2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
42 #include "ext4_jbd2.h"
47 #include <trace/events/ext4.h>
49 #define MPAGE_DA_EXTENT_TAIL 0x01
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 struct ext4_inode_info *ei)
54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
59 csum_lo = le16_to_cpu(raw->i_checksum_lo);
60 raw->i_checksum_lo = 0;
61 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
62 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
63 csum_hi = le16_to_cpu(raw->i_checksum_hi);
64 raw->i_checksum_hi = 0;
67 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
68 EXT4_INODE_SIZE(inode->i_sb));
70 raw->i_checksum_lo = cpu_to_le16(csum_lo);
71 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
72 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
73 raw->i_checksum_hi = cpu_to_le16(csum_hi);
78 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
79 struct ext4_inode_info *ei)
81 __u32 provided, calculated;
83 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
84 cpu_to_le32(EXT4_OS_LINUX) ||
85 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
86 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
89 provided = le16_to_cpu(raw->i_checksum_lo);
90 calculated = ext4_inode_csum(inode, raw, ei);
91 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
92 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
93 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
97 return provided == calculated;
100 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
101 struct ext4_inode_info *ei)
105 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
106 cpu_to_le32(EXT4_OS_LINUX) ||
107 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
108 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
111 csum = ext4_inode_csum(inode, raw, ei);
112 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
113 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
114 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
115 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
118 static inline int ext4_begin_ordered_truncate(struct inode *inode,
121 trace_ext4_begin_ordered_truncate(inode, new_size);
123 * If jinode is zero, then we never opened the file for
124 * writing, so there's no need to call
125 * jbd2_journal_begin_ordered_truncate() since there's no
126 * outstanding writes we need to flush.
128 if (!EXT4_I(inode)->jinode)
130 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
131 EXT4_I(inode)->jinode,
135 static void ext4_invalidatepage(struct page *page, unsigned int offset,
136 unsigned int length);
137 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
138 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
139 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143 * Test whether an inode is a fast symlink.
145 static int ext4_inode_is_fast_symlink(struct inode *inode)
147 int ea_blocks = EXT4_I(inode)->i_file_acl ?
148 (inode->i_sb->s_blocksize >> 9) : 0;
150 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
154 * Restart the transaction associated with *handle. This does a commit,
155 * so before we call here everything must be consistently dirtied against
158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
164 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
165 * moment, get_block can be called only for blocks inside i_size since
166 * page cache has been already dropped and writes are blocked by
167 * i_mutex. So we can safely drop the i_data_sem here.
169 BUG_ON(EXT4_JOURNAL(inode) == NULL);
170 jbd_debug(2, "restarting handle %p\n", handle);
171 up_write(&EXT4_I(inode)->i_data_sem);
172 ret = ext4_journal_restart(handle, nblocks);
173 down_write(&EXT4_I(inode)->i_data_sem);
174 ext4_discard_preallocations(inode);
180 * Called at the last iput() if i_nlink is zero.
182 void ext4_evict_inode(struct inode *inode)
187 trace_ext4_evict_inode(inode);
189 if (inode->i_nlink) {
191 * When journalling data dirty buffers are tracked only in the
192 * journal. So although mm thinks everything is clean and
193 * ready for reaping the inode might still have some pages to
194 * write in the running transaction or waiting to be
195 * checkpointed. Thus calling jbd2_journal_invalidatepage()
196 * (via truncate_inode_pages()) to discard these buffers can
197 * cause data loss. Also even if we did not discard these
198 * buffers, we would have no way to find them after the inode
199 * is reaped and thus user could see stale data if he tries to
200 * read them before the transaction is checkpointed. So be
201 * careful and force everything to disk here... We use
202 * ei->i_datasync_tid to store the newest transaction
203 * containing inode's data.
205 * Note that directories do not have this problem because they
206 * don't use page cache.
208 if (ext4_should_journal_data(inode) &&
209 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210 inode->i_ino != EXT4_JOURNAL_INO) {
211 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
214 jbd2_complete_transaction(journal, commit_tid);
215 filemap_write_and_wait(&inode->i_data);
217 truncate_inode_pages(&inode->i_data, 0);
219 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
223 if (!is_bad_inode(inode))
224 dquot_initialize(inode);
226 if (ext4_should_order_data(inode))
227 ext4_begin_ordered_truncate(inode, 0);
228 truncate_inode_pages(&inode->i_data, 0);
230 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
231 if (is_bad_inode(inode))
235 * Protect us against freezing - iput() caller didn't have to have any
236 * protection against it
238 sb_start_intwrite(inode->i_sb);
239 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
240 ext4_blocks_for_truncate(inode)+3);
241 if (IS_ERR(handle)) {
242 ext4_std_error(inode->i_sb, PTR_ERR(handle));
244 * If we're going to skip the normal cleanup, we still need to
245 * make sure that the in-core orphan linked list is properly
248 ext4_orphan_del(NULL, inode);
249 sb_end_intwrite(inode->i_sb);
254 ext4_handle_sync(handle);
256 err = ext4_mark_inode_dirty(handle, inode);
258 ext4_warning(inode->i_sb,
259 "couldn't mark inode dirty (err %d)", err);
263 ext4_truncate(inode);
266 * ext4_ext_truncate() doesn't reserve any slop when it
267 * restarts journal transactions; therefore there may not be
268 * enough credits left in the handle to remove the inode from
269 * the orphan list and set the dtime field.
271 if (!ext4_handle_has_enough_credits(handle, 3)) {
272 err = ext4_journal_extend(handle, 3);
274 err = ext4_journal_restart(handle, 3);
276 ext4_warning(inode->i_sb,
277 "couldn't extend journal (err %d)", err);
279 ext4_journal_stop(handle);
280 ext4_orphan_del(NULL, inode);
281 sb_end_intwrite(inode->i_sb);
287 * Kill off the orphan record which ext4_truncate created.
288 * AKPM: I think this can be inside the above `if'.
289 * Note that ext4_orphan_del() has to be able to cope with the
290 * deletion of a non-existent orphan - this is because we don't
291 * know if ext4_truncate() actually created an orphan record.
292 * (Well, we could do this if we need to, but heck - it works)
294 ext4_orphan_del(handle, inode);
295 EXT4_I(inode)->i_dtime = get_seconds();
298 * One subtle ordering requirement: if anything has gone wrong
299 * (transaction abort, IO errors, whatever), then we can still
300 * do these next steps (the fs will already have been marked as
301 * having errors), but we can't free the inode if the mark_dirty
304 if (ext4_mark_inode_dirty(handle, inode))
305 /* If that failed, just do the required in-core inode clear. */
306 ext4_clear_inode(inode);
308 ext4_free_inode(handle, inode);
309 ext4_journal_stop(handle);
310 sb_end_intwrite(inode->i_sb);
313 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
317 qsize_t *ext4_get_reserved_space(struct inode *inode)
319 return &EXT4_I(inode)->i_reserved_quota;
324 * Calculate the number of metadata blocks need to reserve
325 * to allocate a block located at @lblock
327 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
329 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
330 return ext4_ext_calc_metadata_amount(inode, lblock);
332 return ext4_ind_calc_metadata_amount(inode, lblock);
336 * Called with i_data_sem down, which is important since we can call
337 * ext4_discard_preallocations() from here.
339 void ext4_da_update_reserve_space(struct inode *inode,
340 int used, int quota_claim)
342 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
343 struct ext4_inode_info *ei = EXT4_I(inode);
345 spin_lock(&ei->i_block_reservation_lock);
346 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
347 if (unlikely(used > ei->i_reserved_data_blocks)) {
348 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
349 "with only %d reserved data blocks",
350 __func__, inode->i_ino, used,
351 ei->i_reserved_data_blocks);
353 used = ei->i_reserved_data_blocks;
356 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
357 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
358 "with only %d reserved metadata blocks "
359 "(releasing %d blocks with reserved %d data blocks)",
360 inode->i_ino, ei->i_allocated_meta_blocks,
361 ei->i_reserved_meta_blocks, used,
362 ei->i_reserved_data_blocks);
364 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
367 /* Update per-inode reservations */
368 ei->i_reserved_data_blocks -= used;
369 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
370 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
371 used + ei->i_allocated_meta_blocks);
372 ei->i_allocated_meta_blocks = 0;
374 if (ei->i_reserved_data_blocks == 0) {
376 * We can release all of the reserved metadata blocks
377 * only when we have written all of the delayed
380 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
381 ei->i_reserved_meta_blocks);
382 ei->i_reserved_meta_blocks = 0;
383 ei->i_da_metadata_calc_len = 0;
385 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
387 /* Update quota subsystem for data blocks */
389 dquot_claim_block(inode, EXT4_C2B(sbi, used));
392 * We did fallocate with an offset that is already delayed
393 * allocated. So on delayed allocated writeback we should
394 * not re-claim the quota for fallocated blocks.
396 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
400 * If we have done all the pending block allocations and if
401 * there aren't any writers on the inode, we can discard the
402 * inode's preallocations.
404 if ((ei->i_reserved_data_blocks == 0) &&
405 (atomic_read(&inode->i_writecount) == 0))
406 ext4_discard_preallocations(inode);
409 static int __check_block_validity(struct inode *inode, const char *func,
411 struct ext4_map_blocks *map)
413 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
415 ext4_error_inode(inode, func, line, map->m_pblk,
416 "lblock %lu mapped to illegal pblock "
417 "(length %d)", (unsigned long) map->m_lblk,
424 #define check_block_validity(inode, map) \
425 __check_block_validity((inode), __func__, __LINE__, (map))
427 #ifdef ES_AGGRESSIVE_TEST
428 static void ext4_map_blocks_es_recheck(handle_t *handle,
430 struct ext4_map_blocks *es_map,
431 struct ext4_map_blocks *map,
438 * There is a race window that the result is not the same.
439 * e.g. xfstests #223 when dioread_nolock enables. The reason
440 * is that we lookup a block mapping in extent status tree with
441 * out taking i_data_sem. So at the time the unwritten extent
442 * could be converted.
444 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
445 down_read((&EXT4_I(inode)->i_data_sem));
446 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
447 retval = ext4_ext_map_blocks(handle, inode, map, flags &
448 EXT4_GET_BLOCKS_KEEP_SIZE);
450 retval = ext4_ind_map_blocks(handle, inode, map, flags &
451 EXT4_GET_BLOCKS_KEEP_SIZE);
453 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
454 up_read((&EXT4_I(inode)->i_data_sem));
456 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
457 * because it shouldn't be marked in es_map->m_flags.
459 map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
462 * We don't check m_len because extent will be collpased in status
463 * tree. So the m_len might not equal.
465 if (es_map->m_lblk != map->m_lblk ||
466 es_map->m_flags != map->m_flags ||
467 es_map->m_pblk != map->m_pblk) {
468 printk("ES cache assertion failed for inode: %lu "
469 "es_cached ex [%d/%d/%llu/%x] != "
470 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
471 inode->i_ino, es_map->m_lblk, es_map->m_len,
472 es_map->m_pblk, es_map->m_flags, map->m_lblk,
473 map->m_len, map->m_pblk, map->m_flags,
477 #endif /* ES_AGGRESSIVE_TEST */
480 * The ext4_map_blocks() function tries to look up the requested blocks,
481 * and returns if the blocks are already mapped.
483 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
484 * and store the allocated blocks in the result buffer head and mark it
487 * If file type is extents based, it will call ext4_ext_map_blocks(),
488 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
491 * On success, it returns the number of blocks being mapped or allocate.
492 * if create==0 and the blocks are pre-allocated and uninitialized block,
493 * the result buffer head is unmapped. If the create ==1, it will make sure
494 * the buffer head is mapped.
496 * It returns 0 if plain look up failed (blocks have not been allocated), in
497 * that case, buffer head is unmapped
499 * It returns the error in case of allocation failure.
501 int ext4_map_blocks(handle_t *handle, struct inode *inode,
502 struct ext4_map_blocks *map, int flags)
504 struct extent_status es;
506 #ifdef ES_AGGRESSIVE_TEST
507 struct ext4_map_blocks orig_map;
509 memcpy(&orig_map, map, sizeof(*map));
513 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
514 "logical block %lu\n", inode->i_ino, flags, map->m_len,
515 (unsigned long) map->m_lblk);
517 /* Lookup extent status tree firstly */
518 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
519 ext4_es_lru_add(inode);
520 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
521 map->m_pblk = ext4_es_pblock(&es) +
522 map->m_lblk - es.es_lblk;
523 map->m_flags |= ext4_es_is_written(&es) ?
524 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
525 retval = es.es_len - (map->m_lblk - es.es_lblk);
526 if (retval > map->m_len)
529 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
534 #ifdef ES_AGGRESSIVE_TEST
535 ext4_map_blocks_es_recheck(handle, inode, map,
542 * Try to see if we can get the block without requesting a new
545 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
546 down_read((&EXT4_I(inode)->i_data_sem));
547 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
548 retval = ext4_ext_map_blocks(handle, inode, map, flags &
549 EXT4_GET_BLOCKS_KEEP_SIZE);
551 retval = ext4_ind_map_blocks(handle, inode, map, flags &
552 EXT4_GET_BLOCKS_KEEP_SIZE);
556 unsigned long long status;
558 if (unlikely(retval != map->m_len)) {
559 ext4_warning(inode->i_sb,
560 "ES len assertion failed for inode "
561 "%lu: retval %d != map->m_len %d",
562 inode->i_ino, retval, map->m_len);
566 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
567 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
568 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
569 ext4_find_delalloc_range(inode, map->m_lblk,
570 map->m_lblk + map->m_len - 1))
571 status |= EXTENT_STATUS_DELAYED;
572 ret = ext4_es_insert_extent(inode, map->m_lblk,
573 map->m_len, map->m_pblk, status);
577 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
578 up_read((&EXT4_I(inode)->i_data_sem));
581 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
582 int ret = check_block_validity(inode, map);
587 /* If it is only a block(s) look up */
588 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
592 * Returns if the blocks have already allocated
594 * Note that if blocks have been preallocated
595 * ext4_ext_get_block() returns the create = 0
596 * with buffer head unmapped.
598 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
602 * Here we clear m_flags because after allocating an new extent,
603 * it will be set again.
605 map->m_flags &= ~EXT4_MAP_FLAGS;
608 * New blocks allocate and/or writing to uninitialized extent
609 * will possibly result in updating i_data, so we take
610 * the write lock of i_data_sem, and call get_blocks()
611 * with create == 1 flag.
613 down_write((&EXT4_I(inode)->i_data_sem));
616 * if the caller is from delayed allocation writeout path
617 * we have already reserved fs blocks for allocation
618 * let the underlying get_block() function know to
619 * avoid double accounting
621 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
622 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
624 * We need to check for EXT4 here because migrate
625 * could have changed the inode type in between
627 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
628 retval = ext4_ext_map_blocks(handle, inode, map, flags);
630 retval = ext4_ind_map_blocks(handle, inode, map, flags);
632 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
634 * We allocated new blocks which will result in
635 * i_data's format changing. Force the migrate
636 * to fail by clearing migrate flags
638 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
642 * Update reserved blocks/metadata blocks after successful
643 * block allocation which had been deferred till now. We don't
644 * support fallocate for non extent files. So we can update
645 * reserve space here.
648 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
649 ext4_da_update_reserve_space(inode, retval, 1);
651 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
652 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
656 unsigned long long status;
658 if (unlikely(retval != map->m_len)) {
659 ext4_warning(inode->i_sb,
660 "ES len assertion failed for inode "
661 "%lu: retval %d != map->m_len %d",
662 inode->i_ino, retval, map->m_len);
667 * If the extent has been zeroed out, we don't need to update
668 * extent status tree.
