
2493         struct page *page;
2494         pgoff_t index;
2495         struct inode *inode = mapping->host;
2496         handle_t *handle;
2497
2498         index = pos >> PAGE_CACHE_SHIFT;
2499
2500         if (ext4_nonda_switch(inode->i_sb)) {
2501                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2502                 return ext4_write_begin(file, mapping, pos,
2503                                         len, flags, pagep, fsdata);
2504         }
2505         *fsdata = (void *)0;
2506         trace_ext4_da_write_begin(inode, pos, len, flags);
2507 retry:
2508         /*
2509          * With delayed allocation, we don't log the i_disksize update
2510          * if there is delayed block allocation. But we still need
2511          * to journalling the i_disksize update if writes to the end
2512          * of file which has an already mapped buffer.
2513          */
2514         handle = ext4_journal_start(inode, 1);
2515         if (IS_ERR(handle)) {
2516                 ret = PTR_ERR(handle);
2517                 goto out;
2518         }
2519         /* We cannot recurse into the filesystem as the transaction is already
2520          * started */
2521         flags |= AOP_FLAG_NOFS;
2522
2523         page = grab_cache_page_write_begin(mapping, index, flags);
2524         if (!page) {
2525                 ext4_journal_stop(handle);
2526                 ret = -ENOMEM;
2527                 goto out;
2528         }
2529         *pagep = page;
2530
2531         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2532         if (ret < 0) {
2533                 unlock_page(page);
2534                 ext4_journal_stop(handle);
2535                 page_cache_release(page);
2536                 /*
2537                  * block_write_begin may have instantiated a few blocks
2538                  * outside i_size.  Trim these off again. Don't need
2539                  * i_size_read because we hold i_mutex.
2540                  */
2541                 if (pos + len > inode->i_size)
2542                         ext4_truncate_failed_write(inode);
2543         }
2544
2545         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2546                 goto retry;
2547 out:
2548         return ret;
2549 }
2550
2551 /*
2552  * Check if we should update i_disksize
2553  * when write to the end of file but not require block allocation
2554  */
2555 static int ext4_da_should_update_i_disksize(struct page *page,
2556                                             unsigned long offset)
2557 {
2558         struct buffer_head *bh;
2559         struct inode *inode = page->mapping->host;
2560         unsigned int idx;
2561         int i;
2562
2563         bh = page_buffers(page);
2564         idx = offset >> inode->i_blkbits;
2565
2566         for (i = 0; i < idx; i++)
2567                 bh = bh->b_this_page;
2568
2569         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2570                 return 0;
2571         return 1;
2572 }
2573
2574 static int ext4_da_write_end(struct file *file,
2575                              struct address_space *mapping,
2576                              loff_t pos, unsigned len, unsigned copied,
2577                              struct page *page, void *fsdata)
2578 {
2579         struct inode *inode = mapping->host;
2580         int ret = 0, ret2;
2581         handle_t *handle = ext4_journal_current_handle();
2582         loff_t new_i_size;
2583         unsigned long start, end;
2584         int write_mode = (int)(unsigned long)fsdata;
2585
2586         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2587                 switch (ext4_inode_journal_mode(inode)) {
2588                 case EXT4_INODE_ORDERED_DATA_MODE:
2589                         return ext4_ordered_write_end(file, mapping, pos,
2590                                         len, copied, page, fsdata);
2591                 case EXT4_INODE_WRITEBACK_DATA_MODE:
2592                         return ext4_writeback_write_end(file, mapping, pos,
2593                                         len, copied, page, fsdata);
2594                 default:
2595                         BUG();
2596                 }
2597         }
2598
2599         trace_ext4_da_write_end(inode, pos, len, copied);
2600         start = pos & (PAGE_CACHE_SIZE - 1);
2601         end = start + copied - 1;
2602
2603         /*
2604          * generic_write_end() will run mark_inode_dirty() if i_size
2605          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2606          * into that.
2607          */
2608
2609         new_i_size = pos + copied;
2610         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2611                 if (ext4_da_should_update_i_disksize(page, end)) {
2612                         down_write(&EXT4_I(inode)->i_data_sem);
2613                         if (new_i_size > EXT4_I(inode)->i_disksize) {
2614                                 /*
2615                                  * Updating i_disksize when extending file
2616                                  * without needing block allocation
2617                                  */
2618                                 if (ext4_should_order_data(inode))
2619                                         ret = ext4_jbd2_file_inode(handle,
2620                                                                    inode);
2621
2622                                 EXT4_I(inode)->i_disksize = new_i_size;
2623                         }
2624                         up_write(&EXT4_I(inode)->i_data_sem);
2625                         /* We need to mark inode dirty even if
2626                          * new_i_size is less that inode->i_size
2627                          * bu greater than i_disksize.(hint delalloc)
2628                          */
2629                         ext4_mark_inode_dirty(handle, inode);
2630                 }
2631         }
2632         ret2 = generic_write_end(file, mapping, pos, len, copied,
2633                                                         page, fsdata);
2634         copied = ret2;
2635         if (ret2 < 0)
2636                 ret = ret2;
2637         ret2 = ext4_journal_stop(handle);
2638         if (!ret)
2639                 ret = ret2;
2640
2641         return ret ? ret : copied;
2642 }
2643
2644 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2645 {
2646         /*
2647          * Drop reserved blocks
2648          */
2649         BUG_ON(!PageLocked(page));
2650         if (!page_has_buffers(page))
2651                 goto out;
2652
2653         ext4_da_page_release_reservation(page, offset);
2654
2655 out:
2656         ext4_invalidatepage(page, offset);
2657
2658         return;
2659 }
2660
2661 /*
2662  * Force all delayed allocation blocks to be allocated for a given inode.
2663  */
2664 int ext4_alloc_da_blocks(struct inode *inode)
2665 {
2666         trace_ext4_alloc_da_blocks(inode);
2667
2668         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2669             !EXT4_I(inode)->i_reserved_meta_blocks)
2670                 return 0;
2671
2672         /*
2673          * We do something simple for now.  The filemap_flush() will
2674          * also start triggering a write of the data blocks, which is
2675          * not strictly speaking necessary (and for users of
2676          * laptop_mode, not even desirable).  However, to do otherwise
2677          * would require replicating code paths in:
2678          *
2679          * ext4_da_writepages() ->
2680          *    write_cache_pages() ---> (via passed in callback function)
2681          *        __mpage_da_writepage() -->
2682          *           mpage_add_bh_to_extent()
2683          *           mpage_da_map_blocks()
2684          *
2685          * The problem is that write_cache_pages(), located in
2686          * mm/page-writeback.c, marks pages clean in preparation for
2687          * doing I/O, which is not desirable if we're not planning on
2688          * doing I/O at all.
2689          *
2690          * We could call write_cache_pages(), and then redirty all of
2691          * the pages by calling redirty_page_for_writepage() but that
2692          * would be ugly in the extreme.  So instead we would need to
2693          * replicate parts of the code in the above functions,
2694          * simplifying them because we wouldn't actually intend to
2695          * write out the pages, but rather only collect contiguous
2696          * logical block extents, call the multi-block allocator, and
2697          * then update the buffer heads with the block allocations.
2698          *
2699          * For now, though, we'll cheat by calling filemap_flush(),
2700          * which will map the blocks, and start the I/O, but not
2701          * actually wait for the I/O to complete.
2702          */
2703         return filemap_flush(inode->i_mapping);
2704 }
2705
2706 /*
2707  * bmap() is special.  It gets used by applications such as lilo and by
2708  * the swapper to find the on-disk block of a specific piece of data.
2709  *
2710  * Naturally, this is dangerous if the block concerned is still in the
2711  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2712  * filesystem and enables swap, then they may get a nasty shock when the
2713  * data getting swapped to that swapfile suddenly gets overwritten by
2714  * the original zero's written out previously to the journal and
2715  * awaiting writeback in the kernel's buffer cache.
2716  *
2717  * So, if we see any bmap calls here on a modified, data-journaled file,
2718  * take extra steps to flush any blocks which might be in the cache.
2719  */
2720 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2721 {
2722         struct inode *inode = mapping->host;
2723         journal_t *journal;
2724         int err;
2725
2726         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2727                         test_opt(inode->i_sb, DELALLOC)) {
2728                 /*
2729                  * With delalloc we want to sync the file
2730                  * so that we can make sure we allocate
2731                  * blocks for file
2732                  */
2733                 filemap_write_and_wait(mapping);
2734         }
2735
2736         if (EXT4_JOURNAL(inode) &&
2737             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2738                 /*
2739                  * This is a REALLY heavyweight approach, but the use of
2740                  * bmap on dirty files is expected to be extremely rare:
2741                  * only if we run lilo or swapon on a freshly made file
2742                  * do we expect this to happen.
2743                  *
2744                  * (bmap requires CAP_SYS_RAWIO so this does not
2745                  * represent an unprivileged user DOS attack --- we'd be
2746                  * in trouble if mortal users could trigger this path at
2747                  * will.)
2748                  *
2749                  * NB. EXT4_STATE_JDATA is not set on files other than
2750                  * regular files.  If somebody wants to bmap a directory
2751                  * or symlink and gets confused because the buffer
2752                  * hasn't yet been flushed to disk, they deserve
2753                  * everything they get.