670 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
671 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
672 if (ext4_es_is_written(&es))
675 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
676 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
677 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
678 ext4_find_delalloc_range(inode, map->m_lblk,
679 map->m_lblk + map->m_len - 1))
680 status |= EXTENT_STATUS_DELAYED;
681 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
682 map->m_pblk, status);
688 up_write((&EXT4_I(inode)->i_data_sem));
689 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
690 int ret = check_block_validity(inode, map);
697 /* Maximum number of blocks we map for direct IO at once. */
698 #define DIO_MAX_BLOCKS 4096
700 static int _ext4_get_block(struct inode *inode, sector_t iblock,
701 struct buffer_head *bh, int flags)
703 handle_t *handle = ext4_journal_current_handle();
704 struct ext4_map_blocks map;
705 int ret = 0, started = 0;
708 if (ext4_has_inline_data(inode))
712 map.m_len = bh->b_size >> inode->i_blkbits;
714 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
715 /* Direct IO write... */
716 if (map.m_len > DIO_MAX_BLOCKS)
717 map.m_len = DIO_MAX_BLOCKS;
718 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
719 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
721 if (IS_ERR(handle)) {
722 ret = PTR_ERR(handle);
728 ret = ext4_map_blocks(handle, inode, &map, flags);
730 map_bh(bh, inode->i_sb, map.m_pblk);
731 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
732 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
736 ext4_journal_stop(handle);
740 int ext4_get_block(struct inode *inode, sector_t iblock,
741 struct buffer_head *bh, int create)
743 return _ext4_get_block(inode, iblock, bh,
744 create ? EXT4_GET_BLOCKS_CREATE : 0);
748 * `handle' can be NULL if create is zero
750 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
751 ext4_lblk_t block, int create, int *errp)
753 struct ext4_map_blocks map;
754 struct buffer_head *bh;
757 J_ASSERT(handle != NULL || create == 0);
761 err = ext4_map_blocks(handle, inode, &map,
762 create ? EXT4_GET_BLOCKS_CREATE : 0);
764 /* ensure we send some value back into *errp */
767 if (create && err == 0)
768 err = -ENOSPC; /* should never happen */
774 bh = sb_getblk(inode->i_sb, map.m_pblk);
779 if (map.m_flags & EXT4_MAP_NEW) {
780 J_ASSERT(create != 0);
781 J_ASSERT(handle != NULL);
784 * Now that we do not always journal data, we should
785 * keep in mind whether this should always journal the
786 * new buffer as metadata. For now, regular file
787 * writes use ext4_get_block instead, so it's not a
791 BUFFER_TRACE(bh, "call get_create_access");
792 fatal = ext4_journal_get_create_access(handle, bh);
793 if (!fatal && !buffer_uptodate(bh)) {
794 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
795 set_buffer_uptodate(bh);
798 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
799 err = ext4_handle_dirty_metadata(handle, inode, bh);
803 BUFFER_TRACE(bh, "not a new buffer");
813 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
814 ext4_lblk_t block, int create, int *err)
816 struct buffer_head *bh;
818 bh = ext4_getblk(handle, inode, block, create, err);
821 if (buffer_uptodate(bh))
823 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
825 if (buffer_uptodate(bh))
832 int ext4_walk_page_buffers(handle_t *handle,
833 struct buffer_head *head,
837 int (*fn)(handle_t *handle,
838 struct buffer_head *bh))
840 struct buffer_head *bh;
841 unsigned block_start, block_end;
842 unsigned blocksize = head->b_size;
844 struct buffer_head *next;
846 for (bh = head, block_start = 0;
847 ret == 0 && (bh != head || !block_start);
848 block_start = block_end, bh = next) {
849 next = bh->b_this_page;
850 block_end = block_start + blocksize;
851 if (block_end <= from || block_start >= to) {
852 if (partial && !buffer_uptodate(bh))
856 err = (*fn)(handle, bh);
864 * To preserve ordering, it is essential that the hole instantiation and
865 * the data write be encapsulated in a single transaction. We cannot
866 * close off a transaction and start a new one between the ext4_get_block()
867 * and the commit_write(). So doing the jbd2_journal_start at the start of
868 * prepare_write() is the right place.
870 * Also, this function can nest inside ext4_writepage(). In that case, we
871 * *know* that ext4_writepage() has generated enough buffer credits to do the
872 * whole page. So we won't block on the journal in that case, which is good,
873 * because the caller may be PF_MEMALLOC.
875 * By accident, ext4 can be reentered when a transaction is open via
876 * quota file writes. If we were to commit the transaction while thus
877 * reentered, there can be a deadlock - we would be holding a quota
878 * lock, and the commit would never complete if another thread had a
879 * transaction open and was blocking on the quota lock - a ranking
882 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
883 * will _not_ run commit under these circumstances because handle->h_ref
884 * is elevated. We'll still have enough credits for the tiny quotafile
887 int do_journal_get_write_access(handle_t *handle,
888 struct buffer_head *bh)
890 int dirty = buffer_dirty(bh);
893 if (!buffer_mapped(bh) || buffer_freed(bh))
896 * __block_write_begin() could have dirtied some buffers. Clean
897 * the dirty bit as jbd2_journal_get_write_access() could complain
898 * otherwise about fs integrity issues. Setting of the dirty bit
899 * by __block_write_begin() isn't a real problem here as we clear
900 * the bit before releasing a page lock and thus writeback cannot
901 * ever write the buffer.
904 clear_buffer_dirty(bh);
905 ret = ext4_journal_get_write_access(handle, bh);
907 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
911 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
912 struct buffer_head *bh_result, int create);
913 static int ext4_write_begin(struct file *file, struct address_space *mapping,
914 loff_t pos, unsigned len, unsigned flags,
915 struct page **pagep, void **fsdata)
917 struct inode *inode = mapping->host;
918 int ret, needed_blocks;
925 trace_ext4_write_begin(inode, pos, len, flags);
927 * Reserve one block more for addition to orphan list in case
928 * we allocate blocks but write fails for some reason
930 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
931 index = pos >> PAGE_CACHE_SHIFT;
932 from = pos & (PAGE_CACHE_SIZE - 1);
935 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
936 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
945 * grab_cache_page_write_begin() can take a long time if the
946 * system is thrashing due to memory pressure, or if the page
947 * is being written back. So grab it first before we start
948 * the transaction handle. This also allows us to allocate
949 * the page (if needed) without using GFP_NOFS.
952 page = grab_cache_page_write_begin(mapping, index, flags);
958 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
959 if (IS_ERR(handle)) {
960 page_cache_release(page);
961 return PTR_ERR(handle);
965 if (page->mapping != mapping) {
966 /* The page got truncated from under us */
968 page_cache_release(page);
969 ext4_journal_stop(handle);
972 wait_on_page_writeback(page);
974 if (ext4_should_dioread_nolock(inode))
975 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
977 ret = __block_write_begin(page, pos, len, ext4_get_block);
979 if (!ret && ext4_should_journal_data(inode)) {
980 ret = ext4_walk_page_buffers(handle, page_buffers(page),
982 do_journal_get_write_access);
988 * __block_write_begin may have instantiated a few blocks
989 * outside i_size. Trim these off again. Don't need
990 * i_size_read because we hold i_mutex.
992 * Add inode to orphan list in case we crash before
995 if (pos + len > inode->i_size && ext4_can_truncate(inode))
996 ext4_orphan_add(handle, inode);
998 ext4_journal_stop(handle);
999 if (pos + len > inode->i_size) {
1000 ext4_truncate_failed_write(inode);
1002 * If truncate failed early the inode might
1003 * still be on the orphan list; we need to
1004 * make sure the inode is removed from the
1005 * orphan list in that case.
1008 ext4_orphan_del(NULL, inode);
1011 if (ret == -ENOSPC &&
1012 ext4_should_retry_alloc(inode->i_sb, &retries))
1014 page_cache_release(page);
1021 /* For write_end() in data=journal mode */
1022 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1025 if (!buffer_mapped(bh) || buffer_freed(bh))
1027 set_buffer_uptodate(bh);
1028 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1029 clear_buffer_meta(bh);
1030 clear_buffer_prio(bh);
1035 * We need to pick up the new inode size which generic_commit_write gave us
1036 * `file' can be NULL - eg, when called from page_symlink().
1038 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1039 * buffers are managed internally.
1041 static int ext4_write_end(struct file *file,
1042 struct address_space *mapping,
1043 loff_t pos, unsigned len, unsigned copied,
1044 struct page *page, void *fsdata)
1046 handle_t *handle = ext4_journal_current_handle();
1047 struct inode *inode = mapping->host;
1049 int i_size_changed = 0;
1051 trace_ext4_write_end(inode, pos, len, copied);
1052 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1053 ret = ext4_jbd2_file_inode(handle, inode);
1056 page_cache_release(page);
1061 if (ext4_has_inline_data(inode)) {
1062 ret = ext4_write_inline_data_end(inode, pos, len,
1068 copied = block_write_end(file, mapping, pos,
1069 len, copied, page, fsdata);
1072 * No need to use i_size_read() here, the i_size
1073 * cannot change under us because we hole i_mutex.
1075 * But it's important to update i_size while still holding page lock:
1076 * page writeout could otherwise come in and zero beyond i_size.
1078 if (pos + copied > inode->i_size) {
1079 i_size_write(inode, pos + copied);
1083 if (pos + copied > EXT4_I(inode)->i_disksize) {
1084 /* We need to mark inode dirty even if
1085 * new_i_size is less that inode->i_size
1086 * but greater than i_disksize. (hint delalloc)
1088 ext4_update_i_disksize(inode, (pos + copied));
1092 page_cache_release(page);
1095 * Don't mark the inode dirty under page lock. First, it unnecessarily
1096 * makes the holding time of page lock longer. Second, it forces lock
1097 * ordering of page lock and transaction start for journaling
1101 ext4_mark_inode_dirty(handle, inode);
1103 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1104 /* if we have allocated more blocks and copied
1105 * less. We will have blocks allocated outside
1106 * inode->i_size. So truncate them
1108 ext4_orphan_add(handle, inode);
1110 ret2 = ext4_journal_stop(handle);
1114 if (pos + len > inode->i_size) {
1115 ext4_truncate_failed_write(inode);
1117 * If truncate failed early the inode might still be
1118 * on the orphan list; we need to make sure the inode
1119 * is removed from the orphan list in that case.
1122 ext4_orphan_del(NULL, inode);
1125 return ret ? ret : copied;
1128 static int ext4_journalled_write_end(struct file *file,
1129 struct address_space *mapping,
1130 loff_t pos, unsigned len, unsigned copied,
1131 struct page *page, void *fsdata)
1133 handle_t *handle = ext4_journal_current_handle();
1134 struct inode *inode = mapping->host;
1140 trace_ext4_journalled_write_end(inode, pos, len, copied);
1141 from = pos & (PAGE_CACHE_SIZE - 1);
1144 BUG_ON(!ext4_handle_valid(handle));
1146 if (ext4_has_inline_data(inode))
1147 copied = ext4_write_inline_data_end(inode, pos, len,
1151 if (!PageUptodate(page))
1153 page_zero_new_buffers(page, from+copied, to);
1156 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1157 to, &partial, write_end_fn);
1159 SetPageUptodate(page);
1161 new_i_size = pos + copied;
1162 if (new_i_size > inode->i_size)
1163 i_size_write(inode, pos+copied);
1164 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1165 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1166 if (new_i_size > EXT4_I(inode)->i_disksize) {
1167 ext4_update_i_disksize(inode, new_i_size);
1168 ret2 = ext4_mark_inode_dirty(handle, inode);
1174 page_cache_release(page);
1175 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1176 /* if we have allocated more blocks and copied
1177 * less. We will have blocks allocated outside
1178 * inode->i_size. So truncate them
1180 ext4_orphan_add(handle, inode);
1182 ret2 = ext4_journal_stop(handle);
1185 if (pos + len > inode->i_size) {
1186 ext4_truncate_failed_write(inode);
1188 * If truncate failed early the inode might still be
1189 * on the orphan list; we need to make sure the inode
1190 * is removed from the orphan list in that case.
1193 ext4_orphan_del(NULL, inode);
1196 return ret ? ret : copied;
1200 * Reserve a metadata for a single block located at lblock
1202 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1205 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1206 struct ext4_inode_info *ei = EXT4_I(inode);
1207 unsigned int md_needed;
1208 ext4_lblk_t save_last_lblock;
1212 * recalculate the amount of metadata blocks to reserve
1213 * in order to allocate nrblocks
1214 * worse case is one extent per block
1217 spin_lock(&ei->i_block_reservation_lock);
1219 * ext4_calc_metadata_amount() has side effects, which we have
1220 * to be prepared undo if we fail to claim space.
1222 save_len = ei->i_da_metadata_calc_len;
1223 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1224 md_needed = EXT4_NUM_B2C(sbi,
1225 ext4_calc_metadata_amount(inode, lblock));
1226 trace_ext4_da_reserve_space(inode, md_needed);
1229 * We do still charge estimated metadata to the sb though;
1230 * we cannot afford to run out of free blocks.
1232 if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1233 ei->i_da_metadata_calc_len = save_len;
1234 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1235 spin_unlock(&ei->i_block_reservation_lock);
1236 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1242 ei->i_reserved_meta_blocks += md_needed;
1243 spin_unlock(&ei->i_block_reservation_lock);
1245 return 0; /* success */
1249 * Reserve a single cluster located at lblock
1251 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1254 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1255 struct ext4_inode_info *ei = EXT4_I(inode);
1256 unsigned int md_needed;
1258 ext4_lblk_t save_last_lblock;
1262 * We will charge metadata quota at writeout time; this saves
1263 * us from metadata over-estimation, though we may go over by
1264 * a small amount in the end. Here we just reserve for data.
1266 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1271 * recalculate the amount of metadata blocks to reserve
1272 * in order to allocate nrblocks
1273 * worse case is one extent per block
1276 spin_lock(&ei->i_block_reservation_lock);
1278 * ext4_calc_metadata_amount() has side effects, which we have
1279 * to be prepared undo if we fail to claim space.
1281 save_len = ei->i_da_metadata_calc_len;
1282 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1283 md_needed = EXT4_NUM_B2C(sbi,
1284 ext4_calc_metadata_amount(inode, lblock));
1285 trace_ext4_da_reserve_space(inode, md_needed);
1288 * We do still charge estimated metadata to the sb though;
1289 * we cannot afford to run out of free blocks.
1291 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1292 ei->i_da_metadata_calc_len = save_len;
1293 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1294 spin_unlock(&ei->i_block_reservation_lock);
1295 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1299 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1302 ei->i_reserved_data_blocks++;
1303 ei->i_reserved_meta_blocks += md_needed;
1304 spin_unlock(&ei->i_block_reservation_lock);
1306 return 0; /* success */
1309 static void ext4_da_release_space(struct inode *inode, int to_free)
1311 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1312 struct ext4_inode_info *ei = EXT4_I(inode);
1315 return; /* Nothing to release, exit */
1317 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1319 trace_ext4_da_release_space(inode, to_free);
1320 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1322 * if there aren't enough reserved blocks, then the
1323 * counter is messed up somewhere. Since this
1324 * function is called from invalidate page, it's
1325 * harmless to return without any action.
1327 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1328 "ino %lu, to_free %d with only %d reserved "
1329 "data blocks", inode->i_ino, to_free,
1330 ei->i_reserved_data_blocks);
1332 to_free = ei->i_reserved_data_blocks;
1334 ei->i_reserved_data_blocks -= to_free;
1336 if (ei->i_reserved_data_blocks == 0) {
1338 * We can release all of the reserved metadata blocks
1339 * only when we have written all of the delayed
1340 * allocation blocks.