2754                  */
2755
2756                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2757                 journal = EXT4_JOURNAL(inode);
2758                 jbd2_journal_lock_updates(journal);
2759                 err = jbd2_journal_flush(journal);
2760                 jbd2_journal_unlock_updates(journal);
2761
2762                 if (err)
2763                         return 0;
2764         }
2765
2766         return generic_block_bmap(mapping, block, ext4_get_block);
2767 }
2768
2769 static int ext4_readpage(struct file *file, struct page *page)
2770 {
2771         trace_ext4_readpage(page);
2772         return mpage_readpage(page, ext4_get_block);
2773 }
2774
2775 static int
2776 ext4_readpages(struct file *file, struct address_space *mapping,
2777                 struct list_head *pages, unsigned nr_pages)
2778 {
2779         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2780 }
2781
2782 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
2783 {
2784         struct buffer_head *head, *bh;
2785         unsigned int curr_off = 0;
2786
2787         if (!page_has_buffers(page))
2788                 return;
2789         head = bh = page_buffers(page);
2790         do {
2791                 if (offset <= curr_off && test_clear_buffer_uninit(bh)
2792                                         && bh->b_private) {
2793                         ext4_free_io_end(bh->b_private);
2794                         bh->b_private = NULL;
2795                         bh->b_end_io = NULL;
2796                 }
2797                 curr_off = curr_off + bh->b_size;
2798                 bh = bh->b_this_page;
2799         } while (bh != head);
2800 }
2801
2802 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2803 {
2804         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2805
2806         trace_ext4_invalidatepage(page, offset);
2807
2808         /*
2809          * free any io_end structure allocated for buffers to be discarded
2810          */
2811         if (ext4_should_dioread_nolock(page->mapping->host))
2812                 ext4_invalidatepage_free_endio(page, offset);
2813         /*
2814          * If it's a full truncate we just forget about the pending dirtying
2815          */
2816         if (offset == 0)
2817                 ClearPageChecked(page);
2818
2819         if (journal)
2820                 jbd2_journal_invalidatepage(journal, page, offset);
2821         else
2822                 block_invalidatepage(page, offset);
2823 }
2824
2825 static int ext4_releasepage(struct page *page, gfp_t wait)
2826 {
2827         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2828
2829         trace_ext4_releasepage(page);
2830
2831         WARN_ON(PageChecked(page));
2832         if (!page_has_buffers(page))
2833                 return 0;
2834         if (journal)
2835                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2836         else
2837                 return try_to_free_buffers(page);
2838 }
2839
2840 /*
2841  * ext4_get_block used when preparing for a DIO write or buffer write.
2842  * We allocate an uinitialized extent if blocks haven't been allocated.
2843  * The extent will be converted to initialized after the IO is complete.
2844  */
2845 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2846                    struct buffer_head *bh_result, int create)
2847 {
2848         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2849                    inode->i_ino, create);
2850         return _ext4_get_block(inode, iblock, bh_result,
2851                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
2852 }
2853
2854 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2855                    struct buffer_head *bh_result, int create)
2856 {
2857         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2858                    inode->i_ino, create);
2859         return _ext4_get_block(inode, iblock, bh_result,
2860                                EXT4_GET_BLOCKS_NO_LOCK);
2861 }
2862
2863 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2864                             ssize_t size, void *private, int ret,
2865                             bool is_async)
2866 {
2867         struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2868         ext4_io_end_t *io_end = iocb->private;
2869
2870         /* if not async direct IO or dio with 0 bytes write, just return */
2871         if (!io_end || !size)
2872                 goto out;
2873
2874         ext_debug("ext4_end_io_dio(): io_end 0x%p "
2875                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2876                   iocb->private, io_end->inode->i_ino, iocb, offset,
2877                   size);
2878
2879         iocb->private = NULL;
2880
2881         /* if not aio dio with unwritten extents, just free io and return */
2882         if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2883                 ext4_free_io_end(io_end);
2884 out:
2885                 if (is_async)
2886                         aio_complete(iocb, ret, 0);
2887                 inode_dio_done(inode);
2888                 return;
2889         }
2890
2891         io_end->offset = offset;
2892         io_end->size = size;
2893         if (is_async) {
2894                 io_end->iocb = iocb;
2895                 io_end->result = ret;
2896         }
2897
2898         ext4_add_complete_io(io_end);
2899 }
2900
2901 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
2902 {
2903         ext4_io_end_t *io_end = bh->b_private;
2904         struct inode *inode;
2905
2906         if (!test_clear_buffer_uninit(bh) || !io_end)
2907                 goto out;
2908
2909         if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2910                 ext4_msg(io_end->inode->i_sb, KERN_INFO,
2911                          "sb umounted, discard end_io request for inode %lu",
2912                          io_end->inode->i_ino);
2913                 ext4_free_io_end(io_end);
2914                 goto out;
2915         }
2916
2917         /*
2918          * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
2919          * but being more careful is always safe for the future change.
2920          */
2921         inode = io_end->inode;
2922         ext4_set_io_unwritten_flag(inode, io_end);
2923         ext4_add_complete_io(io_end);
2924 out:
2925         bh->b_private = NULL;
2926         bh->b_end_io = NULL;
2927         clear_buffer_uninit(bh);
2928         end_buffer_async_write(bh, uptodate);
2929 }
2930
2931 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
2932 {
2933         ext4_io_end_t *io_end;
2934         struct page *page = bh->b_page;
2935         loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
2936         size_t size = bh->b_size;
2937
2938 retry:
2939         io_end = ext4_init_io_end(inode, GFP_ATOMIC);
2940         if (!io_end) {
2941                 pr_warn_ratelimited("%s: allocation fail\n", __func__);
2942                 schedule();
2943                 goto retry;
2944         }
2945         io_end->offset = offset;
2946         io_end->size = size;
2947         /*
2948          * We need to hold a reference to the page to make sure it
2949          * doesn't get evicted before ext4_end_io_work() has a chance
2950          * to convert the extent from written to unwritten.
2951          */
2952         io_end->page = page;
2953         get_page(io_end->page);
2954
2955         bh->b_private = io_end;
2956         bh->b_end_io = ext4_end_io_buffer_write;
2957         return 0;
2958 }
2959
2960 /*
2961  * For ext4 extent files, ext4 will do direct-io write to holes,
2962  * preallocated extents, and those write extend the file, no need to
2963  * fall back to buffered IO.
2964  *
2965  * For holes, we fallocate those blocks, mark them as uninitialized
2966  * If those blocks were preallocated, we mark sure they are splited, but
2967  * still keep the range to write as uninitialized.
2968  *
2969  * The unwrritten extents will be converted to written when DIO is completed.
2970  * For async direct IO, since the IO may still pending when return, we
2971  * set up an end_io call back function, which will do the conversion
2972  * when async direct IO completed.
2973  *
2974  * If the O_DIRECT write will extend the file then add this inode to the
2975  * orphan list.  So recovery will truncate it back to the original size
2976  * if the machine crashes during the write.
2977  *
2978  */
2979 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2980                               const struct iovec *iov, loff_t offset,
2981                               unsigned long nr_segs)
2982 {
2983         struct file *file = iocb->ki_filp;
2984         struct inode *inode = file->f_mapping->host;
2985         ssize_t ret;
2986         size_t count = iov_length(iov, nr_segs);
2987
2988         loff_t final_size = offset + count;
2989         if (rw == WRITE && final_size <= inode->i_size) {
2990                 int overwrite = 0;
2991                 get_block_t *get_block_func = NULL;
2992                 int dio_flags = 0;
2993
2994                 BUG_ON(iocb->private == NULL);
2995
2996                 /* If we do a overwrite dio, i_mutex locking can be released */
2997                 overwrite = *((int *)iocb->private);
2998
2999                 if (overwrite) {
3000                         atomic_inc(&inode->i_dio_count);
3001                         down_read(&EXT4_I(inode)->i_data_sem);
3002                         mutex_unlock(&inode->i_mutex);
3003                 }
3004
3005                 /*
3006                  * We could direct write to holes and fallocate.
3007                  *
3008                  * Allocated blocks to fill the hole are marked as uninitialized
3009                  * to prevent parallel buffered read to expose the stale data
3010                  * before DIO complete the data IO.
3011                  *
3012                  * As to previously fallocated extents, ext4 get_block
3013                  * will just simply mark the buffer mapped but still
3014                  * keep the extents uninitialized.
3015                  *
3016                  * for non AIO case, we will convert those unwritten extents
3017                  * to written after return back from blockdev_direct_IO.
3018                  *
3019                  * for async DIO, the conversion needs to be defered when
3020                  * the IO is completed. The ext4 end_io callback function
3021                  * will be called to take care of the conversion work.
3022                  * Here for async case, we allocate an io_end structure to
3023                  * hook to the iocb.
3024                  */
3025                 iocb->private = NULL;
3026                 ext4_inode_aio_set(inode, NULL);
3027                 if (!is_sync_kiocb(iocb)) {
3028                         ext4_io_end_t *io_end =
3029                                 ext4_init_io_end(inode, GFP_NOFS);
3030                         if (!io_end) {
3031                                 ret = -ENOMEM;
3032                                 goto retake_lock;
3033                         }
3034                         io_end->flag |= EXT4_IO_END_DIRECT;
3035                         iocb->private = io_end;
3036                         /*
3037                          * we save the io structure for current async
3038                          * direct IO, so that later ext4_map_blocks()
3039                          * could flag the io structure whether there
3040                          * is a unwritten extents needs to be converted
3041                          * when IO is completed.
3042                          */
3043                         ext4_inode_aio_set(inode, io_end);
3044                 }
3045
3046                 if (overwrite) {
3047                         get_block_func = ext4_get_block_write_nolock;
3048                 } else {
3049                         get_block_func = ext4_get_block_write;
3050                         dio_flags = DIO_LOCKING;
3051                 }
3052                 ret = __blockdev_direct_IO(rw, iocb, inode,
3053                                          inode->i_sb->s_bdev, iov,
3054                                          offset, nr_segs,
3055                                          get_block_func,
3056                                          ext4_end_io_dio,
3057                                          NULL,
3058                                          dio_flags);
3059
3060                 if (iocb->private)
3061                         ext4_inode_aio_set(inode, NULL);
3062                 /*
3063                  * The io_end structure takes a reference to the inode,
3064                  * that structure needs to be destroyed and the
3065                  * reference to the inode need to be dropped, when IO is
3066                  * complete, even with 0 byte write, or failed.