1341 * Note that in case of bigalloc, i_reserved_meta_blocks,
1342 * i_reserved_data_blocks, etc. refer to number of clusters.
1344 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1345 ei->i_reserved_meta_blocks);
1346 ei->i_reserved_meta_blocks = 0;
1347 ei->i_da_metadata_calc_len = 0;
1350 /* update fs dirty data blocks counter */
1351 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1353 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1355 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1358 static void ext4_da_page_release_reservation(struct page *page,
1359 unsigned int offset,
1360 unsigned int length)
1363 struct buffer_head *head, *bh;
1364 unsigned int curr_off = 0;
1365 struct inode *inode = page->mapping->host;
1366 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1367 unsigned int stop = offset + length;
1371 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1373 head = page_buffers(page);
1376 unsigned int next_off = curr_off + bh->b_size;
1378 if (next_off > stop)
1381 if ((offset <= curr_off) && (buffer_delay(bh))) {
1383 clear_buffer_delay(bh);
1385 curr_off = next_off;
1386 } while ((bh = bh->b_this_page) != head);
1389 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1390 ext4_es_remove_extent(inode, lblk, to_release);
1393 /* If we have released all the blocks belonging to a cluster, then we
1394 * need to release the reserved space for that cluster. */
1395 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1396 while (num_clusters > 0) {
1397 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1398 ((num_clusters - 1) << sbi->s_cluster_bits);
1399 if (sbi->s_cluster_ratio == 1 ||
1400 !ext4_find_delalloc_cluster(inode, lblk))
1401 ext4_da_release_space(inode, 1);
1408 * Delayed allocation stuff
1411 struct mpage_da_data {
1412 struct inode *inode;
1413 struct writeback_control *wbc;
1415 pgoff_t first_page; /* The first page to write */
1416 pgoff_t next_page; /* Current page to examine */
1417 pgoff_t last_page; /* Last page to examine */
1419 * Extent to map - this can be after first_page because that can be
1420 * fully mapped. We somewhat abuse m_flags to store whether the extent
1421 * is delalloc or unwritten.
1423 struct ext4_map_blocks map;
1424 struct ext4_io_submit io_submit; /* IO submission data */
1427 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1432 struct pagevec pvec;
1433 struct inode *inode = mpd->inode;
1434 struct address_space *mapping = inode->i_mapping;
1436 /* This is necessary when next_page == 0. */
1437 if (mpd->first_page >= mpd->next_page)
1440 index = mpd->first_page;
1441 end = mpd->next_page - 1;
1443 ext4_lblk_t start, last;
1444 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1445 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1446 ext4_es_remove_extent(inode, start, last - start + 1);
1449 pagevec_init(&pvec, 0);
1450 while (index <= end) {
1451 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1454 for (i = 0; i < nr_pages; i++) {
1455 struct page *page = pvec.pages[i];
1456 if (page->index > end)
1458 BUG_ON(!PageLocked(page));
1459 BUG_ON(PageWriteback(page));
1461 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1462 ClearPageUptodate(page);
1466 index = pvec.pages[nr_pages - 1]->index + 1;
1467 pagevec_release(&pvec);
1471 static void ext4_print_free_blocks(struct inode *inode)
1473 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1474 struct super_block *sb = inode->i_sb;
1475 struct ext4_inode_info *ei = EXT4_I(inode);
1477 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1478 EXT4_C2B(EXT4_SB(inode->i_sb),
1479 ext4_count_free_clusters(sb)));
1480 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1481 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1482 (long long) EXT4_C2B(EXT4_SB(sb),
1483 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1484 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1485 (long long) EXT4_C2B(EXT4_SB(sb),
1486 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1487 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1488 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1489 ei->i_reserved_data_blocks);
1490 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1491 ei->i_reserved_meta_blocks);
1492 ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1493 ei->i_allocated_meta_blocks);
1497 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1499 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1503 * This function is grabs code from the very beginning of
1504 * ext4_map_blocks, but assumes that the caller is from delayed write
1505 * time. This function looks up the requested blocks and sets the
1506 * buffer delay bit under the protection of i_data_sem.
1508 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1509 struct ext4_map_blocks *map,
1510 struct buffer_head *bh)
1512 struct extent_status es;
1514 sector_t invalid_block = ~((sector_t) 0xffff);
1515 #ifdef ES_AGGRESSIVE_TEST
1516 struct ext4_map_blocks orig_map;
1518 memcpy(&orig_map, map, sizeof(*map));
1521 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1525 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1526 "logical block %lu\n", inode->i_ino, map->m_len,
1527 (unsigned long) map->m_lblk);
1529 /* Lookup extent status tree firstly */
1530 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1531 ext4_es_lru_add(inode);
1532 if (ext4_es_is_hole(&es)) {
1534 down_read((&EXT4_I(inode)->i_data_sem));
1539 * Delayed extent could be allocated by fallocate.
1540 * So we need to check it.
1542 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1543 map_bh(bh, inode->i_sb, invalid_block);
1545 set_buffer_delay(bh);
1549 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1550 retval = es.es_len - (iblock - es.es_lblk);
1551 if (retval > map->m_len)
1552 retval = map->m_len;
1553 map->m_len = retval;
1554 if (ext4_es_is_written(&es))
1555 map->m_flags |= EXT4_MAP_MAPPED;
1556 else if (ext4_es_is_unwritten(&es))
1557 map->m_flags |= EXT4_MAP_UNWRITTEN;
1561 #ifdef ES_AGGRESSIVE_TEST
1562 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1568 * Try to see if we can get the block without requesting a new
1569 * file system block.
1571 down_read((&EXT4_I(inode)->i_data_sem));
1572 if (ext4_has_inline_data(inode)) {
1574 * We will soon create blocks for this page, and let
1575 * us pretend as if the blocks aren't allocated yet.
1576 * In case of clusters, we have to handle the work
1577 * of mapping from cluster so that the reserved space
1578 * is calculated properly.
1580 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1581 ext4_find_delalloc_cluster(inode, map->m_lblk))
1582 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1584 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1585 retval = ext4_ext_map_blocks(NULL, inode, map,
1586 EXT4_GET_BLOCKS_NO_PUT_HOLE);
1588 retval = ext4_ind_map_blocks(NULL, inode, map,
1589 EXT4_GET_BLOCKS_NO_PUT_HOLE);
1595 * XXX: __block_prepare_write() unmaps passed block,
1599 * If the block was allocated from previously allocated cluster,
1600 * then we don't need to reserve it again. However we still need
1601 * to reserve metadata for every block we're going to write.
1603 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1604 ret = ext4_da_reserve_space(inode, iblock);
1606 /* not enough space to reserve */
1611 ret = ext4_da_reserve_metadata(inode, iblock);
1613 /* not enough space to reserve */
1619 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1620 ~0, EXTENT_STATUS_DELAYED);
1626 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1627 * and it should not appear on the bh->b_state.
1629 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1631 map_bh(bh, inode->i_sb, invalid_block);
1633 set_buffer_delay(bh);
1634 } else if (retval > 0) {
1636 unsigned long long status;
1638 if (unlikely(retval != map->m_len)) {
1639 ext4_warning(inode->i_sb,
1640 "ES len assertion failed for inode "
1641 "%lu: retval %d != map->m_len %d",
1642 inode->i_ino, retval, map->m_len);
1646 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1647 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1648 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1649 map->m_pblk, status);
1655 up_read((&EXT4_I(inode)->i_data_sem));
1661 * This is a special get_blocks_t callback which is used by
1662 * ext4_da_write_begin(). It will either return mapped block or
1663 * reserve space for a single block.
1665 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1666 * We also have b_blocknr = -1 and b_bdev initialized properly
1668 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1669 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1670 * initialized properly.
1672 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1673 struct buffer_head *bh, int create)
1675 struct ext4_map_blocks map;
1678 BUG_ON(create == 0);
1679 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1681 map.m_lblk = iblock;
1685 * first, we need to know whether the block is allocated already
1686 * preallocated blocks are unmapped but should treated
1687 * the same as allocated blocks.
1689 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1693 map_bh(bh, inode->i_sb, map.m_pblk);
1694 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1696 if (buffer_unwritten(bh)) {
1697 /* A delayed write to unwritten bh should be marked
1698 * new and mapped. Mapped ensures that we don't do
1699 * get_block multiple times when we write to the same
1700 * offset and new ensures that we do proper zero out
1701 * for partial write.
1704 set_buffer_mapped(bh);
1709 static int bget_one(handle_t *handle, struct buffer_head *bh)
1715 static int bput_one(handle_t *handle, struct buffer_head *bh)
1721 static int __ext4_journalled_writepage(struct page *page,
1724 struct address_space *mapping = page->mapping;
1725 struct inode *inode = mapping->host;
1726 struct buffer_head *page_bufs = NULL;
1727 handle_t *handle = NULL;
1728 int ret = 0, err = 0;
1729 int inline_data = ext4_has_inline_data(inode);
1730 struct buffer_head *inode_bh = NULL;
1732 ClearPageChecked(page);
1735 BUG_ON(page->index != 0);
1736 BUG_ON(len > ext4_get_max_inline_size(inode));
1737 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1738 if (inode_bh == NULL)
1741 page_bufs = page_buffers(page);
1746 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1749 /* As soon as we unlock the page, it can go away, but we have
1750 * references to buffers so we are safe */
1753 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1754 ext4_writepage_trans_blocks(inode));
1755 if (IS_ERR(handle)) {
1756 ret = PTR_ERR(handle);
1760 BUG_ON(!ext4_handle_valid(handle));
1763 ret = ext4_journal_get_write_access(handle, inode_bh);
1765 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1768 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1769 do_journal_get_write_access);
1771 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1776 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1777 err = ext4_journal_stop(handle);
1781 if (!ext4_has_inline_data(inode))
1782 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1784 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1791 * Note that we don't need to start a transaction unless we're journaling data
1792 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1793 * need to file the inode to the transaction's list in ordered mode because if
1794 * we are writing back data added by write(), the inode is already there and if
1795 * we are writing back data modified via mmap(), no one guarantees in which
1796 * transaction the data will hit the disk. In case we are journaling data, we
1797 * cannot start transaction directly because transaction start ranks above page
1798 * lock so we have to do some magic.
1800 * This function can get called via...
1801 * - ext4_writepages after taking page lock (have journal handle)
1802 * - journal_submit_inode_data_buffers (no journal handle)
1803 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1804 * - grab_page_cache when doing write_begin (have journal handle)
1806 * We don't do any block allocation in this function. If we have page with
1807 * multiple blocks we need to write those buffer_heads that are mapped. This
1808 * is important for mmaped based write. So if we do with blocksize 1K
1809 * truncate(f, 1024);
1810 * a = mmap(f, 0, 4096);
1812 * truncate(f, 4096);
1813 * we have in the page first buffer_head mapped via page_mkwrite call back
1814 * but other buffer_heads would be unmapped but dirty (dirty done via the
1815 * do_wp_page). So writepage should write the first block. If we modify
1816 * the mmap area beyond 1024 we will again get a page_fault and the
1817 * page_mkwrite callback will do the block allocation and mark the
1818 * buffer_heads mapped.
1820 * We redirty the page if we have any buffer_heads that is either delay or
1821 * unwritten in the page.
1823 * We can get recursively called as show below.
1825 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1828 * But since we don't do any block allocation we should not deadlock.
1829 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1831 static int ext4_writepage(struct page *page,
1832 struct writeback_control *wbc)
1837 struct buffer_head *page_bufs = NULL;
1838 struct inode *inode = page->mapping->host;
1839 struct ext4_io_submit io_submit;
1841 trace_ext4_writepage(page);
1842 size = i_size_read(inode);
1843 if (page->index == size >> PAGE_CACHE_SHIFT)
1844 len = size & ~PAGE_CACHE_MASK;
1846 len = PAGE_CACHE_SIZE;
1848 page_bufs = page_buffers(page);
1850 * We cannot do block allocation or other extent handling in this
1851 * function. If there are buffers needing that, we have to redirty
1852 * the page. But we may reach here when we do a journal commit via
1853 * journal_submit_inode_data_buffers() and in that case we must write
1854 * allocated buffers to achieve data=ordered mode guarantees.
1856 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1857 ext4_bh_delay_or_unwritten)) {
1858 redirty_page_for_writepage(wbc, page);
1859 if (current->flags & PF_MEMALLOC) {
1861 * For memory cleaning there's no point in writing only
1862 * some buffers. So just bail out. Warn if we came here
1863 * from direct reclaim.
1865 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1872 if (PageChecked(page) && ext4_should_journal_data(inode))
1874 * It's mmapped pagecache. Add buffers and journal it. There
1875 * doesn't seem much point in redirtying the page here.
1877 return __ext4_journalled_writepage(page, len);
1879 ext4_io_submit_init(&io_submit, wbc);
1880 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1881 if (!io_submit.io_end) {
1882 redirty_page_for_writepage(wbc, page);
1886 ret = ext4_bio_write_page(&io_submit, page, len, wbc);
1887 ext4_io_submit(&io_submit);
1888 /* Drop io_end reference we got from init */
1889 ext4_put_io_end_defer(io_submit.io_end);
1893 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1896 * mballoc gives us at most this number of blocks...
1897 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1898 * The rest of mballoc seems to handle chunks upto full group size.
1900 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1903 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1905 * @mpd - extent of blocks
1906 * @lblk - logical number of the block in the file
1907 * @b_state - b_state of the buffer head added
1909 * the function is used to collect contig. blocks in same state
1911 static int mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1912 unsigned long b_state)
1914 struct ext4_map_blocks *map = &mpd->map;
1916 /* Don't go larger than mballoc is willing to allocate */
1917 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1920 /* First block in the extent? */
1921 if (map->m_len == 0) {
1924 map->m_flags = b_state & BH_FLAGS;
1928 /* Can we merge the block to our big extent? */
1929 if (lblk == map->m_lblk + map->m_len &&
1930 (b_state & BH_FLAGS) == map->m_flags) {
1937 static bool add_page_bufs_to_extent(struct mpage_da_data *mpd,
1938 struct buffer_head *head,
1939 struct buffer_head *bh,
1942 struct inode *inode = mpd->inode;
1943 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1944 >> inode->i_blkbits;
1947 BUG_ON(buffer_locked(bh));
1949 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1950 (!buffer_delay(bh) && !buffer_unwritten(bh)) ||
1952 /* Found extent to map? */
1959 if (!mpage_add_bh_to_extent(mpd, lblk, bh->b_state))
1961 } while (lblk++, (bh = bh->b_this_page) != head);
1965 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1968 loff_t size = i_size_read(mpd->inode);
1971 BUG_ON(page->index != mpd->first_page);
1972 if (page->index == size >> PAGE_CACHE_SHIFT)
1973 len = size & ~PAGE_CACHE_MASK;
1975 len = PAGE_CACHE_SIZE;
1976 clear_page_dirty_for_io(page);
1977 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc);
1979 mpd->wbc->nr_to_write--;
1986 * mpage_map_buffers - update buffers corresponding to changed extent and
1987 * submit fully mapped pages for IO
1989 * @mpd - description of extent to map, on return next extent to map
1991 * Scan buffers corresponding to changed extent (we expect corresponding pages
1992 * to be already locked) and update buffer state according to new extent state.
1993 * We map delalloc buffers to their physical location, clear unwritten bits,
1994 * and mark buffers as uninit when we perform writes to uninitialized extents
1995 * and do extent conversion after IO is finished. If the last page is not fully
1996 * mapped, we update @map to the next extent in the last page that needs
1997 * mapping. Otherwise we submit the page for IO.