3067                  *
3068                  * In the successful AIO DIO case, the io_end structure will be
3069                  * desctroyed and the reference to the inode will be dropped
3070                  * after the end_io call back function is called.
3071                  *
3072                  * In the case there is 0 byte write, or error case, since
3073                  * VFS direct IO won't invoke the end_io call back function,
3074                  * we need to free the end_io structure here.
3075                  */
3076                 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3077                         ext4_free_io_end(iocb->private);
3078                         iocb->private = NULL;
3079                 } else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3080                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3081                         int err;
3082                         /*
3083                          * for non AIO case, since the IO is already
3084                          * completed, we could do the conversion right here
3085                          */
3086                         err = ext4_convert_unwritten_extents(inode,
3087                                                              offset, ret);
3088                         if (err < 0)
3089                                 ret = err;
3090                         ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3091                 }
3092
3093         retake_lock:
3094                 /* take i_mutex locking again if we do a ovewrite dio */
3095                 if (overwrite) {
3096                         inode_dio_done(inode);
3097                         up_read(&EXT4_I(inode)->i_data_sem);
3098                         mutex_lock(&inode->i_mutex);
3099                 }
3100
3101                 return ret;
3102         }
3103
3104         /* for write the the end of file case, we fall back to old way */
3105         return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3106 }
3107
3108 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3109                               const struct iovec *iov, loff_t offset,
3110                               unsigned long nr_segs)
3111 {
3112         struct file *file = iocb->ki_filp;
3113         struct inode *inode = file->f_mapping->host;
3114         ssize_t ret;
3115
3116         /*
3117          * If we are doing data journalling we don't support O_DIRECT
3118          */
3119         if (ext4_should_journal_data(inode))
3120                 return 0;
3121
3122         trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3123         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3124                 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3125         else
3126                 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3127         trace_ext4_direct_IO_exit(inode, offset,
3128                                 iov_length(iov, nr_segs), rw, ret);
3129         return ret;
3130 }
3131
3132 /*
3133  * Pages can be marked dirty completely asynchronously from ext4's journalling
3134  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3135  * much here because ->set_page_dirty is called under VFS locks.  The page is
3136  * not necessarily locked.
3137  *
3138  * We cannot just dirty the page and leave attached buffers clean, because the
3139  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3140  * or jbddirty because all the journalling code will explode.
3141  *
3142  * So what we do is to mark the page "pending dirty" and next time writepage
3143  * is called, propagate that into the buffers appropriately.
3144  */
3145 static int ext4_journalled_set_page_dirty(struct page *page)
3146 {
3147         SetPageChecked(page);
3148         return __set_page_dirty_nobuffers(page);
3149 }
3150
3151 static const struct address_space_operations ext4_ordered_aops = {
3152         .readpage               = ext4_readpage,
3153         .readpages              = ext4_readpages,
3154         .writepage              = ext4_writepage,
3155         .write_begin            = ext4_write_begin,
3156         .write_end              = ext4_ordered_write_end,
3157         .bmap                   = ext4_bmap,
3158         .invalidatepage         = ext4_invalidatepage,
3159         .releasepage            = ext4_releasepage,
3160         .direct_IO              = ext4_direct_IO,
3161         .migratepage            = buffer_migrate_page,
3162         .is_partially_uptodate  = block_is_partially_uptodate,
3163         .error_remove_page      = generic_error_remove_page,
3164 };
3165
3166 static const struct address_space_operations ext4_writeback_aops = {
3167         .readpage               = ext4_readpage,
3168         .readpages              = ext4_readpages,
3169         .writepage              = ext4_writepage,
3170         .write_begin            = ext4_write_begin,
3171         .write_end              = ext4_writeback_write_end,
3172         .bmap                   = ext4_bmap,
3173         .invalidatepage         = ext4_invalidatepage,
3174         .releasepage            = ext4_releasepage,
3175         .direct_IO              = ext4_direct_IO,
3176         .migratepage            = buffer_migrate_page,
3177         .is_partially_uptodate  = block_is_partially_uptodate,
3178         .error_remove_page      = generic_error_remove_page,
3179 };
3180
3181 static const struct address_space_operations ext4_journalled_aops = {
3182         .readpage               = ext4_readpage,
3183         .readpages              = ext4_readpages,
3184         .writepage              = ext4_writepage,
3185         .write_begin            = ext4_write_begin,
3186         .write_end              = ext4_journalled_write_end,
3187         .set_page_dirty         = ext4_journalled_set_page_dirty,
3188         .bmap                   = ext4_bmap,
3189         .invalidatepage         = ext4_invalidatepage,
3190         .releasepage            = ext4_releasepage,
3191         .direct_IO              = ext4_direct_IO,
3192         .is_partially_uptodate  = block_is_partially_uptodate,
3193         .error_remove_page      = generic_error_remove_page,
3194 };
3195
3196 static const struct address_space_operations ext4_da_aops = {
3197         .readpage               = ext4_readpage,
3198         .readpages              = ext4_readpages,
3199         .writepage              = ext4_writepage,
3200         .writepages             = ext4_da_writepages,
3201         .write_begin            = ext4_da_write_begin,
3202         .write_end              = ext4_da_write_end,
3203         .bmap                   = ext4_bmap,
3204         .invalidatepage         = ext4_da_invalidatepage,
3205         .releasepage            = ext4_releasepage,
3206         .direct_IO              = ext4_direct_IO,
3207         .migratepage            = buffer_migrate_page,
3208         .is_partially_uptodate  = block_is_partially_uptodate,
3209         .error_remove_page      = generic_error_remove_page,
3210 };
3211
3212 void ext4_set_aops(struct inode *inode)
3213 {
3214         switch (ext4_inode_journal_mode(inode)) {
3215         case EXT4_INODE_ORDERED_DATA_MODE:
3216                 if (test_opt(inode->i_sb, DELALLOC))
3217                         inode->i_mapping->a_ops = &ext4_da_aops;
3218                 else
3219                         inode->i_mapping->a_ops = &ext4_ordered_aops;
3220                 break;
3221         case EXT4_INODE_WRITEBACK_DATA_MODE:
3222                 if (test_opt(inode->i_sb, DELALLOC))
3223                         inode->i_mapping->a_ops = &ext4_da_aops;
3224                 else
3225                         inode->i_mapping->a_ops = &ext4_writeback_aops;
3226                 break;
3227         case EXT4_INODE_JOURNAL_DATA_MODE:
3228                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3229                 break;
3230         default:
3231                 BUG();
3232         }
3233 }
3234
3235
3236 /*
3237  * ext4_discard_partial_page_buffers()
3238  * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3239  * This function finds and locks the page containing the offset
3240  * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3241  * Calling functions that already have the page locked should call
3242  * ext4_discard_partial_page_buffers_no_lock directly.
3243  */
3244 int ext4_discard_partial_page_buffers(handle_t *handle,
3245                 struct address_space *mapping, loff_t from,
3246                 loff_t length, int flags)
3247 {
3248         struct inode *inode = mapping->host;
3249         struct page *page;
3250         int err = 0;
3251
3252         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3253                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3254         if (!page)
3255                 return -ENOMEM;
3256
3257         err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3258                 from, length, flags);
3259
3260         unlock_page(page);
3261         page_cache_release(page);
3262         return err;
3263 }
3264
3265 /*
3266  * ext4_discard_partial_page_buffers_no_lock()
3267  * Zeros a page range of length 'length' starting from offset 'from'.
3268  * Buffer heads that correspond to the block aligned regions of the
3269  * zeroed range will be unmapped.  Unblock aligned regions
3270  * will have the corresponding buffer head mapped if needed so that
3271  * that region of the page can be updated with the partial zero out.
3272  *
3273  * This function assumes that the page has already been  locked.  The
3274  * The range to be discarded must be contained with in the given page.
3275  * If the specified range exceeds the end of the page it will be shortened
3276  * to the end of the page that corresponds to 'from'.  This function is
3277  * appropriate for updating a page and it buffer heads to be unmapped and
3278  * zeroed for blocks that have been either released, or are going to be
3279  * released.
3280  *
3281  * handle: The journal handle
3282  * inode:  The files inode
3283  * page:   A locked page that contains the offset "from"
3284  * from:   The starting byte offset (from the beginning of the file)
3285  *         to begin discarding
3286  * len:    The length of bytes to discard
3287  * flags:  Optional flags that may be used:
3288  *
3289  *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3290  *         Only zero the regions of the page whose buffer heads
3291  *         have already been unmapped.  This flag is appropriate
3292  *         for updating the contents of a page whose blocks may
3293  *         have already been released, and we only want to zero
3294  *         out the regions that correspond to those released blocks.
3295  *
3296  * Returns zero on success or negative on failure.