1999 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2001 struct pagevec pvec;
2003 struct inode *inode = mpd->inode;
2004 struct buffer_head *head, *bh;
2005 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2006 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2007 >> inode->i_blkbits;
2013 start = mpd->map.m_lblk >> bpp_bits;
2014 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2015 lblk = start << bpp_bits;
2016 pblock = mpd->map.m_pblk;
2018 pagevec_init(&pvec, 0);
2019 while (start <= end) {
2020 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2024 for (i = 0; i < nr_pages; i++) {
2025 struct page *page = pvec.pages[i];
2027 if (page->index > end)
2029 /* Upto 'end' pages must be contiguous */
2030 BUG_ON(page->index != start);
2031 bh = head = page_buffers(page);
2033 if (lblk < mpd->map.m_lblk)
2035 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2037 * Buffer after end of mapped extent.
2038 * Find next buffer in the page to map.
2041 mpd->map.m_flags = 0;
2042 add_page_bufs_to_extent(mpd, head, bh,
2044 pagevec_release(&pvec);
2047 if (buffer_delay(bh)) {
2048 clear_buffer_delay(bh);
2049 bh->b_blocknr = pblock++;
2051 clear_buffer_unwritten(bh);
2052 } while (++lblk < blocks &&
2053 (bh = bh->b_this_page) != head);
2056 * FIXME: This is going to break if dioread_nolock
2057 * supports blocksize < pagesize as we will try to
2058 * convert potentially unmapped parts of inode.
2060 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2061 /* Page fully mapped - let IO run! */
2062 err = mpage_submit_page(mpd, page);
2064 pagevec_release(&pvec);
2069 pagevec_release(&pvec);
2071 /* Extent fully mapped and matches with page boundary. We are done. */
2073 mpd->map.m_flags = 0;
2077 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2079 struct inode *inode = mpd->inode;
2080 struct ext4_map_blocks *map = &mpd->map;
2081 int get_blocks_flags;
2084 trace_ext4_da_write_pages_extent(inode, map);
2086 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2087 * to convert an uninitialized extent to be initialized (in the case
2088 * where we have written into one or more preallocated blocks). It is
2089 * possible that we're going to need more metadata blocks than
2090 * previously reserved. However we must not fail because we're in
2091 * writeback and there is nothing we can do about it so it might result
2092 * in data loss. So use reserved blocks to allocate metadata if
2095 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks
2096 * in question are delalloc blocks. This affects functions in many
2097 * different parts of the allocation call path. This flag exists
2098 * primarily because we don't want to change *many* call functions, so
2099 * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag
2100 * once the inode's allocation semaphore is taken.
2102 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2103 EXT4_GET_BLOCKS_METADATA_NOFAIL;
2104 if (ext4_should_dioread_nolock(inode))
2105 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2106 if (map->m_flags & (1 << BH_Delay))
2107 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2109 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2112 if (map->m_flags & EXT4_MAP_UNINIT) {
2113 if (!mpd->io_submit.io_end->handle &&
2114 ext4_handle_valid(handle)) {
2115 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2116 handle->h_rsv_handle = NULL;
2118 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2121 BUG_ON(map->m_len == 0);
2122 if (map->m_flags & EXT4_MAP_NEW) {
2123 struct block_device *bdev = inode->i_sb->s_bdev;
2126 for (i = 0; i < map->m_len; i++)
2127 unmap_underlying_metadata(bdev, map->m_pblk + i);
2133 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2134 * mpd->len and submit pages underlying it for IO
2136 * @handle - handle for journal operations
2137 * @mpd - extent to map
2139 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2140 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2141 * them to initialized or split the described range from larger unwritten
2142 * extent. Note that we need not map all the described range since allocation
2143 * can return less blocks or the range is covered by more unwritten extents. We
2144 * cannot map more because we are limited by reserved transaction credits. On
2145 * the other hand we always make sure that the last touched page is fully
2146 * mapped so that it can be written out (and thus forward progress is
2147 * guaranteed). After mapping we submit all mapped pages for IO.
2149 static int mpage_map_and_submit_extent(handle_t *handle,
2150 struct mpage_da_data *mpd,
2151 bool *give_up_on_write)
2153 struct inode *inode = mpd->inode;
2154 struct ext4_map_blocks *map = &mpd->map;
2158 mpd->io_submit.io_end->offset =
2159 ((loff_t)map->m_lblk) << inode->i_blkbits;
2161 err = mpage_map_one_extent(handle, mpd);
2163 struct super_block *sb = inode->i_sb;
2165 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2166 goto invalidate_dirty_pages;
2168 * Let the uper layers retry transient errors.
2169 * In the case of ENOSPC, if ext4_count_free_blocks()
2170 * is non-zero, a commit should free up blocks.
2172 if ((err == -ENOMEM) ||
2173 (err == -ENOSPC && ext4_count_free_clusters(sb)))
2175 ext4_msg(sb, KERN_CRIT,
2176 "Delayed block allocation failed for "
2177 "inode %lu at logical offset %llu with"
2178 " max blocks %u with error %d",
2180 (unsigned long long)map->m_lblk,
2181 (unsigned)map->m_len, -err);
2182 ext4_msg(sb, KERN_CRIT,
2183 "This should not happen!! Data will "
2186 ext4_print_free_blocks(inode);
2187 invalidate_dirty_pages:
2188 *give_up_on_write = true;
2192 * Update buffer state, submit mapped pages, and get us new
2195 err = mpage_map_and_submit_buffers(mpd);
2198 } while (map->m_len);
2200 /* Update on-disk size after IO is submitted */
2201 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2202 if (disksize > i_size_read(inode))
2203 disksize = i_size_read(inode);
2204 if (disksize > EXT4_I(inode)->i_disksize) {
2207 ext4_update_i_disksize(inode, disksize);
2208 err2 = ext4_mark_inode_dirty(handle, inode);
2210 ext4_error(inode->i_sb,
2211 "Failed to mark inode %lu dirty",
2220 * Calculate the total number of credits to reserve for one writepages
2221 * iteration. This is called from ext4_writepages(). We map an extent of
2222 * upto MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2223 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2224 * bpp - 1 blocks in bpp different extents.
2226 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2228 int bpp = ext4_journal_blocks_per_page(inode);
2230 return ext4_meta_trans_blocks(inode,
2231 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2235 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2236 * and underlying extent to map
2238 * @mpd - where to look for pages
2240 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2241 * IO immediately. When we find a page which isn't mapped we start accumulating
2242 * extent of buffers underlying these pages that needs mapping (formed by
2243 * either delayed or unwritten buffers). We also lock the pages containing
2244 * these buffers. The extent found is returned in @mpd structure (starting at
2245 * mpd->lblk with length mpd->len blocks).
2247 * Note that this function can attach bios to one io_end structure which are
2248 * neither logically nor physically contiguous. Although it may seem as an
2249 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2250 * case as we need to track IO to all buffers underlying a page in one io_end.
2252 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2254 struct address_space *mapping = mpd->inode->i_mapping;
2255 struct pagevec pvec;
2256 unsigned int nr_pages;
2257 pgoff_t index = mpd->first_page;
2258 pgoff_t end = mpd->last_page;
2261 int blkbits = mpd->inode->i_blkbits;
2263 struct buffer_head *head;
2265 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2266 tag = PAGECACHE_TAG_TOWRITE;
2268 tag = PAGECACHE_TAG_DIRTY;
2270 pagevec_init(&pvec, 0);
2272 mpd->next_page = index;
2273 while (index <= end) {
2274 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2275 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2279 for (i = 0; i < nr_pages; i++) {
2280 struct page *page = pvec.pages[i];
2283 * At this point, the page may be truncated or
2284 * invalidated (changing page->mapping to NULL), or
2285 * even swizzled back from swapper_space to tmpfs file
2286 * mapping. However, page->index will not change
2287 * because we have a reference on the page.
2289 if (page->index > end)
2292 /* If we can't merge this page, we are done. */
2293 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2298 * If the page is no longer dirty, or its mapping no
2299 * longer corresponds to inode we are writing (which
2300 * means it has been truncated or invalidated), or the
2301 * page is already under writeback and we are not doing
2302 * a data integrity writeback, skip the page
2304 if (!PageDirty(page) ||
2305 (PageWriteback(page) &&
2306 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2307 unlikely(page->mapping != mapping)) {
2312 wait_on_page_writeback(page);
2313 BUG_ON(PageWriteback(page));
2315 if (mpd->map.m_len == 0)
2316 mpd->first_page = page->index;
2317 mpd->next_page = page->index + 1;
2318 /* Add all dirty buffers to mpd */
2319 lblk = ((ext4_lblk_t)page->index) <<
2320 (PAGE_CACHE_SHIFT - blkbits);
2321 head = page_buffers(page);
2322 if (!add_page_bufs_to_extent(mpd, head, head, lblk))
2324 /* So far everything mapped? Submit the page for IO. */
2325 if (mpd->map.m_len == 0) {
2326 err = mpage_submit_page(mpd, page);
2332 * Accumulated enough dirty pages? This doesn't apply
2333 * to WB_SYNC_ALL mode. For integrity sync we have to
2334 * keep going because someone may be concurrently
2335 * dirtying pages, and we might have synced a lot of
2336 * newly appeared dirty pages, but have not synced all
2337 * of the old dirty pages.
2339 if (mpd->wbc->sync_mode == WB_SYNC_NONE &&
2340 mpd->next_page - mpd->first_page >=
2341 mpd->wbc->nr_to_write)
2344 pagevec_release(&pvec);
2349 pagevec_release(&pvec);
2353 static int __writepage(struct page *page, struct writeback_control *wbc,
2356 struct address_space *mapping = data;
2357 int ret = ext4_writepage(page, wbc);
2358 mapping_set_error(mapping, ret);
2362 static int ext4_writepages(struct address_space *mapping,
2363 struct writeback_control *wbc)
2365 pgoff_t writeback_index = 0;
2366 long nr_to_write = wbc->nr_to_write;
2367 int range_whole = 0;
2369 handle_t *handle = NULL;
2370 struct mpage_da_data mpd;
2371 struct inode *inode = mapping->host;
2372 int needed_blocks, rsv_blocks = 0, ret = 0;
2373 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2375 struct blk_plug plug;
2376 bool give_up_on_write = false;
2378 trace_ext4_writepages(inode, wbc);
2381 * No pages to write? This is mainly a kludge to avoid starting
2382 * a transaction for special inodes like journal inode on last iput()
2383 * because that could violate lock ordering on umount
2385 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2388 if (ext4_should_journal_data(inode)) {
2389 struct blk_plug plug;
2392 blk_start_plug(&plug);
2393 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2394 blk_finish_plug(&plug);
2399 * If the filesystem has aborted, it is read-only, so return
2400 * right away instead of dumping stack traces later on that
2401 * will obscure the real source of the problem. We test
2402 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2403 * the latter could be true if the filesystem is mounted
2404 * read-only, and in that case, ext4_writepages should
2405 * *never* be called, so if that ever happens, we would want
2408 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2411 if (ext4_should_dioread_nolock(inode)) {
2413 * We may need to convert upto one extent per block in
2414 * the page and we may dirty the inode.
2416 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2420 * If we have inline data and arrive here, it means that
2421 * we will soon create the block for the 1st page, so
2422 * we'd better clear the inline data here.
2424 if (ext4_has_inline_data(inode)) {
2425 /* Just inode will be modified... */
2426 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2427 if (IS_ERR(handle)) {
2428 ret = PTR_ERR(handle);
2429 goto out_writepages;
2431 BUG_ON(ext4_test_inode_state(inode,
2432 EXT4_STATE_MAY_INLINE_DATA));
2433 ext4_destroy_inline_data(handle, inode);
2434 ext4_journal_stop(handle);
2437 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2440 if (wbc->range_cyclic) {
2441 writeback_index = mapping->writeback_index;
2442 if (writeback_index)
2444 mpd.first_page = writeback_index;
2447 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2448 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2453 ext4_io_submit_init(&mpd.io_submit, wbc);
2455 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2456 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2458 blk_start_plug(&plug);
2459 while (!done && mpd.first_page <= mpd.last_page) {
2460 /* For each extent of pages we use new io_end */
2461 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2462 if (!mpd.io_submit.io_end) {
2468 * We have two constraints: We find one extent to map and we
2469 * must always write out whole page (makes a difference when
2470 * blocksize < pagesize) so that we don't block on IO when we
2471 * try to write out the rest of the page. Journalled mode is
2472 * not supported by delalloc.
2474 BUG_ON(ext4_should_journal_data(inode));
2475 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2477 /* start a new transaction */
2478 handle = ext4_journal_start_with_reserve(inode,
2479 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2480 if (IS_ERR(handle)) {
2481 ret = PTR_ERR(handle);
2482 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2483 "%ld pages, ino %lu; err %d", __func__,
2484 wbc->nr_to_write, inode->i_ino, ret);
2485 /* Release allocated io_end */
2486 ext4_put_io_end(mpd.io_submit.io_end);
2490 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2491 ret = mpage_prepare_extent_to_map(&mpd);
2494 ret = mpage_map_and_submit_extent(handle, &mpd,
2498 * We scanned the whole range (or exhausted
2499 * nr_to_write), submitted what was mapped and
2500 * didn't find anything needing mapping. We are
2506 ext4_journal_stop(handle);
2507 /* Submit prepared bio */
2508 ext4_io_submit(&mpd.io_submit);
2509 /* Unlock pages we didn't use */
2510 mpage_release_unused_pages(&mpd, give_up_on_write);
2511 /* Drop our io_end reference we got from init */
2512 ext4_put_io_end(mpd.io_submit.io_end);
2514 if (ret == -ENOSPC && sbi->s_journal) {
2516 * Commit the transaction which would
2517 * free blocks released in the transaction
2520 jbd2_journal_force_commit_nested(sbi->s_journal);
2524 /* Fatal error - ENOMEM, EIO... */
2528 blk_finish_plug(&plug);
2529 if (!ret && !cycled) {
2531 mpd.last_page = writeback_index - 1;
2537 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2539 * Set the writeback_index so that range_cyclic
2540 * mode will write it back later
2542 mapping->writeback_index = mpd.first_page;
2545 trace_ext4_writepages_result(inode, wbc, ret,
2546 nr_to_write - wbc->nr_to_write);
2550 static int ext4_nonda_switch(struct super_block *sb)
2552 s64 free_clusters, dirty_clusters;
2553 struct ext4_sb_info *sbi = EXT4_SB(sb);
2556 * switch to non delalloc mode if we are running low
2557 * on free block. The free block accounting via percpu
2558 * counters can get slightly wrong with percpu_counter_batch getting
2559 * accumulated on each CPU without updating global counters
2560 * Delalloc need an accurate free block accounting. So switch
2561 * to non delalloc when we are near to error range.
2564 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2566 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2568 * Start pushing delalloc when 1/2 of free blocks are dirty.
2570 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2571 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2573 if (2 * free_clusters < 3 * dirty_clusters ||
2574 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2576 * free block count is less than 150% of dirty blocks
2577 * or free blocks is less than watermark
2584 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2585 loff_t pos, unsigned len, unsigned flags,
2586 struct page **pagep, void **fsdata)
2588 int ret, retries = 0;
2591 struct inode *inode = mapping->host;
2594 index = pos >> PAGE_CACHE_SHIFT;
2596 if (ext4_nonda_switch(inode->i_sb)) {
2597 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2598 return ext4_write_begin(file, mapping, pos,
2599 len, flags, pagep, fsdata);
2601 *fsdata = (void *)0;
2602 trace_ext4_da_write_begin(inode, pos, len, flags);
2604 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2605 ret = ext4_da_write_inline_data_begin(mapping, inode,
2615 * grab_cache_page_write_begin() can take a long time if the
2616 * system is thrashing due to memory pressure, or if the page
2617 * is being written back. So grab it first before we start
2618 * the transaction handle. This also allows us to allocate
2619 * the page (if needed) without using GFP_NOFS.