3297  */
3298 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3299                 struct inode *inode, struct page *page, loff_t from,
3300                 loff_t length, int flags)
3301 {
3302         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3303         unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3304         unsigned int blocksize, max, pos;
3305         ext4_lblk_t iblock;
3306         struct buffer_head *bh;
3307         int err = 0;
3308
3309         blocksize = inode->i_sb->s_blocksize;
3310         max = PAGE_CACHE_SIZE - offset;
3311
3312         if (index != page->index)
3313                 return -EINVAL;
3314
3315         /*
3316          * correct length if it does not fall between
3317          * 'from' and the end of the page
3318          */
3319         if (length > max || length < 0)
3320                 length = max;
3321
3322         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3323
3324         if (!page_has_buffers(page))
3325                 create_empty_buffers(page, blocksize, 0);
3326
3327         /* Find the buffer that contains "offset" */
3328         bh = page_buffers(page);
3329         pos = blocksize;
3330         while (offset >= pos) {
3331                 bh = bh->b_this_page;
3332                 iblock++;
3333                 pos += blocksize;
3334         }
3335
3336         pos = offset;
3337         while (pos < offset + length) {
3338                 unsigned int end_of_block, range_to_discard;
3339
3340                 err = 0;
3341
3342                 /* The length of space left to zero and unmap */
3343                 range_to_discard = offset + length - pos;
3344
3345                 /* The length of space until the end of the block */
3346                 end_of_block = blocksize - (pos & (blocksize-1));
3347
3348                 /*
3349                  * Do not unmap or zero past end of block
3350                  * for this buffer head
3351                  */
3352                 if (range_to_discard > end_of_block)
3353                         range_to_discard = end_of_block;
3354
3355
3356                 /*
3357                  * Skip this buffer head if we are only zeroing unampped
3358                  * regions of the page
3359                  */
3360                 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3361                         buffer_mapped(bh))
3362                                 goto next;
3363
3364                 /* If the range is block aligned, unmap */
3365                 if (range_to_discard == blocksize) {
3366                         clear_buffer_dirty(bh);
3367                         bh->b_bdev = NULL;
3368                         clear_buffer_mapped(bh);
3369                         clear_buffer_req(bh);
3370                         clear_buffer_new(bh);
3371                         clear_buffer_delay(bh);
3372                         clear_buffer_unwritten(bh);
3373                         clear_buffer_uptodate(bh);
3374                         zero_user(page, pos, range_to_discard);
3375                         BUFFER_TRACE(bh, "Buffer discarded");
3376                         goto next;
3377                 }
3378
3379                 /*
3380                  * If this block is not completely contained in the range
3381                  * to be discarded, then it is not going to be released. Because
3382                  * we need to keep this block, we need to make sure this part
3383                  * of the page is uptodate before we modify it by writeing
3384                  * partial zeros on it.
3385                  */
3386                 if (!buffer_mapped(bh)) {
3387                         /*
3388                          * Buffer head must be mapped before we can read
3389                          * from the block
3390                          */
3391                         BUFFER_TRACE(bh, "unmapped");
3392                         ext4_get_block(inode, iblock, bh, 0);
3393                         /* unmapped? It's a hole - nothing to do */
3394                         if (!buffer_mapped(bh)) {
3395                                 BUFFER_TRACE(bh, "still unmapped");
3396                                 goto next;
3397                         }
3398                 }
3399
3400                 /* Ok, it's mapped. Make sure it's up-to-date */
3401                 if (PageUptodate(page))
3402                         set_buffer_uptodate(bh);
3403
3404                 if (!buffer_uptodate(bh)) {
3405                         err = -EIO;
3406                         ll_rw_block(READ, 1, &bh);
3407                         wait_on_buffer(bh);
3408                         /* Uhhuh. Read error. Complain and punt.*/
3409                         if (!buffer_uptodate(bh))
3410                                 goto next;
3411                 }
3412
3413                 if (ext4_should_journal_data(inode)) {
3414                         BUFFER_TRACE(bh, "get write access");
3415                         err = ext4_journal_get_write_access(handle, bh);
3416                         if (err)
3417                                 goto next;
3418                 }
3419
3420                 zero_user(page, pos, range_to_discard);
3421
3422                 err = 0;
3423                 if (ext4_should_journal_data(inode)) {
3424                         err = ext4_handle_dirty_metadata(handle, inode, bh);
3425                 } else
3426                         mark_buffer_dirty(bh);
3427
3428                 BUFFER_TRACE(bh, "Partial buffer zeroed");
3429 next:
3430                 bh = bh->b_this_page;
3431                 iblock++;
3432                 pos += range_to_discard;
3433         }
3434
3435         return err;
3436 }
3437
3438 int ext4_can_truncate(struct inode *inode)
3439 {
3440         if (S_ISREG(inode->i_mode))
3441                 return 1;
3442         if (S_ISDIR(inode->i_mode))
3443                 return 1;
3444         if (S_ISLNK(inode->i_mode))
3445                 return !ext4_inode_is_fast_symlink(inode);
3446         return 0;
3447 }
3448
3449 /*
3450  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3451  * associated with the given offset and length
3452  *
3453  * @inode:  File inode
3454  * @offset: The offset where the hole will begin
3455  * @len:    The length of the hole
3456  *
3457  * Returns: 0 on success or negative on failure
3458  */
3459
3460 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3461 {
3462         struct inode *inode = file->f_path.dentry->d_inode;
3463         if (!S_ISREG(inode->i_mode))
3464                 return -EOPNOTSUPP;
3465
3466         if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3467                 /* TODO: Add support for non extent hole punching */
3468                 return -EOPNOTSUPP;
3469         }
3470
3471         if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3472                 /* TODO: Add support for bigalloc file systems */
3473                 return -EOPNOTSUPP;
3474         }
3475
3476         return ext4_ext_punch_hole(file, offset, length);
3477 }
3478
3479 /*
3480  * ext4_truncate()
3481  *
3482  * We block out ext4_get_block() block instantiations across the entire
3483  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3484  * simultaneously on behalf of the same inode.
3485  *
3486  * As we work through the truncate and commit bits of it to the journal there
3487  * is one core, guiding principle: the file's tree must always be consistent on
3488  * disk.  We must be able to restart the truncate after a crash.
3489  *
3490  * The file's tree may be transiently inconsistent in memory (although it
3491  * probably isn't), but whenever we close off and commit a journal transaction,
3492  * the contents of (the filesystem + the journal) must be consistent and
3493  * restartable.  It's pretty simple, really: bottom up, right to left (although
3494  * left-to-right works OK too).
3495  *
3496  * Note that at recovery time, journal replay occurs *before* the restart of
3497  * truncate against the orphan inode list.
3498  *
3499  * The committed inode has the new, desired i_size (which is the same as
3500  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3501  * that this inode's truncate did not complete and it will again call
3502  * ext4_truncate() to have another go.  So there will be instantiated blocks
3503  * to the right of the truncation point in a crashed ext4 filesystem.  But
3504  * that's fine - as long as they are linked from the inode, the post-crash
3505  * ext4_truncate() run will find them and release them.
3506  */
3507 void ext4_truncate(struct inode *inode)
3508 {
3509         trace_ext4_truncate_enter(inode);
3510
3511         if (!ext4_can_truncate(inode))
3512                 return;
3513
3514         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3515
3516         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3517                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3518
3519         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3520                 ext4_ext_truncate(inode);
3521         else
3522                 ext4_ind_truncate(inode);
3523
3524         trace_ext4_truncate_exit(inode);
3525 }
3526
3527 /*
3528  * ext4_get_inode_loc returns with an extra refcount against the inode's
3529  * underlying buffer_head on success. If 'in_mem' is true, we have all
3530  * data in memory that is needed to recreate the on-disk version of this
3531  * inode.
3532  */
3533 static int __ext4_get_inode_loc(struct inode *inode,
3534                                 struct ext4_iloc *iloc, int in_mem)
3535 {
3536         struct ext4_group_desc  *gdp;
3537         struct buffer_head      *bh;
3538         struct super_block      *sb = inode->i_sb;
3539         ext4_fsblk_t            block;
3540         int                     inodes_per_block, inode_offset;
3541
3542         iloc->bh = NULL;
3543         if (!ext4_valid_inum(sb, inode->i_ino))
3544                 return -EIO;
3545
3546         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3547         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3548         if (!gdp)
3549                 return -EIO;
3550
3551         /*
3552          * Figure out the offset within the block group inode table
3553          */
3554         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3555         inode_offset = ((inode->i_ino - 1) %
3556                         EXT4_INODES_PER_GROUP(sb));
3557         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3558         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3559
3560         bh = sb_getblk(sb, block);
3561         if (!bh) {
3562                 EXT4_ERROR_INODE_BLOCK(inode, block,
3563                                        "unable to read itable block");
3564                 return -EIO;
3565         }
3566         if (!buffer_uptodate(bh)) {
3567                 lock_buffer(bh);
3568
3569                 /*
3570                  * If the buffer has the write error flag, we have failed
3571                  * to write out another inode in the same block.  In this
3572                  * case, we don't have to read the block because we may
3573                  * read the old inode data successfully.
3574                  */
3575                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3576                         set_buffer_uptodate(bh);
3577
3578                 if (buffer_uptodate(bh)) {
3579                         /* someone brought it uptodate while we waited */
3580                         unlock_buffer(bh);
3581                         goto has_buffer;
3582                 }
3583
3584                 /*
3585                  * If we have all information of the inode in memory and this
3586                  * is the only valid inode in the block, we need not read the
3587                  * block.
3588                  */
3589                 if (in_mem) {
3590                         struct buffer_head *bitmap_bh;
3591                         int i, start;
3592
3593                         start = inode_offset & ~(inodes_per_block - 1);
3594
3595                         /* Is the inode bitmap in cache? */
3596                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3597                         if (!bitmap_bh)
3598                                 goto make_io;
3599
3600                         /*
3601                          * If the inode bitmap isn't in cache then the
3602                          * optimisation may end up performing two reads instead
3603                          * of one, so skip it.
3604                          */
3605                         if (!buffer_uptodate(bitmap_bh)) {
3606                                 brelse(bitmap_bh);
3607                                 goto make_io;
3608                         }
3609                         for (i = start; i < start + inodes_per_block; i++) {
3610                                 if (i == inode_offset)
3611                                         continue;
3612                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3613                                         break;
3614                         }
3615                         brelse(bitmap_bh);
3616                         if (i == start + inodes_per_block) {
3617                                 /* all other inodes are free, so skip I/O */
3618                                 memset(bh->b_data, 0, bh->b_size);
3619                                 set_buffer_uptodate(bh);
3620                                 unlock_buffer(bh);
3621                                 goto has_buffer;
3622                         }
3623                 }
3624
3625 make_io:
3626                 /*
3627                  * If we need to do any I/O, try to pre-readahead extra
3628                  * blocks from the inode table.
3629                  */
3630                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3631                         ext4_fsblk_t b, end, table;
3632                         unsigned num;
3633
3634                         table = ext4_inode_table(sb, gdp);
3635                         /* s_inode_readahead_blks is always a power of 2 */
3636                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3637                         if (table > b)
3638                                 b = table;
3639                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3640                         num = EXT4_INODES_PER_GROUP(sb);
3641                         if (ext4_has_group_desc_csum(sb))
3642                                 num -= ext4_itable_unused_count(sb, gdp);
3643                         table += num / inodes_per_block;
3644                         if (end > table)
3645                                 end = table;
3646                         while (b <= end)
3647                                 sb_breadahead(sb, b++);
3648                 }
3649
3650                 /*
3651                  * There are other valid inodes in the buffer, this inode
3652                  * has in-inode xattrs, or we don't have this inode in memory.
3653                  * Read the block from disk.
3654                  */
3655                 trace_ext4_load_inode(inode);
3656                 get_bh(bh);
3657                 bh->b_end_io = end_buffer_read_sync;
3658                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3659                 wait_on_buffer(bh);
3660                 if (!buffer_uptodate(bh)) {
3661                         EXT4_ERROR_INODE_BLOCK(inode, block,
3662                                                "unable to read itable block");
3663                         brelse(bh);
3664                         return -EIO;
3665                 }
3666         }
3667 has_buffer:
3668         iloc->bh = bh;
3669         return 0;
3670 }
3671
3672 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3673 {
3674         /* We have all inode data except xattrs in memory here. */
3675         return __ext4_get_inode_loc(inode, iloc,
3676                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3677 }
3678
3679 void ext4_set_inode_flags(struct inode *inode)
3680 {
3681         unsigned int flags = EXT4_I(inode)->i_flags;
3682
3683         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3684         if (flags & EXT4_SYNC_FL)
3685                 inode->i_flags |= S_SYNC;
3686         if (flags & EXT4_APPEND_FL)
3687                 inode->i_flags |= S_APPEND;
3688         if (flags & EXT4_IMMUTABLE_FL)
3689                 inode->i_flags |= S_IMMUTABLE;
3690         if (flags & EXT4_NOATIME_FL)
3691                 inode->i_flags |= S_NOATIME;
3692         if (flags & EXT4_DIRSYNC_FL)
3693                 inode->i_flags |= S_DIRSYNC;
3694 }
3695
3696 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3697 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3698 {
3699         unsigned int vfs_fl;
3700         unsigned long old_fl, new_fl;
3701
3702         do {
3703                 vfs_fl = ei->vfs_inode.i_flags;
3704                 old_fl = ei->i_flags;
3705                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3706                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3707                                 EXT4_DIRSYNC_FL);
3708                 if (vfs_fl & S_SYNC)
3709                         new_fl |= EXT4_SYNC_FL;
3710                 if (vfs_fl & S_APPEND)
3711                         new_fl |= EXT4_APPEND_FL;
3712                 if (vfs_fl & S_IMMUTABLE)
3713                         new_fl |= EXT4_IMMUTABLE_FL;
3714                 if (vfs_fl & S_NOATIME)
3715                         new_fl |= EXT4_NOATIME_FL;
3716                 if (vfs_fl & S_DIRSYNC)
3717                         new_fl |= EXT4_DIRSYNC_FL;
3718         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3719 }
3720
3721 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3722                                   struct ext4_inode_info *ei)
3723 {
3724         blkcnt_t i_blocks ;
3725         struct inode *inode = &(ei->vfs_inode);
3726         struct super_block *sb = inode->i_sb;
3727
3728         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3729                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3730                 /* we are using combined 48 bit field */
3731                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3732                                         le32_to_cpu(raw_inode->i_blocks_lo);
3733                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3734                         /* i_blocks represent file system block size */
3735                         return i_blocks  << (inode->i_blkbits - 9);
3736                 } else {
3737                         return i_blocks;
3738                 }
3739         } else {
3740                 return le32_to_cpu(raw_inode->i_blocks_lo);
3741         }
3742 }
3743
3744 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3745 {
3746         struct ext4_iloc iloc;
3747         struct ext4_inode *raw_inode;
3748         struct ext4_inode_info *ei;
3749         struct inode *inode;
3750         journal_t *journal = EXT4_SB(sb)->s_journal;
3751         long ret;
3752         int block;
3753         uid_t i_uid;
3754         gid_t i_gid;
3755
3756         inode = iget_locked(sb, ino);
3757         if (!inode)
3758                 return ERR_PTR(-ENOMEM);
3759         if (!(inode->i_state & I_NEW))
3760                 return inode;
3761
3762         ei = EXT4_I(inode);
3763         iloc.bh = NULL;
3764
3765         ret = __ext4_get_inode_loc(inode, &iloc, 0);
3766         if (ret < 0)
3767                 goto bad_inode;
3768         raw_inode = ext4_raw_inode(&iloc);
3769
3770         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3771                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3772                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3773                     EXT4_INODE_SIZE(inode->i_sb)) {
3774                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3775                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3776                                 EXT4_INODE_SIZE(inode->i_sb));
3777                         ret = -EIO;
3778                         goto bad_inode;
3779                 }
3780         } else
3781                 ei->i_extra_isize = 0;
3782
3783         /* Precompute checksum seed for inode metadata */
3784         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3785                         EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3786                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3787                 __u32 csum;
3788                 __le32 inum = cpu_to_le32(inode->i_ino);
3789                 __le32 gen = raw_inode->i_generation;
3790                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3791                                    sizeof(inum));
3792                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3793                                               sizeof(gen));
3794         }
3795
3796         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3797                 EXT4_ERROR_INODE(inode, "checksum invalid");
3798                 ret = -EIO;
3799                 goto bad_inode;
3800         }
3801
3802         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3803         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3804         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3805         if (!(test_opt(inode->i_sb, NO_UID32))) {
3806                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3807                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3808         }
3809         i_uid_write(inode, i_uid);
3810         i_gid_write(inode, i_gid);
3811         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3812
3813         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
3814         ei->i_dir_start_lookup = 0;
3815         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3816         /* We now have enough fields to check if the inode was active or not.
3817          * This is needed because nfsd might try to access dead inodes
3818          * the test is that same one that e2fsck uses
3819          * NeilBrown 1999oct15
3820          */
3821         if (inode->i_nlink == 0) {
3822                 if (inode->i_mode == 0 ||
3823                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3824                         /* this inode is deleted */
3825                         ret = -ESTALE;
3826                         goto bad_inode;
3827                 }
3828                 /* The only unlinked inodes we let through here have
3829                  * valid i_mode and are being read by the orphan
3830                  * recovery code: that's fine, we're about to complete
3831                  * the process of deleting those. */
3832         }
3833         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3834         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3835         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3836         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3837                 ei->i_file_acl |=
3838                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3839         inode->i_size = ext4_isize(raw_inode);
3840         ei->i_disksize = inode->i_size;
3841 #ifdef CONFIG_QUOTA
3842         ei->i_reserved_quota = 0;
3843 #endif
3844         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3845         ei->i_block_group = iloc.block_group;
3846         ei->i_last_alloc_group = ~0;
3847         /*
3848          * NOTE! The in-memory inode i_data array is in little-endian order
3849          * even on big-endian machines: we do NOT byteswap the block numbers!
3850          */
3851         for (block = 0; block < EXT4_N_BLOCKS; block++)
3852                 ei->i_data[block] = raw_inode->i_block[block];
3853         INIT_LIST_HEAD(&ei->i_orphan);
3854
3855         /*
3856          * Set transaction id's of transactions that have to be committed
3857          * to finish f[data]sync. We set them to currently running transaction
3858          * as we cannot be sure that the inode or some of its metadata isn't
3859          * part of the transaction - the inode could have been reclaimed and
3860          * now it is reread from disk.