2622 page = grab_cache_page_write_begin(mapping, index, flags);
2628 * With delayed allocation, we don't log the i_disksize update
2629 * if there is delayed block allocation. But we still need
2630 * to journalling the i_disksize update if writes to the end
2631 * of file which has an already mapped buffer.
2634 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2635 if (IS_ERR(handle)) {
2636 page_cache_release(page);
2637 return PTR_ERR(handle);
2641 if (page->mapping != mapping) {
2642 /* The page got truncated from under us */
2644 page_cache_release(page);
2645 ext4_journal_stop(handle);
2648 /* In case writeback began while the page was unlocked */
2649 wait_on_page_writeback(page);
2651 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2654 ext4_journal_stop(handle);
2656 * block_write_begin may have instantiated a few blocks
2657 * outside i_size. Trim these off again. Don't need
2658 * i_size_read because we hold i_mutex.
2660 if (pos + len > inode->i_size)
2661 ext4_truncate_failed_write(inode);
2663 if (ret == -ENOSPC &&
2664 ext4_should_retry_alloc(inode->i_sb, &retries))
2667 page_cache_release(page);
2676 * Check if we should update i_disksize
2677 * when write to the end of file but not require block allocation
2679 static int ext4_da_should_update_i_disksize(struct page *page,
2680 unsigned long offset)
2682 struct buffer_head *bh;
2683 struct inode *inode = page->mapping->host;
2687 bh = page_buffers(page);
2688 idx = offset >> inode->i_blkbits;
2690 for (i = 0; i < idx; i++)
2691 bh = bh->b_this_page;
2693 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2698 static int ext4_da_write_end(struct file *file,
2699 struct address_space *mapping,
2700 loff_t pos, unsigned len, unsigned copied,
2701 struct page *page, void *fsdata)
2703 struct inode *inode = mapping->host;
2705 handle_t *handle = ext4_journal_current_handle();
2707 unsigned long start, end;
2708 int write_mode = (int)(unsigned long)fsdata;
2710 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2711 return ext4_write_end(file, mapping, pos,
2712 len, copied, page, fsdata);
2714 trace_ext4_da_write_end(inode, pos, len, copied);
2715 start = pos & (PAGE_CACHE_SIZE - 1);
2716 end = start + copied - 1;
2719 * generic_write_end() will run mark_inode_dirty() if i_size
2720 * changes. So let's piggyback the i_disksize mark_inode_dirty
2723 new_i_size = pos + copied;
2724 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2725 if (ext4_has_inline_data(inode) ||
2726 ext4_da_should_update_i_disksize(page, end)) {
2727 down_write(&EXT4_I(inode)->i_data_sem);
2728 if (new_i_size > EXT4_I(inode)->i_disksize)
2729 EXT4_I(inode)->i_disksize = new_i_size;
2730 up_write(&EXT4_I(inode)->i_data_sem);
2731 /* We need to mark inode dirty even if
2732 * new_i_size is less that inode->i_size
2733 * bu greater than i_disksize.(hint delalloc)
2735 ext4_mark_inode_dirty(handle, inode);
2739 if (write_mode != CONVERT_INLINE_DATA &&
2740 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2741 ext4_has_inline_data(inode))
2742 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2745 ret2 = generic_write_end(file, mapping, pos, len, copied,
2751 ret2 = ext4_journal_stop(handle);
2755 return ret ? ret : copied;
2758 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2759 unsigned int length)
2762 * Drop reserved blocks
2764 BUG_ON(!PageLocked(page));
2765 if (!page_has_buffers(page))
2768 ext4_da_page_release_reservation(page, offset, length);
2771 ext4_invalidatepage(page, offset, length);
2777 * Force all delayed allocation blocks to be allocated for a given inode.
2779 int ext4_alloc_da_blocks(struct inode *inode)
2781 trace_ext4_alloc_da_blocks(inode);
2783 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2784 !EXT4_I(inode)->i_reserved_meta_blocks)
2788 * We do something simple for now. The filemap_flush() will
2789 * also start triggering a write of the data blocks, which is
2790 * not strictly speaking necessary (and for users of
2791 * laptop_mode, not even desirable). However, to do otherwise
2792 * would require replicating code paths in:
2794 * ext4_writepages() ->
2795 * write_cache_pages() ---> (via passed in callback function)
2796 * __mpage_da_writepage() -->
2797 * mpage_add_bh_to_extent()
2798 * mpage_da_map_blocks()
2800 * The problem is that write_cache_pages(), located in
2801 * mm/page-writeback.c, marks pages clean in preparation for
2802 * doing I/O, which is not desirable if we're not planning on
2805 * We could call write_cache_pages(), and then redirty all of
2806 * the pages by calling redirty_page_for_writepage() but that
2807 * would be ugly in the extreme. So instead we would need to
2808 * replicate parts of the code in the above functions,
2809 * simplifying them because we wouldn't actually intend to
2810 * write out the pages, but rather only collect contiguous
2811 * logical block extents, call the multi-block allocator, and
2812 * then update the buffer heads with the block allocations.
2814 * For now, though, we'll cheat by calling filemap_flush(),
2815 * which will map the blocks, and start the I/O, but not
2816 * actually wait for the I/O to complete.
2818 return filemap_flush(inode->i_mapping);
2822 * bmap() is special. It gets used by applications such as lilo and by
2823 * the swapper to find the on-disk block of a specific piece of data.
2825 * Naturally, this is dangerous if the block concerned is still in the
2826 * journal. If somebody makes a swapfile on an ext4 data-journaling
2827 * filesystem and enables swap, then they may get a nasty shock when the
2828 * data getting swapped to that swapfile suddenly gets overwritten by
2829 * the original zero's written out previously to the journal and
2830 * awaiting writeback in the kernel's buffer cache.
2832 * So, if we see any bmap calls here on a modified, data-journaled file,
2833 * take extra steps to flush any blocks which might be in the cache.
2835 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2837 struct inode *inode = mapping->host;
2842 * We can get here for an inline file via the FIBMAP ioctl
2844 if (ext4_has_inline_data(inode))
2847 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2848 test_opt(inode->i_sb, DELALLOC)) {
2850 * With delalloc we want to sync the file
2851 * so that we can make sure we allocate
2854 filemap_write_and_wait(mapping);
2857 if (EXT4_JOURNAL(inode) &&
2858 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2860 * This is a REALLY heavyweight approach, but the use of
2861 * bmap on dirty files is expected to be extremely rare:
2862 * only if we run lilo or swapon on a freshly made file
2863 * do we expect this to happen.
2865 * (bmap requires CAP_SYS_RAWIO so this does not
2866 * represent an unprivileged user DOS attack --- we'd be
2867 * in trouble if mortal users could trigger this path at
2870 * NB. EXT4_STATE_JDATA is not set on files other than
2871 * regular files. If somebody wants to bmap a directory
2872 * or symlink and gets confused because the buffer
2873 * hasn't yet been flushed to disk, they deserve
2874 * everything they get.
2877 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2878 journal = EXT4_JOURNAL(inode);
2879 jbd2_journal_lock_updates(journal);
2880 err = jbd2_journal_flush(journal);
2881 jbd2_journal_unlock_updates(journal);
2887 return generic_block_bmap(mapping, block, ext4_get_block);
2890 static int ext4_readpage(struct file *file, struct page *page)
2893 struct inode *inode = page->mapping->host;
2895 trace_ext4_readpage(page);
2897 if (ext4_has_inline_data(inode))
2898 ret = ext4_readpage_inline(inode, page);
2901 return mpage_readpage(page, ext4_get_block);
2907 ext4_readpages(struct file *file, struct address_space *mapping,
2908 struct list_head *pages, unsigned nr_pages)
2910 struct inode *inode = mapping->host;
2912 /* If the file has inline data, no need to do readpages. */
2913 if (ext4_has_inline_data(inode))
2916 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2919 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2920 unsigned int length)
2922 trace_ext4_invalidatepage(page, offset, length);
2924 /* No journalling happens on data buffers when this function is used */
2925 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2927 block_invalidatepage(page, offset, length);
2930 static int __ext4_journalled_invalidatepage(struct page *page,
2931 unsigned int offset,
2932 unsigned int length)
2934 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2936 trace_ext4_journalled_invalidatepage(page, offset, length);
2939 * If it's a full truncate we just forget about the pending dirtying
2941 if (offset == 0 && length == PAGE_CACHE_SIZE)
2942 ClearPageChecked(page);
2944 return jbd2_journal_invalidatepage(journal, page, offset, length);
2947 /* Wrapper for aops... */
2948 static void ext4_journalled_invalidatepage(struct page *page,
2949 unsigned int offset,
2950 unsigned int length)
2952 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
2955 static int ext4_releasepage(struct page *page, gfp_t wait)
2957 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2959 trace_ext4_releasepage(page);
2961 /* Page has dirty journalled data -> cannot release */
2962 if (PageChecked(page))
2965 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2967 return try_to_free_buffers(page);
2971 * ext4_get_block used when preparing for a DIO write or buffer write.
2972 * We allocate an uinitialized extent if blocks haven't been allocated.
2973 * The extent will be converted to initialized after the IO is complete.
2975 int ext4_get_block_write(struct inode *inode, sector_t iblock,
2976 struct buffer_head *bh_result, int create)
2978 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2979 inode->i_ino, create);
2980 return _ext4_get_block(inode, iblock, bh_result,
2981 EXT4_GET_BLOCKS_IO_CREATE_EXT);
2984 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2985 struct buffer_head *bh_result, int create)
2987 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2988 inode->i_ino, create);
2989 return _ext4_get_block(inode, iblock, bh_result,
2990 EXT4_GET_BLOCKS_NO_LOCK);
2993 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2994 ssize_t size, void *private, int ret,
2997 struct inode *inode = file_inode(iocb->ki_filp);
2998 ext4_io_end_t *io_end = iocb->private;
3000 /* if not async direct IO just return */
3002 inode_dio_done(inode);
3004 aio_complete(iocb, ret, 0);
3008 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3009 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3010 iocb->private, io_end->inode->i_ino, iocb, offset,
3013 iocb->private = NULL;
3014 io_end->offset = offset;
3015 io_end->size = size;
3017 io_end->iocb = iocb;
3018 io_end->result = ret;
3020 ext4_put_io_end_defer(io_end);
3024 * For ext4 extent files, ext4 will do direct-io write to holes,
3025 * preallocated extents, and those write extend the file, no need to
3026 * fall back to buffered IO.
3028 * For holes, we fallocate those blocks, mark them as uninitialized
3029 * If those blocks were preallocated, we mark sure they are split, but
3030 * still keep the range to write as uninitialized.
3032 * The unwritten extents will be converted to written when DIO is completed.
3033 * For async direct IO, since the IO may still pending when return, we
3034 * set up an end_io call back function, which will do the conversion
3035 * when async direct IO completed.
3037 * If the O_DIRECT write will extend the file then add this inode to the
3038 * orphan list. So recovery will truncate it back to the original size
3039 * if the machine crashes during the write.
3042 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3043 const struct iovec *iov, loff_t offset,
3044 unsigned long nr_segs)
3046 struct file *file = iocb->ki_filp;
3047 struct inode *inode = file->f_mapping->host;
3049 size_t count = iov_length(iov, nr_segs);
3051 get_block_t *get_block_func = NULL;
3053 loff_t final_size = offset + count;
3054 ext4_io_end_t *io_end = NULL;
3056 /* Use the old path for reads and writes beyond i_size. */
3057 if (rw != WRITE || final_size > inode->i_size)
3058 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3060 BUG_ON(iocb->private == NULL);
3063 * Make all waiters for direct IO properly wait also for extent
3064 * conversion. This also disallows race between truncate() and
3065 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3068 atomic_inc(&inode->i_dio_count);
3070 /* If we do a overwrite dio, i_mutex locking can be released */
3071 overwrite = *((int *)iocb->private);
3074 down_read(&EXT4_I(inode)->i_data_sem);
3075 mutex_unlock(&inode->i_mutex);
3079 * We could direct write to holes and fallocate.
3081 * Allocated blocks to fill the hole are marked as
3082 * uninitialized to prevent parallel buffered read to expose
3083 * the stale data before DIO complete the data IO.
3085 * As to previously fallocated extents, ext4 get_block will
3086 * just simply mark the buffer mapped but still keep the
3087 * extents uninitialized.
3089 * For non AIO case, we will convert those unwritten extents
3090 * to written after return back from blockdev_direct_IO.
3092 * For async DIO, the conversion needs to be deferred when the
3093 * IO is completed. The ext4 end_io callback function will be
3094 * called to take care of the conversion work. Here for async
3095 * case, we allocate an io_end structure to hook to the iocb.
3097 iocb->private = NULL;
3098 ext4_inode_aio_set(inode, NULL);
3099 if (!is_sync_kiocb(iocb)) {
3100 io_end = ext4_init_io_end(inode, GFP_NOFS);
3105 io_end->flag |= EXT4_IO_END_DIRECT;
3107 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3109 iocb->private = ext4_get_io_end(io_end);
3111 * we save the io structure for current async direct
3112 * IO, so that later ext4_map_blocks() could flag the
3113 * io structure whether there is a unwritten extents
3114 * needs to be converted when IO is completed.
3116 ext4_inode_aio_set(inode, io_end);
3120 get_block_func = ext4_get_block_write_nolock;
3122 get_block_func = ext4_get_block_write;
3123 dio_flags = DIO_LOCKING;
3125 ret = __blockdev_direct_IO(rw, iocb, inode,
3126 inode->i_sb->s_bdev, iov,
3134 * Put our reference to io_end. This can free the io_end structure e.g.
3135 * in sync IO case or in case of error. It can even perform extent
3136 * conversion if all bios we submitted finished before we got here.
3137 * Note that in that case iocb->private can be already set to NULL
3141 ext4_inode_aio_set(inode, NULL);
3142 ext4_put_io_end(io_end);
3144 * When no IO was submitted ext4_end_io_dio() was not
3145 * called so we have to put iocb's reference.
3147 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3148 WARN_ON(iocb->private != io_end);
3149 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3150 WARN_ON(io_end->iocb);
3152 * Generic code already did inode_dio_done() so we
3153 * have to clear EXT4_IO_END_DIRECT to not do it for
3157 ext4_put_io_end(io_end);
3158 iocb->private = NULL;
3161 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3162 EXT4_STATE_DIO_UNWRITTEN)) {
3165 * for non AIO case, since the IO is already
3166 * completed, we could do the conversion right here
3168 err = ext4_convert_unwritten_extents(NULL, inode,
3172 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3177 inode_dio_done(inode);
3178 /* take i_mutex locking again if we do a ovewrite dio */
3180 up_read(&EXT4_I(inode)->i_data_sem);
3181 mutex_lock(&inode->i_mutex);
3187 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3188 const struct iovec *iov, loff_t offset,
3189 unsigned long nr_segs)
3191 struct file *file = iocb->ki_filp;
3192 struct inode *inode = file->f_mapping->host;
3196 * If we are doing data journalling we don't support O_DIRECT
3198 if (ext4_should_journal_data(inode))
3201 /* Let buffer I/O handle the inline data case. */
3202 if (ext4_has_inline_data(inode))
3205 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3206 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3207 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3209 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3210 trace_ext4_direct_IO_exit(inode, offset,
3211 iov_length(iov, nr_segs), rw, ret);
3216 * Pages can be marked dirty completely asynchronously from ext4's journalling
3217 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3218 * much here because ->set_page_dirty is called under VFS locks. The page is
3219 * not necessarily locked.
3221 * We cannot just dirty the page and leave attached buffers clean, because the
3222 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3223 * or jbddirty because all the journalling code will explode.