3861          */
3862         if (journal) {
3863                 transaction_t *transaction;
3864                 tid_t tid;
3865
3866                 read_lock(&journal->j_state_lock);
3867                 if (journal->j_running_transaction)
3868                         transaction = journal->j_running_transaction;
3869                 else
3870                         transaction = journal->j_committing_transaction;
3871                 if (transaction)
3872                         tid = transaction->t_tid;
3873                 else
3874                         tid = journal->j_commit_sequence;
3875                 read_unlock(&journal->j_state_lock);
3876                 ei->i_sync_tid = tid;
3877                 ei->i_datasync_tid = tid;
3878         }
3879
3880         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3881                 if (ei->i_extra_isize == 0) {
3882                         /* The extra space is currently unused. Use it. */
3883                         ei->i_extra_isize = sizeof(struct ext4_inode) -
3884                                             EXT4_GOOD_OLD_INODE_SIZE;
3885                 } else {
3886                         __le32 *magic = (void *)raw_inode +
3887                                         EXT4_GOOD_OLD_INODE_SIZE +
3888                                         ei->i_extra_isize;
3889                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3890                                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3891                 }
3892         }
3893
3894         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3895         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3896         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3897         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3898
3899         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3900         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3901                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3902                         inode->i_version |=
3903                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3904         }
3905
3906         ret = 0;
3907         if (ei->i_file_acl &&
3908             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3909                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3910                                  ei->i_file_acl);
3911                 ret = -EIO;
3912                 goto bad_inode;
3913         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3914                 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3915                     (S_ISLNK(inode->i_mode) &&
3916                      !ext4_inode_is_fast_symlink(inode)))
3917                         /* Validate extent which is part of inode */
3918                         ret = ext4_ext_check_inode(inode);
3919         } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3920                    (S_ISLNK(inode->i_mode) &&
3921                     !ext4_inode_is_fast_symlink(inode))) {
3922                 /* Validate block references which are part of inode */
3923                 ret = ext4_ind_check_inode(inode);
3924         }
3925         if (ret)
3926                 goto bad_inode;
3927
3928         if (S_ISREG(inode->i_mode)) {
3929                 inode->i_op = &ext4_file_inode_operations;
3930                 inode->i_fop = &ext4_file_operations;
3931                 ext4_set_aops(inode);
3932         } else if (S_ISDIR(inode->i_mode)) {
3933                 inode->i_op = &ext4_dir_inode_operations;
3934                 inode->i_fop = &ext4_dir_operations;
3935         } else if (S_ISLNK(inode->i_mode)) {
3936                 if (ext4_inode_is_fast_symlink(inode)) {
3937                         inode->i_op = &ext4_fast_symlink_inode_operations;
3938                         nd_terminate_link(ei->i_data, inode->i_size,
3939                                 sizeof(ei->i_data) - 1);
3940                 } else {
3941                         inode->i_op = &ext4_symlink_inode_operations;
3942                         ext4_set_aops(inode);
3943                 }
3944         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3945               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3946                 inode->i_op = &ext4_special_inode_operations;
3947                 if (raw_inode->i_block[0])
3948                         init_special_inode(inode, inode->i_mode,
3949                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3950                 else
3951                         init_special_inode(inode, inode->i_mode,
3952                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3953         } else {
3954                 ret = -EIO;
3955                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3956                 goto bad_inode;
3957         }
3958         brelse(iloc.bh);
3959         ext4_set_inode_flags(inode);
3960         unlock_new_inode(inode);
3961         return inode;
3962
3963 bad_inode:
3964         brelse(iloc.bh);
3965         iget_failed(inode);
3966         return ERR_PTR(ret);
3967 }
3968
3969 static int ext4_inode_blocks_set(handle_t *handle,
3970                                 struct ext4_inode *raw_inode,
3971                                 struct ext4_inode_info *ei)
3972 {
3973         struct inode *inode = &(ei->vfs_inode);
3974         u64 i_blocks = inode->i_blocks;
3975         struct super_block *sb = inode->i_sb;
3976
3977         if (i_blocks <= ~0U) {
3978                 /*
3979                  * i_blocks can be represented in a 32 bit variable
3980                  * as multiple of 512 bytes
3981                  */
3982                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3983                 raw_inode->i_blocks_high = 0;
3984                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3985                 return 0;
3986         }
3987         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
3988                 return -EFBIG;
3989
3990         if (i_blocks <= 0xffffffffffffULL) {
3991                 /*
3992                  * i_blocks can be represented in a 48 bit variable
3993                  * as multiple of 512 bytes
3994                  */
3995                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3996                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3997                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3998         } else {
3999                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4000                 /* i_block is stored in file system block size */
4001                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4002                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4003                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4004         }
4005         return 0;
4006 }
4007
4008 /*
4009  * Post the struct inode info into an on-disk inode location in the
4010  * buffer-cache.  This gobbles the caller's reference to the
4011  * buffer_head in the inode location struct.
4012  *
4013  * The caller must have write access to iloc->bh.
4014  */
4015 static int ext4_do_update_inode(handle_t *handle,
4016                                 struct inode *inode,
4017                                 struct ext4_iloc *iloc)
4018 {
4019         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4020         struct ext4_inode_info *ei = EXT4_I(inode);
4021         struct buffer_head *bh = iloc->bh;
4022         int err = 0, rc, block;
4023         int need_datasync = 0;
4024         uid_t i_uid;
4025         gid_t i_gid;
4026
4027         /* For fields not not tracking in the in-memory inode,
4028          * initialise them to zero for new inodes. */
4029         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4030                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4031
4032         ext4_get_inode_flags(ei);
4033         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4034         i_uid = i_uid_read(inode);
4035         i_gid = i_gid_read(inode);
4036         if (!(test_opt(inode->i_sb, NO_UID32))) {
4037                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4038                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4039 /*
4040  * Fix up interoperability with old kernels. Otherwise, old inodes get
4041  * re-used with the upper 16 bits of the uid/gid intact
4042  */
4043                 if (!ei->i_dtime) {
4044                         raw_inode->i_uid_high =
4045                                 cpu_to_le16(high_16_bits(i_uid));
4046                         raw_inode->i_gid_high =
4047                                 cpu_to_le16(high_16_bits(i_gid));
4048                 } else {
4049                         raw_inode->i_uid_high = 0;
4050                         raw_inode->i_gid_high = 0;
4051                 }
4052         } else {
4053                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4054                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4055                 raw_inode->i_uid_high = 0;
4056                 raw_inode->i_gid_high = 0;
4057         }
4058         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4059
4060         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4061         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4062         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4063         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4064
4065         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4066                 goto out_brelse;
4067         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4068         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4069         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4070             cpu_to_le32(EXT4_OS_HURD))
4071                 raw_inode->i_file_acl_high =
4072                         cpu_to_le16(ei->i_file_acl >> 32);
4073         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4074         if (ei->i_disksize != ext4_isize(raw_inode)) {
4075                 ext4_isize_set(raw_inode, ei->i_disksize);
4076                 need_datasync = 1;
4077         }
4078         if (ei->i_disksize > 0x7fffffffULL) {
4079                 struct super_block *sb = inode->i_sb;
4080                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4081                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4082                                 EXT4_SB(sb)->s_es->s_rev_level ==
4083                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4084                         /* If this is the first large file
4085                          * created, add a flag to the superblock.
4086                          */
4087                         err = ext4_journal_get_write_access(handle,
4088                                         EXT4_SB(sb)->s_sbh);
4089                         if (err)
4090                                 goto out_brelse;
4091                         ext4_update_dynamic_rev(sb);
4092                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4093                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4094                         ext4_handle_sync(handle);
4095                         err = ext4_handle_dirty_super(handle, sb);
4096                 }
4097         }
4098         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4099         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4100                 if (old_valid_dev(inode->i_rdev)) {
4101                         raw_inode->i_block[0] =
4102                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4103                         raw_inode->i_block[1] = 0;
4104                 } else {
4105                         raw_inode->i_block[0] = 0;
4106                         raw_inode->i_block[1] =
4107                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4108                         raw_inode->i_block[2] = 0;
4109                 }
4110         } else
4111                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4112                         raw_inode->i_block[block] = ei->i_data[block];
4113
4114         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4115         if (ei->i_extra_isize) {
4116                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4117                         raw_inode->i_version_hi =
4118                         cpu_to_le32(inode->i_version >> 32);
4119                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4120         }
4121
4122         ext4_inode_csum_set(inode, raw_inode, ei);
4123
4124         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4125         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4126         if (!err)
4127                 err = rc;
4128         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4129
4130         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4131 out_brelse:
4132         brelse(bh);
4133         ext4_std_error(inode->i_sb, err);
4134         return err;
4135 }
4136
4137 /*
4138  * ext4_write_inode()
4139  *
4140  * We are called from a few places:
4141  *
4142  * - Within generic_file_write() for O_SYNC files.
4143  *   Here, there will be no transaction running. We wait for any running
4144  *   transaction to commit.
4145  *
4146  * - Within sys_sync(), kupdate and such.
4147  *   We wait on commit, if tol to.
4148  *
4149  * - Within prune_icache() (PF_MEMALLOC == true)
4150  *   Here we simply return.  We can't afford to block kswapd on the
4151  *   journal commit.
4152  *
4153  * In all cases it is actually safe for us to return without doing anything,
4154  * because the inode has been copied into a raw inode buffer in
4155  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4156  * knfsd.
4157  *
4158  * Note that we are absolutely dependent upon all inode dirtiers doing the
4159  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4160  * which we are interested.
4161  *
4162  * It would be a bug for them to not do this.  The code:
4163  *
4164  *      mark_inode_dirty(inode)
4165  *      stuff();
4166  *      inode->i_size = expr;
4167  *
4168  * is in error because a kswapd-driven write_inode() could occur while
4169  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4170  * will no longer be on the superblock's dirty inode list.
4171  */
4172 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4173 {
4174         int err;
4175
4176         if (current->flags & PF_MEMALLOC)
4177                 return 0;
4178
4179         if (EXT4_SB(inode->i_sb)->s_journal) {
4180                 if (ext4_journal_current_handle()) {
4181                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4182                         dump_stack();
4183                         return -EIO;
4184                 }
4185
4186                 if (wbc->sync_mode != WB_SYNC_ALL)
4187                         return 0;
4188
4189                 err = ext4_force_commit(inode->i_sb);
4190         } else {
4191                 struct ext4_iloc iloc;
4192
4193                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4194                 if (err)
4195                         return err;
4196                 if (wbc->sync_mode == WB_SYNC_ALL)
4197                         sync_dirty_buffer(iloc.bh);
4198                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4199                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4200                                          "IO error syncing inode");
4201                         err = -EIO;
4202                 }
4203                 brelse(iloc.bh);
4204         }
4205         return err;
4206 }
4207
4208 /*
4209  * ext4_setattr()
4210  *
4211  * Called from notify_change.
4212  *
4213  * We want to trap VFS attempts to truncate the file as soon as
4214  * possible.  In particular, we want to make sure that when the VFS
4215  * shrinks i_size, we put the inode on the orphan list and modify
4216  * i_disksize immediately, so that during the subsequent flushing of
4217  * dirty pages and freeing of disk blocks, we can guarantee that any
4218  * commit will leave the blocks being flushed in an unused state on
4219  * disk.  (On recovery, the inode will get truncated and the blocks will
4220  * be freed, so we have a strong guarantee that no future commit will
4221  * leave these blocks visible to the user.)
4222  *
4223  * Another thing we have to assure is that if we are in ordered mode
4224  * and inode is still attached to the committing transaction, we must
4225  * we start writeout of all the dirty pages which are being truncated.
4226  * This way we are sure that all the data written in the previous
4227  * transaction are already on disk (truncate waits for pages under
4228  * writeback).