3225 * So what we do is to mark the page "pending dirty" and next time writepage
3226 * is called, propagate that into the buffers appropriately.
3228 static int ext4_journalled_set_page_dirty(struct page *page)
3230 SetPageChecked(page);
3231 return __set_page_dirty_nobuffers(page);
3234 static const struct address_space_operations ext4_aops = {
3235 .readpage = ext4_readpage,
3236 .readpages = ext4_readpages,
3237 .writepage = ext4_writepage,
3238 .writepages = ext4_writepages,
3239 .write_begin = ext4_write_begin,
3240 .write_end = ext4_write_end,
3242 .invalidatepage = ext4_invalidatepage,
3243 .releasepage = ext4_releasepage,
3244 .direct_IO = ext4_direct_IO,
3245 .migratepage = buffer_migrate_page,
3246 .is_partially_uptodate = block_is_partially_uptodate,
3247 .error_remove_page = generic_error_remove_page,
3250 static const struct address_space_operations ext4_journalled_aops = {
3251 .readpage = ext4_readpage,
3252 .readpages = ext4_readpages,
3253 .writepage = ext4_writepage,
3254 .writepages = ext4_writepages,
3255 .write_begin = ext4_write_begin,
3256 .write_end = ext4_journalled_write_end,
3257 .set_page_dirty = ext4_journalled_set_page_dirty,
3259 .invalidatepage = ext4_journalled_invalidatepage,
3260 .releasepage = ext4_releasepage,
3261 .direct_IO = ext4_direct_IO,
3262 .is_partially_uptodate = block_is_partially_uptodate,
3263 .error_remove_page = generic_error_remove_page,
3266 static const struct address_space_operations ext4_da_aops = {
3267 .readpage = ext4_readpage,
3268 .readpages = ext4_readpages,
3269 .writepage = ext4_writepage,
3270 .writepages = ext4_writepages,
3271 .write_begin = ext4_da_write_begin,
3272 .write_end = ext4_da_write_end,
3274 .invalidatepage = ext4_da_invalidatepage,
3275 .releasepage = ext4_releasepage,
3276 .direct_IO = ext4_direct_IO,
3277 .migratepage = buffer_migrate_page,
3278 .is_partially_uptodate = block_is_partially_uptodate,
3279 .error_remove_page = generic_error_remove_page,
3282 void ext4_set_aops(struct inode *inode)
3284 switch (ext4_inode_journal_mode(inode)) {
3285 case EXT4_INODE_ORDERED_DATA_MODE:
3286 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3288 case EXT4_INODE_WRITEBACK_DATA_MODE:
3289 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3291 case EXT4_INODE_JOURNAL_DATA_MODE:
3292 inode->i_mapping->a_ops = &ext4_journalled_aops;
3297 if (test_opt(inode->i_sb, DELALLOC))
3298 inode->i_mapping->a_ops = &ext4_da_aops;
3300 inode->i_mapping->a_ops = &ext4_aops;
3304 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3305 * up to the end of the block which corresponds to `from'.
3306 * This required during truncate. We need to physically zero the tail end
3307 * of that block so it doesn't yield old data if the file is later grown.
3309 int ext4_block_truncate_page(handle_t *handle,
3310 struct address_space *mapping, loff_t from)
3312 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3315 struct inode *inode = mapping->host;
3317 blocksize = inode->i_sb->s_blocksize;
3318 length = blocksize - (offset & (blocksize - 1));
3320 return ext4_block_zero_page_range(handle, mapping, from, length);
3324 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3325 * starting from file offset 'from'. The range to be zero'd must
3326 * be contained with in one block. If the specified range exceeds
3327 * the end of the block it will be shortened to end of the block
3328 * that cooresponds to 'from'
3330 int ext4_block_zero_page_range(handle_t *handle,
3331 struct address_space *mapping, loff_t from, loff_t length)
3333 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3334 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3335 unsigned blocksize, max, pos;
3337 struct inode *inode = mapping->host;
3338 struct buffer_head *bh;
3342 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3343 mapping_gfp_mask(mapping) & ~__GFP_FS);
3347 blocksize = inode->i_sb->s_blocksize;
3348 max = blocksize - (offset & (blocksize - 1));
3351 * correct length if it does not fall between
3352 * 'from' and the end of the block
3354 if (length > max || length < 0)
3357 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3359 if (!page_has_buffers(page))
3360 create_empty_buffers(page, blocksize, 0);
3362 /* Find the buffer that contains "offset" */
3363 bh = page_buffers(page);
3365 while (offset >= pos) {
3366 bh = bh->b_this_page;
3370 if (buffer_freed(bh)) {
3371 BUFFER_TRACE(bh, "freed: skip");
3374 if (!buffer_mapped(bh)) {
3375 BUFFER_TRACE(bh, "unmapped");
3376 ext4_get_block(inode, iblock, bh, 0);
3377 /* unmapped? It's a hole - nothing to do */
3378 if (!buffer_mapped(bh)) {
3379 BUFFER_TRACE(bh, "still unmapped");
3384 /* Ok, it's mapped. Make sure it's up-to-date */
3385 if (PageUptodate(page))
3386 set_buffer_uptodate(bh);
3388 if (!buffer_uptodate(bh)) {
3390 ll_rw_block(READ, 1, &bh);
3392 /* Uhhuh. Read error. Complain and punt. */
3393 if (!buffer_uptodate(bh))
3396 if (ext4_should_journal_data(inode)) {
3397 BUFFER_TRACE(bh, "get write access");
3398 err = ext4_journal_get_write_access(handle, bh);
3402 zero_user(page, offset, length);
3403 BUFFER_TRACE(bh, "zeroed end of block");
3405 if (ext4_should_journal_data(inode)) {
3406 err = ext4_handle_dirty_metadata(handle, inode, bh);
3409 mark_buffer_dirty(bh);
3410 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3411 err = ext4_jbd2_file_inode(handle, inode);
3416 page_cache_release(page);
3420 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3421 loff_t lstart, loff_t length)
3423 struct super_block *sb = inode->i_sb;
3424 struct address_space *mapping = inode->i_mapping;
3425 unsigned partial_start, partial_end;
3426 ext4_fsblk_t start, end;
3427 loff_t byte_end = (lstart + length - 1);
3430 partial_start = lstart & (sb->s_blocksize - 1);
3431 partial_end = byte_end & (sb->s_blocksize - 1);
3433 start = lstart >> sb->s_blocksize_bits;
3434 end = byte_end >> sb->s_blocksize_bits;
3436 /* Handle partial zero within the single block */
3438 (partial_start || (partial_end != sb->s_blocksize - 1))) {
3439 err = ext4_block_zero_page_range(handle, mapping,
3443 /* Handle partial zero out on the start of the range */
3444 if (partial_start) {
3445 err = ext4_block_zero_page_range(handle, mapping,
3446 lstart, sb->s_blocksize);
3450 /* Handle partial zero out on the end of the range */
3451 if (partial_end != sb->s_blocksize - 1)
3452 err = ext4_block_zero_page_range(handle, mapping,
3453 byte_end - partial_end,
3458 int ext4_can_truncate(struct inode *inode)
3460 if (S_ISREG(inode->i_mode))
3462 if (S_ISDIR(inode->i_mode))
3464 if (S_ISLNK(inode->i_mode))
3465 return !ext4_inode_is_fast_symlink(inode);
3470 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3471 * associated with the given offset and length
3473 * @inode: File inode
3474 * @offset: The offset where the hole will begin
3475 * @len: The length of the hole
3477 * Returns: 0 on success or negative on failure
3480 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3482 struct super_block *sb = inode->i_sb;
3483 ext4_lblk_t first_block, stop_block;
3484 struct address_space *mapping = inode->i_mapping;
3485 loff_t first_block_offset, last_block_offset;
3487 unsigned int credits;
3490 if (!S_ISREG(inode->i_mode))
3493 if (EXT4_SB(sb)->s_cluster_ratio > 1) {
3494 /* TODO: Add support for bigalloc file systems */
3498 trace_ext4_punch_hole(inode, offset, length);
3501 * Write out all dirty pages to avoid race conditions
3502 * Then release them.
3504 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3505 ret = filemap_write_and_wait_range(mapping, offset,
3506 offset + length - 1);
3511 mutex_lock(&inode->i_mutex);
3512 /* It's not possible punch hole on append only file */
3513 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3517 if (IS_SWAPFILE(inode)) {
3522 /* No need to punch hole beyond i_size */
3523 if (offset >= inode->i_size)
3527 * If the hole extends beyond i_size, set the hole
3528 * to end after the page that contains i_size
3530 if (offset + length > inode->i_size) {
3531 length = inode->i_size +
3532 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3536 first_block_offset = round_up(offset, sb->s_blocksize);
3537 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3539 /* Now release the pages and zero block aligned part of pages*/
3540 if (last_block_offset > first_block_offset)
3541 truncate_pagecache_range(inode, first_block_offset,
3544 /* Wait all existing dio workers, newcomers will block on i_mutex */
3545 ext4_inode_block_unlocked_dio(inode);
3546 inode_dio_wait(inode);
3548 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3549 credits = ext4_writepage_trans_blocks(inode);
3551 credits = ext4_blocks_for_truncate(inode);
3552 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3553 if (IS_ERR(handle)) {
3554 ret = PTR_ERR(handle);
3555 ext4_std_error(sb, ret);
3559 ret = ext4_zero_partial_blocks(handle, inode, offset,
3564 first_block = (offset + sb->s_blocksize - 1) >>
3565 EXT4_BLOCK_SIZE_BITS(sb);
3566 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3568 /* If there are no blocks to remove, return now */
3569 if (first_block >= stop_block)
3572 down_write(&EXT4_I(inode)->i_data_sem);
3573 ext4_discard_preallocations(inode);
3575 ret = ext4_es_remove_extent(inode, first_block,
3576 stop_block - first_block);
3578 up_write(&EXT4_I(inode)->i_data_sem);
3582 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3583 ret = ext4_ext_remove_space(inode, first_block,
3586 ret = ext4_free_hole_blocks(handle, inode, first_block,
3589 ext4_discard_preallocations(inode);
3590 up_write(&EXT4_I(inode)->i_data_sem);
3592 ext4_handle_sync(handle);
3593 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3594 ext4_mark_inode_dirty(handle, inode);
3596 ext4_journal_stop(handle);
3598 ext4_inode_resume_unlocked_dio(inode);
3600 mutex_unlock(&inode->i_mutex);
3607 * We block out ext4_get_block() block instantiations across the entire
3608 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3609 * simultaneously on behalf of the same inode.
3611 * As we work through the truncate and commit bits of it to the journal there
3612 * is one core, guiding principle: the file's tree must always be consistent on
3613 * disk. We must be able to restart the truncate after a crash.
3615 * The file's tree may be transiently inconsistent in memory (although it
3616 * probably isn't), but whenever we close off and commit a journal transaction,
3617 * the contents of (the filesystem + the journal) must be consistent and
3618 * restartable. It's pretty simple, really: bottom up, right to left (although
3619 * left-to-right works OK too).
3621 * Note that at recovery time, journal replay occurs *before* the restart of
3622 * truncate against the orphan inode list.
3624 * The committed inode has the new, desired i_size (which is the same as
3625 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3626 * that this inode's truncate did not complete and it will again call
3627 * ext4_truncate() to have another go. So there will be instantiated blocks
3628 * to the right of the truncation point in a crashed ext4 filesystem. But
3629 * that's fine - as long as they are linked from the inode, the post-crash
3630 * ext4_truncate() run will find them and release them.
3632 void ext4_truncate(struct inode *inode)
3634 struct ext4_inode_info *ei = EXT4_I(inode);
3635 unsigned int credits;
3637 struct address_space *mapping = inode->i_mapping;
3640 * There is a possibility that we're either freeing the inode
3641 * or it completely new indode. In those cases we might not
3642 * have i_mutex locked because it's not necessary.
3644 if (!(inode->i_state & (I_NEW|I_FREEING)))
3645 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3646 trace_ext4_truncate_enter(inode);
3648 if (!ext4_can_truncate(inode))
3651 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3653 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3654 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3656 if (ext4_has_inline_data(inode)) {
3659 ext4_inline_data_truncate(inode, &has_inline);
3664 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3665 credits = ext4_writepage_trans_blocks(inode);
3667 credits = ext4_blocks_for_truncate(inode);
3669 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3670 if (IS_ERR(handle)) {
3671 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3675 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3676 ext4_block_truncate_page(handle, mapping, inode->i_size);
3679 * We add the inode to the orphan list, so that if this
3680 * truncate spans multiple transactions, and we crash, we will
3681 * resume the truncate when the filesystem recovers. It also
3682 * marks the inode dirty, to catch the new size.
3684 * Implication: the file must always be in a sane, consistent
3685 * truncatable state while each transaction commits.
3687 if (ext4_orphan_add(handle, inode))
3690 down_write(&EXT4_I(inode)->i_data_sem);
3692 ext4_discard_preallocations(inode);
3694 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3695 ext4_ext_truncate(handle, inode);
3697 ext4_ind_truncate(handle, inode);
3699 up_write(&ei->i_data_sem);
3702 ext4_handle_sync(handle);
3706 * If this was a simple ftruncate() and the file will remain alive,
3707 * then we need to clear up the orphan record which we created above.
3708 * However, if this was a real unlink then we were called by
3709 * ext4_delete_inode(), and we allow that function to clean up the
3710 * orphan info for us.
3713 ext4_orphan_del(handle, inode);
3715 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3716 ext4_mark_inode_dirty(handle, inode);
3717 ext4_journal_stop(handle);
3719 trace_ext4_truncate_exit(inode);
3723 * ext4_get_inode_loc returns with an extra refcount against the inode's
3724 * underlying buffer_head on success. If 'in_mem' is true, we have all
3725 * data in memory that is needed to recreate the on-disk version of this
3728 static int __ext4_get_inode_loc(struct inode *inode,
3729 struct ext4_iloc *iloc, int in_mem)
3731 struct ext4_group_desc *gdp;
3732 struct buffer_head *bh;
3733 struct super_block *sb = inode->i_sb;
3735 int inodes_per_block, inode_offset;
3738 if (!ext4_valid_inum(sb, inode->i_ino))
3741 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3742 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3747 * Figure out the offset within the block group inode table
3749 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3750 inode_offset = ((inode->i_ino - 1) %
3751 EXT4_INODES_PER_GROUP(sb));
3752 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3753 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3755 bh = sb_getblk(sb, block);
3758 if (!buffer_uptodate(bh)) {
3762 * If the buffer has the write error flag, we have failed
3763 * to write out another inode in the same block. In this
3764 * case, we don't have to read the block because we may
3765 * read the old inode data successfully.
3767 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3768 set_buffer_uptodate(bh);
3770 if (buffer_uptodate(bh)) {
3771 /* someone brought it uptodate while we waited */
3777 * If we have all information of the inode in memory and this
3778 * is the only valid inode in the block, we need not read the
3782 struct buffer_head *bitmap_bh;
3785 start = inode_offset & ~(inodes_per_block - 1);
3787 /* Is the inode bitmap in cache? */
3788 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3789 if (unlikely(!bitmap_bh))
3793 * If the inode bitmap isn't in cache then the
3794 * optimisation may end up performing two reads instead
3795 * of one, so skip it.
3797 if (!buffer_uptodate(bitmap_bh)) {
3801 for (i = start; i < start + inodes_per_block; i++) {
3802 if (i == inode_offset)
3804 if (ext4_test_bit(i, bitmap_bh->b_data))
3808 if (i == start + inodes_per_block) {
3809 /* all other inodes are free, so skip I/O */
3810 memset(bh->b_data, 0, bh->b_size);
3811 set_buffer_uptodate(bh);
3819 * If we need to do any I/O, try to pre-readahead extra
3820 * blocks from the inode table.
3822 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3823 ext4_fsblk_t b, end, table;
3825 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3827 table = ext4_inode_table(sb, gdp);
3828 /* s_inode_readahead_blks is always a power of 2 */
3829 b = block & ~((ext4_fsblk_t) ra_blks - 1);
3833 num = EXT4_INODES_PER_GROUP(sb);
3834 if (ext4_has_group_desc_csum(sb))
3835 num -= ext4_itable_unused_count(sb, gdp);
3836 table += num / inodes_per_block;
3840 sb_breadahead(sb, b++);
3844 * There are other valid inodes in the buffer, this inode
3845 * has in-inode xattrs, or we don't have this inode in memory.
3846 * Read the block from disk.
3848 trace_ext4_load_inode(inode);
3850 bh->b_end_io = end_buffer_read_sync;
3851 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3853 if (!buffer_uptodate(bh)) {
3854 EXT4_ERROR_INODE_BLOCK(inode, block,
3855 "unable to read itable block");
3865 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3867 /* We have all inode data except xattrs in memory here. */
3868 return __ext4_get_inode_loc(inode, iloc,
3869 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3872 void ext4_set_inode_flags(struct inode *inode)
3874 unsigned int flags = EXT4_I(inode)->i_flags;
3876 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3877 if (flags & EXT4_SYNC_FL)
3878 inode->i_flags |= S_SYNC;
3879 if (flags & EXT4_APPEND_FL)
3880 inode->i_flags |= S_APPEND;
3881 if (flags & EXT4_IMMUTABLE_FL)
3882 inode->i_flags |= S_IMMUTABLE;
3883 if (flags & EXT4_NOATIME_FL)
3884 inode->i_flags |= S_NOATIME;
3885 if (flags & EXT4_DIRSYNC_FL)
3886 inode->i_flags |= S_DIRSYNC;
3889 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3890 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3892 unsigned int vfs_fl;
3893 unsigned long old_fl, new_fl;
3896 vfs_fl = ei->vfs_inode.i_flags;
3897 old_fl = ei->i_flags;
3898 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3899 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3901 if (vfs_fl & S_SYNC)
3902 new_fl |= EXT4_SYNC_FL;
3903 if (vfs_fl & S_APPEND)
3904 new_fl |= EXT4_APPEND_FL;
3905 if (vfs_fl & S_IMMUTABLE)
3906 new_fl |= EXT4_IMMUTABLE_FL;
3907 if (vfs_fl & S_NOATIME)
3908 new_fl |= EXT4_NOATIME_FL;
3909 if (vfs_fl & S_DIRSYNC)
3910 new_fl |= EXT4_DIRSYNC_FL;
3911 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3914 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3915 struct ext4_inode_info *ei)
3918 struct inode *inode = &(ei->vfs_inode);
3919 struct super_block *sb = inode->i_sb;
3921 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3922 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3923 /* we are using combined 48 bit field */
3924 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3925 le32_to_cpu(raw_inode->i_blocks_lo);
3926 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3927 /* i_blocks represent file system block size */
3928 return i_blocks << (inode->i_blkbits - 9);
3933 return le32_to_cpu(raw_inode->i_blocks_lo);
3937 static inline void ext4_iget_extra_inode(struct inode *inode,
3938 struct ext4_inode *raw_inode,
3939 struct ext4_inode_info *ei)
3941 __le32 *magic = (void *)raw_inode +
3942 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3943 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3944 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3945 ext4_find_inline_data_nolock(inode);
3947 EXT4_I(inode)->i_inline_off = 0;
3950 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3952 struct ext4_iloc iloc;
3953 struct ext4_inode *raw_inode;
3954 struct ext4_inode_info *ei;
3955 struct inode *inode;
3956 journal_t *journal = EXT4_SB(sb)->s_journal;
3962 inode = iget_locked(sb, ino);
3964 return ERR_PTR(-ENOMEM);
3965 if (!(inode->i_state & I_NEW))
3971 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3974 raw_inode = ext4_raw_inode(&iloc);
3976 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3977 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3978 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3979 EXT4_INODE_SIZE(inode->i_sb)) {
3980 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3981 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3982 EXT4_INODE_SIZE(inode->i_sb));
3987 ei->i_extra_isize = 0;
3989 /* Precompute checksum seed for inode metadata */
3990 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3991 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3992 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3994 __le32 inum = cpu_to_le32(inode->i_ino);
3995 __le32 gen = raw_inode->i_generation;
3996 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3998 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4002 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4003 EXT4_ERROR_INODE(inode, "checksum invalid");
4008 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4009 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4010 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4011 if (!(test_opt(inode->i_sb, NO_UID32))) {
4012 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4013 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4015 i_uid_write(inode, i_uid);
4016 i_gid_write(inode, i_gid);
4017 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4019 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4020 ei->i_inline_off = 0;
4021 ei->i_dir_start_lookup = 0;
4022 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4023 /* We now have enough fields to check if the inode was active or not.
4024 * This is needed because nfsd might try to access dead inodes
4025 * the test is that same one that e2fsck uses
4026 * NeilBrown 1999oct15
4028 if (inode->i_nlink == 0) {
4029 if ((inode->i_mode == 0 ||
4030 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4031 ino != EXT4_BOOT_LOADER_INO) {
4032 /* this inode is deleted */
4036 /* The only unlinked inodes we let through here have
4037 * valid i_mode and are being read by the orphan
4038 * recovery code: that's fine, we're about to complete
4039 * the process of deleting those.
4040 * OR it is the EXT4_BOOT_LOADER_INO which is
4041 * not initialized on a new filesystem. */
4043 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4044 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4045 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4046 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4048 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4049 inode->i_size = ext4_isize(raw_inode);
4050 ei->i_disksize = inode->i_size;
4052 ei->i_reserved_quota = 0;
4054 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4055 ei->i_block_group = iloc.block_group;
4056 ei->i_last_alloc_group = ~0;
4058 * NOTE! The in-memory inode i_data array is in little-endian order
4059 * even on big-endian machines: we do NOT byteswap the block numbers!
4061 for (block = 0; block < EXT4_N_BLOCKS; block++)
4062 ei->i_data[block] = raw_inode->i_block[block];
4063 INIT_LIST_HEAD(&ei->i_orphan);
4066 * Set transaction id's of transactions that have to be committed
4067 * to finish f[data]sync. We set them to currently running transaction
4068 * as we cannot be sure that the inode or some of its metadata isn't
4069 * part of the transaction - the inode could have been reclaimed and
4070 * now it is reread from disk.
4073 transaction_t *transaction;
4076 read_lock(&journal->j_state_lock);
4077 if (journal->j_running_transaction)
4078 transaction = journal->j_running_transaction;
4080 transaction = journal->j_committing_transaction;
4082 tid = transaction->t_tid;
4084 tid = journal->j_commit_sequence;
4085 read_unlock(&journal->j_state_lock);
4086 ei->i_sync_tid = tid;
4087 ei->i_datasync_tid = tid;
4090 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4091 if (ei->i_extra_isize == 0) {
4092 /* The extra space is currently unused. Use it. */
4093 ei->i_extra_isize = sizeof(struct ext4_inode) -
4094 EXT4_GOOD_OLD_INODE_SIZE;
4096 ext4_iget_extra_inode(inode, raw_inode, ei);
4100 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4101 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4102 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4103 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4105 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4106 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4107 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4109 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4113 if (ei->i_file_acl &&
4114 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4115 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4119 } else if (!ext4_has_inline_data(inode)) {
4120 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4121 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4122 (S_ISLNK(inode->i_mode) &&
4123 !ext4_inode_is_fast_symlink(inode))))
4124 /* Validate extent which is part of inode */
4125 ret = ext4_ext_check_inode(inode);
4126 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4127 (S_ISLNK(inode->i_mode) &&
4128 !ext4_inode_is_fast_symlink(inode))) {
4129 /* Validate block references which are part of inode */
4130 ret = ext4_ind_check_inode(inode);
4136 if (S_ISREG(inode->i_mode)) {
4137 inode->i_op = &ext4_file_inode_operations;
4138 inode->i_fop = &ext4_file_operations;
4139 ext4_set_aops(inode);
4140 } else if (S_ISDIR(inode->i_mode)) {
4141 inode->i_op = &ext4_dir_inode_operations;
4142 inode->i_fop = &ext4_dir_operations;
4143 } else if (S_ISLNK(inode->i_mode)) {
4144 if (ext4_inode_is_fast_symlink(inode)) {
4145 inode->i_op = &ext4_fast_symlink_inode_operations;
4146 nd_terminate_link(ei->i_data, inode->i_size,
4147 sizeof(ei->i_data) - 1);
4149 inode->i_op = &ext4_symlink_inode_operations;
4150 ext4_set_aops(inode);
4152 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4153 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4154 inode->i_op = &ext4_special_inode_operations;
4155 if (raw_inode->i_block[0])
4156 init_special_inode(inode, inode->i_mode,
4157 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4159 init_special_inode(inode, inode->i_mode,
4160 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4161 } else if (ino == EXT4_BOOT_LOADER_INO) {
4162 make_bad_inode(inode);
4165 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4169 ext4_set_inode_flags(inode);
4170 unlock_new_inode(inode);
4176 return ERR_PTR(ret);
4179 static int ext4_inode_blocks_set(handle_t *handle,
4180 struct ext4_inode *raw_inode,
4181 struct ext4_inode_info *ei)
4183 struct inode *inode = &(ei->vfs_inode);
4184 u64 i_blocks = inode->i_blocks;
4185 struct super_block *sb = inode->i_sb;
4187 if (i_blocks <= ~0U) {
4189 * i_blocks can be represented in a 32 bit variable
4190 * as multiple of 512 bytes
4192 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4193 raw_inode->i_blocks_high = 0;
4194 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4197 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4200 if (i_blocks <= 0xffffffffffffULL) {
4202 * i_blocks can be represented in a 48 bit variable
4203 * as multiple of 512 bytes
4205 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4206 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4207 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4209 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4210 /* i_block is stored in file system block size */
4211 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4212 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4213 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4219 * Post the struct inode info into an on-disk inode location in the
4220 * buffer-cache. This gobbles the caller's reference to the
4221 * buffer_head in the inode location struct.
4223 * The caller must have write access to iloc->bh.
4225 static int ext4_do_update_inode(handle_t *handle,
4226 struct inode *inode,
4227 struct ext4_iloc *iloc)
4229 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4230 struct ext4_inode_info *ei = EXT4_I(inode);
4231 struct buffer_head *bh = iloc->bh;
4232 int err = 0, rc, block;
4233 int need_datasync = 0;
4237 /* For fields not not tracking in the in-memory inode,
4238 * initialise them to zero for new inodes. */
4239 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4240 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4242 ext4_get_inode_flags(ei);
4243 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4244 i_uid = i_uid_read(inode);
4245 i_gid = i_gid_read(inode);
4246 if (!(test_opt(inode->i_sb, NO_UID32))) {
4247 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4248 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4250 * Fix up interoperability with old kernels. Otherwise, old inodes get
4251 * re-used with the upper 16 bits of the uid/gid intact
4254 raw_inode->i_uid_high =
4255 cpu_to_le16(high_16_bits(i_uid));
4256 raw_inode->i_gid_high =
4257 cpu_to_le16(high_16_bits(i_gid));
4259 raw_inode->i_uid_high = 0;
4260 raw_inode->i_gid_high = 0;
4263 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4264 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4265 raw_inode->i_uid_high = 0;
4266 raw_inode->i_gid_high = 0;
4268 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4270 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4271 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4272 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4273 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4275 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4277 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4278 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4279 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4280 cpu_to_le32(EXT4_OS_HURD))
4281 raw_inode->i_file_acl_high =
4282 cpu_to_le16(ei->i_file_acl >> 32);
4283 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4284 if (ei->i_disksize != ext4_isize(raw_inode)) {
4285 ext4_isize_set(raw_inode, ei->i_disksize);
4288 if (ei->i_disksize > 0x7fffffffULL) {
4289 struct super_block *sb = inode->i_sb;
4290 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4291 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4292 EXT4_SB(sb)->s_es->s_rev_level ==
4293 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4294 /* If this is the first large file
4295 * created, add a flag to the superblock.
4297 err = ext4_journal_get_write_access(handle,
4298 EXT4_SB(sb)->s_sbh);
4301 ext4_update_dynamic_rev(sb);
4302 EXT4_SET_RO_COMPAT_FEATURE(sb,
4303 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4304 ext4_handle_sync(handle);
4305 err = ext4_handle_dirty_super(handle, sb);
4308 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4309 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4310 if (old_valid_dev(inode->i_rdev)) {
4311 raw_inode->i_block[0] =
4312 cpu_to_le32(old_encode_dev(inode->i_rdev));
4313 raw_inode->i_block[1] = 0;
4315 raw_inode->i_block[0] = 0;
4316 raw_inode->i_block[1] =
4317 cpu_to_le32(new_encode_dev(inode->i_rdev));
4318 raw_inode->i_block[2] = 0;
4320 } else if (!ext4_has_inline_data(inode)) {
4321 for (block = 0; block < EXT4_N_BLOCKS; block++)
4322 raw_inode->i_block[block] = ei->i_data[block];
4325 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4326 if (ei->i_extra_isize) {
4327 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4328 raw_inode->i_version_hi =
4329 cpu_to_le32(inode->i_version >> 32);
4330 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4333 ext4_inode_csum_set(inode, raw_inode, ei);
4335 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4336 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4339 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4341 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4344 ext4_std_error(inode->i_sb, err);
4349 * ext4_write_inode()
4351 * We are called from a few places:
4353 * - Within generic_file_write() for O_SYNC files.
4354 * Here, there will be no transaction running. We wait for any running
4355 * transaction to commit.
4357 * - Within sys_sync(), kupdate and such.
4358 * We wait on commit, if tol to.
4360 * - Within prune_icache() (PF_MEMALLOC == true)
4361 * Here we simply return. We can't afford to block kswapd on the
4364 * In all cases it is actually safe for us to return without doing anything,
4365 * because the inode has been copied into a raw inode buffer in
4366 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
4369 * Note that we are absolutely dependent upon all inode dirtiers doing the
4370 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4371 * which we are interested.
4373 * It would be a bug for them to not do this. The code:
4375 * mark_inode_dirty(inode)
4377 * inode->i_size = expr;
4379 * is in error because a kswapd-driven write_inode() could occur while
4380 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4381 * will no longer be on the superblock's dirty inode list.
4383 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4387 if (current->flags & PF_MEMALLOC)
4390 if (EXT4_SB(inode->i_sb)->s_journal) {
4391 if (ext4_journal_current_handle()) {
4392 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4397 if (wbc->sync_mode != WB_SYNC_ALL)
4400 err = ext4_force_commit(inode->i_sb);
4402 struct ext4_iloc iloc;
4404 err = __ext4_get_inode_loc(inode, &iloc, 0);
4407 if (wbc->sync_mode == WB_SYNC_ALL)
4408 sync_dirty_buffer(iloc.bh);
4409 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4410 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4411 "IO error syncing inode");
4420 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4421 * buffers that are attached to a page stradding i_size and are undergoing
4422 * commit. In that case we have to wait for commit to finish and try again.
4424 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4428 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4429 tid_t commit_tid = 0;
4432 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4434 * All buffers in the last page remain valid? Then there's nothing to
4435 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4438 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4441 page = find_lock_page(inode->i_mapping,
4442 inode->i_size >> PAGE_CACHE_SHIFT);
4445 ret = __ext4_journalled_invalidatepage(page, offset,
4446 PAGE_CACHE_SIZE - offset);
4448 page_cache_release(page);
4452 read_lock(&journal->j_state_lock);
4453 if (journal->j_committing_transaction)
4454 commit_tid = journal->j_committing_transaction->t_tid;
4455 read_unlock(&journal->j_state_lock);
4457 jbd2_log_wait_commit(journal, commit_tid);
4464 * Called from notify_change.