4229  *
4230  * Called with inode->i_mutex down.
4231  */
4232 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4233 {
4234         struct inode *inode = dentry->d_inode;
4235         int error, rc = 0;
4236         int orphan = 0;
4237         const unsigned int ia_valid = attr->ia_valid;
4238
4239         error = inode_change_ok(inode, attr);
4240         if (error)
4241                 return error;
4242
4243         if (is_quota_modification(inode, attr))
4244                 dquot_initialize(inode);
4245         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4246             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4247                 handle_t *handle;
4248
4249                 /* (user+group)*(old+new) structure, inode write (sb,
4250                  * inode block, ? - but truncate inode update has it) */
4251                 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
4252                                         EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
4253                 if (IS_ERR(handle)) {
4254                         error = PTR_ERR(handle);
4255                         goto err_out;
4256                 }
4257                 error = dquot_transfer(inode, attr);
4258                 if (error) {
4259                         ext4_journal_stop(handle);
4260                         return error;
4261                 }
4262                 /* Update corresponding info in inode so that everything is in
4263                  * one transaction */
4264                 if (attr->ia_valid & ATTR_UID)
4265                         inode->i_uid = attr->ia_uid;
4266                 if (attr->ia_valid & ATTR_GID)
4267                         inode->i_gid = attr->ia_gid;
4268                 error = ext4_mark_inode_dirty(handle, inode);
4269                 ext4_journal_stop(handle);
4270         }
4271
4272         if (attr->ia_valid & ATTR_SIZE) {
4273
4274                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4275                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4276
4277                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4278                                 return -EFBIG;
4279                 }
4280         }
4281
4282         if (S_ISREG(inode->i_mode) &&
4283             attr->ia_valid & ATTR_SIZE &&
4284             (attr->ia_size < inode->i_size)) {
4285                 handle_t *handle;
4286
4287                 handle = ext4_journal_start(inode, 3);
4288                 if (IS_ERR(handle)) {
4289                         error = PTR_ERR(handle);
4290                         goto err_out;
4291                 }
4292                 if (ext4_handle_valid(handle)) {
4293                         error = ext4_orphan_add(handle, inode);
4294                         orphan = 1;
4295                 }
4296                 EXT4_I(inode)->i_disksize = attr->ia_size;
4297                 rc = ext4_mark_inode_dirty(handle, inode);
4298                 if (!error)
4299                         error = rc;
4300                 ext4_journal_stop(handle);
4301
4302                 if (ext4_should_order_data(inode)) {
4303                         error = ext4_begin_ordered_truncate(inode,
4304                                                             attr->ia_size);
4305                         if (error) {
4306                                 /* Do as much error cleanup as possible */
4307                                 handle = ext4_journal_start(inode, 3);
4308                                 if (IS_ERR(handle)) {
4309                                         ext4_orphan_del(NULL, inode);
4310                                         goto err_out;
4311                                 }
4312                                 ext4_orphan_del(handle, inode);
4313                                 orphan = 0;
4314                                 ext4_journal_stop(handle);
4315                                 goto err_out;
4316                         }
4317                 }
4318         }
4319
4320         if (attr->ia_valid & ATTR_SIZE) {
4321                 if (attr->ia_size != i_size_read(inode)) {
4322                         truncate_setsize(inode, attr->ia_size);
4323                         /* Inode size will be reduced, wait for dio in flight.
4324                          * Temporarily disable dioread_nolock to prevent
4325                          * livelock. */
4326                         if (orphan) {
4327                                 ext4_inode_block_unlocked_dio(inode);
4328                                 inode_dio_wait(inode);
4329                                 ext4_inode_resume_unlocked_dio(inode);
4330                         }
4331                 }
4332                 ext4_truncate(inode);
4333         }
4334
4335         if (!rc) {
4336                 setattr_copy(inode, attr);
4337                 mark_inode_dirty(inode);
4338         }
4339
4340         /*
4341          * If the call to ext4_truncate failed to get a transaction handle at
4342          * all, we need to clean up the in-core orphan list manually.
4343          */
4344         if (orphan && inode->i_nlink)
4345                 ext4_orphan_del(NULL, inode);
4346
4347         if (!rc && (ia_valid & ATTR_MODE))
4348                 rc = ext4_acl_chmod(inode);
4349
4350 err_out:
4351         ext4_std_error(inode->i_sb, error);
4352         if (!error)
4353                 error = rc;
4354         return error;
4355 }
4356
4357 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4358                  struct kstat *stat)
4359 {
4360         struct inode *inode;
4361         unsigned long delalloc_blocks;
4362
4363         inode = dentry->d_inode;
4364         generic_fillattr(inode, stat);
4365
4366         /*
4367          * We can't update i_blocks if the block allocation is delayed
4368          * otherwise in the case of system crash before the real block
4369          * allocation is done, we will have i_blocks inconsistent with
4370          * on-disk file blocks.
4371          * We always keep i_blocks updated together with real
4372          * allocation. But to not confuse with user, stat
4373          * will return the blocks that include the delayed allocation
4374          * blocks for this file.
4375          */
4376         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4377                                 EXT4_I(inode)->i_reserved_data_blocks);
4378
4379         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4380         return 0;
4381 }
4382
4383 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4384 {
4385         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4386                 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4387         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4388 }
4389
4390 /*
4391  * Account for index blocks, block groups bitmaps and block group
4392  * descriptor blocks if modify datablocks and index blocks
4393  * worse case, the indexs blocks spread over different block groups
4394  *
4395  * If datablocks are discontiguous, they are possible to spread over
4396  * different block groups too. If they are contiguous, with flexbg,
4397  * they could still across block group boundary.
4398  *
4399  * Also account for superblock, inode, quota and xattr blocks
4400  */
4401 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4402 {
4403         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4404         int gdpblocks;
4405         int idxblocks;
4406         int ret = 0;
4407
4408         /*
4409          * How many index blocks need to touch to modify nrblocks?
4410          * The "Chunk" flag indicating whether the nrblocks is
4411          * physically contiguous on disk
4412          *
4413          * For Direct IO and fallocate, they calls get_block to allocate
4414          * one single extent at a time, so they could set the "Chunk" flag
4415          */
4416         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4417
4418         ret = idxblocks;
4419
4420         /*
4421          * Now let's see how many group bitmaps and group descriptors need
4422          * to account
4423          */
4424         groups = idxblocks;
4425         if (chunk)
4426                 groups += 1;
4427         else
4428                 groups += nrblocks;
4429
4430         gdpblocks = groups;
4431         if (groups > ngroups)
4432                 groups = ngroups;
4433         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4434                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4435
4436         /* bitmaps and block group descriptor blocks */
4437         ret += groups + gdpblocks;
4438
4439         /* Blocks for super block, inode, quota and xattr blocks */
4440         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4441
4442         return ret;
4443 }
4444
4445 /*
4446  * Calculate the total number of credits to reserve to fit
4447  * the modification of a single pages into a single transaction,
4448  * which may include multiple chunks of block allocations.
4449  *
4450  * This could be called via ext4_write_begin()
4451  *
4452  * We need to consider the worse case, when
4453  * one new block per extent.
4454  */
4455 int ext4_writepage_trans_blocks(struct inode *inode)
4456 {
4457         int bpp = ext4_journal_blocks_per_page(inode);
4458         int ret;
4459
4460         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4461
4462         /* Account for data blocks for journalled mode */
4463         if (ext4_should_journal_data(inode))
4464                 ret += bpp;
4465         return ret;
4466 }
4467
4468 /*
4469  * Calculate the journal credits for a chunk of data modification.
4470  *
4471  * This is called from DIO, fallocate or whoever calling
4472  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4473  *
4474  * journal buffers for data blocks are not included here, as DIO
4475  * and fallocate do no need to journal data buffers.
4476  */
4477 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4478 {
4479         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4480 }
4481
4482 /*
4483  * The caller must have previously called ext4_reserve_inode_write().
4484  * Give this, we know that the caller already has write access to iloc->bh.
4485  */
4486 int ext4_mark_iloc_dirty(handle_t *handle,
4487                          struct inode *inode, struct ext4_iloc *iloc)
4488 {
4489         int err = 0;
4490
4491         if (IS_I_VERSION(inode))
4492                 inode_inc_iversion(inode);
4493
4494         /* the do_update_inode consumes one bh->b_count */
4495         get_bh(iloc->bh);
4496
4497         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4498         err = ext4_do_update_inode(handle, inode, iloc);
4499         put_bh(iloc->bh);
4500         return err;
4501 }
4502
4503 /*
4504  * On success, We end up with an outstanding reference count against
4505  * iloc->bh.  This _must_ be cleaned up later.
4506  */
4507
4508 int
4509 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4510                          struct ext4_iloc *iloc)
4511 {
4512         int err;
4513
4514         err = ext4_get_inode_loc(inode, iloc);
4515         if (!err) {
4516                 BUFFER_TRACE(iloc->bh, "get_write_access");
4517                 err = ext4_journal_get_write_access(handle, iloc->bh);
4518                 if (err) {
4519                         brelse(iloc->bh);
4520                         iloc->bh = NULL;
4521                 }
4522         }
4523         ext4_std_error(inode->i_sb, err);
4524         return err;
4525 }
4526
4527 /*
4528  * Expand an inode by new_extra_isize bytes.
4529  * Returns 0 on success or negative error number on failure.
4530  */
4531 static int ext4_expand_extra_isize(struct inode *inode,
4532                                    unsigned int new_extra_isize,
4533                                    struct ext4_iloc iloc,
4534                                    handle_t *handle)
4535 {
4536         struct ext4_inode *raw_inode;
4537         struct ext4_xattr_ibody_header *header;
4538
4539         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4540                 return 0;
4541
4542         raw_inode = ext4_raw_inode(&iloc);
4543
4544         header = IHDR(inode, raw_inode);
4545
4546         /* No extended attributes present */
4547         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4548             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4549                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4550                         new_extra_isize);
4551                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4552                 return 0;
4553         }
4554
4555         /* try to expand with EAs present */
4556         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4557                                           raw_inode, handle);
4558 }
4559
4560 /*
4561  * What we do here is to mark the in-core inode as clean with respect to inode
4562  * dirtiness (it may still be data-dirty).
4563  * This means that the in-core inode may be reaped by prune_icache
4564  * without having to perform any I/O.  This is a very good thing,
4565  * because *any* task may call prune_icache - even ones which
4566  * have a transaction open against a different journal.
4567  *
4568  * Is this cheating?  Not really.  Sure, we haven't written the
4569  * inode out, but prune_icache isn't a user-visible syncing function.
4570  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4571  * we start and wait on commits.
4572  */
4573 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4574 {
4575         struct ext4_iloc iloc;
4576         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4577         static unsigned int mnt_count;
4578         int err, ret;
4579
4580         might_sleep();
4581         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4582         err = ext4_reserve_inode_write(handle, inode, &iloc);
4583         if (ext4_handle_valid(handle) &&
4584             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4585             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4586                 /*
4587                  * We need extra buffer credits since we may write into EA block
4588                  * with this same handle. If journal_extend fails, then it will
4589                  * only result in a minor loss of functionality for that inode.
4590                  * If this is felt to be critical, then e2fsck should be run to
4591                  * force a large enough s_min_extra_isize.
4592                  */
4593                 if ((jbd2_journal_extend(handle,
4594                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4595                         ret = ext4_expand_extra_isize(inode,
4596                                                       sbi->s_want_extra_isize,
4597                                                       iloc, handle);
4598                         if (ret) {
4599                                 ext4_set_inode_state(inode,
4600                                                      EXT4_STATE_NO_EXPAND);
4601                                 if (mnt_count !=
4602                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4603                                         ext4_warning(inode->i_sb,
4604                                         "Unable to expand inode %lu. Delete"
4605                                         " some EAs or run e2fsck.",
4606                                         inode->i_ino);
4607                                         mnt_count =
4608                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4609                                 }
4610                         }
4611                 }
4612         }
4613         if (!err)
4614                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4615         return err;
4616 }
4617
4618 /*
4619  * ext4_dirty_inode() is called from __mark_inode_dirty()
4620  *
4621  * We're really interested in the case where a file is being extended.
4622  * i_size has been changed by generic_commit_write() and we thus need
4623  * to include the updated inode in the current transaction.
4624  *
4625  * Also, dquot_alloc_block() will always dirty the inode when blocks
4626  * are allocated to the file.
4627  *
4628  * If the inode is marked synchronous, we don't honour that here - doing
4629  * so would cause a commit on atime updates, which we don't bother doing.
4630  * We handle synchronous inodes at the highest possible level.
4631  */
4632 void ext4_dirty_inode(struct inode *inode, int flags)
4633 {
4634         handle_t *handle;
4635
4636         handle = ext4_journal_start(inode, 2);
4637         if (IS_ERR(handle))
4638                 goto out;
4639
4640         ext4_mark_inode_dirty(handle, inode);
4641
4642         ext4_journal_stop(handle);
4643 out:
4644         return;
4645 }
4646
4647 #if 0
4648 /*
4649  * Bind an inode's backing buffer_head into this transaction, to prevent
4650  * it from being flushed to disk early.  Unlike
4651  * ext4_reserve_inode_write, this leaves behind no bh reference and
4652  * returns no iloc structure, so the caller needs to repeat the iloc
4653  * lookup to mark the inode dirty later.
4654  */
4655 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4656 {
4657         struct ext4_iloc iloc;
4658
4659         int err = 0;
4660         if (handle) {
4661                 err = ext4_get_inode_loc(inode, &iloc);
4662                 if (!err) {
4663                         BUFFER_TRACE(iloc.bh, "get_write_access");
4664                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4665                         if (!err)
4666                                 err = ext4_handle_dirty_metadata(handle,
4667                                                                  NULL,
4668                                                                  iloc.bh);
4669                         brelse(iloc.bh);
4670                 }
4671         }
4672         ext4_std_error(inode->i_sb, err);
4673         return err;
4674 }
4675 #endif
4676
4677 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4678 {
4679         journal_t *journal;
4680         handle_t *handle;
4681         int err;
4682
4683         /*
4684          * We have to be very careful here: changing a data block's
4685          * journaling status dynamically is dangerous.  If we write a
4686          * data block to the journal, change the status and then delete
4687          * that block, we risk forgetting to revoke the old log record
4688          * from the journal and so a subsequent replay can corrupt data.
4689          * So, first we make sure that the journal is empty and that
4690          * nobody is changing anything.
4691          */
4692
4693         journal = EXT4_JOURNAL(inode);
4694         if (!journal)
4695                 return 0;
4696         if (is_journal_aborted(journal))
4697                 return -EROFS;
4698         /* We have to allocate physical blocks for delalloc blocks
4699          * before flushing journal. otherwise delalloc blocks can not
4700          * be allocated any more. even more truncate on delalloc blocks
4701          * could trigger BUG by flushing delalloc blocks in journal.
4702          * There is no delalloc block in non-journal data mode.
4703          */
4704         if (val && test_opt(inode->i_sb, DELALLOC)) {
4705                 err = ext4_alloc_da_blocks(inode);
4706                 if (err < 0)
4707                         return err;
4708         }
4709
4710         /* Wait for all existing dio workers */
4711         ext4_inode_block_unlocked_dio(inode);
4712         inode_dio_wait(inode);
4713
4714         jbd2_journal_lock_updates(journal);
4715
4716         /*
4717          * OK, there are no updates running now, and all cached data is
4718          * synced to disk.  We are now in a completely consistent state
4719          * which doesn't have anything in the journal, and we know that
4720          * no filesystem updates are running, so it is safe to modify
4721          * the inode's in-core data-journaling state flag now.
4722          */
4723
4724         if (val)
4725                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4726         else {
4727                 jbd2_journal_flush(journal);
4728                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4729         }
4730         ext4_set_aops(inode);
4731
4732         jbd2_journal_unlock_updates(journal);
4733         ext4_inode_resume_unlocked_dio(inode);
4734
4735         /* Finally we can mark the inode as dirty. */
4736
4737         handle = ext4_journal_start(inode, 1);
4738         if (IS_ERR(handle))
4739                 return PTR_ERR(handle);
4740
4741         err = ext4_mark_inode_dirty(handle, inode);
4742         ext4_handle_sync(handle);
4743         ext4_journal_stop(handle);
4744         ext4_std_error(inode->i_sb, err);
4745
4746         return err;
4747 }
4748
4749 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4750 {
4751         return !buffer_mapped(bh);
4752 }
4753
4754 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4755 {
4756         struct page *page = vmf->page;
4757         loff_t size;
4758         unsigned long len;
4759         int ret;
4760         struct file *file = vma->vm_file;
4761         struct inode *inode = file->f_path.dentry->d_inode;
4762         struct address_space *mapping = inode->i_mapping;
4763         handle_t *handle;
4764         get_block_t *get_block;
4765         int retries = 0;
4766
4767         sb_start_pagefault(inode->i_sb);
4768         file_update_time(vma->vm_file);
4769         /* Delalloc case is easy... */
4770         if (test_opt(inode->i_sb, DELALLOC) &&
4771             !ext4_should_journal_data(inode) &&
4772             !ext4_nonda_switch(inode->i_sb)) {
4773                 do {
4774                         ret = __block_page_mkwrite(vma, vmf,
4775                                                    ext4_da_get_block_prep);
4776                 } while (ret == -ENOSPC &&
4777                        ext4_should_retry_alloc(inode->i_sb, &retries));
4778                 goto out_ret;
4779         }
4780
4781         lock_page(page);
4782         size = i_size_read(inode);
4783         /* Page got truncated from under us? */
4784         if (page->mapping != mapping || page_offset(page) > size) {
4785                 unlock_page(page);
4786                 ret = VM_FAULT_NOPAGE;
4787                 goto out;
4788         }
4789
4790         if (page->index == size >> PAGE_CACHE_SHIFT)
4791                 len = size & ~PAGE_CACHE_MASK;
4792         else
4793                 len = PAGE_CACHE_SIZE;
4794         /*
4795          * Return if we have all the buffers mapped. This avoids the need to do
4796          * journal_start/journal_stop which can block and take a long time
4797          */
4798         if (page_has_buffers(page)) {
4799                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4800                                         ext4_bh_unmapped)) {
4801                         /* Wait so that we don't change page under IO */
4802                         wait_on_page_writeback(page);
4803                         ret = VM_FAULT_LOCKED;
4804                         goto out;
4805                 }
4806         }
4807         unlock_page(page);
4808         /* OK, we need to fill the hole... */
4809         if (ext4_should_dioread_nolock(inode))
4810                 get_block = ext4_get_block_write;
4811         else
4812                 get_block = ext4_get_block;
4813 retry_alloc:
4814         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
4815         if (IS_ERR(handle)) {
4816                 ret = VM_FAULT_SIGBUS;
4817                 goto out;
4818         }
4819         ret = __block_page_mkwrite(vma, vmf, get_block);
4820         if (!ret && ext4_should_journal_data(inode)) {
4821                 if (walk_page_buffers(handle, page_buffers(page), 0,
4822                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4823                         unlock_page(page);
4824                         ret = VM_FAULT_SIGBUS;
4825                         ext4_journal_stop(handle);
4826                         goto out;
4827                 }
4828                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4829         }
4830         ext4_journal_stop(handle);
4831         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4832                 goto retry_alloc;
4833 out_ret:
4834         ret = block_page_mkwrite_return(ret);
4835 out:
4836         sb_end_pagefault(inode->i_sb);
4837         return ret;
4838 }