4466 * We want to trap VFS attempts to truncate the file as soon as
4467 * possible. In particular, we want to make sure that when the VFS
4468 * shrinks i_size, we put the inode on the orphan list and modify
4469 * i_disksize immediately, so that during the subsequent flushing of
4470 * dirty pages and freeing of disk blocks, we can guarantee that any
4471 * commit will leave the blocks being flushed in an unused state on
4472 * disk. (On recovery, the inode will get truncated and the blocks will
4473 * be freed, so we have a strong guarantee that no future commit will
4474 * leave these blocks visible to the user.)
4476 * Another thing we have to assure is that if we are in ordered mode
4477 * and inode is still attached to the committing transaction, we must
4478 * we start writeout of all the dirty pages which are being truncated.
4479 * This way we are sure that all the data written in the previous
4480 * transaction are already on disk (truncate waits for pages under
4483 * Called with inode->i_mutex down.
4485 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4487 struct inode *inode = dentry->d_inode;
4490 const unsigned int ia_valid = attr->ia_valid;
4492 error = inode_change_ok(inode, attr);
4496 if (is_quota_modification(inode, attr))
4497 dquot_initialize(inode);
4498 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4499 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4502 /* (user+group)*(old+new) structure, inode write (sb,
4503 * inode block, ? - but truncate inode update has it) */
4504 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4505 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4506 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4507 if (IS_ERR(handle)) {
4508 error = PTR_ERR(handle);
4511 error = dquot_transfer(inode, attr);
4513 ext4_journal_stop(handle);
4516 /* Update corresponding info in inode so that everything is in
4517 * one transaction */
4518 if (attr->ia_valid & ATTR_UID)
4519 inode->i_uid = attr->ia_uid;
4520 if (attr->ia_valid & ATTR_GID)
4521 inode->i_gid = attr->ia_gid;
4522 error = ext4_mark_inode_dirty(handle, inode);
4523 ext4_journal_stop(handle);
4526 if (attr->ia_valid & ATTR_SIZE) {
4528 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4529 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4531 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4536 if (S_ISREG(inode->i_mode) &&
4537 attr->ia_valid & ATTR_SIZE &&
4538 (attr->ia_size < inode->i_size)) {
4541 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4542 if (IS_ERR(handle)) {
4543 error = PTR_ERR(handle);
4546 if (ext4_handle_valid(handle)) {
4547 error = ext4_orphan_add(handle, inode);
4550 EXT4_I(inode)->i_disksize = attr->ia_size;
4551 rc = ext4_mark_inode_dirty(handle, inode);
4554 ext4_journal_stop(handle);
4556 if (ext4_should_order_data(inode)) {
4557 error = ext4_begin_ordered_truncate(inode,
4560 /* Do as much error cleanup as possible */
4561 handle = ext4_journal_start(inode,
4563 if (IS_ERR(handle)) {
4564 ext4_orphan_del(NULL, inode);
4567 ext4_orphan_del(handle, inode);
4569 ext4_journal_stop(handle);
4575 if (attr->ia_valid & ATTR_SIZE) {
4576 if (attr->ia_size != inode->i_size) {
4577 loff_t oldsize = inode->i_size;
4579 i_size_write(inode, attr->ia_size);
4581 * Blocks are going to be removed from the inode. Wait
4582 * for dio in flight. Temporarily disable
4583 * dioread_nolock to prevent livelock.
4586 if (!ext4_should_journal_data(inode)) {
4587 ext4_inode_block_unlocked_dio(inode);
4588 inode_dio_wait(inode);
4589 ext4_inode_resume_unlocked_dio(inode);
4591 ext4_wait_for_tail_page_commit(inode);
4594 * Truncate pagecache after we've waited for commit
4595 * in data=journal mode to make pages freeable.
4597 truncate_pagecache(inode, oldsize, inode->i_size);
4599 ext4_truncate(inode);
4603 setattr_copy(inode, attr);
4604 mark_inode_dirty(inode);
4608 * If the call to ext4_truncate failed to get a transaction handle at
4609 * all, we need to clean up the in-core orphan list manually.
4611 if (orphan && inode->i_nlink)
4612 ext4_orphan_del(NULL, inode);
4614 if (!rc && (ia_valid & ATTR_MODE))
4615 rc = ext4_acl_chmod(inode);
4618 ext4_std_error(inode->i_sb, error);
4624 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4627 struct inode *inode;
4628 unsigned long long delalloc_blocks;
4630 inode = dentry->d_inode;
4631 generic_fillattr(inode, stat);
4634 * We can't update i_blocks if the block allocation is delayed
4635 * otherwise in the case of system crash before the real block
4636 * allocation is done, we will have i_blocks inconsistent with
4637 * on-disk file blocks.
4638 * We always keep i_blocks updated together with real
4639 * allocation. But to not confuse with user, stat
4640 * will return the blocks that include the delayed allocation
4641 * blocks for this file.
4643 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4644 EXT4_I(inode)->i_reserved_data_blocks);
4646 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits-9);
4650 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4653 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4654 return ext4_ind_trans_blocks(inode, lblocks);
4655 return ext4_ext_index_trans_blocks(inode, pextents);
4659 * Account for index blocks, block groups bitmaps and block group
4660 * descriptor blocks if modify datablocks and index blocks
4661 * worse case, the indexs blocks spread over different block groups
4663 * If datablocks are discontiguous, they are possible to spread over
4664 * different block groups too. If they are contiguous, with flexbg,
4665 * they could still across block group boundary.
4667 * Also account for superblock, inode, quota and xattr blocks
4669 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4672 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4678 * How many index blocks need to touch to map @lblocks logical blocks
4679 * to @pextents physical extents?
4681 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4686 * Now let's see how many group bitmaps and group descriptors need
4689 groups = idxblocks + pextents;
4691 if (groups > ngroups)
4693 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4694 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4696 /* bitmaps and block group descriptor blocks */
4697 ret += groups + gdpblocks;
4699 /* Blocks for super block, inode, quota and xattr blocks */
4700 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4706 * Calculate the total number of credits to reserve to fit
4707 * the modification of a single pages into a single transaction,
4708 * which may include multiple chunks of block allocations.
4710 * This could be called via ext4_write_begin()
4712 * We need to consider the worse case, when
4713 * one new block per extent.
4715 int ext4_writepage_trans_blocks(struct inode *inode)
4717 int bpp = ext4_journal_blocks_per_page(inode);
4720 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4722 /* Account for data blocks for journalled mode */
4723 if (ext4_should_journal_data(inode))
4729 * Calculate the journal credits for a chunk of data modification.
4731 * This is called from DIO, fallocate or whoever calling
4732 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4734 * journal buffers for data blocks are not included here, as DIO
4735 * and fallocate do no need to journal data buffers.
4737 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4739 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4743 * The caller must have previously called ext4_reserve_inode_write().
4744 * Give this, we know that the caller already has write access to iloc->bh.
4746 int ext4_mark_iloc_dirty(handle_t *handle,
4747 struct inode *inode, struct ext4_iloc *iloc)
4751 if (IS_I_VERSION(inode))
4752 inode_inc_iversion(inode);
4754 /* the do_update_inode consumes one bh->b_count */
4757 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4758 err = ext4_do_update_inode(handle, inode, iloc);
4764 * On success, We end up with an outstanding reference count against
4765 * iloc->bh. This _must_ be cleaned up later.
4769 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4770 struct ext4_iloc *iloc)
4774 err = ext4_get_inode_loc(inode, iloc);
4776 BUFFER_TRACE(iloc->bh, "get_write_access");
4777 err = ext4_journal_get_write_access(handle, iloc->bh);
4783 ext4_std_error(inode->i_sb, err);
4788 * Expand an inode by new_extra_isize bytes.
4789 * Returns 0 on success or negative error number on failure.
4791 static int ext4_expand_extra_isize(struct inode *inode,
4792 unsigned int new_extra_isize,
4793 struct ext4_iloc iloc,
4796 struct ext4_inode *raw_inode;
4797 struct ext4_xattr_ibody_header *header;
4799 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4802 raw_inode = ext4_raw_inode(&iloc);
4804 header = IHDR(inode, raw_inode);
4806 /* No extended attributes present */
4807 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4808 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4809 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4811 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4815 /* try to expand with EAs present */
4816 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4821 * What we do here is to mark the in-core inode as clean with respect to inode
4822 * dirtiness (it may still be data-dirty).
4823 * This means that the in-core inode may be reaped by prune_icache
4824 * without having to perform any I/O. This is a very good thing,
4825 * because *any* task may call prune_icache - even ones which
4826 * have a transaction open against a different journal.
4828 * Is this cheating? Not really. Sure, we haven't written the
4829 * inode out, but prune_icache isn't a user-visible syncing function.
4830 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4831 * we start and wait on commits.
4833 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4835 struct ext4_iloc iloc;
4836 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4837 static unsigned int mnt_count;
4841 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4842 err = ext4_reserve_inode_write(handle, inode, &iloc);
4843 if (ext4_handle_valid(handle) &&
4844 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4845 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4847 * We need extra buffer credits since we may write into EA block
4848 * with this same handle. If journal_extend fails, then it will
4849 * only result in a minor loss of functionality for that inode.
4850 * If this is felt to be critical, then e2fsck should be run to
4851 * force a large enough s_min_extra_isize.
4853 if ((jbd2_journal_extend(handle,
4854 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4855 ret = ext4_expand_extra_isize(inode,
4856 sbi->s_want_extra_isize,
4859 ext4_set_inode_state(inode,
4860 EXT4_STATE_NO_EXPAND);
4862 le16_to_cpu(sbi->s_es->s_mnt_count)) {
4863 ext4_warning(inode->i_sb,
4864 "Unable to expand inode %lu. Delete"
4865 " some EAs or run e2fsck.",
4868 le16_to_cpu(sbi->s_es->s_mnt_count);
4874 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4879 * ext4_dirty_inode() is called from __mark_inode_dirty()
4881 * We're really interested in the case where a file is being extended.
4882 * i_size has been changed by generic_commit_write() and we thus need
4883 * to include the updated inode in the current transaction.
4885 * Also, dquot_alloc_block() will always dirty the inode when blocks
4886 * are allocated to the file.
4888 * If the inode is marked synchronous, we don't honour that here - doing
4889 * so would cause a commit on atime updates, which we don't bother doing.
4890 * We handle synchronous inodes at the highest possible level.
4892 void ext4_dirty_inode(struct inode *inode, int flags)
4896 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4900 ext4_mark_inode_dirty(handle, inode);
4902 ext4_journal_stop(handle);
4909 * Bind an inode's backing buffer_head into this transaction, to prevent
4910 * it from being flushed to disk early. Unlike
4911 * ext4_reserve_inode_write, this leaves behind no bh reference and
4912 * returns no iloc structure, so the caller needs to repeat the iloc
4913 * lookup to mark the inode dirty later.
4915 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4917 struct ext4_iloc iloc;
4921 err = ext4_get_inode_loc(inode, &iloc);
4923 BUFFER_TRACE(iloc.bh, "get_write_access");
4924 err = jbd2_journal_get_write_access(handle, iloc.bh);
4926 err = ext4_handle_dirty_metadata(handle,
4932 ext4_std_error(inode->i_sb, err);
4937 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4944 * We have to be very careful here: changing a data block's
4945 * journaling status dynamically is dangerous. If we write a
4946 * data block to the journal, change the status and then delete
4947 * that block, we risk forgetting to revoke the old log record
4948 * from the journal and so a subsequent replay can corrupt data.
4949 * So, first we make sure that the journal is empty and that
4950 * nobody is changing anything.
4953 journal = EXT4_JOURNAL(inode);
4956 if (is_journal_aborted(journal))
4958 /* We have to allocate physical blocks for delalloc blocks
4959 * before flushing journal. otherwise delalloc blocks can not
4960 * be allocated any more. even more truncate on delalloc blocks
4961 * could trigger BUG by flushing delalloc blocks in journal.
4962 * There is no delalloc block in non-journal data mode.
4964 if (val && test_opt(inode->i_sb, DELALLOC)) {
4965 err = ext4_alloc_da_blocks(inode);
4970 /* Wait for all existing dio workers */
4971 ext4_inode_block_unlocked_dio(inode);
4972 inode_dio_wait(inode);
4974 jbd2_journal_lock_updates(journal);
4977 * OK, there are no updates running now, and all cached data is
4978 * synced to disk. We are now in a completely consistent state
4979 * which doesn't have anything in the journal, and we know that
4980 * no filesystem updates are running, so it is safe to modify
4981 * the inode's in-core data-journaling state flag now.
4985 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4987 jbd2_journal_flush(journal);
4988 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4990 ext4_set_aops(inode);
4992 jbd2_journal_unlock_updates(journal);
4993 ext4_inode_resume_unlocked_dio(inode);
4995 /* Finally we can mark the inode as dirty. */
4997 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
4999 return PTR_ERR(handle);
5001 err = ext4_mark_inode_dirty(handle, inode);
5002 ext4_handle_sync(handle);
5003 ext4_journal_stop(handle);
5004 ext4_std_error(inode->i_sb, err);
5009 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5011 return !buffer_mapped(bh);
5014 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5016 struct page *page = vmf->page;
5020 struct file *file = vma->vm_file;
5021 struct inode *inode = file_inode(file);
5022 struct address_space *mapping = inode->i_mapping;
5024 get_block_t *get_block;
5027 sb_start_pagefault(inode->i_sb);
5028 file_update_time(vma->vm_file);
5029 /* Delalloc case is easy... */
5030 if (test_opt(inode->i_sb, DELALLOC) &&
5031 !ext4_should_journal_data(inode) &&
5032 !ext4_nonda_switch(inode->i_sb)) {
5034 ret = __block_page_mkwrite(vma, vmf,
5035 ext4_da_get_block_prep);
5036 } while (ret == -ENOSPC &&
5037 ext4_should_retry_alloc(inode->i_sb, &retries));
5042 size = i_size_read(inode);
5043 /* Page got truncated from under us? */
5044 if (page->mapping != mapping || page_offset(page) > size) {
5046 ret = VM_FAULT_NOPAGE;
5050 if (page->index == size >> PAGE_CACHE_SHIFT)
5051 len = size & ~PAGE_CACHE_MASK;
5053 len = PAGE_CACHE_SIZE;
5055 * Return if we have all the buffers mapped. This avoids the need to do
5056 * journal_start/journal_stop which can block and take a long time
5058 if (page_has_buffers(page)) {
5059 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5061 ext4_bh_unmapped)) {
5062 /* Wait so that we don't change page under IO */
5063 wait_for_stable_page(page);
5064 ret = VM_FAULT_LOCKED;
5069 /* OK, we need to fill the hole... */
5070 if (ext4_should_dioread_nolock(inode))
5071 get_block = ext4_get_block_write;
5073 get_block = ext4_get_block;
5075 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5076 ext4_writepage_trans_blocks(inode));
5077 if (IS_ERR(handle)) {
5078 ret = VM_FAULT_SIGBUS;
5081 ret = __block_page_mkwrite(vma, vmf, get_block);
5082 if (!ret && ext4_should_journal_data(inode)) {
5083 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5084 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5086 ret = VM_FAULT_SIGBUS;
5087 ext4_journal_stop(handle);
5090 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5092 ext4_journal_stop(handle);
5093 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5096 ret = block_page_mkwrite_return(ret);
5098 sb_end_pagefault(inode->i_sb);